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Abstract— Compact and efficient 6DoF object pose estimation
is crucial in applications such as robotics, augmented reality,
and space autonomous navigation systems, where lightweight
models are critical for real-time accurate performance. This
paper introduces a novel uncertainty-aware end-to-end Knowl-
edge Distillation (KD) framework focused on keypoint-based
6DoF pose estimation. Keypoints predicted by a large teacher
model exhibit varying levels of uncertainty that can be exploited
within the distillation process to enhance the accuracy of the
student model while ensuring its compactness. To this end,
we propose a distillation strategy that aligns the student and
teacher predictions by adjusting the knowledge transfer based
on the uncertainty associated with each teacher keypoint predic-
tion. Additionally, the proposed KD leverages this uncertainty-
aware alignment of keypoints to transfer the knowledge at
key locations of their respective feature maps. Experiments
on the widely-used LINEMOD benchmark demonstrate the
effectiveness of our method, achieving superior 6DoF object
pose estimation with lightweight models compared to state-of-
the-art approaches. Further validation on the SPEED+ dataset
for spacecraft pose estimation highlights the robustness of our
approach under diverse 6DoF pose estimation scenarios.

I. INTRODUCTION

Six Degrees of Freedom (6DoF) object pose estima-
tion is a fundamental area in computer vision, with wide-
ranging application fields such as Augmented Reality (AR),
robotic manipulation, satellite docking, and space debris
tracking [1]–[5]. Its core objective involves estimating both
the position and orientation of an object in 3D space relative
to the camera coordinate system.

The task of 6DoF pose estimation is typically addressed
using a two-stage pipeline: (1) establishing correspondences
between the 3D model of the object and input images [4]–[6],
and (2) computing the object’s pose from these correspon-
dences using a Perspective-n-Point (PnP) algorithm [7]–[10].
While traditional methods address the first step by relying
on carefully hand-designed features [11], recent successful
approaches have mostly shifted towards deep learning re-
gressors that predict key primitives such as keypoints [4],
[6] or local predictions [12], [13], provided as input to the
PnP solver.

Despite achieving great accuracy, 6DoF pose estimation
methods are practically challenged by real-world constraints.
A key limitation lies in their reliance on large deep neural
architectures with tens of millions of parameters [14]–[16].

To address this, Guo et al. [17] introduced a Knowledge
Distillation (KD) strategy for efficient 6DoF pose estimation.
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Fig. 1: Uncertainty in Teacher Predictions. (a) Predictions
from multiple teacher models show varied keypoint loca-
tions, represented by individual teacher predictions. (b) Key-
point predictions with high uncertainty values are visualized
through clustered uncertainty markers.

KD aims at transferring knowledge from a deep teacher
model to a more compact student model. While such an
approach has been widely explored in the field of computer
vision [18]–[20], the work of [17] is the first to consider it
in the specific field of 6DoF pose estimation. They observed
that compact student networks often struggle to predict
accurate keypoints as compared to larger teacher networks.
They address this by distilling knowledge from the teacher
to the student at the prediction-level of the keypoints through
an Optimal Transport (OT) approach [21]. Additionally, the
prediction-level KD was naively combined with an off-the-
shelf feature-level KD method [22] in an attempt to further
enhance the accuracy of the student model.

While KD stands as an appealing approach for achieving
efficient 6DoF pose estimation [17], [23], we identify key
limitations at two levels in existing methods: (1) prediction-
level - most works assume that the teacher network predicts
all keypoints with equal confidence. However, as shown
in Figure 1-b, the keypoint predictions from the teacher
often exhibit varying levels of uncertainty. Current meth-



ods [17], [23] treat all predicted keypoints equally, ignoring
this uncertainty. As a result, irrelevant knowledge may be
transferred from the teacher, causing the introduction of
a bias in the student model towards less reliable teacher
predictions. (2) feature-level - KD is addressed at the feature-
level independently from the prediction-level, which can lead
to inconsistencies when aligning the features and predictions
between the teacher and student networks.

In this paper, we propose a novel KD method at both the
prediction-level and the feature-level for efficient keypoint
prediction in 6DoF object pose estimation, addressing the
identified limitations. Our prediction-level KD approach,
referred to as Uncertainty-Aware Knowledge Distillation
(UAKD), leverages the uncertainties of keypoints predicted
by the teacher model to guide the alignment between the
teacher and student prediction distributions. The influence
of keypoints with higher uncertainty in the teacher model
is reduced in the KD process. This is achieved through an
uncertainty-aware OT approach, where uncertainty values are
integrated into the alignment strategy using an unbalanced
Sinkhorn algorithm [24]. As shown in Figure 1-a, we rely
on a teacher ensembling method [25], [26] to estimate the
keypoint uncertainties, as 6DoF pose estimation techniques
do not necessarily provide explicitly this information.

In addition, we extend our KD framework to operate at
the feature-level. The proposed KD mechanism is termed
Prediction-related Feature Knowledge Distillation (PFKD).
In particular, the predicted keypoints are traced back to their
corresponding receptive fields in the feature maps of both
the teacher and student models. By applying the OT solution
from the prediction-level to the feature maps, we establish
correspondences between relevant regions in the teacher
and student feature maps. This enables distillation at key
locations in the feature space. By leveraging the prediction-
level OT solution in the feature-level KD, we develop a
comprehensive end-to-end uncertainty-aware KD approach
that leverages keypoints along with their related feature rep-
resentations from the teacher model. Experiments conducted
on two publicly available datasets, namely LINEMOD [27]
for regular object pose estimation and SPEED+ [28] for
satellite pose estimation using two different backbones [12],
[14], demonstrate that our method outperforms existing KD
approaches for efficient 6DoF pose estimation [17], [23].
Our main contributions can be summarized as follows.

• An Uncertainty-Aware prediction-level KD (UAKD) for
efficient keypoint prediction in 6DoF pose estimation.

• A feature-level KD approach (PFKD) that is consis-
tent with the prediction-level KD by leveraging the
prediction-level OT solution to establish correspon-
dences between feature map regions and keypoint pre-
dictions in both the teacher and student models.

• Extensive experiments on two well-known datasets with
two state-of-the-art pose estimation models [12], [14].

II. RELATED WORK

In this section, we start by presenting the state-of-the-art
on efficient 6DoF pose estimation, then review related works

on the field of KD.
Efficient 6DoF Pose Estimation. With the growing demand
for real-time applications, research on pose estimation has
increasingly emphasized the need for accurate yet compu-
tationally efficient solutions [17], [23], [29]–[31]. Efforts
have been therefore dedicated for introducing pose estima-
tion methods [29], [30], [32] that employ computationally
friendly backbones such as SSD [33] and EfficientDet [32].
Nevertheless, these approaches predominantly prioritize the
computational cost over other deployment challenges such
as memory constraints. As a result, while speed is a crucial
aspect, taking into account the number of parameters used in
a model is also essential for reaching real-world standards in
efficiency. To this end, Guan et al. [23] were the first to use
knowledge distillation to train an efficient 6DoF pose esti-
mation model based on the HRNetV2-W18 backbone [34].
Additionally, Guo et al. [17] proposed a KD approach by
aligning keypoint predictions from a highly accurate teacher
model to a less performing and compact one using optimal
transport [21]. Despite being promising, current methods
treat all keypoints equivalently while having different levels
of uncertainty; therefore hindering the distillation process.
Moreover, they decouple the KD at the feature and the
prediction levels, leading to inconsistent knowledge transfer.
Knowledge Distillation (KD). KD has proved to be an
effective way to transfer knowledge from a well-performing
deeper teacher network to a more compact student one, with
the aim of improving the accuracy of the student model [18],
[35]–[39]. KD was first proposed by Hinton et al. [35] where
the authors tried to leverage the last layer outputs of the
teacher network. Inspired by this work, many KD variants
have been derived by considering different strategies [18],
[36], [39]–[42] such as the use of intermediate features
from the head [18] or multiple teacher assistants [36].
Nevertheless, most of these approaches do not transfer the
knowledge coherently at the prediction-level and the feature-
level, which may cause inconsistencies. Only few methods
based on attention [34], [40], [41] tried to address this issue
on different computer vision tasks; however, disregarding
the specific field of 6DoF pose estimation. Moreover, none
of these approaches have considered the uncertainty aspect,
which is a core component in this paper. This highlights the
need to develop a feature distillation mechanism compatible
with an uncertainty-aware prediction-level KD.

III. PROBLEM STATEMENT

Estimating the 6DoF pose of a given object from a sample
I ∈ I belonging to the space of RGB images I involves
finding a function Φ such that,

Φ : I −→ SO(3)× R3 ,
I 7−→ Φ(I) = (R, t) ,

(1)

where (R, t) represents the object pose formed by a rotation
matrix R ∈ SO(3) and a translation vector t ∈ R3 w.r.t.
the camera coordinate system. SO(3) denotes the special
orthogonal group in dimension 3.



In a two-stage neural 6DoF pose estimation method [4]–
[6], the first stage relies on a neural network Φk that
detects from an input I, a total of N 2D keypoints
K = (ki)i∈[[1,N ]], where ki ∈ R2 and K ∈ RN×2.
Using the predicted 2D keypoints K and known keypoints
K3D ∈ RN×3 from a 3D object model, the pose pa-
rameters can be estimated using a PnP solver [7], [9],
i.e., (R, t) = PnP(Φk(I),K3D). The performance of
two-stage 6DoF pose estimation methods heavily depends on
the accuracy of the predicted keypoints K. Smaller keypoint
prediction models tend to have a higher predicted pose
error compared to larger ones [17]. Knowledge Distilla-
tion (KD) addresses this challenge by considering a trained
well-performing large teacher model ΦT

k , parametrized by
θT , and transferring its knowledge when training a smaller
student model ΦS

k , parametrized by θS , for the same task,
i.e., keypoint prediction. Here, it is important to note that
|θS | < |θT |, where |.| refers to the cardinality. The student
model is then tasked with two learning objectives at the
same time, namely, the minimization of the error between the
predictions and the ground-truth, while matching its feature
activations and/or predictions with those of the teacher. The
parameters of the student are optimized as follows,

argmin
θS

γkptLkpt(K
S ,Kgt) + γdistillLdistill(Φ

S
k ,Φ

T
k ) , (2)

where Lkpt(K
S ,Kgt) measures the error between the pre-

dicted student keypoints KS and the corresponding ground-
truth keypoints Kgt, Ldistill(Φ

S
k ,Φ

T
k ) quantifies the discrep-

ancy between the feature activations and/or the predicted
keypoints of the student ΦS

k and the teacher ΦT
k . The

parameters γkpt and γdistill balance the two terms in (2).
Our goal is to define the knowledge transfer process for

keypoint prediction in 6DoF pose estimation Ldistill as an
end-to-end distillation process that operates at two levels.
Hence, we formulate it as follows,

Ldistill(Φ
S
k ,Φ

T
k )=γp Lpred(K

S ,KT )︸ ︷︷ ︸
Prediction-level

+γf Lfeat(R
S ,RT )︸ ︷︷ ︸

Feature-level

.(3)

At the prediction-level, we propose to align the student
predicted keypoints, KS , with those of the teacher, KT ,
while accounting for potential uncertainties in the teacher
predictions. At the feature-level, our goal is to ensure the
alignment between student and teacher feature activations
FS and FT , at key locations RS = f(FS ,KS) and
RT = f(FT ,KT ), respectively. These key regions are
retrieved through a function f(., .) driven by keypoint pre-
dictions for ensuring a consistent end-to-end process between
the feature-level and prediction-level alignments.

IV. PROPOSED APPROACH

To address the problem outlined in Section III, we pro-
pose a Knowledge Distillation (KD) framework for efficient
keypoint prediction for 6DoF pose estimation, integrating
two complementary KD methods, namely, UAKD which
operates at the prediction-level and PFKD which acts at the
feature-level. In particular, UAKD leverages the prediction

uncertainties of the teacher model for performing an Optimal
Transport (OT) [21] alignment between the teacher and the
student prediction distributions. On the other hand, PFKD
relies on the correspondences established between teacher
and student keypoints at the prediction-level to guide the
feature-level distillation process, focusing on activated fea-
ture regions. Figure 2-(A) illustrates the two-level overall
proposed KD framework.

A. Uncertainty-Aware Prediction-Level KD

Let KT = (k̂T
i )i∈[[1,N ]] and KS = (k̂S

i )i∈[[1,M ]] be
the teacher and the student predicted keypoints, respectively.
To transfer the knowledge from teacher to student keypoints
with different cardinalities (N ̸= M ), the keypoint alignment
process can be seen as an alignment of two distributions,
and therefore formulated as an unbalanced OT problem [17],
[43], where each keypoint is weighted. Formally, this is
equivalent to finding the optimal transportation plan π ∈
RN×M that minimizes the overall alignment defined as,

Lpred = min
π

∑M
i=1

∑N
j=1 πij∥k̂S

i − k̂T
j ∥2 ,

s.t. ∀i,
∑N

j=1 πij = αS
i , ∀j,

∑M
i=1 πij = αT

j ,
(4)

where αT = (αT
1 , α

T
2 , · · · , αT

N ) and
αS = (αS

1 , α
S
2 , · · · , αS

M ) denote the weights assigned to
the teacher and student keypoint predictions, respectively.
The solution to this OT problem can be efficiently found
using an unbalanced Sinkhorn algorithm [24], [44].

While Guo et al. adopt such an OT-based KD method [17],
they only consider the existence probabilities of predicted
keypoints that are provided by some keypoint regressors [12].
In this work, we posit that incorporating the uncertainties of
the teacher keypoint predictions within the KD process can
improve the performance of the student model. To that end,
we define the following confidence weights for the teacher
and the student models,

αT,c = 1N − u, αS,c =
1

M
· 1M , (5)

where 1N and 1M denote N and M -dimensional all-ones
vectors, respectively, and u = (u1, u2, · · · , uN ) ∈ [0, 1]N is
a vector containing the uncertainty scores for each predicted
keypoint k̂T

i . For models that provide keypoint existence
probabilities [12], these confidence weights can be integrated
as follows,

αT = λ×αT,c + (1− λ)×αT,e , (6)

where λ denotes a modulating factor and αT,e are the
existence probabilities of the teacher’s keypoints. We chose
summation over multiplication due to superior empirical
performances. Figure 2-(B) depicts the proposed UAKD.
Teacher Keypoint Uncertainty Estimation. Here, we de-
scribe the estimation of the teacher keypoint uncertain-
ties u used to define the confidence weights αT,c in (5).
We focus on estimating the teacher epistemic uncertainty
only, which typically arises from the model’s parameters
themselves [45], preventing the distillation from being in-
fluenced by the noise inherent in the data, i.e., aleatoric



Fig. 2: Overview of the Proposed Knowledge Distillation (KD) Framework (Best viewed in color). (A) General
overview: Keypoints predicted by the ensemble of teachers are used to estimate uncertainties and are subsequently processed
by UAKD, while averaged feature maps are directed to PFKD, guided by the OT plan π. (B) UAKD Module: Keypoints,
along with corresponding confidence scores αT,c and αS,c, are aligned using an unbalanced Sinkhorn algorithm [43], where⊗

represent the tensor product. (C) PFKD Module: Predicted keypoints are mapped back to their respective regions in the
feature maps and are aligned consistently according to the OT plan π.

uncertainty. For this end, we employ the deep ensembling
method [25] which approximates the posterior distribution
of the teacher model’s weights p(θT |I) in a similar way
to Monte Carlo sampling [46]. We represent the ensem-
ble of trained teacher weights as Θ = {θTj

}Ej=1. These
teacher models are similarly trained but with different weight
initializations. At inference, for each input I ∈ I, the
trained ensemble produces E sets of 2D keypoint predictions,
KT

Θ = {(k̂Tj

i )i∈[[1,N ]]}j∈[[1,E]] where k̂
Tj

i ∈ R2 represents
the i-th keypoint predicted by the model with the weights
θTj . We then aggregate the predictions of the teachers
for each keypoint i by estimating its per-coordinate mean
(µx,k̂i

, µy,k̂i
) and variance (σ2

x,k̂i
, σ2

y,k̂i
). The collection of

mean keypoints are then used as representative of the teacher
ensemble predictions KT . For simplicity, we consider the x-
and y- axes independent, Therefore, the total variance of
keypoint i is given by σ2

k̂i
= σ2

x,k̂i
+ σ2

y,k̂i
. We then form

σT = (σ2
k̂i
)i∈[[1,N ]] as the per-keypoint variances of the

teacher ensemble. These variance values are further mapped
to uncertainty scores in [0, 1]N using a tanh function to
obtain u = tanh(σT ). Our experiments demonstrated
that an ensemble of just 4 to 6 models is sufficient to closely
approximate the true variance, i.e., the epistemic uncertainty,
of the teacher model.

Note that in the above, we assume that all teacher models
predict the same number of keypoints. However, this may
not always hold. In such cases, a majority voting is used
to identify the keypoints for which uncertainties will be
estimated. The remaining are assigned an uncertainty of 1.

B. Prediction-related Feature-per-Keypoint KD

We now describe the proposed Prediction-related Feature-
per-Keypoint Knowledge Distillation (PFKD). PFKD lever-
ages the predicted keypoints and the transportation plan

obtained at the prediction-level KD (Section IV-A) to distill
the knowledge at key locations of the feature space.

Let FT ∈ RC×H×W denote the feature maps extracted
from the teacher backbone network, where C, H , and
W are the number of channels, height, and width of the
feature maps, respectively. We start by retrieving the keypoint
coordinates predicted by the teacher model, represented
as KT = (k̂T

i )i∈[[1,N ]]. A mapping is then established
between each keypoint and the feature maps, enabling the
identification of keypoint locations within the feature space.
Indeed, the predicted keypoints are obtained through a series
of convolutions applied on the feature maps that conserve
spatial awareness, making it possible to map each keypoint
to its corresponding feature location. Thus, we associate
each predicted keypoint k̂T

i defined by its 2D position
k̂T
i = (x̂T

i , ŷ
T
i ) with a feature region RT

i ∈ RC×HT×WT

centered at ci and with spatial dimensions HT and WT that
are defined as described below,

ci = (⌊δ × x̂T
i ⌉, ⌊δ × ŷTi ⌉),

HT = WT = 1 +
∑L

i=1

(
(κi − 1)

∏i−1
j=1 sj

)
,

(7)

where L denotes the number of convolutional layers in
the keypoint prediction head, δ is the scaling factor re-
lating the feature map size to the output size, ⌊·⌉ the
rounding operation, and κi and si are the kernel size
and stride of the i-th convolutional layer. We then ob-
tain a set RT = {RT

1 ,R
T
2 , . . . ,R

T
N} that represents

the feature regions that contributed to the prediction of
each keypoint. Applying a similar procedure with the stu-
dent model, we obtain RS = {RS

1 ,R
S
2 , . . . ,R

S
M}, where

RS
i ∈ RCS×HS×WS . If necessary, we apply a 1×1 convolu-

tion on the feature regions extracted from the teacher model
to adjust the channel dimensions and an average pooling



operation to modify the spatial dimensions. This ensures that
the elements of RT are transformed to RT

i ∈ RCS ,HS ,WS .
Given RT and RS , the proposed approach is turned into

aligning the sets of teacher and student per-keypoint feature
regions. To match each region from RT to its corresponding
one in RS , we propose to use the optimal transport plan
found in (4). Thus, the proposed PFKD loss can be formu-
lated as follows,

Lfeat(R
T ,RS ,π) =

1

N ·M

N∑
i=1

M∑
j=1

[

πi,j

CS∑
d1=1

WS∑
d2=1

HS∑
d3=1

(
RT

i [d1, d2, d3]−RS
j [d1, d2, d3]

)2
CS ·HS ·WS

]
.

(8)

It is important to mention that by re-using the transportation
plan of the uncertainty-aware prediction-level KD, the pro-
posed PFKD also incorporates the uncertainty information
of the teacher. Note that the PFKD process explained above
considers a single teacher model. However, our approach
uses an ensemble of teachers as mentioned in Section IV-
A. Thus, we aggregate the different feature regions ex-
tracted from different teacher models by averaging them.
As a result, the set of the teacher feature regions becomes
RT = { 1

E

∑E
j=1 R

Tj

i }Ni=1. Figure 2-(C) depicts the proposed
PFKD.

Finally, the uncertainty-aware prediction-level and feature-
level KD are together in the overall training. This is achieved
by plugging their respective losses defined in (8) and (4)
into (3), where γp, γf ∈ R are the two modulating factors
for each loss. We set γp = 5 and γf = 0.1 in our
experiments, which leads to the best results.

V. EXPERIMENTS

In this section, we first describe our experimental setup.
Then, we demonstrate the effectiveness of the proposed KD
method on a well-known benchmark for generic object pose
estimation, namely, the LINEMOD dataset [27]. Further-
more, we consider the specific scenario of spacecraft pose es-
timation given the relevance of efficient models in the context
of space applications. In particular, we validate our approach
on the spacecraft pose estimation dataset SPEED+ [28].
Additional experiments are finally conducted to validate the
proposed approach.

A. Experimental Setup

Models. We evaluate our approach using two distinct two-
stage pose estimation networks, namely, WDRNet [12] and
SPNv2 [14]. WDRNet uses a DarkNet-53 [47] backbone
coupled with a feature pyramid network [48] to predict 2D
keypoint locations across multiple scales. It then employs a
sampling strategy that enables feature vectors at each level
to contribute probabilistically to the predictions. This results
in estimating 2D keypoint clusters for each 3D bounding
box corner, thus making it a local prediction-based keypoint
detector. On the other hand, SPNv2 is a multi-task CNN
that uses a shared multi-scale feature encoder built on an
EfficientDet [32] backbone and BiFPN layers. It consists of

multiple prediction heads for various tasks. In our work, we
focus on the 2D keypoint prediction head that is trained to
predict 2D heatmaps associated with each 2D keypoint on the
object of interest. In our experiments, for the teacher models,
we use WDRnet with Darknet-53 and the ϕ = 6 version
of SPNv2 based on the EfficientDet-D6 [32] backbone.
For the student networks, we use WDRnet with Darknet-
Tiny [49] and a lighter Darknet-Tiny-H version with half of
the channels of DarkNet-tiny in each layer. Moreover, for
the lighter SPNv2 student we train a ϕ = 0 version which is
based on the EfficientDet-D0 [32] backbone. A more detailed
comparison of these architectures is presented in Table I.

TABLE I: Comparison of different architectures in terms of
number of parameters (in millions), floating point operations
per second (in billions), and input resolution.

Model Backbone #Param [M] #FLOPs [B] Input Res.

WDRNet
Darknet-53 52.1 36.51

640× 480Darknet-Tiny 8.5 18.84
Darknet-Tiny-H 2.3 4.75

SPNv2
EfficientDet-D6 57.8 288.27

768× 512
EfficientDet-D0 3.8 12.1

Datasets. LINEMOD [27] is a general object pose esti-
mation benchmark. It contains 16,000 images belonging to
13 different object categories. SPEED+ [28] is a cross-
domain dataset for Spacecraft pose estimation. It is formed
by 60,000 synthetic images for training and two additional
unlabeled subsets containing 6,740 and 2,791 images from
two different domains, lightbox and sunlamp, respec-
tively. The lightbox consists of the Tango spacecraft [50]
mockup model illuminated to simulate diffuse light in the
Earth’s orbit, whereas the sunlamp images of the same
model are illuminated with a different lamp setup to simulate
direct sunlight. In our experiments, we follow the same data
augmentation setup used in [14].
Metrics. We report our results on LINEMOD using the
Average Distance of Model Points (ADD) metric [27], which
is defined as the average distance between the transformed
3D model and the predicted pose. More specifically, we use
the ADD-0.1d variant, which represents the percentage of
images with an average distance lower than 10% of the object
diameter. For symmetric objects, the average closest point
distance (ADD-S) metric [51] is used. In the experiments on
SPEED+, we do not have the 3D model of the object; thus,
we use the rotation, translation, and pose errors, denoted as
ER, ET , and Epose, respectively, as in [14].
Baselines. We evaluate our proposed approaches against
several baselines, namely, (1) a fully trained student model
without KD, referred to as Student, (2) the state-of-the-art
KD approach called ADLP from [17], which, to the best of
our knowledge, is the only KD method specifically designed
for 6DoF pose estimation, combined with the feature-based
KD approach referred to as FKD [22] which has been shown
to be orthogonal with ADLP. Our proposed Uncertainty-
Aware KD, Prediction-related Feature KD, and their com-
bination are labeled as UAKD, PFKD, and UAKD+PFKD,



TABLE II: Performance on the LINEMOD dataset in terms of ADD-0.1d using DarkNet-Tiny-H and DarkNet-Tiny based
students; Objects with * are symmetric and the ADD-S metric is used instead.

Class Teacher
Model

DarkNet-Tiny-H DarkNet-Tiny

Baselines Ours Baselines Ours

Student ADLP [17]
+ FKD [22] UAKD PFKD UAKD

+ PFKD Student ADLP [17]
+ FKD [22] UAKD PFKD UAKD

+ PFKD

Ape 83.0 65.4 69.9 75.6 77.2 79.1 73.4 76.2 79.6 80.3 80.0
Benchvise 96.5 92.0 93.7 94.5 94.1 94.5 95.2 96.7 97.2 95.3 96.5

Camera 93.8 78.4 84.5 88.0 89.2 88.0 91.2 92.0 93.5 92.4 93.4
Can 96.7 82.2 83.9 90.7 88.9 89.8 92.4 94.0 97.1 95.4 95.4
Cat 93.9 81.5 81.6 87.6 85.1 88.7 87.2 88.6 91.6 93.7 92.8

Driller 95.5 85.5 90.3 93.3 95.5 93.4 92.2 94.8 96.9 94.0 97.0
Duck 79.0 64.3 68.9 72.7 68.7 72.7 70.9 74.7 77.9 77.9 77.9

Eggbox* 99.2 95.8 96.4 97.7 98.3 97.9 99.3 99.3 99.5 98.8 98.9
Glue* 97.9 90.7 93.2 94.8 95.4 96.4 97.2 97.7 98.0 98.0 98.3

Holepuncher 87.7 73.2 76.3 80.1 81.4 81.4 78.0 82.2 85.5 87.1 85.5
Iron 95.5 86.3 90.5 89.6 93.2 92.4 92.1 93.2 94.2 94.6 95.3

Lamp 98.1 93.6 94.6 96.4 96.5 96.0 96.6 96.8 97.8 97.5 99.1
Phone 91.3 76.0 79.2 85.0 83.3 86.9 87.5 89.6 89.8 92.9 89.6

AVG. 92.9 81.9 84.8 88.1 88.2 89.0 88.7 90.4 92.2 92.0 92.3
(↑ 2.9) (↑ 6.2) (↑ 6.3) (↑ 7.1) (↑ 1.7) (↑ 3.5) (↑ 3.3) (↑ 3.6)

respectively. For UAKD and UAKD+PFKD, we report only
the best average results with an ensemble based on 4 and 6
teacher models.

B. 6DoF Object Pose Estimation with LINEMOD

Results using WDRnet. We report in Table II the results ob-
tained for WDRnet using the DarkNet-Tiny-H and DarkNet-
Tiny backbones. Our approach (UAKD + PFKD) achieves
the best performance on LINEMOD for both backbones with
an ADD-0.1d of 89.0 and 92.3, respectively. Remarkably,
even by integrating PFKD or UAKD solely, our method
outperforms the state-of-the-art in terms of ADD-0.1d on
LINEMOD in both cases. In general, our method reduces
the performance gap between the DarkNet53-based teacher
model and the student models, namely, DarkNet-Tiny-H
(which has 95.5% fewer parameters) and DarkNet-Tiny
(which has 83.7% fewer parameters) by 7.1 and 3.6, respec-
tively. It can be noted that DarkNet-Tiny even surpasses the
teacher model for some classes such as Bvise, Can, Driller,
Eggbox and Phone.
Results using SPNv2. Table III reports the results obtained
when SPNv2 [14] on LINEMOD. As for WDRnet, both
UAKD and PFKD, even when integrated alone, outperforms
the state-of-the-art. Specifically, it improves the results of the
student model by 1.4 and 1.2 points on average LINEMOD,
respectively. Moreover, by combining UAKD and PFKD, our
approach (UAKD+PFKD) achieves an improvement of 1.8,
surpassing the fully-trained teacher model on the Can and
Iron classes while reducing the FLOPs by 96.6%.

C. Spacecraft Pose Estimation with SPEED+

For the SPEED+ [28] dataset, we conduct experiments
using SPNv2 only, given the low performance of WDRnet on
this specific dataset. Each trained model is evaluated across
the three different domains provided by SPEED+. Table IV
provides the results obtained on SPEED+ in terms of transla-
tion, rotation and pose errors for the three different domains,
namely, synthetic, lightbox, and sunlamp. Both

TABLE III: Performance on the LINEMOD dataset in terms
of ADD-0.1d and ADD-S using an SPNv2 ϕ = 0 student.

Class Teacher
Model

SPNv2 ϕ = 0

Baselines Ours

Student ADLP [17]
+ FKD [22] UAKD PFKD UAKD

+ PFKD

Ape 88.9 67.6 70.8 70.8 68.8 70.6
Benchvise 98.5 91.9 92.3 93.5 92.9 92.8

Camera 96.9 90.3 92.4 92.5 92.8 93.0
Can 89.7 88.6 88.9 89.2 88.2 89.8
Cat 93.7 90.3 90.9 89.6 91.0 91.0

Driller 97.1 82.2 82.9 84.7 83.2 84.9
Duck 77.7 68.9 69.7 69.0 69.1 70.0

Eggbox* 95.9 93.5 93.6 93.8 94.3 94.2
Glue* 96.4 92.4 92.9 92.9 93.0 93.0

Holepuncher 87.4 75.2 78.4 79.3 79.8 80.0
Iron 86.4 87.0 88.0 88.3 88.2 88.7

Lamp 95.7 92.4 92.7 92.8 93.2 92.9
Phone 91.8 82.2 83.2 83.8 83.6 84.0

AVG. 92.8 84.8 85.9 86.2 86.0 86.6
(↑ 1.1) (↑ 1.4) (↑ 1.2) (↑ 1.8)

the proposed UAKD and PFKD outperform the state-of-
the-art, i.e., ADLP+FKD. Specifically, Our UAKD method
achieves a pose error of 0.024 in the synthetic domain
and 0.288 in the lightbox domain, competing with the
fully trained SPNv2 model (ϕ = 6) on the synthetic
domain and surpassing the student model by 0.080 in the
lightbox domain. In the sunlamp domain, UAKD re-
duces the pose error by 0.039, corresponding to a decrease
of 2.327◦ in terms of rotation error compared to the student
and 1.438◦ compared to ADLP+FKD. Additionally, our
PFKD enhances the performance, slightly improving the
pose error by 0.001, 0.079, and 0.024, in the synthetic,
lightbox, and sunlamp domains, respectively as com-
pared to ADLP+FKD. With our UAKD+PFKD variant, the
performance of the student model aligns with the teacher
in the synthetic domain, offering a 0.003◦ advantage
in terms of rotation error, while significantly improving the
performance in the lightbox and sunlamp domains by
reducing the pose error by 0.120 and 0.041, respectively,
corresponding to a reduction of 5.385◦ and 2.340◦ in terms
of rotation error.



TABLE IV: Performance on the SPEED+ dataset in terms of the rotation error ER, translation error ET , and pose error
Epose using an SPNv2 ϕ = 0 student under the synthetic, lightbox and sunlamp domains; E∗

pose refer to the HIL
pose error [14].

Model synthetic lightbox sunlamp

ET [m] ER [◦] Epose [-] ET [m] ER [◦] E∗
pose [-] ET [m] ER [◦] E∗

pose [-]

Teacher Model 0.042 1.010 0.024 0.272 8.968 0.202 0.259 12.580 0.263

SP
N

v2
ϕ

=
0

B
as

e. Student 0.050 1.441 0.033 0.447 16.804 0.368 0.372 19.366 0.401
ADLP [17]+ FKD [22] 0.045 1.157 0.027 0.482 14.596 0.336 0.387 18.477 0.388

O
ur

s UAKD 0.041 1.018 0.024 0.346 13.195 0.288 0.383 17.039 0.362
PFKD 0.048 1.197 0.028 0.288 11.973 0.257 0.388 17.093 0.364

UAKD + PFKD 0.042 1.007 0.024 0.288 11.419 0.248 0.373 17.026 0.360

D. Additional Analysis

Effect of the Ensemble. We examine the impact of us-
ing the ensemble strategy in our UAKD, as illustrated in
Figure 3. We compare the results obtained for a student
backbone based on an ensemble of teachers without con-
sidering uncertainty (λ = 0) to the same backbone without
relying on an ensemble. We find that the ensemble con-
tributes with an improvement of 0.2 on DarkNet-Tiny-H
and 0.5 on DarkNet-Tiny. This indicates that the increase
in performance obtained by our approach returns mostly to
the uncertainty-aware knowledge distillation rather than the
ensembing approach. The slight improvement coming from
the ensemble is attributed to its tendency to produce more
accurate predictions [52].
Choice of λ. As presented in (6), we introduce a weight
factor λ to balance between the WDRNet’s existence score
per keypoint and the uncertainty value generated by our
ensemble. Figure 3 illustrates the ADD-0.1d values across
various LINEMOD training sessions for different λ values.
A 50%-50% combination (λ = 0.5) of uncertainty and
existence scores yields the best results on LINEMOD.

Fig. 3: Impact of λ on the ADD-0.1d Metric using WDRnet
on LINEMOD.

VI. CONCLUSION

In this paper, we present an uncertainty-aware end-to-end
knowledge distillation (KD) framework for efficient two-
stage 6DoF pose estimation. We argue that the varying un-
certainty in teacher predictions is a valuable asset for KD and
propose an uncertainty-driven selective weighted distillation
method, UAKD, to optimize the alignment between teacher
and student keypoints. Leveraging a deep ensemble strategy,
we quantify uncertainties for prediction-level distillation and
extend this to feature-level distillation (PFKD) by tracing
keypoint predictions to associated feature map regions, en-
abling a unified uncertainty-aware distillation. Experimental

results demonstrate the effectiveness of the proposed method
in terms of both accuracy and compactness, highlighting its
potential for deployment in pose estimation applications. Fu-
ture directions include integrating an uncertainty-guided PnP
approach [4] and exploring other compression techniques to
further improve efficiency and accuracy.
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