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Electronic toll collection (ETC) systems are becoming increasingly popular, but are inherently privacy-sensitive

as they deal with users’ location data. While prior research has proposed privacy-preserving ETC (PPETC)

systems, which hide the individual toll fees from the toll service provider and provide it only with a total

monthly fee, we study in this paper the actual privacy properties of PPETC schemes. Since prior work has

shown that PPETC schemes may be insufficient to protect user privacy in real-world scenarios, we analyze the

effectiveness of using an additional protection mechanism: applying a differential privacy (DP) mechanism that

obscures the actual monthly toll fee by adding a small amount of noise. While this seems like a straightforward

solution, it presents challenges. Adding noise to monthly fees can increase users’ monetary costs, so the noise

must be kept small. But since adding more noise intuitively means more privacy when applying DP, one must

carefully choose the amount of added noise in order to strike a balance between privacy gain and additional

cost.

Our goal is to examine two popular DP mechanisms for categorical data, namely k-ary randomized response

and the exponential mechanism, to evaluate their effectiveness in protecting users’ toll station visits and

determine the associated privacy costs. To investigate how well these mechanisms hide the visited toll stations,

we design attacks on each protection mechanism that attempts to recover the toll station visits from an

obscured monthly toll fee and evaluate its effectiveness in two real-world scenarios.

Additional Key Words and Phrases: Electronic toll collection, differential privacy, local DP, randomized

response, exponential mechanism

1 Introduction

Electronic toll collection (ETC) is a technology primarily used to finance road infrastructure, but

it can also support advanced functions such as congestion management and pollution reduction

through dynamic pricing. ETC systems are implemented by toll service providers (TSPs), which
are authorized to collect tolls and manage the tolling system, and are often private companies. In

this paper, we focus on post-payment ETC systems with monthly billing periods, as these systems

appear more convenient for users than pre-payment systems. In post-payment ETC systems, the

TSP needs to store certain sensitive information in order to charge users, including names, billing

addresses, payment information, and monthly toll charges. In practice, however, fine-grained billing

information, such as the exact times and locations of toll station visits, is also stored. This inherently

allows the TSP to track the movements of each user, which has long been recognized as a privacy

issue in the research community [26].

To address this problem, several privacy-preserving ETC (PPETC) schemes have been developed

[4, 16, 19, 22, 27] that aim to minimize information leakage to the TSP while still allowing users

to be charged. However, research indicates that simply implementing PPETC schemes may not

sufficiently protect privacy [2, 9, 11]. This is because some information, such as the monthly toll
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fee, still needs to be disclosed for billing purposes. It has been shown in [2] that the monthly toll

fee, when combined with publicly available background data such as road maps and usage statistics,

can in some cases be sufficient to violate user privacy. More specifically, an attack on the real ETC

system deployed in Brisbane reveals the toll stations visited by users with a monthly toll fee of ten

or less Australian dollars (AUD) with a success rate of 94%. This attack is based on the observation

that, given the monthly billing fee, reconstructing the visited toll stations is equivalent to solving

the well-known subset sum problem (SSP). While SSP is NP-complete from a complexity-theoretic

point of view, it may still be efficiently solvable for “small” instances, such as the Brisbane ETC

system.

Using Differential Privacy to Restore Privacy. While the concept of using differential privacy
(DP) to obscure monthly billing fees for enhanced privacy has already been proposed [11], it

overlooks the critical consideration of the cost of privacy. This is particularly important in ETC

systems, where cost is a major concern for both TSPs and their customers [21]. In this work,

we address this gap by investigating whether user privacy can be protected while keeping the

associated cost relatively low. To this end, we examine two DP-based protection mechanisms and

evaluate their performance in two real-world ETC infrastructures. We assume that users apply a

local DP mechanism themselves before submitting their monthly fee to the TSP, such that the TSP

only receives the obfuscated fee.
1

Trade-Off between Privacy & Utility. When applying the local differential privacy (LDP)
framework, one must carefully balance user privacy against data utility. It is straightforward to

see that increasing the amount of noise improves privacy but reduces utility, and vice versa. In

ETC systems, adding noise can also result in a higher billing fee for the user.
2
How much users are

willing to pay for privacy is an different and open research question. While the monetary value of

privacy has been empirically studied in certain domains, e.g., online privacy [18], location data

privacy [3, 10, 35], or removal from marketers’ call lists [33], [1] suggests that this question is not

easy for many people to answer and is highly context-dependent. In this work, we therefore do

not make assumptions about the cost users are willing to bear for privacy. Instead, we focus on

designing a mechanism that hides the exact monthly toll fee from the TSP and evaluate how much

noise must be added to achieve a given level of privacy, expressed as 𝜀-local differential privacy.

Our Contribution. We investigate two local differential privacy mechanisms designed for

categorical data: 𝑘-ary randomized response [20] and the exponential mechanism [25]. Given that

wallet balances in our setting can be represented as integer values within a known finite range, LDP

mechanisms tailored to categorical data are a natural fit. Although we also evaluate the classical

Laplace mechanism, which is more suitable for continuous data, our results (see Appendix D)

indicate that k-ary randomized response and the exponential mechanism are better aligned with

the characteristics of our scenario.

To assess the effectiveness of these LDPmechanisms in protecting users’ toll station visit patterns,

we simulate adversarial attacks targeting obfuscated monthly toll fees and quantify the adversary’s

success probability. Importantly, the adversary in our model operates solely on publicly available

or easily accessible information, such as toll prices and obfuscated wallet data. This design choice

ensures that the threat model remains broadly applicable and relevant for real-world deployments,

1
We assume that the user also appends a Zero-Knowledge proof that they applied the LDP mechanism correctly. Details on

this can be found in Section 3.3.

2
Since we assume that the noise can also be negative, there is a possibility that the TSP will lose some of its revenue.

Therefore, it is also in the TSP’s interest to keep the noise small.
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independent of the specific technology or operator behind the system. Consequently, any PPETC

system should be designed to defend against such an adversary at a minimum.

In addition to evaluating the adversary’s success chance, we analyze the privacy-utility trade-

off by quantifying the cost incurred by users to conceal their toll expenditures. Our empirical

evaluation, based on two real-world case studies, demonstrates that both mechanisms significantly

reduce the adversary’s success rate, while introducing some additional costs for users.

Structure of this Paper. Section 2 provides the necessary background, introducing key concepts

related to electronic toll collection systems and local differential privacy. In Section 3, we present two

mechanisms for toll fee obfuscation: k-ary randomized response and the exponential mechanism.

Section 4 outlines our adversarial model and details the attacks targeting both obfuscation strategies.

In Section 5, we evaluate the effectiveness of these attacks. Section 6 discusses the evaluation results

and highlights directions for future research. Section 7, reviews related literature, and Section 8

concludes the paper with a summary of our main findings.

2 Background

We introduce some of the terms and concepts used in our ETC scenario, as well as define the

necessary concepts from differential privacy.

2.1 ETC Background

We introduce several notions that are used in our ETC scenario. Note that we adopt some notions

from [2].

Billing Period:We assume users pay their tolls once per billing period, e.g., once per month.

Toll Stations:We use 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑙 } as set of toll stations.
Pricing Model:We define the pricing model of an ETC scheme as a set of toll prices 𝑃 = {𝑝1, 𝑝2,

. . . , 𝑝𝑙 }, where each price 𝑝 𝑗 is fixed and assigned to toll station 𝑠 𝑗 .

Trace: A trace records the toll stations visited by a user during a billing period, including the

frequency [2]. A trace is denoted as 𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙 )}, where 𝑓𝑖 is the frequency
associated with the toll station 𝑠𝑖 .

Wallet: A wallet represents the state of a user at the end of a billing period. It consists of the

trace 𝑡𝑟𝑎𝑐𝑒 and the wallet balance
3 𝑏𝑎𝑙 , i.e., the sum of all prices of the visited toll stations. Given

𝑏𝑎𝑙 , the following equation holds:

𝑏𝑎𝑙 = 𝑝1 · 𝑓1 + 𝑝2 · 𝑓2 + · · · + 𝑝𝑙 · 𝑓𝑙 , 𝑓𝑗 ∈ N0 (1)

Plausible Wallets: The set of plausible wallets is the set of all wallets that can be possibly

achieved, given a pricing model 𝑃 . To determine the plausible wallets falling within the range of

[𝑤𝑙 ,𝑤𝑢], we formulate the following inequality and find all solutions within this range.

𝑤𝑙 < 𝑝1 · 𝑓1 + 𝑝2 · 𝑓2 + · · · + 𝑝𝑙 · 𝑓𝑙 < 𝑤𝑢 (2)

The set of all solutions derived from Inequality 2 is denoted as𝑊𝑝 , where each element

𝑤 := (𝑖𝑑, 𝑏𝑎𝑙, 𝑡𝑟𝑎𝑐𝑒) ∈𝑊𝑝 (3)

consists of a wallet id 𝑖𝑑 , a wallet balance 𝑏𝑎𝑙 , and a trace 𝑡𝑟𝑎𝑐𝑒 . Note that we add ids to wallets

here to be able to differentiate between wallets that have the same balance, but different traces.

Note that the set of plausible wallets could then be further refined by using information about the

road network and connectivity between toll stations. Solutions from Inequality 2 can be discarded

if they are not possible given the road network.

3
Note that we will frequently abbreviate the wallet balance with just wallet.
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Plausible Trace: A plausible trace is a trace that can be possibly achieved by a user and is linked

with a plausible wallet. The set of plausible traces is defined by 𝑇𝑝 := {𝑡𝑟𝑎𝑐𝑒 | (·, ·, 𝑡𝑟𝑎𝑐𝑒) ∈𝑊𝑝 }.
Cost: We define the cost of privacy as the difference between the balance of the original wallet

and the balance of the obfuscated wallet. This represents the additional amount a customer needs

to tolerate in order to protect their privacy [8, 29, 30].

Subset Sum Problem (SSP): The SSP is an NP-complete problem [23], where we consider a set

𝐴 = {𝑎 𝑗 : 1 ≤ 𝑗 ≤ 𝑘, 𝑎 𝑗 ∈ N0} and a value 𝑀 ∈ N0, i.e., a non-negative integer. The aim is to find

𝑥𝑖s such that 𝑎1 · 𝑥1 + 𝑎2 · 𝑥2 + · · · + 𝑎𝑘 · 𝑥𝑘 = 𝑀,𝑥 𝑗 ∈ N0.

2.2 Differential Privacy

Differential privacy (DP) was introduced as a standard for protecting personal records within

datasets. The intuition behind DP is that the presence or absence of a record in a dataset should

not significantly modify the statistics extracted from the dataset [12], and the information leakage

from the statistics should be negligible. By doing so, the privacy of each individual record will be

preserved.

We now review some terms used in the context of DP.

Local Differential Privacy. In the local differential privacy (LDP) model, each user performs

the privacy mechanism themselves on their own data before sending it to the central data collector.

This removes the need for trust in the central data collector, which is the TSP in our scenario.

Informally, LDP ensures that the output of the privacy mechanism reveals only little about the real

input, even to the data collector itself. The privacy parameter 𝜀 quantifies the level of privacy loss.

A smaller value of 𝜀 indicates less privacy loss [14].

Definition 2.1 (𝜀-Local Differential Privacy (𝜀-LDP) [28]). A randomized mechanism𝑀 satisfies

𝜀-LDP if and only if for any pairs of input values 𝑥, 𝑥 ′ ∈ 𝐷 , and for any possible output 𝑦 ∈ 𝑅, it
holds that

Pr[𝑀 (𝑥) = 𝑦] ≤ 𝑒𝜀 · Pr[𝑀 (𝑥 ′) = 𝑦] . (4)

In our case, the dataset 𝐷 will be the set of plausible wallets𝑊𝑝 .

(K-ary) Randomized Response. One of the most widely used mechanisms for achieving 𝜀-LDP

over categorical data is 𝑘-ary randomized response (KRR) [20], which generalizes Warner’s original

technique [34] to a domain of size 𝑘 instead of 2. The core idea of KRR is that either the true value

is reported or a random one, whereas the true value is reported with a higher probability than a

random one (except for 𝜀 = 0, where every value has the same probability to be chosen). This also

means that the range and domain of KRR are the same set, i.e., 𝑅 = 𝐷 holds.

Given an input 𝑥 ∈ 𝐷 , with |𝐷 | = 𝑘 , the KRR mechanism outputs the following:

𝑀
𝑘,𝜀,𝐷

KRR
(𝑥) =


𝑥, with probability

𝑒𝜀

𝑒𝜀 + 𝑘 − 1

𝑧 ≠ 𝑥, with probability

1

𝑒𝜀 + 𝑘 − 1 for each 𝑧 ≠ 𝑥

(5)

The Exponential Mechanism. The exponential mechanism, instead of adding some noise to

the input, selects an output from a set of possible outcomes. Although it was originally proposed

for standard DP, it can also be applied to local DP. In this case, each user randomly selects their

output based on a locally executable score function. The exponential mechanism biases its choice

toward higher-scoring outcomes, ensuring that no single input influences the output distribution

too much and thereby satisfying 𝜀-LDP.
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The exponential mechanism for a domain 𝐷 and outcome set 𝑅 uses a scoring function 𝑢 :

𝐷 × 𝑅 → R which maps (𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅) pairs to a real-valued score. More precisely, the exponential

mechanism 𝑀
𝜀,𝑢,𝑅

EXP
(𝑥), on input 𝑥 ∈ 𝐷 , samples an element 𝑟 from 𝑅 according to the following

probability distribution [25]:

Pr
𝑀

𝜀,𝑢,𝑅

EXP

[𝑟 | 𝑥] =
exp

(
𝜀 ·𝑢 (𝑥,𝑟 )
2·Δ𝑢

)
∑

𝑖∈𝑅 exp
(
𝜀 ·𝑢 (𝑥,𝑖 )
2·Δ𝑢

) (6)

The goal is to select a candidate item 𝑟 ∈ 𝑅 that approximately maximizes 𝑢 (𝑥, 𝑟 ) while ensuring
𝜀-LDP. The sensitivity of the scoring function 𝑢 is defined as

Δ𝑢 = max

𝑟 ∈𝑅
max

𝑥,𝑥 ′
|𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑥 ′, 𝑟 ) | (7)

where 𝑥 and 𝑥 ′ are “neighboring inputs” [25].
In our case, all possible inputs and outputs are wallets, thus 𝐷 = 𝑅 =𝑊𝑝 . Note that we assume

all wallets to be “neighbors”, thus aiming to hide the user’s complete trace from the adversary.

Laplace Mechanism. When using the Laplace mechanism for local DP, each user adds random

noise, which is drawn from the Laplace distribution, to their own value before sending it to the

central data collector.

Definition 2.2 (Laplace Mechanism for LDP [28]). Given a data item 𝑣 , the mechanism outputs

𝑀 (𝑣) = 𝑣 + Lap
(
Δ𝑓

𝜀

)
where Δ𝑓 is the sensitivity of the function 𝑓 and Lap(·) represents the Laplace distribution.

3 Wallet Obfuscation Mechanisms

In post-payment ETC systems, users typically settle their toll fees at the end of each billing period

by submitting their wallet balance, which reflects the total cost of all toll stations visited during

that period. Prior work [2, 9] has shown that revealing the exact wallet balance can compromise

user privacy, as it may allow adversaries to reconstruct a user’s trace with significant probability

when combined with auxiliary information.

To address this issue, we introduce two wallet obfuscation mechanisms based on LDP. Both

mechanisms are executed locally by the users before submitting their wallet balance to the TSP, as

they rely solely on the user’s own data

We focus on two mechanisms designed for categorical data: the 𝑘-ary randomized response (KRR)

and the exponential mechanism. The Laplace mechanism, which is more suited for continuous

data, is discussed separately in Appendix D.

3.1 Obfuscation based on the KRR Mechanism

First, we use 𝑘-ary randomized response (KRR) to let the user either submit their real wallet balance

or a random balance that is “close” to the real one. The formal algorithm is presented in Algorithm 1.

Suppose the user’s original wallet is𝑤𝑖 . Then, the algorithm first computes the set of neighbors of

𝑤𝑖 (including𝑤𝑖 itself), which has size 𝑘 :

𝑁 ← neighbors_set(𝑤𝑖 ,𝑊𝑝 , 𝑘) = {𝑤𝑖−⌊ (𝑘−1)/2⌋, . . . ,𝑤𝑖 , . . . ,𝑤𝑖+⌈ (𝑘−1)/2⌉}
Then, the algorithm samples an element of 𝑁 according to the KRR mechanism (cp. Section 2.2) and

outputs the resulting wallet. Note that the higher 𝜀 is, the higher the probability that the obfuscated

wallet equals the original wallet.
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Algorithm 1 Obfuscation based on 𝑘-ary Randomized Response (KRR)

Input: 𝑤𝑖 ∈𝑊𝑝 ,𝑊𝑝 , 𝑘 ∈ {1, . . . , |𝑊𝑝 |}, 𝜀
Output: 𝑤𝑜

1: function krr_obfuscation(𝑤𝑖 ,𝑊𝑝 , 𝑘, 𝜀)

2: 𝑁 ← neighbors_set(𝑤𝑖 ,𝑊𝑝 , 𝑘)
3: 𝑤𝑜 ← 𝑀

𝑘,𝜀,𝑁
KRR

(𝑤𝑖 )
4: return𝑤𝑜

5: end function

3.2 Obfuscation based on the Exponential Mechanism

Next, we construct an obfuscation mechanism based on the exponential mechanism 𝑀
𝜀,𝑢,𝑅

EXP
(·)

(cp. Section 2.2). The pseudocode of the mechanism is shown in Algorithm 2. The core idea is

that, given a fixed wallet𝑤𝑖 ∈𝑊𝑝 ,𝑀
𝜀,𝑢,𝑅

EXP
selects a wallet from𝑊𝑝 that somewhat maximizes the

score while guaranteeing privacy. Our scoring function 𝑢 :𝑊𝑝 ×𝑊𝑝 → R uses both Euclidean and

similarity distances to calculate the score of two traces:

(1) The Euclidean distance 𝑑𝑒𝑢𝑐𝑙 measures the difference between the two wallet’s balances

(2) The similarity distance 𝑑𝑠𝑖𝑚 measures how similar the wallet’s traces are in terms of toll

station visits

For a high score, the Euclidean distance should be small (low cost), while the similarity distance

should be high (very different traces). To compute the final score, we assign weights 𝛼𝑒𝑢𝑐𝑙 and 𝛼𝑠𝑖𝑚
(with 𝛼𝑒𝑢𝑐𝑙 +𝛼𝑠𝑖𝑚 = 1) to both distances, allowing a TSP to adjust the impact of each distance on the

score. Then we compute the score as 𝑠𝑐𝑜𝑟𝑒 := (𝑑 ′𝑠𝑖𝑚 · 𝛼𝑠𝑖𝑚 − 𝑑 ′𝑒𝑢𝑐𝑙 · 𝛼𝑒𝑢𝑐𝑙 ), where 𝑑
′
𝑠𝑖𝑚 (resp. 𝑑 ′

𝑒𝑢𝑐𝑙
) is

𝑑𝑠𝑖𝑚 (resp. 𝑑𝑒𝑢𝑐𝑙 ) scaled to the range [0, 1]. Given 𝑠𝑐𝑜𝑟𝑒 , we compute the probability that𝑤 𝑗 ∈𝑊𝑝 is

selected by𝑀
𝜀,𝑢,𝑅

EXP
as 𝑝𝑟𝑜𝑏 := exp ( 𝜀 ·𝑠𝑐𝑜𝑟𝑒

2·Δ ), where Δ is the sensitivity of the scoring function (in our

case, Δ := 1). After doing this for all𝑤 𝑗 ∈𝑊𝑝 ,𝑀
𝜀,𝑢,𝑅

EXP
samples an obfuscated wallet according to the

normalized probabilities 𝑝𝑟𝑜𝑏. Note: The TSP can enhance the scoring function by incorporating

additional parameters, enabling a more precise and customizable level of privacy granularity. The

complexity of Algorithm 2 is linear in the number of wallets, i.e., |𝑊𝑝 |. Additional details on 𝑀
𝜀,𝑢,𝑅

EXP

are given in Appendix A.

3.3 Integrating the Obfuscation Mechanisms into PPETC schemes

We now discuss how the obfuscation mechanisms introduced above can be securely integrated

into a PPETC scheme, such as the one proposed in [16]. A central challenge lies in the generation

of randomness required by these mechanisms, as they are inherently randomized algorithms. A

straightforward approach would be to let users generate the randomness themselves. While this

aligns with the notion that users are responsible for their own privacy, it introduces the risk of

manipulation. Specifically, users could bias the randomness to produce minimal toll values, thereby

reducing their fees and causing revenue loss for the TSP.

To mitigate this risk, a more robust solution involves joint randomness generation by both the

user and the TSP. Let the user sample a random value 𝑟𝑢 and the TSP sample 𝑟𝑡 . A straightforward

implementation would be to then let both parties exchange their random values, allowing the user

to compute the obfuscation output using the combined randomness. However, this would expose

𝑟𝑢 to the TSP, enabling it to reverse-engineer the obfuscation process by simulating the mechanism

with some plausible wallet balances. Since the obfuscation algorithm becomes deterministic when

the randomness is fixed, this could compromise the user’s privacy.

To prevent this, we propose the following steps:
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Algorithm 2 Obfuscation Algorithm based on the Exponential Mechanism

Input: 𝑤𝑖 ∈𝑊𝑝 ,𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 ∈ [0, 1], 𝛼𝑠𝑖𝑚 ∈ [0, 1]
Output: 𝑤𝑜

1: function exponential_obfuscation(𝑤𝑖 ,𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)

2: Parse (𝑖𝑑, 𝑏𝑎𝑙, 𝑡𝑟𝑎𝑐𝑒) ← 𝑤𝑖

3: Extract 𝑇𝑝 from𝑊𝑝

4: (𝑚𝑎𝑥_𝑒𝑢𝑐𝑙,𝑚𝑎𝑥_𝑠𝑖𝑚) ← compute_max_dist(𝑇𝑝 )
5: Declare 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 [|𝑊𝑝 |]
6: for all𝑤 𝑗 ∈𝑊𝑝 do
7: Parse (𝑖𝑑 𝑗 , 𝑏𝑎𝑙 𝑗 , 𝑡𝑟𝑎𝑐𝑒 𝑗 ) ← 𝑤 𝑗

8: 𝑑𝑒𝑢𝑐𝑙 ← compute_euclidean(𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 )
9: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 )
10: 𝑑′

𝑒𝑢𝑐𝑙
← 𝑑𝑒𝑢𝑐𝑙/𝑚𝑎𝑥_𝑒𝑢𝑐𝑙

11: 𝑑′
𝑠𝑖𝑚
← 𝑑𝑠𝑖𝑚/𝑚𝑎𝑥_𝑠𝑖𝑚

12: 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 [ 𝑗] ← (𝑑′
𝑠𝑖𝑚
· 𝛼𝑠𝑖𝑚 − 𝑑′𝑒𝑢𝑐𝑙 · 𝛼𝑒𝑢𝑐𝑙 )

13: end for
14: 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 ← compute_prob(𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒, 𝜀,Δ := 1)
15: 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏 ← normalize(𝑎𝑟𝑟_𝑝𝑟𝑜𝑏)
16: 𝑡𝑟𝑎𝑐𝑒𝑘 ← select_rand(𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏,𝑇𝑝 )
17: 𝑤𝑜 ← 𝑤𝑘

18: return𝑤𝑜

19: end function

(1) The user samples 𝑟𝑢 and the TSP samples 𝑟𝑡 .

(2) The user sends a commitment4 to 𝑟𝑈 to the TSP, i.e., 𝑐𝑜𝑚 ← COM.Commit(𝑟𝑈 ).
(3) The TSP responds by sending 𝑟𝑡 in plaintext to the user.

5

(4) The user computes the joint randomness 𝑟 = 𝑟𝑢 ⊕ 𝑟𝑡 and uses it to obfuscate their wallet

balance𝑤𝑖 , resulting in𝑤𝑜 .

(5) The user computes a Zero-Knowledge proof 6 Π that shows that there exist (𝑤𝑖 , 𝑟𝑈 ) for that
the following relations holds:

• 𝑟 = 𝑟𝑢 ⊕ 𝑟𝑡
• 𝑟𝑢 = COM.Open(𝑐𝑜𝑚)
• 𝑤𝑜 = Algorithm(𝑤𝑖 ; 𝑟 ) for Algorithm being the obfuscation algorithm

(6) The TSP, who already knows (𝑟𝑇 , 𝑐𝑜𝑚), then receives (𝑤𝑜 ,Π), verifies the proof, and is

thereby convinced that the user used the correct joint randomness 𝑟 = 𝑟𝑈 ⊕𝑟𝑇 as obfuscation

randomness without learning 𝑟𝑢 itself.

This protocol represents one possible way to implement the obfuscation process within a PPETC

scheme. It ensures that users cannot manipulate the randomness while preserving their privacy

from the service provider.

4 Deobfuscation Attacks

In this section, we design attacks against the LDP-based wallet obfuscation mechanisms from

Section 3. Later in Section 5 we will then evaluate their effectiveness.

4
A commitment scheme allows a user to commit to a message𝑚 and publish the result, called commitment 𝑐𝑜𝑚, in a way

that𝑚 is hidden from others, but also the user cannot claim a different𝑚 afterwards when he opens 𝑐𝑜𝑚.

5
Note that these are the first two messages of a Blum coin toss [6]. The third message, where the user opens to commitment

to reveal 𝑟𝑈 to the TSP is omitted since this would lead to the TSP learning the obfuscation randomness.

6
A Zero-Knowledge proof allows a party, e.g., the user, to convince another party, e.g., the TSP, that a statement is true (e.g.,

that the obfuscation was performed correctly), without revealing any information beyond the validity of the statement itself.
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For all attacks, the adversary gets an obfuscated wallet (and some other information) as input

and outputs a guess for the original wallet, which we will call deobfuscated wallet. In Section 5 we

will consider an attack attempt successful if the deobfuscated wallet equals the original wallet.

4.1 Threat Model

Although the privacy level in the DP framework is parameterized by 𝜀, it does not reflect the

absolute level of privacy for a user, i.e., what can really be inferred from a user’s secret [13, 15, 29].

To analyze the privacy level of our mechanism, we consider a threat model where an adversary

A exploits some background information so as to measure what actually can be learned from an

obfuscated wallet. Our threat model is similar to the one in [2]. We assume a passive adversary,

i.e., it only observes information but does not manipulate any data. A has access to an obfuscated

wallet, denoted as𝑤𝑜 , for which it wants to identify the correct (deobfuscated) wallet. In addition, it

has access to the set of all toll prices 𝑃 (e.g., by consulting the TSP’s website). A can also obtain all

plausible wallets, denoted as𝑊𝑝 , using the toll prices and Eq. (2). For evaluation purposes we also

assume that the adversary knows the parameters used for obfuscation.
7
These are (𝜀, 𝑘) for KRR

and (𝜀,Δ, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚) for the exponential mechanism. In summary, the adversary’s knowledge is

represented as KKRR = {𝑤𝑜 , 𝑃,𝑊𝑝 , 𝜀, 𝑘} for the KRR mechanism and KEXP = {𝑤𝑜 , 𝑃,𝑊𝑝 , 𝜀,Δ, 𝛼𝑒𝑢𝑐𝑙 ,
𝛼𝑠𝑖𝑚} for the exponential mechanism.

It’s worth noting that the adversary in our model could realistically be anyone, since it only relies
on publicly available or easily accessible information, such as toll prices and obfuscated wallet

data. This makes the threat model broadly applicable and relevant for real-world scenarios. As a

result, any PPETC system should be designed to defend against such an adversary at the very least.

Moreover, our analysis is independent of any specific technology, meaning the adversary model

applies regardless of who operates the system or how it is implemented.

4.2 Deobfuscation Attack on the KRR Mechanism

For the attack on the KRR mechanism we have to distinguish between the cases 𝜀 = 0 and 𝜀 > 0.

For 𝜀 = 0, the obfuscation mechanism uniformly random samples an element of the neighbor set

𝑁 , therefore the only possible deobfuscation strategy is to also compute 𝑁 (which is possible for

A) and to randomly guess a deobfuscated wallet from that set.

For 𝜀 > 0, the probability that the KRR obfuscation mechanism sampled the original wallet as
obfuscated wallet is higher than the probability for any other wallet in 𝑁 . Therefore, A’s best

option is to just select the obfuscated wallet as deobfuscated wallet, which is a maximum likelihood

strategy.

4.3 Deobfuscation Attack on the Exponential Mechanism

The attack on the exponential mechanism includes two steps: (1) precomputation and (2) deobfusca-

tion. In the precomputation phase (cp. Algorithm 3), A creates a table containing the probabilities

that𝑤𝑖 got mapped to𝑤 𝑗 during obfuscation, for 𝑖, 𝑗 ∈ {0, . . . , |𝑊𝑝 | − 1}. For that, the exponential
obfuscation algorithm (Algorithm 2) is executed for each𝑤𝑖 ∈𝑊𝑝 to get the probability that this

wallet gets mapped to 𝑤 𝑗 , for all 𝑤 𝑗 ∈𝑊𝑝 . The results are stored in a table, where the cell (𝑖, 𝑗)
contains the likelihood that𝑤𝑖 is mapped to𝑤 𝑗 .

In the deobfuscation phase (cp. Algorithm 4), given an obfuscated wallet𝑤𝑜 , A simply selects

the cell in the 𝑗th column that contains the maximum of the 𝑗th column. This cell holds the id of

7
But depending on who the real-world adversary is, it might not have access to all of these parameters and may have to

guess (some of) them.



On Obfuscating Tolls in PPETC Systems 9

Algorithm 3 Precomputation for Attack on the Exponential Mechanism

Input: 𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚
Output: 𝑡𝑎𝑏𝑙𝑒
1: function precomputation_exp_attack(𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)

2: Extract 𝑇𝑝 from𝑊𝑝

3: Declare 𝑡𝑎𝑏𝑙𝑒 [|𝑇𝑝 |] [|𝑇𝑝 |] \\Create 2-dimensional array

4: for all 𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑇𝑝 do
5: 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏 ← compute_normalized_prob(𝑡𝑟𝑎𝑐𝑒𝑖 ,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)

\\This executes exponential_obfuscation until 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏 is computed (line 15)

6: 𝑡𝑎𝑏𝑙𝑒 [𝑖] ← 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏

7: end for
8: return 𝑡𝑎𝑏𝑙𝑒

9: end function

Algorithm 4 Attack on the Exponential Mechanism

Input: 𝑤𝑜 ∈𝑊𝑝 ,𝑊𝑝 , 𝑡𝑎𝑏𝑙𝑒

Output: 𝑤𝑑

1: function exp_attack(𝑤𝑜 ,𝑊𝑝 , 𝑡𝑎𝑏𝑙𝑒)

2: Declare 𝑐𝑜𝑙𝑢𝑚𝑛[|𝑊𝑝 |] \\Create array

3: Let 𝑗 be the index for which𝑤𝑜 =𝑊𝑝 [ 𝑗] holds
4: for 𝑖 from 0 to |𝑊𝑝 | − 1 do \\get 𝑗th column of 𝑡𝑎𝑏𝑙𝑒

5: 𝑐𝑜𝑙𝑢𝑚𝑛[𝑖] ← 𝑡𝑎𝑏𝑙𝑒 [𝑖] [ 𝑗]
6: end for
7: 𝑖𝑛𝑑𝑒𝑥 ← 𝑎𝑟𝑔_𝑚𝑎𝑥 (𝑐𝑜𝑙𝑢𝑚𝑛) \\Find maximum probability

8: 𝑤𝑑 ←𝑊𝑝 [𝑖𝑛𝑑𝑒𝑥] \\Select wallet that has maximum probability

9: return𝑤𝑑

10: end function

the wallet with the highest probability of being the original wallet. Note that attack uses again a

maximum likelihood strategy.

5 Evaluation

We now evaluate the effectiveness of our deobfuscation attacks from Section 4 against our wallet

obfuscation mechanisms from Section 3 to determine the level of privacy achievable and the

associated costs. Using the current ETC systems in Brisbane and Melbourne as case studies, we

apply their parameters, i.e., toll stations and prices, to a hypothetical PPETC scheme. We then

assess whether applying the KRR mechanism or the exponential mechanism to this scheme helps

in hiding the toll station visits. Note that we do not include the Laplace mechanism here, since our

evaluation results have shown that the Laplace mechanism is not the top choice for any of our

metrics. Therefore, the analysis of the Laplace mechanism is deferred to Appendix D.

The adversary’s goal in this section is to recover the original wallet of the user, given an obfuscated

wallet. Remember that a wallet is always uniquely linked to a trace, so recovering the original

wallet of a user equals recovering the trace of the user.

In Appendix E, we consider a more relaxed attack where the adversary tries to find a wallet/trace

that is just similar to the original wallet/trace instead of finding the exact wallet/trace. The results
show that both mechanisms perform only slightly better than random guessing. The difference

is small, and both KRR and the exponential mechanism behave quite similarly under this relaxed

attack model.
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𝜀 𝑘 = 3 𝑘 = 5 𝑘 = 7 𝑘 = 9 𝑘 = 11

0.1 35.59% 21.65% 15.55% 12.14% 9.95%

0.5 45.19% 29.19% 21.56% 17.09% 14.15%

1 57.61% 40.46% 31.18% 25.36% 21.37%

2 78.70% 64.88% 55.19% 48.02% 42.49%

Table 1. Success rates for deobfuscation of KRR mechanism.

Parameters for the Brisbane Case Study. To evaluate our attacks, we utilize the actual pa-

rameters of Brisbane’s ETC system [7, 31, 32], which has also been examined in [2]. We use the

following parameters for our evaluation:

Toll prices (𝑃 ): The 9 toll prices (in AUD) are as follows [31]: 𝑃 = {1.72, 2.68, 2.84, 3.19, 4.09,
4.55, 5.11, 5.11, 5.46}.

Plausible wallets (𝑊𝑝 ): Based on the toll prices, we can compute the set of plausible wallets

𝑊𝑝 within the range [$0, $10]8 using Eq. (2). Note that |𝑊𝑝 | = 106 (cp. Appendix B).

Parameters for the Melbourne Case Study. As a second real-world example, we examine a

PPETC system based on the Melbourne ETC system [24], which has the following parameters:

Toll prices (𝑃 ): We assume the following 19 toll prices (in AUD): 𝑃 = {1.92, 1.92, 3.07, 3.07,
3.07, 3.07, 3.84, 3.84, 4.99, 6.14, 6.14, 6.91, 6.91, 6.91, 8.06, 9.98, 9.98, 9.98, 10.75}.

Plausible wallets (𝑊𝑝 ): As for the Brisbane case study, we obtain all plausible wallet balances
within the range [$1, $10] with Eq. (2). Note that |𝑊𝑝 | = 285 (cp. Appendix B).

5.1 Evaluation of the KRR Mechanism

We analyze the effectiveness of the deobfuscation attack against the KRR mechanism as follows.

5.1.1 Privacy Analysis. We evaluate the privacy level of an individual by calculating the success

rate of the deobfuscation attack from Section 4.2, for different privacy levels 𝜀 and neighbor set size

𝑘 . More precisely, we evaluate 𝜀 ∈ {0.1, 0.5, 1, 2} and 𝑘 ∈ {3, 5, 7, 9, 11}.

Brisbane and Melbourne Case Studies. Since the success rate of the KRR deobfuscation attack

depends only on the parameters 𝜀 and 𝑘 and is independent of the actual wallets, the success

rates for attacking the Brisbane and Melbourne case studies are the same. An adversary using the

strategy described in Section 4.2 outputs the obfuscated wallet as the deobfuscated wallet, which

is correct with probability
𝑒𝜀

𝑒𝜀+𝑘−1 . The resulting success chances can be seen in Table 1. It can

easily be seen that smaller 𝜀 and larger 𝑘 yield smaller deobfuscation success rates. However, the

individual success rates differ greatly, the lowest being 9.95% (for 𝜀 = 0.1, 𝑘 = 11) and the highest

being 78.70% (for 𝜀 = 2, 𝑘 = 3).

5.1.2 Cost Analysis. We also evaluate the amount of additional noise introduced by obfuscation

for the same (𝜀, 𝑘) used in the privacy evaluation. This helps us to understand at what cost the

level of privacy is achieved. The cost analysis includes the following steps:

Step 1: For different 𝜀 and 𝑘 , we add noise to each plausible wallet𝑤𝑖 to obtain its associated

obfuscated wallet𝑤𝑜 , using Section 3.1.

Step 2: Having obtained the obfuscated wallet, we compute the cost as |get_balance(𝑤𝑜 ) −
get_balance(𝑤𝑖 ) |.

8
Since we will see that larger wallets are easier to obfuscate, we intentionally examine only “small” wallets to better see the

effects of the obfuscation.
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Brisbane Melbourne

KRR with 𝑘 = EXP with KRR with 𝑘 = EXP with

𝜀 3 5 7 9 11 𝛼𝑒𝑢𝑐𝑙 = 0.75 3 5 7 9 11 𝛼𝑒𝑢𝑐𝑙 = 0.75

0.1 0.05 0.09 0.14 0.18 0.22 2.04 0.02 0.03 0.05 0.06 0.08 1.89

0.5 0.04 0.09 0.13 0.17 0.21 2.01 0.01 0.03 0.04 0.05 0.06 1.83

1 0.03 0.07 0.11 0.15 0.19 1.96 0.01 0.02 0.03 0.03 0.04 1.80

2 0.02 0.04 0.07 0.10 0.14 1.89 0.00 0.01 0.01 0.02 0.02 1.71

Table 2. Average cost of obfuscation in AUD for all mechanisms considered in the main body, for different 𝜀.

We repeat this 1000 times to get a good estimate of the costs.

Brisbane Case Study. In Fig. 1, the incurred costs are shown for the Brisbane case study, for

𝜀 ∈ {0.1, 0.5, 1, 2} and 𝑘 ∈ {3, 5, 7, 9, 11}. The figure uses box plots to visualize the distribution of

costs, where the yellow line inside each box indicates the median value. We additionally depict the

average value in Table 2.

Overall, we observe that smaller values of 𝑘 and larger values of 𝜀 tend to result in lower costs.

However, the impact of 𝜀 on the noise is relatively minor compared to the effect of 𝑘 . In fact,

changing 𝑘 has a noticeably stronger influence on the amount of noise introduced. That said, the

noise remains small across all parameter settings.

While smaller 𝑘 values help reduce costs, they also offer weaker privacy guarantees. Conversely,

larger 𝑘 improves privacy but increases the cost. Therefore, choosing an appropriate value for 𝑘

requires balancing privacy and cost, depending on the specific requirements of the PPETC system.

Melbourne Case Study. The incurred costs for the Melbourne case study are depicted in Fig. 2

and Table 2, also using 𝜀 ∈ {0.1, 0.5, 1, 2} and 𝑘 ∈ {3, 5, 7, 9, 11}. It is very notable that the mean of

the cost is actually 0.00% for all 𝜀 and 𝑘 . This is due to the distribution of possible wallets: While the

Brisbane case study has 106 possible wallets, where each balance appears 1.14 times on average, the

Melbourne case study has 285 possible wallets, where each balance appears ≈22 times on average

(cp. Appendix B). Thus, it is highly likely that the 𝑘 nearest neighbors of a wallet have the same

wallet balance as the original wallet, resulting in no costs at all in most cases.

5.2 Evaluation of the Exponential Mechanism

We analyze the effectiveness of the deobfuscation attack against the exponential mechanism as

follows.

5.2.1 Privacy Analysis. We evaluate the privacy level of an individual by calculating the success

rate of the deobfuscation attack from Section 4.3, for different 𝜀. To do so, for each obfuscated wallet

from the set𝑊𝑝 , we compute the success rate of finding the associated original wallet from the set

𝑊𝑝 . The results of the privacy analysis are presented in a series of graphs, where each graph shows

the success rate with respect to an obfuscated wallet, for different 𝜀, 𝛼𝑒𝑢𝑐𝑙 , and 𝛼𝑠𝑖𝑚 .

For 𝜀, we will analyze 𝜀 ∈ {0.1, 0.5, 1, 2}. We will focus on (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25) in this

section. In Appendix C, we will also evaluate for the parameters (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0) and (𝛼𝑒𝑢𝑐𝑙 =
0.5, 𝛼𝑠𝑖𝑚 = 0.5). Since Appendix C shows that all three parameter configurations perform very

similar, we chose to analyze (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25) in the main body as a balanced middle

ground.

Brisbane Case Study. Figure 3 shows the success rate of the deobfuscation attack on the

exponential mechanism for Brisbane. It can be noted that the “corner cases”, i.e., wallets with a

balance close to $0 or close to $10, have a higher success chance than wallets with a balance “in the
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Fig. 1. KRR mechanism for Brisbane case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and 𝑘 ∈ {3, 5, 7, 9, 11}.

Fig. 2. KRR mechanism for Melbourne case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and 𝑘 ∈
{3, 5, 7, 9, 11}.
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middle”. But overall, for all 𝜀s the success rates are pretty low, i.e., between 0.9% – 1.5%. This is a

stark contrast to the KRR mechanism, where the lowest success rate was 9.95%.

Melbourne Case Study. Figure 5 shows the success rate of the deobfuscation attack on the expo-

nential mechanism for Melbourne. The same observations that were made for Brisbane (cp. Fig. 3)

can be made for Melbourne as well, with the difference that all graphs have even lower success

chances than the exponential mechanism for Brisbane. For the Melbourne case study, the success

rated are between 0.3% – 0.7%, whereas they are between 0.9% – 1.5% for the Brisbane case study.

This is probably due to the fact that the set of possible wallets𝑊𝑝 for Melbourne is more than two

times as large as the one for Brisbane, thus the set of possible deobfuscated wallets is much larger.

5.2.2 Cost Analysis. We evaluate the amount of additional noise introduced by obfuscation for

the different 𝜀 used in the privacy analysis. This helps us to understand at what cost the level of

privacy is achieved. The cost analysis includes the following steps:

Step 1: For a fixed 𝜀 and for each plausible wallet 𝑤𝑖 , we obtain its associated obfuscated

wallet𝑤𝑜 , using the exponential obfuscation mechanism (Algorithm 2).

Step 2: Having obtained the obfuscated wallet, we compute the cost as |get_balance(𝑤𝑜 ) −
get_balance(𝑤𝑖 ) |.

We repeat this 1000 times to get a good estimate of the costs.

Brisbane Case Study. In Fig. 4, the incurred costs are shown for the Brisbane case study, for

𝜀 ∈ {0.1, 0.5, 1, 2}. The figure uses box plots to visualize the distribution of costs, where the yellow

line inside each box indicates the median value. We additionally depict the average value in Table 2.

Overall, it can be seen that the costs decrease for larger 𝜀. Also, the costs for the original wallets

with a very small balance are significantly higher than the costs for all other wallets. This is due

to the distribution of wallet balances (cp. Appendix B): For wallets with a large balance, there are

many other wallets with a similar balance. But for wallets with a small balance, this is not the case.

Thus, when obfuscating wallets with a very small balance, the chances to receive a more different

obfuscated balance are higher.

Melbourne Case Study. The incurred costs for the Melbourne case study are depicted in Fig. 6

and Table 2, also using 𝜀 ∈ {0.1, 0.5, 1, 2}. The same observations that were made for the Brisbane

case study can be made for the Melbourne case study as well, with the difference that all graphs

have a bit lower costs here. While the Brisbane case study had costs averaging between $1.89 –

$2.04, the Melbourne case study has costs averaging between $1.71 – $1.89.

6 Discussion

Discussion of Evaluation Results. We now compare the evaluation results of the KRR mecha-

nism and the exponential mechanism across both case studies (Brisbane and Melbourne).

In terms of privacy, measured via the adversary’s success rate, the exponential mechanism clearly

outperforms KRR. The success rates for the exponential mechanism range between 0.35% and 1.5%,

indicating strong privacy guarantees. In contrast, the KRR mechanism yields success rates between

10% and 78%, depending on the parameter configuration. This indicates that KRR generally provides

less privacy than the exponential mechanism.

However, the situation is reversed when it comes to cost. The KRR mechanism incurs average

costs ranging from $0.02 to $0.22, which is substantially lower than the exponential mechanism’s

costs, which range from $1.71 to $2.04. Therefore, the KRR mechanism is much more cost-efficient.

Additionally, the exponential mechanism produces outliers with costs as high as $8. Since the KRR

mechanism only selects from the 𝑘 nearest neighbors of 𝑤𝑖 , rather than from the entire set of



14 Adavoudi Jolfaei et al.
(0

, 1
.7

2)
(4

, 3
.4

4)
(8

, 4
.5

6)
(1

2,
 5

.1
6)

(1
6,

 5
.6

8)
(2

0,
 6

.1
2)

(2
4,

 6
.6

3)
(2

8,
 6

.8
8)

(3
2,

 7
.2

3)
(3

6,
 7

.4
)

(4
0,

 7
.7

5)
(4

4,
 7

.9
5)

(4
8,

 8
.0

4)
(5

2,
 8

.2
)

(5
6,

 8
.3

5)
(6

0,
 8

.5
5)

(6
4,

 8
.6

4)
(6

8,
 8

.8
)

(7
2,

 8
.9

6)
(7

6,
 9

.1
1)

(8
0,

 9
.2

2)
(8

4,
 9

.4
6)

(8
8,

 9
.5

5)
(9

2,
 9

.6
6)

(9
6,

 9
.7

1)
(1

00
, 9

.8
2)

(1
04

, 9
.9

2)
Obfuscated wallets (in dollar),  = 0.1, eucl  = 0.75, sim  = 0.25

0.9500

0.9525

0.9550

0.9575

0.9600

0.9625

0.9650

Su
cc

es
s r

at
e 

(%
)

(0
, 1

.7
2)

(4
, 3

.4
4)

(8
, 4

.5
6)

(1
2,

 5
.1

6)
(1

6,
 5

.6
8)

(2
0,

 6
.1

2)
(2

4,
 6

.6
3)

(2
8,

 6
.8

8)
(3

2,
 7

.2
3)

(3
6,

 7
.4

)
(4

0,
 7

.7
5)

(4
4,

 7
.9

5)
(4

8,
 8

.0
4)

(5
2,

 8
.2

)
(5

6,
 8

.3
5)

(6
0,

 8
.5

5)
(6

4,
 8

.6
4)

(6
8,

 8
.8

)
(7

2,
 8

.9
6)

(7
6,

 9
.1

1)
(8

0,
 9

.2
2)

(8
4,

 9
.4

6)
(8

8,
 9

.5
5)

(9
2,

 9
.6

6)
(9

6,
 9

.7
1)

(1
00

, 9
.8

2)
(1

04
, 9

.9
2)

Obfuscated wallets (in dollar),  = 0.5, eucl  = 0.75, sim  = 0.25

0.98

1.00

1.02

1.04

1.06

Su
cc

es
s r

at
e 

(%
)

(0
, 1

.7
2)

(4
, 3

.4
4)

(8
, 4

.5
6)

(1
2,

 5
.1

6)
(1

6,
 5

.6
8)

(2
0,

 6
.1

2)
(2

4,
 6

.6
3)

(2
8,

 6
.8

8)
(3

2,
 7

.2
3)

(3
6,

 7
.4

)
(4

0,
 7

.7
5)

(4
4,

 7
.9

5)
(4

8,
 8

.0
4)

(5
2,

 8
.2

)
(5

6,
 8

.3
5)

(6
0,

 8
.5

5)
(6

4,
 8

.6
4)

(6
8,

 8
.8

)
(7

2,
 8

.9
6)

(7
6,

 9
.1

1)
(8

0,
 9

.2
2)

(8
4,

 9
.4

6)
(8

8,
 9

.5
5)

(9
2,

 9
.6

6)
(9

6,
 9

.7
1)

(1
00

, 9
.8

2)
(1

04
, 9

.9
2)

Obfuscated wallets (in dollar),  = 1, eucl  = 0.75, sim  = 0.25

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

Su
cc

es
s r

at
e 

(%
)

(0
, 1

.7
2)

(4
, 3

.4
4)

(8
, 4

.5
6)

(1
2,

 5
.1

6)
(1

6,
 5

.6
8)

(2
0,

 6
.1

2)
(2

4,
 6

.6
3)

(2
8,

 6
.8

8)
(3

2,
 7

.2
3)

(3
6,

 7
.4

)
(4

0,
 7

.7
5)

(4
4,

 7
.9

5)
(4

8,
 8

.0
4)

(5
2,

 8
.2

)
(5

6,
 8

.3
5)

(6
0,

 8
.5

5)
(6

4,
 8

.6
4)

(6
8,

 8
.8

)
(7

2,
 8

.9
6)

(7
6,

 9
.1

1)
(8

0,
 9

.2
2)

(8
4,

 9
.4

6)
(8

8,
 9

.5
5)

(9
2,

 9
.6

6)
(9

6,
 9

.7
1)

(1
00

, 9
.8

2)
(1

04
, 9

.9
2)

Obfuscated wallets (in dollar),  = 2, eucl  = 0.75, sim  = 0.25

1.1

1.2

1.3

1.4

1.5

Su
cc

es
s r

at
e 

(%
)

Fig. 3. Exponential mechanism for Brisbane Case Study: Each graph shows the success rate of deobfuscation
for 𝜀 ∈ {0.1, 0.5, 1, 2} and for (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 4. Exponential mechanism for Brisbane case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and (𝛼𝑒𝑢𝑐𝑙 =
0.75, 𝛼𝑠𝑖𝑚 = 0.25). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 5. Exponential mechanism forMelbourne Case Study: Each graph shows the success rate of deobfuscation
for 𝜀 ∈ {0.1, 0.5, 1, 2} and for (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 6. Exponential mechanism for Melbourne case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and
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plausible wallets𝑊𝑝 , it does not produce these high outliers. KRR outliers are all below $3, and the

smaller 𝑘 , the lower the highest outlier.

These results highlight a clear trade-off: the exponential mechanism provides better privacy,

while KRR is more cost-efficient. Therefore, selecting an appropriate mechanism requires balancing

these two aspects. A practical approach for a TSP is to first decide what level of privacy is acceptable,

i.e., what maximum success rate is tolerable for an adversary. Once this threshold is defined, all

mechanisms and parameter configurations that meet the privacy requirement can be identified.

From this filtered set, the configuration with the lowest cost can then be selected.

Let us consider an example where a TSP decides that a maximum success rate of 15% is acceptable.

Under this criteria, all configurations of the exponential mechanism are valid. For the KRR mecha-

nism, the following configurations meet the privacy requirement: (𝜀 = 0.1, 𝑘 = 9), (𝜀 = 0.1, 𝑘 = 11),
and (𝜀 = 0.5, 𝑘 = 11). Among these, the configuration (𝜀 = 0.1, 𝑘 = 9) yields the lowest costs. It has
an average cost of $0.18 (with a mean of $0.10 for the Brisbane case study and a mean of $0.00 for

the Melbourne case study) and a success rate of 12.14%. This would make it a strong candidate for

deployment.

Discussion of the Adversarial Model. It should be noted that while our evaluation focuses on

a relatively weak adversarial model, more sophisticated adversaries may employ more advanced

strategies, which potentially achieve higher success rates. Defending against such stronger attacks

would require mechanisms that induce greater obfuscation, which in turn leads to increased

costs for the user. Consequently, the use of LDP mechanisms is not optional for PPETC systems

but a necessary safeguard to ensure protection against at least the baseline adversary, whose

attack strategies are both plausible and likely to be executed in practice. Even these foundational

mechanisms impose non-negligible costs, underscoring that privacy in this context is not free.

Reimbursement of Additional Costs. When using the ETC scheme for many billing periods,

the cost for privacy equals the sum of the individual noises, i.e., 𝐶 :=
∑

𝑖 𝑁𝑖 . The expectation value

for𝐶 after a great number of billing periods is close to zero. Thus, if the ETC is used for a long time,

the actual additional cost of privacy should be small for most users. Of course, there will always

be users who are a bit unlucky and may end up with a larger additional cost. Thus, the TSP could

offer some kind of reimbursement mechanism, like the one in [11], for the excess cost.

Further Research Opportunities. Note that our evaluation only considers one billing period.
By consolidating information about multiple billing periods, the adversary may have a higher

chance of violating the user’s privacy. Intuitively, the adversary’s chances of doing so depend

on the behavior of users. For example, consider the extreme case of a user who has exactly the

same trace and, thus, the same wallet balance every month. The adversary could analyze the

obfuscated wallets over several months and deduce the correct original wallets with a higher

probability than if only one month was considered. For example, the adversary could divide the

sum of obfuscated balances by the number of billing periods, which gives a good estimate of the

real balances (if the number of billing periods is large enough). Conversely, for users whose driving

behavior changes significantly from month to month, their obfuscated wallets would be harder to

deobfuscate successfully. Understanding how user behavior impacts privacy and determining how

varied a user’s activities need to be to prevent privacy loss are important areas for future research.

7 Related Work

Attacks on PPETC Schemes. Attacks on post-payment PPETC schemes have been considered

in [2] and [9]. Both use knowledge of wallet balances and try to solve the SSP to obtain additional

information about user behavior. In [2] the evaluation is based on real ETC data. It is shown that
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the Brisbane scenario we use in Section 5 is vulnerable to attacks: For wallet balances ≤10 AUD,
the adversary could identify the visited toll stations with a 94% success rate by solving the SSP

problem. [9] also shows that solving the SSP helps to effectively recover user traces. In contrast to

[2], the adversary in [9] uses every information the TSP gets.

Protection Mechanisms. Some PPETC schemes [4, 16, 27] briefly mention that solving the SSP

might lead to privacy problems, although no solutions are presented. We are only aware of one

work that examines possible protection mechanisms: While [11] does not directly look at PPETC

schemes, they consider the more general setting of applications that use fine-grained billing, where

the details of the billing are hidden from the service provider. Their central idea is to use the DP

framework to add noise to the final bill of a user. The noise can be freely chosen by the user, which

in practice may lead to the problem that most users will choose a noise of zero to save costs and

thus get no privacy gain. [11] additionally proposes a cryptographic protocol that helps customers

reclaim the additional expenditure incurred for the sake of privacy. A limitation of [11] is that

it does not consider protection against adversaries who may exploit background information. In

contrast, we present attacks and use real-world settings from the Brisbane and Melbourne ETC

systems to evaluate our mechanism against adversaries who may exploit background information.

In smart metering applications, rather than transmitting actual measurements, it is possible that

the smart meter sends masked data to the power provider in a way that does not interfere with the

accuracy of aggregation operations. [5] and [17] present methods to obscure measurements using

a straightforward approach. Specifically, the smart meter adds noise from a Laplace distribution

with a certain scale parameter and transmits this data to the power provider. The scale parameter

is selected to ensure that the cumulative noise remains below a predefined error threshold. The

authors explain that when a large number of measurements is considered, this cumulative error

approximates a normal distribution. However, their method is not suitable for our scenario, as the

number of obfuscated wallets may be too small for their approach to work effectively. Additionally,

their method does not consider controlling noise for individual measurements.

8 Conclusion

Previous work has shown that a PPETC version of the Brisbane ETC system is vulnerable to trace

recovery attacks, with success rates reaching up to 94%. In this work, we investigated whether

common 𝜀-LDP mechanisms, specifically 𝑘-ary randomized response (KRR) and the exponential

mechanism, can help mitigate these attacks.

Our evaluation for two real-world case studies shows that both mechanisms significantly reduce

the adversary’s success rate. The exponential mechanism achieves very strong privacy, with success

rates between 0.35% and 1.5% across both case studies. However, this comes at a cost: users may

pay up to $2.04 extra (on average) in a single billing period, which could discourage adoption. In

contrast, the KRR mechanism is much more cost-efficient, with average costs between $0.02 and

$0.22, but its privacy protection is weaker, with success rates ranging from 10% to 78%.

This highlights a clear trade-off between privacy and cost. It is up to the TSP (probably with

the involvement of data protection lawyers) to decide what level of privacy is acceptable, i.e.,

what maximum success rate is tolerable. Once this threshold is defined, suitable mechanisms

and parameter configurations can be selected accordingly. For example, if a 15% success rate is

acceptable, the KRR mechanism with (𝜀 = 0.1, 𝑘 = 9) offers a good balance, with a 12.14% success

rate and $0.28 average cost.

In summary, both mechanisms are viable options for improving privacy in PPETC systems, but

the final choice depends on the privacy-cost balance that the TSP is willing to accept.
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A Details of the Exponential Obfuscation Mechanism

In this appendix, we explain the Exponential obfuscation mechanism (Algorithm 2) in more detail,

as well as Algorithms 5, 6, 7 and 8, which are sub-algorithms of Algorithm 2.

A.1 Algorithm exponential_obfuscation

Algorithm 2 takes as input (𝑤𝑖 ∈𝑊𝑝 ,𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 ∈ [0, 1], 𝛼𝑠𝑖𝑚 ∈ [0, 1]) and outputs the obfuscated

wallet𝑤𝑜 . We now explain the algorithm in detail.

Step 1: Precomputation. We first calculate the maximum possible Euclidean distance and the

maximum possible similarity distance with compute_max_dist (Algorithm 5) in line 4. Note that

the precomputation step needs only to be executed once, as long as𝑊𝑝 stays the same.

Step 2: Score Calculation. Given an input wallet𝑤𝑖 , we now compute the score of the input

wallet’s trace 𝑡𝑟𝑎𝑐𝑒 and every possible trace in lines 5 to 13, i.e., we calculate 𝑢 (𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 ) for
all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 . We calculate 𝑢 (𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 ) for a given 𝑡𝑟𝑎𝑐𝑒 𝑗 as follows: We first compute the

euclidean distance 𝑑𝑒𝑢𝑐𝑙 between the traces with compute_euclidean (Algorithm 6). We also

compute the similarity distance 𝑑𝑠𝑖𝑚 between the traces with compute_similarity (Algorithm 7).

Afterwards we scale 𝑑𝑒𝑢𝑐𝑙 to the range [0, 1] by dividing it by the maximum possible Euclidean

distance (calculated in line 4). We also scale 𝑑𝑠𝑖𝑚 to [0, 1] analogously. Afterwards we compute the

score 𝑢 (𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 ) as
𝑠𝑐𝑜𝑟𝑒 := (𝑑 ′𝑠𝑖𝑚 · 𝛼𝑠𝑖𝑚 − 𝑑 ′𝑒𝑢𝑐𝑙 · 𝛼𝑒𝑢𝑐𝑙 ),

where 𝑑 ′
𝑒𝑢𝑐𝑙

and 𝑑 ′𝑠𝑖𝑚 are the scaled versions of 𝑑𝑒𝑢𝑐𝑙 and 𝑑𝑠𝑖𝑚 . Note that for a high score, the

similarity distance should be high (which indicated very different traces), while the Euclidean

distance should be small (which corresponds to small costs).

Step 3: Probability Calculation. Given the scores 𝑢 (𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 ) for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 , we

calculate for each 𝑡𝑟𝑎𝑐𝑒 𝑗 the probability that 𝑡𝑟𝑎𝑐𝑒 𝑗 gets selected as output trace in lines 14 and 15.

According to the Exponential mechanism, we calculate the the probability as specified in Eq. (6).

We calculate the numerator of Eq. (6) in line 14 and then apply normalization in line 15.
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Algorithm 5 Compute Maximum Distances

Input: 𝑇𝑝
Output: 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙,𝑚𝑎𝑥_𝑠𝑖𝑚

1: function compute_max_dist(𝑇𝑝 )

2: 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 ← 0

3: 𝑚𝑎𝑥_𝑠𝑖𝑚 ← 0

4: for all 𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑇𝑝 do
5: for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 do
6: 𝑑𝑒𝑢𝑐𝑙 ← compute_euclidean(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒 𝑗 )
7: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒 𝑗 )
8: if 𝑑𝑒𝑢𝑐𝑙 > 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 then
9: 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 ← 𝑑𝑒𝑢𝑐𝑙
10: end if
11: if 𝑑𝑠𝑖𝑚 > 𝑚𝑎𝑥_𝑠𝑖𝑚 then
12: 𝑚𝑎𝑥_𝑠𝑖𝑚 ← 𝑑𝑠𝑖𝑚
13: end if
14: end for
15: end for
16: return𝑚𝑎𝑥_𝑒𝑢𝑐𝑙,𝑚𝑎𝑥_𝑠𝑖𝑚

17: end function

Algorithm 6 Compute Euclidean Distance

Input: 𝑡𝑟𝑎𝑐𝑒1 ∈ 𝑇𝑝 , 𝑡𝑟𝑎𝑐𝑒2 ∈ 𝑇𝑝
Output: 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡
1: function compute_euclidean(𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2)

2: 𝑤1← get_balance(𝑡𝑟𝑎𝑐𝑒1)
3: 𝑤2← get_balance(𝑡𝑟𝑎𝑐𝑒2)
4: 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡 ← |𝑤1 −𝑤2 |
5: return 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡

6: end function

Step 4: Selection of Output Trace. Given for each 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 the probability that the input

trace 𝑡𝑟𝑎𝑐𝑒 gets mapped to 𝑡𝑟𝑎𝑐𝑒 𝑗 as output trace, we now just need to draw an output trace

according to this probability distribution. Thus, we sample in line 16 an output trace 𝑡𝑟𝑎𝑐𝑒𝑘 using

the previously calculated probability distribution. Finally, we output the wallet corresponding to

𝑡𝑟𝑎𝑐𝑒𝑘 as obfuscated wallet𝑤𝑜 .

A.2 Algorithm compute_max_dist

In Algorithm 5 we calculate the maximum possible Euclidean distance and the maximum possible

similarity distance for a given set of traces 𝑇𝑝 . To achieve that, we simply iterate over all possible

pairs of traces, calculate the Euclidean distance and the sensitivity distance and check whether they

are larger than are currently maximum. The algorithm outputs the maximum possible Euclidean

distance as𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 and the maximum possible similarity distance as𝑚𝑎𝑥_𝑠𝑖𝑚.

A.3 Algorithm compute_euclidean

Algorithm 6 takes as input two traces, 𝑡𝑟𝑎𝑐𝑒1 and 𝑡𝑟𝑎𝑐𝑒2, and outputs the Euclidean distance between

them. To achieve this, the algorithm uses the function get_balance to retrieve the corresponding

wallet balances, denoted as𝑤1 and𝑤2. It then computes the Euclidean distance as |𝑤1 −𝑤2 | and
stores the result in 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡 .
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Algorithm 7 Compute Similarity Distance

Input: 𝑡𝑟𝑎𝑐𝑒1 ∈ 𝑇𝑝 , 𝑡𝑟𝑎𝑐𝑒2 ∈ 𝑇𝑝
Output: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡

1: function compute_similarity(𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2)

2: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 0

3: for all (𝑠 𝑗 , 𝑓𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒1 and (𝑠 𝑗 , 𝑓 ′𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒2 do
4: if 𝑓𝑗 ≠ 0 and 𝑓 ′

𝑗
≠ 0 then

5: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓𝑗 − 𝑓 ′
𝑗
)2

6: else if 𝑓𝑗 ≠ 0 and 𝑓 ′
𝑗
== 0 then

7: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓𝑗 )2 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2
8: else if 𝑓𝑗 == 0 and 𝑓 ′

𝑗
≠ 0 then

9: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓 ′
𝑗
)2 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2

10: end if
11: end for
12: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ←

√
𝑠𝑖𝑚_𝑑𝑖𝑠𝑡

13: return 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡

14: end function

Algorithm 8 Compute Probabilities

Input: 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒, 𝜀,Δ
Output: 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏
1: function compute_prob(𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒, 𝜀,Δ)
2: Declare 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 [|𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 |]
3: for all 𝑠𝑐𝑜𝑟𝑒𝑖 ∈ 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 do
4: 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 [𝑖] ← 𝑒 (𝜀 ·𝑠𝑐𝑜𝑟𝑒𝑖 )/(2·Δ)

5: end for
6: return 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏

7: end function

A.4 Algorithm compute_similarity

Algorithm 7 takes two traces, 𝑡𝑟𝑎𝑐𝑒1 and 𝑡𝑟𝑎𝑐𝑒2, as input and computes the similarity distance

between them, denoted as 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 . To calculate this distance, the algorithm compares both the

toll stations visited and their respective frequencies in the two traces. We denote a trace as

𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙 )},
where each tuple (𝑠𝑖 , 𝑓𝑖 ) represents a toll station 𝑠𝑖 and its corresponding frequency 𝑓𝑖 . A frequency

𝑓𝑖 = 0 in the tuple (𝑠𝑖 , 𝑓𝑖 ) ∈ 𝑡𝑟𝑎𝑐𝑒 indicates that the toll station 𝑠𝑖 has not been visited at all. In

general, the Similarity distance between two points 𝑃 = (𝑥1, 𝑦1, 𝑧1, . . .) and 𝑄 = (𝑥2, 𝑦2, 𝑧2, . . .) in
an 𝑛-dimensional space is given by:

𝑑 (𝑃,𝑄) =
√︁
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 + . . .

For each tuple (𝑠 𝑗 , 𝑓𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒1 and (𝑠 𝑗 , 𝑓 ′𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒2, the algorithm checks if both 𝑓𝑗 and 𝑓 ′𝑗 are

non-zero. If so, it computes the distance as 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 = 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓𝑗 − 𝑓 ′𝑗 )2. Note that 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 is

initialized to zero.

If the frequency of one trace is zero, while it non-zero in the other trace, an additional “penalty”

is added. This reflects the intuition that traces that differ in terms of the toll stations visited cause

more uncertainty than those that differ only in frequency values. Note that the penalty value can

also be set to zero.



22 Adavoudi Jolfaei et al.

Finally, the algorithm takes the root of the final distance and returns the result as the output.

Remark 1 (On choosing the penalty value). Choosing an appropriate penalty value depends on

what one assumes the background knowledge of the attacker to be. We differentiate two cases:

(1) We assume that the attacker knows which toll stations a user visited during the billing

period, for example because he knows the home and work address of the user. Therefore,

we only want to hide how often the user has passed the toll stations.

(2) We assume that the attacker does not possess such background knowledge and thus also

want to hide which toll stations where visited during the billing period.

If (1) is the case, the penalty value should set very high. In that case, the obfuscation mechanism

likely selects an output trace that visits the same toll station as the input trace, just with different

frequencies. If (2) is the case, the penalty should be set to 0. In that case, the obfuscation algorithm

ignores whether the output trace has the same visited toll stations as the input trace.

Note that we use 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 0 since we assume that the attacker does not have this kind of

background knowledge.

A.5 Algorithm compute_prob

Algorithm 8 takes as input the list of scores 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 , the parameter 𝜀, and the sensitivity Δ, and
it outputs a list 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 of probabilities. For each 𝑠𝑐𝑜𝑟𝑒𝑖 in 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 , the algorithm computes

the corresponding probability as 𝑒 (𝜀 ·𝑠𝑐𝑜𝑟𝑒𝑖 )/(2·Δ) (according to the Exponential mechanism, cp. the

numerator in Eq. (6)) and stores it in the list 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏. Finally, the algorithm returns 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 as

output.

B Details of the Case Studies

Brisbane. Brisbane has the following list of possible wallets below $10:

𝑊𝑝 := {1.72, 2.68, 2.84, 3.19, 3.44, 4.09, 4.4, 4.55, 4.56, 4.91, 5.11, 5.11, 5.16, 5.36, 5.46, 5.52, 5.68, 5.81,
5.87, 6.03, 6.12, 6.27, 6.28, 6.38, 6.63, 6.77, 6.83, 6.83, 6.88, 6.93, 7.08, 7.18, 7.23, 7.24, 7.28, 7.39, 7.4, 7.53,

7.59, 7.74, 7.75, 7.79, 7.79, 7.84, 7.95, 7.95, 7.99, 8.0, 8.04, 8.1, 8.14, 8.18, 8.2, 8.3, 8.3, 8.3, 8.35, 8.36, 8.49, 8.52,

8.55, 8.55, 8.55, 8.6, 8.64, 8.65, 8.65, 8.71, 8.8, 8.87, 8.9, 8.95, 8.96, 9.0, 9.06, 9.1, 9.11, 9.12, 9.2, 9.2, 9.22, 9.25,

9.31, 9.45, 9.46, 9.47, 9.51, 9.51, 9.55, 9.56, 9.57, 9.61, 9.66, 9.66, 9.67, 9.67, 9.71, 9.72, 9.76, 9.77, 9.82, 9.86,

9.9, 9.91, 9.92, 9.96}
This list has length of 106 entries. It can be noted that some wallet balances appear multiple

times in the list. On average, each wallet balance appears 1.14 times.

Melbourne. Melbourne has the following list of possible wallets below $10:

𝑊𝑝 := {1.92, 1.92, 3.07, 3.07, 3.07, 3.07, 3.84, 3.84, 3.84, 3.84, 3.84, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99,
4.99, 4.99, 5.76, 5.76, 5.76, 5.76, 5.76, 5.76, 5.76, 5.76, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14,

6.14, 6.14, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91,

6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68,

7.68, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06,

8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83,

8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83,

8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21,

9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21,

9.21, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.98, 9.98, 9.98, 9.98,

9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,

9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,

9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,
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9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,

9.98, 9.98}
This list has length of 285 entries. It can be noted that every wallet balance appears multiple

times in the list. On average, each wallet balance appears ≈ 22 times.

C Further Evaluation of the Exponential Mechanism

Here we further evaluate the exponential mechanism using different weights for euclidean distance

and similarity distance. While we looked at (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25) in Section 5.2, we will now

consider (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0) and (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5).

C.1 Parameters (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0)
The privacy analysis for Brisbane and Melbourne can be found in Fig. 7 and Fig. 9, respectively.

The cost analysis for Brisbane can be found in Fig. 8 and the one for Melbourne in Fig. 10. Also, the

average costs across all wallets are included in Table 3.

C.2 Parameters (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5)
The privacy analysis for Brisbane and Melbourne can be found in Fig. 11 and Fig. 13, respectively.

The cost analysis for Brisbane can be found in Fig. 12 and the one for Melbourne in Fig. 14. Also,

the average costs across all wallets are included in Table 3.

C.3 Privacy and Cost Analysis

When considering privacy, the success rates for (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5) in Figs. 11 and 13 and

(𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0) in Figs. 7 and 9 do not differ much from the success rates of (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 =

0.25) in Figs. 3 and 5. While (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5) yields slightly lower success rates than

(𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25), and those are slightly lower than (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0), the differences

are pretty much negligible. This applies to both case studies.

For cost, a similar pattern emerges. The cost for (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5) in Figs. 12 and 14

and (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0) in Figs. 8 and 10 do not differ much from the success rates of (𝛼𝑒𝑢𝑐𝑙 =

0.75, 𝛼𝑠𝑖𝑚 = 0.25) in Figs. 4 and 6. Here, (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5) results in slightly higher costs than

(𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25), which in turn are slightly higher than those for (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0).

Again, the differences are very small and apply to both case studies.

In summary, both the success rates and the associated costs are very similar across all three

parameter configurations. Since none of them clearly outperforms the others, we chose to analyze

(𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25) in the main body as a balanced middle ground.

D Evaluation of the Laplace Mechanism

In this appendix, we evaluate the classical Laplace mechanism using our two case studies.

For obfuscation, we apply the Laplace mechanism as defined in Definition 2.2. The sensitivity in

this setting corresponds to the difference between the highest and lowest possible wallet balances

within the considered range [$0, $10]. For the Brisbane case study, the sensitivity is 8.24, and for

the Melbourne case study it is 8.06 (cp. Appendix B).

To evaluate deobfuscation, we again assume an adversary following a maximum likelihood

strategy. Given an obfuscated wallet, the adversary identifies the wallet balance with the highest

likelihood of being the original (based on the Laplace distribution’s probability density function).

Among all wallets with that balance, one is selected at random and returned as the adversary’s

guess.
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Fig. 7. Exponential mechanism for Brisbane Case Study: Each graph shows the success rate of deobfuscation
for 𝜀 ∈ {0.1, 0.5, 1, 2} and for (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 8. Exponential mechanism for Brisbane case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and (𝛼𝑒𝑢𝑐𝑙 =
1, 𝛼𝑠𝑖𝑚 = 0). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 9. Exponential mechanism forMelbourne Case Study: Each graph shows the success rate of deobfuscation
for 𝜀 ∈ {0.1, 0.5, 1, 2} and for (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 10. Exponential mechanism for Melbourne case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and
(𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 11. Exponential mechanism for Brisbane Case Study: Each graph shows the success rate of deobfuscation
for 𝜀 ∈ {0.1, 0.5, 1, 2} and for (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 12. Exponential mechanism for Brisbane case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and
(𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).



On Obfuscating Tolls in PPETC Systems 27

(0
, 1

.9
2)

(1
1,

 4
.9

9)
(2

2,
 5

.7
6)

(3
3,

 6
.1

4)
(4

4,
 6

.9
1)

(5
5,

 6
.9

1)
(6

6,
 7

.6
8)

(7
7,

 7
.6

8)
(8

8,
 8

.0
6)

(9
9,

 8
.0

6)
(1

10
, 8

.8
3)

(1
21

, 8
.8

3)
(1

32
, 8

.8
3)

(1
43

, 8
.8

3)
(1

54
, 9

.2
1)

(1
65

, 9
.2

1)
(1

76
, 9

.2
1)

(1
87

, 9
.6

)
(1

98
, 9

.6
)

(2
09

, 9
.9

8)
(2

20
, 9

.9
8)

(2
31

, 9
.9

8)
(2

42
, 9

.9
8)

(2
53

, 9
.9

8)
(2

64
, 9

.9
8)

(2
75

, 9
.9

8)

Obfuscated wallets (in dollar),  = 0.1, eucl  = 0.5, sim  = 0.5

0.353

0.354

0.355

0.356

0.357

0.358

Su
cc

es
s r

at
e 

(%
)

(0
, 1

.9
2)

(1
1,

 4
.9

9)
(2

2,
 5

.7
6)

(3
3,

 6
.1

4)
(4

4,
 6

.9
1)

(5
5,

 6
.9

1)
(6

6,
 7

.6
8)

(7
7,

 7
.6

8)
(8

8,
 8

.0
6)

(9
9,

 8
.0

6)
(1

10
, 8

.8
3)

(1
21

, 8
.8

3)
(1

32
, 8

.8
3)

(1
43

, 8
.8

3)
(1

54
, 9

.2
1)

(1
65

, 9
.2

1)
(1

76
, 9

.2
1)

(1
87

, 9
.6

)
(1

98
, 9

.6
)

(2
09

, 9
.9

8)
(2

20
, 9

.9
8)

(2
31

, 9
.9

8)
(2

42
, 9

.9
8)

(2
53

, 9
.9

8)
(2

64
, 9

.9
8)

(2
75

, 9
.9

8)

Obfuscated wallets (in dollar),  = 0.5, eucl  = 0.5, sim  = 0.5

0.360

0.365

0.370

0.375

0.380

0.385

Su
cc

es
s r

at
e 

(%
)

(0
, 1

.9
2)

(1
1,

 4
.9

9)
(2

2,
 5

.7
6)

(3
3,

 6
.1

4)
(4

4,
 6

.9
1)

(5
5,

 6
.9

1)
(6

6,
 7

.6
8)

(7
7,

 7
.6

8)
(8

8,
 8

.0
6)

(9
9,

 8
.0

6)
(1

10
, 8

.8
3)

(1
21

, 8
.8

3)
(1

32
, 8

.8
3)

(1
43

, 8
.8

3)
(1

54
, 9

.2
1)

(1
65

, 9
.2

1)
(1

76
, 9

.2
1)

(1
87

, 9
.6

)
(1

98
, 9

.6
)

(2
09

, 9
.9

8)
(2

20
, 9

.9
8)

(2
31

, 9
.9

8)
(2

42
, 9

.9
8)

(2
53

, 9
.9

8)
(2

64
, 9

.9
8)

(2
75

, 9
.9

8)

Obfuscated wallets (in dollar),  = 1, eucl  = 0.5, sim  = 0.5

0.37

0.38

0.39

0.40

0.41

0.42

0.43

Su
cc

es
s r

at
e 

(%
)

(0
, 1

.9
2)

(1
1,

 4
.9

9)
(2

2,
 5

.7
6)

(3
3,

 6
.1

4)
(4

4,
 6

.9
1)

(5
5,

 6
.9

1)
(6

6,
 7

.6
8)

(7
7,

 7
.6

8)
(8

8,
 8

.0
6)

(9
9,

 8
.0

6)
(1

10
, 8

.8
3)

(1
21

, 8
.8

3)
(1

32
, 8

.8
3)

(1
43

, 8
.8

3)
(1

54
, 9

.2
1)

(1
65

, 9
.2

1)
(1

76
, 9

.2
1)

(1
87

, 9
.6

)
(1

98
, 9

.6
)

(2
09

, 9
.9

8)
(2

20
, 9

.9
8)

(2
31

, 9
.9

8)
(2

42
, 9

.9
8)

(2
53

, 9
.9

8)
(2

64
, 9

.9
8)

(2
75

, 9
.9

8)

Obfuscated wallets (in dollar),  = 2, eucl  = 0.5, sim  = 0.5

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Su
cc

es
s r

at
e 

(%
)

Fig. 13. Exponential mechanism for Melbourne Case Study: Each graph shows the success rate of deob-
fuscation for 𝜀 ∈ {0.1, 0.5, 1, 2} and for (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5). The tuples on the x-axis indicate a wallet
(𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 14. Exponential mechanism for Melbourne case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2} and
(𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5). The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Brisbane Melbourne

KRR with 𝑘 = EXP with 𝛼𝑒𝑢𝑐𝑙 = LAP KRR with 𝑘 = EXP with 𝛼𝑒𝑢𝑐𝑙 = LAP

𝜀 3 5 7 9 11 1 0.75 0.5 3 5 7 9 11 1 0.75 0.5

0.1 0.05 0.09 0.14 0.18 0.22 2.05 2.04 2.05 4.78 0.02 0.03 0.05 0.06 0.08 1.88 1.89 1.86 4.76

0.5 0.04 0.09 0.13 0.17 0.21 2.00 2.01 2.04 4.06 0.01 0.03 0.04 0.05 0.06 1.82 1.83 1.84 4.07

1 0.03 0.07 0.11 0.15 0.19 1.94 1.96 1.99 3.40 0.01 0.02 0.03 0.03 0.04 1.75 1.80 1.80 3.44

2 0.02 0.04 0.07 0.10 0.14 1.82 1.89 1.95 2.47 0.00 0.01 0.01 0.02 0.02 1.65 1.71 1.77 2.51

Table 3. Average cost of obfuscation in AUD across all mechanisms examined in this paper, for different 𝜀.

Evaluation Results for the Laplace Mechanism. The success rates of the deobfuscation attack

are shown in Fig. 15 for the Brisbane case study and in Fig. 17 for the Melbourne case study. The

corresponding incurred costs are depicted in Fig. 16 and Fig. 18, respectively. Table 3 summarizes

the average costs across all wallet balances for all evaluated mechanisms.

In terms of privacy, the results show generally low success rates for the adversary across all

considered values of 𝜀. However, each scenario includes one outlier wallet with a significantly

higher chance of being correctly deobfuscated, reaching up to 55% success probability.

Regarding cost, the average incurred costs range from $2.47 to $4.78, depending on the privacy

parameter.

Comparison to KRR and the Exponential Mechanism. Compared to the mechanisms dis-

cussed in the main body of the paper, namely KRR and the exponential mechanism, the Laplace

mechanism does not outperform either in any category. While both the Laplace and exponential

mechanisms offer strong privacy protection, the Laplace mechanism suffers from outlier wallets

with significantly higher success rates. In contrast, the exponential mechanism maintains con-

sistently low success rates across all wallets. In terms of cost, KRR is the most efficient and also

exhibits no outliers. It consistently achieves low costs while still providing a reasonable level of

privacy. The Laplace mechanism incurs lower costs than the exponential mechanism but remains

less efficient than KRR.

In summary, the Laplace mechanism offers neither the strongest privacy guarantees nor the

lowest cost. For this reason, we chose to present its evaluation in the appendix rather than in the

main body of the paper.

E Similar Trace Attack

Instead of evaluating the success of an adversary based on whether he can find the exact original
trace, one could also consider a more relaxed attack, where the adversary aims to find a trace that

is similar to the original trace. We call this a “similar trace attack”.

In this section, we first provide some details on how this similar trace attack is executed, before

providing the results. To be able to evaluate the results, we compare an adversary that uses the

similar trace attack with an adversary that just guesses a random trace. For the comparison with

the random attacker, we describe in Appendix E.1 how to obtain the average similarity of traces. In
Appendix E.2 we then provide the algorithms for the similar trace attack. Finally, in Appendix E.3

we evaluate the similar trace attack.

E.1 Average Similarity Between Traces

In Algorithm 9, given a set of plausible traces 𝑇𝑝 , we calculate the average similarity between the

traces. For that, we iterate over all possible pairs of traces and compute their similarity difference

with Algorithm 7. Afterwards we calculate the average 𝑎𝑣𝑔 over all the differences.
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Fig. 15. Laplace mechanism for Brisbane Case Study: Each graph shows the success rate of deobfuscation for
𝜀 ∈ {0.1, 0.5, 1, 2}. The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 16. Laplace mechanism for Brisbane case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2}. The tuples on
the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 17. Laplace mechanism for Melbourne Case Study: Each graph shows the success rate of deobfuscation
for 𝜀 ∈ {0.1, 0.5, 1, 2}. The tuples on the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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Fig. 18. Laplace mechanism for Melbourne case study: The incurred costs for 𝜀 ∈ {0.1, 0.5, 1, 2}. The tuples on
the x-axis indicate a wallet (𝑖𝑑, 𝑏𝑎𝑙, ·).
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E.2 Executing the Similar Trace Attack

We describe the similar trace attack for both KRR and the exponential mechanism. Basically,

both algorithms get an original wallet as input, then obfuscate the wallet with the corresponding

obfuscation mechanism and afterwards try to deobfuscate it using the corresponding deobfuscation

algorithm. Then the similarity distance between the original wallet’s trace and the deobfuscated

wallet’s trace, i.e., the trace of the attacker’s guess for the original wallet, is calculated. This

procedure is repeated 𝑛𝑢𝑚 times to get a good estimate of the attacker’s success.

The similar trace attack for KRR is depicted in Algorithm 10. The similar trace attack for the

exponential mechanism is depicted in Algorithm 11. Note that we here assume that the precompu-

tation algorithm of the Exponential deobfuscation algorithm (cp. Algorithm 3) has been executed

beforehand.

E.3 Evaluating the Similar Trace Attack

We describe the results of the similar trace attack for both KRR and the exponential mechanism.

E.3.1 Evaluation Approach.

KRR. Our evaluation of the similar trace attack for KRR proceeds as follows:

(1) Fix parameters𝑊𝑝 , 𝑘 , 𝜀, 𝑛𝑢𝑚.

(2) For each 𝑤𝑖 ∈ 𝑊𝑝 , we execute krr_relaxed_atk(𝑤𝑖 ,𝑊𝑝 , 𝑘, 𝜀, 𝑛𝑢𝑚) to get a list 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 .

krr_relaxed_atk basically obfuscates the original wallet𝑤𝑖 , then deobfuscates it again and

calculates the similarity between the deobfuscated wallet’s trace and the original wallet’s

trace. This is repeated 𝑛𝑢𝑚 times and the similarity after each deobfuscation is stored in an

element of 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 .

(3) The results are plotted in a graph, where each element on the x-axis equals an original

wallet and the values of the corresponding 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 are depicted as a box plot on the y-axis.

We then compare the results of the similar trace attack with the average similarity between traces,

i.e., an attacker that just randomly guesses a wallet.

Exponential Mechanism. Our evaluation of the similar trace attack for the exponential mecha-

nism proceeds as follows:

(1) Fix parameters𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚 , 𝑛𝑢𝑚.

(2) Precomputation: Execute precomputation_exp_attack(𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚) to get the table

𝑡𝑎𝑏𝑙𝑒 with all probabilities.

(3) For each𝑤𝑖 ∈𝑊𝑝 , execute exp_relaxed_atk(𝑤𝑖 ,𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚, 𝑛𝑢𝑚, 𝑡𝑎𝑏𝑙𝑒) to get a list

𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 . exp_relaxed_atk basically obfuscates the original wallet𝑤𝑖 , then deobfuscates it

again and calculates the similarity between the deobfuscated wallet’s trace and the original

wallet’s trace. This is repeated 𝑛𝑢𝑚 times and the similarity after each deobfuscation is

stored in an element of 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 .

(4) The results are plotted in a graph, where each element on the x-axis equals an original

wallet and the values of the corresponding 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 are depicted as a box plot on the y-axis.

We then compare the results oft the similar trace attack with the average similarity between traces,

i.e., an attacker that just randomly guesses a wallet.

E.3.2 Results. In Fig. 19 the results of 𝑛𝑢𝑚 = 1000 iterations of the similar trace attack are

depicted, in Fig. 19a for KRR and in Fig. 19b for the exponential mechanism. For both mechanism it

can be seen that this attack does not fare much better than just guessing a random wallet. Since the

yellow/red line inside each box plot that depicts the median is in most cases close to the average

similarity between traces (depicted as blue line), the chance for an adversary to recover a wallet
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Algorithm 9 Compute Average Similarity Between Traces

Input: 𝑇𝑝
Output: 𝑎𝑣𝑔
1: function compute_average_similarity(𝑇𝑝 )

2: Initialize 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 as empty list

3: for all 𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑇𝑝 do
4: for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 do
5: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒 𝑗 )
6: Append 𝑑𝑠𝑖𝑚 to 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
7: end for
8: end for
9: 𝑎𝑣𝑔← average(𝑎𝑟𝑟_𝑑𝑠𝑖𝑚) \\Compute average of list

10: return 𝑎𝑣𝑔

11: end function

Algorithm 10 Similar Trace Attack for KRR

Input: 𝑤𝑖 ∈𝑊𝑝 ,𝑊𝑝 , 𝑘 ∈ {1, . . . , |𝑊𝑝 |}, 𝜀 > 0, 𝑛𝑢𝑚 ∈ N
Output: 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
1: function krr_relaxed_atk(𝑤𝑖 ,𝑊𝑝 , 𝑘, 𝜀, 𝑛𝑢𝑚)

2: Initialize 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 as empty list

3: for 𝑖 from 1 to 𝑛𝑢𝑚 do
4: 𝑤𝑜 ← krr_obfuscation(𝑤𝑖 ,𝑊𝑝 , 𝑘, 𝜀)
5: 𝑤𝑑 ← 𝑤𝑜 \\Deobfuscation just selects obfuscated wallet

6: Parse (·, ·, 𝑡𝑟𝑎𝑐𝑒𝑖 ) ← 𝑤𝑖

7: Parse (·, ·, 𝑡𝑟𝑎𝑐𝑒𝑑 ) ← 𝑤𝑑

8: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒𝑑 )
9: Append 𝑑𝑠𝑖𝑚 to 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
10: end for
11: return 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
12: end function

Algorithm 11 Similar Trace Attack for Exponential

Input: 𝑤𝑖 ∈𝑊𝑝 ,𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚, 𝑛𝑢𝑚 ∈ N, 𝑡𝑎𝑏𝑙𝑒
Output: 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
1: function exp_relaxed_atk(𝑤𝑖 ,𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚, 𝑛𝑢𝑚, 𝑡𝑎𝑏𝑙𝑒)

2: Initialize 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 as empty list

3: for 𝑖 from 1 to 𝑛𝑢𝑚 do
4: 𝑤𝑜 ← exponential_obfuscation(𝑤𝑖 ,𝑊𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)
5: 𝑤𝑑 ← exp_attack(𝑤𝑜 ,𝑊𝑝 , 𝑡𝑎𝑏𝑙𝑒)
6: Parse (·, ·, 𝑡𝑟𝑎𝑐𝑒𝑖 ) ← 𝑤𝑖

7: Parse (·, ·, 𝑡𝑟𝑎𝑐𝑒𝑑 ) ← 𝑤𝑑

8: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒𝑑 )
9: Append 𝑑𝑠𝑖𝑚 to 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
10: end for
11: return 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
12: end function
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(b) Exponential Mechanism with (𝛼𝑒𝑢𝑐𝑙 =

0.75, 𝛼𝑠𝑖𝑚 = 0.25)

Fig. 19. Similar Trace Attack on the Brisbane Case Study: Each value on the x-axis depicts an original wallet,
while the y-axis depicts box plots of the similarity between the trace the attacker outputs and the original
trace. For a comparison, the average similarity between traces (obtained from Algorithm 9) is included as a
blue line.

whose trace is “similar” to the original wallet’s trace is not much better than just guessing the

original wallet. But more medians (for both mechanism) are below the blue line, so the similar trace

attack seems to yield better results than just guessing — even if only a little.


	Abstract
	1 Introduction
	2 Background
	2.1 ETC Background
	2.2 Differential Privacy

	3 Wallet Obfuscation Mechanisms
	3.1 Obfuscation based on the KRR Mechanism
	3.2 Obfuscation based on the Exponential Mechanism
	3.3 Integrating the Obfuscation Mechanisms into PPETC schemes

	4 Deobfuscation Attacks
	4.1 Threat Model
	4.2 Deobfuscation Attack on the KRR Mechanism
	4.3 Deobfuscation Attack on the Exponential Mechanism

	5 Evaluation
	5.1 Evaluation of the KRR Mechanism
	5.2 Evaluation of the Exponential Mechanism

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Details of the Exponential Obfuscation Mechanism
	A.1 Algorithm ExponentialObfuscation
	A.2 Algorithm ComputeMaxDist
	A.3 Algorithm ComputeEuclidean
	A.4 Algorithm ComputeSimilarity
	A.5 Algorithm ComputeProb

	B Details of the Case Studies
	C Further Evaluation of the Exponential Mechanism
	C.1 Parameters (eucl= 1, sim= 0)
	C.2 Parameters (eucl= 0.5, sim= 0.5)
	C.3 Privacy and Cost Analysis

	D Evaluation of the Laplace Mechanism
	E Similar Trace Attack
	E.1 Average Similarity Between Traces
	E.2 Executing the Similar Trace Attack
	E.3 Evaluating the Similar Trace Attack


