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Electronic toll collection (ETC) systems are becoming increasingly popular, but are inherently privacy-sensitive
as they deal with users’ location data. While prior research has proposed privacy-preserving ETC (PPETC)
systems, which hide the individual toll fees from the toll service provider and provide it only with a total
monthly fee, we study in this paper the actual privacy properties of PPETC schemes. Since prior work has
shown that PPETC schemes may be insufficient to protect user privacy in real-world scenarios, we analyze the
effectiveness of using an additional protection mechanism: applying a differential privacy (DP) mechanism that
obscures the actual monthly toll fee by adding a small amount of noise. While this seems like a straightforward
solution, it presents challenges. Adding noise to monthly fees can increase users’ monetary costs, so the noise
must be kept small. But since adding more noise intuitively means more privacy when applying DP, one must
carefully choose the amount of added noise in order to strike a balance between privacy gain and additional
cost.

Our goal is to examine two popular DP mechanisms for categorical data, namely k-ary randomized response
and the exponential mechanism, to evaluate their effectiveness in protecting users’ toll station visits and
determine the associated privacy costs. To investigate how well these mechanisms hide the visited toll stations,
we design attacks on each protection mechanism that attempts to recover the toll station visits from an
obscured monthly toll fee and evaluate its effectiveness in two real-world scenarios.

Additional Key Words and Phrases: Electronic toll collection, differential privacy, local DP, randomized
response, exponential mechanism

1 Introduction

Electronic toll collection (ETC) is a technology primarily used to finance road infrastructure, but
it can also support advanced functions such as congestion management and pollution reduction
through dynamic pricing. ETC systems are implemented by toll service providers (TSPs), which
are authorized to collect tolls and manage the tolling system, and are often private companies. In
this paper, we focus on post-payment ETC systems with monthly billing periods, as these systems
appear more convenient for users than pre-payment systems. In post-payment ETC systems, the
TSP needs to store certain sensitive information in order to charge users, including names, billing
addresses, payment information, and monthly toll charges. In practice, however, fine-grained billing
information, such as the exact times and locations of toll station visits, is also stored. This inherently
allows the TSP to track the movements of each user, which has long been recognized as a privacy
issue in the research community [26].

To address this problem, several privacy-preserving ETC (PPETC) schemes have been developed
[4, 16, 19, 22, 27] that aim to minimize information leakage to the TSP while still allowing users
to be charged. However, research indicates that simply implementing PPETC schemes may not
sufficiently protect privacy [2, 9, 11]. This is because some information, such as the monthly toll
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fee, still needs to be disclosed for billing purposes. It has been shown in [2] that the monthly toll
fee, when combined with publicly available background data such as road maps and usage statistics,
can in some cases be sufficient to violate user privacy. More specifically, an attack on the real ETC
system deployed in Brisbane reveals the toll stations visited by users with a monthly toll fee of ten
or less Australian dollars (AUD) with a success rate of 94%. This attack is based on the observation
that, given the monthly billing fee, reconstructing the visited toll stations is equivalent to solving
the well-known subset sum problem (SSP). While SSP is NP-complete from a complexity-theoretic
point of view, it may still be efficiently solvable for “small” instances, such as the Brisbane ETC
system.

Using Differential Privacy to Restore Privacy. While the concept of using differential privacy
(DP) to obscure monthly billing fees for enhanced privacy has already been proposed [11], it
overlooks the critical consideration of the cost of privacy. This is particularly important in ETC
systems, where cost is a major concern for both TSPs and their customers [21]. In this work,
we address this gap by investigating whether user privacy can be protected while keeping the
associated cost relatively low. To this end, we examine two DP-based protection mechanisms and
evaluate their performance in two real-world ETC infrastructures. We assume that users apply a
local DP mechanism themselves before submitting their monthly fee to the TSP, such that the TSP
only receives the obfuscated fee.!

Trade-Off between Privacy & Utility. When applying the local differential privacy (LDP)
framework, one must carefully balance user privacy against data utility. It is straightforward to
see that increasing the amount of noise improves privacy but reduces utility, and vice versa. In
ETC systems, adding noise can also result in a higher billing fee for the user.? How much users are
willing to pay for privacy is an different and open research question. While the monetary value of
privacy has been empirically studied in certain domains, e.g., online privacy [18], location data
privacy [3, 10, 35], or removal from marketers’ call lists [33], [1] suggests that this question is not
easy for many people to answer and is highly context-dependent. In this work, we therefore do
not make assumptions about the cost users are willing to bear for privacy. Instead, we focus on
designing a mechanism that hides the exact monthly toll fee from the TSP and evaluate how much
noise must be added to achieve a given level of privacy, expressed as e-local differential privacy.

Our Contribution. We investigate two local differential privacy mechanisms designed for
categorical data: k-ary randomized response [20] and the exponential mechanism [25]. Given that
wallet balances in our setting can be represented as integer values within a known finite range, LDP
mechanisms tailored to categorical data are a natural fit. Although we also evaluate the classical
Laplace mechanism, which is more suitable for continuous data, our results (see Appendix D)
indicate that k-ary randomized response and the exponential mechanism are better aligned with
the characteristics of our scenario.

To assess the effectiveness of these LDP mechanisms in protecting users’ toll station visit patterns,
we simulate adversarial attacks targeting obfuscated monthly toll fees and quantify the adversary’s
success probability. Importantly, the adversary in our model operates solely on publicly available
or easily accessible information, such as toll prices and obfuscated wallet data. This design choice
ensures that the threat model remains broadly applicable and relevant for real-world deployments,

1We assume that the user also appends a Zero-Knowledge proof that they applied the LDP mechanism correctly. Details on
this can be found in Section 3.3.

2Since we assume that the noise can also be negative, there is a possibility that the TSP will lose some of its revenue.
Therefore, it is also in the TSP’s interest to keep the noise small.
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independent of the specific technology or operator behind the system. Consequently, any PPETC
system should be designed to defend against such an adversary at a minimum.

In addition to evaluating the adversary’s success chance, we analyze the privacy-utility trade-
off by quantifying the cost incurred by users to conceal their toll expenditures. Our empirical
evaluation, based on two real-world case studies, demonstrates that both mechanisms significantly
reduce the adversary’s success rate, while introducing some additional costs for users.

Structure of this Paper. Section 2 provides the necessary background, introducing key concepts
related to electronic toll collection systems and local differential privacy. In Section 3, we present two
mechanisms for toll fee obfuscation: k-ary randomized response and the exponential mechanism.
Section 4 outlines our adversarial model and details the attacks targeting both obfuscation strategies.
In Section 5, we evaluate the effectiveness of these attacks. Section 6 discusses the evaluation results
and highlights directions for future research. Section 7, reviews related literature, and Section 8
concludes the paper with a summary of our main findings.

2 Background

We introduce some of the terms and concepts used in our ETC scenario, as well as define the
necessary concepts from differential privacy.

2.1 ETC Background

We introduce several notions that are used in our ETC scenario. Note that we adopt some notions
from [2].

Billing Period: We assume users pay their tolls once per billing period, e.g., once per month.

Toll Stations: We use S = {sy, s3,...,s;} as set of toll stations.

Pricing Model: We define the pricing model of an ETC scheme as a set of toll prices P = {py, p2,
..., p1}, where each price p; is fixed and assigned to toll station s;.

Trace: A trace records the toll stations visited by a user during a billing period, including the
frequency [2]. A trace is denoted as trace = {(sy, f1), (s2, f2), - - -, (s1, fi) }, where f; is the frequency
associated with the toll station s;.

Wallet: A wallet represents the state of a user at the end of a billing period. It consists of the
trace trace and the wallet balance® bal, i.e., the sum of all prices of the visited toll stations. Given
bal, the following equation holds:

bal=py-fi+p2-fot-+pi-fi, fi€ENp (1)

Plausible Wallets: The set of plausible wallets is the set of all wallets that can be possibly
achieved, given a pricing model P. To determine the plausible wallets falling within the range of
[wy, wy ], we formulate the following inequality and find all solutions within this range.

wi<pi-fitpa-fotoAprfi <wy @)
The set of all solutions derived from Inequality 2 is denoted as W),, where each element
w = (id, bal, trace) € W, (3)

consists of a wallet id id, a wallet balance bal, and a trace trace. Note that we add ids to wallets
here to be able to differentiate between wallets that have the same balance, but different traces.
Note that the set of plausible wallets could then be further refined by using information about the
road network and connectivity between toll stations. Solutions from Inequality 2 can be discarded
if they are not possible given the road network.

3Note that we will frequently abbreviate the wallet balance with just wallet.
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Plausible Trace: A plausible trace is a trace that can be possibly achieved by a user and is linked
with a plausible wallet. The set of plausible traces is defined by T, = {trace | (-, -, trace) € W,}.

Cost: We define the cost of privacy as the difference between the balance of the original wallet
and the balance of the obfuscated wallet. This represents the additional amount a customer needs
to tolerate in order to protect their privacy [8, 29, 30].

Subset Sum Problem (SSP): The SSP is an NP-complete problem [23], where we consider a set
A={aj:1<j<ka; € Ny}andavalue M € Ny, i.e., a non-negative integer. The aim is to find
xissuchthatay - x; +az - x2+ - +ag - xx = M, x; € Ny.

2.2 Differential Privacy

Differential privacy (DP) was introduced as a standard for protecting personal records within
datasets. The intuition behind DP is that the presence or absence of a record in a dataset should
not significantly modify the statistics extracted from the dataset [12], and the information leakage
from the statistics should be negligible. By doing so, the privacy of each individual record will be
preserved.

We now review some terms used in the context of DP.

Local Differential Privacy. In the local differential privacy (LDP) model, each user performs
the privacy mechanism themselves on their own data before sending it to the central data collector.
This removes the need for trust in the central data collector, which is the TSP in our scenario.
Informally, LDP ensures that the output of the privacy mechanism reveals only little about the real
input, even to the data collector itself. The privacy parameter ¢ quantifies the level of privacy loss.
A smaller value of ¢ indicates less privacy loss [14].

Definition 2.1 (¢-Local Differential Privacy (e-LDP) [28]). A randomized mechanism M satisfies
e-LDP if and only if for any pairs of input values x, x” € D, and for any possible output y € R, it
holds that

Pr[M(x) =y] < e - Pr[M(x") = y]. (4)
In our case, the dataset D will be the set of plausible wallets W,,.

(K-ary) Randomized Response. One of the most widely used mechanisms for achieving e-LDP
over categorical data is k-ary randomized response (KRR) [20], which generalizes Warner’s original
technique [34] to a domain of size k instead of 2. The core idea of KRR is that either the true value
is reported or a random one, whereas the true value is reported with a higher probability than a
random one (except for € = 0, where every value has the same probability to be chosen). This also
means that the range and domain of KRR are the same set, i.e., R = D holds.

Given an input x € D, with |D| = k, the KRR mechanism outputs the following:

&

e
, ith probability ——
o x with probability ——-—
Mg (x) = : ©)
z # x, with probability pr— for each z # x

The Exponential Mechanism. The exponential mechanism, instead of adding some noise to
the input, selects an output from a set of possible outcomes. Although it was originally proposed
for standard DP, it can also be applied to local DP. In this case, each user randomly selects their
output based on a locally executable score function. The exponential mechanism biases its choice
toward higher-scoring outcomes, ensuring that no single input influences the output distribution
too much and thereby satisfying e-LDP.
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The exponential mechanism for a domain D and outcome set R uses a scoring function u :
D X R — R which maps (x € D, r € R) pairs to a real-valued score. More precisely, the exponential
mechanism ME’)’;’E,R (x), on input x € D, samples an element r from R according to the following

probability distribution [25]:

eu(x,r)
Prygee [ | x] o0 (5] ©)
rMs,u,R rix| = -
1 e (0]

The goal is to select a candidate item r € R that approximately maximizes u(x, r) while ensuring
&-LDP. The sensitivity of the scoring function u is defined as

A, = maxmax |u(x,r) —u(x’,r)| )
reR xx’

where x and x’ are “neighboring inputs” [25].
In our case, all possible inputs and outputs are wallets, thus D = R = W},. Note that we assume
all wallets to be “neighbors”, thus aiming to hide the user’s complete trace from the adversary.

Laplace Mechanism. When using the Laplace mechanism for local DP, each user adds random
noise, which is drawn from the Laplace distribution, to their own value before sending it to the
central data collector.

Definition 2.2 (Laplace Mechanism for LDP [28]). Given a data item o, the mechanism outputs

A
M(v) =v+Lap (—f)
€
where Af is the sensitivity of the function f and Lap(-) represents the Laplace distribution.

3 Wallet Obfuscation Mechanisms

In post-payment ETC systems, users typically settle their toll fees at the end of each billing period
by submitting their wallet balance, which reflects the total cost of all toll stations visited during
that period. Prior work [2, 9] has shown that revealing the exact wallet balance can compromise
user privacy, as it may allow adversaries to reconstruct a user’s trace with significant probability
when combined with auxiliary information.

To address this issue, we introduce two wallet obfuscation mechanisms based on LDP. Both
mechanisms are executed locally by the users before submitting their wallet balance to the TSP, as
they rely solely on the user’s own data

We focus on two mechanisms designed for categorical data: the k-ary randomized response (KRR)
and the exponential mechanism. The Laplace mechanism, which is more suited for continuous
data, is discussed separately in Appendix D.

3.1 Obfuscation based on the KRR Mechanism

First, we use k-ary randomized response (KRR) to let the user either submit their real wallet balance
or a random balance that is “close” to the real one. The formal algorithm is presented in Algorithm 1.
Suppose the user’s original wallet is w;. Then, the algorithm first computes the set of neighbors of
w; (including w; itself), which has size k:

N « NEIGHBORS_SET(w;, W, k) = {Wi—L(k—l)/QJs e Wi, Wi+[(k—l)/2'\}

Then, the algorithm samples an element of N according to the KRR mechanism (cp. Section 2.2) and
outputs the resulting wallet. Note that the higher ¢ is, the higher the probability that the obfuscated
wallet equals the original wallet.
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Algorithm 1 Obfuscation based on k-ary Randomized Response (KRR)
Input: w; € Wp,Wp,k e{1,..., |Wp|},£

Output: w,
1: function KRR_OBFUSCATION(w;, W), k, €)
2: N « NEIGHBORS_SET(w;, Wp, k)
k,e,N
3: Wo — MKRR (wi)
4: return w,

5: end function

3.2 Obfuscation based on the Exponential Mechanism

Next, we construct an obfuscation mechanism based on the exponential mechanism Mé’;(‘i,R ()
(cp. Section 2.2). The pseudocode of the mechanism is shown in Algorithm 2. The core idea is
that, given a fixed wallet w; € W), Mg’)’&’,R selects a wallet from W), that somewhat maximizes the
score while guaranteeing privacy. Our scoring function u : W, X W, — R uses both Euclidean and

similarity distances to calculate the score of two traces:

(1) The Euclidean distance d., . measures the difference between the two wallet’s balances
(2) The similarity distance ds;,,, measures how similar the wallet’s traces are in terms of toll
station visits

For a high score, the Euclidean distance should be small (low cost), while the similarity distance
should be high (very different traces). To compute the final score, we assign weights a,,,; and @i,
(with @eyer + ®sim = 1) to both distances, allowing a TSP to adjust the impact of each distance on the
score. Then we compute the score as score = (d;;,, - Osim — d. - ®eycr), Where d;;  (resp.d. ) is

’
] eucl ~ sim eucl’ ~
dsim (resp. deycr) scaled to the range [0, 1]. Given score, we compute the probability that w; € W, is

selected by ME’;(‘I;R as prob = exp (%53%), where A is the sensitivity of the scoring function (in our
case, A = 1). After doing this for all w; € W, ME’;(‘I’,R samples an obfuscated wallet according to the
normalized probabilities prob. Note: The TSP can enhance the scoring function by incorporating
additional parameters, enabling a more precise and customizable level of privacy granularity. The
complexity of Algorithm 2 is linear in the number of wallets, i.e., [W,|. Additional details on ME}'(‘}’,R
are given in Appendix A.

3.3 Integrating the Obfuscation Mechanisms into PPETC schemes

We now discuss how the obfuscation mechanisms introduced above can be securely integrated
into a PPETC scheme, such as the one proposed in [16]. A central challenge lies in the generation
of randomness required by these mechanisms, as they are inherently randomized algorithms. A
straightforward approach would be to let users generate the randomness themselves. While this
aligns with the notion that users are responsible for their own privacy, it introduces the risk of
manipulation. Specifically, users could bias the randomness to produce minimal toll values, thereby
reducing their fees and causing revenue loss for the TSP.

To mitigate this risk, a more robust solution involves joint randomness generation by both the
user and the TSP. Let the user sample a random value r,, and the TSP sample r;. A straightforward
implementation would be to then let both parties exchange their random values, allowing the user
to compute the obfuscation output using the combined randomness. However, this would expose
ry, to the TSP, enabling it to reverse-engineer the obfuscation process by simulating the mechanism
with some plausible wallet balances. Since the obfuscation algorithm becomes deterministic when
the randomness is fixed, this could compromise the user’s privacy.

To prevent this, we propose the following steps:
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Algorithm 2 Obfuscation Algorithm based on the Exponential Mechanism

Input: w; € Wy, Wp, €, dteyel € [0,1], asim € [0,1]

Output: w,
1: function EXPONENTIAL_OBFUSCATION(W;, Wp, €, @eycl> Xsim)
2: Parse (id, bal, trace) «— w;
3: Extract T from W),
4: (max_eucl, max_sim) < comPUTE_MAX_DIST(Tp)
5: Declare arr_score[|Wp|]
6: for all w; € W), do
7: Parse (idj, bal;, trace;) < w;
8: deycl < COMPUTE_EUCLIDEAN(trace, tracej)
9: dsim < COMPUTE_SIMILARITY (trace, trace;)
10: d, .1 < deuct/max_eucl
11: d;l.m — dsim/max_sim
12: arr_score[j] « (di;,, - @sim — déucl - Qeyel)
13: end for
14: arr_prob « COMPUTE_PROB(arr_score, &, A == 1)
15: arr_norm_prob < NORMALIZE(arr_prob)
16: tracej < SELECT_RAND(arr_norm_prob, Tp)
17: Wo — Wi
18: return w,

19: end function

(1) The user samples r,, and the TSP samples r;.
(2) The user sends a commitment® to ry to the TSP, i.e., com « COM.Commit(ry).
(3) The TSP responds by sending r; in plaintext to the user.’
(4) The user computes the joint randomness r = r,, @ r; and uses it to obfuscate their wallet
balance w;, resulting in w,.
(5) The user computes a Zero-Knowledge proof® II that shows that there exist (w;, ryy) for that
the following relations holds:
o r=r,or
e r, = COM.Open(com)
® w, = ALGORITHM(w;; r) for ALGORITHM being the obfuscation algorithm
(6) The TSP, who already knows (rr, com), then receives (w,, II), verifies the proof, and is
thereby convinced that the user used the correct joint randomness r = ry @ rr as obfuscation
randomness without learning r,, itself.

This protocol represents one possible way to implement the obfuscation process within a PPETC
scheme. It ensures that users cannot manipulate the randomness while preserving their privacy
from the service provider.

4 Deobfuscation Attacks

In this section, we design attacks against the LDP-based wallet obfuscation mechanisms from
Section 3. Later in Section 5 we will then evaluate their effectiveness.

4A commitment scheme allows a user to commit to a message m and publish the result, called commitment com, in a way
that m is hidden from others, but also the user cannot claim a different m afterwards when he opens com.

Note that these are the first two messages of a Blum coin toss [6]. The third message, where the user opens to commitment
to reveal riy to the TSP is omitted since this would lead to the TSP learning the obfuscation randomness.

%A Zero-Knowledge proof allows a party, e.g., the user, to convince another party, e.g., the TSP, that a statement is true (e.g.,
that the obfuscation was performed correctly), without revealing any information beyond the validity of the statement itself.
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For all attacks, the adversary gets an obfuscated wallet (and some other information) as input
and outputs a guess for the original wallet, which we will call deobfuscated wallet. In Section 5 we
will consider an attack attempt successful if the deobfuscated wallet equals the original wallet.

4.1 Threat Model

Although the privacy level in the DP framework is parameterized by ¢, it does not reflect the
absolute level of privacy for a user, i.e., what can really be inferred from a user’s secret [13, 15, 29].
To analyze the privacy level of our mechanism, we consider a threat model where an adversary
A exploits some background information so as to measure what actually can be learned from an
obfuscated wallet. Our threat model is similar to the one in [2]. We assume a passive adversary,
i.e., it only observes information but does not manipulate any data. A has access to an obfuscated
wallet, denoted as w,, for which it wants to identify the correct (deobfuscated) wallet. In addition, it
has access to the set of all toll prices P (e.g., by consulting the TSP’s website). A can also obtain all
plausible wallets, denoted as W), using the toll prices and Eq. (2). For evaluation purposes we also
assume that the adversary knows the parameters used for obfuscation.” These are (&, k) for KRR
and (&, A, ®eycl, Asim) for the exponential mechanism. In summary, the adversary’s knowledge is
represented as Kxrr = {Wo, P, W), &, k} for the KRR mechanism and Kexp = {wo, P, W), &, A, deyel,
Qsim } for the exponential mechanism.

It’s worth noting that the adversary in our model could realistically be anyone, since it only relies
on publicly available or easily accessible information, such as toll prices and obfuscated wallet
data. This makes the threat model broadly applicable and relevant for real-world scenarios. As a
result, any PPETC system should be designed to defend against such an adversary at the very least.
Moreover, our analysis is independent of any specific technology, meaning the adversary model
applies regardless of who operates the system or how it is implemented.

4.2 Deobfuscation Attack on the KRR Mechanism

For the attack on the KRR mechanism we have to distinguish between the cases ¢ = 0 and ¢ > 0.

For ¢ = 0, the obfuscation mechanism uniformly random samples an element of the neighbor set
N, therefore the only possible deobfuscation strategy is to also compute N (which is possible for
A) and to randomly guess a deobfuscated wallet from that set.

For ¢ > 0, the probability that the KRR obfuscation mechanism sampled the original wallet as
obfuscated wallet is higher than the probability for any other wallet in N. Therefore, A’s best
option is to just select the obfuscated wallet as deobfuscated wallet, which is a maximum likelihood
strategy.

4.3 Deobfuscation Attack on the Exponential Mechanism

The attack on the exponential mechanism includes two steps: (1) precomputation and (2) deobfusca-
tion. In the precomputation phase (cp. Algorithm 3), A creates a table containing the probabilities
that w; got mapped to w; during obfuscation, for i, j € {0,..., |W,| — 1}. For that, the exponential
obfuscation algorithm (Algorithm 2) is executed for each w; € W), to get the probability that this
wallet gets mapped to wj, for all w; € W},. The results are stored in a table, where the cell (i, j)
contains the likelihood that w; is mapped to w;.

In the deobfuscation phase (cp. Algorithm 4), given an obfuscated wallet w,, A simply selects
the cell in the jth column that contains the maximum of the jth column. This cell holds the id of

"But depending on who the real-world adversary is, it might not have access to all of these parameters and may have to
guess (some of) them.
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Algorithm 3 Precomputation for Attack on the Exponential Mechanism

Input: Wy, ¢, @eyels dsim
Output: table
1: function PRECOMPUTATION_EXP_ATTACK(Wp, €, @eycl> Asim)
2: Extract T from W),
Declare table[|T,|][|T!] \\Create 2-dimensional array
for all trace; € T, do
arr_norm_prob < COMPUTE_NORMALIZED_PROB(trace;, Ty, €, Geycl> Xsim)
\\This executes EXPONENTIAL_OBFUSCATION until arr_norm_prob is computed (line 15)
6 table[i] « arr_norm_prob
7: end for
8
9

AN

return table
: end function

Algorithm 4 Attack on the Exponential Mechanism

Input: w, € W), W, table

Output: wy
1: function EXP_ATTACK(wo, W, table)
2: Declare column[|Wp|] \\Create array
3: Let j be the index for which w, = W) [j] holds
4: for i from 0 to [Wp| — 1 do \\get jth column of table
5: column|i] « table[i][J]
6: end for
7: index «— arg_max(column) \\Find maximum probability
8: wq < Wp[index] \\Select wallet that has maximum probability
9: return wy

10: end function

the wallet with the highest probability of being the original wallet. Note that attack uses again a
maximum likelihood strategy.

5 Evaluation

We now evaluate the effectiveness of our deobfuscation attacks from Section 4 against our wallet
obfuscation mechanisms from Section 3 to determine the level of privacy achievable and the
associated costs. Using the current ETC systems in Brisbane and Melbourne as case studies, we
apply their parameters, i.e., toll stations and prices, to a hypothetical PPETC scheme. We then
assess whether applying the KRR mechanism or the exponential mechanism to this scheme helps
in hiding the toll station visits. Note that we do not include the Laplace mechanism here, since our
evaluation results have shown that the Laplace mechanism is not the top choice for any of our
metrics. Therefore, the analysis of the Laplace mechanism is deferred to Appendix D.

The adversary’s goal in this section is to recover the original wallet of the user, given an obfuscated
wallet. Remember that a wallet is always uniquely linked to a trace, so recovering the original
wallet of a user equals recovering the trace of the user.

In Appendix E, we consider a more relaxed attack where the adversary tries to find a wallet/trace
that is just similar to the original wallet/trace instead of finding the exact wallet/trace. The results
show that both mechanisms perform only slightly better than random guessing. The difference
is small, and both KRR and the exponential mechanism behave quite similarly under this relaxed
attack model.
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£ k=3 k=5 k=7 k=9 k=11
0.1 | 35.59% 21.65% 15.55% 12.14% 9.95%
0.5 | 45.19% 29.19% 21.56% 17.09% 14.15%
1 |57.61% 40.46% 31.18% 25.36% 21.37%
2 | 78.70% 64.88% 55.19% 48.02% 42.49%

Table 1. Success rates for deobfuscation of KRR mechanism.

Parameters for the Brisbane Case Study. To evaluate our attacks, we utilize the actual pa-
rameters of Brisbane’s ETC system [7, 31, 32], which has also been examined in [2]. We use the
following parameters for our evaluation:

Toll prices (P): The 9 toll prices (in AUD) are as follows [31]: P = {1.72,2.68, 2.84, 3.19, 4.09,
4.55,5.11,5.11,5.46}.

Plausible wallets (W,): Based on the toll prices, we can compute the set of plausible wallets
W), within the range [$0,$10]° using Eq. (2). Note that |W,| = 106 (cp. Appendix B).

Parameters for the Melbourne Case Study. As a second real-world example, we examine a
PPETC system based on the Melbourne ETC system [24], which has the following parameters:

Toll prices (P): We assume the following 19 toll prices (in AUD): P = {1.92,1.92,3.07,3.07,
3.07,3.07,3.84,3.84,4.99,6.14, 6.14,6.91,6.91, 6.91, 8.06, 9.98, 9.98, 9.98, 10.75}.

Plausible wallets (W,,): As for the Brisbane case study, we obtain all plausible wallet balances
within the range [$1, $10] with Eq. (2). Note that |W},| = 285 (cp. Appendix B).

5.1 Evaluation of the KRR Mechanism

We analyze the effectiveness of the deobfuscation attack against the KRR mechanism as follows.

5.1.1 Privacy Analysis. We evaluate the privacy level of an individual by calculating the success
rate of the deobfuscation attack from Section 4.2, for different privacy levels ¢ and neighbor set size
k. More precisely, we evaluate ¢ € {0.1,0.5,1,2} and k € {3,5,7,9, 11}

Brisbane and Melbourne Case Studies. Since the success rate of the KRR deobfuscation attack
depends only on the parameters ¢ and k and is independent of the actual wallets, the success
rates for attacking the Brisbane and Melbourne case studies are the same. An adversary using the
strategy described in Section 4.2 outputs the obfuscated wallet as the deobfuscated wallet, which
is correct with probability ﬁ The resulting success chances can be seen in Table 1. It can
easily be seen that smaller ¢ and larger k yield smaller deobfuscation success rates. However, the
individual success rates differ greatly, the lowest being 9.95% (for € = 0.1, k = 11) and the highest
being 78.70% (for € = 2, k = 3).

5.1.2 Cost Analysis. We also evaluate the amount of additional noise introduced by obfuscation
for the same (¢, k) used in the privacy evaluation. This helps us to understand at what cost the
level of privacy is achieved. The cost analysis includes the following steps:

Step 1: For different ¢ and k, we add noise to each plausible wallet w; to obtain its associated
obfuscated wallet w,, using Section 3.1.

Step 2: Having obtained the obfuscated wallet, we compute the cost as |GET_BALANCE(w,) —
GET_BALANCE(w;)|.

8Since we will see that larger wallets are easier to obfuscate, we intentionally examine only “small” wallets to better see the
effects of the obfuscation.
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Brisbane Melbourne
KRR with k = EXP with KRR with k = EXP with
e | 3 5 7 9 11 | Ceyer =075 | 3 5 7 9 11 | Geyer =0.75
0.1 | 0.05 0.09 0.14 0.18 0.22 2.04 0.02 0.03 0.05 0.06 0.08 1.89
0.5 | 0.04 0.09 0.13 0.17 0.21 2.01 0.01 0.03 0.04 0.05 0.06 1.83
1 0.03 0.07 0.11 0.15 0.19 1.96 0.01 0.02 0.03 0.03 0.04 1.80
2 0.02 0.04 0.07 0.10 0.14 1.89 0.00 0.01 0.01 0.02 0.02 1.71

Table 2. Average cost of obfuscation in AUD for all mechanisms considered in the main body, for different e.

We repeat this 1000 times to get a good estimate of the costs.

Brisbane Case Study. In Fig. 1, the incurred costs are shown for the Brisbane case study, for
£€{0.1,0.5,1,2} and k € {3,5,7,9, 11}. The figure uses box plots to visualize the distribution of
costs, where the yellow line inside each box indicates the median value. We additionally depict the
average value in Table 2.

Overall, we observe that smaller values of k and larger values of ¢ tend to result in lower costs.
However, the impact of ¢ on the noise is relatively minor compared to the effect of k. In fact,
changing k has a noticeably stronger influence on the amount of noise introduced. That said, the
noise remains small across all parameter settings.

While smaller k values help reduce costs, they also offer weaker privacy guarantees. Conversely,
larger k improves privacy but increases the cost. Therefore, choosing an appropriate value for k
requires balancing privacy and cost, depending on the specific requirements of the PPETC system.

Melbourne Case Study. The incurred costs for the Melbourne case study are depicted in Fig. 2
and Table 2, also using ¢ € {0.1,0.5,1,2} and k € {3,5,7,9, 11}. It is very notable that the mean of
the cost is actually 0.00% for all ¢ and k. This is due to the distribution of possible wallets: While the
Brisbane case study has 106 possible wallets, where each balance appears 1.14 times on average, the
Melbourne case study has 285 possible wallets, where each balance appears =22 times on average
(cp. Appendix B). Thus, it is highly likely that the k nearest neighbors of a wallet have the same
wallet balance as the original wallet, resulting in no costs at all in most cases.

5.2 Evaluation of the Exponential Mechanism

We analyze the effectiveness of the deobfuscation attack against the exponential mechanism as
follows.

5.2.1 Privacy Analysis. We evaluate the privacy level of an individual by calculating the success
rate of the deobfuscation attack from Section 4.3, for different ¢. To do so, for each obfuscated wallet
from the set W,,, we compute the success rate of finding the associated original wallet from the set
W,,. The results of the privacy analysis are presented in a series of graphs, where each graph shows
the success rate with respect to an obfuscated wallet, for different ¢, eycr, and asip,.

For ¢, we will analyze ¢ € {0.1,0.5,1,2}. We will focus on (@eye; = 0.75, dsi, = 0.25) in this
section. In Appendix C, we will also evaluate for the parameters (teye; = 1, &sim = 0) and (eye; =
0.5, &sim = 0.5). Since Appendix C shows that all three parameter configurations perform very
similar, we chose to analyze (@eyuc; = 0.75, @iy = 0.25) in the main body as a balanced middle
ground.

Brisbane Case Study. Figure 3 shows the success rate of the deobfuscation attack on the
exponential mechanism for Brisbane. It can be noted that the “corner cases”, i.e., wallets with a
balance close to $0 or close to $10, have a higher success chance than wallets with a balance “in the



12

Distribution of Noise Distances for Different k and SR

Noise distance (in dollar)

Noise distance (in dollar)

Adavoudi Jolfaei et al.

Distribution of Noise Distances for Different k and SR

35

3.0 4

254

2.01

L]

o0

(=}
o

o
-]
O 0D O CDO ©

35

°
(-]
o
° 8
° [}

; | i i

o
]
il l—‘l T
k=9 k=11

7
epsilon: 0.5

Distribution of Noise Distances for Different k and SR

3.0 1

1.5 4

104

0.5 4

0.0

[=]

-]
=]

o
© QD O® 0 O

°

°

o

° 8

° 8
k=9 =11

k=3 k=5 k=7
epsilon: 2

KRR mechanism for Brisbane case study: The incurred costs for ¢ € {0.1,0.5,1,2} and k € {3,5,7,9,11}.

35 °
3.0 1
-]
o )
= 257
E ° ° g
5
: °
£ 2.0
g ° ]
£ o o ° 8
ERER o g § g
o
: ° o 8 8
Z 104 o 8 8
] 3
[}
0.5
0.0 : . L
k=3 k=5 =
epsilon: 0.1
Distribution of Noise Distances for Different k and SR
35 ps
3.0
-] -]
[} [} -]
< 257
K] ° o g
S
T )
£ 2.0
o ° 8
: o ° ° 8
Z 154 o g E E
o
: ° o 8 8
Z 10 o 8 8
] o
[}
0.5
0.0 i‘ - T L L1
k=3 k=5 k=7 k=9 k=11
epsilon: 1
Fig. 1
Distribution of Noise Distances for Different k and SR
2.00
) o o
1754
150 4
&
5 1251
c o o ] ] ]
8 1.00
2
=
S 0754 ° ° o o o
3
]
= 050
-] -] -] [-] [-]
0254
0.00 4 —— —_ — —_ —
pas s k=7 k=9 =11
epsilon: 0.1
Distribution of Noise Distances for Different k and SR
2.00
) ] ]
1754
150 4
£
ERELE
c o o ) o o
8 1004
ko
3 075 ° ° ° ° °
8
]
Z 050+
° ° [-] [-] [-]
0254
0.00 4 — — — — —

=3 pas k=7 k=9 =11
epsilon: 1

Distribution of Noise Distances for Different k and SR

2.00
o o o
175
150
5
3 125
= o o o o o
3 100
2
&
2 075 o o o © o
2
=1
Z 050
[} [} [} [} -]
0.25
0.00 —— —— —— —— —
k=3 k=5 k=7 k=9 k=11
epsilon: 0.5
Distribution of Noise Distances for Different k and SR
2.00
o -] o
1754
1.50 4
£
51254
c o ) o [} [}
8 1.00 4
=
2 .75 o o o o o
]
]
Z 0504
[-] [-] -] -] -}
0.25 4
0.00 4 — — — —
k=3 k=5 k=7 k=9 k=11
epsilon: 2

Fig. 2. KRR mechanism for Melbourne case study: The incurred costs for ¢ € {0.1,0.5,1,2} and k €
{3,5,7,9,11}.



On Obfuscating Tolls in PPETC Systems 13

middle”. But overall, for all ¢s the success rates are pretty low, i.e., between 0.9% — 1.5%. This is a
stark contrast to the KRR mechanism, where the lowest success rate was 9.95%.

Melbourne Case Study. Figure 5 shows the success rate of the deobfuscation attack on the expo-
nential mechanism for Melbourne. The same observations that were made for Brisbane (cp. Fig. 3)
can be made for Melbourne as well, with the difference that all graphs have even lower success
chances than the exponential mechanism for Brisbane. For the Melbourne case study, the success
rated are between 0.3% — 0.7%, whereas they are between 0.9% — 1.5% for the Brisbane case study.
This is probably due to the fact that the set of possible wallets W, for Melbourne is more than two
times as large as the one for Brisbane, thus the set of possible deobfuscated wallets is much larger.

5.22 Cost Analysis. We evaluate the amount of additional noise introduced by obfuscation for
the different ¢ used in the privacy analysis. This helps us to understand at what cost the level of
privacy is achieved. The cost analysis includes the following steps:

Step 1: For a fixed ¢ and for each plausible wallet w;, we obtain its associated obfuscated
wallet w,, using the exponential obfuscation mechanism (Algorithm 2).

Step 2: Having obtained the obfuscated wallet, we compute the cost as |GET_BALANCE(w,) —
GET_BALANCE(w;)|.

We repeat this 1000 times to get a good estimate of the costs.

Brisbane Case Study. In Fig. 4, the incurred costs are shown for the Brisbane case study, for
e € {0.1,0.5, 1, 2}. The figure uses box plots to visualize the distribution of costs, where the yellow
line inside each box indicates the median value. We additionally depict the average value in Table 2.

Overall, it can be seen that the costs decrease for larger ¢. Also, the costs for the original wallets
with a very small balance are significantly higher than the costs for all other wallets. This is due
to the distribution of wallet balances (cp. Appendix B): For wallets with a large balance, there are
many other wallets with a similar balance. But for wallets with a small balance, this is not the case.
Thus, when obfuscating wallets with a very small balance, the chances to receive a more different
obfuscated balance are higher.

Melbourne Case Study. The incurred costs for the Melbourne case study are depicted in Fig. 6
and Table 2, also using ¢ € {0.1,0.5, 1, 2}. The same observations that were made for the Brisbane
case study can be made for the Melbourne case study as well, with the difference that all graphs
have a bit lower costs here. While the Brisbane case study had costs averaging between $1.89 -
$2.04, the Melbourne case study has costs averaging between $1.71 — $1.89.

6 Discussion

Discussion of Evaluation Results. We now compare the evaluation results of the KRR mecha-
nism and the exponential mechanism across both case studies (Brisbane and Melbourne).

In terms of privacy, measured via the adversary’s success rate, the exponential mechanism clearly
outperforms KRR. The success rates for the exponential mechanism range between 0.35% and 1.5%,
indicating strong privacy guarantees. In contrast, the KRR mechanism yields success rates between
10% and 78%, depending on the parameter configuration. This indicates that KRR generally provides
less privacy than the exponential mechanism.

However, the situation is reversed when it comes to cost. The KRR mechanism incurs average
costs ranging from $0.02 to $0.22, which is substantially lower than the exponential mechanism’s
costs, which range from $1.71 to $2.04. Therefore, the KRR mechanism is much more cost-efficient.
Additionally, the exponential mechanism produces outliers with costs as high as $8. Since the KRR
mechanism only selects from the k nearest neighbors of w;, rather than from the entire set of
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plausible wallets W), it does not produce these high outliers. KRR outliers are all below $3, and the
smaller k, the lower the highest outlier.

These results highlight a clear trade-off: the exponential mechanism provides better privacy,
while KRR is more cost-efficient. Therefore, selecting an appropriate mechanism requires balancing
these two aspects. A practical approach for a TSP is to first decide what level of privacy is acceptable,
i.e., what maximum success rate is tolerable for an adversary. Once this threshold is defined, all
mechanisms and parameter configurations that meet the privacy requirement can be identified.
From this filtered set, the configuration with the lowest cost can then be selected.

Let us consider an example where a TSP decides that a maximum success rate of 15% is acceptable.
Under this criteria, all configurations of the exponential mechanism are valid. For the KRR mecha-
nism, the following configurations meet the privacy requirement: (¢ = 0.1,k =9), (¢ = 0.1,k = 11),
and (¢ = 0.5,k = 11). Among these, the configuration (¢ = 0.1, k = 9) yields the lowest costs. It has
an average cost of $0.18 (with a mean of $0.10 for the Brisbane case study and a mean of $0.00 for
the Melbourne case study) and a success rate of 12.14%. This would make it a strong candidate for
deployment.

Discussion of the Adversarial Model. It should be noted that while our evaluation focuses on
a relatively weak adversarial model, more sophisticated adversaries may employ more advanced
strategies, which potentially achieve higher success rates. Defending against such stronger attacks
would require mechanisms that induce greater obfuscation, which in turn leads to increased
costs for the user. Consequently, the use of LDP mechanisms is not optional for PPETC systems
but a necessary safeguard to ensure protection against at least the baseline adversary, whose
attack strategies are both plausible and likely to be executed in practice. Even these foundational
mechanisms impose non-negligible costs, underscoring that privacy in this context is not free.

Reimbursement of Additional Costs. When using the ETC scheme for many billing periods,
the cost for privacy equals the sum of the individual noises, i.e., C = }; N;. The expectation value
for C after a great number of billing periods is close to zero. Thus, if the ETC is used for a long time,
the actual additional cost of privacy should be small for most users. Of course, there will always
be users who are a bit unlucky and may end up with a larger additional cost. Thus, the TSP could
offer some kind of reimbursement mechanism, like the one in [11], for the excess cost.

Further Research Opportunities. Note that our evaluation only considers one billing period.
By consolidating information about multiple billing periods, the adversary may have a higher
chance of violating the user’s privacy. Intuitively, the adversary’s chances of doing so depend
on the behavior of users. For example, consider the extreme case of a user who has exactly the
same trace and, thus, the same wallet balance every month. The adversary could analyze the
obfuscated wallets over several months and deduce the correct original wallets with a higher
probability than if only one month was considered. For example, the adversary could divide the
sum of obfuscated balances by the number of billing periods, which gives a good estimate of the
real balances (if the number of billing periods is large enough). Conversely, for users whose driving
behavior changes significantly from month to month, their obfuscated wallets would be harder to
deobfuscate successfully. Understanding how user behavior impacts privacy and determining how
varied a user’s activities need to be to prevent privacy loss are important areas for future research.

7 Related Work

Attacks on PPETC Schemes. Attacks on post-payment PPETC schemes have been considered
in [2] and [9]. Both use knowledge of wallet balances and try to solve the SSP to obtain additional
information about user behavior. In [2] the evaluation is based on real ETC data. It is shown that
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the Brisbane scenario we use in Section 5 is vulnerable to attacks: For wallet balances <10 AUD,
the adversary could identify the visited toll stations with a 94% success rate by solving the SSP
problem. [9] also shows that solving the SSP helps to effectively recover user traces. In contrast to
[2], the adversary in [9] uses every information the TSP gets.

Protection Mechanisms. Some PPETC schemes [4, 16, 27] briefly mention that solving the SSP
might lead to privacy problems, although no solutions are presented. We are only aware of one
work that examines possible protection mechanisms: While [11] does not directly look at PPETC
schemes, they consider the more general setting of applications that use fine-grained billing, where
the details of the billing are hidden from the service provider. Their central idea is to use the DP
framework to add noise to the final bill of a user. The noise can be freely chosen by the user, which
in practice may lead to the problem that most users will choose a noise of zero to save costs and
thus get no privacy gain. [11] additionally proposes a cryptographic protocol that helps customers
reclaim the additional expenditure incurred for the sake of privacy. A limitation of [11] is that
it does not consider protection against adversaries who may exploit background information. In
contrast, we present attacks and use real-world settings from the Brisbane and Melbourne ETC
systems to evaluate our mechanism against adversaries who may exploit background information.

In smart metering applications, rather than transmitting actual measurements, it is possible that
the smart meter sends masked data to the power provider in a way that does not interfere with the
accuracy of aggregation operations. [5] and [17] present methods to obscure measurements using
a straightforward approach. Specifically, the smart meter adds noise from a Laplace distribution
with a certain scale parameter and transmits this data to the power provider. The scale parameter
is selected to ensure that the cumulative noise remains below a predefined error threshold. The
authors explain that when a large number of measurements is considered, this cumulative error
approximates a normal distribution. However, their method is not suitable for our scenario, as the
number of obfuscated wallets may be too small for their approach to work effectively. Additionally,
their method does not consider controlling noise for individual measurements.

8 Conclusion

Previous work has shown that a PPETC version of the Brisbane ETC system is vulnerable to trace
recovery attacks, with success rates reaching up to 94%. In this work, we investigated whether
common ¢é-LDP mechanisms, specifically k-ary randomized response (KRR) and the exponential
mechanism, can help mitigate these attacks.

Our evaluation for two real-world case studies shows that both mechanisms significantly reduce
the adversary’s success rate. The exponential mechanism achieves very strong privacy, with success
rates between 0.35% and 1.5% across both case studies. However, this comes at a cost: users may
pay up to $2.04 extra (on average) in a single billing period, which could discourage adoption. In
contrast, the KRR mechanism is much more cost-efficient, with average costs between $0.02 and
$0.22, but its privacy protection is weaker, with success rates ranging from 10% to 78%.

This highlights a clear trade-off between privacy and cost. It is up to the TSP (probably with
the involvement of data protection lawyers) to decide what level of privacy is acceptable, i.e.,
what maximum success rate is tolerable. Once this threshold is defined, suitable mechanisms
and parameter configurations can be selected accordingly. For example, if a 15% success rate is
acceptable, the KRR mechanism with (¢ = 0.1, k = 9) offers a good balance, with a 12.14% success
rate and $0.28 average cost.

In summary, both mechanisms are viable options for improving privacy in PPETC systems, but
the final choice depends on the privacy-cost balance that the TSP is willing to accept.
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A Details of the Exponential Obfuscation Mechanism

In this appendix, we explain the Exponential obfuscation mechanism (Algorithm 2) in more detail,
as well as Algorithms 5, 6, 7 and 8, which are sub-algorithms of Algorithm 2.

A.1 Algorithm EXPONENTIAL_OBFUSCATION

Algorithm 2 takes as input (w; € W, Wp, €, @eycr € [0, 1], &sim € [0,1]) and outputs the obfuscated
wallet w,. We now explain the algorithm in detail.

Step 1: Precomputation. We first calculate the maximum possible Euclidean distance and the
maximum possible similarity distance with coMPUTE_max_DIST (Algorithm 5) in line 4. Note that
the precomputation step needs only to be executed once, as long as W), stays the same.

Step 2: Score Calculation. Given an input wallet w;, we now compute the score of the input
wallet’s trace trace and every possible trace in lines 5 to 13, i.e., we calculate u(trace, trace;) for
all trace; € T,. We calculate u(trace, trace;) for a given trace; as follows: We first compute the
euclidean distance dg,.; between the traces with CcOMPUTE_EUCLIDEAN (Algorithm 6). We also
compute the similarity distance ds;, between the traces with coMPUTE_SIMILARITY (Algorithm 7).
Afterwards we scale d,,; to the range [0, 1] by dividing it by the maximum possible Euclidean
distance (calculated in line 4). We also scale d;,, to [0, 1] analogously. Afterwards we compute the
score u(trace, trace;) as

score = (dy, - tsim — d,,.; * Aeucl),
where d/ , and d;;  are the scaled versions of deyc; and dsim. Note that for a high score, the
similarity distance should be high (which indicated very different traces), while the Euclidean
distance should be small (which corresponds to small costs).

Step 3: Probability Calculation. Given the scores u(trace, trace;) for all trace; € Ty, we
calculate for each trace; the probability that trace; gets selected as output trace in lines 14 and 15.
According to the Exponential mechanism, we calculate the the probability as specified in Eq. (6).
We calculate the numerator of Eq. (6) in line 14 and then apply normalization in line 15.
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Algorithm 5 Compute Maximum Distances

Input: T,

Output: max_eucl, max_sim
1: function compUTE_MAX_DIST(T})
2: max_eucl «— 0

3: max_sim «— 0
4: for all trace; € T, do
5: for all trace;j € T, do
6: deycl < COMPUTE_EUCLIDEAN(trace;, trace;)
7: dsim < COMPUTE_SIMILARITY (trace;, trace;)
8: if doye; > max_eucl then
9: max_eucl < dgy;
10: end if
11: if dgim > max_sim then
12: max_sim < dsim
13: end if
14: end for
15: end for
16: return max_eucl, max_sim

17: end function

Algorithm 6 Compute Euclidean Distance

Input: trace; € Tp, trace; € Ty
Output: euclidean_dist
1: function COMPUTE_EUCLIDEAN(traces, tracez)

2: w1 < GET_BALANCE(trace;)
3 Wy <— GET_BALANCE(traces)
4: euclidean_dist «— |w1 — wa|
5 return euclidean_dist

6: end function

Step 4: Selection of Output Trace. Given for each trace; € T, the probability that the input
trace trace gets mapped to trace; as output trace, we now just need to draw an output trace
according to this probability distribution. Thus, we sample in line 16 an output trace tracey using
the previously calculated probability distribution. Finally, we output the wallet corresponding to
tracey as obfuscated wallet wy,.

A.2  Algorithm cOMPUTE_MAX_DIST

In Algorithm 5 we calculate the maximum possible Euclidean distance and the maximum possible
similarity distance for a given set of traces T,. To achieve that, we simply iterate over all possible
pairs of traces, calculate the Euclidean distance and the sensitivity distance and check whether they
are larger than are currently maximum. The algorithm outputs the maximum possible Euclidean
distance as max_eucl and the maximum possible similarity distance as max_sim.

A.3 Algorithm COMPUTE_EUCLIDEAN

Algorithm 6 takes as input two traces, trace; and trace,, and outputs the Euclidean distance between
them. To achieve this, the algorithm uses the function GET_BALANCE to retrieve the corresponding
wallet balances, denoted as w; and wy. It then computes the Euclidean distance as |w; — w;| and
stores the result in euclidean_dist.
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Algorithm 7 Compute Similarity Distance

Input: irace; € Ty, trace; € Tp

Output: sim_dist
1: function COMPUTE_SIMILARITY(traces, tracez)
2: sim_dist < 0

3: for all (s}, fj) € trace; and (sj,fj’) € trace; do
4: iffj;thndfj'JtOthen
5: sim_dist « sim_dist + (fj — fj’)2
6: else if f; # 0 and f}' == 0 then
7: sim_dist « sim_dist + (fj)? + penalty®
8: else if fj == 0 and fj’ # 0 then
9: sim_dist « sim_dist + (]‘}’)2 + penalty?
10: end if
11: end for
12: sim_dist «— /sim_dist
13: return sim_dist

14: end function

Algorithm 8 Compute Probabilities

Input: arr_score, ¢, A
Output: arr_prob
1: function COMPUTE_PROB(arr_score, €, A)
2: Declare arr_prob[|arr_score|]
3 for all score; € arr_score do
4: arr_prob[i] « elescore)[(2:A)
5: end for
6 return arr_prob
7: end function

A.4 Algorithm COMPUTE_SIMILARITY

Algorithm 7 takes two traces, trace; and trace;, as input and computes the similarity distance
between them, denoted as sim_dist. To calculate this distance, the algorithm compares both the
toll stations visited and their respective frequencies in the two traces. We denote a trace as

trace = {(s1, f1), (s2, f2), - > (1. fi) },

where each tuple (s;, f;) represents a toll station s; and its corresponding frequency f;. A frequency
fi = 0 in the tuple (s;, f;) € trace indicates that the toll station s; has not been visited at all. In
general, the Similarity distance between two points P = (x1,y1, 21, ...) and Q = (x2, Y2, 22, ...) in
an n-dimensional space is given by:

d(P,Q) = (xz — x1)* + (Y2 —y1)?+ (22 —z1)% +...
For each tuple (s;, fj) € trace; and (s, f]) € trace,, the algorithm checks if both fj and f7 are
non-zero. If so, it computes the distance as sim_dist = sim_dist + (fj — fj’)z. Note that sim_dist is
initialized to zero.

If the frequency of one trace is zero, while it non-zero in the other trace, an additional “penalty”
is added. This reflects the intuition that traces that differ in terms of the toll stations visited cause
more uncertainty than those that differ only in frequency values. Note that the penalty value can
also be set to zero.
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Finally, the algorithm takes the root of the final distance and returns the result as the output.

Remark 1 (On choosing the penalty value). Choosing an appropriate penalty value depends on
what one assumes the background knowledge of the attacker to be. We differentiate two cases:

(1) We assume that the attacker knows which toll stations a user visited during the billing
period, for example because he knows the home and work address of the user. Therefore,
we only want to hide how often the user has passed the toll stations.

(2) We assume that the attacker does not possess such background knowledge and thus also
want to hide which toll stations where visited during the billing period.

If (1) is the case, the penalty value should set very high. In that case, the obfuscation mechanism
likely selects an output trace that visits the same toll station as the input trace, just with different
frequencies. If (2) is the case, the penalty should be set to 0. In that case, the obfuscation algorithm
ignores whether the output trace has the same visited toll stations as the input trace.

Note that we use penalty = 0 since we assume that the attacker does not have this kind of

background knowledge.

A.5 Algorithm cOMPUTE_PROB

Algorithm 8 takes as input the list of scores arr_score, the parameter ¢, and the sensitivity A, and
it outputs a list arr_prob of probabilities. For each score; in arr_score, the algorithm computes
the corresponding probability as e(¢s¢27¢)/(2:A) (according to the Exponential mechanism, cp. the
numerator in Eq. (6)) and stores it in the list arr_prob. Finally, the algorithm returns arr_prob as
output.

B Details of the Case Studies

Brisbane. Brisbane has the following list of possible wallets below $10:

Wy = {1.72,2.68,2.84,3.19, 3.44,4.09, 4.4, 4.55,4.56,4.91,5.11,5.11, 5.16, 5.36, 5.46, 5.52, 5.68, 5.81,
5.87,6.03,6.12,6.27,6.28,6.38,6.63,6.77,6.83,6.83,6.88, 6.93,7.08,7.18,7.23,7.24,7.28,7.39,7.4,7.53,
7.59,7.74,7.75,7.79,7.79,7.84,7.95,7.95,7.99, 8.0, 8.04, 8.1, 8.14, 8.18, 8.2, 8.3, 8.3, 8.3, 8.35, 8.36, 8.49, 8.52,
8.55,8.55, 8.55, 8.6, 8.64, 8.65, 8.65, 8.71, 8.8, 8.87, 8.9, 8.95, 8.96, 9.0, 9.06,9.1,9.11,9.12, 9.2, 9.2, 9.22, 9.25,
9.31,9.45,9.46,9.47,9.51,9.51, 9.55, 9.56, 9.57, 9.61, 9.66, 9.66, 9.67, 9.67,9.71,9.72,9.76, 9.77, 9.82, 9.86,
9.9,9.91,9.92,9.96}

This list has length of 106 entries. It can be noted that some wallet balances appear multiple
times in the list. On average, each wallet balance appears 1.14 times.

Melbourne. Melbourne has the following list of possible wallets below $10:

W, = {1.92,1.92,3.07,3.07,3.07,3.07, 3.84, 3.84, 3.84, 3.84,3.84, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99, 4.99,
4.99,4.99,5.76,5.76,5.76,5.76,5.76,5.76,5.76,5.76,6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14, 6.14,
6.14,6.14,6.91,6.91,6.91,6.91,6.91,6.91,6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91, 6.91,
6.91,6.91,6.91,6.91,6.91,6.91,6.91,7.68,7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68, 7.68,
7.68, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06,
8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.06, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83,
8.83,8.83,8.83,8.83,8.83,8.83,8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83,
8.83,8.83,8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83, 8.83,9.21,9.21,9.21, 9.21,9.21,9.21, 9.21,
9.21,9.21,9.21,9.21,9.21,9.21,9.21,9.21,9.21,9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21, 9.21,
9.21,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6, 9.6, 9.6,9.6, 9.6, 9.6, 9.6, 9.6, 9.98, 9.98, 9.98, 9.98,
9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98, 9.98,9.98, 9.98,9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,
9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98, 9.98,9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,
9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98, 9.98,9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,
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9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98,9.98, 9.98,9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98, 9.98,
9.98,9.98}

This list has length of 285 entries. It can be noted that every wallet balance appears multiple
times in the list. On average, each wallet balance appears ~ 22 times.

C Further Evaluation of the Exponential Mechanism

Here we further evaluate the exponential mechanism using different weights for euclidean distance
and similarity distance. While we looked at (@eyc; = 0.75, @sim = 0.25) in Section 5.2, we will now
consider (eyer = 1, tsim = 0) and (cteye; = 0.5, Agim = 0.5).

C.1 Parameters (Qeye; = 1, Asim = 0)

The privacy analysis for Brisbane and Melbourne can be found in Fig. 7 and Fig. 9, respectively.
The cost analysis for Brisbane can be found in Fig. 8 and the one for Melbourne in Fig. 10. Also, the
average costs across all wallets are included in Table 3.

C.2 Parameters (®pyc; = 0.5, dgim = 0.5)

The privacy analysis for Brisbane and Melbourne can be found in Fig. 11 and Fig. 13, respectively.
The cost analysis for Brisbane can be found in Fig. 12 and the one for Melbourne in Fig. 14. Also,
the average costs across all wallets are included in Table 3.

C.3 Privacy and Cost Analysis

When considering privacy, the success rates for (ae,e; = 0.5, @sim = 0.5) in Figs. 11 and 13 and
(dteyct = 1, asim = 0) in Figs. 7 and 9 do not differ much from the success rates of (@eyc; = 0.75, Asim =
0.25) in Figs. 3 and 5. While (a¢ye; = 0.5, 5im = 0.5) yields slightly lower success rates than
(@euer = 0.75, asim = 0.25), and those are slightly lower than (¢teye; = 1, @sim = 0), the differences
are pretty much negligible. This applies to both case studies.

For cost, a similar pattern emerges. The cost for (¢teye; = 0.5, &sim = 0.5) in Figs. 12 and 14
and (@eyer = 1, asim = 0) in Figs. 8 and 10 do not differ much from the success rates of (®eyer =
0.75, &tsim = 0.25) in Figs. 4 and 6. Here, (¢teye; = 0.5, &sim = 0.5) results in slightly higher costs than
(@euer = 0.75, Asim = 0.25), which in turn are slightly higher than those for (@eue; = 1, dsim = 0).
Again, the differences are very small and apply to both case studies.

In summary, both the success rates and the associated costs are very similar across all three
parameter configurations. Since none of them clearly outperforms the others, we chose to analyze
(@euct = 0.75, &sim = 0.25) in the main body as a balanced middle ground.

D Evaluation of the Laplace Mechanism

In this appendix, we evaluate the classical Laplace mechanism using our two case studies.

For obfuscation, we apply the Laplace mechanism as defined in Definition 2.2. The sensitivity in
this setting corresponds to the difference between the highest and lowest possible wallet balances
within the considered range [$0, $10]. For the Brisbane case study, the sensitivity is 8.24, and for
the Melbourne case study it is 8.06 (cp. Appendix B).

To evaluate deobfuscation, we again assume an adversary following a maximum likelihood
strategy. Given an obfuscated wallet, the adversary identifies the wallet balance with the highest
likelihood of being the original (based on the Laplace distribution’s probability density function).
Among all wallets with that balance, one is selected at random and returned as the adversary’s
guess.
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Brisbane Melbourne

KRR with k = EXP with dleyer = | LAP KRR with k = EXP with dteye; = | LAP
£ 3 5 7 9 11 1 075 05 3 5 7 9 11 1075 05

0.1 ] 005 009 014 018 022 | 205 204 205 | 478 | 0.02 0.03 005 006 008 | 1.88 189 186 | 4.76
05 ] 004 009 013 017 021 | 200 201 2.04 | 406 | 0.01 0.03 004 005 006 | 1.82 183 184 | 4.07
1 003 007 011 015 019 | 1.94 196 199 | 340 | 0.01 002 003 0.03 0.04 | 1.75 180 1.80 | 3.44
2 002 004 0.07 010 0.14 | 1.82 1.89 195 | 247 | 0.00 001 0.01 0.02 0.02 | 1.65 171 1.77 | 251

Table 3. Average cost of obfuscation in AUD across all mechanisms examined in this paper, for different .

Evaluation Results for the Laplace Mechanism. The success rates of the deobfuscation attack
are shown in Fig. 15 for the Brisbane case study and in Fig. 17 for the Melbourne case study. The
corresponding incurred costs are depicted in Fig. 16 and Fig. 18, respectively. Table 3 summarizes
the average costs across all wallet balances for all evaluated mechanisms.

In terms of privacy, the results show generally low success rates for the adversary across all
considered values of . However, each scenario includes one outlier wallet with a significantly
higher chance of being correctly deobfuscated, reaching up to 55% success probability.

Regarding cost, the average incurred costs range from $2.47 to $4.78, depending on the privacy
parameter.

Comparison to KRR and the Exponential Mechanism. Compared to the mechanisms dis-
cussed in the main body of the paper, namely KRR and the exponential mechanism, the Laplace
mechanism does not outperform either in any category. While both the Laplace and exponential
mechanisms offer strong privacy protection, the Laplace mechanism suffers from outlier wallets
with significantly higher success rates. In contrast, the exponential mechanism maintains con-
sistently low success rates across all wallets. In terms of cost, KRR is the most efficient and also
exhibits no outliers. It consistently achieves low costs while still providing a reasonable level of
privacy. The Laplace mechanism incurs lower costs than the exponential mechanism but remains
less efficient than KRR.

In summary, the Laplace mechanism offers neither the strongest privacy guarantees nor the
lowest cost. For this reason, we chose to present its evaluation in the appendix rather than in the
main body of the paper.

E Similar Trace Attack

Instead of evaluating the success of an adversary based on whether he can find the exact original
trace, one could also consider a more relaxed attack, where the adversary aims to find a trace that
is similar to the original trace. We call this a “similar trace attack”.

In this section, we first provide some details on how this similar trace attack is executed, before
providing the results. To be able to evaluate the results, we compare an adversary that uses the
similar trace attack with an adversary that just guesses a random trace. For the comparison with
the random attacker, we describe in Appendix E.1 how to obtain the average similarity of traces. In
Appendix E.2 we then provide the algorithms for the similar trace attack. Finally, in Appendix E.3
we evaluate the similar trace attack.

E.1 Average Similarity Between Traces

In Algorithm 9, given a set of plausible traces T, we calculate the average similarity between the
traces. For that, we iterate over all possible pairs of traces and compute their similarity difference
with Algorithm 7. Afterwards we calculate the average avg over all the differences.
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E.2 Executing the Similar Trace Attack

We describe the similar trace attack for both KRR and the exponential mechanism. Basically,
both algorithms get an original wallet as input, then obfuscate the wallet with the corresponding
obfuscation mechanism and afterwards try to deobfuscate it using the corresponding deobfuscation
algorithm. Then the similarity distance between the original wallet’s trace and the deobfuscated
wallet’s trace, i.e., the trace of the attacker’s guess for the original wallet, is calculated. This
procedure is repeated num times to get a good estimate of the attacker’s success.

The similar trace attack for KRR is depicted in Algorithm 10. The similar trace attack for the
exponential mechanism is depicted in Algorithm 11. Note that we here assume that the precompu-
tation algorithm of the Exponential deobfuscation algorithm (cp. Algorithm 3) has been executed
beforehand.

E.3 Evaluating the Similar Trace Attack

We describe the results of the similar trace attack for both KRR and the exponential mechanism.
E.3.1 Evaluation Approach.

KRR. Our evaluation of the similar trace attack for KRR proceeds as follows:

(1) Fix parameters W, k, &, num.

(2) For each w; € W, we execute KRR_RELAXED_ATK(w;, Wy, k, £, num) to get a list arr_dgipm,.
KRR_RELAXED_ATK basically obfuscates the original wallet w;, then deobfuscates it again and
calculates the similarity between the deobfuscated wallet’s trace and the original wallet’s
trace. This is repeated num times and the similarity after each deobfuscation is stored in an
element of arr_dsip,.

(3) The results are plotted in a graph, where each element on the x-axis equals an original
wallet and the values of the corresponding arr_ds;, are depicted as a box plot on the y-axis.

We then compare the results of the similar trace attack with the average similarity between traces,
i.e,, an attacker that just randomly guesses a wallet.

Exponential Mechanism. Our evaluation of the similar trace attack for the exponential mecha-
nism proceeds as follows:

(1) Fix parameters W, €, &eycl, Qsim, num.

(2) Precomputation: Execute PRECOMPUTATION_EXP_ATTACK (W), £, Qeycl, @sim) to get the table
table with all probabilities.

(3) For each w; € W, execute EXP_RELAXED_ATK(w;, W), &, Qeycl, Qsim, NUm, table) to get a list
arr_dsim. EXP_RELAXED_ATK basically obfuscates the original wallet w;, then deobfuscates it
again and calculates the similarity between the deobfuscated wallet’s trace and the original
wallet’s trace. This is repeated num times and the similarity after each deobfuscation is
stored in an element of arr_dg;,.

(4) The results are plotted in a graph, where each element on the x-axis equals an original
wallet and the values of the corresponding arr_ds;m are depicted as a box plot on the y-axis.

We then compare the results oft the similar trace attack with the average similarity between traces,
i.e., an attacker that just randomly guesses a wallet.

E.3.2 Results. In Fig. 19 the results of num = 1000 iterations of the similar trace attack are
depicted, in Fig. 19a for KRR and in Fig. 19b for the exponential mechanism. For both mechanism it
can be seen that this attack does not fare much better than just guessing a random wallet. Since the
yellow/red line inside each box plot that depicts the median is in most cases close to the average
similarity between traces (depicted as blue line), the chance for an adversary to recover a wallet
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Algorithm 9 Compute Average Similarity Between Traces

Input: T,
Output: avg
1: function COMPUTE_AVERAGE_SIMILARITY(T})
2: Initialize arr_ds;m as empty list
3 for all trace; € T, do
4 for all tracej € T, do
5 dsim < COMPUTE_SIMILARITY(trace;, trace;)
6: Append dsim to arr_dsim
7 end for
8 end for
9 avg < AVERAGE(arr_dsim) \\Compute average of list
10: return avg

11: end function

Algorithm 10 Similar Trace Attack for KRR

Input: w; € Wy, Wy, k € {1,..., |Wp|},£ > 0,num € N
Output: arr_dsim
1: function KRR_RELAXED_ATK(wj, Wp, k, €, num)
2: Initialize arr_dsim as empty list
for i from 1 to num do
Wo ¢ KRR_OBFUSCATION(wj, Wp, k, €)

3

4

5 wWg — Wo \\Deobfuscation just selects obfuscated wallet
6: Parse (-, -, trace;) «— w;

7 Parse (-, -, traceg) <« wy

8 dsim < COMPUTE_SIMILARITY (trace;, tracey)

9: Append dsim to arr_dsim
10: end for
11: return arr_dsim
12: end function

Algorithm 11 Similar Trace Attack for Exponential

Input: w; € Wy, Wy, €, &eycl, @sim, num € N, table
Output: arr_dsim
1: function EXP_RELAXED_ATK(wj, W, &, Qycl> Xsim, num, table)
2: Initialize arr_dsim as empty list
3 for i from 1 to num do
4 Wo <= EXPONENTIAL_OBFUSCATION(Wj, Wp, & Qeycl> @sim)
5 Wgq ¢ EXP_ATTACK(Wo, Wp, table)
6: Parse (-, -, trace;) <« wj
7 Parse (-, -, traceg) < wy
8 dsim < COMPUTE_SIMILARITY (trace;, tracey)
9: Append dsim to arr_dsim
10: end for
11: return arr_dsim
12: end function
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Fig. 19. Similar Trace Attack on the Brisbane Case Study: Each value on the x-axis depicts an original wallet,
while the y-axis depicts box plots of the similarity between the trace the attacker outputs and the original
trace. For a comparison, the average similarity between traces (obtained from Algorithm 9) is included as a

blue line.

whose trace is “similar” to the original wallet’s trace is not much better than just guessing the
original wallet. But more medians (for both mechanism) are below the blue line, so the similar trace
attack seems to yield better results than just guessing — even if only a little.
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