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Abstract

Elliptic curves play an important role in number theory and cryptogra-
phy. This report explores essential aspects of elliptic curves, such as their
group structure and their torsion subgroup and isogenies - with particular
emphasis on the Frobenius map. Special focus is given to Hasse’s bound
and division polynomials - both are an essential foundation for the study of
René Schoof’s algorithm described in [Sch&5]. This algorithm, published
in 1985, allows the computation of the number of points on an elliptic
curve defined over a finite field with a significant time saving to previous
approaches. This work provides a detailed analysis of this algorithm: we
expand key steps which were only briefly mentioned, and even correct
minor mistakes in the original document. To enhance understanding, we
complement our report with detailed examples and SageMath-generated
illustrations for many of the concepts covered.
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Notation

These are the most used notions in this report.

K - a field

K - a fixed algebraic closure of a field K
N - the set of non-negative integers

N* - the set of all positive integers

7Z - the set of all integers

Z>q - the set of all integers such that every 3 in Z>, is greater or equal
than o

p - a prime number

q = p" for p prime and r € N*

F, - finite field of cardinality ¢

#A - the cardinality of an arbitrary finite set A
}q - the ¢'"-Frobenius map

Uy, - the k' division polynomial

R - a commutative ring

RJx] - the polynomial ring in = over R
R[xy,...,zy] - the polynomial ring over R in n variables, where n € N*
char(R) - the characteristic of a ring R

A* - A without 0 if A is an additive monoid

All the code used in this article is written with SageMath [Dev24].

Remark 0.1. If R is a commutative ring with 1 and f € R, then for any integer
n > 1, f* is the n** fold product of f with itself.

Remark 0.2. 1f the field over which the elliptic curve is defined is not mentioned,
then the elliptic curve is defined over K.



Introduction

In this report, we tackle Schoof’s algorithm. In order to do this, we have to
prepare quite a lot of knowledge. This will be built up mainly in Section

The main goal of Section [l is to prove Hasse’s sharp bound. To achieve this,
we start by talking about the affine and projective Weierstrass equation which
permits us to define the term “elliptic curve”. This is followed by a discussion
about points on elliptic curves and a visualization of an elliptic curve over a
finite field by using SageMath [Dev24]. Having established this, we proceed
with the group law on the set of points on elliptic curves, both geometrically and
algebraically. Next, we briefly discuss valuation theory, which includes divisors
and the Picard group. After this, we cover special maps between elliptic curves,
which are called isogenies, like for example the multiplication-by-m map, which
lets us define the torsion subgroup. Thereafter we talk about the Frobenius
endomorphisms and prove a few properties about it. With all this knowledge,
we are finally able to prove the so-called Hasse bound which puts a sharp bound
on the number of points of an elliptic curve. We then move on to division
polynomials which are used to compute the nt” torsion points. This finishes the
section about elliptic curves.

The knowledge acquired from Section [I]becomes useful in Section[2]which is fully
dedicated to explaining the algorithm described by Schoof in [Sch85l p. 486-
490]. We begin with a brief overview of this algorithm, followed by a detailed
discussion of all the steps, giving precise explanations.

Appendix [A] covers projective spaces. We first define what it is and then talk
about homogeneous coordinates: coordinates in the projective space. Next, we
examine curves, specifically in the projective plane, including the distinction
between singular and non-singular curves. For completeness, in Appendix [B] we
include several proofs of the results stated in previous sections. Appendix [C]
contains a few arguments and reasonings that were used multiple times in the
discussion of Schoof’s algorithm.



1 Elliptic Curves

In this section we discuss different actions on elliptic curves. We begin by defin-
ing what are points on elliptic curves. Building on that knowledge, we present
the impressive result that their set forms a group. Next, we explore different
sorts of maps between elliptic curves. All this work leads to the important result
that we can put an upper bound on the number of points of an elliptic curve
defined over a finite field IF,.

1.1 Weierstrass equation

An elliptic curve E over a field K is given by a projective Weierstrass equation
that looks like the following:

Y2Z 4+ a1 XYZ+asYZ% = X3+ ay X?Z + ay X 7% + ag 2>

where a1,...,a6 € K. This is a homogeneous equation of degree 3 (see Def-
inition |[A.3). We can also use affine coordinates (see Equation (A.1.1)). By

Remark we substitute z = % and y = % and then the previous equation

becomes an affine Weierstrass equation:

v+ a1xy + asy = 23 + axa® + agx + ag. (1.1.1)
If ai,...,a6 € K, then E is an elliptic curve over K. Furthermore, E is defined
over K if ay,...,a¢ € K.

Remark 1.1. Let E be an elliptic curve defined over a field K satisfying (1.1.1)).
Then, the invariant differential w (see [Sil09] p. 30] for a definition) associated

to (1.1.1)) is given by
dz

w=—
2y + a1z + a3

It is shown in [Sil09, Proposition IIL.5.1 (p. 76)] that w is invariant under

translation.

We will now see that this Weierstrass equation (1.1.1) can be simplified
depending on the value of char(K).

Proposition 1.1

If char(K) # 2, then Equation (1.1.1)) can be written as (y')? = 423 +
box? + 2byx + bg, where y' = 2(y + a1x + a3). In other words, the terms
in xy disappear.

This is proven in Appendix [B]
Proposition 1.2

If char(K) ¢ {2,3}, we can even rewrite Equation (L.1.1) as y* = 2® +
Az + B with A,B € K.



This is proven in Appendix [B]
An elliptic curve E over a field K such that char(K) ¢ {2,3} is given by a
Weierstrass equation of the form:

E:y =2+ Az +B (1.1.2)

where A, B € K.
Let us now compute the discriminant of Expression (|1.1.2]):

Definition 1.1: Discriminant of a polynomial of degree d

For a polynomial f € K[K] of degree d, the discriminant Ay is defined

as (_1)d(d—1)/2 ,
A= ——Res.(f. /).

(Check [CLOO07, Chapter 3: Definition 2 (p. 162-163)] for the meaning
of the notion Res.(f, f'))

Proposition 1.3

The discriminant of the polynomial f(z) = 2® + Az + B becomes A =
— (443 + 27B?).
Proof. See Appendix O

Remark 1.2. Silverman [Sil09], (p. 45)] states that the discriminant of f(z) =
23+ Az +Bis Ay = —16 x (4A3+27B?%). From now on, we will use Silverman’s
version of the discriminant.

Proposition 1.4: [Sil09, Proposition IT1.1.4(i) (p. 45)]

E singular (in the sense of Definition |A.5) <= Ay =0

Proof. We need to prove both implications
Let us suppose that E is singular. Then, there exists a singular point
P = (z0,yp) of E. This means, in light of (1.1.2)), that

f(@o,y0) = yd —aj —azg—b=0 (1)

%(mo, Yo) = —313 —a=0 (2)
5L (w0, y0) = 250 = 0 3)

(2) = a=-32% (2)
(2)in (1): Y2 — a3 +323 —b=0 < y2+223-b=0



(3)in(1) = 223 =0
Now we can compute the discriminant which concludes the proof. We have
A = —16(443 4 27B?)
= —16 (4(—3z3)® + 27(223)?)
= —16 (—4- 27z + 27 - 4zf)
=0.
Now, we suppose A = 0. This is only true if 3 + Az + B has a double

root a. We also know that a root a of a polynomial P(z) is double if and only
if P(z) =0 and P’'(z) =0 (see [Bar03| p. 16-17]).

f(a,0) =02 — (a® + Aa+ B) = 0,

0
a—i(a,()) =—(3a®+A4) =0,
0]
6—;(04,0) =2x0=0.
This point A = («,0) verifies the definition of a singular point of E. O

We now show a few examples of what plane curves satisfying a Weierstrass
equation can look like over the reals R.

Ezxample 1.1. Define the curves
(a) y? = fa(z), where fo = 2 + 2 + 4,
(b) v* = fo(x), where f, = 2° — 3z + 2,
(¢) y? = fe(x), where f. = 23 — z.

To verify if the curves are singular or not, we compute the discriminants using
Remark [[.2

o Ay = —16 x (4427 x 4?) #0,
o Ap, =—16x (4 x (=3)2+27x2%) =0,
o Ay =—16x (4x (—1)> 427 x0) = 64.

In conclusion, curves @ and [(c)| are elliptic curves, and curve @ is singular.
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@y =2+z+4 b))y’ =23z +2 )y =2 -z
Figure 1: Depiction of (part of) different plane curves

1.2 Points on elliptic curves

In order to define the group law on the set of points of an elliptic curve, we first
need to learn about its points.

Proposition 1.5: [Sil09), included in Proposition IIT.1.4.(i) (p.
45-46)]

The point O = [0 : 1 : 0] belongs to any elliptic curve defined by the
projective Weierstrass equation: F(X,Y,2) = Y2?Z+a1 XY Z+a3Y Z%—

X3 —aX?Z —ay X Z?—acZ>. In particular it is non-singular. We denote
C:F(X;Y;Z)=0.

Proof. We have O € C because
F(0,1,0)=1%-04a;-0-1-0+a3-1-0* 0% —ay-0*-0—ay-0-0% —ag-0° = 0.
Furthermore, O is nonsingular because

OF oF
57 (X,Y,2) =Y?*+a1 XY +2a3Y Z —ay X* —2a4 X Z —3as Z2° — 87(0) =1
Since g—g((?) # 0, we conclude that O is a nonsingular point of C. O

Definition 1.2: K-Rational Points on an elliptic curve

Let K be a field, and let E be an elliptic curve on K. We denote F(K)
as the set of K -rational points on the elliptic curve £ by which we mean

E(K)={(z,y) € K x K | y?> = 2® + Az + B} U {0},

where O = [0: 1: 0] is a point at infinity (in the sense of Definition [A.2)).



Remark 1.3. What we are doing in Definition[T.2]is an abuse of notation because
we mixes affine coordinates (z,y) with the projective point O. In [Sil09] Remark
2.7 (p.10)], the author clarifies that it is common to describe a projective variety
by its affine equations, with the understanding that the projective closure is
intended. This is why we can write the affine equation 32 = 2% + Az + B and
include O separately, even though O is part of the projective variety.

The following code allows us to plot an elliptic curve E : y?> = 23 + Az + B
over a finite field I, where p is prime. It also gives us Fj-rational points on E
and returns #FE(F,). Explanations can be found in Example

E = EllipticCurve(GF(p), [A, BI)
E.plot(pointsize=30).show ()
print (E.points ())

print (len(E.points()))

Ezxample 1.2. This example uses the previous SageMath code. We can easily
calculate E(F,) by hand for small prime numbers p. However, when p is large,
it becomes very time consuming. We take the elliptic curve E : 42 = 23 + 2 +1
over [F,,. Its discriminant equals —2%.31. We can discard 2 because we assume
that p > 5. Hence E/F), if and only if p = 31. We first consider it over Fy;. In
SageMath, we define it like this:

E = EllipticCurve(GF(11), [1, 1])
The command E.points() gives us the coordinates of the points in E(Fq1).

0:1:0[,[0:1:1],[0:10:1],[1:5:1],[8:1:1]
EF;;)=<[1:6:1],[2:0:1],[3:3:1],[3:8:1],[8:9:1]
[4:5:1],[4:6:1],[6:5:1],[6:6:1]

Now, with the command len(E.points()), we get #F(F;1) = 14. We now
define the same Weierstrass equation y? = 23 4+ 2 + 1 over 3 other finite fields
Fa3, F53 and Fig; in SageMath. We can easily modify the program to consider
this elliptic curve over other finite fields by simply changing GF(11) to GF(p)
for p € {23,53,101}. For example, we get that:

#E(Fa3) = 28, #FE(Fs3) =58, #E(Fi01) = 105.

The commmand E.plot().show() to give us the final plot of E over the
four finite fields mentioned before. They look like this:
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Figure 2: E(Fqy)
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Figure 4: E(Fs3) Figure 5: E(Fi01)

Remark 1.4. By looking at Figures we see the following.

Note that the point at infinity is not shown in the Figures[2H5] We realize
that we could add a line y = Z (in the sense of a real line) and we could
observe a symmetry across that line. This can be explained by the fact
that y? is quadratic. So if (x,y) € E(F,), then (z,—y) € E(F,). This
results holds for any arbitrary elliptic curve.

The following observation is specific for the elliptic curve E : y? = 23 +
x4+ 1. The point P = (0,p — 1) lies on E(F,). This is true because it
always satisfies the condition:

(r-17=1
pPP-2p+1=1
p?—2p=0
0=0 (mod p).

Now, we come to the main question of this thesis: What is #E(F,)
where ¢ = p™ for p prime and n € N*?



Proposition 1.6

Since there are only finitely many elements in a finite field, we can bound
from the above the number of Fy-points on an elliptic curve, #E(F,),
by 2g + 1.

Proof. Let (z,y) € FyxF,. For every x € F,, we get at most two possible values
for y because E is quadratic in y. In total, there are ¢ different x € F,. This
results in 2q possibilities. We should not forget the point at infinity O € E(F,).
That is why #E(F,) < 2¢+ 1. O

However, a sharper bound was found by Hasse [Has36, p. 206] in 1936. More
about this later. Now we are all set up to study about the group law of elliptic
curves.

1.3 Group law on points of elliptic curves

A modified version of Bézout’s theorem states the following:
Proposition 1.7: [Sch17, Theorem 7.11 (p. 58)]

Let E be an elliptic curve. If P,Q € E such that P # @, then there
exists a projective line L through P and @ and a third point R € EN L.

Proof. See [Sch17, Theorem 7.11] O

Let us first start with a more geometrical explanation of the group law on
the set of points of an elliptic curve. Let E(K) be defined as in Definition
Now take P,Q € E(K) and define a line L through P and @ (respectively a
tangent line if P = @). By proposition the line L meets F(K) at exactly
three points: P, @, and we call the new intersection point R. Now we simply
need to reflect the point R = (z,y) across the z-axis and we get a new point
R’ = (z,—y). We then define the operation + for P,Q € E(K) as P+ Q = R'.
A picture of the geometrical situation (without worrying about the equations
of the objects for the moment) can be seen in Example

Remark 1.5. The pair (E(K),+) can be seen as an abelian group with neutral
element O , which means that it satisfies the following axioms:

1. Neutral element: 30 € E(K) such that A+O = O0+A=A, VA€ E(K)
2. Inverse: VA € E(K),3(—A) € E(K) such that A+(—A) = (-A)+A=F
3. Associativity: (A+B)+C=A+ (B+C), VA B,C € E(K)

4. Commutativity: VA, B € E(K),A+ B=B+ A

A geometric proof of this group law can be found in [Sch17l (p. 70-84)].

10



Remark 1.6. Let E be an elliptic curve defined over a field K verifying Equation

(1.1.2), and let P = (z,y) be in E(K). Then the inverse of P in Remark
is =P = (z, —y).

We can also define algebraically the group law on an elliptic curve E.

Proposition 1.8: Addition formulas

Take an elliptic curve over a field K such that char(K) is not equal to
2 or 3. Let P = (z1,y1), P> = (z2,y2) € E(K) and m the slope of the
line going through P; and P,. Then the following hold:

(1) If P, = O, then P, + P, = P».
(11) If P, =0, then P, + P, = P;.
(111) If P = —P, then P, + P, = O.

(iv) If z1 = x5 and y; = yo with y; # 0, we define m = Pm?fiw
We denote P, + P, by P3 = (23,y3), where 3 = m? — 21 — x5 and
ys = —m(x3 — x1) — Y1

(v) If P, # £P5 we define m = % We denote P; + P by P3 =
(73,y3), where 13 = m? — x1 — x5 and y3 = —m(x3 — 1) — V1.

Then P+ Q = (m? — x1 — x2, —m(z3 — 21) — y1)-

For a proof of the group law defined on the set of points of an elliptic curve
using these explicit formulas, see [Eril7, (p. 3-8)].

Ezample 1.3. Take F : y*> = 23+ 1 over R. The discriminant Ay = —16-31 # 0.
We see that A = (—1,0) and B = (0,1) are in E(R). Let us calculate A + B.
The line L going through A and B is defined by y = x + 1. Now we want to
calculate L N E. To do this, we solve the following system:

y=x+1, (1)
y=23+1. (2)

Replacing (1) in (2), we get
(x+1)=2°+1
— P42 +1=2+1
—= 222 -22=0
— 2@ -r—-2)=0
— z(z-2)(z+1)=0
— z=0orz=2o0rz=-1.

We see that replacing £ = —1 and = = 0 in (1) results in the points A and B,
respectively. So, if x =2, then y =2+ 1 =3, and C = (2,3). We can conclude

11



that LN E = {(-1,0),(0,1),(2,3)}. Now we reflect C along the x-axis and get
A+ B = (2,—-3). The situation is represented by the following picture generated

in GeoGebra [Wel25].

Figure 6: Illustration of the group law on the set of points of an elliptic curve

Now we will treat a special map acting on elliptic curves. (See Definition

which defines maps between curves.)
1.4 Frobenius endomorphism
In this section, we will have a look at the Frobenius map acting on curves.
Definition 1.3: Frobenius map
The ¢'"- Frobenius map on F, is defined as:
¢q :Fg — F,

T — .

Similarly, we can define the Frobenius map acting between two curves: We
define the p*"-Frobenius map (for a prime p) as

¢p: C — CP

(0, @1,y &) — (xh, 2l ... ab),

12



where (z9,21,...,x,) are affine coordinates (see (A.1.1))), and C'? is the equa-
tion of the curve C' with coefficients risen to the pt* power. Now, the p-
Frobenius map acting on an elliptic curve E over a field K is defined as

¢p: E — EP
(xo,;vl) — (wg,x;’lj)
O+— 0.

Let E/K be the elliptic curve defined by
E:y*=2+ A2+ B (1.4.1)
over K. We define the curve E®) /K by the equation
E9D/K . y* =2® + APz 4 BP. (1.4.2)
We get this form by raising the coefficients of to the p** power Now by

applying the map ¢, n time, we have ¢ == ¢pn = ¢, 0 ¢, 0 --- 0 ¢, (n-times)
when ¢ = p™. Then,

¢g: B — E@
(20, 1) > (2§, 27)
O+— 0.

Let us now consider the case K = F:

Remark 1.7. If we now take E/F, the elliptic curve defined by y? = 23+ Az + B
such that A, B € F,, we get that A7 = A and B? = BinF, (by Euler’s theorem).
So, we get that the equation of E(q)/]Fq is the same as the one of E/F,. So,
clearly E = E@. Since the Frobenius map maps E/F, to E/F,, it is actually
an endomorphism and we call it Frobenius endomorphism.

Remark 1.8. ¢, is an isogeny of degree g by [Sil09, Proposition 2.11 (p. 25)].
Remark 1.9. ¢, is injective by [WasO8| p. 77].

Proposition 1.9: [Was08, Theorem C.1 (p. 482)]

Let ¢4 be tIeqh—Frobenius map. Then the following relation is satisfied:
for all o € Fy,
aclF, < ¢4(a)=a.

Proof. We want to show both implications:

Let us first show that if o € Fy, then ¢,(a) = .

We know that [ has order ¢ — 1. Lagrange’s theorem states that every a €
[y satisfies a?”! = 1. Multiplying both sides by a now gives us a? = a.
Furthermore, if & = 0, we have ¢,(0) = 07 = 0. So Ya € Fy, ¢y(ar) = .

Let us now show that if ¢,(a) = «, then o € F,.

Let us suppose f(z) = 27—z € Fy[a]. Since this polynomial is of degree ¢, it has

13



at most ¢ roots in F,. The derivative of this polynomial is f'(z) = qz4™! — 1 =
—1 (because ¢ = 0 (mod ¢)). So f’(a) has no roots. Hence f(a) does not
have a common root with its derivative. So all ¢ roots of f(z) are distinct.
By construction of F,, all elements of F, satisfy ¢ = 2. Since f has exactly
g distinct roots, and IF; provides ¢ distinct roots of f. These must be all the
roots. Therefore, if a? = a, then a must be one of these g elements of F,. [

Proposition 1.10: [Was08, Lemma 4.5.2 (p. 99)]
Let (z,y) € E(F,) and let ¢, be the ¢'"-Frobenius map. Then

(z,y) € E(Fy) <= ¢4(2,y) = (z,9).

Proof. We want to show both implications:

Let us suppose (z,y) € E(F,). Then (z,y) € F, x F; and so (z,y) =
(z9,y?) by Proposition Hence ¢q4(x) = 29 =z and ¢4(y) = y. So ¢q(z,y) =
(2,9).

Let us suppose ¢4(x,y) = (x,y). In particular, ¢,(z) = x and ¢,(y) = y.
This implies that z,y € F, by Proposition So (z,y) € E(F,) because

(I7y) € E(Fq) O
Remark 1.10. For f(x,y) € Fylz,y] : f(29,y?) = (f(z,y))? because F, is perfect
and ¢4 is a ring morphism.
1.5 Valuation theory

Definition 1.4: Divisor

Let E be an elliptic curve defined over a field K. A divisor D on FE is a
formal sum of the form

where

e np € Z and only finitely many np are non-zero, and

e (P) is the symbol associated to each P € E(K).

Definition 1.5: Degree of a divisor

The degree of a divisor D on F is the integer

deg(D) = Z np.

PeE(K)

14



Ezample 1.4. Take E : y? = 2% + 22 + 1 over Q The discriminant Ay =
—944 # 0. We can verify that P, = (0,1) and P, = (1,2) are in E(Q). Then
D =3-(P1)—2-(P,) is a divisor on E. Mathematically, we write D € Div(E).
The degree of D is feg(D) =3+ (-2) = 1.

Definition 1.6: Degree-zero Divisors

A divisor D € Div(FE) with deg(D) = 0 is called a degree-zero divisor.
In that case, we write D € Div?(FE).

Example 1.5. Take the elliptic curve E : y? = 2% + 1 over Q. From Example
we know Ay # 0. We can see that P, = (—1,0) and P» = (0,1) € E(Q).
Consider the divisor D = 4-(P;)+2-(0)—6-(P,). Since deg(D) = 44+2+(—6) =
0, we have D € Div’(E)

Remark 1.11. The set Div(E) of all divisors on E(K) is the free abelian group

on the set E(K)
Definition 1.7: Principal Divisor

A divisor D € Div(FE) is called principal if there exists a rational function
f € K(E)* such that

D =div(f) = 3 ordp(f)(P).

In that case, we write D € Prin(F). Here, the notation ordp(f) repre-
sents the order of vanishing (or the order of poles) of a rational function
f at a point P on the elliptic curve E.

Remark 1.12. Principal divisors form a subgroup Prin(E) of Div(E), and in
fact also of Div®(E).

Now, we have all the necessary tools to define the Picard group of F.

Definition 1.8: Picard Group

The Picard group (also sometimes called the divisor class group) of an
elliptic curve E is denoted by Pic(E) and is defined as the quotient of
Div(E) by its subgroup Prin(E). We also define the Jacobian of E as
the quotient group Pic?(E) = DivY(E)/ Prin(E).

15



Definition 1.9: Pushforward Map

Let ¢ : E; — E3 be a nonconstant map between two curves (see Defini-
tion |[A.7)). We define the pushforward map induced by ¢ as

b« : Pic®(E;) — Pic®(E»)

(D) = (&(D))-

Definition 1.10: “Pullback Map”

Let ¢ : 4 — E5 be a nonconstant morphism between two curves. The
“pullback map” induced by ¢ is a homomorphism between the Picard
groups defined as follows:

¢* : Pic’(Ey) — Pic’(F))
(D) = (¢"D)
where for a prime divisor @ € Fj,
$'Q= > ey(P)-P,
Pep=1(Q)
and ey (P) is the ramification index of ¢ at P.
For details and explanations of the terms used in Definitions and |1.10}
see [Sil09, p. 29-30].
1.6 Isogeny
Definition 1.11: Isogeny

Take E; and E5 two elliptic curves. An isogeny from E; to Fs is a
nonconstant map ¢ : 1 — Ej satisfying ¢(0) = 0.

Let us now look at an example of an isogeny.

Remark 1.13. The multiplication-by-m map is an isogeny. It is defined as follows

for m € N:
[m]: E— F

(m)(P) — P+ -+ P
t' 3

[0](P) — O.
And if m < 0, we set [m](P) = [-m](—P).
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The map defined in Remark allows us to define the torsion subgroup of
an elliptic curve.

Definition 1.12: Torsion subgroup

Let E be an elliptic curve and let m € N*. The m-torsion subgroup of
E, denoted by E[m], is the set of points of E of order dividing m. That
means

E[m]:={P € E | [m|P = 0O}.
Proposition 1.11

E[fl} N E[fg] = {O} for Kl 7é gg

Proposition 1.12: [Sil09, Theorem II1.4.8 (p. 71)]

Take E; and FE, two elliptic curves and let ¢ : E; — E» be an isogeny.
Then ¢(P1 + P2) = ¢(P1) + ¢(F2) VP, P € Ey.

Proof. See [Sil09, Theorem I11.4.8]. O
Proposition 1.13: [Sil09, Theorem II1.5.2 (p. 77)]

Let £y and FE» be elliptic curves. Let ¢, ¥ : F; — FEs be isogenies and
let w be an invariant differential on E5. Then

(p+V)'w=¢"w+ V*w.

Proof. See [Sil09], p. 77]. O
Proposition 1.14: [Sil09, Corollary III.5.3 (p. 79)]

Let w be an invariant differential (see Remark on an elliptic curve
E and let m € Z. Then [m]*w = mw.

Proof. Let us prove the result by induction, starting with the base case:
For m = 0, the map [0] is the constant map. So [0]*w = 0 = Ow.
For m = 1, we have that [1] is the identity map. So [1]*w =1 w = w.

e We now proceed by ascending induction. We assume the result [m]*w =
mw holds for some m € N. Now we want to show that it holds for m + 1.

m+1*w=[m"w+[1]'w (by Proposition |1.14)
=mw+w (by induction hypothesis)
=(m+ 1w, (factorization of w)
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which concludes.

e We still need to prove the proposition for m < 0. We do this by descending
induction. We now assume the result is true for some m < 0. We have

[m—1]"w = [m]*w + [-1]*w (by Proposition [1.14])
=mw—w (by induction hypothesis)
=(m—1w. (factorizing w).

So the result holds for m < —1.
This proves the proposition. O

Proposition 1.15

Let ¢4 be the ¢""-Frobenius map. Then for m,n € Z, the map m + neq
E — F is separable (see Definiton [A.9) if and only if p { m.

Proof. We already know that a map ¢ : E — F is inseparable if and only if
p*w = 0. Suppose ¢ = m + n¢ with m,n € Z. Then ¢*w = (m + ng)*w =
mw + n¢*w by Propositon We compute:

sw=0 (o)
y+aixr+as
_ d(x7)
©2(y9) + a129 + as
gz?~!

2(y9) + a12? + ag

because ¢ = p" = 0" = 0 (mod p) (since p divides ¢). Now by replacing the
result into the previous equation,

P'w=m+nd)'w=mw+n-0=mw.

We have that ¢*w =0 <= mw =0 <= p | m. Therefore, ¢ is inseparable if
and only if p | m. Rewriting this, we get  is separable if and only if ptm. O

Remark 1.14. Special case for the previous proposition: Take m = 1 and
n = —1. We get the map 1 — ¢.

l-¢)w=w—-—9p'w=w-0=w.
Since w # 0, the map 1 — ¢ is always separable.

Definition 1.13: Dual Isogeny

Let ¢ be an isogeny such that ¢ : E1 — FEs. The dual isogeny to ¢ is the
unique isogeny ¢ : Es — E; such that ¢ o ¢ = [deg(¢)].
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Here are some properties about the dual isogeny which we will use to prove
the next proposition.

Properties 1.1. Let ¢ : E1 — FEs and ¥ : E; — F», be isogenies.
1. We have ¢po ¢ = deg(¢) on Ej.
2. We have m:g?)+\il.
3. We have [m]¢ = [1/71\]¢, Ym € Z.
Proof. 1. See [Sil09] Theorem II11.6.2.(a) (p. 83-85)].
2. See [Sil09, Theorem IT1.6.2.(c) (p. 83-85)].

3. Let us prove this statement by induction. We start with the base case.
We have [0] = [0] by definition and [1] = [1] because [1] is the identity
map.

o We start by showing the statement is true for m > 0. We do this by
ascending induction. We suppose it is true for m € N, then we show
it is true for m + 1. We have

[m+1]¢ = [m] [1](;5 (Property 2| with ¢ = [m] and ¥ = [1])
= [m)é [1] (by induction hypothesis)
= [m +1]¢.

So the equation is true for m > 0.

e Now it remains to prove that the statement is true for m < 0. We
do this by descending induction. Assume it is true for m < 0, show
it is true for m — 1. We have

[m—1]¢p = [/n;]qﬁ — [/i\]qb (Property [2f with ¢ = [m] and ¥ = [1])
= [m]é —[1]¢ (by induction hypothesis)

—1]¢.

So the induction is proved.

El}

O
Theorem 1.1. Let F; and Es two elliptic curves and define the degree map:
deg : Hom(FE1, Ey) — Z.

(d) B — EQ) — d@g(¢)

This map is a positive definite quadratic form.

Proof. In this proof we always take ¢, € Hom(E1, Ey) == End(E).
We will not prove that the degree map is positive definite. To do this, one
proves that
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e deg(¢) > 0 V¢ € Hom(F4, E2) and,
e deg(¢p) =0 <= ¢ =0.

Now we continue the proof by showing that the degree map is a quadratic form,
that is

e deg(—¢) = deg(|—1] 0 ¢) = deg([~1]) - deg(@) = deg(®), and
e the mapping

HOI’II(El, EQ) X HOII’I(EZ‘]A7 Eg) — R,
(6, 9) > deg(¢ + ) — deg(¢) — deg(¥)

is bilinear.

To verify this, we use the injection []: Z — End(E;).

(¢,9) = deg(¢ + ¢) — deg(¢) — deg())

= (0 + D)o (d+v)—dop—dop (by Property [I)
=(p+Y)o(p+9)—dod—1hor (by Property [3)
=¢op+dopt+dostdor—dop—or

=doth+ 1o (1.6.1)

Let us show that (|1.6.1)) is linear in ¢. To do this, we need to prove the
following two conditions.

— Additive: We get

(o1 + 2, 0)] = (¢1/+\¢2) o +(/1/1\)0 (p1 + p2)
:aoz/)+(5201/)+1/;o¢1 +QZO¢2 (byproperty

— Homogeneity: We have
[(ng, )] = (nd) 0¥ + ¢ 0 (ng)
= mf) o +mnypo¢
=n(doy+1og)
= n[{¢, ¥)].

So Expression(1.6.1) is linear in ¢.
Let us now show that ([1.6.1) is linear in ).
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— Additive:

(b b1 + P2)] = b0 (1 + o) + (1 + ha) 0 &
— o+ dothy+idrop+ipog (by Property [1)

— Homogeneity:

[(¢, )]

$o () + (1)) o ¢
ng o +mnipo g
=n(¢o+1o¢)
= n[(¢, )]

So (1.6.1) is linear in ¢ and hence, bilinearity is verified

Proposition 1.16: [Sil09, Lemma V.1.2 (p. 138)]

Let G be an abelian group, let d : G — Z be a positive definite quadratic
form and | - | the usual absolute value on R. Then,

(¢ — @) — d(¥) — d(¢)| < 2v/d(¥)d(¢) forallyh,p€G.  (1.6.2)

Proof. Let us define L(¢, 1) = d(v—¢)—d(¢)—d(¢)). We have shown in Theorem
[[-1)that this map is bilinear. If ¢, ¢ € G and m,n € Z then n¢, my € G. Hence,
L(ng,my) = d(myp —ng) — d(np) — d(mp). Rewriting this equation, we get:
d(my —ng) = d(my) + d(n¢) + L(my, ng)
= m?2d(¢) + n?d(¢) + L(my,n¢)  (d is quadratic)
= m?d(y) + n?d(¢) + mnL(,¢). (L is bilinear)  (1.6.3)

Since d is positive definite, d(my —n¢) > 0 where the expression of d(mwy —ne)
is given by (1.6.3). Then, we get:

m2d(y) + n*d(¢) + mnL(v, ¢) > 0. (1.6.4)
Now, by replacing m = —L(¢, ¢) and n = 2d(¢)) into , we get:

0 < L2(¢, 9)d(¥) + 4d*(v)d() + 2d(v)(—L(v, 6)) L(¥, ¢)
= L2(abstyd(®) + 4d* (¢)d(¢) — ZL? (¢, ¢)d(¥)
= 4d*(¥)d(¢) — L* (v, ¢)d(¥))
= d(¢)[4d(y)d(¢) — L* (4, ). (1.6.5)



e If b # 0, then d(v)) > 0 because d is positive definite. So we can divide

(63 by d() and we get:

0 < 4d(¥)d(¢) — L2 (1, $)
L, ¢) < 4d(¢)d(¢)

|L(¢, @) < 24/d(1))d(d) (taking square root)
|d(¢ = ¢) = d(¢) = d(¢)| < 2/d(¢)d(¢). (replacing L)

e If 1) = 0, then d(¢)) = 0 because d is positive definite. Replacing d(¢)) =0
into (|1.6.2)), it becomes:

(0 — ¢) — d(0) — d(¢)| = |d(—¢) — d(¢)| =0,
2\/d(¢)d(¢) = 21/0 x d(¢) = 0.

O

Remark 1.15. The pair (Hom(E1, Es),+) is an abelian group. Furthermore, in
Theorem we have shown that the degree map deg: Hom(E1, Ey) — Z is
a positive definite quadratic form. So, the conditions of Proposition [1.16] are
verified. This gives us the following special case of Proposition [1.16]

|deg(¢ — W) — deg(¢) — deg(¢)| < 2v/deg(¥)deg(¢) V¢, ¥ € Hom(Ey, Es).
Proposition 1.17: [Sil09, Theorem II11.4.10 (p. 72-73)]

Let ¢ : E; — E5 be a non-zero isogeny. If ¢ is separable, then # ker(¢) =
deg(¢).

Proof. See [Sil09, Theorem I11.4.10. (p. 72-73)]. O

1.7 Hasse’s bound
Proposition 1.18: [Sil09, Theorem V.1.1 (p. 138)]
If E is an elliptic curve defined over a finite field IF;, then
[#E(Fy) —q—1] <2/4.
Alternatively, this means that #E(F,) is one of the integers contained
in the closed interval [-2,/q 4+ ¢ + 1;2,/g + ¢ + 1].
Proof. In Proposition we showed that for any point P € E(F,)

P e El,) <= ¢q(P)=P <= (1-¢4)(P)=0.
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Thus, we get that E(F,) = ker(1 — ¢,). In Remark [1.14] we showed that 1 — ¢,
is a separable map. Applying Proposition to 1 — ¢4 gives #ker(l — ¢q) =
deg(1 — ¢4). Hence, Proposition yields

[#E(Fg) — 1 —q| = [deg(1 — ¢g) — deg(1) — deg ()|
< 2y/deg(1) deg(q)
~2y/Tg
=24

We now get rid of the absolute value in the previous inequation:

|#E(Fq)_q_1| §2\/Z]
= —2/q<#E[F,) —-q¢-1<2/q
=  —2q+q+1<#E(F) <2/q+q+ 1.

Since #E(F,) is always an integer, the proof is done. O

The following code gives us a visualization of Hasse’s bound depending on
the cardinality of the finite field the elliptic curve is defined on. The blue lines
give us the values that #E(F,) could take. Note that one can only take the
integers in these blue lines.

from sage.all import *

def plot_hasse_weil_up_to_q(max_q=1000):
q_values = [q for q in range(2, max_q+1) if ZZ(q).
is_prime_power ()]

p = Graphics()

p.set_axes_range (0, max_q + 1, 0, 2*max_q + 2)
p.axes_labels([’Field size $q$’, ’Number of points’])
p.set_aspect_ratio(’automatic’)

for q in q_values:
lower = q + 1 - 2*sqrt(q)

upper q + 1 + 2*sqrt(q)

p += line([(q, lower), (q, upper)], color=’blue’, thickness
=1)

p += point((q, lower), color=’red’, size=20)

p += point ((q, upper), color=’red’, size=20)

q_sym = var(’q’)

upper_bound = plot(q_sym + 1 + 2*sqrt(q_sym), (q_sym, 1, max_q)
, color=’red’, linestyle=’--’
)

lower_bound = plot(q_sym + 1 - 2%sqrt(q_sym), (q_sym, 1, max_g)
, color=’red’, linestyle=’--’

)

p += upper_bound
p += lower_bound
return p
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plot_hasse_weil_up_to_q(100).show(figsize=10, axes=True, frame=True
,axes_labels=[’Field size $q$’,°
Number of points’])

—
————
 —
——
S )
Number of points

Number of points

i g
e

E) E) £ D 60
Field size ¢ Field size ¢

Figure 7: ¢ < 100 Figure 8: ¢ < 1000

Ezample 1.6. Take the elliptic curve E : y? = 23 4+ 2z + 3 over F;. We have
that Ap = —16 - (423 4+ 27-3%) = —4400 = 4 (mod 7). Since Ag # 0, the
curve is non-singular. Then Hasse’s bound gives us
|#E(F;) —1 -7 <2vV7

— [#E(Fy) — 8 < 27

— — 2T <#EF;) —8<2V7

— —WT+8 < #E(F;) <2V7+8.
Since #E(F7) is in N, it is an integer in the closed interval [3,13].

Let us show a naive way to compute #E(F,) for an elliptic curve E : y? =
23 + Az + B over a finite field F,. Take x € F, and define the function

x:Fg—{-1,0,1}:
1 if x is a square in IFZ,

x(z) = —1 if 2 is not a square in F},
0 ifx=0.

We define x(P(z)) where P(x) = 2 + Az + B. Now Yz € F}, we have
2 if P(x) is a square in F},

14+ x(P(x)) =<1 if P(z)=0,
0 if P(x) is not a square in Fy.

For each x, this function 1 + x(P(z)) gives us the amount of points with that
specific z. If P(x) = 0, then y = 0 which gives us the point (0,0) € E(F,) and
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if P(z) is a square, then the points (z,y) and (z, —y) are in E(F,) for some y
in IFy. So

Fo)=1+ > (1+x(P@)=1+q+ > x(P(

€l z€lF,

because >
O € E(F,).
Ezxample 1.7. Let us now comeback to Example and compute explicitly
#E(F7) with the formula #E(Fg) = 1+q+3,cp, X(P(2)). Recall that f(z) =
23 + 22 + 3 and compute x(f(z)) for all z € F,.

el 1 = #F, = ¢q and we also need to add the point at infinity

x(f(0)) = x(3) = —1,
x(f(1)) = x(6) = -1,
X(f(2)) =8+4+3=x(15) = (1)=
x(f(3)) =27+6+3=x(36) = x(1) =
x(f(4)) = x(64+ 8+ 3) = x(75) :X(5) =1,
x(f(5)) = x(125 + 10 + 3) = x(138) = x(5) =
X(f(6)) = x(246 + 12 + 3) = x(231) = x(0) =
So, the number of points is
#EF) =1+ > (1 Y=147—1-1+1+1-1-1+0=6.

zclFy
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2 Schoof’s algorithm

This section consists in going linearly through Schoof’s paper [Sch85] and ex-
plaining every step and reasoning he did in more details of his algorithm.

2.1 Division polynomials

We now introduce the division polynomials ¥,,(z,y) € F,[z,y] for m € N*.
They are used to express the coordinates of the point [n]P in terms of the
coordinates of a point P. In the following, I write ¥,,(x,y) = ¥,, to simplify
the notation. When char(F,) ¢ {2, 3}, these polynomials are defined as follows:

U, =1,
Uy =0,
Uy =1,
Uy =2y,

Uy = 32* + 6422 + 12Bx — A?,
Uy = 4y(2% + 5Az* +20Bx3 — 5A%2? — 4ABx — 8B? — A3).

Furthermore, they satisfy the following recurrence relations

Vm >3, Vo = U, (V002 — U, o002 11)/2y, (2.1.1)
Vm > 2, Uopiq = Wy W3 — 03 0, . (2.1.2)

Remark 2.1. When we forget the previous assumption that char(F,) ¢ {2,3},
the division polynomials can be generalized as follows:

U, =1,
l:[/0 = 07
v, =1,

Uy =2y + a1x + as,

Uy = 3% + boa® + 4bya® + 3bex + b,

Uy = 2y + arx + a3)(22° 4 boa® + 5bya* + 10bg2>
+ 10bgx? + (babg — babg)x + bybg — b3).

Proposition 2.1: [Sch85, Proposition 2.2 (p. 486)]

Let us take P = (z,y) € E(F;) and n € N* such that [n]P # 0. Then,

. _ \Ilnfll:[/n+1 \Ijn+2(“Iln71)2 _\Ijn72(\Pn+1)2
e = (o - 2 (T’ ):

Proof. See [Sch85l, Proposition (2.2.) (p. 486)]. O
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Ezample 2.1. Let us return to Example We consider the elliptic curve
E : 2% + 2 + 1 over Fy; and take the point P = (0,1) € E(Fy1). Here the
division polynomials become:

Wy =0,
U, =1,
Uy =2y =2,

Uy =32 +642%2 +12Bx — A>=3-04+6-1-04+12-1-0—1% = —1,

U, = 4y(2® + 5A2* + 20B2® — 5A%2* — 4ABx — 8B% — A®)
=4-10+5-1-0+20-1-0-5-12-0—-4-1-1-0-8-12 - 1%)
=4(04+04+40—-0—-0—8—1)=4(—9)=—-36=8 (mod 11).

Replacing these into Proposition we get
Yoy, W — \\J
[Z]P_<as o2, a(¥1)" — 91 ()" )
(V1) 4y(¥ )
(4-8)71)

=(0-1-10-2729-1-
(-10-47",8-3271)
(—10-3,8-10)
(=
= (

30, 80)
3,3) (mod 11).

Definition 2.1: Big O Notation

Let x .= (z1,29, - ,x) € RF and let f and g be functions defined on
some subset of R*¥. Then we say that

f(z) is Ag(z)

if and only if there exist C' in R and N in N such that every n; > N and
| f(z) |<] Cg(z) |

Proposition 2.2: [Sil09, variation of Exercise 3.7.(b) (p. 106)]

The division polynomials ¥,,(z,y), where m € N>3 can be written in

the form
m2—1 m2-1
mx- 2z + O(x 2 ) if m is odd,
W, = m?2 4 m2 4
myx~ 2 + O(y:v P *2) if m is even.
Proof. See Appendix O
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Definition 2.2

Schoof defines the polynomials f,,(x) such that
’ m2-1

v =mx 2z + (’)(3:

fm = m2—4 m2—4

U Jy=mz"> —|—O<x z ’2) if m is even.

2
mZ—1
57— —2

if m is odd,

Remark 2.2. By looking at Definition it becomes clear that

m3—1

deg(fim(z)) = {m2’24

2

if m is odd,

if m is even.

Proposition 2.3: [Sch85, Proposition 2.1 (p. 486)]
Let P = (z,y) € E(F,) such that P ¢ FE[2]. Let £ € Z>_;. Then
fe(x) =0 < [P =0.

Proof. See [Sch85, p. 486]. O

Note that Proposition helps determine the ¢ torsion point. Concluding
from Definition P is in E[¢] when fo(z) = 0.

2.2 Summary of Schoof’s algorithm
Summary 2.1. Schoof’s algorithm consists of the following steps:

1. We will consider ¢ = 3,5,7, ..., L small prime numbersﬂ Then we need to

find L such that [[ ¢>4.,/q
(<L
L#£2,p

2. We need to compute the Frobenius trace ¢ (mod ¢) for sufficiently many
(small) primes /.

3. Use the Chinese Remainder Theorem to conclude ¢ (mod [] £).
(<L
0£2,p

4. By knowing the Frobenius trace ¢, we can compute #E(F,) =q¢+1—t.

In the following subsections, we present a detailed analysis of the steps presented
in Summary 2.1

TWe are choosing small prime numbers for computational reasons. Indeed, many computa-
tions in this algorithm involve the division polynomials ¥, (see Section . In Remark
@ we have discussed the degree of the polynomials fp, which are almost equal to the
division polynomials. For a rather small prime n = 19, we have already deg(f19(z))=180.

tTWe know that t = 1 + g — #E(F,). By Hasse’s bound in Proposition [1.18] we know that
| t |< 2,/q. So, the Frobenius trace ¢ is in a closed interval I = [-2,/q,2,/q], where the
length of I is 4q.
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2.3 How to compute t mod 1

In this subsection, we discuss the second step of Schoof’s algorithm described
in Summary [Sch&5, p. 486-489].

Proposition 2.4

Let ¢¢: Ty — Ty be the map that induces on the Tate module (for an
explanation of the “Tate module” and the symbol Ty(E), see [Sil09]
p.86-98]). Then, applying the Cayley-Hamilton theorem [HJ13, Theo-
rem 2.4.3.2 (p. 109-110)] gives

¢ —toe+q =0, (2.3.1)
where ¢ is the Frobenius trace.
If we are now looking for P € E[{], Equation (2.3.1)) turns into

7 (P) +[g]P = [7]¢e(P)  (mod ¢), (2.3.2)

where 7 = t (mod £). We can now compute ¢ (mod ¢) by verifying which 7

verifies (2.3.2)).

Proposition 2.5

The right-hand side of (2.3.2)) can be rewritten as

o) <xq(wf(£:1;;+1>q’ (xmz(qff iy&f)’; 2(¥r11 2(22

3
In particular, when 7 = 0, then ) becomes: [0]¢¢(P) =

Proof. When 7 = 0, then by Remark we get that [0]¢;(P) = 0. Fur-
thermore, when 7 # 0, we conclude as follows. The division polynomials Wy
are considered as polynomials in Fy[z,y]. Then Uy ((z?,y?)) = (Vi((z,y)))? by
Remark [1.7] Let us denote [7]¢¢(P) by (X ([r]¢¢(P)),Y ([t]¢e(P))) where

g \I/T—l(xqayq)\PT 1(Iq5yq)_ q \IJT—l(xvy)\IjT 1(56’3/) !
Xl =t~ H IR < (T )

and

Y([r]¢e(P)) = (\IITH(:E‘I’QQ) (‘I’T1(5625((1\?7(;;1’;%2)(3;6‘171;‘1) Wrar (2,47) )
(‘I’r+2 (2, y) (Wro1 (2,9))? — ¥ra (2,y) (Prs1 ($7y))2)q
4y(V, (z,y))? '
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For the left-hand side of (2.3.1)), [¢]P is given by Proposition [2.1] and ¢7(P) is
the ¢'"-Frobenius endomorphism ¢q (see Remark applied two times to a
point P. Furthermore, the term on the right-hand side of , [T]e(P), is
given by Proposition Now that we know all these expressions for the terms

in (2.3.2)), we can replace them and get:

(xq2;yq2) + (x _ \I’qfl‘I’gH7 Wopo(Wy1)? — ‘1’52(‘I’q+1)2>
(\I/q) 4y(qjq)

0 ifr=0 (mod¥),
_ q 2 2\ 49
(ch _ (‘llr—\i;llr-%—l) ,(qu+2(%_ig),(;fj)g_2(qlr+l) ) ) otherwise.

(2.3.4)

Let P be in E[¢]. Then, by Reasoning |C.3] Equation (2.3.2) holds if and only if
7(P) + [k]P = r¢e(P) where k = q (mod /).

In order to solve the system , we will sooner or later use the addition
formulas from Proposition to compute the sum on the left side. Remember
that these addition formulas distinguish the cases if the two points P, and P
that we add are the same, the opposite, or not equal at all. In order to find out
if these two points are the same, or the opposite to each other, we verify

o7 (P) = £[k]P (2.3.5)

where k = ¢ (mod £). Let us denote ¢Z(P) by (X (¢2(P)),Y (¢2(P))) and [k]P =
(X([k]P),Y ([k]P)). By Reasoning|C.4] Equation holds if

X(¢7(P)) = X([k]P), and (2.3.6)
Y(¢7(P)) = £Y ([k]P) (2.3.7)

hold. Now since [k]P is given by Propoosition and ¢y is given by Remark
Equation (2.3.6) becomes

2 )

z? ==z T, (2.3.8)

Equation (2.3.8]) exists because the denominator does not vanish by Remark

Proposition 2.6

By rewriting (2.3.8)) using f} instead of Wy, it transforms into Fj(z) = 0

where

Fi(z)= (qu — z)(2®+Az+B) f2 (2)+ fr-1(x) frq1 () if k is even,
MUT) (a7 = 2)f2(2) — (2° + Az + B) foo1 (@) frsn (z) if k s odd.
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Proof. Since the polynomials fy(z) from Definition depend on the parity of
k, we need to consider two cases.

Let k be even (Then k — 1 and &k + 1 are odd.)

By using the polynomials fj(z) instead of ¥, and choosing a common denomi-

nator in Equation (2.3.8)), we obtain
2 _ o Se1(@) frn(@)

z? =

2 (@)
foor (@) fra(@) g2
NI A)E !
(& — 29 )P(fe@)’ — feor@) frna(2)
= (@) =0

Replacing y? = 23 + Az + B into the previous expression gives

(29" — 2)(2® + Ax + B)(f5(2))* + fr—1(2) fr11(2)
(fi(2))*(z* + Az + B)

Multiplying by the denominator yields

(27" — 2)(2® + Ax + B)(f1(2))? + fr—a(2) frsa(z) = 0.

This finishes the case when k is even.

=0. (2.3.9)

Let k be odd. (Then k£ — 1 and k + 1 are even.)
Using the polynomials fx(x) instead of ¥ and bringing all the terms in (2.3.8)

to one side gives ,
oY fe—1(2) fr1(x) _
T—x TAGIE 0. (2.3.10)

Rewriting the expression ([2.3.10)) with a common denominator gives us:
2
(z = 27)(fr(2)* = ¥* fe1 () frera (2)
(fr(2))?

Multiplying (2.3.11]) by its denominator and replacing y? = 2 + Az + B, we
obtain

= 0. (2.3.11)

(27 = 2)(fr(2))* = (2° + Az + B) - fi1(2) frra(2) = 0.
This finishes the case where k is odd. O

Now we want to compute the greatest common divisor of Fy(z) (from Proposi-
tion[2.6) and f;(z) (from Definition 2.2 We will denote it by ged(F(z), fi(x)).
Let ged(Fy(z), fe(z)) # 1. Then, by Reasoning we know that there is a
non-zero point P € E[¢] satisfying ([2.3.5)). This is what Schoof defines as case
1 (see [Sch85) p. 488-489] and Secti

Let ged(Fy(z), fe(z)) = 1. Then, by Reasoning [C.2] there is no point P € E[/]
such that Equation is verified. Hence, we know that for each P € E[{],
[q|P # £¢2(P). Schoof calls this case 2 (see [Sch85l p. 489] and Section .
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2.3.1 Case 1 [Sch85, p. 488-489]
In this case we know that there is a point P € E[¢] such that

¢;(P) = [q] P. (2.3.12)

By working modulo /, Reasoning applies and Equation (2.3.12)) becomes:

#2(P) = [k]P (mod £). (2.3.13)

Subcase 1: If ¢7(P) = —[q]P (for P € E[{] non-zero), we can replace this into
Equation (2.3.1)): ¢2(P) — [t]¢¢(P) + [¢]P = 0 and get [t]¢¢(P) = 0. This impies
[t] = 0 or ¢¢(P) = 0. (2.3.14)

Proposition 2.7

If P is non-zero, then ¢,(P) # 0.

Proof. Let us suppose that ¢¢(P) = 0. Clearly, ¢¢(0) = 0. In Remark we
stated that the Frobenius endomorphism was injective. Thus P = 0. Contra-
dicting that P is non-zero, ¢¢(P) # 0. O

In Equation (2.3.14]), we can exclude the case ¢;(P) = 0. Now there is only one
possibility left in (2.3.14): [¢t] = 0, which implies that t =0 (mod ).

Subcase 2: If $(P) = [¢] P, we replace this into (2.3.1)) and get:

[q|P — [t]pe(P) 4 q[P] = 0 (2.3.15)
= [2¢]P — [t]¢e(P) =0 (2.3.16)
= ¢y = Qt—q (2.3.17)

because t Z 0 (mod ¢). Squaring Equation and multiplying by #? yields
t2¢7 = 4q*>. (2.3.18)

We are in the subcase where ¢7(P) = [¢]P. Hence becomes
t2[q|P = [4¢°] P. (2.3.19)

Since both maps in Equation (2.3.19)) are applied to the same point P, they are
equal. Dividing by 2¢ £ 0 (mod ¢) yields

2 = — (2.3.20)
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Now replacing ([2.3.20) into (2.3.16)), we get:

(it@) (P)=0

:>t(;—¢g>(P):0

— (; _ m) (P)=0 because t £0 (mod ¢)
= <¢z - ;) (P)=0.

We now denote by w € F, such that ¢ = w? (mod £). Then (2.3.20) becomes
t? = 4w? = t = £2w. We now test if there is a point P € E[{] satisfying

¢¢(P) = £[w]P. (2.3.21)

Let us denote ¢¢(P) by (X (¢¢(P)),Y (¢¢(P))) and [w]P = (X ([w]P), Y ([w]P)).
By Reasoning solving Equation means solving

X(¢¢(P)) = X([w]P), and (2.3.22)
Y (¢4(P)) = £Y ([w]P). (2.3.23)

We know the explicit form of each term of (2.3.21)): the expression for [w]P is
given by Proposition and ¢y (P) is the ¢'"*-Frobenius endomorphis applied
to P. Then Equation (2.3.22))

4 _ g \ijfl(x)q}w+1($)
x? = (W (@))? . (2.3.24)

Equation ([2.3.24]) exists because the denominator does not vanish by Remark
[C.2

Proposition 2.8

Equation (2.3.24)) turns into G (z) = 0 where

Go(z) = {<xq —z)(x® + Az + B) f2 (%) + fu—-1(@) fut1(z) if w even,
’ (Iq B l‘)fi(x) o (IB + Az + B)fw—l(l')fw+1(x) if w odd.

when using the polynomials f,, instead of the ¥,,’s.

Proof. Since the polynomials f,(z) depend on the parity of w, we need to
consider two cases: w even and w odd.

Let w be even. (Then w — 1 and w + 1 are odd.)
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Then rewriting Equation (2.3.24]) with fi instead of ¥y yields

l‘q = xr — w
Y2 (fw(2))?
_ o Jen@fen(@)
T )
_ (x—xq)yQ( w(x)) — fue1(@) fog(z)
— 0= y2(fu;($))2 .

Replacing y? = 2% + Az + B into the previous expression gives

(x —29)(2° + Az + B)(fr(2))? — fr—1(2) fit1 (@)
Y2 (fr(x))? '

Multiplying the previous equation by its denominator, we obtain

(27 = 2)(2° + Az + B)(fu(2))? + fu-1(2) fus1(2) = 0.

0=

This finishes the case where w is even.

Suppose w is odd. Then w—1 and w+1 are even and rewriting Equation ([2.3.24))
with the polynomials f,, from Definition [2.2] gives us

W - fu1(@) (Y - fwir (@)
(fu())? '

Taking all terms to one side and substituting y? = x3 + Ax + B yields

(27— 2) - ((fu(2))? = (2° + Az + B) - fu-1(2) fus1(z)) = 0.

We multiply the previous expression by its denominator and obtain

(27 = 2)(fu(@))* = (2° + Az + B) - fu-1(2) fus1(2) = 0.

This finishes the case when w is odd and concludes the proof. O

9=z —

We now want to compute ged(Gg(z), fe(x)), where fy(x) is given by Definition
Suppose ged(F (), fe(z)) = 1. Then, by Reasoning [C.2] we get that there is no
P € E[{] such that is verified. Hence, we know that for each P € E[{],
[w]P # +¢¢(P) is verified. Squaring this expression, we are in the case where
¢2(P) = £[q]P. As stated in subcase 1, we now have t = 0 (mod /).

Let ged(Gg(x), fe(x)) # 1. Then, by Reasoning we know that there is a
non-zero point P € E[{] satisfying ([2.3.21)).

Now we know that there is P € E[{] such that ¢,(P) = £wP. But we still need
to determine the sign. In order to do this, we consider Equation , but
only the part

Y(¢e(P)) = Y ([w]P), (2.3.25)
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where ¢(P) is given by Remark and [w]|P is given by Proposition
Substituting these values into Equation ([2.3.25)), we obtain

q _ \I/w+2(\pw—l)2 — \Ilw—2(\llw+1)2
Ay (W) '

(2.3.26)

Equation (|2.3.26]) exists because the denominator does not vanish by Proposition
and Remark

Proposition 2.9
Equation ([2.3.26)) transforms into H(x) = (ﬂ where

Hy (z)f|= A(z® + Az + B)*T f3 — fusafi i + fu—2for1 if w odd,
" Aa® + Az + B)'F f3 — fusaf2 g + fu—af2iy if weven

by using f,, instead of ¥,,

Proof. Since f,, depend on the parity of w, we need to do two cases.
If w is odd, Equation (2.3.26] transforms into

q_ fur2yfw-1)* = fu-2(yfuwir)?
4y(fw)? '

Taking everything to one side and taking a common denominator yields

Y2 [~ (fw)? + fur2(fu-1)? = fu—2(fws1)?]

Y

=0.
4y(fw)?
Multiplying by the denominator gives us
Y4y (fu)® + fur2(fo-1)? = fu—2(fut1)?) = 0. (2.3.27)

Thanks to Proposition we can divide Equation ([2.3.27) by y? and for

every power of y remaining, we replace y? = 23 + Az + B. We obtain

4(@® + Az + B)'T (fu)® = fuso(fum1)? + fu2(fus1)? = 0. (2.3.28)

This concludes the proof in the odd case.

If w is even, Equation (2.3.26)) becomes

yq _ ywar?(fwfl)Q - yfwa(fw+1)2
4y(yfw)? '

TIn [Sch83, p. 489], the author mistakenly inverted the roles of even and odd.
t1In [Sch8H, p. 489], there are some of the squares missing in the author’s equation (18).

(2.3.29)
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As already mentioned, the denominator of Equation (2.3.29)) does not vanish.
Hence we multiply (2.3.29)) by its denominator and get

4yq+4(fw)3 - yfw+2(fw—1)2 + yfw—Q(fw+1)2 =0.
Thanks to Proposition we can divide Equation (2.3.27) by y and for

every power of y remaining, we replace y? = =3 + Az + B. This yields

a+3

&= A(2® + Az + B)'% [ — furafo 1+ fu—2foi = 0.
This concludes the proof in the even case. O
We want to compute ged(H (), fo(x)).
Proposition 2.10
o If gcd(H (), fo(x)) # 1, then ¢t = 2w (mod ¢).
o If ged(H (x), fo(x)) = 1, then t = —2w (mod ¢).

Proof. Suppose ged(H(z), fe(x)) # 1. Then, by Reasoning there exists
P € E[{] such that ¢,(P) = [w]P. Substituting ¢¢(P) = [w]P into (2.3.1)), we
get

(¢*—[tlp+qP =0
= (¢—[tw]+qP =0
= (—tw+2¢)P =0
= 2¢ =tw
— tw = 2w?
<=t =2w.
Suppose now that ged(H(z), fe(x)) = 1. Then, by Reasoning there is no

point P € E[{] such that ¢(P) = [w]P. But we have seen that there is P € E[/]
such that ¢(P) = £[w]P, hence, we must have that there is P € E[{] such that

¢(P) = —[w]P. Now by replacing this into (2.3.1), we get

(0> —top+q)P=0
& (tw+2q)P =0
= —2¢=tw. (2.3.30)

Since we supposed ¢ = w? (mod £), Equation (2.3.30) becomes t = —2w. O

2.3.2 Case 2 [Sch85| p. 489]

We now turn to case 2 of Schoof’s proof [Sch85| p. 489], where ¢7(P) # +[q]P.
We want to compute

07 (P) + [a)(P) = m6(P). (2.3.31)
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We start by computing the left-hand side of (2.3.31)).

Proposition 2.11
If ¢7(P) # £[q](P), then
97 (P) + [q](P)
Uy U Uy U
_ (_$q2_x+ Uh1Wrir g g2y (_Qxf —x+’“’“+1+A2)> ,

1 1
(2.3.32)

where )
T T Y

\ =
[\Ili(x — {EpQ) — ‘Ijkfl\llk+1]4yqlk

Proof. To ease the notation, we denote ¢7(P) by (X (¢Z(P)),Y (¢7(P))) and [q] P
by (X ([q]P),Y ([g]P)). Since ¢?(P) # +[q](P), we use the addition formulas in
Proposition We have that [¢]P is defined by Proposition and ¢7 is
given in Remark [I.7] Let us start by computing the slope

Y([glP) - Y(¢7(P))
X([aIP) — X(67(P))

This slope exists because ¢7(P) # £[q](P). The numerator of (2.3.33) is

A=

(2.3.33)

‘I'k+2\11i71_‘1/k—2‘1/% 1 2
Y ([q|P) — Y (¢2(P)) = i R
(lalP) (97 (P)) 4y Yy
A0S I T T Vi
4y\IJ‘Z '

The denominator of ([2.3.33]) becomes

VWi

_ xqz _ ‘Il%(a: - .’qu) - \I/kfl\l’de

X([a)P) = X(67(P)) =2 ~ =5 7

We then substitute these two values into (2.3.33)) and simplify by U3 to get

(W) 2W7 ) — ‘1'1%2‘1’%“ - 4yp2+1\1/i]‘1’12c

(U2 (2 — aP®) — Up_ Uppq 4y W3
T S T Ay 13
(OF (2 — aP*) — Wy Wpp |4y Ty,

A=

(2.3.34)
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By the addition formulas in Proposition we get the following resultlﬂ
¢ (P) + [4)(P)

= (_$q2_x + Yr—1Vei1 12, —yq2—)\<—xq2— T+ Vi1Vt +A2— xq2>>

i 1
Ve U U W
— (—xq2—x+ ’“172’”1 22, _qu_)\<_2xq2_ T+ ’“172’“& +)\2>) :
)4 v
k k
O
The A we defined in Equation (2.3.34) is like in [Sch85, p.489]. Following Schoof,
we denote the numerator of A by and its denominator by 5. That is:
o= UppWl ) — Uy oW, — dy? 1}, (2.3.35)
B=[0%(z—2%) — Uy Upy]dyly. (2.3.36)

This finishes the computation for the left-hand side of Equation ([2.3.31]).

Remark 2.3. We already computed the right-hand side of (2.3.31)) more explic-
itly in Proposition 2.5 and got:

rhon(p) = ( (o= LSt} (MZ(\PT_Z);(%\I)/?Q(\PT“)Q)2337)

Write [7]g¢(P) = (X ([r]¢e(P)),Y ([T)de(P))).

Now we replace the explicit expressions for the left-hand side (2.3.32)) and the
right-hand side (2.3.37)) into (2.3.31). We get

Ui 1Vt

X([F)ée(P) = —(a7 +2) + X* + =35, (2.3.38)
k
Y ([r]¢e(P)) = —% (—2xq2 —z+ qj’“&é’““ + ;‘j) —y7. (2.3.39)

Proposition 2.12

Equation (2.3.38]) can be rewritten as

y2a {,82 {\IJ,C_JM 0227 4+ xq)} + oﬁ\lﬂ FBRUR (T, W, 407 = 0.

Proof. Taking the common denominator on the left, respectively on right side

of Equation ([2.3.38]) gives us
2
—ﬁQ\I/i(CEq + CU) + O[Q\I/i + ﬁQ\Ijk_l\Ifk_;,_l _ \Ilzq.’lfq — (\I/r—lqlr—i-l)q
52\:[;% \I/%q
TIn [Sch85, p. 489], the author forgot the term A2 in the y-coordinates.

tTNote that in the definition of a in [Sch85 p. 489], one should correct the second term of
the formula for « replacing Uy 1 with Wy _o.
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Since the denominators do not vanish, the terms all exist and we can multiply
the previous equation by 62\I/i\11$q to get

2
v [—52‘1’%@(1 +a) + T} + 52‘1%—1\1%—&-1} =025 [Pt —Wh_, ]
Expanding the right-hand side of the previous equation yields
P2 {752\1@@’12 + )+’ 2 +B2\Ifk_1\1/k+1} R T8 L CREEL 0 L L
In the previous expression, we can factor out the common term W2 to obtain

vy [—ﬂztﬂixq - BV (2" +2) + 0V} + 52%1%“]
+ 62\I/iq(‘llr—1\1'r+1)q =0.

Again, factoring the common 32 from the relevant terms in the previous equation
yields

p2 [52 [\Ifk_qum —W2(2 + ) — \I’ﬁxq} + oﬂ\yz] +BRURW W =0,
By factorizing \I/i in the previous equation, we obtairﬂ

p2a [52 [q/k_lxpkH — 02 o+ xq)} + oﬂ\pi] + BPUR (W, U, 40) = 0.
(2.3.40)
0

Remark 2.4. The equation ¢7(P) + [k]P = —[7]$¢(P) can also be rewritten in

the form ([2.3.40)).

Let P(x,y) be the left-hand side of Equation . If we now replace all the
division polynomials in P(x,y) by the polynomials defined in Definition we
end up with a new polynomial P’(x) which only depends on x.

We now want to compute ged(P’(z), fe(z)). Recall that P’(z) comes from

Equation (2.3.32)) for the z-coordinates.

Proposition 2.13

o If ged(P'(x), fe(x)) = 1, we need to try for the next 7.
o If ged(P'(x), fe(z)) # 1, then t = £7 (mod ¥).

Proof. o If gcd(P/(x), fe(x)) = 1, there is no P € E[{] such that Equation
(2.3.2) is verified. We cannot conclude and need to try the next 7.

TIn [Sch85, p. 489], the term ¥y should be squared.
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o If ged(P'(z), fo(x)) # 1 , we have that there is a point in E[{] satisfying
P’(z), which is a rewriting of Equation (2.3.1). So we already know that
t =47 (mod ¢) and we proceed with the algorithm.

Remark 2.5. We now know that either ¢2(P) + [k]P = [7]¢e(P), or ¢2(P) +
[k]P = —[7]¢¢(P) holds.

Let us check if there is P € E[(] that verifies ¢7(P) + [k]P = [7]¢,(P). We do
this by verifying if Equation ([2.3.39) holds.

Proposition 2.14
Equation (2.3.39)) can be written as
41y1(0,)% 032207 + ) — B2Wpi1 Wpoy — a?WF] — 7 5003

- BS\I’%[\I}T‘I’Q(\I}Tfl)Q — \IIT,Q(\IJT+1)2] =0.

Proof. Let us first consider the left-hand side of Equation (2.3.39) and take a
common denominator. We obtain

_@ (%52(2%""2 — %) + W1 We1 + 042@%) Y

b RS 32
_ —a[—‘ll%ﬁ2(2wq2 + iL') + 62\1116+1\I’k71 + ag\I/i} _ yqzﬂ?)\llz
R %
= alU252(227 + 2) — B2 Wy — 0P 03] — yi BOU2
52\1}% .

Multiplying Equation by 4%y?(¥,.)343303 yields
41y1(,)% [a[ 0332207 + ) — B2Wpia Wpoy — ?0F] — 7 30
= BPURY, 2V, 1) = U p(Tyga)?).
Now putting everything to one side in the previous equation gives usﬂ
47y1(,)% 0332207 + ) — B2Wpia Wpoy — ?0F] 7 50
— B3I, o (V, 1) = U, (U, 1)%] = 0. (2.3.40)
O

Schoof stops here, but in fact there is a bit more to say. We need to substitute
the division polynomials in Equation (2.3.40) by the polynomials fj, defined in

TThis expression is completely different than the original one in Schoof’s paper [Sch&5l p.
489] because the author carried on with the mistake mentioned on page 39 of this report.

40



Definition This way, Equation (2.3.40) has no more dependency on y.
Since these polynomials f, depend on the parity of k and 7, we need to consider
4 different cases for this step:

(i) when k and 7 are even,

(ii) when k and 7 are even,

(iii) when k is even and 7 is odd,
(iv) when k is odd and 7 is even.

We will illustrate these cases by computing one of them, namely case The
three other cases work similarly.

First, we need to realize that « (2.3.35]) and 8 (2.3.36|) in Equation (2.3.40) also

depend on the parity of k. We address them first and obtain

Qeven = Yfir2(fr-1)? = yfe2(fur1)? — 47 (g fi)?
=y [fura(fi1)? = fimalfiorn)? = 27 ()7

and

Beven = [(yfi)? (@ — a%°) = frmr frr1]49% fi
= [(2® + Az + B)(f)*(x — 2%") — fr_1 fr]4(a® + Az + B) fy.

Now Equation ([2.3.40f) turns into
2
4qu(yfr)3q [acvcn <(yfk)2 gvcn(qu + l’) - ﬂczvcnkarlfkfl - agvcn(yfk)2>

_yqzﬁegven(yfk)Q:I — BluenWfe)? [y fra2(fr=1)? — yfr2(fr+1)?] = 0.

Factoring out powers of y gives

AT (£,)% | aven [12 (1) Bren (227 + ) = BrenFrr St
— P02 ()] — 4" 2Bl ()]
— P B en(fi)? [fra2(fro1)? — froa(fri1)?] = 0.
Using that 32 = 23 + Az + B, we have
492 + Az + B)*1(£,)% | acven [(@° + A2 + B) (f1)? B n (207" + )

- ﬁgvenfk-‘rlfk—l - yzagven(fk)z] - qu (1‘3 + Ax + B)Be:zven(fk)z}
—y(@® + Az + B)B3en (fe)* [fra2(fr=1)® = frea(fr1)?] =0.

Let us call the left-hand side of the previous equation Q(x).
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Proof.

Proposition 2.15

o If gcd(Q(x), fi(z)) =1, then t =7 (mod ¢).

o If ged(Q(x), fi(x)) # 1, then t = —7 (mod ¢).
e If ged(Q(x), fi(z)) = 1, then by Reasoning[C.2} there isno P € E[/]

satisfying ¢7(P) + [k]P = [r]¢¢(P). Then, by Remark 2.5 ¢7(P)+ [k]P =
—[7]de(P) is verified. Hence, t = —7 (mod ¢).

o If gcd(Q(2), fi(x)) # 1, then by Reasoning there is P € E[(] satisfying

2(P) + [k]P = [7]¢e(P). So, t =7 (mod ¢).

This concludes the algorithm to compute ¢ (mod ¢) presented in Schoof’s
paper [Sch&5, p. 487-489].

2.4 Chinese Remainder theorem

This is the third step of Schoof’s algorithm described in Summary [Sch&5]

p. 490]. The Chinese Remainder theorem is used to determine ¢t (mod [] ).

(<L
L#2,p
Proposition 2.16: Chinese remainder theorem
Let mi,mo,...,m; € N* be pairwise coprime. Then the following sys-

tem
=a; (mod n)

=ay (mod no)

x =ar (mod nyg)

has a unique solution £ modulo M = mims...mg. Reformulating: if
we have ged(m;,m;) = 1 for ¢ # j, then the system of congruences is
verified by one unique z € [0, M — 1].
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A Projective Spaces

In this section, we introduce projective spaces and briefly compare them to affine
spaces to show some differences. After that, we describe what curves look like
in projective spaces. In preparation for the next section, we also introduce the
concepts of singular curves and points at infinity.

A.1 Homogeneous coordinates

Let us define an equivalence relation which will be useful later to define the
projective space. Let K be a field. For each integer n € N* we define the
n-dimensional affine space A" as the n-fold product K", that is

An(K) = {(.’L‘(),$1,...,J,‘n_1) ‘ X0, L1y--+,Tp—1 € K} (A.l.l)

We say that (xo,z1,...,2,—1) € A™ and (yo,y1,-..,Yn—1) € A™ and denote it
by (o, %1,y Tn-1) ~ (Yo, Y1, ---,Yn—1) if and only of there is a A € K* such
that (an s ,332) = A(yov R y?)

Proposition A.1

The relation ~ is an equivalence relation. The equivalence class of
(%0, @15+ -+, Tn_1,Tn) € A"l is denoted by [xo : 21 : ... : x,] and
called homogeneous coordinates.

Proof. Let z,y,z € A™(K) with 2 = (x0,...,2n),y = (Yo,.-.,yn) and z =
(205 -+ 2n)-

1. Symmetry: If  ~ y, then there is a A € K* such that (zg,...,z,) =
A(Yo, - - - Yn). Multiplying on both sides by A= gives us finally (yo, - - -, ¥n)
= %(xo,... ,%y) and S0 y ~ x.

2. Reflexivity: Wee see that © ~ x by taking A to be the neutral multi-
plicative element of K.

3. Transitivity: If x ~ y and y ~ z, then there exist \,u € K* such

that (zo,...,zn) = AMyo,-..,yn) and (yo,...,yn) = u(z0,...,2n). Then
(zoy- .-, xn) = (Au)(z0,...,2n), hence z ~ z.

O

Using the equivalence relation from Proposition we now have all the tools
to define projective spaces.
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Definition A.1: Projective Space
Let K be a field. The projective n-space over K is defined as
P*(K) = (K" \{0}) / ~,

where ~ is the equivalence relation defined in Proposition

Remark A.1. You will also find references that defined the projective n-space
over K in the following way:

PYK) = {[zg:x1: 2] | (x0,...,Tn) € A" (K), (x0,...,2,) # 0}
Remark A.2. The homogenization of the affine coordinates (zg, z1,...,Tn_1) €
A™(K) is the class [Tozy : T1@p ¢ ...t Tp_1Ty : Tp] for any non-zero z,, € K*.

The homogenization does not depend on the choice of z,, because any two non-
zero choices z,,, 2], € K* produce the same class.

Example A.1. If (2,3) € A2(R), its homogenization is [2 : 3 : 1] € P?(R).
Conversely, the homogeneous coordinates [5 : 1 : 3] € P%(R) can be transformed
into (2, 3) € A%(R).

Definition A.2: Points at infinity

The points at infinity of P"*(K’) are homogeneous coordinates of the form
[o:21:...:@p_q: 0]

Remark A.3. The points at infinity are not in A™(K)

Remark A.4. Specifically, all the points of the form [zg : 21 : 0] € P?(K) form
a line at infinity. Hence the projective 2-space over as field K can be seen as
extension of the affine 2-space over the same field K.

A.2 Curves in P*(K)
Definition A.3: Homogeneous Polynomial

A polynomial f € Klxg,...,z,] is homogeneous of degree d > 1 if
fAzg, ..., zn) = Mf(xo,...,1,) for all A € K \ {0}. We write
deg(f) = d.

Example A.2. f(x,y,2) = 2%y + 2xyz? + 172* is a homogeneous polynomial of
degree 4.
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Definition A.4: Curves in P?(K)

Let K be a field and let f € K[X,Y, Z] be a non-constant homogeneous
polynomial of degree d > 1. Then, a curve C in P?(K) is the set of all
homogeneous points [a : 3 : 7] € P?(K) such that f(a, 3,v) = 0.

Let F(z,y,z) be a homogeneous polynomial of degree d > 1 (i.e., every
monomial in F' has total degree d). The homogeneous curve in the projective
plane P2 (over a field K, e.g., R or C) is the set of points:

C={lz:y:2] €P?|F(z,y,z) =0},

where [z : y : z] denotes homogeneous coordinates (defined up to a non-zero
scalar multiple).

Remark A.5 (Homogenization of equations). The homogenized version of a (2-
variable) polynomial g(x,y) € Klz,y] is G(z,y,2) = g (l 5) - z48(9) - where

2z’ z

deg(g) is the highest sum of exponents in any term of g(z,y). The dehomoge-
nization of a homogeneous polynomial G(x,y, z) is G(z,y, 1).

Example A.3. For example,
o f(z,y) = 2%y* + 2+ 2 + 1> € R[z,y] becomes x2y* + 225 + 226 + 3323,
o 22932 + 2%2% + 25 becomes 22y + 2% + 1 € R[z, y].
Example A.4 (Line in P?(K)). Take the polynomial:
F(z,y,z) = ax + by + cz, where a,b,c € K,
where at least one coefficient is non-zero. Then the set
H={la:f:7] e P(K)|F(af,7) =0}

is a projective line.

Not all the curves in P?(K) behave the same way. Indeed, one could categorize
them into so-called “singular curves” or “non-singular curves”.

Definition A.5: Singular Curve

A curve of degree d is called singular at a point A = [X : Y : Z] € P?(K)

if
1 of _of _of
oxX oy o0z

Definition A.6: Non-Singular Curve

A curve is called non-singular if it is not singular at any point of P?(K).

We now illustrate Definitions and with explicit examples.
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Ezample A.5. Let C be the projective curve over a field K defined by f(X,Y, Z)
= 3XZ +Y?. We calculate the partial derivatives and try to find a singular
point:

of _ —
%—¥—3Z—O

The only solution to this system is when @ = y = 0. However, we know that
[0:0:0] is not in P?(K). Hence C' is non-singular.

Ezample A.6. Now let C be the projective curve in K defined by f(X,Y,Z) =
7X3 4+ 2Y3. We can instantly see that % = 0. So, every point of the form
P, =[0:0: z] (with z; # 0) are singular points and therefore C' is a singular
curve.

Let us now look at a definition of maps between curves and what it means
for this map to be separable.

Definition A.7: Map between Curves
Let C7 and Cs be algebraic curves. A map between them is a map
¢7 g Cl = CQ

that assigns to each point P € C a point ¢(P) € Cs.

Definition A.8: Morphism

A map ¢ : C7 — Cj is called a morphism if it is given locally by rational
functions that are non-singular at every point.

Definition A.9: Separable Map

Let ¢ : b7 — C5 be a nonconstant morphism of algebraic curves over
a field K. The map ¢ is separable if the induced field extension
K(Cy)/¢*K(C3) of function fields is separable.
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B Proofs of Previous Propositions

This appendix contains
e relatively basic proofs and
e proofs that need a lot of algebraic computations..

This decision was made to avoid disrupting the flow of the main text.
Proposition B.1: (Proposition [1.1))

If char(K) # 2, then Equation (1.1.1) can be written as (y')? = 423 +
box?® + 2byx + bg, where v/ = 2(y + a12 + a3). In other words, the terms
in xy disappear.

Proof. Set y == 4(y' — a1z — a3). Squaring both sides yields

1 2
y2 = <2(y/ —a1r — (13))

1 1 1 1
= Z(y’)2 + Za%zz + 1a2 — ialxy/ + 50103% — §a3y’.

By replacing the explicit expressions of y and y? into (1.1.1]), we get

1 1 1

1 1 1 1
T+ 3 4 a4 Savase — a3+ sy

2 2 2 2
_1 2 92 1 } / - 1 2 3 2
—2(1133 + 2a1a3m— 2a3y + 2a1a3x+ 2a3+x + asx” + agx + ag.

By simplifying the common terms in the previous equation and then rearranging
the resulting equation, we obtain

1 1 1 1
Z(y’)2 =23 4+ 2? <a2 + 4a%> +z <a4 + 2a1a3) + <a6 + 4a§> :
Multiplying the previous equation by 4 gives us:
(v)? = 42® + 2%(4ay + a?) + 2(4ay + 2a1a3) + (4ag + a2).

Replacing by = a? + 4ag, by = 2a4 + ajaz, and bg = a3 + 4ag into the previous
equation, we get that:

(v)? = 42° + bya® + 2bsz + be. (B.0.1)
O

Proposition B.2: (Proposition [1.2])

If char(K) ¢ {2,3}, we can even rewrite Equation (L.1.I) as y*> = 2® +
Az + B with A,B € K.
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Proof. Substituting x = ””,5763[’2 and y = % into (B.0.1)), we get

2 ’ 3 / 2 /
y' 2/ — 3by ' — 3bs 2/ — 3by
(108) ( 36 ) +b2( 36 T2\ T ) e

(2')3 — 9bg(2')% + 27b32" — 2703

=4
363
(2")% — 6baz’ + 9b3 x’ — 3by
+ by < 362 + 2by 36 + bs.

Multiplying this expression by 363 gives
A(y')? =4 [(2")® — 9ba(2')* + 27b32" — 27b3]
+ 36b ((2')? — 6boz’ + 903)
+2-36%by (2’ — 3by) + 36°bg.
Expanding the previous equation yields

4(y')? = 4(2) — 36bg(2")? + 108b32" — 108b5 + 36bo(z’)?
— 216b32" + 324b3 — 6 - 36%bs2’ — 2 - 36%by - 3by + 363bg.
Now assembling the common terms in the previous equation and simplifying,
we obtain
4(y")? = 4(x)? + (36by — 36by)(2")?
+ (1083 — 21603 + 2 - 36%by)a’
+ (—108b3 + 324b3 — 6 - 36%baby + 363bg)
= 4(2')® + (—108b3 + 2 - 36°bs) 2’
+ (216b3 — 6 - 36%boby + 363bg).

Now, if we substitute ¢4 = bg —24by and cg = —b;’ + 36b2by — 216bg in the latter
equation, and divide by 4, we obtain

(y)? = (2')® — 2Tcqa’ — 5dcg,
which concludes the proof. O

Proposition B.3: (Proposition [1.3))

The discriminant of the polynomial f(z) = 23 + Az + B becomes Ay =
—(4A3 + 27B?).

Proof. The derivative f’(z) = 322 + A. We have that

(_1)34(3—1)/2

A= ]

Res(f, f') = (—1)"Res(f, f') = —Res(f, f'),



where

B 0 A 0 O
A B 0 A 0
Res(f,f)=10 A 3 0 A|=4A4A3%+27B>
1 0 0 3 0
0o 1 0 0 3
The result follows. O

Proposition B.4: (Proposition @D
The division polynomials U,,(z,y), where m € N>3 can be written in

the form

m2—1

1’L27
mx- 2z + O(le’2) if m is odd,

v, =

m m2

myz T + O(ya: T _2> if m is even.

Proof. We do a proof by induction.

Base cases:
2_
n=3: Uy =34+ 622+ 128z — A2 = 3277 +(9(x

321
2 72)

n=4: ¥, = y(4a® — 2042* + 80Bx> — 204%2> — 16ABy — 32B? — 4A?)
424 42—472
=dyx~ 2 + O(yx 2 )

Computing ¥5 and Wy with the recursion formulas (2.1.1) and (2.1.2)), we see

2
52-1_ o

521 521
n=>5:U5=>5x 2 +0(£E2 )7
624 62-4_9
n==6: Ug=06yx 2 +(9(yz 2 )
This finishes the base cases.

Induction steps

We now admit Proposition [B4] for a certain fixed m + 2, where m > 3. Then
we show that it is true for 2m and 2m + 1. This way, we prove Proposition [B-4]
for all m in N>3. To do this we need to compute ¥y, and ¥y, which are

given by ([2.1.1]), respectively (2.1.2]).
Case 1: In this case, we consider the following recursion formula

\I’Qm—&-l = \I/m+2(\1/m)3 - \I’m—l(\llm+1)3~ (BOQ)

We start by computing ¥, yo(¥,,)?. Next, we calculate ¥,, _1(¥,,,1)%. Now we
only need to subtract ¥, 1(¥,,.1)% from ¥,, 2(¥,,)% and get the expression
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for Wo,41 in Equation (B.0.2).

Subcase (a): Let m be even.
Using the induction hypothesis on the first term of Equation (B.0.2) gives us

U p2( V) (B.0.3)

m42)2 — m 2_ m2_ 3
e | It

2 m 7”.2 m — m= — 3
:{(m+2)yx e +(9(yac 2 4)] {myx R +O(ym 28)}

+4m

771 — m m— 771.27
= (m+2)m’yta™ = T - —l—(’)( 1" * 2 4)) . (B.0.4)

We know that y? = 23+ Az + B = 23+ O(z). Replacing this into (B.0.4)) yields

m24am43m2_12 m24am—4a43(m2-4)
(m* 4 2m®)2Sx 2 +0|( 2% 2

4m +4m

N e (. B0

am?2 +47n 4)

Now we apply the induction hypothesis to the second term in (B.0.2]) and do all
the necessary computations. We get

U1 (Ung1)?

- [(m_ 1)x<m’12>2*1 +O(x(m§)25>] [(m—i— 1)x(m+12>271 +O(x(m+12>25)]3
= {( — 1)z e O( w)} [(m+ 1):1:’"232’” + (9<x"‘2+§"“4)r

:(m . 1)(m + 1)3 m 72171+3(m2+2m) + O( m?2 gnz4x3(m22+2m))

m m m2 m—
—(m* 4 2m® — 2m — 1)z +o(x7“ 5 “). (B.0.6)

Substituting (B.0.5) and (B.0.6) into (B.0.2) yields

Uopis = (m + 2m) 5 +O< ‘*’)
m m m2 m—
ot a2 o)

— @m+ 12 40 (z(2m2+21)2_5) .

This finishes the subcase where m is even.
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Subcase (b): Suppose m is odd.
Applying the induction hypothesis to the first term of (B.0.2) and doing all the
computations, we get

m 27 m 27 m27 ’77127 3

bt =[5 0582 5 )
m24am+3 m24am—1 m2—1 m2-5\13

= {(m+2)x 2 +(9<x 2 )} [mx 2 +O(m 2 )]

m244m+43 | 3(m2-1) m244m—1 3(m2-1)
=m+2mPz" 2 T2 40z 2z a =

WLZ m 77l2 m—
= (m*+ 2m3)x4 R (’)(m4 & 4) . (B.0.7)

Now we use the induction hypothesis on the second term in (B.0.2). This gives
us

\I’m—l(\pm_t,-l)s
3
= {(m - 1)y$(mlf4+0(yx (m?”)} [(m + 1)y O(ya;(”“fsﬂ

’77127 m— m27 m — ’VTl2 m — m2 m — 3
om0 1 03] [ s 0|

4 m2—2m—3+3 m242m—3
2 2

m2—2m— ('m2 m—3)
=(m —1)(m+1)%*y*z —|—(’)<y4x gty e ) .

Substituting y? = 23 + O(z) into the previous expression and manipulating the
exponents yields

am24am—12

[(m_l)(m3+3m2+3m+1)$6xf +O(Js6xwﬂ

m2 m 777/2 m—
:(m4—|—2m3—2m—1):1c4L 2 +(’)(m4 E 4). (B.0.8)

Now putting (B.0.7) and (B.0.8) into (B.0.2)), we get

4am2+44am am24am—4
Womi1 = (m4 + 2m3)x 2 4+ O(:L’ 2 )

am?2

m m2 m—
- [(m4+2m3—2m—1)x 2 +O(a:%>}
— @m+ )= 40 <x<2m+21)2_5> .

This finishes the subcase where m is odd. This is also the end of case 1.

Case 2: In this case, we consider the following recursion formula:

\IIQm = \Ilm(\:[jm72(\1}mfl)2 - “Ilmf2(\:[’m+1)2)(2y)_1' (B09)
To avoid getting long computations, we split (B.0.9) into smaller computations.
We are going to start by computing ¥,, 2(¥,,_1)? and ¥,,,_5(¥,,,1)%. Then by
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a simple subtraction, we get W,,, _2(V,,_1)2—¥,,, 2(¥,,11)2. Now we only need
multiply the previous expression by ¥,,/(2y) to end up at Equation (B.0.9).

Subcase (a): Let m be even.
Applying the induction hypothesis to W,,12(¥,,_1)? and simplifying the expo-
nents yields

\Ilm+2(\11m71)2
2
m 2_ m 2_ m—1)2— m_1)2_
= {y(m+2)aﬁ< i 4+0<yx( 7 8)} [(m—l)x( T +O<x( 7 5)}

2

m2+44am m24am—4 m2—2m m2—2m—4

:[(m+2)y:z: 2 +O<ym 2 )} [(m—l)z 2 +(9(x 2 )}

Performing the multiplication in the previous expression gives us

m2+dam (m27 m) m24am— (m27 m)
= (m+2)(m® — 2m + Ly +O<yfc R )

2 2
= (m® —3m+2)%yz" % + (9<y$3 2 4) . (B.0.10)

Using the induction hypothesis on ¥,,, _o(¥,,;1)? and performing the multipli-
cation, we get

\Ilm72(\11m+1)2
2
)2 _ me2)2 12— 112 —
{(m?)y:ﬂ( 7 4+O(yx( 7 8” {(m+1):1:< 7 1+O<x( 3 5)}

2_ m2—4m—4a m242m

= |(m = 2™ T + 0 (3™ | [(m+ Do +o(yxm2+zm—4)f

m2 —am—4+42(m242m) )
2

2_ 2
m 4m qom ;»2117,

=(m+2)(m* +2m + )ya~ 2 +(9(yac

’VYL27
=(m?® —3m — 2)yx% + O(ng 2 4) . (B.0.11)

When we subtract (B.0.11) from (B.0.10]), we obtain

\Ilm72(\:[/m71)2 - \I]m72(\:[jm+1)2
2

3m?2 3m=~—4

:(m3 —3m + 2)2y:17 2 4 O(yxT)

'm.2 WL2—
- [(m3 —3m — Q)yargT + O(yx3 2 4)]
3m2—4

—4yzs +0(wa). (B.0.12)

Applying the induction hypothesis to ¥,, and multiplying ¥,, by (B.0.12)) gives
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us

m2—4 m2—8 3m? 3m2-4
2o, = [my:v 2 —|—(’)(yw 2 )} . [4ymT —I—O(yx 2 )}

m?2—4+43m? m?2—8+4+3m?
= dmy’x 2 + O (y2x 2 )

(2m)2—4

(2m)2—
=4y’ma 2 +(9(y2x2; 8).

Multiplying by (2y)~!, we get the final expression of (B.0.9), that is

am2-4

2 g (2m)2-s -1
Vom = |dmy“z™ 2 +O(y'z" =2 (2y)

(2m)2—4 (2m)2—8
=2myx 2 +O<yx 2 >

This finishes the subcase where m is even.

Subcase (b): Let m be odd.
Applying the induction hypothesis to W,,12(¥,,_1)? and simplifying the expo-
nents yields

\Dm+2(q]m71)2
2
= {(m + 2)95% + O(SUWH [(m - l)yxw + O(y:c(mlz)zgﬂ

'VTL2 m 7YL2 m— 7YL2 —2m — 7’L2 —2m — 2
= [(m+2)x7+g 2 +(9(334+3 1)] [(m— Dyz s +O(yx == 7)}

We leave y? the way it is in regards of the last step where we need to divide by
(2y)~!. Performing the multiplication in the previous expression yields

m24dm+3 m2—2m—3 m244m— (m27 m—3)
(m+2)(m? — 2m + 1)yPg ™2 2 +(9<y2x R )

m2_ 2
=(7713‘—3171—&—2)3/2333 e —|—O(y2x3 2 7).

Using the induction hypothesis on ¥,,, _o(¥,,;1)? and performing the multipli-
cation, we get

l:[lrn,72(\:[jm+1)2
(m=22-1 (m=2)2-5 (m+1)2-4 (m+1)2-8 2
=|(m—2)x" = +0(z > (m+LDyx— 2 +O0(yzx =

[ m2—am+3 m2—dam—1 m242m—3

(m—2)z = —|—O(xf)} [(m—kl)ymf—i—(?(yx%)r.
(B.0.13)
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Doing the multiplication in the previous expression gives us

(m + 2)(m? + 2m + 1)y FE g (9< R B 3))

2 3m*“ -7

= (m® - 3m — 2)y’x = + O(y m#> . (B.0.14)

Subtracting (B.0.14)) from (B.0.13]), we get
\I]m—Q(\IJm—l)z - \I/m—Q(\Ilm+1)2
3m2— sm2_
[(m —3m+ 2y’ 2 —I—O(y x 2 7)}

—|—[(m?’—3m—2)ygacamz +(’)( 2, 7)}

2 3m2-7

:4y2x mz _|_ O(y x 2 ) .

Applying the induction hypothesis to ¥,,, and multiplying ¥,, by (B.0.12)) gives
us

m?2 —5 2 3m*“ -7

+O< )) (APt +0(y ﬂcT))

= dmy’x m* _1+23m +(’)(y2x%)

am?2 (2m)2—8
=dmy’c 7 —|—(9( 2 )

1

= (mz 2

Multiplying by (2y)~!, we get the final expression

2 2
Uy, = {4my2x(2 — +O<y2x(2 : 8)} (2y)~*

- me:c(2 (empos + (9( (QM)2_8> .

This finishes the subcase where m is odd. O
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C Reasonings

Remark C.1. The greatest common divisor for two univariate polynomials is
usually defined as a monic polynomial. This means that the gcd can either be
1 or a monic polynomial D(X) of degreee d > 1.

Reasoning C.1. We know that the roots of the division polynomial ¥,(x) are
exactly the z-coordinates of the ¢-torsion points (e.g. [(]P = O, see Definition
. This means that, if fy(xg) = 0, then there is a point P = (x,y) € E[{].

Reasoning C.2. Let us take two polynomials P(z) € K[z] and fe(z) € K|z]
defined in Proposition 2.2l Then, we want to determine the greatest common
divisor of these two polynomials. We will denote it by ged(P(z), fe(x)). Then,
we have two possibilities:

o 1f ged(P(x), fo(x)) = 1:
Then the two polynomials P(z) and fy(x) have no common factor (except
maybe a constant which is not taken into account in the ged, as explained
in Remark. So, clearly, they do not share a common root. This means
that there is no xg such that P(zg) = 0 and f(z¢) = 0 simultaneously.

o If ged(Pi(x), Po(x)) # 1:
By Remark[C.1] the greatest common divisor must be a monic polynomial
D(X) of degreee d > 1. Let us call zy (one of the) roots of D(z) , which
means D(xg) = 0. Then P(zg) = 0 and fi(xo) = 0 simultaneously.
By Reasoning the second equation gives us that there is P € E[/].
Furthermore, the first equation tells us that this P satisfies the polynomial
P(x).

Reasoning C.3. Let P € E[f], then, by Definition [I.12] [(]P = O. Suppose there
exists ¢ € R, then [q]P = [k]P + [nl]P for n € N and k£ = ¢ (mod ¢). By
assumption, [¢(]P = O, and so [nf]P = O. By by Remark this implies that
[q]P = [k]P where k = g (mod ¢)

Reasoning C.4. Let us consider the equation

¢1(P) = £[a] P, (C.0.1)
where ¢;(P) and [a]P are given by Remark respectively Proposition
Then Equation (C.0.1)) can be split into ¢;(P) = [a] P, and ¢;(P) = —[a]P. Let
us denote [a] P by (X ([a]P),Y ([a] P)). Similarly, we write (X (—[a]P), Y (—[a]P))
for —[a]P. We realize that X ([o]P) = X (—[a]P) by Remark

Proposition C.1

Let P = (x,y) € E[{]. The following expressions do not vanish on E[/]
for ¢ a prime number not equal to 2:

(1) v2,

(2) the polynomials fi(z) when 0 < k < £ (see Definition [2.2)).
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Proof. (1) Suppose y = 0. Then we can write P = (2,0). Now by the group
law in Remark [[.5] —P = (z,—0) = (2,0). We can see that P = —P and
rearranging everything to one side yields [2]P = O. So P € FE[2]. We
supposed at the beginning of the algorithm that ¢ # 2. So by Proposition

1.11] we have that P ¢ E[/].

(2) Let us now show that fi(z) does not vanish on E[{]. From Proposition
2.3 we have fi(z) = 0 if and only if [k]P = 0. But we assumed 0 < k < ¢,

o0 it only vanishes on E[k] and in particular not on E[/].
O

Remark C.2. Since K has non-zero divisors, for a,b € K: if a # 0 and b # 0,
then ab # 0. Then, Propositioncan be extended by induction: f]'(z) # 0
for any integer n > 1. Since Wy, is just a rewriting of fi, U7 # 0. Also 2>+ Az+B
does not vanish on E[f] because y* = 23+ Azr+ B and Propositionapplies.
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