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Abstract

Elliptic curves play an important role in number theory and cryptogra-
phy. This report explores essential aspects of elliptic curves, such as their
group structure and their torsion subgroup and isogenies - with particular
emphasis on the Frobenius map. Special focus is given to Hasse’s bound
and division polynomials - both are an essential foundation for the study of
René Schoof’s algorithm described in [Sch85]. This algorithm, published
in 1985, allows the computation of the number of points on an elliptic
curve defined over a finite field with a significant time saving to previous
approaches. This work provides a detailed analysis of this algorithm: we
expand key steps which were only briefly mentioned, and even correct
minor mistakes in the original document. To enhance understanding, we
complement our report with detailed examples and SageMath-generated
illustrations for many of the concepts covered.
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Notation

These are the most used notions in this report.

• K - a field

• K - a fixed algebraic closure of a field K

• N - the set of non-negative integers

• N∗ - the set of all positive integers

• Z - the set of all integers

• Z≥α - the set of all integers such that every β in Z≥α is greater or equal
than α

• p - a prime number

• q = pr for p prime and r ∈ N∗

• Fq - finite field of cardinality q

• #A - the cardinality of an arbitrary finite set A

• ϕq - the qth-Frobenius map

• Ψk - the kth division polynomial

• R - a commutative ring

• R[x] - the polynomial ring in x over R

• R[x1, . . . , xn] - the polynomial ring over R in n variables, where n ∈ N∗

• char(R) - the characteristic of a ring R

• A∗ - A without 0 if A is an additive monoid

• All the code used in this article is written with SageMath [Dev24].

Remark 0.1. If R is a commutative ring with 1 and f ∈ R, then for any integer
n ≥ 1, fn is the nth fold product of f with itself.

Remark 0.2. If the field over which the elliptic curve is defined is not mentioned,
then the elliptic curve is defined over K.
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Introduction

In this report, we tackle Schoof’s algorithm. In order to do this, we have to
prepare quite a lot of knowledge. This will be built up mainly in Section 1.

The main goal of Section 1 is to prove Hasse’s sharp bound. To achieve this,
we start by talking about the affine and projective Weierstrass equation which
permits us to define the term “elliptic curve”. This is followed by a discussion
about points on elliptic curves and a visualization of an elliptic curve over a
finite field by using SageMath [Dev24]. Having established this, we proceed
with the group law on the set of points on elliptic curves, both geometrically and
algebraically. Next, we briefly discuss valuation theory, which includes divisors
and the Picard group. After this, we cover special maps between elliptic curves,
which are called isogenies, like for example the multiplication-by-m map, which
lets us define the torsion subgroup. Thereafter we talk about the Frobenius
endomorphisms and prove a few properties about it. With all this knowledge,
we are finally able to prove the so-called Hasse bound which puts a sharp bound
on the number of points of an elliptic curve. We then move on to division
polynomials which are used to compute the nth torsion points. This finishes the
section about elliptic curves.

The knowledge acquired from Section 1 becomes useful in Section 2 which is fully
dedicated to explaining the algorithm described by Schoof in [Sch85, p. 486-
490]. We begin with a brief overview of this algorithm, followed by a detailed
discussion of all the steps, giving precise explanations.

Appendix A covers projective spaces. We first define what it is and then talk
about homogeneous coordinates: coordinates in the projective space. Next, we
examine curves, specifically in the projective plane, including the distinction
between singular and non-singular curves. For completeness, in Appendix B we
include several proofs of the results stated in previous sections. Appendix C
contains a few arguments and reasonings that were used multiple times in the
discussion of Schoof’s algorithm.
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1 Elliptic Curves

In this section we discuss different actions on elliptic curves. We begin by defin-
ing what are points on elliptic curves. Building on that knowledge, we present
the impressive result that their set forms a group. Next, we explore different
sorts of maps between elliptic curves. All this work leads to the important result
that we can put an upper bound on the number of points of an elliptic curve
defined over a finite field Fq.

1.1 Weierstrass equation

An elliptic curve E over a field K is given by a projective Weierstrass equation
that looks like the following:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

where a1, . . . , a6 ∈ K. This is a homogeneous equation of degree 3 (see Def-
inition A.3). We can also use affine coordinates (see Equation (A.1.1)). By
Remark A.5, we substitute x = X

Z and y = Y
Z and then the previous equation

becomes an affine Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.1.1)

If a1, . . . , a6 ∈ K, then E is an elliptic curve over K. Furthermore, E is defined
over K if a1, . . . , a6 ∈ K.

Remark 1.1. Let E be an elliptic curve defined over a field K satisfying (1.1.1).
Then, the invariant differential ω (see [Sil09, p. 30] for a definition) associated
to (1.1.1) is given by

ω =
dx

2y + a1x+ a3
.

It is shown in [Sil09, Proposition III.5.1 (p. 76)] that ω is invariant under
translation.

We will now see that this Weierstrass equation (1.1.1) can be simplified
depending on the value of char(K).

Proposition 1.1

If char(K) ̸= 2, then Equation (1.1.1) can be written as (y′)2 = 4x3 +
b2x

2 + 2b4x+ b6, where y
′ = 2(y + a1x+ a3). In other words, the terms

in xy disappear.

This is proven in Appendix B.

Proposition 1.2

If char(K) /∈ {2, 3}, we can even rewrite Equation (1.1.1) as y2 = x3 +
Ax+B with A,B ∈ K.
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This is proven in Appendix B.
An elliptic curve E over a field K such that char(K) /∈ {2, 3} is given by a

Weierstrass equation of the form:

E : y2 = x3 +Ax+B (1.1.2)

where A,B ∈ K.
Let us now compute the discriminant of Expression (1.1.2):

Definition 1.1: Discriminant of a polynomial of degree d

For a polynomial f ∈ K[K] of degree d, the discriminant ∆f is defined
as

∆f =
(−1)d(d−1)/2

ad
Resx(f, f

′).

(Check [CLO07, Chapter 3: Definition 2 (p. 162-163)] for the meaning
of the notion Resx(f, f

′))

Proposition 1.3

The discriminant of the polynomial f(x) = x3 +Ax+B becomes ∆f =
−(4A3 + 27B2).

Proof. See Appendix B.

Remark 1.2. Silverman [Sil09, (p. 45)] states that the discriminant of f(x) =
x3+Ax+B is ∆f = −16× (4A3+27B2). From now on, we will use Silverman’s
version of the discriminant.

Proposition 1.4: [Sil09, Proposition III.1.4(i) (p. 45)]

E singular (in the sense of Definition A.5) ⇐⇒ ∆f = 0

Proof. We need to prove both implications
=⇒ Let us suppose that E is singular. Then, there exists a singular point
P = (x0, y0) of E. This means, in light of (1.1.2), that

f(x0, y0) = y20 − x30 − ax0 − b = 0 (1)
∂f
∂x (x0, y0) = −3x20 − a = 0 (2)
∂f
∂y (x0, y0) = 2y0 = 0 (3)

(2) =⇒ a = −3x20 (2’)
(2′) in (1): y20 − x30 + 3x30 − b = 0 ⇐⇒ y20 + 2x30 − b = 0
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(3′) in (1) =⇒ 2x30 = b
Now we can compute the discriminant which concludes the proof. We have

∆ = −16(4A3 + 27B2)

= −16
(
4(−3x20)

3 + 27(2x30)
2
)

= −16
(
−4 · 27x60 + 27 · 4x60

)
= 0.

⇐= Now, we suppose ∆ = 0. This is only true if x3 + Ax + B has a double
root α. We also know that a root α of a polynomial P (x) is double if and only
if P (x) = 0 and P ′(x) = 0 (see [Bar03, p. 16-17]).

f(α, 0) = 02 − (α3 +Aα+B) = 0,

∂f

∂x
(α, 0) = −(3α2 +A) = 0,

∂f

∂y
(α, 0) = 2× 0 = 0.

This point A = (α, 0) verifies the definition of a singular point of E.

We now show a few examples of what plane curves satisfying a Weierstrass
equation can look like over the reals R.
Example 1.1. Define the curves

(a) y2 = fa(x), where fa = x3 + x+ 4,

(b) y2 = fb(x), where fb = x3 − 3x+ 2,

(c) y2 = fc(x), where fc = x3 − x.

To verify if the curves are singular or not, we compute the discriminants using
Remark 1.2.

• ∆fa = −16× (4 + 27× 42) ̸= 0,

• ∆fb = −16× (4× (−3)2 + 27× 22) = 0,

• ∆fc = −16× (4× (−1)3 + 27× 0) = 64.

In conclusion, curves (a) and (c) are elliptic curves, and curve (b) is singular.
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(a) y2 = x3 + x+ 4 (b) y2 = x3 − 3x+ 2 (c) y2 = x3 − x

Figure 1: Depiction of (part of) different plane curves (a), (b), (c).

1.2 Points on elliptic curves

In order to define the group law on the set of points of an elliptic curve, we first
need to learn about its points.

Proposition 1.5: [Sil09, included in Proposition III.1.4.(i) (p.
45-46)]

The point O = [0 : 1 : 0] belongs to any elliptic curve defined by the
projective Weierstrass equation: F (X,Y, Z) = Y 2Z+a1XY Z+a3Y Z

2−
X3−a2X2Z−a4XZ2−a6Z3. In particular it is non-singular. We denote
C : F (X;Y ;Z) = 0.

Proof. We have O ∈ C because

F (0, 1, 0) = 12 · 0+a1 · 0 · 1 · 0+a3 · 1 · 02− 03−a2 · 02 · 0−a4 · 0 · 02−a6 · 03 = 0.

Furthermore, O is nonsingular because

∂F

∂Z
(X,Y, Z) = Y 2+a1XY +2a3Y Z−a2X2−2a4XZ−3a6Z

2 =⇒ ∂F

∂Z
(O) = 1.

Since ∂F
∂Z (O) ̸= 0, we conclude that O is a nonsingular point of C.

Definition 1.2: K-Rational Points on an elliptic curve

Let K be a field, and let E be an elliptic curve on K. We denote E(K)
as the set of K-rational points on the elliptic curve E by which we mean

E(K) = {(x, y) ∈ K ×K | y2 = x3 +Ax+B} ∪ {O},

where O = [0 : 1 : 0] is a point at infinity (in the sense of Definition A.2).
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Remark 1.3. What we are doing in Definition 1.2 is an abuse of notation because
we mixes affine coordinates (x, y) with the projective point O. In [Sil09, Remark
2.7 (p.10)], the author clarifies that it is common to describe a projective variety
by its affine equations, with the understanding that the projective closure is
intended. This is why we can write the affine equation y2 = x3 + Ax + B and
include O separately, even though O is part of the projective variety.

The following code allows us to plot an elliptic curve E : y2 = x3 +Ax+B
over a finite field Fp where p is prime. It also gives us Fp-rational points on E
and returns #E(Fp). Explanations can be found in Example 1.2.

E = EllipticCurve(GF(p), [A, B])

E.plot(pointsize=30).show()

print(E.points ())

print(len(E.points ()))

Example 1.2. This example uses the previous SageMath code. We can easily
calculate E(Fp) by hand for small prime numbers p. However, when p is large,
it becomes very time consuming. We take the elliptic curve E : y2 = x3 + x+1
over Fp. Its discriminant equals −24 · 31. We can discard 2 because we assume
that p ≥ 5. Hence E/Fp if and only if p = 31. We first consider it over F11. In
SageMath, we define it like this:

E = EllipticCurve(GF(11), [1, 1])

The command E.points() gives us the coordinates of the points in E(F11).

E(F11) =


[0 : 1 : 0], [0 : 1 : 1], [0 : 10 : 1], [1 : 5 : 1], [8 : 1 : 1]

[1 : 6 : 1], [2 : 0 : 1], [3 : 3 : 1], [3 : 8 : 1], [8 : 9 : 1]

[4 : 5 : 1], [4 : 6 : 1], [6 : 5 : 1], [6 : 6 : 1]

 .

Now, with the command len(E.points()), we get #E(F11) = 14. We now
define the same Weierstrass equation y2 = x3 + x + 1 over 3 other finite fields
F23, F53 and F101 in SageMath. We can easily modify the program to consider
this elliptic curve over other finite fields by simply changing GF(11) to GF(p)
for p ∈ {23, 53, 101}. For example, we get that:

#E(F23) = 28, #E(F53) = 58, #E(F101) = 105.

The commmand E.plot().show() to give us the final plot of E over the
four finite fields mentioned before. They look like this:
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Figure 2: E(F11) Figure 3: E(F23)

Figure 4: E(F53) Figure 5: E(F101)

Remark 1.4. By looking at Figures 2–5, we see the following.

• Note that the point at infinity is not shown in the Figures 2–5. We realize
that we could add a line y = q

2 (in the sense of a real line) and we could
observe a symmetry across that line. This can be explained by the fact
that y2 is quadratic. So if (x, y) ∈ E(Fq), then (x,−y) ∈ E(Fq). This
results holds for any arbitrary elliptic curve.

• The following observation is specific for the elliptic curve E : y2 = x3 +
x + 1. The point P = (0, p − 1) lies on E(Fp). This is true because it
always satisfies the condition:

(p− 1)2 = 1

p2 − 2p+ 1 = 1

p2 − 2p = 0

0 ≡ 0 (mod p).

Now, we come to the main question of this thesis: What is #E(Fq)
where q = pn for p prime and n ∈ N∗?
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Proposition 1.6

Since there are only finitely many elements in a finite field, we can bound
from the above the number of Fq-points on an elliptic curve, #E(Fq),
by 2q + 1.

Proof. Let (x, y) ∈ Fq×Fq. For every x ∈ Fq, we get at most two possible values
for y because E is quadratic in y. In total, there are q different x ∈ Fq. This
results in 2q possibilities. We should not forget the point at infinity O ∈ E(Fq).
That is why #E(Fq) ≤ 2q + 1.

However, a sharper bound was found by Hasse [Has36, p. 206] in 1936. More
about this later. Now we are all set up to study about the group law of elliptic
curves.

1.3 Group law on points of elliptic curves

A modified version of Bézout’s theorem states the following:

Proposition 1.7: [Sch17, Theorem 7.11 (p. 58)]

Let E be an elliptic curve. If P,Q ∈ E such that P ̸= Q, then there
exists a projective line L through P and Q and a third point R ∈ E ∩L.

Proof. See [Sch17, Theorem 7.11]

Let us first start with a more geometrical explanation of the group law on
the set of points of an elliptic curve. Let E(K) be defined as in Definition 1.2.
Now take P,Q ∈ E(K) and define a line L through P and Q (respectively a
tangent line if P = Q). By proposition 1.7, the line L meets E(K) at exactly
three points: P , Q, and we call the new intersection point R. Now we simply
need to reflect the point R = (x, y) across the x-axis and we get a new point
R′ = (x,−y). We then define the operation + for P,Q ∈ E(K) as P +Q = R′.
A picture of the geometrical situation (without worrying about the equations
of the objects for the moment) can be seen in Example 1.3.

Remark 1.5. The pair (E(K),+) can be seen as an abelian group with neutral
element O , which means that it satisfies the following axioms:

1. Neutral element: ∃O ∈ E(K) such that A+O = O+A = A, ∀A ∈ E(K)

2. Inverse: ∀A ∈ E(K),∃(−A) ∈ E(K) such that A+(−A) = (−A)+A = E

3. Associativity: (A+B) + C = A+ (B + C), ∀A,B,C ∈ E(K)

4. Commutativity: ∀A,B ∈ E(K), A+B = B +A

A geometric proof of this group law can be found in [Sch17, (p. 70-84)].
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Remark 1.6. Let E be an elliptic curve defined over a field K verifying Equation
(1.1.2), and let P = (x, y) be in E(K). Then the inverse of P in Remark 1.5.2
is −P = (x,−y).

We can also define algebraically the group law on an elliptic curve E.

Proposition 1.8: Addition formulas

Take an elliptic curve over a field K such that char(K) is not equal to
2 or 3. Let P1 = (x1, y1), P2 = (x2, y2) ∈ E(K) and m the slope of the
line going through P1 and P2. Then the following hold:

(i) If P1 = O, then P1 + P2 = P2.

(ii) If P2 = O, then P1 + P2 = P1.

(iii) If P1 = −P2, then P1 + P2 = O.

(iv) If x1 = x2 and y1 = y2 with y1 ̸= 0, we define m :=
3x2

1+2ax1+b
2y1

.

We denote P1 +P2 by P3 = (x3, y3), where x3 = m2 − x1 − x2 and
y3 = −m(x3 − x1)− y1.

(v) If P1 ̸= ±P2 we define m := y1−y2

x1−x2
. We denote P1 + P2 by P3 =

(x3, y3), where x3 = m2 − x1 − x2 and y3 = −m(x3 − x1) − y1.
Then P +Q = (m2 − x1 − x2,−m(x3 − x1)− y1).

For a proof of the group law defined on the set of points of an elliptic curve
using these explicit formulas, see [Fri17, (p. 3-8)].

Example 1.3. Take E : y2 = x3+1 over R. The discriminant ∆f = −16 ·31 ̸= 0.
We see that A = (−1, 0) and B = (0, 1) are in E(R). Let us calculate A + B.
The line L going through A and B is defined by y = x + 1. Now we want to
calculate L ∩ E. To do this, we solve the following system:{

y = x+ 1, (1)

y2 = x3 + 1. (2)

Replacing (1) in (2), we get

(x+ 1)2 = x3 + 1

⇐⇒ x2 + 2x+ 1 = x3 + 1

⇐⇒ x3 − x2 − 2x = 0

⇐⇒ x(x2 − x− 2) = 0

⇐⇒ x(x− 2)(x+ 1) = 0

⇐⇒ x = 0 or x = 2 or x = −1.

We see that replacing x = −1 and x = 0 in (1) results in the points A and B,
respectively. So, if x = 2, then y = 2 + 1 = 3, and C = (2, 3). We can conclude
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that L ∩E = {(−1, 0), (0, 1), (2, 3)}. Now we reflect C along the x-axis and get
A+B = (2,−3). The situation is represented by the following picture generated
in GeoGebra [Wel25].

Figure 6: Illustration of the group law on the set of points of an elliptic curve

Now we will treat a special map acting on elliptic curves. (See Definition A.7
which defines maps between curves.)

1.4 Frobenius endomorphism

In this section, we will have a look at the Frobenius map acting on curves.

Definition 1.3: Frobenius map

The qth-Frobenius map on Fq is defined as:

ϕq : Fq −→ Fq

x 7−→ xq.

Similarly, we can define the Frobenius map acting between two curves: We
define the pth-Frobenius map (for a prime p) as

ϕp : C −→ C(p)

(x0, x1, . . . , xn) 7−→ (xp0, x
p
1, . . . , x

p
n),
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where (x0, x1, . . . , xn) are affine coordinates (see (A.1.1)), and C(p) is the equa-
tion of the curve C with coefficients risen to the pth power. Now, the pth-
Frobenius map acting on an elliptic curve E over a field K is defined as

ϕp : E −→ E(p)

(x0, x1) 7−→ (xp0, x
p
1)

O 7−→ O.

Let E/K be the elliptic curve defined by

E : y2 = x3 +Ax+B (1.4.1)

over K. We define the curve E(p)/K by the equation

E(q)/K : y2 = x3 +Apx+Bp. (1.4.2)

We get this form by raising the coefficients of (1.4.1) to the pth power Now by
applying the map ϕp n time, we have ϕq := ϕpn = ϕp ◦ ϕp ◦ · · · ◦ ϕp (n-times)
when q = pn. Then,

ϕq : E −→ E(q)

(x0, x1) 7−→ (xq0, x
q
1)

O 7−→ O.

Let us now consider the case K = Fq:

Remark 1.7. If we now take E/Fq the elliptic curve defined by y2 = x3+Ax+B
such that A,B ∈ Fq, we get that A

q = A and Bq = B in Fq (by Euler’s theorem).
So, we get that the equation of E(q)/Fq is the same as the one of E/Fq. So,
clearly E = E(q). Since the Frobenius map maps E/Fq to E/Fq, it is actually
an endomorphism and we call it Frobenius endomorphism.

Remark 1.8. ϕq is an isogeny of degree q by [Sil09, Proposition 2.11 (p. 25)].

Remark 1.9. ϕq is injective by [Was08, p. 77].

Proposition 1.9: [Was08, Theorem C.1 (p. 482)]

Let ϕq be the q
th-Frobenius map. Then the following relation is satisfied:

for all α ∈ Fq,
α ∈ Fq ⇐⇒ ϕq(α) = α.

Proof. We want to show both implications:
=⇒ Let us first show that if α ∈ Fq, then ϕq(α) = α.

We know that F∗
q has order q − 1. Lagrange’s theorem states that every α ∈

F∗
q satisfies αq−1 = 1. Multiplying both sides by α now gives us αq = α.

Furthermore, if α = 0, we have ϕq(0) = 0q = 0. So ∀α ∈ Fq, ϕq(α) = α.
⇐= Let us now show that if ϕq(α) = α, then α ∈ Fq.

Let us suppose f(x) = xq−x ∈ Fq[α]. Since this polynomial is of degree q, it has
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at most q roots in Fq. The derivative of this polynomial is f ′(x) = qxq−1 − 1 =
−1 (because q ≡ 0 (mod q)). So f ′(α) has no roots. Hence f(α) does not
have a common root with its derivative. So all q roots of f(x) are distinct.
By construction of Fq, all elements of Fq satisfy xq = x. Since f has exactly
q distinct roots, and Fq provides q distinct roots of f . These must be all the
roots. Therefore, if αq = α, then α must be one of these q elements of Fq.

Proposition 1.10: [Was08, Lemma 4.5.2 (p. 99)]

Let (x, y) ∈ E(Fq) and let ϕq be the qth-Frobenius map. Then

(x, y) ∈ E(Fq) ⇐⇒ ϕq(x, y) = (x, y).

Proof. We want to show both implications:
=⇒ Let us suppose (x, y) ∈ E(Fq). Then (x, y) ∈ Fq × Fq and so (x, y) =

(xq, yq) by Proposition 1.9. Hence ϕq(x) = xq = x and ϕq(y) = y. So ϕq(x, y) =
(x, y).
⇐= Let us suppose ϕq(x, y) = (x, y). In particular, ϕq(x) = x and ϕq(y) = y.

This implies that x, y ∈ Fq by Proposition 1.9. So (x, y) ∈ E(Fq) because
(x, y) ∈ E(Fq).

Remark 1.10. For f(x, y) ∈ Fq[x, y] : f(x
q, yq) = (f(x, y))q because Fq is perfect

and ϕq is a ring morphism.

1.5 Valuation theory

Definition 1.4: Divisor

Let E be an elliptic curve defined over a field K. A divisor D on E is a
formal sum of the form

D =
∑

P∈E(K)

nP (P )

where

• nP ∈ Z and only finitely many nP are non-zero, and

• (P ) is the symbol associated to each P ∈ E(K).

Definition 1.5: Degree of a divisor

The degree of a divisor D on E is the integer

deg(D) =
∑

P∈E(K)

nP .
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Example 1.4. Take E : y2 = x3 + 2x + 1 over Q The discriminant ∆f =
−944 ̸= 0. We can verify that P1 = (0, 1) and P2 = (1, 2) are in E(Q). Then
D = 3 · (P1)− 2 · (P2) is a divisor on E. Mathematically, we write D ∈ Div(E).
The degree of D is feg(D) = 3 + (−2) = 1.

Definition 1.6: Degree-zero Divisors

A divisor D ∈ Div(E) with deg(D) = 0 is called a degree-zero divisor.
In that case, we write D ∈ Div0(E).

Example 1.5. Take the elliptic curve E : y2 = x3 + 1 over Q. From Example
1.3, we know ∆f ̸= 0. We can see that P1 = (−1, 0) and P2 = (0, 1) ∈ E(Q).
Consider the divisor D = 4·(P1)+2·(O)−6·(P2). Since deg(D) = 4+2+(−6) =
0, we have D ∈ Div0(E)

Remark 1.11. The set Div(E) of all divisors on E(K) is the free abelian group
on the set E(K)

Definition 1.7: Principal Divisor

A divisorD ∈ Div(E) is called principal if there exists a rational function
f ∈ K(E)∗ such that

D = div(f) =
∑
P∈E

ordP (f)(P ).

In that case, we write D ∈ Prin(E). Here, the notation ordP (f) repre-
sents the order of vanishing (or the order of poles) of a rational function
f at a point P on the elliptic curve E.

Remark 1.12. Principal divisors form a subgroup Prin(E) of Div(E), and in
fact also of Div0(E).

Now, we have all the necessary tools to define the Picard group of E.

Definition 1.8: Picard Group

The Picard group (also sometimes called the divisor class group) of an
elliptic curve E is denoted by Pic(E) and is defined as the quotient of
Div(E) by its subgroup Prin(E). We also define the Jacobian of E as
the quotient group Pic0(E) = Div0(E)/Prin(E).
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Definition 1.9: Pushforward Map

Let ϕ : E1 → E2 be a nonconstant map between two curves (see Defini-
tion A.7). We define the pushforward map induced by ϕ as

ϕ∗ : Pic0(E1) → Pic0(E2)

(D) 7→ (ϕ(D)).

Definition 1.10: “Pullback Map”

Let ϕ : E1 → E2 be a nonconstant morphism between two curves. The
“pullback map” induced by ϕ is a homomorphism between the Picard
groups defined as follows:

ϕ∗ : Pic0(E2) → Pic0(E1)

(D) 7→ (ϕ∗D)

where for a prime divisor Q ∈ E2,

ϕ∗Q =
∑

P∈ϕ−1(Q)

eϕ(P ) · P,

and eϕ(P ) is the ramification index of ϕ at P .

For details and explanations of the terms used in Definitions 1.9 and 1.10,
see [Sil09, p. 29-30].

1.6 Isogeny

Definition 1.11: Isogeny

Take E1 and E2 two elliptic curves. An isogeny from E1 to E2 is a
nonconstant map ϕ : E1 → E2 satisfying ϕ(0) = 0.

Let us now look at an example of an isogeny.

Remark 1.13. The multiplication-by-m map is an isogeny. It is defined as follows
for m ∈ N:

[m] : E −→ E

[m](P ) 7−→ P + · · ·+ P︸ ︷︷ ︸
m times

[0](P ) 7−→ O.

And if m < 0, we set [m](P ) = [−m](−P ).
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The map defined in Remark 1.13 allows us to define the torsion subgroup of
an elliptic curve.

Definition 1.12: Torsion subgroup

Let E be an elliptic curve and let m ∈ N∗. The m-torsion subgroup of
E, denoted by E[m], is the set of points of E of order dividing m. That
means

E[m] := {P ∈ E | [m]P = O}.

Proposition 1.11

E[ℓ1] ∩ E[ℓ2] = {O} for ℓ1 ̸= ℓ2

Proposition 1.12: [Sil09, Theorem III.4.8 (p. 71)]

Take E1 and E2 two elliptic curves and let ϕ : E1 → E2 be an isogeny.
Then ϕ(P1 + P2) = ϕ(P1) + ϕ(P2) ∀P1, P2 ∈ E1.

Proof. See [Sil09, Theorem III.4.8].

Proposition 1.13: [Sil09, Theorem III.5.2 (p. 77)]

Let E1 and E2 be elliptic curves. Let ϕ,Ψ : E1 → E2 be isogenies and
let ω be an invariant differential on E2. Then

(ϕ+Ψ)∗ω = ϕ∗ω +Ψ∗ω.

Proof. See [Sil09, p. 77].

Proposition 1.14: [Sil09, Corollary III.5.3 (p. 79)]

Let ω be an invariant differential (see Remark 1.1) on an elliptic curve
E and let m ∈ Z. Then [m]∗ω = mω.

Proof. Let us prove the result by induction, starting with the base case:
For m = 0, the map [0] is the constant map. So [0]∗ω = 0 = 0ω.
For m = 1, we have that [1] is the identity map. So [1]∗ω = 1 · ω = ω.

• We now proceed by ascending induction. We assume the result [m]∗ω =
mω holds for some m ∈ N. Now we want to show that it holds for m+ 1.

[m+ 1] ∗ ω = [m]∗ω + [1]∗ω (by Proposition 1.14)

= mω + ω (by induction hypothesis)

= (m+ 1)ω, (factorization of ω)
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which concludes.

• We still need to prove the proposition form ≤ 0. We do this by descending
induction. We now assume the result is true for some m ≤ 0. We have

[m− 1]∗ω = [m]∗ω + [−1]∗ω (by Proposition 1.14)

= mω − ω (by induction hypothesis)

= (m− 1)ω. (factorizing ω).

So the result holds for m ≤ −1.

This proves the proposition.

Proposition 1.15

Let ϕq be the qth-Frobenius map. Then for m,n ∈ Z, the map m+nϕq :
E → F is separable (see Definiton A.9) if and only if p ∤ m.

Proof. We already know that a map φ : E → F is inseparable if and only if
φ∗ω = 0. Suppose φ = m + nϕ with m,n ∈ Z. Then ϕ∗ω = (m + nϕ)∗ω =
mω + nϕ∗ω by Propositon 1.14. We compute:

ϕ∗ω = ϕ∗
(

dx

2y + a1x+ a3

)
=

d(xq)

2(yq) + a1xq + a3

=
qxq−1

2(yq) + a1xp + a3
= 0

because q = pr = 0r = 0 (mod p) (since p divides q). Now by replacing the
result into the previous equation,

φ∗ω = (m+ nϕ)∗ω = mω + n · 0 = mω.

We have that φ∗ω = 0 ⇐⇒ mω = 0 ⇐⇒ p | m. Therefore, φ is inseparable if
and only if p | m. Rewriting this, we get φ is separable if and only if p ∤ m.

Remark 1.14. Special case for the previous proposition: Take m = 1 and
n = −1. We get the map 1− ϕ.

(1− ϕ)∗ω = ω − ϕ∗ω = ω − 0 = ω.

Since ω ̸= 0, the map 1− ϕ is always separable.

Definition 1.13: Dual Isogeny

Let ϕ be an isogeny such that ϕ : E1 → E2. The dual isogeny to ϕ is the
unique isogeny ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ = [deg(ϕ)].
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Here are some properties about the dual isogeny which we will use to prove
the next proposition.

Properties 1.1. Let ϕ : E1 → E2 and Ψ : E1 → E2 be isogenies.

1. We have ϕ̂ ◦ ϕ = deg(ϕ) on E1.

2. We have ϕ̂+Ψ = ϕ̂+ Ψ̂.

3. We have [m]ϕ̂ = [̂m]ϕ, ∀m ∈ Z.

Proof. 1. See [Sil09, Theorem III.6.2.(a) (p. 83-85)].

2. See [Sil09, Theorem III.6.2.(c) (p. 83-85)].

3. Let us prove this statement by induction. We start with the base case.
We have [0̂] = [0] by definition and [1̂] = [1] because [1] is the identity
map.

• We start by showing the statement is true for m ≥ 0. We do this by
ascending induction. We suppose it is true for m ∈ N, then we show
it is true for m+ 1. We have

̂[m+ 1]ϕ = [̂m]ϕ+ [̂1]ϕ (Property 2 with ϕ = [m] and Ψ = [1])

= [m]ϕ̂+ [1]ϕ̂ (by induction hypothesis)

= [m+ 1]ϕ̂.

So the equation is true for m ≥ 0.

• Now it remains to prove that the statement is true for m ≤ 0. We
do this by descending induction. Assume it is true for m ≤ 0, show
it is true for m− 1. We have

[m̂− 1]ϕ = [̂m]ϕ− [̂1]ϕ (Property 2 with ϕ = [m] and Ψ = [1])

= [m]ϕ̂− [1]ϕ̂ (by induction hypothesis)

= [m− 1]ϕ̂.

So the induction is proved.

Theorem 1.1. Let E1 and E2 two elliptic curves and define the degree map:

deg : Hom(E1, E2) → Z.

(ϕ : E1 → E2) 7→ deg(ϕ)

This map is a positive definite quadratic form.

Proof. In this proof we always take ϕ, ψ ∈ Hom(E1, E1) := End(E1).
We will not prove that the degree map is positive definite. To do this, one
proves that
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• deg(ϕ) ≥ 0 ∀ϕ ∈ Hom(E1, E2) and,

• deg(ϕ) = 0 ⇐⇒ ϕ = 0.

Now we continue the proof by showing that the degree map is a quadratic form,
that is

• deg(−ϕ) = deg([−1] ◦ ϕ) = deg([−1]) · deg(ϕ) = deg(ϕ), and

• the mapping

Hom(E1, E2)×Hom(E1, E2) → R,
⟨ϕ, ψ⟩ 7→ deg(ϕ+ ψ)− deg(ϕ)− deg(ψ)

is bilinear.

To verify this, we use the injection [.] : Z → End(E1).

⟨ϕ, ψ⟩ = deg(ϕ+ ψ)− deg(ϕ)− deg(ψ)

= (ϕ̂+ ψ) ◦ (ϕ+ ψ)− ϕ̂ ◦ ϕ− ψ̂ ◦ ψ (by Property 1)

= (ϕ̂+ ψ̂) ◦ (ϕ+ ψ)− ϕ̂ ◦ ϕ− ψ̂ ◦ ψ (by Property 3)

= ϕ̂ ◦ ϕ+ ϕ̂ ◦ ψ + ψ̂ ◦ ϕ+ ψ̂ ◦ ψ − ϕ̂ ◦ ϕ− ψ̂ ◦ ψ

= ϕ̂ ◦ ψ + ψ̂ ◦ ϕ. (1.6.1)

Let us show that (1.6.1) is linear in ϕ. To do this, we need to prove the
following two conditions.

– Additive: We get

[⟨ϕ1 + ϕ2, ψ⟩] = ̂(ϕ1 + ϕ2) ◦ ψ + (̂ψ) ◦ (ϕ1 + ϕ2)

= ϕ̂1 ◦ ψ + ϕ̂2 ◦ ψ + ψ̂ ◦ ϕ1 + ψ̂ ◦ ϕ2 (by property 2)

= [⟨ϕ, ψ1⟩] + [⟨ϕ, ψ2⟩].

– Homogeneity: We have

[⟨nϕ, ψ⟩] = (nϕ̂) ◦ ψ + ψ ◦ (nϕ)

= nϕ̂ ◦ ψ + nψ ◦ ϕ

= n(ϕ̂ ◦ ψ + ψ ◦ ϕ)
= n[⟨ϕ, ψ⟩].

So Expression(1.6.1) is linear in ϕ.

Let us now show that (1.6.1) is linear in ψ.
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– Additive:

[⟨ϕ, ψ1 + ψ2⟩] = ϕ̂ ◦ (ψ1 + ψ2) + ̂(ψ1 + ψ2) ◦ ϕ

= ϕ̂ ◦ ψ1 + ϕ̂ ◦ ψ2 + ψ̂1 ◦ ϕ+ ψ̂2 ◦ ϕ (by Property 1)

= [⟨ϕ, ψ1⟩] + [⟨ϕ, ψ2⟩]

– Homogeneity:

[⟨ϕ, nψ⟩] = ϕ̂ ◦ (nψ) + (nψ) ◦ ϕ

= nϕ̂ ◦ ψ + nψ ◦ ϕ

= n(ϕ̂ ◦ ψ + ψ ◦ ϕ)
= n[⟨ϕ, ψ⟩]

So (1.6.1) is linear in ψ and hence, bilinearity is verified

Proposition 1.16: [Sil09, Lemma V.1.2 (p. 138)]

Let G be an abelian group, let d : G→ Z be a positive definite quadratic
form and | · | the usual absolute value on R. Then,

|d(ψ − ϕ)− d(ψ)− d(ϕ)| ≤ 2
√
d(ψ)d(ϕ) for all ψ, ϕ ∈ G. (1.6.2)

Proof. Let us define L(ϕ, ψ) = d(ψ−ϕ)−d(ϕ)−d(ψ). We have shown in Theorem
1.1 that this map is bilinear. If ϕ, ψ ∈ G andm,n ∈ Z then nϕ,mψ ∈ G. Hence,
L(nϕ,mψ) = d(mψ − nϕ)− d(nϕ)− d(mψ). Rewriting this equation, we get:

d(mψ − nϕ) = d(mψ) + d(nϕ) + L(mψ,nϕ)

= m2d(ψ) + n2d(ϕ) + L(mψ,nϕ) (d is quadratic)

= m2d(ψ) + n2d(ϕ) +mnL(ψ, ϕ). (L is bilinear) (1.6.3)

Since d is positive definite, d(mψ−nϕ) ≥ 0 where the expression of d(mψ−nϕ)
is given by (1.6.3). Then, we get:

m2d(ψ) + n2d(ϕ) +mnL(ψ, ϕ) ≥ 0. (1.6.4)

Now, by replacing m = −L(ψ, ϕ) and n = 2d(ψ) into (1.6.4), we get:

0 ≤ L2(ψ, ϕ)d(Ψ) + 4d2(ψ)d(ϕ) + 2d(ψ)(−L(ψ, ϕ))L(ψ, ϕ)
=((((((
L2(ψ, ϕ)d(ψ) + 4d2(ψ)d(ϕ)− �2L

2(ψ, ϕ)d(ψ)

= 4d2(ψ)d(ϕ)− L2(ψ, ϕ)d(ψ)

= d(ψ)[4d(ψ)d(ϕ)− L2(ψ, ϕ)]. (1.6.5)
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• If ψ ̸= 0, then d(ψ) > 0 because d is positive definite. So we can divide
(1.6.5) by d(ψ) and we get:

0 ≤ 4d(ψ)d(ϕ)− L2(ψ, ϕ)

L2(ψ, ϕ) ≤ 4d(ψ)d(ϕ)

|L(ψ, ϕ)| ≤ 2
√
d(ψ)d(ϕ) (taking square root)

|d(ψ − ϕ)− d(ψ)− d(ϕ)| ≤ 2
√
d(ψ)d(ϕ). (replacing L)

• If ψ = 0, then d(ψ) = 0 because d is positive definite. Replacing d(ψ) = 0
into (1.6.2), it becomes:

|d(0− ϕ)− d(0)− d(ϕ)| = |d(−ϕ)− d(ϕ)| = 0,

2
√
d(ψ)d(ϕ) = 2

√
0× d(ϕ) = 0.

Remark 1.15. The pair (Hom(E1, E2),+) is an abelian group. Furthermore, in
Theorem 1.1 we have shown that the degree map deg : Hom(E1, E2) → Z is
a positive definite quadratic form. So, the conditions of Proposition 1.16 are
verified. This gives us the following special case of Proposition 1.16:

|deg(ϕ−Ψ)− deg(ψ)− deg(ϕ)| ≤ 2
√
deg(ψ)deg(ϕ) ∀ϕ,Ψ ∈ Hom(E1, E2).

Proposition 1.17: [Sil09, Theorem III.4.10 (p. 72-73)]

Let ϕ : E1 → E2 be a non-zero isogeny. If ϕ is separable, then #ker(ϕ) =
deg(ϕ).

Proof. See [Sil09, Theorem III.4.10. (p. 72-73)].

1.7 Hasse’s bound

Proposition 1.18: [Sil09, Theorem V.1.1 (p. 138)]

If E is an elliptic curve defined over a finite field Fq, then

|#E(Fq)− q − 1| ≤ 2
√
q.

Alternatively, this means that #E(Fq) is one of the integers contained
in the closed interval [−2

√
q + q + 1; 2

√
q + q + 1].

Proof. In Proposition 1.10, we showed that for any point P ∈ E(Fq)

P ∈ E(Fq) ⇐⇒ ϕq(P ) = P ⇐⇒ (1− ϕq)(P ) = 0.
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Thus, we get that E(Fq) = ker(1−ϕq). In Remark 1.14, we showed that 1−ϕq
is a separable map. Applying Proposition 1.17 to 1− ϕq gives #ker(1− ϕq) =
deg(1− ϕq). Hence, Proposition 1.16 yields

|#E(Fq)− 1− q| = |deg(1− ϕq)− deg(1)− deg(ϕq)|

≤ 2
√
deg(1) deg(q)

= 2
√
1 · q

= 2
√
q.

We now get rid of the absolute value in the previous inequation:

|#E(Fq)− q − 1| ≤ 2
√
q

⇐⇒ − 2
√
q ≤ #E(Fq)− q − 1 ≤ 2

√
q

⇐⇒ − 2
√
q + q + 1 ≤ #E(Fq) ≤ 2

√
q + q + 1.

Since #E(Fq) is always an integer, the proof is done.

The following code gives us a visualization of Hasse’s bound depending on
the cardinality of the finite field the elliptic curve is defined on. The blue lines
give us the values that #E(Fq) could take. Note that one can only take the
integers in these blue lines.

from sage.all import *

def plot_hasse_weil_up_to_q(max_q=1000):

q_values = [q for q in range(2, max_q+1) if ZZ(q).

is_prime_power ()]

p = Graphics ()

p.set_axes_range(0, max_q + 1, 0, 2*max_q + 2)

p.axes_labels([’Field size $q$’, ’Number of points ’])

p.set_aspect_ratio(’automatic ’)

for q in q_values:

lower = q + 1 - 2*sqrt(q)

upper = q + 1 + 2*sqrt(q)

p += line([(q, lower), (q, upper)], color=’blue’, thickness

=1)

p += point((q, lower), color=’red’, size=20)

p += point((q, upper), color=’red’, size=20)

q_sym = var(’q’)

upper_bound = plot(q_sym + 1 + 2*sqrt(q_sym), (q_sym , 1, max_q)

, color=’red’, linestyle=’--’

)

lower_bound = plot(q_sym + 1 - 2*sqrt(q_sym), (q_sym , 1, max_q)

, color=’red’, linestyle=’--’

)

p += upper_bound

p += lower_bound

return p
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plot_hasse_weil_up_to_q(100).show(figsize=10 , axes=True , frame=True

,axes_labels=[’Field size $q$’,’
Number of points ’])

Figure 7: q < 100 Figure 8: q < 1000

Example 1.6. Take the elliptic curve E : y2 = x3 + 2x + 3 over F7. We have
that ∆E = −16 · (4 · 23 + 27 · 32) = −4400 ≡ 4 (mod 7). Since ∆E ̸= 0, the
curve is non-singular. Then Hasse’s bound gives us

|#E(F7)− 1− 7| ≤ 2
√
7

=⇒ |#E(F7)− 8| ≤ 2
√
7

=⇒ − 2
√
7 ≤ #E(F7)− 8 ≤ 2

√
7

=⇒ − 2
√
7 + 8 ≤ #E(F7) ≤ 2

√
7 + 8.

Since #E(F7) is in N, it is an integer in the closed interval [3, 13].

Let us show a naive way to compute #E(Fq) for an elliptic curve E : y2 =
x3 +Ax+B over a finite field Fq. Take x ∈ Fq and define the function

χ : Fq → {−1, 0, 1} :

χ(x) =


1 if x is a square in F∗

q ,

−1 if x is not a square in F∗
q ,

0 if x = 0.

We define χ(P (x)) where P (x) = x3 +Ax+B. Now ∀x ∈ F∗
q , we have

1 + χ(P (x)) =


2 if P (x) is a square in F∗

q ,

1 if P (x) = 0,

0 if P (x) is not a square in F∗
q .

For each x, this function 1 + χ(P (x)) gives us the amount of points with that
specific x. If P (x) = 0, then y = 0 which gives us the point (0, 0) ∈ E(Fq) and
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if P (x) is a square, then the points (x, y) and (x,−y) are in E(Fq) for some y
in Fq. So

#E(Fq) = 1 +
∑
x∈Fq

(1 + χ(P (x))) = 1 + q +
∑
x∈Fq

χ(P (x))

because
∑

x∈Fq
1 = #Fq = q and we also need to add the point at infinity

O ∈ E(Fq).

Example 1.7. Let us now comeback to Example 1.6 and compute explicitly
#E(F7) with the formula #E(Fq) = 1+q+

∑
x∈Fq

χ(P (x)). Recall that f(x) =

x3 + 2x+ 3 and compute χ(f(x)) for all x ∈ Fq.

χ(f(0)) = χ(3) = −1,

χ(f(1)) = χ(6) = −1,

χ(f(2)) = 8 + 4 + 3 = χ(15) = χ(1) = 1,

χ(f(3)) = 27 + 6 + 3 = χ(36) = χ(1) = 1,

χ(f(4)) = χ(64 + 8 + 3) = χ(75) = χ(5) = −1,

χ(f(5)) = χ(125 + 10 + 3) = χ(138) = χ(5) = −1,

χ(f(6)) = χ(246 + 12 + 3) = χ(231) = χ(0) = 0.

So, the number of points is

#E(F7) = 1 +
∑
x∈Fq

(1 + χ(f(x))) = 1 + 7− 1− 1 + 1 + 1− 1− 1 + 0 = 6.
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2 Schoof’s algorithm

This section consists in going linearly through Schoof’s paper [Sch85] and ex-
plaining every step and reasoning he did in more details of his algorithm.

2.1 Division polynomials

We now introduce the division polynomials Ψm(x, y) ∈ Fq[x, y] for m ∈ N∗.
They are used to express the coordinates of the point [n]P in terms of the
coordinates of a point P . In the following, I write Ψm(x, y) = Ψm to simplify
the notation. When char(Fq) /∈ {2, 3}, these polynomials are defined as follows:

Ψ−1 = −1,

Ψ0 = 0,

Ψ1 = 1,

Ψ2 = 2y,

Ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

Ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3).

Furthermore, they satisfy the following recurrence relations

∀m ≥ 3,Ψ2m = Ψm(Ψm+2Ψ
2
m−1 −Ψm−2Ψ

2
m+1)/2y, (2.1.1)

∀m ≥ 2,Ψ2m+1 = Ψm+2Ψ
3
m −Ψ3

m+1Ψm−1. (2.1.2)

Remark 2.1. When we forget the previous assumption that char(Fq) /∈ {2, 3},
the division polynomials can be generalized as follows:

Ψ−1 = −1,

Ψ0 = 0,

Ψ1 = 1,

Ψ2 = 2y + a1x+ a3,

Ψ3 = 3x4 + b2x
3 + 4b4x

2 + 3b6x+ b8,

Ψ4 = (2y + a1x+ a3)(2x
6 + b2x

5 + 5b4x
4 + 10b6x

3

+ 10b8x
2 + (b2b8 − b4b6)x+ b4b8 − b26).

Proposition 2.1: [Sch85, Proposition 2.2 (p. 486)]

Let us take P = (x, y) ∈ E(Fq) and n ∈ N∗ such that [n]P ̸= 0. Then,

[n]P =

(
x− Ψn−1Ψn+1

(Ψn)2
,
Ψn+2(Ψn−1)

2 −Ψn−2(Ψn+1)
2

4y(Ψn)3

)
.

Proof. See [Sch85, Proposition (2.2.) (p. 486)].
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Example 2.1. Let us return to Example 1.2. We consider the elliptic curve
E : x3 + x + 1 over F11 and take the point P = (0, 1) ∈ E(F11). Here the
division polynomials become:

Ψ0 = 0,

Ψ1 = 1,

Ψ2 = 2y = 2,

Ψ3 = 3x4 + 6Ax2 + 12Bx−A2 = 3 · 0 + 6 · 1 · 0 + 12 · 1 · 0− 12 = −1,

Ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)

= 4 · 1(0 + 5 · 1 · 0 + 20 · 1 · 0− 5 · 12 · 0− 4 · 1 · 1 · 0− 8 · 12 − 13)

= 4(0 + 0 + 0− 0− 0− 8− 1) = 4(−9) = −36 ≡ 8 (mod 11).

Replacing these into Proposition 2.1, we get

[2]P =

(
x− Ψ0Ψ2

(Ψ1)2
,
Ψ3(Ψ1)

2 −Ψ−1(Ψ2)
2

4y(Ψ1)3

)
=
(
0− 1 · 10 · 2−2, 9 · 1 · (4 · 8)−1

)
=
(
−10 · 4−1, 8 · 32−1

)
= (−10 · 3, 8 · 10)
= (−30, 80)

≡ (3, 3) (mod 11).

Definition 2.1: Big ONotation

Let x := (x1, x2, · · · , xk) ∈ Rk and let f and g be functions defined on
some subset of Rk. Then we say that

f(x) is O(g(x)

if and only if there exist C in R and N in N such that every ni ≥ N and
| f(x) |≤| Cg(x) |

Proposition 2.2: [Sil09, variation of Exercise 3.7.(b) (p. 106)]

The division polynomials Ψm(x, y), where m ∈ N≥3 can be written in
the form

Ψm =

mx
m2−1

2 +O
(
x

m2−1
2 −2

)
if m is odd,

myx
m2−4

2 +O
(
yx

m2−4
2 −2

)
if m is even.

Proof. See Appendix B.
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Definition 2.2

Schoof defines the polynomials fm(x) such that

fm =

Ψ′
m = mx

m2−1
2 +O

(
x

m2−1
2 −2

)
if m is odd,

Ψ′
m/y = mx

m2−4
2 +O

(
x

m2−4
2 −2

)
if m is even.

Remark 2.2. By looking at Definition 2.2, it becomes clear that

deg(fm(x)) =

{
m2−1

2 if m is odd,
m2−4

2 if m is even.

Proposition 2.3: Sch85, Proposition 2.1 (p. 486)]

Let P = (x, y) ∈ E(Fq) such that P /∈ E[2]. Let ℓ ∈ Z≥−1. Then
fℓ(x) = 0 ⇐⇒ [ℓ]P = O.

Proof. See [Sch85, p. 486].

Note that Proposition 2.3 helps determine the ℓth torsion point. Concluding
from Definition 1.12, P is in E[ℓ] when fℓ(x) = 0.

2.2 Summary of Schoof’s algorithm

Summary 2.1. Schoof’s algorithm consists of the following steps:

1. We will consider ℓ = 3, 5, 7, ..., L small prime numbers†. Then we need to
find L such that

∏
ℓ≤L
ℓ ̸=2,p

ℓ > 4
√
q.††

2. We need to compute the Frobenius trace t (mod ℓ) for sufficiently many
(small) primes ℓ.

3. Use the Chinese Remainder Theorem to conclude t (mod
∏
ℓ≤L
ℓ ̸=2,p

ℓ).

4. By knowing the Frobenius trace t, we can compute #E(Fq) = q + 1− t.

In the following subsections, we present a detailed analysis of the steps presented
in Summary 2.1.

†We are choosing small prime numbers for computational reasons. Indeed, many computa-
tions in this algorithm involve the division polynomials Ψm (see Section 2.3). In Remark
2.2, we have discussed the degree of the polynomials fm which are almost equal to the
division polynomials. For a rather small prime n = 19, we have already deg(f19(x))=180.

††We know that t = 1 + q − #E(Fq). By Hasse’s bound in Proposition 1.18, we know that
| t |≤ 2

√
q. So, the Frobenius trace t is in a closed interval I = [−2

√
q, 2

√
q], where the

length of I is 4q.
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2.3 How to compute t mod l

In this subsection, we discuss the second step of Schoof’s algorithm described
in Summary 2.1 [Sch85, p. 486-489].

Proposition 2.4

Let ϕℓ : Tℓ → Tℓ be the map that induces on the Tate module (for an
explanation of the “Tate module” and the symbol Tℓ(E), see [Sil09,
p.86-98]). Then, applying the Cayley-Hamilton theorem [HJ13, Theo-
rem 2.4.3.2 (p. 109-110)] gives

ϕ2ℓ − tϕℓ + q = 0, (2.3.1)

where t is the Frobenius trace.

If we are now looking for P ∈ E[ℓ], Equation (2.3.1) turns into

ϕ2ℓ(P ) + [q]P ≡ [τ ]ϕℓ(P ) (mod ℓ), (2.3.2)

where τ ≡ t (mod ℓ). We can now compute t (mod ℓ) by verifying which τ
verifies (2.3.2).

Proposition 2.5

The right-hand side of (2.3.2) can be rewritten as

[τ ]ϕℓ(P )=

(
xq−

(
Ψτ−1Ψτ+1

(Ψτ )2

)q

,

(
Ψτ+2(Ψτ−1)

2 −Ψτ−2(Ψτ+1)
2

4y(Ψτ )3

)q)
.

(2.3.3)
In particular, when τ = 0, then (2.3.3) becomes: [0]ϕℓ(P ) = 0.

Proof. When τ = 0, then by Remark 1.13, we get that [0]ϕl(P ) = 0. Fur-
thermore, when τ ̸= 0, we conclude as follows. The division polynomials Ψk

are considered as polynomials in Fq[x, y]. Then Ψk((x
q, yq)) = (Ψk((x, y)))

q by
Remark 1.7. Let us denote [τ ]ϕℓ(P ) by (X([τ ]ϕℓ(P )), Y ([τ ]ϕℓ(P ))) where

X([τ ]ϕℓ(P ))=x
q− Ψτ−1(x

q, yq)Ψτ+1(x
q, yq)

(Ψτ (xq, yq))2
=xq−

(
Ψτ−1(x, y)Ψτ+1(x, y)

(Ψτ (x, y))2

)q

,

and

Y ([τ ]ϕℓ(P )) =

(
Ψτ+2(x

q, yq) (Ψτ−1(x
q, yq))2−Ψτ−2(x

q, yq) (Ψτ+1 (x
q, yq))2

4y(Ψτ (xq, yq))3

)
=

(
Ψτ+2 (x, y) (Ψτ−1 (x, y))

2 −Ψτ−2 (x, y) (Ψτ+1 (x, y))
2

4y(Ψτ (x, y))3

)q

.
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For the left-hand side of (2.3.1), [q]P is given by Proposition 2.1 and ϕ2ℓ(P ) is
the qth-Frobenius endomorphism ϕq (see Remark 1.7) applied two times to a
point P . Furthermore, the term on the right-hand side of (2.3.2), [τ ]ϕℓ(P ), is
given by Proposition 2.5. Now that we know all these expressions for the terms
in (2.3.2), we can replace them and get:

(xq
2

; yq
2

) +

(
x− Ψq−1Ψq+1

(Ψq)2
,
Ψq+2(Ψq−1)

2 −Ψq−2(Ψq+1)
2

4y(Ψq)3

)

=

{
0 if r ≡ 0 (mod ℓ),(
xq −

(
Ψr−1Ψr+1

Ψ2
r

)q
,
(

Ψr+2(Ψr−1)
2−Ψr−2(Ψr+1)

2

4y(Ψr)3

)q)
otherwise.

(2.3.4)

Let P be in E[ℓ]. Then, by Reasoning C.3, Equation (2.3.2) holds if and only if
ϕ2ℓ(P ) + [k]P = rϕℓ(P ) where k ≡ q (mod ℓ).

In order to solve the system (2.3.4), we will sooner or later use the addition
formulas from Proposition 1.8 to compute the sum on the left side. Remember
that these addition formulas distinguish the cases if the two points P1 and P2

that we add are the same, the opposite, or not equal at all. In order to find out
if these two points are the same, or the opposite to each other, we verify

ϕ2ℓ(P ) = ±[k]P (2.3.5)

where k ≡ q (mod ℓ). Let us denote ϕ2ℓ(P ) by (X(ϕ2ℓ(P )), Y (ϕ2ℓ(P ))) and [k]P =
(X([k]P ), Y ([k]P )). By Reasoning C.4, Equation (2.3.5) holds if

X(ϕ2ℓ(P )) = X([k]P ), and (2.3.6)

Y (ϕ2ℓ(P )) = ±Y ([k]P ) (2.3.7)

hold. Now since [k]P is given by Propoosition 2.1 and ϕℓ is given by Remark
1.7, Equation (2.3.6) becomes

xq
2

= x− Ψk−1Ψk+1

Ψk
. (2.3.8)

Equation (2.3.8) exists because the denominator does not vanish by Remark
C.2.

Proposition 2.6

By rewriting (2.3.8) using fk instead of Ψk, it transforms into Fk(x) = 0
where

Fk(x)=

{
(xq

2 − x)(x3+Ax+B)f2k (x)+fk−1(x)fk+1(x) if k is even,

(xq
2 − x)f2k (x)− (x3 +Ax+B)fk−1(x)fk+1(x) if k is odd.
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Proof. Since the polynomials fk(x) from Definition 2.2 depend on the parity of
k, we need to consider two cases.
Let k be even (Then k − 1 and k + 1 are odd.)
By using the polynomials fk(x) instead of Ψk and choosing a common denomi-
nator in Equation (2.3.8), we obtain

xq
2

= x− fk−1(x)fk+1(x)

y2(fk(x))2

⇐⇒ x− fk−1(x)fk+1(x)

y2(fk(x))2
− xq

2

= 0

⇐⇒ (x− xq
2

)y2(fk(x))
2 − fk−1(x)fk+1(x)

y2(fk(x))2
= 0.

Replacing y2 = x3 +Ax+B into the previous expression gives

(xq
2 − x)(x3 +Ax+B)(fk(x))

2 + fk−1(x)fk+1(x)

(fk(x))2(x3 +Ax+B)
= 0. (2.3.9)

Multiplying by the denominator yields

(xq
2

− x)(x3 +Ax+B)(fk(x))
2 + fk−2(x)fk+2(x) = 0.

This finishes the case when k is even.

Let k be odd. (Then k − 1 and k + 1 are even.)
Using the polynomials fk(x) instead of Ψk and bringing all the terms in (2.3.8)
to one side gives

x− xq
2

− y2fk−1(x)fk+1(x)

(fk(x))2
= 0. (2.3.10)

Rewriting the expression (2.3.10) with a common denominator gives us:

(x− xq
2

)(fk(x))
2 − y2fk−1(x)fk+1(x)

(fk(x))2
= 0. (2.3.11)

Multiplying (2.3.11) by its denominator and replacing y2 = x3 + Ax + B, we
obtain

(xq
2

− x)(fk(x))
2 − (x3 +Ax+B) · fk−1(x)fk+1(x) = 0.

This finishes the case where k is odd.

Now we want to compute the greatest common divisor of Fk(x) (from Proposi-
tion 2.6) and fl(x) (from Definition 2.2. We will denote it by gcd(Fk(x), fl(x)).
Let gcd(Fk(x), fℓ(x)) ̸= 1. Then, by Reasoning C.2, we know that there is a
non-zero point P ∈ E[ℓ] satisfying (2.3.5). This is what Schoof defines as case
1 (see [Sch85, p. 488-489] and Section 2.3.1).
Let gcd(Fk(x), fℓ(x)) = 1. Then, by Reasoning C.2, there is no point P ∈ E[ℓ]
such that Equation (2.3.5) is verified. Hence, we know that for each P ∈ E[ℓ],
[q]P ̸= ±ϕ2ℓ(P ). Schoof calls this case 2 (see [Sch85, p. 489] and Section 2.3.2).
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2.3.1 Case 1 [Sch85, p. 488-489]

In this case we know that there is a point P ∈ E[ℓ] such that

ϕ2ℓ(P ) = ±[q]P. (2.3.12)

By working modulo ℓ, Reasoning C.3 applies and Equation (2.3.12) becomes:

ϕ2ℓ(P ) ≡ ±[k]P (mod ℓ). (2.3.13)

Subcase 1: If ϕ2ℓ(P ) = −[q]P (for P ∈ E[ℓ] non-zero), we can replace this into
Equation (2.3.1): ϕ2ℓ(P )− [t]ϕℓ(P )+ [q]P = 0 and get [t]ϕℓ(P ) = 0. This impies

[t] = 0 or ϕℓ(P ) = 0. (2.3.14)

Proposition 2.7

If P is non-zero, then ϕℓ(P ) ̸= 0.

Proof. Let us suppose that ϕℓ(P ) = 0. Clearly, ϕℓ(0) = 0. In Remark 1.9, we
stated that the Frobenius endomorphism was injective. Thus P = 0. Contra-
dicting that P is non-zero, ϕℓ(P ) ̸= 0.

In Equation (2.3.14), we can exclude the case ϕℓ(P ) = 0. Now there is only one
possibility left in (2.3.14): [t] = 0, which implies that t ≡ 0 (mod ℓ).
Subcase 2: If ϕ2ℓ(P ) = [q]P , we replace this into (2.3.1) and get:

[q]P − [t]ϕℓ(P ) + q[P ] = 0 (2.3.15)

=⇒ [2q]P − [t]ϕℓ(P ) = 0 (2.3.16)

=⇒ ϕℓ =
2q

t
(2.3.17)

because t ̸≡ 0 (mod ℓ). Squaring Equation (2.3.17) and multiplying by t2 yields

t2ϕ2ℓ = 4q2. (2.3.18)

We are in the subcase where ϕ2ℓ(P ) = [q]P . Hence (2.3.18) becomes

t2[q]P = [4q2]P. (2.3.19)

Since both maps in Equation (2.3.19) are applied to the same point P , they are
equal. Dividing by 2q ̸≡ 0 (mod ℓ) yields

2q =
t2

2
(2.3.20)
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Now replacing (2.3.20) into (2.3.16), we get:(
t2

2
− tϕℓ

)
(P ) = 0

=⇒ t

(
t

2
− ϕℓ

)
(P ) = 0

=⇒
(
t

2
− ϕℓ

)
(P ) = 0 because t ̸≡ 0 (mod ℓ)

=⇒
(
ϕℓ −

t

2

)
(P ) = 0.

We now denote by w ∈ Fℓ such that q ≡ w2 (mod ℓ). Then (2.3.20) becomes
t2 = 4w2 =⇒ t = ±2w. We now test if there is a point P ∈ E[ℓ] satisfying

ϕℓ(P ) = ±[w]P. (2.3.21)

Let us denote ϕℓ(P ) by (X(ϕℓ(P )), Y (ϕℓ(P ))) and [w]P = (X([w]P ), Y ([w]P )).
By Reasoning C.4, solving Equation (2.3.5) means solving

X(ϕℓ(P )) = X([w]P ), and (2.3.22)

Y (ϕℓ(P )) = ±Y ([w]P ). (2.3.23)

We know the explicit form of each term of (2.3.21): the expression for [w]P is
given by Proposition 2.1 and ϕℓ(P ) is the qth-Frobenius endomorphis applied
to P . Then Equation (2.3.22)

xq = x− Ψw−1(x)Ψw+1(x)

(Ψw(x))2
. (2.3.24)

Equation (2.3.24) exists because the denominator does not vanish by Remark
C.2.

Proposition 2.8

Equation (2.3.24) turns into Gk(x) = 0 where

Gw(x) =

{
(xq − x)(x3 +Ax+B)f2w(x) + fw−1(x)fw+1(x) if w even,

(xq − x)f2w(x)− (x3 +Ax+B)fw−1(x)fw+1(x) if w odd.

when using the polynomials fw instead of the Ψw’s.

Proof. Since the polynomials fw(x) depend on the parity of w, we need to
consider two cases: w even and w odd.

Let w be even. (Then w − 1 and w + 1 are odd.)
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Then rewriting Equation (2.3.24) with fk instead of Ψk yields

xq = x− fw−1(x)fw+1(x)

y2(fw(x))2

⇐⇒ 0 = x− fw−1(x)fw+1(x)

y2(fw(x))2
− xq

⇐⇒ 0 =
(x− xq)y2(fw(x))

2 − fw−1(x)fw+1(x)

y2(fw(x))2
.

Replacing y2 = x3 +Ax+B into the previous expression gives

0 =
(x− xq)(x3 +Ax+B)(fk(x))

2 − fk−1(x)fk+1(x)

y2(fk(x))2
.

Multiplying the previous equation by its denominator, we obtain

(xq − x)(x3 +Ax+B)(fw(x))
2 + fw−1(x)fw+1(x) = 0.

This finishes the case where w is even.

Suppose w is odd. Then w−1 and w+1 are even and rewriting Equation (2.3.24)
with the polynomials fw from Definition 2.2 gives us

xq = x− (y · fw−1(x))(y · fw+1(x))

(fw(x))2
.

Taking all terms to one side and substituting y2 = x3 +Ax+B yields

(xq − x) · ((fw(x))2 − (x3 +Ax+B) · fw−1(x)fw+1(x)) = 0.

We multiply the previous expression by its denominator and obtain

(xq − x)(fw(x))
2 − (x3 +Ax+B) · fw−1(x)fw+1(x) = 0.

This finishes the case when w is odd and concludes the proof.

We now want to compute gcd(Gk(x), fℓ(x)), where fℓ(x) is given by Definition
2.2.
Suppose gcd(Fk(x), fℓ(x)) = 1. Then, by Reasoning C.2, we get that there is no
P ∈ E[ℓ] such that (2.3.21) is verified. Hence, we know that for each P ∈ E[ℓ],
[w]P ̸= ±ϕℓ(P ) is verified. Squaring this expression, we are in the case where
ϕ2ℓ(P ) = ±[q]P . As stated in subcase 1, we now have t ≡ 0 (mod ℓ).
Let gcd(Gk(x), fℓ(x)) ̸= 1. Then, by Reasoning C.2, we know that there is a
non-zero point P ∈ E[ℓ] satisfying (2.3.21).
Now we know that there is P ∈ E[ℓ] such that ϕℓ(P ) = ±ωP . But we still need
to determine the sign. In order to do this, we consider Equation (2.3.23), but
only the part

Y (ϕℓ(P )) = Y ([w]P ), (2.3.25)
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where ϕℓ(P ) is given by Remark 1.7 and [ω]P is given by Proposition 2.1.
Substituting these values into Equation (2.3.25), we obtain

yq =
Ψw+2(Ψw−1)

2 −Ψw−2(Ψw+1)
2

4y(Ψw)3
. (2.3.26)

Equation (2.3.26) exists because the denominator does not vanish by Proposition
C.1 and Remark C.2.

Proposition 2.9

Equation (2.3.26) transforms into Hk(x) = 0†, where

Hw(x)
†† =

{
4(x3 +Ax+B)

q−1
2 f3w − fw+2f

2
w−1 + fw−2f

2
w+1 if w odd,

4(x3 +Ax+B)
q+3
2 f3w − fw+2f

2
w−1 + fw−2f

2
w+1 if w even

by using fw instead of Ψw

Proof. Since fw depend on the parity of w, we need to do two cases.

If w is odd, Equation (2.3.26) transforms into

yq =
fw+2(yfw−1)

2 − fw−2(yfw+1)
2

4y(fw)3
.

Taking everything to one side and taking a common denominator yields

y2
[
−4yq−1(fw)

3 + fw+2(fw−1)
2 − fw−2(fw+1)

2
]

4y(fw)3
= 0.

Multiplying by the denominator gives us

y2(−4yq−1(fw)
3 + fw+2(fw−1)

2 − fw−2(fw+1)
2) = 0. (2.3.27)

Thanks to Proposition C.1 (1), we can divide Equation (2.3.27) by y2 and for
every power of y remaining, we replace y2 = x3 +Ax+B. We obtain

4(x3 +Ax+B)
q−1
2 (fw)

3 − fw+2(fw−1)
2 + fw−2(fw+1)

2 = 0. (2.3.28)

This concludes the proof in the odd case.

If w is even, Equation (2.3.26) becomes

yq =
yfw+2(fw−1)

2 − yfw−2(fw+1)
2

4y(yfw)3
. (2.3.29)

†In [Sch85, p. 489], the author mistakenly inverted the roles of even and odd.
††In [Sch85, p. 489], there are some of the squares missing in the author’s equation (18).
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As already mentioned, the denominator of Equation (2.3.29) does not vanish.
Hence we multiply (2.3.29) by its denominator and get

4yq+4(fw)
3 − yfw+2(fw−1)

2 + yfw−2(fw+1)
2 = 0.

Thanks to Proposition C.1 (1), we can divide Equation (2.3.27) by y and for
every power of y remaining, we replace y2 = x3 +Ax+B. This yields

⇐⇒ 4(x3 +Ax+B)
q+3
2 f3w − fw+2f

2
w−1 + fw−2f

2
w+1 = 0.

This concludes the proof in the even case.

We want to compute gcd(H(x), fℓ(x)).

Proposition 2.10

• If gcd(H(x), fℓ(x)) ̸= 1, then t ≡ 2w (mod ℓ).

• If gcd(H(x), fℓ(x)) = 1, then t ≡ −2w (mod ℓ).

Proof. Suppose gcd(H(x), fℓ(x)) ̸= 1. Then, by Reasoning C.2, there exists
P ∈ E[ℓ] such that ϕℓ(P ) = [w]P . Substituting ϕℓ(P ) = [w]P into (2.3.1), we
get

(ϕ2 − [t]ϕ+ q)P = O
⇐⇒ (q − [tw] + q)P = O
⇐⇒ (−tw + 2q)P = O
⇐⇒ 2q = tw

⇐⇒ tw = 2w2

⇐⇒ t = 2w.

Suppose now that gcd(H(x), fℓ(x)) = 1. Then, by Reasoning C.2 there is no
point P ∈ E[ℓ] such that ϕ(P ) = [w]P . But we have seen that there is P ∈ E[ℓ]
such that ϕ(P ) = ±[w]P , hence, we must have that there is P ∈ E[ℓ] such that
ϕ(P ) = −[w]P . Now by replacing this into (2.3.1), we get

(ϕ2 − tϕ+ q)P = O
⇐⇒ (tw + 2q)P = O
⇐⇒ − 2q = tw. (2.3.30)

Since we supposed q ≡ w2 (mod ℓ), Equation (2.3.30) becomes t = −2w.

2.3.2 Case 2 [Sch85, p. 489]

We now turn to case 2 of Schoof’s proof [Sch85, p. 489], where ϕ2ℓ(P ) ̸= ±[q]P .
We want to compute

ϕ2ℓ(P ) + [q](P ) = τϕℓ(P ). (2.3.31)
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We start by computing the left-hand side of (2.3.31).

Proposition 2.11

If ϕ2ℓ(P ) ̸= ±[q](P ), then

ϕ2ℓ(P ) + [q](P )

=

(
−xq

2

−x+ Ψk−1Ψk+1

Ψ2
k

+λ2,−yq
2

−λ
(
−2xq

2

−x+
Ψk−1Ψk+1

Ψ2
k

+λ2
))

,

(2.3.32)

where

λ =
Ψk+2Ψ

2
k−1 −Ψk−2Ψ

2
k+1 − 4yp

2+1Ψ3
k

[Ψ2
k(x− xp2)−Ψk−1Ψk+1]4yΨk

.

Proof. To ease the notation, we denote ϕ2ℓ(P ) by (X(ϕ2ℓ(P )), Y (ϕ2ℓ(P ))) and [q]P
by (X([q]P ), Y ([q]P )). Since ϕ2ℓ(P ) ̸= ±[q](P ), we use the addition formulas in
Proposition 1.8 (v). We have that [q]P is defined by Proposition 2.1 and ϕ2ℓ is
given in Remark 1.7. Let us start by computing the slope

λ =
Y ([q]P )− Y (ϕ2ℓ(P ))

X([q]P )−X(ϕ2ℓ(P ))
. (2.3.33)

This slope exists because ϕ2ℓ(P ) ̸= ±[q](P ). The numerator of (2.3.33) is

Y ([q]P )− Y (ϕ2ℓ(P )) =
Ψk+2Ψ

2
k−1 −Ψk−2Ψ

2
k+1

4yΨ3
k

− yq
2

=
Ψk+2Ψ

2
k−1 −Ψk−2Ψ

2
k+1 − 4yq

2+1Ψ3
k

4yΨ3
k

.

The denominator of (2.3.33) becomes

X([q]P )−X(ϕ2ℓ(P )) = x− Ψk−1Ψk+1

Ψ2
k

− xq
2

=
Ψ2

k(x− xq
2

)−Ψk−1Ψk+1

Ψ2
k

.

We then substitute these two values into (2.3.33) and simplify by Ψ2
k to get

λ =
[Ψk+2Ψ

2
k−1 −Ψk−2Ψ

2
k+1 − 4yp

2+1Ψ3
k]Ψ

2
k

[Ψ2
k(x− xp2)−Ψk−1Ψk+1]4yΨ3

k

=
Ψk+2Ψ

2
k−1 −Ψk−2Ψ

2
k+1 − 4yp

2+1Ψ3
k

[Ψ2
k(x− xp2)−Ψk−1Ψk+1]4yΨk

. (2.3.34)
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By the addition formulas in Proposition 1.8 (v), we get the following result†:

ϕ2ℓ(P ) + [q](P )

=

(
−xq

2

−x+
Ψk−1Ψk+1

Ψ2
k

+λ2,−yq
2

−λ
(
−xq

2

− x+
Ψk−1Ψk+1

Ψ2
k

+λ2− xq
2

))
=

(
−xq

2

−x+
Ψk−1Ψk+1

Ψ2
k

+λ2,−yq
2

−λ
(
−2xq

2

− x+
Ψk−1Ψk+1

Ψ2
k

+λ2
))

.

The λ we defined in Equation (2.3.34) is like in [Sch85, p.489]. Following Schoof,
we denote the numerator of λ by α†† and its denominator by β. That is:

α = Ψk+2Ψ
2
k−1 −Ψk−2Ψ

2
k+1 − 4yq

2+1Ψ3
k, (2.3.35)

β = [Ψ2
k(x− xq

2

)−Ψk−1Ψk+1]4yΨk. (2.3.36)

This finishes the computation for the left-hand side of Equation (2.3.31).

Remark 2.3. We already computed the right-hand side of (2.3.31) more explic-
itly in Proposition 2.5 and got:

[τ ]ϕℓ(P ) =

((
x− Ψr−1Ψr+1

(Ψr)2

)q

,

(
Ψr+2(Ψr−1)

2 −Ψr−2(Ψr+1)
2

4y(Ψr)3

)q)
.

(2.3.37)
Write [τ ]ϕℓ(P ) = (X([τ ]ϕℓ(P )), Y ([τ ]ϕℓ(P ))).

Now we replace the explicit expressions for the left-hand side (2.3.32) and the
right-hand side (2.3.37) into (2.3.31). We get

X([τ ]ϕℓ(P )) = −(xq
2

+ x) + λ2 +
Ψk−1Ψk+1

Ψ2
k

, (2.3.38)

Y ([τ ]ϕℓ(P )) = −α
β

(
−2xq

2

− x+
Ψk−1Ψk+1

Ψ2
k

+
α2

β2

)
− yq

2

. (2.3.39)

Proposition 2.12

Equation (2.3.38) can be rewritten as

Ψ2q
r

[
β2
[
Ψk−1Ψk+1 −Ψ2

k(x
q2 + x+ xq)

]
+ α2Ψ2

k

]
+β2Ψ2

k(Ψr−1Ψr+1)
q = 0.

Proof. Taking the common denominator on the left, respectively on right side
of Equation (2.3.38) gives us

−β2Ψ2
k(x

q2 + x) + α2Ψ2
k + β2Ψk−1Ψk+1

β2Ψ2
k

=
Ψ2q

r x
q − (Ψr−1Ψr+1)

q

Ψ2q
r

.

†In [Sch85, p. 489], the author forgot the term λ2 in the y-coordinates.
††Note that in the definition of α in [Sch85, p. 489], one should correct the second term of
the formula for α replacing Ψk−1 with Ψk−2.
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Since the denominators do not vanish, the terms all exist and we can multiply
the previous equation by β2Ψ2

kΨ
2q
r to get

Ψ2q
r

[
−β2Ψ2

k(x
q2 + x) + α2Ψ2

k + β2Ψk−1Ψk+1

]
=β2Ψ2

k

[
Ψ2q

r x
q−Ψq

r−1Ψ
q
r+1

]
.

Expanding the right-hand side of the previous equation yields

Ψ2q
r

[
−β2Ψ2

k(x
q2 + x) +α2Ψ2

k +β2Ψk−1Ψk+1

]
=β2Ψ2

kΨ
2q
r xq−β2Ψ2

kΨ
q
r−1Ψ

q
r+1.

In the previous expression, we can factor out the common term Ψ2q
r to obtain

Ψ2q
r

[
−β2Ψ2

kx
q − β2Ψ2

k(x
q2 + x) + α2Ψ2

k + β2Ψk−1Ψk+1

]
+ β2Ψ2q

k (Ψr−1Ψr+1)
q = 0.

Again, factoring the common β2 from the relevant terms in the previous equation
yields

Ψ2q
r

[
β2
[
Ψk−1Ψk+1 −Ψ2

k(x
q2 + x)−Ψ2

kx
q
]
+ α2Ψ2

k

]
+ β2Ψ2

kΨ
q
r−1Ψ

q
r+1 = 0.

By factorizing Ψ2
k in the previous equation, we obtain†:

Ψ2q
r

[
β2
[
Ψk−1Ψk+1 −Ψ2

k(x
q2 + x+ xq)

]
+ α2Ψ2

k

]
+ β2Ψ2

k(Ψr−1Ψr+1)
q = 0.

(2.3.40)

Remark 2.4. The equation ϕ2ℓ(P ) + [k]P = −[τ ]ϕℓ(P ) can also be rewritten in
the form (2.3.40).

Let P (x, y) be the left-hand side of Equation (2.3.40). If we now replace all the
division polynomials in P (x, y) by the polynomials defined in Definition 2.2, we
end up with a new polynomial P ′(x) which only depends on x.
We now want to compute gcd(P ′(x), fℓ(x)). Recall that P ′(x) comes from
Equation (2.3.32) for the x-coordinates.

Proposition 2.13

• If gcd(P ′(x), fℓ(x)) = 1, we need to try for the next τ .

• If gcd(P ′(x), fℓ(x)) ̸= 1, then t ≡ ±τ (mod ℓ).

Proof. • If gcd(P ′(x), fℓ(x)) = 1, there is no P ∈ E[ℓ] such that Equation
(2.3.2) is verified. We cannot conclude and need to try the next τ .

†In [Sch85, p. 489], the term Ψk should be squared.
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• If gcd(P ′(x), fℓ(x)) ̸= 1 , we have that there is a point in E[ℓ] satisfying
P ′(x), which is a rewriting of Equation (2.3.1). So we already know that
t ≡ ±τ (mod ℓ) and we proceed with the algorithm.

Remark 2.5. We now know that either ϕ2ℓ(P ) + [k]P = [τ ]ϕℓ(P ), or ϕ
2
ℓ(P ) +

[k]P = −[τ ]ϕℓ(P ) holds.

Let us check if there is P ∈ E[ℓ] that verifies ϕ2l (P ) + [k]P = [τ ]ϕl(P ). We do
this by verifying if Equation (2.3.39) holds.

Proposition 2.14

Equation (2.3.39) can be written as

4qyq(Ψr)
3q
[
α[Ψ2

kβ
2(2xq

2

+ x)− β2Ψk+1Ψk−1 − α2Ψ2
k]− yq

2

β3Ψ2
k

]
− β3Ψ2

k[Ψr+2(Ψr−1)
2 −Ψr−2(Ψr+1)

2] = 0.

Proof. Let us first consider the left-hand side of Equation (2.3.39) and take a
common denominator. We obtain

− α

β

(
Ψ2

kβ
2(−2xq

2 − x) + β2Ψk+1Ψk−1 + α2Ψ2
k

β2Ψ2
k

)
− yq

2

β3Ψ2
k

β3Ψ2
k

=
−α[−Ψ2

kβ
2(2xq

2

+ x) + β2Ψk+1Ψk−1 + α2Ψ2
k]− yq

2

β3Ψ2
k

β2Ψ2
k

=
α[Ψ2

kβ
2(2xq

2

+ x)− β2Ψk+1Ψk−1 − α2Ψ2
k]− yq

2

β3Ψ2
k

β2Ψ2
k

.

Multiplying Equation (2.3.39) by 4qyq(Ψr)
3qβ3Ψ2

k yields

4qyq(Ψr)
3q
[
α[Ψ2

kβ
2(2xq

2

+ x)− β2Ψk+1Ψk−1 − α2Ψ2
k]− yq

2

· β3Ψ2
k

]
= β3Ψ2

k[Ψr+2(Ψr−1)
2 −Ψr−2(Ψr+1)

2].

Now putting everything to one side in the previous equation gives us†:

4qyq(Ψr)
3q
[
α[Ψ2

kβ
2(2xq

2

+ x)− β2Ψk+1Ψk−1 − α2Ψ2
k]− yq

2

· β3Ψ2
k

]
− β3Ψ2

k[Ψr+2(Ψr−1)
2 −Ψr−2(Ψr+1)

2] = 0. (2.3.40)

Schoof stops here, but in fact there is a bit more to say. We need to substitute
the division polynomials in Equation (2.3.40) by the polynomials fk defined in

†This expression is completely different than the original one in Schoof’s paper [Sch85, p.
489] because the author carried on with the mistake mentioned on page 39 of this report.
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Definition 2.2. This way, Equation (2.3.40) has no more dependency on y.
Since these polynomials fk depend on the parity of k and τ , we need to consider
4 different cases for this step:

(i) when k and τ are even,

(ii) when k and τ are even,

(iii) when k is even and τ is odd,

(iv) when k is odd and τ is even.

We will illustrate these cases by computing one of them, namely case (i). The
three other cases work similarly.
First, we need to realize that α (2.3.35) and β (2.3.36) in Equation (2.3.40) also
depend on the parity of k. We address them first and obtain

αeven := yfk+2(fk−1)
2 − yfk−2(fk+1)

2 − 4yp
2+1(yfk)

3

= y
[
fk+2(fk−1)

2 − fk−2(fk+1)
2 − 4yp

2+3(fk)
3
]
,

and

βeven := [(yfk)
2(x− xp

2

)− fk−1fk+1]4y
2fk

= [(x3 +Ax+B)(fk)
2(x− xp

2

)− fk−1fk+1]4(x
3 +Ax+B)fk.

Now Equation (2.3.40) turns into

4qyq(yfr)
3q
[
αeven

(
(yfk)

2β2
even(2x

q2 + x)− β2
evenfk+1fk−1 − α2

even(yfk)
2
)

−yq
2

β3
even(yfk)

2
]
− β3

even(yfk)
2
[
yfr+2(fr−1)

2 − yfr−2(fr+1)
2
]
= 0.

Factoring out powers of y gives

4qy4q(fr)
3q
[
αeven

[
y2(fk)

2β2
even(2x

q2 + x)− β2
evenfk+1fk−1

− y2α2
even(fk)

2
]
− yq

2+2β3
even(fk)

2
]

− y3β3
even(fk)

2
[
fr+2(fr−1)

2 − fr−2(fr+1)
2
]
= 0.

Using that y2 = x3 +Ax+B, we have

4q(x3 +Ax+B)2q(fr)
3q
[
αeven

[
(x3 +Ax+B)(fk)

2β2
even(2x

q2 + x)

− β2
evenfk+1fk−1 − y2α2

even(fk)
2
]
− yq

2

(x3 +Ax+B)β3
even(fk)

2
]

− y(x3 +Ax+B)β3
even(fk)

2
[
fr+2(fr−1)

2 − fr−2(fr+1)
2
]
= 0.

Let us call the left-hand side of the previous equation Q(x).
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Proposition 2.15

• If gcd(Q(x), fl(x)) = 1, then t ≡ τ (mod ℓ).

• If gcd(Q(x), fl(x)) ̸= 1, then t ≡ −τ (mod ℓ).

Proof. • If gcd(Q(x), fl(x)) = 1, then by Reasoning C.2, there is no P ∈ E[ℓ]
satisfying ϕ2ℓ(P )+ [k]P = [τ ]ϕℓ(P ). Then, by Remark 2.5, ϕ2ℓ(P )+ [k]P =
−[τ ]ϕℓ(P ) is verified. Hence, t ≡ −τ (mod ℓ).

• If gcd(Q(x), fl(x)) ̸= 1, then by Reasoning C.2, there is P ∈ E[ℓ] satisfying
ϕ2ℓ(P ) + [k]P = [τ ]ϕℓ(P ). So, t ≡ τ (mod ℓ).

This concludes the algorithm to compute t (mod ℓ) presented in Schoof’s
paper [Sch85, p. 487-489].

2.4 Chinese Remainder theorem

This is the third step of Schoof’s algorithm described in Summary 2.1 [Sch85,
p. 490]. The Chinese Remainder theorem is used to determine t (mod

∏
ℓ≤L
ℓ ̸=2,p

ℓ).

Proposition 2.16: Chinese remainder theorem

Let m1,m2, . . . ,mk ∈ N∗ be pairwise coprime. Then the following sys-
tem 

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ ak (mod nk)

has a unique solution x̄ modulo M = m1m2 . . .mk. Reformulating: if
we have gcd(mi,mj) = 1 for i ̸= j, then the system of congruences is
verified by one unique x̄ ∈ [0,M − 1].
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A Projective Spaces

In this section, we introduce projective spaces and briefly compare them to affine
spaces to show some differences. After that, we describe what curves look like
in projective spaces. In preparation for the next section, we also introduce the
concepts of singular curves and points at infinity.

A.1 Homogeneous coordinates

Let us define an equivalence relation which will be useful later to define the
projective space. Let K be a field. For each integer n ∈ N∗, we define the
n-dimensional affine space An as the n-fold product Kn, that is

An(K) = {(x0, x1, . . . , xn−1) | x0, x1, . . . , xn−1 ∈ K}. (A.1.1)

We say that (x0, x1, . . . , xn−1) ∈ An and (y0, y1, . . . , yn−1) ∈ An and denote it
by (x0, x1, . . . , xn−1) ∼ (y0, y1, . . . , yn−1) if and only of there is a λ ∈ K∗ such
that (x0, . . . , x2) = λ(y0, . . . , y2).

Proposition A.1

The relation ∼ is an equivalence relation. The equivalence class of
(x0, x1, . . . , xn−1, xn) ∈ An+1 is denoted by [x0 : x1 : . . . : xn] and
called homogeneous coordinates.

Proof. Let x, y, z ∈ An(K) with x = (x0, . . . , xn), y = (y0, . . . , yn) and z =
(z0, . . . , zn).

1. Symmetry: If x ∼ y, then there is a λ ∈ K∗ such that (x0, . . . , xn) =
λ(y0, . . . , yn). Multiplying on both sides by λ−1 gives us finally (y0, . . . , yn)
= 1

λ (x0, . . . , xn) and so y ∼ x.

2. Reflexivity: Wee see that x ∼ x by taking λ to be the neutral multi-
plicative element of K.

3. Transitivity: If x ∼ y and y ∼ z, then there exist λ, µ ∈ K∗ such
that (x0, . . . , xn) = λ(y0, . . . , yn) and (y0, . . . , yn) = µ(z0, . . . , zn). Then
(x0, . . . , xn) = (λµ)(z0, . . . , zn), hence x ∼ z.

Using the equivalence relation from Proposition A.1, we now have all the tools
to define projective spaces.
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Definition A.1: Projective Space

Let K be a field. The projective n-space over K is defined as

Pn(K) :=
(
Kn+1 \ {0}

)
/ ∼,

where ∼ is the equivalence relation defined in Proposition A.1.

Remark A.1. You will also find references that defined the projective n-space
over K in the following way:

Pn(K) := {[x0 : x1 : · · · : xn] | (x0, . . . , xn) ∈ An+1(K), (x0, . . . , xn) ̸= 0}.

Remark A.2. The homogenization of the affine coordinates (x0, x1, . . . , xn−1) ∈
An(K) is the class [x0xn : x1xn : . . . : xn−1xn : xn] for any non-zero xn ∈ K∗.
The homogenization does not depend on the choice of xn because any two non-
zero choices xn, x

′
n ∈ K∗ produce the same class.

Example A.1. If (2, 3) ∈ A2(R), its homogenization is [2 : 3 : 1] ∈ P2(R).
Conversely, the homogeneous coordinates [5 : 1 : 3] ∈ P2(R) can be transformed
into

(
5
3 ,

1
3

)
∈ A2(R).

Definition A.2: Points at infinity

The points at infinity of Pn(K) are homogeneous coordinates of the form
[x0 : x1 : . . . : xn−1 : 0].

Remark A.3. The points at infinity are not in An(K)

Remark A.4. Specifically, all the points of the form [x0 : x1 : 0] ∈ P2(K) form
a line at infinity. Hence the projective 2-space over as field K can be seen as
extension of the affine 2-space over the same field K.

A.2 Curves in P2(K)

Definition A.3: Homogeneous Polynomial

A polynomial f ∈ K[x0, ..., xn] is homogeneous of degree d ≥ 1 if
f(λx0, . . . , λxn) = λdf(x0, . . . , xn) for all λ ∈ K \ {0}. We write
deg(f) = d.

Example A.2. f(x, y, z) = x2y2 +2xyz2 +17z4 is a homogeneous polynomial of
degree 4.
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Definition A.4: Curves in P2(K)

Let K be a field and let f ∈ K[X,Y, Z] be a non-constant homogeneous
polynomial of degree d ≥ 1. Then, a curve C in P2(K) is the set of all
homogeneous points [α : β : γ] ∈ P2(K) such that f(α, β, γ) = 0.

Let F (x, y, z) be a homogeneous polynomial of degree d ≥ 1 (i.e., every
monomial in F has total degree d). The homogeneous curve in the projective
plane P2 (over a field K, e.g., R or C) is the set of points:

C =
{
[x : y : z] ∈ P2 | F (x, y, z) = 0

}
,

where [x : y : z] denotes homogeneous coordinates (defined up to a non-zero
scalar multiple).

Remark A.5 (Homogenization of equations). The homogenized version of a (2-
variable) polynomial g(x, y) ∈ K[x, y] is G(x, y, z) = g

(
x
z ,

y
z

)
· zdeg(g), where

deg(g) is the highest sum of exponents in any term of g(x, y). The dehomoge-
nization of a homogeneous polynomial G(x, y, z) is G(x, y, 1).

Example A.3. For example,

• f(x, y) = x2y4 + x+ 2 + y3 ∈ R[x, y] becomes x2y4 + xz5 + 2z6 + y3z3.

• x2y3z + x2z4 + z6 becomes x2y3 + x2 + 1 ∈ R[x, y].

Example A.4 (Line in P2(K)). Take the polynomial:

F (x, y, z) = ax+ by + cz, where a, b, c ∈ K,

where at least one coefficient is non-zero. Then the set

H = {[α : β : γ] ∈ P2(K) | F (α, β, γ) = 0}

is a projective line.

Not all the curves in P2(K) behave the same way. Indeed, one could categorize
them into so-called “singular curves” or “non-singular curves”.

Definition A.5: Singular Curve

A curve of degree d is called singular at a point A = [X : Y : Z] ∈ P2(K)
if

∂f

∂X
=
∂f

∂Y
=
∂f

∂Z
= 0.

Definition A.6: Non-Singular Curve

A curve is called non-singular if it is not singular at any point of P2(K).

We now illustrate Definitions A.5 and A.6 with explicit examples.
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Example A.5. Let C be the projective curve over a field K defined by f(X,Y, Z)
= 3XZ +Y 2. We calculate the partial derivatives and try to find a singular
point: 

∂f
∂X = 3Z = 0
∂f
∂Y = 2Y = 0
∂f
∂Z = 3X = 0

The only solution to this system is when x = y = 0. However, we know that
[0 : 0 : 0] is not in P2(K). Hence C is non-singular.

Example A.6. Now let C be the projective curve in K defined by f(X,Y, Z) =
7X3 + 2Y 3. We can instantly see that ∂f

∂Z = 0. So, every point of the form
Pi = [0 : 0 : zi] (with zi ̸= 0) are singular points and therefore C is a singular
curve.

Let us now look at a definition of maps between curves and what it means
for this map to be separable.

Definition A.7: Map between Curves

Let C1 and C2 be algebraic curves. A map between them is a map

ϕ : C1 → C2

that assigns to each point P ∈ C1 a point ϕ(P ) ∈ C2.

Definition A.8: Morphism

A map ϕ : C1 → C2 is called a morphism if it is given locally by rational
functions that are non-singular at every point.

Definition A.9: Separable Map

Let ϕ : C1 → C2 be a nonconstant morphism of algebraic curves over
a field K. The map ϕ is separable if the induced field extension
K(C1)/ϕ

∗K(C2) of function fields is separable.
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B Proofs of Previous Propositions

This appendix contains

• relatively basic proofs and

• proofs that need a lot of algebraic computations..

This decision was made to avoid disrupting the flow of the main text.

Proposition B.1: (Proposition 1.1)

If char(K) ̸= 2, then Equation (1.1.1) can be written as (y′)2 = 4x3 +
b2x

2 + 2b4x+ b6, where y
′ = 2(y + a1x+ a3). In other words, the terms

in xy disappear.

Proof. Set y := 1
2 (y

′ − a1x− a3). Squaring both sides yields

y2 =

(
1

2
(y′ − a1x− a3)

)2

=
1

4
(y′)2 +

1

4
a21x

2 +
1

4
a23 −

1

2
a1xy

′ +
1

2
a1a3x− 1

2
a3y

′.

By replacing the explicit expressions of y and y2 into (1.1.1), we get

1

4
(y′)2 +

1

4
a21x

2 +
1

4
a23 −

1

2
a1xy

′ +
1

2
a1a3x− 1

2
a23 +

1

2
a1xy

′

=
1

2
a21x

2 +
1

2
a1a3x− 1

2
a3y

′ +
1

2
a1a3x+

1

2
a23 + x3 + a2x

2 + a4x+ a6.

By simplifying the common terms in the previous equation and then rearranging
the resulting equation, we obtain

1

4
(y′)2 = x3 + x2

(
a2 +

1

4
a21

)
+ x

(
a4 +

1

2
a1a3

)
+

(
a6 +

1

4
a23

)
.

Multiplying the previous equation by 4 gives us:

(y′)2 = 4x3 + x2(4a2 + a21) + x(4a4 + 2a1a3) + (4a6 + a23).

Replacing b2 = a21 + 4a2, b4 = 2a4 + a1a3, and b6 = a23 + 4a6 into the previous
equation, we get that:

(y′)2 = 4x3 + b2x
2 + 2b4x+ b6. (B.0.1)

Proposition B.2: (Proposition 1.2)

If char(K) /∈ {2, 3}, we can even rewrite Equation (1.1.1) as y2 = x3 +
Ax+B with A,B ∈ K.
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Proof. Substituting x = x′−3b2
36 and y = y′

108 into (B.0.1), we get(
y′

108

)2

=.4

(
x′ − 3b2

36

)3

+ b2

(
x′ − 3b2

36

)2

+ 2b4

(
x′ − 3b2

36

)
+ b6

=.4
(x′)3 − 9b2(x

′)2 + 27b22x
′ − 27b32

363

+ b2

(
(x′)2 − 6b2x

′ + 9b22
362

)
+ 2b4

(
x′ − 3b2

36

)
+ b6.

Multiplying this expression by 363 gives

4(y′)2 =.4
[
(x′)3 − 9b2(x

′)2 + 27b22x
′ − 27b32

]
+ 36b2

(
(x′)2 − 6b2x

′ + 9b22
)

+ 2 · 362b4(x′ − 3b2) + 363b6.

Expanding the previous equation yields

4(y′)2 =.4(x′)3 − 36b2(x
′)2 + 108b22x

′ − 108b32 + 36b2(x
′)2

− 216b22x
′ + 324b32 − 6 · 362b4x′ − 2 · 362b4 · 3b2 + 363b6.

Now assembling the common terms in the previous equation and simplifying,
we obtain

4(y′)2 =.4(x′)3 + (36b2 − 36b2)(x
′)2

+ (108b22 − 216b22 + 2 · 362b4)x′

+ (−108b32 + 324b32 − 6 · 362b2b4 + 363b6)

=.4(x′)3 +
(
−108b22 + 2 · 362b4

)
x′

+ (216b32 − 6 · 362b2b4 + 363b6).

Now, if we substitute c4 = b22− 24b4 and c6 = −b32+36b2b4− 216b6 in the latter
equation, and divide by 4, we obtain

(y′)2 = (x′)3 − 27c4x
′ − 54c6,

which concludes the proof.

Proposition B.3: (Proposition 1.3)

The discriminant of the polynomial f(x) = x3 +Ax+B becomes ∆f =
−(4A3 + 27B2).

Proof. The derivative f ′(x) = 3x2 +A. We have that

∆f =
(−1)3·(3−1)/2

1
Res(f, f ′) = (−1)3Res(f, f ′) = −Res(f, f ′),
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where

Res(f, f ′) =

∣∣∣∣∣∣∣∣∣∣
B 0 A 0 0
A B 0 A 0
0 A 3 0 A
1 0 0 3 0
0 1 0 0 3

∣∣∣∣∣∣∣∣∣∣
= 4A3 + 27B2.

The result follows.

Proposition B.4: (Proposition 2.2)

The division polynomials Ψm(x, y), where m ∈ N≥3 can be written in
the form

Ψm =

mx
m2−1

2 +O
(
x

m2−1
2 −2

)
if m is odd,

myx
m2−4

2 +O
(
yx

m2−4
2 −2

)
if m is even.

Proof. We do a proof by induction.

Base cases:

n = 3: Ψ3 = 3x4 + 6x2 + 128x−A2 = 3x
32−1

2 +O
(
x

32−1
2 −2

)
n = 4: Ψ4 = y(4x6 − 20Ax4 + 80Bx3 − 20A2x2 − 16ABy − 32B2 − 4A2)

= 4yx
42−4

2 +O
(
yx

42−4
2 −2

)
Computing Ψ5 and Ψ6 with the recursion formulas (2.1.1) and (2.1.2), we see

n = 5: Ψ5 = 5x
52−1

2 +O
(
x

52−1
2 −2

)
,

n = 6: Ψ6 = 6yx
62−4

2 +O
(
yx

62−4
2 −2

)
.

This finishes the base cases.

Induction steps
We now admit Proposition B.4 for a certain fixed m + 2, where m ≥ 3. Then
we show that it is true for 2m and 2m+1. This way, we prove Proposition B.4
for all m in N≥3. To do this we need to compute Ψ2m and Ψ2m+1 which are
given by (2.1.1), respectively (2.1.2).

Case 1: In this case, we consider the following recursion formula

Ψ2m+1 = Ψm+2(Ψm)3 −Ψm−1(Ψm+1)
3. (B.0.2)

We start by computing Ψm+2(Ψm)3. Next, we calculate Ψm−1(Ψm+1)
3. Now we

only need to subtract Ψm−1(Ψm+1)
3 from Ψm+2(Ψm)3 and get the expression
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for Ψ2m+1 in Equation (B.0.2).

Subcase (a): Let m be even.
Using the induction hypothesis on the first term of Equation (B.0.2) gives us

Ψm+2(Ψm)3 (B.0.3)

=

[
(m+ 2)yx

(m+2)2−4
2 +O

(
yx

(m+2)2−8
2

)] [
myx

m2−4
2 +O

(
yx

m2−8
2

)]3
=
[
(m+ 2)yx

m2+4m
2 +O

(
yx

m2+4m−4
2

)] [
myx

m2−4
2 +O

(
yx

m2−8
2

)]3
= (m+ 2)m3y4x

m2+4m
2 +3m2−4

2 +O
(
y4x

m2+4m−4
2 x

3(m2−4)
2

)
. (B.0.4)

We know that y2 = x3+Ax+B = x3+O(x). Replacing this into (B.0.4) yields

(m4 + 2m3)x6x
m2+4m+3m2−12

2 +O
(
x6x

m2+4m−4+3(m2−4)
2

)
= (m4 + 2m3)x

4m2+4m
2 +O

(
x

4m2+4m−4
2

)
. (B.0.5)

Now we apply the induction hypothesis to the second term in (B.0.2) and do all
the necessary computations. We get

Ψm−1(Ψm+1)
3

=

[
(m− 1)x

(m−1)2−1
2 +O

(
x

(m−1)2−5
2

)][
(m+ 1)x

(m+1)2−1
2 +O

(
x

(m+1)2−5
2

)]3
=
[
(m− 1)x

m2−2m
2 +O

(
x

m2−2m−4
2

)] [
(m+ 1)x

m2+2m
2 +O

(
x

m2+2m−4
2

)]3
=(m− 1)(m+ 1)3x

m2−2m
2 +

3(m2+2m)
2 +O

(
x

m2−2m−4
2 x

3(m2+2m)
2

)
=(m4 + 2m3 − 2m− 1)x

4m2+4m
2 +O

(
x

4m2+4m−4
2

)
. (B.0.6)

Substituting (B.0.5) and (B.0.6) into (B.0.2) yields

Ψ2m+1 =.(m4 + 2m3)x
4m2+4m

2 +O
(
x

(4m2+4m−4)
2

)
− (m4 + 2m3 − 2m− 1)x

4m2+4m
2 +O

(
x

(4m2+4m−4)
2

)
=.(2m+ 1)x

(2m+1)2−1
2 +O

(
x

(2m2+1)2−5
2

)
.

This finishes the subcase where m is even.
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Subcase (b): Suppose m is odd.
Applying the induction hypothesis to the first term of (B.0.2) and doing all the
computations, we get

Ψm+2(Ψm)3 =

[
(m+ 2)x

(m+2)2−1
2 +O

(
x

(m+2)2−5
2

)] [
mx

m2−1
2 +O

(
x

m2−5
2

)]3
=
[
(m+ 2)x

m2+4m+3
2 +O

(
x

m2+4m−1
2

)] [
mx

m2−1
2 +O

(
x

m2−5
2

)]3
= (m+ 2)m3x

m2+4m+3
2 +

3(m2−1)
2 +O

(
x

m2+4m−1
2 x

3(m2−1)
2

)
= (m4 + 2m3)x

4m2+4m
2 +O

(
x

4m2+4m−4
2

)
. (B.0.7)

Now we use the induction hypothesis on the second term in (B.0.2). This gives
us

Ψm−1(Ψm+1)
3

=

[
(m− 1)yx

(m−1)2−4
2 +O

(
yx

(m−1)2−8
2

)][
(m+ 1)yx

(m+1)2−4
2 +O

(
yx

(m+1)2−8
2

)]3
=
[
(m− 1)yx

m2−2m−3
2 +O

(
yx

m2−2m−7
2

)] [
(m+ 1)yx

m2+2m−3
2 +O

(
yx

m2+2m−7
2

)]3
=(m− 1)(m+ 1)3y4x

m2−2m−3
2 +3m2+2m−3

2 +O
(
y4x

m2−2m−7
2 x

3(m2+2m−3)
2

)
.

Substituting y2 = x3 +O(x) into the previous expression and manipulating the
exponents yields[

(m−1)(m3+3m2+3m+1)x6x
4m2+4m−12

2 +O
(
x6x

4m2+4m−16
2

)]
= (m4 + 2m3 − 2m− 1)x

4m2+4m
2 +O

(
x

4m2+4m−4
2

)
. (B.0.8)

Now putting (B.0.7) and (B.0.8) into (B.0.2), we get

Ψ2m+1 =.(m4 + 2m3)x
4m2+4m

2 +O
(
x

4m2+4m−4
2

)
−
[
(m4 + 2m3 − 2m− 1)x

4m2+4m
2 +O

(
x

4m2+4m−4
2

)]
=.(2m+ 1)x

(2m+1)2−1
2 +O

(
x

(2m+1)2−5
2

)
.

This finishes the subcase where m is odd. This is also the end of case 1.

Case 2: In this case, we consider the following recursion formula:

Ψ2m = Ψm(Ψm−2(Ψm−1)
2 −Ψm−2(Ψm+1)

2)(2y)−1. (B.0.9)

To avoid getting long computations, we split (B.0.9) into smaller computations.
We are going to start by computing Ψm−2(Ψm−1)

2 and Ψm−2(Ψm+1)
2. Then by
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a simple subtraction, we get Ψm−2(Ψm−1)
2−Ψm−2(Ψm+1)

2. Now we only need
multiply the previous expression by Ψm/(2y) to end up at Equation (B.0.9).

Subcase (a): Let m be even.
Applying the induction hypothesis to Ψm+2(Ψm−1)

2 and simplifying the expo-
nents yields

Ψm+2(Ψm−1)
2

=

[
y(m+ 2)x

(m+2)2−4
2 +O

(
yx

(m+2)2−8
2

)][
(m− 1)x

(m−1)2−1
2 +O

(
x

(m−1)2−5
2

)]2
=
[
(m+ 2)yx

m2+4m
2 +O

(
yx

m2+4m−4
2

)] [
(m− 1)x

m2−2m
2 +O

(
x

m2−2m−4
2

)]2
.

Performing the multiplication in the previous expression gives us

= (m+ 2)(m2 − 2m+ 1)yx
m2+4m

2 +
2(m2−2m)

2 +O
(
yx

m2+4m−4
2 +

2(m2−2m)
2

)
= (m3 − 3m+ 2)2yx

3m2

2 +O
(
yx

3m2−4
2

)
. (B.0.10)

Using the induction hypothesis on Ψm−2(Ψm+1)
2 and performing the multipli-

cation, we get

Ψm−2(Ψm+1)
2

=

[
(m− 2)yx

(m−2)2−4
2 +O

(
yx

(m−2)2−8
2

)][
(m+ 1)x

(m+1)2−1
2 +O

(
x

(m+1)2−5
2

)]2
=
[
(m− 2)yx

m2−4m
2 +O

(
yx

m2−4m−4
2

)] [
(m+ 1)x

m2+2m
2 +O

(
yx

m2+2m−4
2

)]2
=(m+ 2)(m2 + 2m+ 1)yx

m2−4m
2 +2m2+2m

2 +O
(
yx

m2−4m−4+2(m2+2m)
2

)
=(m3 − 3m− 2)yx

3m2

2 +O
(
yx

3m2−4
2

)
. (B.0.11)

When we subtract (B.0.11) from (B.0.10), we obtain

Ψm−2(Ψm−1)
2 −Ψm−2(Ψm+1)

2

=(m3 − 3m+ 2)2yx
3m2

2 +O
(
yx

3m2−4
2

)
−
[
(m3 − 3m− 2)yx

3m2

2 +O
(
yx

3m2−4
2

)]
=4yx

3m2

2 +O
(
yx

3m2−4
2

)
. (B.0.12)

Applying the induction hypothesis to Ψm and multiplying Ψm by (B.0.12) gives
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us

2yΨ2m =
[
myx

m2−4
2 +O

(
yx

m2−8
2

)]
·
[
4yx

3m2

2 +O
(
yx

3m2−4
2

)]
= 4my2x

m2−4+3m2

2 +O
(
y2x

m2−8+3m2

2

)
= 4y2mx

(2m)2−4
2 +O

(
y2x

(2m)2−8
2

)
.

Multiplying by (2y)−1, we get the final expression of (B.0.9), that is

Ψ2m =

[
4my2x

4m2−4
2 +O

(
y2x

(2m)2−8
2

)]
(2y)−1

= 2myx
(2m)2−4

2 +O
(
yx

(2m)2−8
2

)
.

This finishes the subcase where m is even.

Subcase (b): Let m be odd.
Applying the induction hypothesis to Ψm+2(Ψm−1)

2 and simplifying the expo-
nents yields

Ψm+2(Ψm−1)
2

=

[
(m+ 2)x

(m+2)2−1
2 +O

(
x

(m+2)2−5
2

)][
(m− 1)yx

(m−1)2−4
2 +O

(
yx

(m−1)2−8
2

)]2
=
[
(m+ 2)x

m2+4m+3
2 +O

(
x

m2+4m−1
2

)] [
(m− 1)yx

m2−2m−3
2 +O

(
yx

m2−2m−7
2

)]2
We leave y2 the way it is in regards of the last step where we need to divide by
(2y)−1. Performing the multiplication in the previous expression yields

(m+ 2)(m2 − 2m+ 1)y2x
m2+4m+3

2 +2m2−2m−3
2 +O

(
y2x

m2+4m−1+2(m2−2m−3)
2

)
= (m3 − 3m+ 2)y2x

3m2−3
2 +O

(
y2x

3m2−7
2

)
.

Using the induction hypothesis on Ψm−2(Ψm+1)
2 and performing the multipli-

cation, we get

Ψm−2(Ψm+1)
2

=

[
(m− 2)x

(m−2)2−1
2 +O

(
x

(m−2)2−5
2

)] [
(m+ 1)yx

(m+1)2−4
2 +O

(
yx

(m+1)2−8
2

)]2
=
[
(m− 2)x

m2−4m+3
2 +O

(
x

m2−4m−1
2

)] [
(m+ 1)yx

m2+2m−3
2 +O

(
yx

m2+2m−7
2

)]2
.

(B.0.13)
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Doing the multiplication in the previous expression gives us

(m+ 2)(m2 + 2m+ 1)y2x
m2−4m+3

2 +2m2+2m−3
2 +O

(
y2x

m2−4m−1+2(m2+2m−3)
2

)
= (m3 − 3m− 2)y2x

3m2−3
2 +O

(
y2x

3m2−7
2

)
. (B.0.14)

Subtracting (B.0.14) from (B.0.13), we get

Ψm−2(Ψm−1)
2 −Ψm−2(Ψm+1)

2

=
[
(m3 − 3m+ 2)y2x

3m2−3
2 +O

(
y2x

3m2−7
2

)]
+
[
(m3 − 3m− 2)y2x

3m2−3
2 +O

(
y2x

3m2−7
2

)]
=4y2x

3m2−3
2 +O

(
y2x

3m2−7
2

)
.

Applying the induction hypothesis to Ψm and multiplying Ψm by (B.0.12) gives
us

= (mx
m2−1

2 +O
(
x

m2−5
2

)
) · (4y2x

3m2−3
2 +O

(
y2x

3m2−7
2

)
)

= 4my2x
m2 − 1 + 3m2 − 3

2
+O

(
y2x

m2−5+3m2−3
2

)
= 4my2x

4m2−4
2 +O

(
y2x

(2m)2−8
2

)
.

Multiplying by (2y)−1, we get the final expression

Ψ2m =

[
4my2x

(2m)2−4
2 +O

(
y2x

(2m)2−8
2

)]
(2y)−1

= 2myx
(2m)2−4

2 +O
(
yx

(2m)2−8
2

)
.

This finishes the subcase where m is odd.
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C Reasonings

Remark C.1. The greatest common divisor for two univariate polynomials is
usually defined as a monic polynomial. This means that the gcd can either be
1 or a monic polynomial D(X) of degreee d ≥ 1.

Reasoning C.1. We know that the roots of the division polynomial Ψℓ(x) are
exactly the x-coordinates of the ℓ-torsion points (e.g. [ℓ]P = O, see Definition
1.12). This means that, if fℓ(x0) = 0, then there is a point P = (x0, y) ∈ E[ℓ].

Reasoning C.2. Let us take two polynomials P (x) ∈ K[x] and fℓ(x) ∈ K[x]
defined in Proposition 2.2. Then, we want to determine the greatest common
divisor of these two polynomials. We will denote it by gcd(P (x), fℓ(x)). Then,
we have two possibilities:

• If gcd(P (x), fℓ(x)) = 1:
Then the two polynomials P (x) and fℓ(x) have no common factor (except
maybe a constant which is not taken into account in the gcd, as explained
in Remark C.1). So, clearly, they do not share a common root. This means
that there is no x0 such that P (x0) = 0 and fℓ(x0) = 0 simultaneously.

• If gcd(P1(x), P2(x)) ̸= 1:
By Remark C.1, the greatest common divisor must be a monic polynomial
D(X) of degreee d ≥ 1. Let us call x0 (one of the) roots of D(x) , which
means D(x0) = 0. Then P (x0) = 0 and fℓ(x0) = 0 simultaneously.
By Reasoning C.1, the second equation gives us that there is P ∈ E[ℓ].
Furthermore, the first equation tells us that this P satisfies the polynomial
P (x).

Reasoning C.3. Let P ∈ E[ℓ], then, by Definition 1.12 [ℓ]P = O. Suppose there
exists q ∈ R, then [q]P = [k]P + [nℓ]P for n ∈ N and k ≡ q (mod ℓ). By
assumption, [ℓ]P = O, and so [nℓ]P = O. By by Remark 1.5, this implies that
[q]P = [k]P where k ≡ q (mod ℓ)

Reasoning C.4. Let us consider the equation

ϕl(P ) = ±[α]P, (C.0.1)

where ϕl(P ) and [α]P are given by Remark 1.7, respectively Proposition 2.1.
Then Equation (C.0.1) can be split into ϕl(P ) = [α]P , and ϕl(P ) = −[α]P . Let
us denote [α]P by (X([α]P ), Y ([α]P )). Similarly, we write (X(−[α]P ), Y (−[α]P ))
for −[α]P . We realize that X([α]P ) = X(−[α]P ) by Remark 1.6.

Proposition C.1

Let P = (x, y) ∈ E[ℓ]. The following expressions do not vanish on E[ℓ]
for ℓ a prime number not equal to 2:

(1) y2,

(2) the polynomials fk(x) when 0 < k < ℓ (see Definition 2.2).
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Proof. (1) Suppose y = 0. Then we can write P = (x, 0). Now by the group
law in Remark 1.5, −P = (x,−0) = (x, 0). We can see that P = −P and
rearranging everything to one side yields [2]P = O. So P ∈ E[2]. We
supposed at the beginning of the algorithm that ℓ ̸= 2. So by Proposition
1.11, we have that P /∈ E[ℓ].

(2) Let us now show that fk(x) does not vanish on E[ℓ]. From Proposition
2.3 we have fk(x) = 0 if and only if [k]P = 0. But we assumed 0 < k < ℓ,
so it only vanishes on E[k] and in particular not on E[ℓ].

Remark C.2. Since K has non-zero divisors, for a, b ∈ K: if a ̸= 0 and b ̸= 0,
then ab ̸= 0. Then, Proposition C.1(2) can be extended by induction: fnk (x) ̸= 0
for any integer n ≥ 1. Since Ψk is just a rewriting of fk, Ψ

n
k ̸= 0. Also x3+Ax+B

does not vanish on E[ℓ] because y2 = x3+Ax+B and Proposition C.1(1) applies.
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