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Abstract—In modern blockchains, efficient, fair, and fault-
tolerant information dissemination is critical for performance and
security. Several stages of the transaction lifecycle are affected,
from the creation and dissemination of transactions to the dissem-
ination of blocks in the consensus layer. Mempool protocols, such
as LØ, already address some of modern blockchains’ security
threats. However, others remain unless fairness is embedded most
fundamentally in the dissemination layer used by these protocols
to share transactions and blocks and to reconcile mempools. This
paper introduces HERMES, a novel dissemination protocol for
mempools that leverages robust minimal structures to optimize
data propagation, balance load, and ensure fairness despite faults
and Byzantine actors. Specifically, we address front-running
attacks by randomizing the choice of an overlay structure while
forcing nodes to prove adherence to the mempools’ dissemination
policies and the random choice made. Experimental results show
significant performance improvements compared to traditional
broadcast protocols for both permissioned and permissionless
blockchains.

Index Terms—Dissemination, Fault Tolerance, Robust Topolo-
gies, Distributed Systems

I. INTRODUCTION

Efficient, fair, and accountable information dissemination
despite accidental and intentionally malicious node and link
failures remains a challenging problem. This is particularly
true for both permissioned and permissionless blockchains,
due to their increasing complexity and scale. Node failures,
leading to inefficient bandwidth utilization and repeated re-
transmission, threaten these properties, and unfair or unbal-
anced dissemination give rise to security threats, such as
miner exploitable value (MEV) attacks. For example, in 2013,
Decker et al. [1] proved that propagation delays are the pri-
mary cause of blockchain forks, which makes the blockchain
vulnerable to double spending and block-withholding attacks.
In 2020, Mao et al. [2] highlighted the importance of block
propagation delays for the performance of blockchain net-
works. Currently employed dissemination strategies, including
gossip, give rise to front-running attacks leading to unfair
competitive advantages when disseminating transactions. The
root cause for these attacks is that some nodes may learn
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about transactions earlier than others. Nodes can exploit this
knowledge if they can control how their transactions are
disseminated in relation to when they receive this information.
Furthermore, nodes can be systematically overwhelmed by a
flood of dissemination requests. In such situations, excessive
reliance on retransmission further strains network resources,
leading to inefficiencies that degrade bandwidth and increase
latency. In some situations, flooding can also open the door to
further attacks in the worst scenarios.
LØ [3] already addresses a large class of MEV attacks

by introducing accountability in the dissemination layer. In
a nutshell, LØ’s miners generate, exchange with each other,
and record cryptographic commitments of the transactions they
know (i.e., their mempools) before receiving transactions from
each other. Miners then witness each other’s behavior, includ-
ing how their peers disseminate transactions and bundle them
into the blocks they create. Because commitments are further
exchanged among miners, LØ uncovers reordering attacks
with high probability. Unfortunately, since the dissemination
paths in LØ remain to a large degree in the hands of miners
(they can establish additional links on top of the singular
unidirectional overlay), they may exploit early knowledge by
choosing dissemination paths that favor the miner over other
nodes. The result is a front-running attack.

Of course, preventing nodes from learning information
early is difficult, if not impossible. For example, malicious
nodes may well tap into the protocol implementation and
access information when received, rather than when delivered.
Moreover, they may establish channels outside the overlay,
leveraging links in the physical network, or even establish
additional networks. We therefore have to tackle the problem
by preventing miners from exploiting this advantage. We do
so by preventing them from controlling the order in which
related messages are delivered.

We present HERMES, a protocol that extends LØ to pre-
vent font-running and ensures dissemination-fair, accountable,
Byzantine-resilient, and efficient transaction dissemination for
blockchain systems. To be practical, HERMES also maintains a
low network overhead and a low computational overhead. By
dissemination fairness, we mean ensuring that no correct node
is systematically left behind in the delivery of messages and no
adversary can exploit timing advantages to reorder messages or
front-run their dissemination. Whether by overloading specific
nodes to delay message propagation or by acquiring early
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knowledge on the message dissemination, our goal is to
prevent adversaries’ front-running attempts.

To achieve this, HERMES constructs multiple overlay struc-
tures optimized for robust and efficient propagation. HERMES
simply modifies the neighbor selection procedure of LØ by
selecting the children of a node in its precomputed dissemina-
tion overlays. Having analyzed four dissemination structures,
we found robust-tree topologies to yield minimal latency. We
have therefore selected robust trees as our overlay topology,
but apply simulated annealing to systematically prune links
and reposition nodes to optimize for low latency, and balance
the dissemination roles, while preserving f+1 connectivity.
Nodes participate in all overlays. By balancing dissemination
roles we ensure that nodes near the root in one overlay,
which naturally receive messages sent through that overlay
before further away nodes, assume a more distant role in other
overlay structures. To prevent malicious nodes from predicting
message dissemination times and gain a persistent advantage
over others, which would allow them to successfully front-
run transactions, HERMES enforces a randomized selection of
the overlay a sender must use, leveraging a novel Threshold
Random Seed (TRS) scheme.

We further enforce accountability by requiring nodes to
prove that they have relayed messages correctly in the des-
ignated overlay. Combined with thorough logging to trace
node activity, HERMES prevents front-running attempts from
remaining undetected, which allows identifying and excluding
deviant nodes from the system.

We combine, for the first time, accountability at the mem-
pool layer with randomized dissemination over optimized
overlay structures. More specifically, HERMES makes the
following contributions:

• Low-latency balanced overlays: We present a method
for constructing a set of k robust-tree overlays and
optimize them via simulated annealing. The latter prunes
redundant links and balances node roles across overlays
to reduce dissemination latency, avoid bottlenecks at
frequently used nodes, and provide fair dissemination.
Further, each overlay structure is encoded, signed by a
3f+1 committee, and disseminated to all nodes.

• Threshold random seed (TRS) construction: At the
core of HERMES ’s front-running resistance is our TRS
construction. Our approach leverages reliable broadcast
among a committee of 3f+1 nodes to generates a reliable
seed for each dissemination round.

• Randomized and accountable overlay selection: Via
our TRS construction, each message is verifiably bound to
a randomly chosen overlay, preventing senders from pick-
ing routes that favor them. This ensures dissemination-
fairness, enforces adherence to the assigned path, and
eliminates systematic front-running attacks.

• Robust and accountable dissemination: Our design
ensures resilience with f+1 connectivity per overlay,
tolerating up to f faulty nodes locally to prevent isolation
or censorship. Dissemination accountability is enforced
by relying on the signed overlay structures and via

message sequencing: nodes verify senders as legitimate
predecessors in their overlay, and are required to propa-
gate missing messages before relaying their ith message,
preventing selective omission.

Section IV explains HERMES in a nutshell. Section V de-
scribes our method for overlay construction, while Section VI
explains how HERMES achieves dissemination-fairness and
accountability. We analyze the performance of our protocol
in Section VIII. We start by establishing the above in permis-
sioned settings, where network topologies are known. In Sec-
tion VII, we relax these constraints to permissionless settings
with changing but generally sufficiently stable topologies.

II. RELATED WORK

Propagation Delay. Decker et al. [1] and Mao et al. [2]
highlight the importance of propagation delay for the ef-
ficiency and security of blockchains. Perigee [2] dynami-
cally adjusts node connections to optimize propagation times.
CougaR [4] employs random link selection to balance network
latency and protect against eclipse attacks. BlockP2P [5]
accelerates broadcast by geographically clustering. BlockP2P-
EP [6] builds on this by using overlay networks to further en-
hance performance. Mercury [7] leverages virtual coordinates
and an early outburst strategy to reduce transaction latency.
Our protocol creates a set of latency-optimized robust overlays
and randomly selects for each sender and message the ones to
use in order to mitigate front-running attacks.

Overlay Topologies. Several works leverage overlay struc-
tures in Blockchains. For example, Kauri [8], Byzcoin [9],
Motor [10], and Omniledger [11] leverage tree structures to
minimize latency and balance load. SplitStream [12] addresses
link failures by distributing load across multiple trees. Ra-
manathan et al. [13] and Toshniwal et al. [14] use hypercubes
and show that they outperform fat-tree, torus and scale-free
technologies. You et al [15] overcomes the power of two
limitations of hypercubes by constructing hyperclique over-
lays. Gossip protocols [16]–[18] avoid some of the flooding-
related overheads. Bitcoin and, at least partially, Ethereum [19]
leverage gossip to redistribute learned information up to a
certain age. Gossip achieves scalability and robustness to node
and link failures, albeit at the costs of guaranteeing delivery
only with a certain probability. Our protocol constructs robust
trees as overlay structures.

K-Connected Topologies. K-connected topologies [20]
with k > f tolerate up to f link and node failures by ensuring
nodes remain connected despite such failures. Typical exam-
ples include k-regular graphs, k-connected random graphs,
k-pasted trees, k-diamonds, multipartite wheels, generalized
wheels, Barabási-Albert graphs, incomplete hypercubes, and
the k vertex-connected minimum spanning subgraph algorithm
introduced in Wen et al. [21]. The latter creates one spanning
tree per sender and distributes the load across these trees
to enhance robustness and efficiency by ensuring multiple
disjoint paths for communication. Our approach limits the
overhead of having to maintain multiple overlay structures to
a constant few, irrespective of the number of senders.



TABLE I: Comparison of transaction dissemination approaches

Metric Gossip Reliable Broadcast Simple Tree HERMES (Robust Trees)
Dissemination

Mechanism
Direct communication Randomized gossip Fixed tree overlays Optimized robust tree

overlays
Latency Moderate Low High Moderate

Msg Complexity Moderate High Low Moderate
Dissemination-

fairness
✓ ✖ ✖ ✓

Accountability ✖ ✓ ✖ ✓
Load Balanced ✓ ✖ ✖ ✓

Robustness Moderate High Moderate High
Scalability High Low Moderate High

Reliable Broadcast and Miner Extractable Value. Broad-
cast protocols that are robust to arbitrary Byzantine and even
intentionally malicious behavior of nodes have been widely
investigated [22]. Guerraoui et al. [23] guarantees consistent
message delivery despite malicious nodes. Narwhal [24] is a
mempool for DAG consensus protocols designed to deliver
transactions more efficiently. LØ [3] addresses Miner Ex-
tractable Value (MEV) attacks [25] in which miners selectively
broadcast, reorder, or suppress transactions during block cre-
ation to gain unfair advantages [26], [27] (e.g., in auctions).
In addition to making miners accountable for their actions [3],
[27], [28], MEV mitigation almost exclusively focuses on
alleviating their effects [29] (e.g., by redistributing MEV prof-
its [30]). Solutions that prevent such manipulations [31]–[34]
require significant changes brought to the consensus layer
and provide order fairness properties that differ from our
dissemination fairness objective.

Our protocol builds upon and extends LØ [3] to also address
front-running attacks, while introducing dissemination fairness
and improving the efficiency of dissemination. Specifically,
we force miners to disseminate transactions through randomly
selected overlays to randomize when nodes learn about trans-
actions and to prevent them form coordinating their response
to such knowledge.

Table I presents a comparison of dissemination approaches
based on key metrics that are critical for designing fault-
tolerant and scalable networks. The dissemination mechanism
describes the underlying communication strategy: Reliable
broadcast [24] uses direct communication between nodes,
leading to high latency for large networks because of multi-
phase all-to-all message exchanges. Gossip-based dissemina-
tion [16]–[18] leverages randomized propagation, achieving
moderate latency and high scalability by efficiently distribut-
ing messages while avoiding the need for complete network
knowledge. Simple tree-based dissemination [8], [9] relies on
fixed overlays, resulting in increasing latency for larger net-
works due to deeper tree structures. Its scalability is moderate
because the depth of the tree scales with the number of nodes.
HERMES, employing optimized robust trees, achieves low
latency and high scalability by minimizing redundant paths
and maintaining f+1-robust structured overlays.

Gossip-based dissemination ensures fairness. HERMES
achieves the same by randomizing and optimizing dissemi-
nation trees. Intuitively, using a larger number of overlays

imply a higher bandwidth consumption, but also a lower
average latency and higher dissemination fairness. Reliable
broadcast and simple tree-based dissemination may suffer from
imbalances, potentially leading to inconsistencies. Reliable
broadcast supports accountability, which HERMES achieves
through mechanisms for detecting and tracing misbehavior,
a feature absent in the other approaches. Reliable broadcast
guarantees fault tolerance by delivering to all correct nodes
using a totality property. In contrast, gossip-based dissemina-
tion and simple tree-based dissemination depend on coverage
and tree resilience, respectively, providing only moderate
fault tolerance. HERMES f+1-robustness ensures high fault
tolerance by guaranteeing delivery even under adversarial
conditions. These attributes position HERMES as a robust,
efficient, dissemination-fair, accountable, and scalable solution
for large-scale, adversarial networks.

III. SYSTEM AND THREAT MODEL

We consider a network with n nodes, modeled as a labeled
graph G = (V,E). Each vertex vi ∈ V corresponds to a
node, and each edge ei,j ∈ E represents a link between
nodes vi and vj . Edges ei,j in the graph are labeled as
lat(ei,j) to capture communication latencies between nodes
(here between vi and vj). We shall later maintain for each
node vi ∈ G.V an accumulated rank (as rank(vi)) relative
to their position in the robust-tree overlay structures. Initially
0, rank(vi) estimates the load of that node depending on
the role it plays in the already computed overlay structures.
We consider rank(vi) during subsequent assignments when
computing the remaining overlay structures. We assume each
node is sufficiently connected so that other nodes can reach it
through at least t disjoint paths.

Nodes may fail in arbitrary, potentially malicious (Byzan-
tine) ways. In contrast, links are assumed to drop mes-
sages stochastically. We consider a fault-density threat model,
defined such that within a distance of D hops from any
node, at most f ≤ t nodes may fail due to accidents or
cyberattacks. For simplicity, we assume the network remains
sufficiently connected despite f faulty nodes in proximity.
This connectivity assumption can be extended with proof-of-
connectivity messages (e.g., as proposed in Pistis [35]). At
a broader level, fault density adheres to the classical fault
tolerance threshold, allowing up to fmax faulty nodes out of
n, provided n ≥ 3fmax +1. However, the fault-density model



adds as a key distinction from the classical model that no node
is entirely surrounded by faulty neighbors.

IV. OVERVIEW OF HERMES

In this paper, we are concerned with the efficient, reliable,
and fair dissemination of information (transactions and blocks)
through blockchain networks, while ensuring accountability
to mitigate at the network layer miner-extractable-value at-
tacks, in particular, front-running. More precisely, we first
consider the static network of permissioned blockchains and
later, in Section VII, the dynamic networks of permission-
less blockchains. In these settings, we seek to develop a
dissemination protocol that allows clients to interact with the
blockchain through source nodes — the senders of transactions
and blocks — while tolerating locally, in the proximity of
every node, up to f arbitrary faulty (i.e., Byzantine) nodes.
In addition, we aim to tolerate globally, in the entire network,
up to fmax = ⌊n3 ⌋ faulty nodes. This arbitrary behavior may,
in particular, include the manipulation of transaction streams
based on knowledge obtained ahead of time of other nodes.

To achieve the above, our protocol HERMES performs
operations in two phases (see Figure 1), which we detail in
the next sections.
Overlay construction and optimization [offline]: In an of-
fline manner, HERMES proceeds through a robust-tree overlay
construction and optimization phase, that begins by selecting
f+1 entry points from the physical network G. Using these
entry points as roots, it constructs a robust-tree overlay, by
identifying up to 2d(f+1) nodes for the new layer d that are
connected to all nodes of layer d−1. Once no further layer
can be constructed in this way, any missing nodes are then
added to ensure robustness with f+1-connected leaves. The
structure is further optimized using simulated annealing and
excess links pruned, while preserving f+1-connectivity. This
process is repeated k times to construct k optimized overlay
structures. During optimization, the roles that each node plays
in the already constructed overlays is taken into account to
avoid positioning the same node at the same location in
the different trees. This avoids overburdening frequently used
nodes and prevents systematically favoring individual nodes
across multiple overlay structures. Intuitively, using a larger
k value implies a higher bandwidth consumption, but also a
lower average latency and higher dissemination fairness. Once
finalized, the constructed overlay structure is communicated to
each node in the network. Node memorize from each overlay
the entry points as well as direct predecessors and successors.
Dissemination [online]: At runtime, the dissemination of
messages proceeds in three steps:

1) Randomized structure selection: The sender starts by
reaching out to a committee of 3f+1 nodes to ask which
overlay structure it must use for transmitting its next
message m. To achieve this, the sender computes a hash
H(m) and obtains from the committee a 2f+1-threshold
signature for the current transmission round i. Using this
signature, the sender selects the overlay structure and
forwards m along with the certificate, i.e., the signature,

to the f+1 entry points of this overlay structure. It does
so through f+1 disjoint paths, unless of course the sender
is connected directly to the overlay’s entry points.

2) Dissemination and accountability: Entry points and in-
termediate nodes validate the source of the message by
certifying which node sent it. They then forward the
message to all successors in the selected overlay structure.
These nodes also verify whether the received message
follows a valid path within the overlay to detect any
misbehavior. Nodes found to be faulty are excluded from
further participation in the dissemination process.

3) Acknowledgment of delivery (optional): If higher-level
protocols require receipt confirmations, acknowledgment
messages are sent back to the sender through the same
overlay structure used for dissemination.

In each overlay structure, any node vi receives messages
from at least f+1 nodes, ensuring that dissemination cannot be
delayed by the up to f faulty nodes near vi. Furthermore, since
the overlay structure is randomly chosen by the committee
(and not the sender), there is no opportunity for the sender
to manipulate or choose a favorable overlay. This mechanism
ensures dissemination-fairness and accountability during the
transmission process.

V. OVERLAY STRUCTURES AND THEIR OPTIMIZATION

This section motivates our selection of robust trees as
overlay structure and details how we optimize them for latency.

A. Overlay Structures

Introducing overlays over the graph G, we aim to simulta-
neously achieve efficient message propagation, role-balancing,
and resilience to link and node faults. By role-balancing,
we mean equally distributing dissemination responsibilities
across multiple overlay structures, ensuring that no node is
consistently favored against others when receiving a message,
and maintaining fair participation in message propagation.
To that end, we compared f+1-connected chordal rings, hy-
percube, robust trees and randomly-generated overlay graphs
by examining the average latency and load translated as the
standard deviation of sent transactions with a constant number
of nodes. The detailed setup is shown in Section VIII-A.

Figure 2 illustrates the overlay structures under investi-
gation, along with their respective latencies and the stan-
dard deviation of their load distribution. Robust trees, when
considered in isolation, exhibit higher load imbalances but
achieve significantly lower latency, when compared to the
other overlay structures. Our approach involves disseminating
messages randomly across k overlay structures, the load and
role imbalances in one structure can therefore be compensated
by the others. We have therefore selected robust trees as base
overlay structure before pruning with simulated annealing.

Robust trees are hierarchical in nature. Nodes at a given
layer (depth d) are connected to all nodes in the layer
above them (depth d+1). However, since not all nodes in G
may conform to this strict pattern, the resulting robust-tree
overlay, GRT , will generally be incomplete. To address this,



Fig. 1: Overview of HERMES’s two phases. Construction phase: k robust-tree overlays are built offline and recomputed after
major network changes. This involves selecting entry points, constructing robust-trees, integrating missing nodes, and optimizing
for efficiency and robustness. Dissemination phase: A sender queries a committee to determine the overlay for message m
based on network state. It then forwards m to entry points via f+1 disjoint paths for fault tolerance. The entry points propagate
m across the robust-tree overlay, ensuring reliable dissemination.

we augment the overlay structure by adding any remaining
nodes from G to GRT , while ensuring that each such node is
connected via f+1 edges either to existing nodes in GRT or
directly within G. This process continues until all nodes in G
are integrated into GRT .

While robust-tree overlays are highly connected, their con-
nectivity often exceeds what is strictly necessary for reliable
dissemination. Therefore, an additional optimization step is
performed to prune redundant links. The result is a low-
latency, f+1-connected subset of the robust tree. Algorithm 1
outlines the pseudocode for constructing k robust trees,
GRT

1 , . . . , GRT
k , from the physical network G: Starting with

an empty set of graphs, the algorithm selects f+1 nodes
with the lowest accumulated rank and minimal latency to
their neighbors as the entry points and assigns them to rank
d = 0 (Lines 3–6). The tree, now initiated with f+1 roots,
is extended iteratively. For each rank, nodes are added that
are directly connected to all nodes in the previous rank (depth
d − 1) and have not yet been included in GRT

l (Lines 8–
15). Nodes are selected based on their minimal accumulated
rank to balance the roles they will obtain and based on their
connection latency to neighboring nodes. At each rank, the
goal is to double the number of included nodes, such that at
depth d there are 2d(f+1) nodes. If doubling is no longer
feasible, remaining nodes are added without enforcing the
hierarchical tree structure, ensuring they connect to at least

f+1 edges of existing nodes in GRT
l (Lines 17–21). Before

passing the constructed tree to the optimization step (Line 25)
and moving to the next tree, the accumulated rank of nodes is
updated to reflect their distance from the root in the current
tree (Lines 22–24). This ensures a balanced distribution of
nodes across the k robust trees. The described methodology
ensures the creation of k robust, low-latency overlay structures
optimized for scalability, fault tolerance, and efficiency.

B. Overlay Latency Minimization and Role-Balancing

The goal of this step is to remove redundant network
links while maintaining f+1-connectivity, and to optimize
the overlay structures for both latency and role distribution.
Indeed, a node positioned near the roots of multiple tree
overlays would be advantaged, as it would tend to receive
messages earlier on average compared to its neighboring
nodes. Additionally, in a tree structure, nodes closer to the
root typically bear higher loads than those near the leaves.
To address this imbalance, we introduce a penalty system
based on the accumulated ranks of nodes across previously
constructed overlay structures. The accumulated rank reflects
how often a node has been placed near the leaves in past
overlays. Nodes with higher accumulated ranks are more likely
to have been less loaded, making them preferable candidates
for near-root positions in the current overlay structure.

Latency Optimization. In this work, we employ simulated
annealing as optimization algorithm, although our approach



Fig. 2: Dissemination latency and message load variance per
node over a single f+1-connected instance of the considered
overlays: robust trees (pre-pruning), chordal rings, hypercubes,
and a random overlay ensuring at least f+1 links per node.

Algorithm 1 CreateRobustTree
1: // Initialization
2: initialize empty graphs GRT

l (l ∈ {1, . . . , k})
3: for each graph GRT

l do
4: add f+1 entry point nodes v01 , . . . v

0
f+1 ∈ G.V (nodes of rank 0)

5: such that v0i is among the f+1 nodes with lowest accumulated
6: rank and connecting with lowest latency to its neighbors.
7: // Construct robust tree
8: for each rank d starting from 1 do
9: select the up to 2d(f+1) nodes vdi in G.V \GRT

l .V with
10: minimal acummulated rank and connection latency that are
11: connected to all nodes vd−1

j of the previous rank
12: add selected nodes vdi and their edges ei,j ∈ G.E to nodes
13: vd−1

j of the previous rank to the robust tree GRT
l

14: repeat until no further nodes fit this pattern
15: end for
16: // Add missing nodes
17: for each node vi remaining in G.V \GRT

l .V do
18: add vi with f+1 edges ei,j ∈ G.E to GRT

l , provided
19: vdj ∈ GRT

l .V at some rank d.
20: repeat until all nodes are added
21: end for
22: for each node vdi ∈ GRT

l .V do
23: update rank(vdi ) = rank(vdi ) + d
24: end for
25: Optimize GRT

l
26: end for
27: return GRT

1 , . . . GRTk

is agnostic to the specific optimization algorithm employed.
Simulated annealing iteratively improves the overlay structure
by exploring configurations that minimize latency and com-
plexity while factoring in rank penalties. The algorithm starts
with the robust tree GRT

l , which initially relies on a heuristic
for node inclusion, and incrementally explores modifications
to improve the overlay. These modifications may include
adjusting node connections or rerouting specific links. At each

Algorithm 2 Simulated Annealing for Multiple Overlay Op-
timization

1: Input: Network graph G and overlay Ocurrent = GRT
l ,

initial temperature Tinitial, minimum temperature Tmin,
cooling rate α

2: Output: Optimized overlays Obest
3: // Step 1: Initialize Overlay Optimization
4: Obest ← Ocurrent
5: T ← Tinitial
6: // Step 2: Perform Simulated Annealing
7: while T > Tmin do
8: // Generate neighbor overlay:
9: Oneighbor ← GenerateNeighbor(Ocurrent, f)

10: // Evaluate objective values:
11: Oneighbor ← ObjectiveFunction(Oneighbor)
12: Ocurrent ← ObjectiveFunction(Ocurrent)
13: if Oneighbor < Ocurrent
14: or e−(Oneighbor−Ocurrent)/T > rand(0, 1) then
15: Accept neighbor overlay: Ocurrent ← Oneighbor
16: if oneighbor < ObjectiveFunction(Obest) then
17: Update best overlay: Obest ← Oneighbor
18: end if
19: end if
20: Decrease temperature: T ← T × α
21: end while
22: Return Obest

iteration, the algorithm evaluates whether a proposed change
improves the overall objective function. Changes are accepted
probabilistically, based on the current system temperature, i.e.,
how far it is from the overall objective, which decreases over
time. This decreasing temperature enables broad exploration in
the early stages and gradual convergence toward an optimal
or near-optimal solution. The pseudocode for the simulated
annealing algorithm is provided in Algorithm 2.

Balancing roles using rank penalty. In addition to opti-
mizing for latency, we incorporate a rank penalty to discourage
the repeated selection of nodes that have already been placed
as low-rank nodes (near the root) in other overlay structures.
Nodes closer to the root experience earlier message delivery
and higher loads. It is therefore preferable to position them
closer to the leaves in subsequent overlay structures. To
achieve this, we define the objective function as:

objective value = num edges + avg latency
+connectivity penalty
+path penalty + rank penalty

(1)

where num edges = |ERT
l | (from GRT

l = (V,ERT
l ) ⊆ G),

avg latency the sum of all shorted path latencies in GRT
l

divided by |V | = n. We penalize nodes with less than
f+1 successors (connectivity penalty), nodes that are not
reachable from the source (path penalty) and discourage the
use of nodes with low accumulated rank (rank penalty).



Algorithm 3 illustrates the process for generating a neigh-
boring solution from the current robust-tree overlay configu-
ration. The function begins by randomly adding or removing
edges between nodes in consecutive layers of the overlay.
This random adjustment enables exploration of alternative
configurations. To ensure resilience, the algorithm then ver-
ifies that each node (except leaves) retains at least f+1
outgoing connections. Additionally, the function considers the
depth and accumulated rank of nodes, reassigning connec-
tions where necessary to balance the role and minimize the
rank penalty. By simultaneously optimizing connectivity and
latency while reducing the rank penalty, the function generates
valid neighbor solutions that preserve robustness and enable a
dissemination-fair framework. In theory, highly heterogeneous
latency distributions might prevent our optimization procedure
from obtaining a high level of dissemination fairness among
nodes. However, this effect would be attenuated as the system
size increases, and could also be specifically mitigated by
modifying our simulated annealing optimization procedure.

VI. RANDOM, ACCOUNTABLE AND FAIR DISSEMINATION

To prevent successful front-running attacks, HERMES em-
ploys distributed and resilient mechanisms that enable fair,
randomized and accountable overlay selection and message
dissemination. Together, these mechanisms strive towards
dissemination-fairness, ensuring that no correct node is sys-
tematically left behind in the delivery of messages and no
adversary can exploit timing advantages to reorder messages
or front-run their dissemination. HERMES’s accountability
ensures that any deviations from the prescribed dissemination
path can be detected and flagged as protocol violations. In a
nutshell, HERMES’s dissemination follows three main steps:
(i) a committee of 3f+1 nodes generates a TRS for each
message m, (ii) the TRS is used to select a random overlay
structure for message dissemination, (iii) nodes verify the
legitimacy of the message they receive and the senders of
this message according to the known overlay structures before
relaying it to their successors.

A. Threshold Random Seed (TRS) Generation

To achieve a fair and unbiased overlay selection, HERMES
generates a threshold random seed per message, which is then
used to determine uniformly at random the overlay structure
to be used for dissemination. This process builds on a reliable
broadcast algorithm [36], ensuring consistency and preventing
any node from unilaterally affecting the random seed used
later in the protocol.

When a node intends to broadcast a message m, it first
sends the hash H(m) along with a monotonically increasing
sequence number i to a committee of 3f+1 nodes. The
sequence number i ensures that messages are processed in
ascending order without duplication. Committee members
echo (i,H(m)) to one another, and each member dispatches
a “Ready” message upon receiving either 2f+1 “Echo”
messages or f+1 “Ready” messages. Upon reception, each
member creates a partial threshold signature and sends it

Algorithm 3 GenerateNeighbor

1: Input: Current robust-tree overlay GRT
l , fault tolerance

f , accumulated rank rank(v)
2: Output: Neighbor robust-tree overlay GRT

neighbor ,l

3: function GENERATENEIGHBOR(GRT
l , f, rank(v))

4: Create a copy of GRT
l named GRT

neighbor ,l

5: layers← list of node layers in GRT
l

6: // Step 1: Randomly Add or Remove an Edge
7: if random number < 0.5
8: and GRT

neighbor ,l has more than 0 edges then
9: Choose a random edge between consecutive layers

10: and remove it
11: else
12: Choose a random edge between consecutive layers
13: and add it
14: end if
15: // Step 2: Ensure f+1-Connectivity
16: for each layer in layers do
17: if layer < max(layer keys) then
18: for each node in layers[layer] do
19: while node has < f + 1 successors do
20: Add an edge from node to a random
21: node in the next layer, minimizing:
22: latency(node, next node)
23: end while
24: end for
25: end if
26: end for
27: // Step 3: Adjust for Rank Penalty
28: for each node in GRT

neighbor ,l do
29: if depth of node i is too close to root and
30: has extra edges then
31: Attempt to reassign some connections to
32: nodes with higher accumulated rank rank(v)
33: and farther depth
34: end if
35: end for
36: // Step 4: Validate and Return Optimized Neighbor
37: if ObjectiveFunction(GRT

neighbor ,l, rank)

38: < ObjectiveFunction(GRT
l , rank)

39: then
40: return GRT

neighbor ,l

41: else
42: return GRT

l ▷ Discard if no improvement
43: end if
44: end function

back to the source node. The source collects 2f+1 partial
signatures, combines them, and obtains a final threshold sig-
nature φ(i,H(m) that effectively acts as a random seed for
the transaction m in round i. Its distributed and f-tolerant
generation process guarantees that no single adversarial node
(or small group) can skew the seed to benefit front-running
or any other manipulation. Moreover, because each message



Algorithm 4 Threshold Random Seed (TRS) Generation via
Reliable Broadcast

1: Input: Committee of 3f+1 nodes, sequence number i,
message hash H(m), source node Nsource

2: Output: Threshold Random Seed φ(i,H(m))
3: // Step 1: Broadcast by Source Node
4: Nsource sends (i,H(m)) to all committee members
5: // Step 2: Reliable Broadcast Among Committee Members
6: for each committee member nj do
7: On receiving (i,H(m)):

• Send an “Echo” message containing (i,H(m)) to all
other committee members.

8: On receiving 2f+1 “Echo” messages or f+1 “Ready”
messages:
• Send a “Ready” message containing (i,H(m)) to all

other committee members.
9: On receiving 2f+1 “Ready” messages:

• Deliver the message (i,H(m)).
10: end for
11: // Step 3: Partial Signature Generation and Collection
12: for each committee member nj who delivered (i,H(m))

do
13: Compute partial signature: σj = Sign(nj , (i,H(m)))
14: Send σj to Nsource
15: end for
16: // Step 4: Combine Partial Signatures at Source Node
17: Source node Nsource collects all received σj into

partial signatures
18: if |partial signatures| ≥ 2f+1 then
19: Combine partial signatures: φ(i,H(m)) =

CombineSignatures(partial signatures)
20: Return φ(i,H(m))
21: end if

is bound to a unique sequence number, malicious committee
members cannot successfully modify it to front run, reorder
or skip messages without detection during seed generation.

B. Randomized and Verifiable Overlay Selection

Once the TRS φ(i,H(m)) is generated, the source node
computes overlay = seed mod k, where seed = φ(i,H(m)),
and k is the total number of available overlays. This step
ensures a randomized but verifiable selection of overlay for
every message, thereby hindering adversaries from systemati-
cally front-running. Consequently, all nodes can independently
verify the threshold signature and the selected overlay, pre-
venting dishonest senders from unilaterally choosing favorable
routes. Additionally, no node can predict or predetermine
which overlay will be used for m’s propagation, ensuring an
even playing field for all correct nodes.

C. Overlay Encoding and Accountable Dissemination

Alongside randomized overlay selection, HERMES employs
accountable dissemination to guarantee that messages follow

the correct path and that nodes can detect and expose any
front-running attempts or deviations.

Before dissemination begins (or when overlays are re-
optimized for a permissionless setting), HERMES distributes to
every node a signed description of the k robust-tree overlays
used. Algorithm 5 provides the details of this Robust Tree
Encoding. Each node learns its predecessors and successors
within each overlay, as well as the designated entry points.
These entry points enable nodes to forward or receive mes-
sages in accordance with the chosen overlay.

A node receiving a message m directly verifies the mes-
sage’s and sender’s legitimacy by checking (i) the threshold
signature φ(i,H(m)), (ii) the sequence number i, and (iii) that
the sender is a valid predecessor in the overlay. If any check
fails, the recipient flags the message as a protocol violation.
This auditing step holds each node accountable for adhering
to the assigned route.

Through the TRS generation process, the committee binds
the message m that a node wishes to send as its ith message
to the random seed they generate, ensuring continuity of
sequence numbers. This mechanism prevents dissemination
omissions by requiring a node to first transmit any missing
messages for skipped sequence numbers before sending the
current message as its ith message. Nodes cannot omit or
reorder messages without detection, since skipping a sequence
or forging a threshold signature is easily caught by other
nodes. By enforcing this requirement, the protocol ensures
compliance and prevents attempts to bypass the sequence
ordering and front run. This ensures tamper-proof evidence
of each transmission path, enabling the system to isolate and
exclude deviant nodes from future communications.

Because decisions about routing and overlay choice depend
on threshold signatures rather than a centralized authority,
HERMES remains decentralized. Nodes themselves monitor
compliance through local checks and cross-verification, ensur-
ing dissemination-fairness and resilience against both targeted
node overloads and front-running attempts.

VII. DISCUSSION

A. Fault Density Assumption

The fault-density assumption is fundamental for the use of
robust overlays in HERMES. It ensures that within a radius
of D hops, no node is surrounded by more than f faulty
neighbors. This assumption is particularly practical for permis-
sioned systems, where the network topology can be controlled
or monitored, at least partially. However, in permissionless
environments, such as public blockchains, this assumption may
not always hold due to factors like malicious node clustering
or dynamic network churn.

When fault density is violated, HERMES may encounter
degraded performance or incomplete message dissemination.
Specifically, malicious nodes clustered around a target node
may try to isolate and prevent it from reliably receiving or
forwarding transactions. Similarly, fault-density violations can
lead to disproportionately high workloads at healthy nodes,
reducing efficiency and dissemination fairness.



Algorithm 5 Robust Tree Encoding

1: Input: Committee of 3f+1 nodes, source node Nsource
2: Output: Encoded robust tree Tencoded and threshold signa-

ture σT
3: // Step 1: Robust Tree Computation
4: for each committee member nj in parallel do
5: Compute robust tree Tj
6: Encode robust tree: Tencoded = EncodeTree(Tj)
7: Generate partial signature: σj = Sign(nj , Tencoded)
8: Send Tencoded and σj to Nsource
9: end for

10: // Step 2: Threshold Signature Generation at Source Node
11: Source node Nsource collects received σj into

partial signatures
12: if |partial signatures| ≥ 2f+1 then
13: Combine partial signatures: σT =

CombineSignatures(partial signatures)
14: Return Tencoded, σT
15: end if

To address these scenarios, we incorporate gossip as ro-
bust fallback mechanism, activated after a delay T to give
HERMES’s overlays enough time to disseminate, and lever-
age the reconciliation mechanism of mempools built on top
of HERMES. Gossip operates in the background to ensure
eventual consistency and delivery of transactions. If a node
fails to receive a certain messages due to faults or adversarial
interference, the mempool’s reconciliation protocol identifies
and retransmits the missing transactions through gossip to
ensure reliable dissemination despite initial disruptions, even
in scenarios where fault-density assumptions cease to hold.

B. Dynamic Network Topologies

HERMES can be directly integrated into blockchains that
rely on epoch-based memberships (e.g., Ethereum [37]): over-
lays would simply have to be recomputed at the beginning
of an epoch. Extending HERMES to other permissionless
blockchains with dynamic network topologies is achieved
by integrating a Byzantine-fault-tolerant gossip-based peer-
sampling mechanism, such as SecureCyclon [38]. This mech-
anism allows each node to maintain a local, partial view of the
network membership, which is periodically refreshed by ex-
changing information with other nodes. This dynamic update
process ensures that even in environments with high churn
or malicious nodes attempting to over-represent themselves,
every node remains f+1 connected and has an up-to-date
understanding of the network topology.

When nodes join or leave the network, HERMES adapts
by updating the overlay structures. Newly joined nodes are
integrated into all overlay structures with at least f+1 con-
nectivity, maintaining the system’s fault tolerance. Departing
nodes are removed from the overlays while ensuring the
necessary level of connectivity for the remaining nodes.

These dynamic updates inevitably cause HERMES to diverge
from its optimized structure. To address this, HERMES period-

ically re-executes the steps of the offline overlay construction
phase to create new optimized overlays that reflect the current
topology during the next epoch. This reconstruction process
occurs in parallel and in the background, ensuring that the
existing overlay remains operational until the updated structure
is disseminated and confirmed. The reconstruction process can
either be offloaded to a trusted data center operated by the
blockchain provider or executed within the blockchain network
itself in a distributed manner. In the latter case, HERMES
mitigates attempts by faulty nodes to manipulate the generated
structure by validating each step of the construction with
f+1 neighboring nodes. Additionally, the committee ensures
deterministic construction by generating a random seed for
use in the pseudo-random optimization steps performed by
simulated annealing.

A special case arises when an entry-point node in an overlay
structure leaves the network. In this scenario, a new entry
point must be elected and disseminated to the network. During
this transition, the overlay structure may temporarily become
unusable if the remaining f entry-point nodes are faulty.
However, the global view maintained through the gossip mech-
anism allows HERMES to continue efficiently disseminating
transactions and blocks across the network. This ensures low
latency, fairness, and resilience against adversarial attacks,
such as front-running.

VIII. PERFORMANCE EVALUATION

We address the following questions:
• How does HERMES compare to the state-of-the-art pro-

tocols, LØ, Mercury, and Narwhal, in terms of latency
under the same network conditions?

• What is the bandwidth overhead associated with each
protocol, and how does it impact transaction propagation
efficiency?

• How does each protocol perform in the presence of
Byzantine nodes, and which protocol demonstrates the
highest level of robustness and fairness?

We conducted simulations to compare the protocols in
controlled environments, evaluating key metrics such as la-
tency, and bandwidth usage. Additionally, we analyzed their
performance under various attack scenarios, including front-
running and censorship, to assess their resilience and ability
to maintain fairness and robustness. This thorough evaluation
allows us to identify the strengths and weaknesses of each
protocol across diverse network conditions.

A. Experimental Setup

We evaluated our protocol and the baselines on a server
equipped with Intel Xeon Gold 6240 CPUs (36 physical cores,
72 logical CPUs) running at 2.6 GHz (boosting up to 3.9 GHz)
and 128 GiB of RAM, interconnected via Gigabit Ethernet.
The experiment parameters included N = 10, 000 nodes, a
transaction size of 250 bytes, repeating each experiment 10
times and reporting average results.

All protocols were thoroughly developed entirely in Python,
based on a single, common P2P simulation framework. The



(a) Average Latency

(b) Bandwidth overhead

Fig. 3: Achieved performance and comparison to LØ, Mercury
and Narwhal.

Mercury implementation used was the complete version, in-
cluding the early outburst and clustering features, with param-
eters set to: K = 8 clusters, Dcluster = 4 inner-cluster peers,
and Dmax = 8 maximum peers. Both Narwhal and LØ use
connected topology. In HERMES we use optimized robust trees
with f = 1 and tree depth D = 14 following the number of
nodes used for the experiments N , and considering 10 different
overlays. Under those settings, computing the overlays took
less than 15 s.

To simulate realistic network conditions, we used a latency
dataset derived from multiple sources, including CAIDA [39],
RIPE Atlas [40], and major cloud providers such as AWS [41]
and Azure [42], alongside empirical blockchain latency data
(Ethereum [43]). Latencies were modeled using inverse
gamma distributions for intra-regional communication and
normal distributions for inter-regional latencies, covering key
regions such as New York, Singapore, Frankfurt, Sydney,
Tokyo, Ireland, Ohio, California, and London. Specifically:

• Intra-regional communication (e.g., nodes within
Frankfurt) followed an inverse gamma distribution with
shape α = 2.5 and scale β = 14, resulting in a mean
latency of 7 ms and a variance of 2 ms.

• Inter-regional communication (e.g., Frankfurt to New
York) followed a normal distribution with mean µ = 90
ms and variance σ2 = 20 ms.

B. Comparative Analysis

Our comparative analysis examines the performance of
four baselines: HERMES (our protocol), Narwhal, LØ, and

Mercury. Narwhal [24] is a mempool protocol designed for
enhancing consensus performance and relies on standard
broadcasting. LØ [3] is a lightweight mempool reconciliation
protocol that optimizes transaction propagation with minimal
bandwidth. Mercury [7], a clustering-based propagation
protocol, aims to optimize transaction dissemination latency.
We evaluated these protocols in terms of their average
latency (measuring transaction propagation times), latency
distribution (assessing consistency of propagation), scalability
(evaluating how well the protocol handles larger networks),
and overhead (measuring computational and communication
costs). We also conducted a security analysis to provide
insights into each protocol’s strengths and weaknesses.

C. Transaction Latency

We evaluate the average transaction dissemination latency
and its variability, as shown in Figure 3a. Average latency
measures the typical delay, while latency variability is repre-
sented by the range between the 5th and 95th percentiles that
captures the spread of latency values. Together, these metrics
provide a comprehensive view of each protocol’s efficiency
and consistency in transaction propagation. Mercury achieves
the lowest average latency of 77.10ms and a relatively narrow
latency range thanks to its clustering-based dissemination
approach. However, slight variability arises from inter-cluster
communication overhead. HERMES achieves a good latency of
83.22 ms demonstrating slightly higher latency than Mercury.
However, HERMES achieves lower variability by generating
dissemination paths that are carefully optimized for balanced
load and minimized latency variability using simulated an-
nealing. The additional overhead from TRS and tree encoding
slightly increases the average latency but does not contribute
significantly to variability. Narwhal, with an average latency of
106.61 ms, demonstrates moderate transaction speeds, but its
broader latency range indicates less consistency in propagation
times due to coordination dependencies between nodes. LØ
exhibits the highest latency at 172.02 ms, with the widest
latency range, reflecting the inefficiency inherent in traditional
gossip mechanisms, where propagation relies on repeated
message exchanges among nodes.

D. Bandwidth Consumption

Figure 3b shows the differences in bandwidth overhead
among LØ, Mercury, Narwhal, and HERMES, highlighting
how each protocol balances efficiency and performance. For
simplicity, we collect results for N = 200 nodes. LØ
demonstrates the lowest bandwidth overhead, with only 50
KB/min, attributed to its highly efficient mempool reconcili-
ation mechanism, making it an excellent choice for resource-
constrained environments. HERMES, designed as an enhanced
version of LØ, introduces mechanisms such as the Threshold
Random Seed (TRS) and a compact tree encoding, which
prioritize fairness and latency optimization. The measured
bandwidth overhead for HERMES is 192 KB/min, assuming
frequent dissemination of the encoded robust tree and its



Fig. 4: Distribution of roles for each of the 200 nodes evaluated across all 10 generated overlay structures. Shown are the
number of overlay structures in which each node held a given rank. For example, node 30 is the entry point in one overlay,
ranked 3 in another, ranked 5 in five more overlays, ranked 6 in two, and ranked 7 in one.

(a) Front-running success rate depending on the proportion (%)
of malicious nodes

(b) Probability for a message to be received.

Fig. 5: Front-running resistance and robustness

signature as if a view change is required for every transaction.
However, in practice, the encoded tree and signature only
need to be transmitted during the initial network setup or
upon a view change. Adjusting for this, the actual HERMES
overhead reduces by approximately 30 KB/min, resulting in a
bandwidth usage closer to 162 KB/min, striking an efficient
balance between performance and resource usage.

Mercury, focusing on propagation latency through its
clustering-based approach and early outburst strategy, in-

curs an overhead of 322 KB/min. Mercury adds overhead
through its Virtual Coordinate System (VCS) for topology
maintenance and clustering-based propagation strategy, which
involves metadata exchange and dynamic relaying to optimize
latency. Narwhal exhibits the highest bandwidth overhead at
730 KB/min, primarily due to its reliance on an intensive
broadcast structure that requires collecting batch approvals
from two-thirds of the network.

Several directions exist to further optimize HERMES’s
performance. First, HERMES could manipulate batches of
transactions. Then, an (k+1, f+1+k) erasure coding scheme
could divide a message into f+1+k chunks, each one being
disseminated over one of f+1+k disjoint paths. A node would
then receive at least k+1 chunks and recover the original batch
of transactions. Depending on the blockchain, if specific roles
are attributed to a subset of the nodes, e.g., validator nodes,
then HERMES could be further optimized to minimize the
transaction dissemination latency for these nodes.

E. Role Distribution

Figure 4 illustrates the distribution of roles among 200
nodes across 10 overlays. Each bar shows how often a node
was assigned a given rank (depth). Rank 1 hereby corresponds
to being an entry point. Disseminators start by transmitting
through f+1 such entry points. The lengths of bars along the
y-axis indicates how often each node had a specific rank in
the 10 overlays. In the robust tree structure, nodes closer to
the entry points bear higher dissemination loads, while nodes
near the leaves handle fewer messages. HERMES balances this
load by varying node roles across overlays. Since each robust
tree has f+1 entry points, 10 × (f+1) nodes are marked as
such (i.e., in red; depth = 1). Intermediate nodes make up
the majority of the network. They are responsible for relaying
messages from the entry points towards the leaves. The figure
shows that ranks are widely distributed among nodes, ensuring
that no specific node is consistently favored on the one side



and also that no node is burdened with heavy forwarding
responsibilities. Thus role rotation helps maintain balanced
dissemination loads across the network. The dissemination
process ends at the leaf nodes. They receive messages but
do not forward them. The figure demonstrates that HERMES
effectively achieves a balanced role distribution, with nodes
taking different responsibilities across overlays, which ensures
dissemination fairness and helps prevent front-running.

F. Front-running Resistance.

In the context of front-running resistance, dissemination
fairness is connected to how often malicious nodes are suc-
cessful in manipulating the order with which transactions
are received (front-running attacks). In this experiment, we
evaluate the front-running resistance under different levels of
malicious node activity. We simulate a network with varying
percentages of malicious nodes (from 10% to 33%) that at-
tempt to front-run transactions by observing and manipulating
the mempool. A lower success rate indicates better fairness and
resistance to manipulation. The first malicious node to observe
a victim transaction attempts to front-run it by generating
and disseminating an adversarial transaction immediately in
the network. An attack succeeds if the adversarial transaction
appears before the victim transaction in the blockchain. Note
that under this definition we consider a front-running attack
successful even if the adversarial transaction does not appear
right before the victim transaction.

Figure 5a shows that HERMES achieves the strongest pro-
tection against front-running attacks, with success rates as low
as 2% at 10% malicious nodes and only 5.9% at 33%. This
exceptional performance stems from HERMES’ randomized
dissemination mechanism, where the Threshold Random Seed
(TRS) ensures unbiased overlay selection, making it exceed-
ingly difficult for malicious nodes to predict and manipulate
transaction propagation paths. Furthermore, HERMES’ Robust
Tree Encoding adds an additional layer of security by encoding
dissemination structures in a verifiable manner, significantly
mitigating manipulation opportunities. LØ provides notable
front-running resistance as well, with success rates rang-
ing from 5% at 10% malicious nodes to 19% at 33%. Its
mempool reconciliation mechanism ensures consistency across
nodes, limiting adversaries’ ability to exploit inconsistencies in
transaction visibility. However, due to fewer mechanisms for
randomized propagation compared to HERMES, LØ becomes
progressively more vulnerable as the number of malicious
nodes increases. Narwhal demonstrates moderate resistance
to front-running, with success rates increasing from 10% at
10% malicious nodes to 51% at 33%. It ensures the even-
tual propagation of transactions but lacks advanced defenses.
This makes Narwhal more susceptible to manipulation as the
percentage of malicious nodes increases, particularly under
high adversarial activity. Mercury exhibits the weakest front-
running resistance among the protocols, with success rates
escalating from 25% at 10% malicious nodes to 70% at
33%. While its clustering-based dissemination strategy offers
efficiency, it makes the protocol vulnerable to manipulation by

malicious nodes that can target critical nodes in the clusters
to observe and reorder transactions. This centralized reliance
on cluster leaders amplifies its susceptibility to front-running
attacks under high adversarial conditions.

G. Robustness.
Robustness measures the likelihood that a message is suc-

cessfully propagated to all honest nodes, even with varying
percentages of Byzantine nodes disrupting propagation in a
network of 10,000 nodes. Figure 5b shows that HERMES
achieves the highest robustness across all scenarios, with
almost 99.9% success rate at 10% malicious nodes and main-
taining 95% even at 33%. This exceptional performance is
attributed to its K-vertex-connected and robust overlay, which
provides multiple redundant paths for message dissemination.
LØ follows with 97.5% robustness at 10% malicious nodes,
though its performance drops to 80% as adversarial influ-
ence increases. Its mempool reconciliation mechanism en-
sures consistency and decent robustness; however, its simpler
dissemination structure with fewer redundant paths makes it
less resilient under higher Byzantine node ratios. Narwhal
demonstrates similar robustness to LØ, achieving 95% at 10%
malicious nodes and decreasing to 79% at 33%. Its reliable
broadcast structure facilitates eventual message propagation
but can experience delays or disruptions in the presence of
adversarial behavior, reducing its overall consistency. Mercury
has the lowest robustness, starting at 89% at 10% mali-
cious nodes and declining sharply to 55% at 33%. While
its clustering-based approach optimizes for low latency, it
introduces vulnerabilities where malicious clusters or failures
of key nodes can lead to significant disruptions or network
partitioning, highlighting the trade-off between low latency
and robustness in its design.

IX. CONCLUSION

This paper presents HERMES, a fair, accountable, and
low-latency dissemination protocol for use by the mempool
subsystems of modern blockchain systems. Investigating front-
running attacks that remain in contemporary mempools, we
argued why fairness must be embedded in the lowest dissem-
ination layer. HERMES achieves fairness by randomly select-
ing offline-optimized robust overlay structures to accelerate
message dissemination, while forcing senders to adhere to the
selected overlay and dissemination structure. At the costs of a
slight bandwidth overhead of 192 KB/min (when compared to
the 50 KB/min of the lightest baseline protocol), HERMES
successfully mitigates front-running attacks, e.g., with less
than 5.9% of success rate in the presence of 33% malicious
nodes, at an achieved average communication latency of 83.22
ms (48% of the latency of that protocol). Directions for future
work include investigating network hierarchies (e.g., for clus-
tered consensus [44]–[47]) and local overlay transformations
that preserve fault-density despite churn.
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