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Abstract 

Measurements of neural responses to identically repeated experimental events often 

exhibit large amounts of variability. This noise is distinct from signal, operationally 

defined as the average expected response across repeated trials for each given 

event. Accurately distinguishing signal from noise is important, as each is a target 

that is worthy of study (many believe noise reflects important aspects of brain func-

tion) and it is important not to confuse one for the other. Here, we describe a princi-

pled modeling approach in which response measurements are explicitly modeled as 

the sum of samples from multivariate signal and noise distributions. In our proposed 

method—termed Generative Modeling of Signal and Noise (GSN)—the signal distri-

bution is estimated by subtracting the estimated noise distribution from the estimated 

data distribution. Importantly, GSN improves estimates of the signal distribution, but 

does not provide improved estimates of responses to individual events. We validate 

GSN using ground-truth simulations and show that it compares favorably with related 

methods. We also demonstrate the application of GSN to empirical fMRI data to illus-

trate a simple consequence of GSN: by disentangling signal and noise components 

in neural responses, GSN denoises principal components analysis and improves 

estimates of dimensionality. We end by discussing other situations that may benefit 

from GSN’s characterization of signal and noise, such as estimation of noise ceilings 

for computational models of neural activity. A code toolbox for GSN is provided with 

both MATLAB and Python implementations.
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Author summary

The neural response to a given experimental manipulation typically exhibits high 
degree of variability from trial to trial. This ‘noise’ is ubiquitous and may play an 
important role in brain computation (though its precise role is not yet clear). At 
the same time, neuroscientists are also interested in studying what is consis-
tent across trials, known as the ‘signal’. In this work, we tackle the challenge of 
separating signal and noise in neural response measurements. We introduce a 
statistical framework, termed Generative Modeling of Signal and Noise (GSN), 
in which the data are modeled as a sum of samples from an underlying signal 
distribution and underlying noise distribution. After providing an algorithm to esti-
mate the parameters of this model, we show how GSN delivers benefits such as 
denoising the results of principal components analysis and improving estimates 
of dimensionality. To make it easy to apply GSN, we also provide a code toolbox 
implementing the method.

Introduction

Nominally identical sensory, cognitive, and/or motor events often result in highly 
variable neural activity measurements [1–4]. Such variability is termed noise, and 
manifests in all techniques for measuring brain activity, including electrophysiology, 
optical imaging, electroencephalography, magnetoencephalography, and functional 
magnetic resonance imaging (fMRI). Noise may originate from multiple sources. 
Noise can arise for instrumental reasons (e.g., electrical noise, head motion) or 
physiological reasons (e.g., cardiac noise), but can also reflect genuine variability in 
neural activity. Another important aspect of noise is its complex multivariate nature: 
variability in activity is not independent across units (e.g., neurons, voxels, channels) 
but typically exhibits structured correlations [5–10]. To mitigate the effects of noise, 
neuroscientists usually average neural responses across repeated trials associated 
with the same event. The underlying premise is that the object of interest, the signal, 
is not the neural response observed on any single trial but the average expected 
neural response across a large (infinite) number of trials.

Many research programs in systems, cognitive, and computational neuroscience 
focus on studying signal. For example, one might seek to characterize the tuning 
of sensory neurons by averaging responses across several trials measured for 
each stimulus condition. But there are also scientific motivations for characterizing 
and understanding noise, which may play an important role in neural computation 
[11–13]. One example approach, originating in computational neuroscience, investi-
gates the correlational structure of noise in the responses of individual neurons and 
explores how these noise correlations affect the information capacity of a neural 
population code [14–17]. Another approach, commonly referred to as resting-state 
functional connectivity, leverages spontaneous activity fluctuations to parcellate brain 
areas and networks [18] and to develop biomarkers for individuals [19] or populations 
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[20]. Perhaps the deepest potential interpretation of noise is that it reflects critical latent cognitive processes that are not 
directly controlled by the experimental paradigm. One example of this view is the theory that noise reflects statistical priors 
and/or probabilistic neural computations [21–23].

Given that both signal and noise are of potential interest, a challenge faced by neuroscientists is that signal and noise 
are entangled in neural activity measurements, and it is not immediately obvious how to separate the two components. 
The standard approach is to average responses across trials and assume that the result adequately isolates signal from 
noise. However, while simple and straightforward, the approach of trial averaging does not necessarily produce perfectly 
accurate signal measures, a point that has been previously recognized [24–26]. To illustrate, we perform a simple simu-
lation in which two units exhibit positive noise correlation but no signal correlation (Fig 1). When the number of trials per 
condition is large, trial averaging indeed suppresses the noise, but noise correlation is still observed in the trial-averaged 
results (panel A). When the number of trials per condition is small, noise correlation in the trial-averaged results is even 
more substantial (panel B). Finally, to further accentuate the point, we simulate a situation where there is no signal at 
all (panel C): this case clearly shows how noise structure seeps into the trial-averaged results. The residual influence of 
noise on trial-averaged results is a problem as it may lead to inaccurate estimates of signal correlation [26], and inaccu-
rate interpretations of commonly performed multivariate analyses, such as principal components analysis, representa-
tional similarity analysis, and analysis of neural dimensionality. In short, what is thought to be due to signal might actually 
be due to noise. Indeed, there has been recent interest in methods for identifying and isolating signal and noise compo-
nents in high-dimensional neural data [24,25,27].

In this paper, we propose an analysis technique for disentangling signal and noise covariance in neural response mea-
surements. Our approach, termed generative modeling of signal and noise (GSN), builds and fits a model of the signal 
and noise components of measured multivariate neural responses. The model is generative in the sense that the process 
by which measurements are generated is explicitly modeled, and the model is distributional in the sense that it attempts to 
characterize how neural responses are distributed across conditions. (This latter characteristic contrasts with tuning-based 
models that attempt to characterize how neural responses vary as a function of specific properties of experimental con-
ditions.) First, we lay out the principles underlying GSN and validate GSN through a series of simulations with a known 
ground truth. In conducting these simulations, we also compare the performance of GSN to that of several related tech-
niques. Next, we demonstrate the application of GSN to visually evoked functional magnetic resonance imaging (fMRI) 
responses in the publicly available Natural Scenes Dataset [28]. This provides intuition for how GSN fares on empirical 
brain data and highlight ways in which GSN can be leveraged within computational neuroscience. Finally, we use the 
example data to illustrate how GSN can be used to improve the results of principal components analysis. Specifically, by 
disentangling signal and noise, GSN provides a cleaner estimate of the signal in the data and its properties (eigenspectra 
and dimensionality).

While elements of the statistical components comprising GSN can be found in prior work, such as an additive signal 
and noise model and the technique of shrinkage [24–26,29–33], novel contributions of the present work include integrat-
ing principles and techniques into a clearly articulated framework, developing an algorithm and associated code toolbox 
for fitting the GSN model, and demonstrating several ways in which GSN may be useful for neuroscience applications. As 
such, the primary value of this work is to improve the practical ability of researchers to make useful inferences from neural 
data. The code used in this paper is available at https://osf.io/wkyxn/, and the code toolbox implementing GSN is available 
at https://github.com/cvnlab/GSN/.

Results

Generative signal and noise modeling approach

Consider the general situation where responses are measured from a set of units (e.g., voxels, neurons, channels) to 
several experimental conditions (e.g., stimuli) and several trials are collected for each condition. The core idea of the 

https://osf.io/wkyxn/
https://github.com/cvnlab/GSN/
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Fig 1.  Trial averaging is insufficient for removing the effects of noise.  Here we perform simulations to illustrate how noise correlations persist after 
trial averaging (code available at https://osf.io/fc589). A, In this simulation, responses to 9 conditions are measured from 2 units. The left shows the 

https://osf.io/fc589
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generative signal and noise (GSN) approach is to model each response as reflecting the sum of a sample drawn from a 
multivariate distribution associated with signal (defined as the response to different conditions in the absence of noise) 
and a sample drawn from a multivariate distribution associated with noise (defined as trial-to-trial response variability for 
a fixed condition). We assume the noise distribution is zero-mean and assume the noise sample is independent of the 
signal sample. We allow the signal and noise distributions to have potentially different covariances.

A schematic illustrating GSN is shown in Fig 2. This schematic depicts a situation in which responses are measured 
from two units to 40 conditions with three trials per condition. Panel A shows the ground-truth signal distribution. Red dots 
are samples from the distribution and indicate noiseless responses to the 40 conditions. One of the dots is highlighted in 
blue, marking an example condition. Panel B shows the ground-truth noise distribution. Blue x’s indicate three samples 
from the distribution; these are noise samples associated with the example condition. Panel C shows the data distribution, 
whose mean and covariance are equal to the sum of the means of the signal and noise distributions and the sum of the 
covariances of the signal and noise distributions, respectively. The red x’s indicate the measured responses (obtained as 
the sum of signal and noise), with the blue x’s highlighting the responses associated with the example condition. Overall, 
panels A–C illustrate how signal and noise distributions give rise to observed measurements.

The core challenge in GSN is estimating the unknown signal and noise distributions given a set of measurements. The 
basic procedure that we propose is illustrated in panels D–F. Responses are averaged across trials and the mean and cova-
riance of the trial-averaged responses are computed, as shown in panel D (red diamonds indicate trial-averaged responses; 
the blue diamond corresponds to the example condition). This procedure yields the estimate of the data distribution. After 
subtracting the mean response from the original non-trial-averaged responses to each condition, the covariance of the resid-
uals is computed and then averaged across conditions, as shown in panel E (red x’s indicate the residuals; blue x’s indicate 
the residuals associated with the example condition). This yields the estimate of the noise distribution. Finally, the parame-
ters associated with the noise distribution are subtracted from the parameters associated with the data distribution, as shown 
in panel F. This is the key step that corrects for the noise that persists after trial averaging (see Fig 1), and yields the estimate 
of the signal distribution. In order to ensure positive semi-definite covariance estimates, the full procedure is slightly more 
complicated than what is presented here (please see Methods for details).

Validation of GSN through ground-truth simulations

A simple toy scenario.  GSN attempts to determine the signal and noise distributions that underlie a set of measured 
responses. To help validate GSN, we performed ground-truth simulations involving 10 units whose ground-truth signal and 
noise distributions have specific structure (Fig 3). For the signal distribution, each unit was set to have a variance of 1, and 
units 1–5 were given positive correlation (r = 0.5; covariance = 0.5). For the noise distribution, each unit was set to have a 
variance of 2, and units 4–8 were given positive correlation (r = 0.5; covariance = 1).

To gain insight, we plot detailed inspections of the performance of different methods for recovering ground-truth signal 
and noise distributions (Fig 3). First, consider the performance of naive methods for signal and noise estimation (‘Naive’). 
For signal estimation, the naive method is to simply average responses across trials and compute the sample covariance 
of the trial-averaged data (we refer to this method as ‘Signal (Naive)’). We see that this method incurs upward bias in 
the estimated signal covariance values; this can be observed in the qualitative image plots as the seeping of the noise 
covariance into the signal estimate (panel A, location 1) and in the quantitative scatter plots as dots lying above the line of 

signal, i.e., responses in the absence of noise. The middle shows the noise, i.e., trial-to-trial response variability for a fixed condition; the noise is drawn 
from a zero-mean multivariate Gaussian distribution (ellipse indicates a Mahalanobis distance of 2). The right shows responses averaged across 40 
trials for each condition (black lines join the trial average to the corresponding signal). B, Same as panel A except that 4 trials per condition are used. C, 
Same as panel B except that the signals associated with the 9 conditions are all set to zero.

https://doi.org/10.1371/journal.pcbi.1012092.g001

https://doi.org/10.1371/journal.pcbi.1012092.g001
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unity (panel A, location 2). The bias is due to the fact that although trial averaging reduces noise, the trial-averaged data 
are still influenced by noise [24]. Thus, it is critical for an estimation procedure to account for this persistent noise. For 
noise estimation, the naive method is to simply remove the mean response for each condition, aggregate the residuals 

Fig 2.  Schematic of GSN.  Here we depict an example involving n = 2 units, c = 40 conditions, and t = 3 trials per condition (code available at https://
osf.io/7k2m5). In each plot, the black cross and black ellipse indicate the mean and spread (Mahalanobis distance of 2) of a multivariate Gaussian 
distribution. For definitions of symbols, please see Methods. A, Signal. The signal indicates responses to different conditions in the absence of noise 
and is modeled as a multivariate distribution. B, Noise. The noise indicates trial-to-trial variability for a given condition and is modeled as a zero-mean 
multivariate distribution. C, Data. The data are modeled as the sum of a sample from the signal distribution and a sample from the noise distribution. D, 
Estimate of data distribution. Given a set of measured responses, we compute trial-averaged responses and estimate the mean and covariance of these 
responses, yielding the estimate of the data distribution. E, Estimate of noise distribution. We compute the covariance of responses to each condition 
and average across conditions, yielding the estimate of the noise distribution. F, Estimate of signal distribution. We subtract the estimated parameters of 
the noise distribution from the estimated parameters of the data distribution, yielding the estimate of the signal distribution.

https://doi.org/10.1371/journal.pcbi.1012092.g002

https://osf.io/7k2m5
https://osf.io/7k2m5
https://doi.org/10.1371/journal.pcbi.1012092.g002
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across conditions, and then proceed to covariance estimation (we refer to this method as ‘Noise (Naive)’). We see that the 
naive method for noise estimation incurs downward bias in the estimated noise covariance values; this can be observed 
in the image plots (panel A, location 3) and the scatter plots (panel A, location 4). The reason for this bias is that the 
naive method fails to account for the reduced degrees of freedom in the de-meaned responses: aggregating de-meaned 
responses across conditions involves using ct – 1 in the denominator of the calculation of covariance, whereas the correct 
approach is to use t – 1 in the denominator of the calculation of covariance for each condition, which is equivalent to a final 
denominator (after pooling) of c(t – 1) = ct – c . Thus, the denominator is inflated in the naive method, leading to downward 
bias in the estimated covariance values.

We now proceed to the GSN method for signal and noise estimation. One version of GSN is coupled with standard 
covariance estimation (‘No shrinkage’), providing estimates of signal covariance (referred to as ‘Signal (No shrinkage)’ 

Fig 3.  Estimation of signal and noise distributions.  Here we show results of simulations that assess how well GSN estimates the signal and noise 
distributions that underlie a set of measurements (code available at https://osf.io/5uskr). All simulations involve 10 units whose responses are generated 
as the sum of a sample from a signal distribution and a sample from a noise distribution. Both distributions are multivariate Gaussian with zero mean 
but have different covariances (as depicted). For different combinations of number of conditions (samples from the signal distribution) and number of 
trials (samples from the noise distribution for each condition), we perform 1,000 simulations. In each simulation, we generate responses and analyze the 
resulting data using three different methods: ‘Naive’ refers to simple heuristic methods for estimating signal and noise covariance (see main text), ‘No 
shrinkage’ is the GSN method with standard covariance estimation, ‘Shrinkage’ is the GSN method with shrinkage-based covariance estimation, and 
‘Split-half’ refers to computing covariance across independent splits (trials) of the data. Blue number labels highlight specific aspects of the results that 
are discussed in the main text. A–C, Detailed inspection of results for specific condition and trial numbers. In the scatter plots, purple and brown dots 
indicate diagonal and off-diagonal elements of the covariance matrix, respectively, and error bars indicate standard deviation across simulations. At the 
far right are plots of the eigenspectra (mean across simulations) produced by the various methods, as well as the ground-truth eigenspectra.

https://doi.org/10.1371/journal.pcbi.1012092.g003

https://osf.io/5uskr
https://doi.org/10.1371/journal.pcbi.1012092.g003
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and of noise covariance (referred to as ‘Noise (No shrinkage)’). These estimates are unbiased (dots in the scatter plots lie 
on the line of unity) but suffer from high variance (error bars indicating standard deviation across simulations are large). A 
second version of GSN is coupled with shrinkage-based covariance estimation (‘Shrinkage’), providing estimates of signal 
covariance (referred to as ‘Signal (Shrinkage)’) and of noise covariance (referred to as ‘Noise (shrinkage)’). These esti-
mates have reduced variance (brown dots indicating off-diagonal elements have smaller error bars), but are biased (the 
brown dots lie below the line of unity). Notice that the amount of bias is larger in scenarios with low amounts of data (e.g., 
panel A, location 5) than in scenarios with high amounts of data (e.g., panel C, location 6).

Besides assessing how well the different methods estimate covariance, we can also assess how well the different 
methods estimate eigenspectra. We observe that the sample covariance tends to underestimate dimensionality. This is 
most visible in the estimation of signal covariance when the number of conditions is small (panel A, location 7, red pluses). 
By incorporating shrinkage (panel A, location 7, red circles), the match to the ground-truth eigenspectrum is improved 
(panel A, location 7, red dashed line). Notice that the difference between the two methods diminishes in situations where 
a relatively large number of samples is available, such as estimation of noise covariance (panel B, location 8) or when 
the number of conditions is increased (panel C, location 9). Finally, consistent with earlier observations, we see that naive 
signal estimation produces eigenvalues that are too high (pink x’s; reflecting the seeping of the noise covariance into the 
signal covariance estimate) and that naive noise estimation produces eigenvalues that are too low (gray x’s; reflecting the 
lack of compensation for the reduced degrees of freedom).

An alternative method often used to estimate signal covariance [24,25] is to compute covariance of responses across 
independent splits of a given set of data (we refer to this method as ‘Split-half’). The intuition underlying the Split-half 
method is that the signal is expected to repeat across splits, whereas the noise is not expected to do so. We show eigen-
spectra results for the Split-half method (‘Signal (Split-half)’; pink diamonds). Notice that the results are very similar to 
those obtained using standard covariance estimation (‘Signal (No shrinkage)’; red pluses). We discuss this finding in 
further detail below.

Systematic evaluation of recovery of ground-truth covariance.  While the inspections of Fig 3 are useful, we would 
also like a systematic assessment of the performance of different methods. To that end, for the scenario depicted in Fig 3, 
we systematically vary the number of trials (Fig 4A) and number of conditions (Fig 4B) and summarize how well ground-
truth covariance is recovered by the different methods. In addition, to move beyond the simple idealized scenario depicted 
in Fig 3, we perform simulations for additional scenarios involving randomly generated signal and noise covariances 
(see Methods for details). These additional scenarios enable us to explore the impact of varying the number of units and 
varying the dimensionality of the signal and noise distributions (Fig 4C).

We find that in general, the noise distribution is easier to estimate than the signal distribution. This makes sense since 
all samples contribute to estimating the noise distribution, whereas only the mean of the samples associated with a 
condition contribute to estimating the signal distribution. We also see that across the board, the shrinkage method per-
forms better than or as well as the other methods, with larger improvements in low-data regimes (e.g., panel B, location 
1). This is consistent with the idea that although the No shrinkage method converges to the correct covariance when 
results are averaged across a large (infinite) number of simulations (i.e., it is unbiased), in individual simulations the 
Shrinkage method produces more accurate results than the No shrinkage method. Moreover, the benefit of shrinkage is 
especially pronounced in scenarios with high dimensionality (e.g., panel C, locations 2 and 3). This reflects the fact that 
non-regularized covariance estimates tend to underestimate dimensionality and shrinkage enables covariance estimates 
to become less correlated and hence higher-dimensional.

Notably, the Split-half method performs very similarly to the No shrinkage method. This makes sense from a theoretical 
standpoint: noise is expected to average out when computing covariance across splits and neither method incorporates 
shrinkage. However, notice that the Split-half method does systematically slightly underperform the No shrinkage method 
at low numbers of conditions (e.g., panel C, locations 4 and 5). One reason this may be the case is that the Split-half 
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method is sensitive to stochastic sampling issues: results are dependent on exactly which trials are placed into each 
split, and performance presumably suffers unless one averages over all possible splits (which may be computationally 
impractical). In our implementation, we adopted the reasonable approach of averaging results across 10 random splits. An 
appealing feature of the GSN approach is that it avoids this computational expense altogether.

An important consideration is the number of units for which covariance estimation is attempted. A common expectation 
is that estimation performance will degrade as the number of units grows (for a fixed amount of data). Interestingly, we 

Fig 4.  Ground-truth recovery of covariance.  Here we quantify how well different methods recover signal and noise covariance (code available at 
https://osf.io/5uskr and https://osf.io/3yvtg). Performance is quantified using coefficient of determination (R2) with respect to values in the upper triangle 
of the covariance matrix (including the diagonal). A–B, Recovery performance for the simple scenario illustrated in Fig 3. We vary the number of trials 
while holding the number of conditions fixed at 50 (panel A), and we vary the number of conditions while holding the number of trials fixed at 5 (panel B). 
Markers indicate the mean across 1,000 simulations. C, Recovery performance for a set of scenarios in which the number of units is varied (rows) and 
the dimensionality of the signal and noise is varied (columns). In these scenarios, signal and noise eigenspectra are governed by the power-law function 
d–α where d is the 1-indexed dimension number and α is an exponent parameter. We fix the number of trials at 5 and vary the number of conditions. 
Markers indicate the mean across 50 simulations.

https://doi.org/10.1371/journal.pcbi.1012092.g004

https://osf.io/5uskr
https://osf.io/3yvtg
https://doi.org/10.1371/journal.pcbi.1012092.g004
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see that performance remains relatively high even when the number of units increases 5-fold from 10 to 50. Moreover, 
we see that signal and noise covariance are well estimated by GSN even with a modest number of conditions (~100). 
These observations may seem surprising given the exponential increase in the size of the space (e.g., compare 210 to 
250). However, we suggest that the raw number of units is not the only relevant factor: also relevant are the dimensional-
ities of the signal and noise that are distributed across the units. Our interpretation is as follows. In the scenario with low 
dimensionality (panel C, left), even though the space is 50-dimensional, the actual data distribution is low-dimensional, 
and so accurate estimation can be achieved with a relatively small number of samples. In the scenario with high dimen-
sionality (panel C, right), shrinkage is able to greatly improve the estimation (since units tend to be uncorrelated in high-
dimensional distributions), and so again, accurate estimation can be achieved with a relatively small number of samples. 
Note that these results hold even if the number of units is increased much further (see S1 Fig for results of simulations 
involving 1,000 units).

A final observation is that the limiting factor for accurate estimation appears to be the number of conditions available. 
In the simple scenario (as illustrated in Fig 3), if we fix the number of conditions at 50, even if we greatly increase the 
number of trials, ground-truth recovery of the signal reaches a plateau that is lower than 100% (Fig 4, panel A, location 6). 
This reflects the fact that although additional trials are helpful for reducing noise in the responses to individual conditions, 
the quality of signal covariance estimation is still limited by the number of samples drawn from the signal distribution. In 
contrast, if we fix the number of trials to 5, as we increase the number of conditions, ground-truth recovery of the signal 
approaches 100% (panel B, location 7). In other words, even if the number of trials per condition is low, we can achieve 
accurate recovery of signal and noise distributions as long as we sample a sufficient number of conditions. (Note that 
ground-truth recovery does not converge to 100% under the Naive methods. As discussed earlier in Fig 3, this is because 
the Naive method for signal estimation suffers from the residual effects of noise, and because the Naive method for noise 
estimation fails to properly account for the degrees of freedom.) Given these observations, we conclude that when design-
ing an experiment in which we can either sample more trials per condition or sample more conditions, if one’s goal is to 
accurately estimate signal and noise covariance, it is more important to sample many conditions than to sample many 
trials per condition. Of course, if one’s goal is to obtain accurate estimates of the mean response to each condition, sam-
pling more trials per condition is more important.

Recovery of effective dimensionality and power-law exponent

There has been increasing interest in studying the dimensionality of neural representations (e.g., [24,25,34,35]). A simple 
and useful metric of dimensionality is effective dimensionality (ED) [36], which summarizes the distribution of eigenval-
ues in an eigenspectrum with a single number. A different metric stems from modeling eigenspectra using a power-law 
function [25]. Power-law functions are straight lines in log-log space; hence, a convenient metric of dimensionality is 
the slope of a line corresponding to a power-law function in log-log space, which is equivalent to the exponent of the 
power-law function. An interesting open question is how well the signal and noise estimates provided by GSN enable 
these dimensionality metrics to be recovered. We therefore augmented our simulations with additional analyses. Whereas 
our earlier analyses (in Fig 4) quantify how well a given method recovers signal and noise covariance values in terms of 
variance explained (R2), here we sought to quantify how well a given method recovers ground-truth values for ED and 
the power-law exponent. Hence, there are two differences in the evaluations: one difference concerns the quantity being 
recovered (covariance values vs. summary metrics of covariance structure), and the other difference concerns the evalua-
tion criterion (variance explained vs. difference between the ground-truth value and the estimated value).

For the same scenarios shown in Fig 4C, we calculated the ED and power-law exponent associated with the ground-
truth signal and noise covariances, and compared these ground-truth values to the estimates provided by different methods 
(Fig 5). For each data point (reflecting a particular combination of scenario, number of conditions, and number of trials), we 
performed 50 simulations and computed the average estimate obtained across simulations. This allows us to investigate 
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Fig 5.  Ground-truth recovery of effective dimensionality and power-law exponent.  Here we quantify how well different methods recover two sum-
mary metrics of signal and noise eigenspectra: effective dimensionality and power-law exponent (code available at https://osf.io/3yvtg). Recovery per-
formance is plotted for the same scenarios shown in Fig 4C. In each scenario, the signal and noise have the same dimensionality (either low, medium, 
or high). The cvPCA method estimates the signal eigenspectrum by projecting two splits of a given set of data onto principal components (PCs) and 
calculating the dot product between the two sets of projections obtained for each PC. The MEME method estimates the signal eigenspectrum by estimat-
ing signal eigenmoments from a given set of data and then adjusting the parameters of an eigenspectrum model to match the estimated eigenmoments. 
Markers indicate the mean across 50 simulations, and the horizontal dotted line indicates the ground-truth value. Note that the Split-half, cvPCA, and 
MEME methods do not provide estimates for the noise (and are therefore not plotted).

https://doi.org/10.1371/journal.pcbi.1012092.g005

https://osf.io/3yvtg
https://doi.org/10.1371/journal.pcbi.1012092.g005
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whether we can expect a given method to recover, on average, the ground-truth ED and power-law exponent, or whether 
the method exhibits bias. In conducting these analyses, we also included for comparison the performance of two methods 
that have been recently proposed for estimation of signal eigenspectra: cvPCA [25], which is based on computing variance 
across independent splits of a given set of data, and MEME [24], which is based on optimizing an eigenspectrum model to 
match the moments of the signal eigenspectrum estimated from a given set of data (see Methods for details).

The simulation results show a variety of interesting observations. On the whole, several of the methods perform rea-
sonably well: GSN (No shrinkage), GSN (Shrinkage), Split-half, and MEME all provide estimates that converge towards 
ground-truth values at large number of conditions (e.g., locations 1, 2, 3). Hence, these methods provide the means to 
track and recover dimensionality of different scenarios. However, all methods exhibit bias at low numbers of conditions 
(e.g., location 4), and biases sometimes persist even for numbers of conditions that may seem relatively large, such as 
100 (e.g., location 5). This underscores the point that collecting sufficient amounts of data is critical for accurately esti-
mating dimensionality. As might be expected, the necessary amount of data scales with the dimensionality of the scenario 
being characterized (e.g., compare locations 6, 7, 8). Also, similar to earlier observations (see Fig 4), it is easier to recover 
properties of noise than properties of signal.

While ranking methods is tricky given the high complexity of the patterns of results, we venture some general conclu-
sions. The worst performing methods are Naive and cvPCA, as they tend to exhibit high bias even for large numbers of 
conditions (e.g., locations 9, 10). The Split-half and GSN (No shrinkage) methods perform at about the same level (echo-
ing results in Fig 4), and converge towards ground-truth values at modest rates. In contrast, GSN (Shrinkage) converges 
towards ground-truth values more rapidly. The best performing method is MEME which exhibits the fastest convergence to 
ground-truth values. It is important to keep in mind that although GSN is not the best performing method in these simu-
lations, estimation of eigenspectra is not the central purpose of GSN. In addition, while the MEME method does perform 
well in these simulations, the MEME method comes with limitations, including assumptions about the shape of the eigen-
spectrum (see Discussion).

It is interesting to note that qualitatively different patterns of results can be found for ED and power-law exponent. For 
example, performance of a given method can be relatively poor for power-law exponent (location 10) but relatively good for ED 
(location 11). We interpret this as simply reflecting the fact that different metrics emphasize different aspects of eigenspectra.

To further explore the generality of our conclusions, we performed simulations for an additional scenario involving bio-
logically realistic signal and noise covariances (as opposed to the idealized scenarios used in Figs 4C and 5). Results are 
generally similar, except for complications related to the recovery of power-law exponent (see S2 Fig for details). Finally, we 
caution that while our simulations indicate reasonable performance across a range of settings, the simulations provided here 
are not comprehensive (e.g., we did not vary the relative magnitudes of the signal and the noise) and practitioners may wish 
to perform simulations that are more specifically matched to the system being studied if precise values are critical.

Application of GSN to empirical data

Signal and noise covariance estimates.  We demonstrate the application of GSN to empirical data taken from the 
7T fMRI Natural Scenes Dataset (NSD) [28]. NSD consists of human brain responses to over 70,000 visually presented 
natural scenes distributed across eight participants. Each image is presented up to three times to a given participant. This 
limited number of presentations reflects the prioritization of sampling a large number of distinct images over sampling a 
large number of trials per image (see also [25]). As such, NSD can be viewed as an especially challenging dataset for 
methods that seek to accurately disentangle signal from noise.

As an illustrative example, we extracted responses from right hemisphere fusiform face area subdivision 1 (FFA-1) in 
one participant (Participant 1), yielding 330 vertices × 10,000 images × 3 trials. As a pre-processing step, we normalized 
the responses associated with each vertex to have zero mean and unit variance. We then performed GSN on these data, 
yielding estimates of signal and noise covariance (Fig 6).
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Fig 6.   Application of GSN to example fMRI data. Here we demonstrate the application of GSN to example data from FFA-1 (330 verti-
ces × 10,000 images × 3 trials) (code available at https://osf.io/yxrsp). A, Signal and noise covariance estimates. In addition to GSN outputs 

https://osf.io/yxrsp
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A number of observations can be made from the results. First, notice that the magnitude of the noise is generally larger 
than the magnitude of the signal (panel A, compare diagonal of noise covariance with diagonal of signal covariance). The 
fact that response measurements contain large trial-to-trial variability even when holding the experimental manipulation 
(stimulus) constant is typical in fMRI and many other measurement techniques. Second, we observe that the covariance 
structure of the noise is different from that of the signal, though there are some similarities (panel A, compare middle 
image with left image). A naive method that averages responses across trials yields covariance structure (panel A, right 
image) that is a mixture of signal covariance and noise covariance, since trial averaging reduces but does not eliminate 
noise. Third, as a control, if we fully shuffle responses across images and trials, we see that values in GSN’s estimated 
signal covariance become very low (panel B, left image). This makes sense since after shuffling, we do not expect to find 
reliable differences in responses across images. In contrast, the naive method fails to produce a good signal covariance 
estimate: even though there are no reliable differences in responses across images, trial averaging does not fully sup-
press the noise and the noise covariance seeps into the signal covariance estimate (panel B, right image).

For visual comparison, we show covariance estimates after conversion to correlation units (panel C). One motivation 
for this conversion is to ensure that each unit contributes equally to subsequent analyses of the covariance estimates. 
Prominent differences between covariance and correlation are observed, reflecting the fact that there are substantial vari-
ations in signal-to-noise ratio across vertices (vertices with low signal strength are only weakly visible in the covariance 
matrices and become more visible in the correlation matrices). Finally, by applying GSN to different subsets of the data 
(panel D), we see that signal and noise can be reliably estimated in this dataset. For example, compare the signal and 
noise correlation estimates obtained using 1/4th of the data to those obtained using 1/16th of the data (these reflect two 
mutually exclusive subsets of the data). Reliable estimation is especially notable given that the dataset involved only three 
trials for each stimulus. Of course, in the limit of very low amounts of data (panel D, rightmost columns), estimation quality 
starts to suffer and we start to see strong influence of the shrinkage bias pulling off-diagonal elements towards zero.

Although GSN does not require nor assume Gaussian distributions, if the signal and noise distributions are indeed 
Gaussian, then the mean and covariance parameters estimated by GSN are sufficient for a full characterization of a given 
dataset. Curious about the nature of the distributions in NSD, we performed inspections of the example data shown in Fig 
6. In these inspections, we compare histograms of the empirical data to histograms of synthesized data that are generated 
using parameters of the GSN model coupled with the assumption of Gaussian signal and noise distributions (S3 Fig). We 
find a high level of similarity for a histogram of trial-averaged responses (which helps focus on signal) and a histogram of 
mean-subtracted residuals (which helps focus on noise), suggesting that the signal and noise indeed have Gaussian-like 
distributions.

Eigenspectra of signal and noise.  Principal components analysis (PCA) is a widely used method for dimensionality 
reduction and data visualization [37]. Using the empirical data, we conducted several analyses that demonstrate 
the benefits of GSN for PCA. The first analysis (Fig 7A) pertains to eigenspectra, which are important as they indicate the 
amount of variance explained by different principal components. For each of the eight NSD participants, we computed the 
eigenspectrum of the covariance of the data after trial averaging (cyan lines); this represents a naive analysis in which 
responses are averaged across trials to reduce noise. We also computed the eigenspectrum of the signal covariance (red 
lines) and noise covariance (black lines) as estimated by GSN. To make the results directly comparable to the results of 

(first and second columns), we show results from naive estimation of signal covariance which involves simply calculating the covariance 
of trial-averaged data (third column). B, Results for shuffled data. As a control, we shuffled responses across all images and trials and 
re-analyzed the data. C, Conversion to correlation units. The results of panel A are re-plotted after converting covariance to correlation units. 
D, Estimates as a function of amount of data. We varied the fraction of images to which GSN is applied (e.g., 1/16 corresponds to 625 of 
10,000 images being used). This was done such that data subsets were mutually exclusive of one another.

https://doi.org/10.1371/journal.pcbi.1012092.g006

https://doi.org/10.1371/journal.pcbi.1012092.g006
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Fig 7.  GSN disentangles signal and noise in principal components analysis (PCA).  Here we use PCA to analyze the results of GSN as applied 
to FFA-1 (code available at https://osf.io/f34bc). A, Eigenspectra. For each of the eight participants (P1–P8), we plot the eigenspectra of the signal and 
noise as estimated by GSN (‘Signal (GSN)’, ‘Noise (GSN)’), as well as the eigenspectrum of the trial-averaged data (‘Naive’). The main plots show 

https://osf.io/f34bc
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the naive analysis, we scaled the noise covariance by 1/3 (since trial averaging is expected to reduce the variance of the 
noise by a factor equal to the number of trials). Finally, we calculated the effective dimensionality associated with each of 
the three eigenspectra (numbers above each plot).

We find that the three eigenspectra exhibit distinct patterns. In terms of overall magnitudes, eigenvalues are slightly 
higher for the signal than they are for the noise and are highest for the naive analysis. This is consistent with the interpre-
tation that after averaging across 3 trials, the total variance contributed by signal is slightly higher than the total variance 
contributed by noise, and that the trial-averaged data have high total variance due to contributions from both signal and 
noise. In terms of how quickly eigenvalues fall off (independent of their magnitudes), we see that the eigenspectrum of 
the signal falls off relatively quickly and has low effective dimensionality (between 2–4). This indicates that the coding of 
natural scenes in FFA-1 is low-dimensional (at least as measured in NSD). In contrast, we find that the eigenspectrum 
of the noise falls off more slowly and has higher effective dimensionality than the signal (between 9–18). This is most 
evident in the inset log-log plots, which show more clearly what occurs at high numbers of dimensions. Finally, we find 
that the eigenspectrum of the trial-averaged data falls somewhere in the middle, with a moderate effective dimensionality 
(between 4–10). Overall, these results illustrate how GSN separates signal and noise components in a set of data and 
enables the researcher to study their separate properties. The separation of noise from signal is important, as it compen-
sates for the fact that in empirical data, noise corrupts the dimensionality of the measured signal [36].

Reliability of principal components.  A second analysis pertains to the reliability of the principal components derived 
from the data. We randomly split the images from each participant into halves, performed PCA separately on the two 
split-halves, and then computed the cosine similarity of principal components across the split-halves. Results are shown 
both for the signal and noise as estimated by GSN as well as for the naive trial-averaged data (Fig 7B). We find that the 
principal components of the signal are highly reliable across split-halves for approximately the first 4 dimensions, and that 
the principal components of the noise are highly reliable for approximately the first 12 dimensions (see labeled points). 
Beyond these numbers of dimensions, reliability levels are substantially lower, which makes sense given that the amount 
of variance associated with the higher dimensions is very small (see Fig 7A). The principal components of the trial-
averaged data also exhibit reasonably high levels of reliability. However, the reliability levels decrease gradually, making it 
difficult to decide the number of highly reliable dimensions.

One peculiar observation is that reliability values for the noise and the trial-averaged data fluctuate, but on average stay 
elevated, over a large range of dimensions (20–100). We suggest that this could be due to the fact that the eigenvalues 
in these higher dimensions are roughly equal in magnitude, making the ordering of the principal components somewhat 
arbitrary and subject to estimation error. In such a scenario, corresponding principal components across split-halves are 
not likely to match but might incidentally match on occasion. Finally, notice that the reliability pattern for the trial-averaged 
data looks approximately like a mixture of the reliability patterns for the signal and the noise. This is consistent with the 
interpretation that the data is a mixture of signal and noise and that GSN successfully decomposes the data into these 
constituent components.

Denoising of PCA results.  The third and final analysis seeks to validate the signal and noise identification provided 
by GSN. In short, how do we know that GSN is successfully estimating and removing the influence of noise? Here, we 

results on a linear scale for up to the first 10 dimensions; the insets show results on a base-10 log-log scale for up to the first 100 dimensions. Numbers 
above each main plot indicate the effective dimensionality of the three eigenspectra. B, Split-half reliability of principal components. The cosine similarity 
between corresponding principal components from two split-halves of the data from each participant is plotted for up to the first 100 dimensions. The 
thick black line indicates the mean across participants. C, Across-participant consistency. A common set of 515 images were viewed three times each 
by all participants. For each participant, we computed the projections of trial-averaged responses to these 515 images onto either (i) the first principal 
component of the covariance of the trial-averaged data (‘Standard PCA’) or (ii) the first principal component of the signal covariance estimated by GSN 
(‘GSN PCA’). The cosine similarity of these projections between each pair of participants is shown.

https://doi.org/10.1371/journal.pcbi.1012092.g007

https://doi.org/10.1371/journal.pcbi.1012092.g007
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can leverage the notion that signal, not noise, is expected to generalize across participants [38]. We reasoned that if GSN 
successfully separates signal from noise in each participant, then signal properties—specifically, the coding of natural 
scenes—should exhibit improved consistency across participants compared to the trial-averaged data. This is because 
the trial-averaged data is expected to contain the residual effects of noise, and many types of noise are expected to 
be idiosyncratic to each participant (e.g., the effects of head motion on fMRI responses is likely unrelated to the coding 
of natural scenes). But how can we compare participants? Given the variability of the size and shape of FFA-1 across 
participants (the number of vertices is not even the same), comparing principal components across participants is not 
straightforward. However, we can compute the projections of responses to natural scenes onto principal components, 
and these projections should be comparable across participants insofar that there is some degree of commonality in the 
representation of natural scenes across participants.

In accordance with our approach for assessing across-participant consistency, we computed trial-averaged responses 
for a common set of 515 images that were viewed by all participants, and then projected these responses onto the top 
principal component of the signal covariance estimated by GSN. For comparison, we also projected the responses onto 
the top principal component of the trial-averaged data. The results show that the projections for GSN are substantially 
more consistent across participants than the standard analysis (Fig 7C). This implies that GSN is successfully reducing 
the influence of noise on principal components derived from the data, and that the principal components derived by GSN 
better reflect the underlying coding dimensions in the brain that are shared across humans. As a sanity check, we visually 
inspected the stimulus images that drive variance along the direction of the top principal component (S4 Fig); this reveals 
that the presence of faces appears to be the dominant factor, consistent with prior studies [39,40].

Finally, we show results of our PCA analyses for additional brain regions V1, hV4, and PPA (S5 Fig). Our main observa-
tions replicate, including lower dimensionality for the signal compared to the noise, high within-participant reliability of the 
first several signal PCs and noise PCs, and higher across-participant consistency of trial-averaged response projections 
onto PC1 for GSN PCA than for standard PCA. In addition, we find that the dimensionality of the signal is substantially 
higher in V1 (mean across subjects: 5.6) and hV4 (mean across subjects: 4.6) than it is in FFA-1 (mean across subjects: 
2.4), whereas the signal dimensionality in FFA-1 is comparable in PPA (mean across subjects: 2.5). These variations in 
dimensionality across brain regions are a desirable outcome, as they are consistent with the idea that GSN is able to track 
and recover different dimensionality levels. More generally, these results indicate that GSN can aid the investigation of 
representational differences across the brain.

Discussion

In this paper, we have described a simple generative model that characterizes the contributions of signal and noise to 
a set of neural response measurements. We developed a method for fitting this model, implemented this method in 
a code toolbox, and demonstrated the method on ground-truth simulations and empirical data. We showed four main 
results. First, we showed that naive approaches to estimating signal covariance (i.e., trial averaging) and estimating noise 
covariance (i.e., aggregating residuals) are inaccurate (Figs 3–6). A key insight is that simply computing trial-averaged 
responses is insufficient to eliminate noise: the result will invariably contain a mixture of both signal and noise covariance. 
Second, we confirmed that the GSN method works as expected, with ground-truth recovery performance improving with 
larger numbers of trials and conditions (Fig 4). Third, we performed simulations directly comparing GSN to alternative 
methods for signal estimation (including split-half analyses, cvPCA, and MEME), and found that GSN is competitive with 
these methods (Fig 5). Fourth, we showed how GSN can be exploited to improve principal components analysis (PCA). 
Specifically, GSN decomposes a set of data into signal and noise distributions, each of which has its own eigenspectrum 
and eigenvectors. These distributions can be analyzed separately, for example, with respect to dimensionality (Fig 7A) 
and reliability (Fig 7B). Furthermore, isolating the signal distribution leads to principal components that have improved 
generalizability across participants (Fig 7C).
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  Novel contributions of the present work.  Elements of GSN can be found in prior work, including using repeated 
trials to separate signal and noise in neural responses [24–26,41] and the use of shrinkage for covariance estimation  
[29–31,33]. We note, in particular, that the formulation of the GSN model is fairly close to the approach described in a 
recent pre-print in the statistics literature [32]. Overall, the work presented here is best viewed as an applied statistics 
paper, one that selects and consolidates statistical ideas and designs methods for application to a specific scientific 
domain (neural response measurements). The primary novel contributions of the present work are the integration of 
techniques into a clearly articulated framework, developing an algorithm for fitting the GSN model under the constraint 
of positive semi-definite covariance estimates, and demonstrating specific examples of how GSN could be useful in 
neuroscience applications. In addition, we provide a code toolbox for easy application of GSN.

Relationship to other approaches.  From a statistical perspective, GSN bears some similarity to probabilistic principal 
components analysis (PPCA) [42–44]. PPCA is a special case of factor analysis, and models the data as the sum of the 
combination of latent factors and a noise term. However, a key difference between PPCA and GSN is that PPCA assumes 
that the noise is isotropic (i.e., the noise has the same variance and is uncorrelated across units), whereas GSN does not 
make this assumption. Instead, GSN exploits the fact that neural response measurements usually involve multiple trials 
per condition, and estimates the noise structure instead of assuming it to be isotropic. Another difference is that PPCA 
typically comes with the presumption that the latent variables have lower dimensionality than the original data, whereas 
GSN does not necessarily involve dimensionality reduction.

Signal and noise correlations have been studied in the computational neuroscience literature using a variety of 
approaches. Here, we discuss a few approaches closely related to GSN. The approach used in [45] involves building a 
model of calcium imaging data that simultaneously characterizes both evoked activity (signal) and spontaneous activ-
ity (noise). The model is generative in nature, similar to GSN. A difference is that the approach involves a number of 
modeling choices that are specific to the signal and noise characteristics present in calcium imaging data. Incorporating 
modality-specific details may enhance statistical efficiency and interpretability. In contrast, GSN has a different philosoph-
ical goal of providing a general-purpose framework for signal and noise estimation that rests on minimal assumptions. 
Another generative modeling approach, TAFKAP, was introduced by [31,46] in the context of developing improved decod-
ing methods for fMRI data. This approach, like GSN, estimates both signal covariance and noise covariance. However, 
the modeling of signal proceeds quite differently in TAFKAP than GSN. In TAFKAP, the response of each unit to the 
experimental conditions is fit using a specific tuning curve model—for example, in [31], a weighted sum of basis functions 
is used to model the orientation tuning of each unit. GSN takes a different approach: instead of attempting to estimate the 
signal (noiseless response) to each condition, GSN attempts to estimate only the distribution of the signal across con-
ditions. An advantage of the GSN approach is that it avoids the need to specify (and thus does not depend on) a tuning 
curve model, thereby providing more generality. Moreover, if a tuning curve model is used, there is a risk that model fail-
ures (either due to model misspecification or imperfections in model fitting) may corrupt estimates of the noise (assuming 
noise is estimated from model residuals) [47]. However, a disadvantage of the GSN approach is that it requires condition 
repeats to estimate the noise, whereas in TAFKAP, noise can be estimated based on residuals of the model fit. Another 
disadvantage is that the lack of an explicit tuning model in GSN implies that further analysis steps must be carried out in 
order to incorporate GSN into decoding analyses.

Comparison to cvPCA and MEME.  A recent paper [25] proposed a method termed ‘cross-validated PCA’ (cvPCA) 
that seeks to quantify signal (stimulus-related variance) in neural response measurements, similar to GSN. The method 
involves splitting a dataset into halves (where the halves contain different trials for the same set of conditions), performing 
PCA on one half, projecting the responses in each half onto the estimated PCs, and then computing covariance across 
the projections from each half as an estimate of signal variance. The underlying logic is that noise is not expected to 
covary across halves, whereas the signal is expected to do so. Similar to GSN, the cvPCA method leverages repeated 
trials to infer what is related to the experimental manipulations (signal) and relies on a model in which the total variance in 
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a dataset is equal to the sum of signal variance and noise variance. However, the two methods differ substantially in the 
procedures by which estimates are obtained.

Recent work [24] has pointed out that the PCs estimated in cvPCA are influenced by noise and are therefore not identi-
cal to the true underlying signal PCs. This fact degrades the accuracy of the signal components estimated by cvPCA, and 
leads to biased estimates of the signal eigenspectrum [24]. Motivated by these concerns, the authors propose the MEME 
(minimize eigenmoment error) method to deliver improved estimates of the signal eigenspectrum. Specifically, MEME first 
calculates unbiased estimates of the moments of the signal eigenspectrum, assumes a parametric model for the signal 
eigenspectrum, and then optimizes parameters of the model to minimize the error between the eigenspectrum moments 
achieved by the model and the estimated moments of the signal eigenspectrum.

In this paper, we performed simulations that directly compare the performance of GSN, cvPCA, and MEME with 
respect to recovery of effective dimensionality and power-law exponent (see Figs 5 and S2). We observed substantial 
bias in cvPCA results, consistent with recent reports [24]. GSN performs better, converging towards ground-truth values 
with increasing amounts of data. MEME performs the best, with even faster convergence. However, a major limitation of 
MEME is that it assumes a parametric form for the signal eigenspectrum. In our main set of simulations (Fig 5), for sim-
plicity we considered only scenarios where the ground-truth signal eigenspectrum fully conformed to the form assumed 
by our MEME implementation (specifically, a single unbroken power-law function). Deviations from the assumed form are 
expected to lead to degraded performance from MEME. Indeed, it is possible that deviation from the assumed form is 
responsible for the poor performance of MEME in recovering power-law exponent in the biologically realistic scenario (S2 
Fig). While allowing break points in the power-law function may help ease the constraints of MEME, doing so increases 
complexity and may lead to increased instability of parameter estimates.

Overall, the cvPCA and MEME methods are similar in spirit to GSN in the sense of using repeated trials to separate 
signal and noise in neural response measurements. However, the former two methods are primarily focused on estima-
tion of signal eigenspectra, whereas GSN takes a broader view in which the goal is to estimate full covariance matrices 
(including both the eigenspectrum and eigenvectors) for the signal and the noise. Hence, while our results indicate that 
MEME is an effective method for estimating signal eigenspectra, GSN provides estimates of the full underlying signal and 
noise covariances and thus supports a wider array of subsequent analyses of signal and noise properties. It might be pos-
sible to use eigenspectrum estimates from cvPCA or MEME to produce improved estimates of full covariance matrices, 
but the originally described methods do not do so, which is why we do not compare to such hybrid or extended methods 
here.

Other applications of GSN.  Besides improving PCA and dimensionality estimation (as illustrated in Fig 7), GSN may 
aid in other applications not specifically covered in this paper. One important application is the estimation of noise ceilings 
for computational models [48,49]. Since noise imposes limits on the maximum amount of variance that can in theory be 
predicted on the basis of experimental events (e.g., sensory stimuli), obtaining accurate estimates of the noise ceiling is 
critical for assessing model performance. GSN provides explicit models of the distributions of signal and noise, and can 
be used to estimate noise ceilings for the responses of individual units (see Methods in [28]) as well as noise ceilings for 
multivariate measures, such as representational dissimilarity matrices (see Methods in [50]). Having principled methods 
to compute univariate and multivariate noise ceilings is critical in efforts to compare deep neural network models of brain 
data at scale [50–53].

Another application relates to research programs where noise itself is of intrinsic interest, often hypothesized to perform 
functions relevant to neural computation (e.g., [21–23,54–58]). The GSN approach facilitates the study of noise by decom-
posing datasets into signal and noise, providing researchers with two distinct entities that can be separately measured, 
characterized, manipulated, compared with one another, and related to brain function. Isolating the separate contributions 
of signal and noise to response measurements may help enrich our understanding of how response variability contributes 
to the function of neural systems and whether and how noise and signal interact.
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Limitations of GSN and future directions.  GSN rests on the assumption that noise is additive and independent 
of the signal. The assumption of independence simplifies estimation and enables efficient use of data: even though 
the example dataset in this paper included only three trials per image, pooling estimates of noise covariance across 
images enabled robust noise covariance estimates (see Fig 6D). The extent to which the additive and independence 
assumptions accurately characterize fMRI responses is an important open question. For example, a recent study provided 
evidence that noise magnitude and noise correlations in fMRI data decrease during task states [3]. However, it is clear 
that the additive and independence assumptions do not strictly hold for spiking data. Spike trains exhibit Poisson-like 
proportionality between the mean firing rate and the variance of firing rate across trials [59], and this proportionality may 
depend upon stimulus statistics [60]. Moreover, multiplicative-type noise has been observed in which firing rates in neural 
populations are collectively scaled [1,61,62]. Finally, evidence that noise depends on the stimulus has been shown for 
neurons in the retina [16,63]. A direction for future work would be to relax the assumptions of GSN to accommodate a 
larger range of settings.

Another potential limitation of GSN is that it may require a large number of samples for accurate estimation of signal and 
noise distributions. We observed that a relatively large number of conditions is required to accurately estimate the signal 
covariance (see Fig 4B). In addition, although pooling of noise covariance estimates across conditions can achieve robust 
estimation of noise (see Fig 6D), if one wishes to explore the possibility that the noise distribution may depend on the experi-
mental condition, large numbers of trials for each condition may be required. Future research might investigate practical data 
requirements for a diverse range of experimental scenarios. A third limitation is that GSN in its current form provides just a 
point estimate of model parameters. If one is interested in the reliability of parameter estimates, it may be possible to extend 
GSN using bootstrapping or Bayesian techniques to obtain confidence intervals or posteriors for model parameters.

There is a sizable statistical literature on techniques for covariance matrix estimation (reviewed in [64]). Our proposed 
method for estimating covariance only incorporates shrinkage to improve estimation accuracy. This is a mild prior and is 
expected to improve out-of-sample generalization compared to an unbiased estimator. Within the technique of shrinkage, 
there are variants that can be tried such as deriving the optimal level of shrinkage analytically or using different shrinkage 
targets [29,30,65]. If one is willing to make stronger assumptions, there are other approaches that could achieve more 
efficient covariance estimates. Such approaches include banding and tapering [66], thresholding [67], and methods that 
impose low-rank structure [33,68]. In addition, one could seek to model covariance in terms of one or more structured 
covariance components [31,33,45,68]. This type of approach can improve estimation efficiency, but its utility depends on 
the accuracy of the assumed covariance components. If one is willing to make an explicit distributional assumption, one 
can apply Bayesian inference (e.g., [69]), which allows regularization through the prior. Finally, one could apply robust 
statistics [70] to improve estimation. These various methods for covariance estimation could be easily incorporated into 
the GSN framework by simply replacing the shrinkage estimators that we use.

Finally, an important direction for future research is to devise methods for distinguishing different sources of noise. 
Neural noise (true variability in neural activity) is fundamentally distinct from instrumental noise (e.g., electrical noise), 
physiological noise (e.g., noise related to respiration and the cardiac cycle), and motion-related noise (e.g., motion of the 
head). Without specific modeling of these various noise sources, it remains unknown how much of the noise observed in a 
set of measurements is due to neural noise. Developing methods to identify non-neural noise and isolate neural noise will 
presumably lead to improved insights into the nature of noise and how it may support brain function.

Methods

The GSN method

Basic framework.  GSN is a multivariate generalization of the univariate framework that we previously proposed for 
modeling signal and noise in responses of individual units [28]. Consider the general situation in which responses are 
measured from a set of n units (e.g., voxels, neurons, channels) to c conditions (e.g., different stimuli) and this process is 
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repeated for t trials per condition (we assume t > 1). In this scenario, response measurements have a dimensionality of n 
units × c conditions × t trials. The scenario is multivariate in the sense that there exist multiple units and we are attempting 
to model the joint distribution across all units. Our broad goal is to formally characterize the distribution of signal, i.e., 
the average expected response to each given condition, and the distribution of noise, i.e., trial-to-trial variability in the 
response to each given condition.

For the purposes of modeling, we assume that the signal and the noise are independent and additive and that each is 
characterized by some underlying multivariate distribution. Note that the use of an additive signal and noise model has 
roots in prior work [24,25,31]. We propose the following model:

	 D ∼ Xsignal + Xnoise	

	 E [Xsignal] = µsignal 	

	 Cov [Xsignal] = Σsignal 	

	 E [Xnoise] = µnoise = 0	

	 Cov [Xnoise] = Σnoise	

	 Cov (Xsignal,Xnoise) = 0	

where D is an n-dimensional random variable indicating the responses of the n units on each trial (1 × n), Xsignal is the 
signal component of the data with mean µsignal  (1 × n) and covariance Σsignal  (n × n), Xnoise is the noise component of the 
data with mean µnoise (1 × n) and covariance Σnoise (n × n), and 0 indicates a matrix of zeros. In other words, the response 
on each trial is modeled as the sum of a random sample drawn from a signal distribution (which represents the noise-
less response to some condition) and a random sample drawn from a noise distribution (which represents the noise that 
accompanies the response). The noise is assumed to be zero-mean. See Figs 2A–2C for a visual illustration.

The modeling approach we describe is generative in the sense that we are characterizing the process by which measure-
ments are generated (specifically, the data for each trial are modeled as a random draw from the multivariate distribution 
associated with D). We therefore refer to the approach as generative modeling of signal and noise (GSN). Note that for sim-
plicity, we use the term ‘GSN’ to refer to both the statistical model as well as the specific algorithm we propose for estimating 
model parameters (see next section). Also note that a complete generative model requires choosing specific forms for the 
distribution of signal and the distribution of noise; a simple choice is the multivariate Gaussian distribution (see S3 Fig).

Algorithm for estimating model parameters.  The core challenge in GSN is estimating the parameters of the 
signal and noise distributions. We propose a method based on the observation that the sum of two independent random 
variables has a mean that is equal to the sum of the means of the distributions associated with the variables and a 
covariance that is equal to the sum of the covariances of the two distributions. Hence, we can write:

	 µdata = µsignal + µnoise = µsignal 	

	 Σdata = Σsignal +Σnoise	
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where µdata and Σdata indicate, respectively, the mean (1 × n) and the covariance (n × n) of the measurement variable D. 
For simplicity, we have used notation that acts as if each trial involves a fresh draw from the signal distribution. However, 
in typical practice, several trials are measured for each condition and the draw from the signal distribution is the same for 
each of these trials. To account for this, we average responses across the available t trials before estimating the data dis-
tribution. Since trials are independent, averaging is expected to reduce the covariance of the noise by a factor of t. Hence, 
we can write the following for the distribution of the trial-averaged data:

	 µdata[t] = µsignal	

	 Σdata[t] = Σsignal +Σnoise/t	

where µdata[t] indicates the mean of the multivariate distribution that describes trial-averaged data (1 × n) and Σdata[t] indi-
cates the covariance of this distribution (n × n).

The general approach of GSN is to estimate the mean and covariance of the noise, estimate the mean and covari-
ance of the trial-averaged data, and then subtract the noise covariance estimate (scaled by 1/t) from the trial-averaged 
data covariance estimate to obtain an estimate of the signal (see schematic in Figs 2D–2F). However, because it is 
possible that the obtained estimate of signal covariance may be not positive semi-definite (especially in scenarios 
with limited data or low signal-to-noise ratio), a more sophisticated approach is necessary. To meet this challenge, we 
develop a mathematical formalism in which we use a weighted sum-of-squares approach to find positive semi-definite 
matrices for signal and noise covariance estimates that are as close as possible to the estimates derived directly from 
the data (details in S1 Appendix). This turns out to be a convex optimization problem [71] that can be solved using a 
standard alternating minimization approach [72]. We note that the procedure we propose improves goodness-of-fit to 
the data compared to a simple approach in which the eigenspectrum of the signal covariance estimate is simply trun-
cated, setting negative eigenvalues to zero (see S1 Appendix). Bear in mind that despite the mathematical complexity 
introduced (see Step 6 below), the modification is a fairly innocuous mathematical detail that does not fundamentally 
change the nature of the approach.

The following is a step-by-step algorithm for GSN (performgsn.{m,py}):

1.	Start with a set of neural response measurements X  (n units × c conditions × t trials). Let Xj  denote the responses mea-
sured for condition j, arranged as a 2D matrix (t trials × n units). Let X  denote trial-averaged responses, arranged as a 
2D matrix (c conditions × n units).

2.	To estimate the noise distribution, calculate the covariance of responses separately for each condition, average the 
covariances across conditions, and then shrink the result. This yields an initial estimate of the noise covariance, which 
we refer to as Σ̂noiseORIG (n × n):

Σ̂noiseORIG = s




c∑
j=1

cov(Xj)/c




where cov (A) = Ȧ
T
Ȧ/(d – 1) computes sample covariance using Bessel’s correction, Ȧ indicates A with its columns 

centered around zero, d is the number of rows in A, and s() is a shrinkage procedure (see Shrinkage-based regularization 
of covariance below). Intuitively, we are quantifying unit-to-unit covariation around the mean response to each condition, 
pooling covariance estimates across conditions to improve accuracy, and then using shrinkage to further improve accu-
racy. Since we might update our estimate of the noise covariance later in the algorithm (if the signal covariance estimate 
turns out to be not positive semi-definite), we use Σ̂noise (n × n) to refer to our current estimate of the noise covariance:
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Σ̂noise = Σ̂noiseORIG

We assume that the noise distribution is zero-mean (i.e., the expected value of the noise for each unit is zero):

	 µ̂noise = 0	

where µ̂noise is the estimated noise mean (1 × n).

3.	To estimate the data distribution (i.e., the distribution that characterizes the measured data), take the trial-averaged 
responses and then estimate mean and covariance, again applying shrinkage to improve accuracy of covariance 
estimation:

	 µ̂data[t] = mean
(
X
)
	

	 Σ̂data[t] = s
(
cov(X)

)
	

where mean() indicates column-wise mean, µ̂data[t] is the estimated data mean for the case of averaging across t trials 
(1 × n), and Σ̂data[t] is the estimated data covariance for the case of averaging across t trials (n × n). Notice that cov(X) is the 
naive estimate of signal covariance that is obtained after simply trial averaging.

4.	To estimate the signal distribution, subtract the current estimate of the noise distribution scaled by 1/t from the esti-
mated data distribution:

	 Σ̂signal = Σ̂data[t] – Σ̂noise/t	

where Σ̂signal  is the estimated signal covariance (n × n). Additionally:

	 µ̂signal = µ̂data[t] – µ̂noise	

where µ̂signal  is the estimated signal mean (1 × n).

5.	 If the signal covariance estimate is positive semi-definite, we are done. Otherwise, proceed to Step 6.

6.	Repeat until convergence:

6.1.	 Calculate an updated estimate of the signal covariance:

	 Σ̂signal = Σ̂data[t] –
Σ̂noise
t 	

Ensure the signal covariance estimate is positive semi-definite by finding the nearest positive semi-definite matrix:

	
Σ̂signal = PSD

(
Σ̂signal

)
	

where PSD() is a method for finding the nearest symmetric positive semi-definite matrix to a given square matrix (details 
below).
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6.2.	 Calculate an updated estimate of the noise covariance:

	
Σ̂noise =

ct2(t – 1)

ct2(t – 1) + c – 1
Σ̂noiseORIG +

c – 1

ct2(t – 1) + c – 1
t
(
Σ̂data[t] – Σ̂signal

)
	

This calculates a weighted average of two possible estimates of the noise covariance: the first is the estimate based on 
the covariance of the mean-subtracted residuals (as calculated in Step 2), while the second is the estimate based on the 
subtraction of the signal distribution from the data distribution. The weights reflect the number of samples that inform each 
of the two estimates (see S1 Appendix for details). Ensure the noise covariance estimate is positive semi-definite by find-
ing the nearest positive semi-definite matrix:

	
Σ̂noise = PSD

(
Σ̂noise

)
	

6.3.	 If the correlation between the current and previous signal covariance estimates and the correlation between the 
current and previous noise covariance estimates are both greater than 0.999, stop. Otherwise, return to Step 6.1.

Convergence of the algorithm is guaranteed because the optimization problem is biconvex. In practice, convergence 
typically takes just a few iterations. For instance, in the execution of the set of simulations underlying Fig 5, the maximum 
number of iterations required by GSN was 3 (corresponding to the case where two updates are calculated beyond the 
initial estimates).

Theoretical analysis of the GSN estimates.  The proposed algorithm for GSN can be viewed as providing 
least-squares estimates of signal and noise covariance under the constraint that the estimates are positive semi-
definite. Note that as long as the true signal and noise covariances are positive semi-definite, our estimators for them 
are consistent. This is because the original estimates Σ̂noiseORIG and Σ̂data[t] are consistent estimators of Σnoise and 
Σ̂data[t] = Σ

signal
+ Σ̂noise/t , respectively.

The primary advantage of our iterative estimates is that they are guaranteed to produce positive semi-definite 
(and, thus, valid) covariance matrices. Having valid covariance matrices is critical, as it is required for perform-
ing many subsequent analyses (such as PCA). While the constraint of positive semi-definiteness can be viewed 
as introducing bias, the true covariance matrices are known to be positive semi-definite. Hence, requiring positive 
semi-definiteness is warranted. Furthermore, due to the convexity of the cone encompassing positive semi-definite 
matrices, the projection of estimates onto this cone always reduces the distances (errors) to the true covariance 
matrices (see S1 Appendix).

Shrinkage-based regularization of covariance.  An appealing feature of computing sample covariance using 
Bessel’s correction is that the covariance values are unbiased estimates of the true covariance values. However, 
when the number of observations is small relative to the number of variables (in our case, when the number of trials or 
conditions is small relative to the number of units), the sample covariance is unstable and hence inaccurate. Moreover, 
the sample covariance may have an eigenspectrum that suffers from bias. To improve accuracy of covariance 
estimation, the GSN algorithm incorporates shrinkage (in Steps 2 and 3), a well-established method for regularizing 
covariance estimates [29,30,73,74]. Specifically, the off-diagonal elements of the sample covariance are scaled towards 
zero, reflecting the prior that variables are generally expected to be uncorrelated. The goal of shrinkage is to introduce 
some amount of bias in order to reduce estimation variance and achieve a covariance estimate that is closer to the 
ground-truth covariance. Note that shrinking towards a diagonal matrix tends to increase the rank (dimensionality) of 
the covariance estimate. Also, note that shrinkage is not a requirement of the GSN approach and can be omitted if 
desired (using the flag <wantshrinkage>).
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To perform shrinkage, we calculate:

	 Σshrunk = s(Σ) = λΣ+ (1 – λ)Σdiag 	

where Σ is the sample covariance (n × n), λ is a shrinkage fraction in the range [0,1], Σdiag  is Σ with off-diagonal elements 
set to zero (n × n), and Σshrunk  is the shrinkage-based covariance estimate (n × n). When the shrinkage fraction is 1, the 
sample covariance is preserved and no shrinkage is applied; when the shrinkage fraction is 0, full shrinkage is applied. 
Notice that in our formulation, the target towards which estimates are shrunk (Σdiag) contains the original sample variance 
estimates on the diagonal. This choice of target is referred to as Target D “diagonal, unequal variance” in [30]. The reason 
for this choice of target is to avoid imposing bias on the variances associated with the variables.

To determine the amount of shrinkage to apply, we use a cross-validation approach (similar to that used in [31,33]) in 
which held-out data are used to evaluate likelihoods corresponding to covariance estimates at different levels of shrink-
age. We opt for this computational approach, as opposed to analytical methods for setting the shrinkage level [29,30], for 
increased transparency and to avoid reliance on assumptions. In our implementation (calcshrunkencovariance.{m,py}), we 
randomly split the available data into an 80% training set and a 20% testing set. In the case of noise estimation (Step 2), 
the data are split with respect to trials; in the case of data estimation (Step 3), the data are split with respect to conditions. 
The sample covariance of the training set is then calculated, different shrinkage fractions ranging from 0 to 1 in increments 
of 0.02 are applied, the average negative log likelihood of observations in the testing set is calculated for each shrinkage 
fraction, and the shrinkage fraction yielding the minimum negative log likelihood is selected. In this way, the procedure 
derives a balance between bias and variance (the procedure will impose just enough bias to mitigate the damaging effects 
of variance). Note that in the case of estimating the noise distribution, the mean response to each condition in the testing 
set is subtracted before evaluating likelihoods (in order to remove the signal).

Our implementation includes flexible options that allow the user to control the training/testing split (<leaveout>) as well 
as the specific shrinkage fractions evaluated (<shrinklevels>). In addition, the implementation includes an optional flag 
(<wantfull>) that enables a final step in which the selected shrinkage fraction is applied to the sample covariance of the full 
dataset (combining both the training and testing sets). This option improves estimation quality (since more data are used) 
at the expense of imposing slightly more shrinkage than is optimal (in theory, if more training data are available, then less 
shrinkage should be necessary).

We conducted simulations to confirm the validity of our shrinkage-based method for covariance estimation (S2 
Appendix). These simulations also confirm that shrinkage reduces the bias present in the eigenspectrum of the sample 
covariance.

Method for finding the nearest positive semi-definite matrix.  To ensure valid covariance matrices, the GSN 
algorithm involves finding the nearest (in the sense of the Frobenius norm) symmetric positive semi-definite matrix to a 
given matrix (see PSD() in Steps 6.1 and 6.2). This is accomplished using the method proposed by Higham [75]. Our 
implementation is as follows (constructnearestpsdcovariance.{m,py}):

1.	Start with a given square matrix C .

2.	Ensure symmetry by updating C = (C+ CT)/2.

3.	Perform singular value decomposition to obtain C = USVT.

4.	Compute the approximating matrix C̃ = (C+ VSVT)/2.

5.	 If C̃  is not positive semi-definite (due to numerical precision issues), add a small multiple of the identity matrix (εI) to C̃  
and restart the procedure starting from Step 3. We use ε = 10–10.

Note that this method is equivalent to performing an eigendecomposition of C  and setting negative eigenvalues to zero.
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Additional analyses related to GSN

Conversion of covariance to correlation.  When interpreting covariance matrices, it is often useful to convert 
the values to correlation units. Correlation is simply a version of covariance where the variances of each of the two 
variables have been normalized to one. We provide a function to convert covariance matrices to correlation units 
(convertcovariancetocorrelation.{m,py}). Our implementation divides each element of a given covariance matrix by the 
square root of its associated row-wise diagonal element and by the square root of its associated column-wise diagonal 
element. This conversion procedure is used in Fig 6.

Principal components analysis.  The present study uses principal components analysis (PCA) as a means for 
interpreting the results of GSN. We perform PCA through eigendecomposition of a given covariance matrix:

	 C = VSVT	

	

S =



λ1 · · · 0
...

. . .
...

0 · · · λn



	

where C  is a covariance matrix (n × n) associated with data in n dimensions, V  is an orthonormal matrix (n × n) with unit-
length eigenvectors in the columns, and S is a diagonal matrix (n × n) with eigenvalues along the diagonal in descending 
order (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0). The eigenvectors are referred to as principal components; the sizes of the eigenvalues indi-
cate the importance of the principal components; and the full set of eigenvalues is referred to as the eigenspectrum. A given 
data point (1 × n), expressed relative to the centroid of the data, can be projected onto the principal components, producing 
scores (1 × n). These scores are simply the coordinates of the data point in the rotated space defined by the principal compo-
nents. Finally, a useful metric that summarizes the distribution of eigenvalues is effective dimensionality (ED) [36]:

	
ED =

(∑n
i=1 λi

)2
∑n

i=1

(
λi

2
)
	

This metric ranges continuously from 1 to n and indicates the number of underlying dimensions in the data (specifically, 
the number of dimensions that results in an equivalent amount of entropy). Note that the metric shown above is just one of 
several possible metrics for ED [36].

Depending on one’s goals, one might want to convert a covariance matrix to correlation units before computing the 
eigendecomposition. The motivation for this would be to ensure that all dimensions have equal influence (otherwise, 
dimensions with larger variances would tend to dominate the principal components). Indeed, in standard usage of PCA, it 
is generally recommended to z-score each dimension as a pre-processing step; this has the consequence that the covari-
ance matrix will be in correlation units.

Ground-truth simulations

We conducted ground-truth simulations to illustrate key concepts, test our code implementation, and evaluate the perfor-
mance of different methods. All simulations involved generating synthetic response measurements based on multivariate 
Gaussian signal and noise distributions.

Data scenarios.  We designed three types of data scenarios:

1.	First, we created easy-to-interpret scenarios involving simple structure for signal and noise covariance. These scenar-
ios involved 10 units, and are used in Figs 3 and 4A and S2 Appendix.
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2.	Second, we created a set of scenarios that systematically varied the number of units and the dimensionality of the 
signal and the noise. These scenarios are used in Figs 4C and 5. In these scenarios, the ground-truth signal and noise 
distributions were each zero-mean and had a covariance that was constructed by combining a randomly generated set 
of eigenvectors and a power-law eigenspectrum. Specifically, eigenspectra were governed by the power-law function 
1/dα = d–α where d indicates the 1-indexed dimension number and α indicates an exponent parameter. Scenarios 
involved either 10, 50, or 1,000 units and either an exponent of α = 3 (low dimensionality), α = 1 (medium dimension-
ality), or α = 0.33 (high dimensionality) for the signal and noise, resulting in a total of nine scenarios. For each number 
of units (10, 50, 1,000), we generated random eigenvectors independently for the signal and the noise and held these 
eigenvectors constant across scenarios with different exponents.

3.	Third, we created a biologically realistic scenario in which ground-truth signal and noise distributions were taken to 
be the empirical GSN signal and noise distribution estimates obtained for right hemisphere FFA-1 in Participant 1 as 
shown in Fig 6. This is, of course, somewhat provisional since it assumes that the estimates provided by GSN are rea-
sonable. Nonetheless, the choice is justifiable since the goal of our simulations is to evaluate ground-truth recovery in 
simulated data (as opposed to making an inference about empirical data). The scenario involved 330 units, and is used 
in S2 Fig.

Each scenario was simulated using specific combinations of numbers of conditions (c) and numbers of trials (t). For each 
combination of c and t, multiple simulations were performed in order to average out incidental variability.

Estimation methods.  Given a set of response measurements generated in a simulation, we applied five different 
methods for estimating aspects of the signal and noise. The methods are as follows:

1.	GSN (No shrinkage) - This is the GSN method coupled with standard covariance estimation. For example, Noise (No 
shrinkage) corresponds to using the sample covariance to estimate the noise for each condition and then averaging 
these estimates across conditions.

2.	GSN (Shrinkage) - This is the GSN method coupled with shrinkage-based covariance estimation. For example, Noise 
(Shrinkage) corresponds to computing the sample-covariance estimate of the noise and then shrinking the result.

3.	Naive - For signal estimation, the naive method is to simply average responses across trials and compute the sample 
covariance of the trial-averaged data. For noise estimation, the naive method is to simply remove the mean response 
for each condition, aggregate the residuals across conditions, and then perform covariance estimation (in other words, 
the naive method is simply voxel covariance after removing the mean response to each condition).

4.	Split-half - This method refers to computing covariance across independent splits of a dataset as a means for signal 
covariance estimation, and has been previously used in the literature [24,25]. Our implementation of the method is as 
follows. Given a set of response measurements (n units × c conditions × t trials), we randomly divide the trials into two 
equal splits (or nearly equal in the case of an odd number of trials), average responses across trials within each split, 
compute covariance across the splits, and then average the resulting covariance matrix with its transpose to ensure 
symmetry. Formally, the signal covariance estimate is given by 

(
Ẋ1

T
Ẋ2/(c – 1) + Ẋ2

T
Ẋ1/(c – 1)

)
/2 where X1 and X2 

indicate trial-averaged responses arranged as a 2D matrix (c conditions × n units) for the two splits, respectively, and Ȧ 
indicates A with its columns centered around zero. We perform 10 random splits of the trials, and average the signal 
covariance estimate across splits. We note that variants of the method are possible, including performing exhaustive 
trial splits (which is practical only in the case of low numbers of trials) and calculating covariance across pairs of trials.

5.	cvPCA - The cross-validated PCA (cvPCA) method is described in [25], and delivers an estimate of the signal 
eigenspectrum. We start with the same preparation as described for the Split-half method: Ẋ1 and Ẋ2 are centered, 
trial-averaged responses (c conditions × n units) for two splits of the data. We compute principal components (PCs) 
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of the first split, project the responses in each split onto these PCs, and then compute the dot product between the 
two sets of projections obtained for each PC dimension. Formally, the signal eigenspectrum estimate is given by 
diag((Ẋ1V)

T
(Ẋ2V)) where V  indicates the PCs (n units × n dimensions) obtained from the first split. We perform 10 

random splits of the trials, and average the signal eigenspectrum estimate across splits. We note that other variants 
of the cvPCA method are possible, such as performing multiple iterations where responses to each condition are 
shuffled across the two splits [25].

6.	MEME - The minimize eigenmoment error (MEME) method is described in [24], and delivers an estimate of the sig-
nal eigenspectrum. Given a set of response measurements (n units × c conditions × t trials), we randomly divide the 
trials into two equal splits (or nearly equal in the case of an odd number of trials) and average responses across trials 
within each split. We then apply the MEME method as implemented in the code provided at https://github.com/dp4846/
meme_v1_bpl/blob/master/src/eig_mom.py (function fit_broken_power_law_meme_W). A high-level overview of the 
procedure is as follows. First, the user chooses a parametric model—specifically, a broken power-law function—for the 
eigenspectrum. Then, moments of the eigenvalues of the covariance matrix (i.e., eigenmoments) are estimated from 
the data. Finally, nonlinear optimization is used to optimize parameters of the model in order to minimize the squared 
error between the moments of the modeled eigenspectrum and the moments estimated from the data. We use the 
fitted model parameters returned by the code to reconstruct the estimate of the signal eigenspectrum. We perform 10 
random splits of the trials, and average the signal eigenspectrum estimate across splits.

The MEME implementation requires specifying several hyperparameters: the number of eigenmoments to consider, a 
list of break points where the power-law function might be broken, and initial guesses for the power-law intercept and 
the slopes of the power-law segments. For our simulations, we make the following choices. First, we set the number of 
eigenmoments to consider to 5. Second, given that the ground-truth eigenspectra are exactly linear in log-log space in the 
main set of simulations (Fig 5), we do not use the MEME functionality for estimating breakpoints and instead use a single 
(unbroken) power-law function as the parametric model. Third, to minimize the effects of local minima and to give the 
MEME method the best possible chance for accurate estimation, we set the initial guesses for the slope and intercept of 
the power-law line to the ground-truth values. (In practice, since the ground-truth is not available, a reasonable alternative 
approach is to set the initial guesses to those obtained by fitting a power-law function to the cvPCA eigenspectrum esti-
mate.) In our tests, we found that MEME results are generally robust to the choice of initial guesses (e.g., using generic 
values often gave good results); however, we noticed that results are more unstable when using initial guesses that are 
farther from the ground-truth values, suggesting that caution should be exercised when setting hyperparameters in real 
analysis contexts.

We evaluated the performance of the methods with respect to three different metrics. One metric is recovery of sig-
nal and noise covariance values. For a given method’s estimate of covariance (either of the signal or of the noise), the 
coefficient of determination (R2) between the estimated covariance values and the ground-truth covariance values was 
calculated, and the average R2 across simulations was computed. The second metric is recovery of effective dimension-
ality (ED). For a given method’s estimate of the eigenspectrum (either of the signal or of the noise), ED was computed, 
and the average ED across simulations was compared to the ED of the ground-truth eigenspectrum. The third metric is 
recovery of power-law exponent. For a given method’s estimate of the eigenspectrum (either of the signal or of the noise), 
a line was fit to the estimated eigenspectrum in log-log space (details below) and the slope of the line was recorded. The 
average slope across simulations was compared to the slope of a line fit to the ground-truth eigenspectrum.

Note that the Split-half method generates estimates of only the signal covariance, and is therefore evaluated only in 
terms of recovery of signal covariance, signal ED, and signal exponent. Also, note that the cvPCA and MEME methods 
generate estimates of only the signal eigenspectrum, and are therefore evaluated only in terms of recovery of signal ED 
and signal exponent.

https://github.com/dp4846/meme_v1_bpl/blob/master/src/eig_mom.py
https://github.com/dp4846/meme_v1_bpl/blob/master/src/eig_mom.py
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Line fitting method.  To determine the power-law exponent corresponding to a given eigenspectrum, we fit a line to 
the eigenspectrum in log-log space where the x-axis corresponds to the 1-indexed dimension number and the y-axis 
corresponds to the eigenvalue. To ensure robust results across diverse simulations, we designed a heuristic procedure 
that appears to work well in practice (see code at https://osf.io/j4rk8). First, given an eigenspectrum of length d, we create 
a linear grid in log space from log(1) to log(d) using a granularity that is at least as fine as the separation between log(d–1) 
and log(d). This grid is transformed back to linear space and rounded to the nearest integer, producing a set of indices. 
The motivation for this rounding procedure (which is a method used in the code provided with [25]) is to avoid interpolation 
of eigenvalues. Next, we define “good” eigenvalues as those that are greater than 0.001 of the maximum eigenvalue. 
This excludes very small, zero, and negative eigenvalues, all of which can degrade the quality of line fits. (If only one 
eigenvalue is deemed good, the scale factor is repeatedly divided by 10 until at least two eigenvalues are deemed good.) 
Finally, we fit a line using least-squares in log-log space to the data points referred to by the indices, considering only the 
good eigenvalues. The slope of the fitted line gives the power-law exponent.

Empirical data

Data preparation.  We demonstrate GSN on example data taken from the Natural Scenes Dataset (NSD) [28]. NSD 
consists of 7T fMRI measurements (1.8-mm resolution) from 8 healthy young adults who each viewed 9,000–10,000 
distinct natural scenes up to 3 times each over the course of 30–40 scan sessions. Images were presented for 3 s with 
1-s gaps in between images. Participants fixated centrally and performed a long-term continuous recognition task on the 
images. The fMRI data in NSD come already pre-processed and analyzed using a general linear model as implemented 
in GLMsingle [76]. This general linear model produces single-trial beta weights representing the amplitude of the fMRI 
response on each trial in units of percent signal change. Note that GLMsingle denoises the signal-trial beta weights (i.e., 
removes some unwanted sources of variance); hence, the analyses in this paper assess the noise that remains after the 
GLMsingle procedure.

For the purposes of this paper, we took the betas_fithrf version of the single-trial betas in the fsaverage preparation of 
NSD (the betas_fithrf version reflects a general linear model that accounts for voxel-to-voxel variation in the hemodynamic 
response function). From the single-trial betas, we extracted responses from several brain regions in the right hemisphere: 
fusiform face area (FFA-1 subdivision), V1, hV4, and parahippocampal place area (PPA). We use the first region (FFA-
1) as the main example; results for the other regions (V1, hV4, PPA) are shown in S5 Fig. All regions were functionally 
localized in each participant, and are supplied with the NSD dataset. We normalized the data by z-scoring the responses 
of each vertex in each session, and then extracted responses for all images that were shown all three times to the partici-
pant. (The term ‘vertex’ refers to a point that belongs to a cortical surface representation; for all practical purposes, ‘vertex’ 
can be treated as synonymous with ‘voxel’ in this paper.) This procedure yielded, for each participant, a set of response 
measurements with dimensionality n vertices × c images × 3 trials. As an example of actual numbers, for FFA-1, across 
participants, the value of n ranged from 167 to 1,231 and the value of c ranged from 5,445–10,000.

Application of GSN.  We performed GSN on the response measurements from each participant. For the example 
participant shown in Fig 6, GSN was applied to the full dataset as well as data subsets of varying sizes in order to 
examine the impact of amount of data on estimation quality. This was accomplished by varying the fraction of images 
used: 1 (10,000 images), 1/4 (2,500 images), 1/16 (625 images), 1/64 (156 images), and 1/256 (39 images). The images 
in the data subsets were randomly selected and mutually exclusive across subsets. For the full set of participants shown 
in Fig 7, GSN was applied to the full dataset as well as split-halves of the data from each participant. Splitting was 
performed such that a random half of the images were used for one split and the remaining images were used for the 
other split.

To aid visual inspection of covariance matrices, we used a particular vertex ordering for the rows and columns of the 
covariance matrices in Fig 6. Specifically, we performed hierarchical clustering (MATLAB’s Statistics Toolbox’s linkage.m) 

https://osf.io/j4rk8
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on trial-averaged responses using a distance metric of one minus correlation and the linkage algorithm of unweighted 
average distance. This procedure yielded a vertex ordering where similar vertices tend to be close to one another. The 
same vertex ordering is used for all depicted covariance matrices.

Application of PCA.  We performed PCA on the results of GSN (‘GSN PCA’). This involved performing PCA separately 
on the covariance of the signal distribution and on the covariance of the noise distribution. For comparison, we also 
conducted a naive application of PCA by simply performing PCA on the covariance of the trial-averaged data (‘Standard 
PCA’).

To compare PCA results across participants, we isolated the set of 515 images that were viewed by all 8 participants 3 
times each during the NSD experiment. For each participant, we computed trial-averaged responses for the 515 images 
and projected these responses onto (i) the principal components associated with the signal distribution in the case of GSN 
PCA, or (ii) the principal components of the trial-averaged data in the case of Standard PCA. The resulting scores were 
then compared across participants using the metric of cosine similarity (i.e., the dot product of unit-length-normalized 
vectors).

One characteristic of PCA is that the sign of each principal component is arbitrary. We performed several sign adjust-
ments to facilitate comparison of PCA results across data splits and participants. First, for every principal component, 
we flipped the sign of the principal component if necessary to ensure that the mean of the values in the principal com-
ponent is positive. This incurs no loss of generality and establishes a reasonable starting point for the determination of 
signs. Second, for corresponding principal components in the split-half analysis for each participant (e.g., PC1 from one 
half and PC1 from the other half), we flipped the sign of one of the principal components if necessary to ensure that the 
cosine similarity between the two principal components is non-negative. This flipping procedure ensures that the reliabil-
ity of results across split halves is not penalized for incidental variation in signs. Third, when comparing scores across 
participants, we performed a simple iterative algorithm in which scores are sign-flipped if necessary to ensure that the 
cosine similarity between the scores from a given participant and the average of the scores from the other seven partici-
pants is non-negative. This procedure compensates for the sign ambiguity of the principal components derived from each 
participant.
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