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Abstract

The increasing adoption of electric vehicles (EVs) presents both challenges and oppor-

tunities for the power system. While the simultaneous charging of multiple EVs can

increase peak demand, controlled charging—i.e., smart charging—allows EVs to serve

as flexible assets. By implementing smart charging strategies, system operators and

utilities can leverage EV flexibility to adapt the charging behavior in response to power

system signals while ensuring user requirements are met. This thesis takes the per-

spective of an energy supplier, using smart charging to reduce their portfolio costs.

However, achieving this goal requires addressing challenges on both the user and mar-

ket sides. User-related challenges include willingness to participate and diverse driv-

ing and charging habits, which introduce variability in EV flexibility available for en-

ergy suppliers. On the market side, this variability, coupled with fluctuating electricity

prices, makes it difficult to assess and monetize EV flexibility in the markets.

To address these challenges, this thesis, comprising seven research papers, investigates

user factors influencing EV flexibility and integrates them into smart charging algo-

rithms to enhance energy suppliers’ trading strategies. Three papers focus on user

behavior, analyzing factors that affect user participation in smart charging programs

and the effectiveness of behavioral interventions in increasing flexibility provision. The

remaining four papers quantify EV flexibility, assess its monetary value in wholesale

electricity markets, and develop optimization models for energy procurement and im-

balance management. By combining behavioral insights with optimization models and

dynamic trading strategies, this thesis provides a comprehensive framework for energy

suppliers to harness EV flexibility and reduce portfolio costs while maintaining user

satisfaction.
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I Introduction

1.1 Motivation

Energy fosters the global economy by driving industries, transportation, and infras-

tructure. Nevertheless, the energy sector has historically relied on fossil fuels, making

it a major contributor to greenhouse gas (GHG) emissions. The rise in global temper-

atures, driven by GHG emissions, has underscored the urgent need to tackle climate

change. In response, many nations have submitted nationally determined contribu-

tions (NDCs) following the Paris Agreement, outlining their plans to reduce GHG emis-

sions (Horowitz, 2016). This accelerated the shift towards clean and alternative fuels,

making significant strides in the energy transition to achieve a carbon-neutral energy

system (Adefarati and Bansal, 2019).

In Europe, this energy transition led to an increase in renewable energy sources (RES),

with their deployment expected to double over the past decade to help the Europe

Union (EU) achieve its target of 45.5% renewable energy in final energy consumption

by 2030 (EEA, 2025). Alongside the growth in renewable energy generation, the EU has

promoted electrification as a key strategy to achieve its decarbonization goals (EUCOM,

2021). Electrification involves replacing fossil fuel-based technologies, such as internal

combustion engines and gas boilers, with more efficient electric alternatives like electric

vehicles (EVs) and heat pumps (IEA, 2023). These technologies improve energy effi-

ciency and reduce emissions, primarily when powered by RES. Thus, the adoption of

electrification is expected to grow rapidly, driven by ambitious climate goals, the en-

forcement of supportive legislation, ongoing technological advancements, and market

incentives.
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Chapter I. Introduction

Nevertheless, the surge in electrification introduces new challenges to the power system

and energy stakeholders. These challenges include managing peak demand, integrating

variable RES, and addressing unpredictable consumption patterns, which could poten-

tially destabilize the power system (Nour et al., 2020). These challenges due to electrifi-

cation could be partially mitigated through demand-side flexibility, which allows con-

sumers to adjust their energy use based on supply conditions and power system needs,

reducing the need for additional infrastructure (Fridgen et al., 2020; Golmohamadi et

al., 2024).

As part of ongoing electrification efforts, the penetration of EVs has increased (EAFO,

2025b). While their widespread adoption contributes to sustainability goals, their adop-

tion increases electricity demand and may strain the power system, especially under

simultaneous charging (Nutkani et al., 2024). However, when EVs are charged in a con-

trolled manner, they serve as valuable flexible assets that system operators and utilities

can leverage to optimize charging schedules according to both power system require-

ments and individual user needs (Haupt et al., 2020). This adaptation of EV user charg-

ing behavior to the conditions of the power system whilst adhering to user requirements

is smart charging (IRENA, 2019).

Smart charging can assist system operators such as Distribution System Operators

(DSOs) in reducing grid congestion (Galus et al., 2012; Menci et al., 2021), and pro-

vide Transmission System Operators (TSOs) with valuable flexibility services to main-

tain grid stability (Zhong et al., 2014). Furthermore, smart charging can also aid utilities

such as energy suppliers or aggregators to reduce their portfolio costs by leveraging EV

flexibility whilst trading in electricity markets (Fridgen et al., 2014; Pavić et al., 2015).

Thus, smart charging helps system operators and utilities to optimize grid manage-

ment, balance supply and demand, enhance stability, and reduce costs, benefiting both

stakeholders and the power system.

While smart charging benefits stakeholders and the power system, its success relies on a

thorough understanding of EV user behavior. The flexibility provided by EVs depends

on individual driving and charging patterns, which vary widely among users (Daina

et al., 2017; X. Li et al., 2023). This diversity creates uncertainty for system operators

and utilities, complicating efforts to optimize EV charging. Additionally, some users

might be reluctant to participate in smart charging programs due to behavioral factors

2



Chapter I. Introduction

such as concerns about losing control over their charging behavior, fearing that system

operators or utilities could dictate their charging patterns (Delmonte et al., 2020). Lower

participation rates ultimately limit the flexibility that EVs can provide, reducing the

overall effectiveness of smart charging solutions.

Given these challenges, system operators or utilities seeking to leverage smart charg-

ing must account for the variability in user behavior and market conditions. In this

thesis, I take the perspective of an energy supplier using smart charging to optimize

residential EV charging and reduce their portfolio costs. The unpredictability of EV

user behavior, combined with fluctuating market prices, complicates energy suppliers’

ability to assess and monetize EV flexibility while trading in electricity markets. Thus,

this thesis—comprising seven research papers (refer to Table I.1)—examines the behav-

ioral factors influencing EV flexibility and explores their integration into smart charging

algorithms to enhance energy suppliers’ trading strategies in dynamic market environ-

ments.

Of the seven research papers, three (RP1, RP2, and RP3) explore behavioral factors influ-

encing flexibility provision and investigate behavioral interventions that could enhance

user flexibility provision. The remaining four papers (RP4, RP5, RP6, and RP7) focus on

quantifying EV flexibility, analyzing the impact of behavioral factors on EV flexibility

and its monetary value in wholesale electricity markets, and developing optimization

models to facilitate trading in and reduce imbalances. By integrating these insights,

this thesis aims to provide a framework for energy suppliers to design and implement

effective smart charging programs that account for both user behavior and market dy-

namics.

3



Chapter I. Introduction

Table I.1: List of research papers with roles and references

RP# Title Reference Role

RP1 Towards an evaluation of
incentives and nudges for
smart charging

Marxen et al. (2022) Non-primary

RP2 Empirical evaluation of be-
havioral interventions to
enhance flexibility provi-
sion in smart charging

Marxen et al. (2023a) Non-primary

RP3 Maximizing smart charg-
ing of EVs: The impact
of privacy and money on
data sharing

Marxen et al. (2023b) Non-primary

RP4 Impact of minimum en-
ergy requirement on elec-
tric vehicle charging costs
on spot markets

Chemudupaty et al. (2023) Single primary

RP5 Uncertain electric vehicle
charging flexibility, its
value on spot markets,
and the impact of user
behaviour

Chemudupaty et al. (2025a) Single primary

RP6 Optimizing trading of elec-
tric vehicle charging flexi-
bility in the continuous in-
traday market under user
and market uncertainties

Chemudupaty et al. (2025b) Joint primary

RP7 Electric vehicle scheduling
strategies to reduce the im-
balances due to user uncer-
tainties

Chemudupaty and Pavić (2024) Single primary

1.2 Thesis Structure

This thesis is structured into five main chapters, followed by an Appendix. The thesis

begins with Chapter I, which provides an overview of the research motivation, out-

lining the key research questions and objectives. Additionally, it presents the research

4



Chapter I. Introduction

papers included in this thesis, summarizing their respective topics, and concludes with

a detailed explanation of the overall thesis structure.

Chapter II explores the concept of EV flexibility and the role of smart charging in har-

nessing this flexibility. It examines demand response strategies, the necessary commu-

nication infrastructure, and the critical aspects of information exchange required for

effective smart charging implementation. Moreover, it discusses user privacy concerns

related to data-sharing mechanisms for smart charging.

To effectively leverage EV flexibility in electricity markets, it is crucial to develop ac-

curate models to quantify EV flexibility. Chapter III introduces a mathematical frame-

work to model EV flexibility, outlining the key metrics and parameters involved in this

process. The chapter further investigates how user uncertainties impact flexibility. Ad-

ditionally, it discusses behavioral interventions to encourage more adaptable charging

behaviors of EV users, ultimately enhancing the overall flexibility of the EVs fleet.

Building on the inputs from Chapter III, Chapter IV examines how EV flexibility can be

utilized in electricity markets to optimize energy procurement and allocation. It covers

two key aspects: aggregation, which focuses on procuring energy from the spot market,

and disaggregation, which deals with optimal power allocation among individual EVs.

This thesis concludes with Chapter V, which summarizes the key contributions of this

research. It also details the limitations of the proposed approaches in this thesis and out-

lines potential future research directions to improve EV flexibility modeling and trading

strategies. Additionally, this chapter acknowledges related work conducted within the

research group and collaborations.

Finally, Appendix A gives an overview of the publications included in this thesis, a

detailed breakdown of individual contributions to each included research paper, and a

complete draft of all the research papers.

5





II Smart Charging: From Basics to

Information Exchange

The growing adoption of EVs presents both opportunities and challenges for the power

system. While EVs can provide valuable flexibility through smart charging, their effec-

tive integration requires a well-structured framework. Section 2.1 introduces key smart

charging concepts, emphasizing demand response strategies that maximize EV flexibil-

ity. Building on this, Section 2.2 gives an overview of the communication infrastructure

and information exchange necessary for seamless smart charging implementation. Fi-

nally, Section 2.3 addresses the critical issue of user privacy, highlighting user concerns

related to data sharing for smart charging programs.

2.1 Basic Concepts

EVs are classified based on their propulsion systems and energy sources. The main

categories include Battery Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles

(PHEVs), and Fuel Cell Electric Vehicles (FCEVs) (EAFO, 2025a). BEVs operate solely

on electric power, utilizing energy stored in rechargeable batteries. They produce zero

tailpipe emissions and rely entirely on external charging infrastructure for energy re-

plenishment. PHEVs combine internal combustion engines with electric motors and

batteries, enabling both electric-only and hybrid operation. FCEVs generate electric-

ity onboard using hydrogen fuel cells, emitting only water vapor as a byproduct. This

thesis focuses exclusively on BEVs, which are referred to as EVs throughout this thesis.

The European market has witnessed rapid growth in EV adoption, with EVs accounting

for 23.6% of total vehicle sales in 2023. Norway leads this transition, with up to 90% of

7



Chapter II. Smart Charging: From Basics to Information Exchange

its vehicle sales being EVs (EEA, 2024). Several European countries have established

clear goals to decarbonize their transport sectors, accelerating EV penetration (EEA,

2024). As adoption continues to rise, the electricity demand for EV charging is projected

to reach approximately 165 TWh by 2030 (McKinsey, 2022). This additional demand,

especially if EVs are charged simultaneously, could increase peak demand and might

have detrimental effects on the power system (Cheung, 2022).

To mitigate these challenges, smart charging offers a promising solution. Smart charg-

ing enables EVs to function as flexible assets, dynamically adjusting their charging

schedules based on power system conditions. System operators (TSOs, DSOs) and util-

ities (energy suppliers and aggregators) can implement smart charging through two

primary demand response strategies: implicit and explicit.

Implicit demand response relies on consumers adjusting their electricity consumption

in response to time-based pricing schemes that can reflect market fluctuations (EUCom-

mission, 2016). In the context of EV charging, utilities such as energy suppliers can

encourage users to treat their vehicles as flexible assets and adapt their charging be-

havior by offering various pricing structures (Amin et al., 2020). The different pricing

structures could include real-time pricing (RTP), time-of-use (ToU) tariffs, critical peak

pricing (CPP), or peak time rebates (PTR) as I illustrate in Figure II.1.

Figure II.1: Overview of different price mechanisms for implicit demand response programs extracted
from Amin et al. (2020).1

1Open access CCBY 4.0.
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RTP dynamically adjusts electricity rates at short intervals, such as hourly or every few

minutes, reflecting real-time market prices. ToU pricing divides the day into predefined

time blocks—off-peak, mid-peak, and peak—offering fixed rates announced in advance.

CPP is a more dynamic variant of ToU, applying significantly higher rates during fore-

casted high-demand periods to reduce peak loads, though it requires accurate forecast-

ing and consumer adaptation. Lastly, PTR incentivizes consumers by offering financial

rewards for reducing electricity consumption during peak hours.

While these pricing structures encourage EV users to adapt their charging behavior

based on price signals, their effectiveness depends on users’ willingness and ability to

respond (EUCommission, 2016). Factors such as convenience, awareness, and the per-

ceived complexity of pricing structures can influence participation. Moreover, since the

response is voluntary and not directly controlled by utilities, predicting and ensuring

the desired load adjustments can be challenging (Amin et al., 2020).

Explicit demand response programs involve direct user participation—either individ-

ually or through aggregators or energy suppliers—in electricity markets (EUCommis-

sion, 2016). In these programs, EVs serve as controllable loads, providing flexibility

services in wholesale energy, reserves, balancing, and capacity markets. Utilities such

as energy suppliers can leverage EV flexibility to optimize the charging schedules, en-

suring charging occurs during periods of lower electricity prices (Pavić et al., 2023). This

strategic approach enables utilities such as energy suppliers to optimize their portfolio

management and reduce overall costs.

To encourage participation in explicit demand response programs, energy suppliers can

offer financial incentives such as direct payments, bill credits, or rebates (EUCommis-

sion, 2016). Additionally, users may gain access to specialized dynamic pricing pro-

grams that reward flexibility. These incentives ensure that users have a tangible finan-

cial motivation to adjust their charging behavior, making explicit demand response a

more predictable and controllable strategy for utilities such as energy suppliers.

This thesis explores the implementation of smart charging within the framework of ex-

plicit demand response programs; focusing on how energy suppliers can leverage the

flexibility of residential EV charging to optimize portfolio costs while participating in

spot markets such as the DA and intraday (ID) markets.

9
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2.2 Information Exchange

Implementing smart charging as an explicit demand response program requires a ro-

bust infrastructure enabling real-time communication between EVs and energy suppli-

ers (Fridgen et al., 2016b). Central to this infrastructure are the standards and protocols

that facilitate seamless data exchange, ensuring interoperability and reliability across

different systems. Understanding these protocols and standards is critical for imple-

menting smart charging programs.

The EV charging ecosystem involves various stakeholders and interconnections. As I

illustrate in Figure II.2, ElaadNL (2016)’s study provides an overview of different pro-

tocols and market roles of the stakeholders. Their study analyzes the interoperability,

maturity, and market adoption of various standards and protocols across four key use

cases: Roaming, Smart Charging, Electric Vehicle Supply Equipment (EVSE)– Charging

Point Operator (CPO), and EV–EVSE, primarily focusing on public charging scenarios.

In the context of public charging, the CPO is the one who controls the charging of the

EV fleet while collaborating with entities such as DSO and the Clearing House. As this

thesis focuses on residential charging, the energy supplier is considered to be the CPO.

Figure II.2: EV charging protocols’ representation extracted from ElaadNL (2016).

10
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There are three possible connections for the energy supplier to control the charging of

EVs. The first possible connection is the direct connection, where the energy supplier

directly controls the charging of the EV via the EVSE i.e., wallbox in case of residential

charging (see Figure II.3). In direct connection, the communication between the energy

supplier and the EV is split into two parts - communication between the energy supplier

and the EVSE, and the communication between the EVSE and the EV.

EV EVSE Energy 
Supplier

OCPP

Energy Supplier
EVSE

EVSE
EV

IEC/ISO 15118

IEC 61851-1

IEC 61850

IEEE 2030.5

Figure II.3: Depiction of direct connection system including standards and protocols based on ElaadNL
(2016).

The communication between the energy supplier and the EVSE is facilitated by two

protocols - IEC 61850-90-8:2016 and the Open Charge Point Protocol (OCPP). The IEC

61850 standard focuses on grid automation, treating the EV as a distributed energy re-

source (DER) (ElaadNL, 2016). It establishes a robust communication stack for smart

grid applications. On the other hand, the OCPP is specifically tailored to manage the

EVSE, making it highly specialized for this single DER and ensuring efficient operation

between the EVSE and the energy supplier (ElaadNL, 2016).

The communication between the EV and the EVSE is facilitated by three key standards:

IEC 61850-1, IEC 62351, and ISO 15118. The IEC 61850-1 standard focuses on automat-

ing intelligent electronic devices (IEDs), including both EVs and EVSEs, with an empha-

sis on smart grid integration (ElaadNL, 2016). Meanwhile, IEC 62351 ensures secure

communication by addressing critical security aspects such as authentication, digital

11
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signatures, and secure data transfer (IEC, 2025; Schmutzler et al., 2013). Finally, ISO

15118 provides a comprehensive framework for EV-to-EVSE communication, support-

ing both AC and DC charging, and enabling advanced features like Vehicle-to-Grid

(V2G) functionality (ElaadNL, 2016).

The second possible connection for controlling EVs involves using an external device,

typically a control box or a Home Energy Management System (HEMS). HEMS serves

as a central hub, capable of connecting and managing various smart home devices, in-

cluding photovoltaic (PV) inverters, battery management systems (BMS), and automa-

tion systems (Mahapatra and Nayyar, 2022). For EV charging, HEMS enables monitor-

ing, control, and management of the charging process (see Figure II.4).

EV EVSE

Energy Supplier

Home Energy Management 
System (HEMS)

Power link
Communication link

Low Voltage Grid

Figure II.4: Depiction of connection between EVs and energy supplier via HEMS based on ElaadNL
(2016).

However, a key challenge with HEMS is interoperability, as different EV manufacturers

often create unique solutions in partnership with OEMs, complicating device compati-

bility (Mahapatra and Nayyar, 2022). Protocols like EEBus (Europe), SEP2.0 (USA), and

ECHONET Lite (Japan) are commonly used to connect EVSE with HEMS (Sole, 2017).

Additionally, the connection between the energy supplier and HEMS is often facilitated

by OpenADR 2.0, while many manufacturers also integrate OCPP to enable third-party

access for energy suppliers or charge point operators (ElaadNL, 2016).
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A third option for controlling EVs involves direct communication with the vehicle via

application programming interfaces (APIs), bypassing the EVSE or HEMS. This ap-

proach leverages advancements in EV connectivity to enable new automation func-

tionalities (Rutten and Cobbenhagen, 2019). However, a significant challenge is that

car manufacturers typically restrict external access to their systems. To address this,

some companies offer devices connected to the Controller Area Network (CAN bus),

which act as gateways for third-party systems (Fixter, 2020). This technology is gain-

ing traction, particularly among car-sharing companies. For instance, the Smartcar API

provides basic functionalities like vehicle location, battery status, and lock/unlock fea-

tures (Smartcar, 2025). While promising, this approach may be considered intrusive for

private customers but is more suited for business fleets.

In this thesis, I assume that an energy supplier uses direct connection due to its simplic-

ity, reliability, and compatibility with existing EVs and EVSE standards. Furthermore,

using a direct connection enables secure and efficient communication between the en-

ergy supplier and EV. Figure II.5 provides an overview of the information exchanged

between energy suppliers and users via the EVSE.

Energy Supplier

EVs EVSEs Flexibility calculation

Charging schedule 
optimization

Portfolio 
optimization

Charging 
preferences

Aggregated
flexibilities

Aggregated
power

Planned power 
allocation

Actual power 
allocated

EV Users Power link
Communication link

Individual 
flexibilities

Actual 
power 

allocated

Figure II.5: Information exchange between EV users and Energy Supplier.

Users convey their charging preferences, such as parking duration and energy require-

ments, to the energy supplier. Across all my research papers, I assume that users com-
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municate their preferences through a smart charging application. Using these prefer-

ences, the energy supplier calculates the aggregated flexibilities. Based on the aggre-

gated flexibility, the energy supplier trades in the electricity markets to procure the

required power for the entire fleet of EVs. Once the aggregated power is obtained,

the energy supplier optimizes individual charging schedules and accordingly allocates

power to each EV. Throughout this process, there is continuous information exchange

between users and the energy supplier via EVSE to monitor the power delivered to each

EV. This real-time data allows the supplier to update flexibility calculations and allocate

the power to each EV based on their energy requirements.

2.3 User Information and Privacy Concerns

Bidirectional data exchange is crucial for implementing smart charging programs. Fur-

thermore, for energy suppliers to accurately forecast the flexibility provided by EVs and

improve smart charging algorithms, they may require additional personal data such as

GPS location, distance traveled, and historical charging behavior. However, this data is

sensitive as it reveals users’ routines, movements, and daily schedules.

Despite technical privacy-enhancing techniques such as differential privacy (Dwork

and Roth, 2014; Fernández et al., 2022), homomorphic encryption (Teng et al., 2022),

and distributed learning techniques (McMahan et al., 2017) that aid in preserving user

privacy, users may still be reluctant to share their data due to their privacy concerns.

These concerns stem from fears of losing control over their information, illegal data dis-

closure, misuse by hackers, and increasing intrusion from smart devices (Aloise-Young

et al., 2021; Cichy et al., 2021). Specifically, in the context of smart meters, which enable

bidirectional communication— Quinn (2009) categorizes privacy concerns into four ar-

eas: individuated patterns, real-time surveillance, information detritus, and physical

invasion. Given these challenges, understanding how users perceive and navigate data-

sharing decisions for smart charging remains crucial, which was not explored by previ-

ous studies.

To explore this issue, RP3 investigated user willingness to share data with their energy

supplier through a smart charging app. The study examined which types of data users

were most willing to share and the sociotechnical measures that could encourage data
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sharing. Our survey considers three kinds of data, each with different sensitivity lev-

els: charging data (least sensitive), location data, and calendar data (most sensitive).

Based on the responses from 479 survey participants, my coauthors and I assessed their

willingness to share these data types and the key factors influencing their decisions.

Findings from RP3 indicate that most participants were willing to share historical charg-

ing data, whereas they were ambivalent about sharing location data and generally un-

willing to share calendar data. Perceived risks negatively influenced willingness to

share all three data types, while perceived benefits increased willingness to share charg-

ing and location data. Furthermore, prior habits of location sharing played a significant

role in users’ willingness to disclose their location information.

Economic research has extensively explored willingness to pay for data privacy or the

compensation required to accept data sharing (Acquisti et al., 2013; Hirschprung et al.,

2016). However, such studies primarily focus on data sharing for websites rather than

for demand response (DR) applications, particularly in the context of smart charging.

To bridge this gap, RP3 examined whether users would share their data in exchange

for monetary compensation and, if so, how much they would demand for charging,

location, and calendar data.

The results from RP3 revealed that around 40% of participants expected 10–100% or

more than 100% of their charging costs to be reimbursed in exchange for sharing their lo-

cation or calendar data. For all data types, most participants in the experimental group

expressed willingness to share their data for financial compensation. Notably, the more

sensitive the data, the higher the amount requested.

Overall, these findings from RP3 highlight the complex balance between leveraging user

data for improving smart charging programs and addressing privacy concerns. While

most users are open to sharing charging data, they are cautious about more sensitive

information. The high compensation demands, especially for sensitive data, highlight

the challenge for energy suppliers in balancing the need for comprehensive data with

users’ privacy concerns.
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III EV Flexibility

Accurately estimating and quantifying the flexibility of EVs is crucial for energy sup-

pliers. This foresight enables them to optimize trading strategies and reduce costs in

electricity markets. This chapter delves into the key aspects of modeling EV flexibility,

essential for improving energy suppliers’ electricity market operations.

This chapter begins by describing a mathematical model to quantify EV flexibility, cov-

ering the metrics needed and approach to quantify EV flexibility in Section 3.1. Section

3.2 focuses on the practical implementation of the flexibility model to estimate fleet

flexibility. It explores the modeling of input parameters essential for calculating EV

flexibility, examines the impact of user uncertainties—such as variations in user prefer-

ences—on flexibility, and discusses behavioral interventions to enhance user flexibility

provision.

3.1 Mathematical Model to Quantify EV Flexibility

Flexibility in power systems is crucial for ensuring a continuous balance between elec-

tricity generation and consumption (Akrami et al., 2019). Historically, flexibility was

primarily achieved through controllable generation assets that could adjust their power

output in response to fluctuating demand (Heggarty et al., 2020). As a result, flexibility

was often perceived from the supply side, with authors (Heggarty et al., 2020) defin-

ing it as "the ability to adapt the system (both generation and transmission) quickly

and at reasonable cost to any change in the conditions that prevailed at the time it was

planned."
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In recent years, however, the integration of variable RES into the power system has in-

creased, alongside the decommissioning of controllable generation assets such as coal

and gas plants. This shift has introduced uncertainty on the supply side (Papaefthymiou

et al., 2018), creating a need for more flexibility in the system. Consequently, the defi-

nition of power system flexibility has evolved to include the system’s ability to manage

unpredictable changes in both supply and demand (Heggarty et al., 2020)

Quantifying flexibility is crucial for accurately estimating a system’s ability to respond

to power signals (Weidlich and Zaidi, 2019). To be a valuable, flexible asset, the metrics

used to quantify flexibility must convey specific information that defines its effective-

ness in delivering various flexibility services (J. Liu et al., 2022). The metrics should con-

vey the following information: capacity - change in power output (Artelys, 2023); dura-

tion - time for sustaining full power change (Artelys, 2023; Bahmani et al., 2022; Faria et

al., 2015; Schott et al., 2019); direction - upward or downward flexibility (Artelys, 2023;

Bahmani et al., 2022; Schott et al., 2019); location -grid position of flexible loads (Fridgen

et al., 2017; Fridgen et al., 2021a; Plaum et al., 2022); preparation time - time needed to

initiate flexibility (Artelys, 2023; Bahmani et al., 2022; Schott et al., 2019; Tristán et al.,

2020); ramping period - time to reach full power adjustment (Artelys, 2023; De Vos et al.,

2022); full activation time - total time from notification to full delivery (Artelys, 2023);

deactivation period - time to return to original state (Artelys, 2023; Schott et al., 2019);

recovery time - interval before flexibility can be reactivated (Artelys, 2023); availability

- time frames when flexibility can be provided, including daily/seasonal variations and

activation limits (Artelys, 2023).

Nevertheless, not all the flexibility information is equally crucial in the context of smart

charging, where an energy supplier leverages EV flexibility to reduce portfolio costs

while trading in wholesale electricity markets. Some flexibility information, such as

preparation time, ramping period, full activation time, deactivation period, recovery

time, and location, is generally less critical. Since wholesale market trading does not

require an immediate response, smart charging can operate with planned and gradual

adjustments rather than rapid power changes. Energy suppliers can optimize charging

schedules based on market conditions without strict constraints on activation timing,

making metrics like ramping and recovery time less relevant. Similarly, location is not

a primary concern for energy suppliers, as their focus is on portfolio cost optimization
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rather than addressing local grid constraints, which are more relevant for system oper-

ators managing congestion and voltage stability.

The key flexibility information required for smart charging includes capacity, duration,

direction, and availability (Develder et al., 2016; Zhang et al., 2020). Additionally, en-

ergy level information is crucial from the user’s perspective, as it ensures that the EV

has enough energy to meet the user’s requirements.

To better quantify EV flexibility, my coauthors and I developed a flexibility model in RP4

that assesses the flexibility provided by an aggregated EVs fleet. Our model calculates

individual flexibility metrics for each EV based on user requirements, incorporating

time-dependent power and energy metrics. These metrics provide insights into how

much power can be adjusted while ensuring the vehicle retains the necessary energy

levels to meet user needs. By aggregating these individual metrics, we derive com-

prehensive fleet-level flexibility metrics that offer a holistic view of the fleet’s ability to

adjust power levels while maintaining energy constraints.

The development of this flexibility model serves two primary purposes. First, it eval-

uates the EVs fleet’s flexibility potential, helping to understand how much flexibility

can be harnessed from aggregated EVs. Second, it facilitates optimal EVs scheduling

for electricity market participation. While RP4 and RP5 focus on analyzing EVs flexi-

bility potential, RP6 explores how this flexibility model can be applied to optimize EVs

scheduling in wholesale electricity markets

The following subsections (3.1.1 to 3.1.3) replicate parts of the flexibility model pre-

sented in RP6. They are repeated here for completeness and to support a better un-

derstanding of the analysis and extensions discussed in the subsequent chapters of this

thesis.

3.1.1 Input Parameters

The following parameters are required to quantify EV flexibility, as detailed in RP6.

Please refer to RP6 for the rationale behind their selection.

• Maximum charging power (Pmax
v ): The highest charging rate at which the EVs can

charge.
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• Plugin duration: The time that EV remains plugged in, estimated as the duration

between arrival time (tarr) and departure time (tdep).

• Energy transfer by departure (Edep
v ): The energy required to meet the user’s re-

quested state of charge (SOCdep) by the departure time (tdep). SOCdep is the per-

centage of battery capacity the user requests before the departure time (tdep).

Figure III.1 illustrates the typical EV battery and its different energy values. Emax
v repre-

sents the total battery capacity, Earr
v is the battery level at arrival time (tarr), and E

dep
v is

the energy transferred to meet the user’s requirements.
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𝐸 !#
%%

𝐸 !
&'
(

Part of battery considered to calculate 
flexibility metrics

Part of battery not considered to 
calculate flexibility metrics

Figure III.1: Typical EV battery and different energy values extracted from RP6.

As this thesis only considers unidirectional charging, the battery’s energy level can

never drop below Earr
v . Additionally, the user may not always request 100% state of

charge at departure (SOCdep). Thus, the sum of the Earr
v and E

dep
v does not always equal

the Emax
v of the vehicle (see Equation III.1):

Earr
v + Edep

v ≤ Emax
v (III.1)

Therefore, the flexibility calculation considers only the part of the battery that can be

charged, i.e., Edep
v .
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3.1.2 Individual Quantification

To estimate the flexibility of an EV, time-dependent energy and power metrics are calcu-

lated based on the input parameters defined in Section 3.1.1. The energy metrics include

minimum energy (Emin
t,v ) and maximum energy (Emax

t,v ) at time t, while the power met-

rics are minimum power (Pmin
t,v ) and maximum power (Pmax

t,v ) at time t. These metrics

indicate the power with which an EV can be charged while maintaining the upper and

lower limits of cumulative energy transfer.

Emin
t,v is the minimum cumulative energy that must be transferred to meet the energy

requirement Edep
v . The calculation of Emin

t,v follows two phases (i.e., Phase 1 and Phase 2)

during the plugin duration, as illustrated in Figure III.2.

Time

Energy

tarr tc
tinst tdep

E
dep
v

Flexibility

Emax
t,v Emin

t,v

Phase 1

Phase 2

Phase 1

Phase 2

Figure III.2: Representation of EV flexibility in energy vs. time graph extracted from RP6.

In Phase 1, the EV remains idle until the critical time (tc), after which EV should be

charged at full power to meet the required energy level. This phase extends from tarr to

tc. Meanwhile, Phase 2 lasts from tc to tdep, during which the EV charges at full power.

The mathematical formulation for Emin
t,v is given by Equations (III.2) and (III.3).

Emin
t,v = Emin

t−1,v + Pt,v × η ×∆t (III.2)

Pt,v =




0 tarr < t ≤ tc (Phase 1)

Pmax
v tc < t ≤ tdep (Phase 2)

(III.3)
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As I assume linear charging, with continuous values for charging power. Pt,v is the

charging power at time t, where η is the charging efficiency, and ∆t is the time interval

during which charging power is delivered.

Emax
t,v represents the maximum cumulative energy that can be transferred to the EV at

time t. Similar to Emin
t,v , Emax

t,v is calculated in two phases, as illustrated in Figure III.2.

During the first phase, the EV charges instantaneously at maximum power until Edep
v

is met. Phase 2 occurs from tinst to tdep, where no charging occurs. The mathematical

formulation for Emax
t,v is provided in Equations (III.4) and (III.5).

Emax
t,v = Emax

t−1,v + Pt,v × η ×∆t (III.4)

Pt,v =




Pmax
v tarr < t ≤ tinst (Phase 1)

0 tinst < t ≤ tdep (Phase 2)
(III.5)

When plotting Emax
t,v and Emin

t,v on an energy vs. time graph, the area between these

curves represents the flexibility region (see Figure III.2). The EV can adjust its charg-

ing power within this region, fluctuating between the maximum and minimum power

values while maintaining the cumulative energy transfer limits. Therefore, the value of

the minimum power flexibility metric - Pmin
t,v , which represents the minimum allowable

power at which the EV must be charged at time t, is equal to 0 for the whole plugin

duration. The maximum power flexibility metric - Pmax
t,v , represents the maximum al-

lowable power at which the EV can be charged at time t. Therefore, Pmax
t,v for the whole

plugin duration is equal to Pmax
v .

3.1.3 Fleet Quantification

To manage a portfolio of an energy supplier, (which includes an EV fleet) aggregating

their flexibilities becomes essential to facilitate trading in electricity markets. To obtain

the aggregated flexibility of an EV fleet, the flexibilities of individual EVs are summed

up. The resulting aggregated energy and power flexibility metrics are denoted as Emin
t ,

Emax
t , and Pmin

t , Pmax
t .
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Quantifying flexibility through minimum and maximum power and energy metrics

over time provides essential information—capacity, duration, direction, availability, and

energy- necessary for enabling smart charging.

3.2 From Mathematical Model to Practice

3.2.1 Estimation of the Input Parameters to Calculate EV Flexibility

Calculating EV flexibility requires key input parameters such as plug-in duration and

energy requirements. However, real-world EV data remains scarce, making it difficult

to obtain these parameters directly from charging data. As a result, studies (Daina et

al., 2017) rely on modeling approaches to simulate EV usage patterns and estimate the

necessary input parameters.

Two primary modeling approaches represent EV usage: annual mileage models and

daily pattern models (Daina et al., 2017). Annual mileage models estimate the total dis-

tance traveled per year and the corresponding energy consumption, providing a broad

overview of EV charging demand (Taiebat et al., 2022). However, these models lack the

temporal granularity needed for applications such as EV scheduling. In contrast, daily

pattern models capture short-term variations in EV behavior by simulating hourly or

quarter-hourly travel and charging activities (Daina et al., 2017; Nourinejad et al., 2016).

Since real-world EV-specific data is limited, these models often rely on conventional

vehicle driving patterns obtained from travel surveys, GPS data, or questionnaires.

To account for uncertainties in EV usage patterns, studies typically use either probabil-

ity density functions (PDF) based models or Markov chain models (T. Li et al., 2021).

PDF-based models fit statistical distributions, such as normal or exponential distribu-

tions, to observed data, estimating parameters like trip distance, frequency, duration,

and parking times (Kelly et al., 2012; Rassaei et al., 2015). Monte Carlo simulations

then generate diverse and realistic EV usage scenarios (Gjelaj et al., 2019; T. Li et al.,

2021). Markov chain models, on the other hand, represent EV usage as transitions be-

tween states—such as driving, parked at home, work, or commercial areas—over fixed

time intervals (Shepero and Munkhammar, 2018). These transitions, determined by re-
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gional traffic data, capture temporal dependencies and generate realistic mobility pat-

terns (Müller et al., 2020).

In this thesis, specifically RP4 - RP7, uses a synthetic mobility dataset developed

by Gaete-Morales et al. (2021) based on a German mobility survey (Nobis and Kuhn-

imhof, 2018) to model EV usage patterns. This dataset applies Monte Carlo simulations

to generate unique EV mobility profiles, providing time-series data on vehicle location,

travel distance, and energy consumption at 15-minute intervals over one year. In RP4

- RP7, my coauthors and I derive plug-in duration from arrival and departure times at

their residence, while energy consumption data is used to estimate the vehicle’s state of

charge at arrival (SOCarr). However, determining EV flexibility also requires estimating

energy requirements, which depend on user charging preferences.

To estimate the energy requirements of users, it is crucial to understand their charging

preferences. These preferences could include the desired SOCdep, the SOCmin, and the

frequency of EV connections to charging points (how often users choose to charge their

EVs).

The SOCdep refers to the battery percentage users request by the end of the plug-in

duration. In RP4 - RP7, EVs aim to reach the maximum possible SOCdep within the

plug-in duration.

The SOCmin represents the minimum battery state of charge to which a vehicle charges

immediately at full power upon connection to a charging point (Ensslen et al., 2018;

Fridgen et al., 2016b). This threshold ensures a basic level of readiness and addresses

concerns such as range anxiety—the fear of not having enough charge for future

trips (Delmonte et al., 2020). While many studies (Iversen et al., 2014; T. Li et al., 2021;

Pavić et al., 2023) assume users participate in smart charging programs and provide

complete control of their charging to energy suppliers, real-world behavior indicates

otherwise. Users often hesitate to relinquish control due to concerns about insufficient

power in emergencies (Libertson, 2022). To mitigate these concerns, the concept of

SOCmin offers a compromise: the battery charges immediately to a secure level, after

which energy suppliers control the charging between SOCmin and the desired depar-

ture state of charge (SOCdep). However, the decisions of EV users are susceptible to

behavioural factors like range anxiety (Herberz et al., 2022), which is related to risk

aversity- a personality trait in which individuals tend to prefer lower risks over higher
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risks, even if there is a good chance of a more advantageous outcome (Werner, 2008).

Risk-averse individuals may choose higher SOCmin values than risk-prone individuals.

To quantify user preferences for the SOCmin, in RP2, my coauthors and I conducted a

large-scale survey. Our survey gathered the responses to various variables, including

risk aversion, from n = 289 EV users. In our survey, participants were asked: "Which bat-

tery percentage should your EV always have as a minimum in case of unforeseen emergencies?

(This implies that your EV would always be charged to that level at maximum charging power

when plugged in.)" Responses ranged from 0 to 100%. From their responses, I generated a

frequency distribution that serves as the basis for modeling SOCmin preferences in RP5.

The frequency of EV connections to charging points determines how often users charge

their vehicles. While some studies (Ensslen et al., 2018; Foley et al., 2013) assume users

charge whenever a station is available, studies indicate that EV users typically charge

two to four times per week rather than daily (Franke and Krems, 2013). Charging fre-

quency is influenced by both objective and subjective factors.

Regarding the objective factors, charging frequency correlates with daily driving dis-

tances, trip frequency, and other driving habits (Mandev et al., 2022). External condi-

tions, such as weather, also play a role—for instance, EV owners with photovoltaic sys-

tems may charge more frequently on sunny days to maximize solar energy use (Dodson

and Slater, 2019). Subjective factors like range anxiety might prompt risk-averse users

to charge more frequently to maintain a buffer against unexpected trips (Marxen et al.,

2023a). Since charging frequency affects both individual energy requirements and the

aggregate number of EVs connected to charging points, it plays a critical role in flexibil-

ity modeling.

To model the frequency of EV connections, RP5 assumes that users prefer to charge

when the battery level falls below a defined threshold, referred to as the charging thresh-

old. The rationale behind this threshold aligns with the SOCmin, as both reflect the bat-

tery percentage users consider necessary for security. Therefore, the same distribution

generated for SOCmin values is used to model charging thresholds.
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3.2.2 Impact of User Uncertainties on EV Flexibility

The uncertainties due to variable driving patterns and charging preferences will impact

the flexibility provided by EVs. To assess this impact, RP4 examines how charging

preferences, specifically how SOCmin influences EV flexibility, while RP5 extends the

analysis to include uncertainties from both driving patterns and charging behaviors,

focusing on SOCmin and the frequency of EV connections to charging point.

To model the variability in driving patterns in RP5, my coauthors and I generated 52

scenarios. Each scenario represents one week of driving patterns for the entire fleet, dif-

fering across scenarios. These scenarios, based on a synthetic mobility dataset, capture

different driving patterns for a fleet size of 1000 EVs (Gaete-Morales et al., 2021). For

further details on the scenario generation process, please refer to RP5.

Various possibilities exist regarding SOCmin and the frequency of EV connections to the

charging point. For instance, the SOCmin requirement might vary among EV users; some

may connect their EV every time they park, while others may not, both with or without

an SOCmin requirement. RP5 captures these possibilities by developing four distinct

cases in RP5:

• Case 1: All EVs connect to the charging point whenever parked at home, offering

full flexibility, i.e., 0% SOCmin requirement.

• Case 2: All EVs connect to the charging point whenever parked at home, but each

has a unique SOCmin requirement.

• Case 3: EVs are not always connected when parked at home and offer full flexi-

bility when connected. Users plug in their vehicles after its battery capacity drops

below a defined charging threshold.

• Case 4: EVs are not always connected when parked at home and have an SOCmin

requirement when connected. This case considers both SOCmin and irregular con-

nection behavior.

Using a frequency distribution derived from a survey conducted in RP2, my coauthors

and I randomly assigned SOCmin and charging threshold values to the 1000 EVs. The
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values were randomly assigned to each vehicle as no clear correlation emerged with

SOCmin response and risk aversion.

Using the flexibility model, my coauthors and I calculated the flexibility for each sce-

nario across the four cases in RP5, quantifying the fleet’s flexibility in terms of power

and energy metrics—Pmin
t , Pmax

t and Emin
t , Emax

t . For further details on flexibility metrics

calculations for each scenario, please refer to RP5.

Comparing these metrics against Case 1, which serves as the baseline, highlights the

impact of SOCmin and irregular charging frequency on flexibility. Table III.1 presents

the peak median values of each flexibility metric for a typical weekday, based on the

results from RP5.

Table III.1: Peak median value of flexibility metrics for different user cases on typical weekday based on
findings of RP5

Use cases Power metrics Energy metric

Pmax (MW) Pmin (MW) Emax (MWh) Emin (MWh)

Case 1 7 0 11 3

Case 2 7 0.2 11 4

Case 3 2.25 0 11 4

Case 4 2.25 0.3 11 6

In Case 2, there is an increase in Pmin
t and Emin

t due to the SOCmin requirement, which

forces EVs to charge at full power until their battery capacity reaches the minimum

required level. The change in Pmin
t is minimal because most EVs already meet or exceed

the SOCmin, and for those that don’t, the required power to reach it is relatively low.

In Case 3, there is a decrease in Pmax
t and an increase in Emin

t , primarily due to irregular

EV connections. Since users are less likely to connect their EVs every day, the number of

connected vehicles per day in Case 3 is much lower than Case 1, leading to a reduction

in Pmax
t . However, when the EVs do not connect regularly, they tend to require higher

energy per charging session, as they need to meet their weekly energy requirements in

fewer sessions. As a result, the Emin
t value is higher when compared to Case 1.
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In Case 4, the value of Pmax
t reduces, while there is an in the value of Pmin

t . The re-

duction in Pmax
t is due to irregular connections as in for Case 3. The increase in Pmin

t

is predominantly due to SOCmin requirements as in Case 2. Furthermore, the value of

Emin
t increases which is due to both SOCmin requirements (as in Case 2) and irregular EV

connections (as in Case 3).

Considering that RP5 modelled aggregated flexibility metrics, EVs connected to the

charging point collectively form a virtual battery. Hence, Emin
t and Emax

t represent the

minimum and maximum energy capacities of this virtual battery, while Pmin
t and Pmax

t

represent its minimum and maximum charging capacities. Any increase in Pmin
t or de-

crease in Pmax
t indicates a reduction in the power capacity of the virtual battery, signify-

ing a decrease in flexibility. Similarly, an increase in Emin
t or a decrease in Emax

t suggests

a reduction in the energy capacity of the virtual battery, also indicating a decrease in

flexibility.

Thus, observed increases in Pmin
t and Emin

t for cases with SOCmin requirements point to

a reduction in flexibility due to these requirements. Likewise, a decrease in Pmax
t and an

increase in Emin
t for cases with irregular EV connections to the charging point suggest

reduced flexibility due to the variability in EV connections.

3.2.3 Behavioral Interventions to Increase User Flexibility Provision

The analysis in RP4 and RP5 demonstrates that user preferences impact the flexibility of

an EV fleet. To maximize the benefits of smart charging, energy suppliers must enhance

users’ flexibility provision. Behavioral interventions, such as incentives and nudges,

can encourage users to adopt behaviors that increase flexibility provision (Huber et al.,

2019b; Kacperski et al., 2022; Parrish et al., 2020).

Incentives provide financial rewards for choosing a certain option (Marxen et al., 2023a),

while nudges influence decision-making by adjusting the way choices are presented,

without restricting options or changing financial costs (Thaler and Sunstein, 2008).

Nudges can focus on economic, environmental, or social benefits (Huber et al., 2019a).

Economic nudges highlight cost savings, environmental nudges emphasize sustainabil-

ity benefits, and social nudges stress positive effects on the community.
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Monetary incentives and environmental nudges have been shown to encourage flexibil-

ity provision (Parrish et al., 2020) and increase acceptance of smart EV charging (Huber

et al., 2019b). However, research on which specific incentives and nudges are most effec-

tive for increasing flexibility provision for smart charging remains limited. To address

this gap, RP1 and RP2 examined which behavioral interventions are most effective in

increasing residential flexibility provision.

A literature review in RP1 identified several behavioral interventions for smart EV

charging, including monetary incentives, framing, feedback, default settings, and gam-

ification.

Framing influences decisions by changing how choices are described. For example,

smart charging can be presented in a way that emphasizes its benefits (Huber et al.,

2019a). Feedback provides users with information about the effects of their choices,

such as CO2 savings or financial benefits (Huber et al., 2019a). Default settings make

smart charging the standard option, requiring users to actively opt out if they do not

wish to participate (Parrish et al., 2020). Gamification introduces game-like elements,

such as rewards and challenges, to increase engagement (Deterding et al., 2011). Credit

points act as a form of financial incentive, while tips provide users with behavioral

recommendations (AlSkaif et al., 2018).

To gain initial insights into how current EV users perceive different incentives, nudges

and tips, my coauthors and I conducted three focus groups (n= 13) as part of RP1.

The findings indicated that most participants found monetary incentives and smart EV

charging as the default most attractive. However, these results should be interpreted

with caution due to the small sample size.

While previous studies (e.g., Huber et al. (2019a) and Wong et al. (2023)) have examined

how incentives and nudges influence flexibility provision, few have tested multiple in-

terventions within the same study. As a result, there is little understanding of which

interventions are most effective when compared directly. Furthermore, some studies

have measured perceptions (Delmonte et al., 2020) and others their effect (Huber et al.,

2019b), yet both types of studies often interpret results as if they were measuring effects.

However, preferences do not always reflect real-world behavior. For example, Tijs et al.

(2017) found that while monetary and environmental incentives for water conservation

29



Chapter III. EV Flexibility

were rated as appealing, their actual impact on behavior differed. This highlights the

importance of distinguishing between user perception and real effects.

Thus, in RP2, my coauthors and I tested the effectiveness and perception of selected

interventions through an experimental survey with 289 EV users. These interventions

include high and low monetary incentives, environmental framing, environmental feed-

back, smart charging defaults, credit points, and behavioral tips.

Survey results demonstrated that only monetary incentives, including both high and

low levels and credit points, significantly increased flexibility provision. Other interven-

tions, such as nudges and tips, had no statistically significant effect. The effectiveness of

high and low monetary incentives was comparable, consistent with prior findings that

the presence of incentives matters more than their magnitude (Lagomarsino et al., 2022).

Furthermore, we also found no correlation between the perception and effect of any be-

havioral intervention. This finding underscores the importance of testing the effects of

incentives and nudges in experimental contexts rather than relying on measuring their

perception.
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IV EV Flexibility in European

Electricity Markets

In Europe, power market participants, such as energy suppliers, can trade in short-term

markets to reduce their demand and supply imbalances until just a few minutes be-

fore delivery. Although these markets are technically futures markets due to the time

lag between trading and physical delivery, they are commonly referred to as spot mar-

kets (KULeuven, 2015).

Germany provides an illustrative example as one of Europe’s largest power markets by

traded volume (EPEX, 2024a). The German spot market consists of a DA auction and

an ID market. The ID market is further divided into two segments: an auction market,

known as the intraday auction (IDA) market, and a continuous market, referred to as the

continuous intraday (CID) market. Products traded in the spot market differ in their de-

livery time intervals, which can be one hour, thirty minutes, or fifteen minutes (NEMO,

2023). In the German market, hourly products exhibit the highest liquidity, followed

by quarter-hourly products (EPEX, 2024a; MCSC, 2023). Energy suppliers and other

market participants can use these spot markets to meet their short-term power needs.

To participate in the European DA market, participants submit hourly orders to the DA

auction, which is cleared through an auction mechanism. Orders consist of two types

of offers: (1) bids, representing the prices participants are willing to pay to purchase

power, and (2) asks, reflecting the prices they are willing to accept to sell power. In

Germany, the DA auction is held daily at noon for all delivery hours of the following

day (EPEX, 2022). Once the gate closure time is reached (the deadline for submitting

orders), a clearing algorithm matches these bids and asks to determine a single clearing
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price for each market area, such as the German-Luxembourgish market area, following

the merit order principle (Zachmann et al., 2023).

While only hourly products can be traded in the European DA market, the European

ID market allows trading in products with shorter delivery intervals of thirty minutes

and fifteen minutes (EPEX, 2024a). The IDA operates similarly to the DA auction and

is conducted daily at 3 PM for products with delivery on the following day (EPEX,

2022). In contrast, the CID market facilitates continuous trading, where bids and asks

are matched in real time throughout the trading period. Trading in the European CID

market begins at 3 PM (NEMO, 2021). In this system, trades are executed immediately

whenever a bid matches or exceeds an ask price (Neuhoff et al., 2016). In Germany, the

CID market remains open until five minutes before delivery, allowing participants to

adjust their positions close to real-time.

After the closure of the ID market, any remaining imbalances are managed by

TSOs (ENTSO-E, 2022). All wholesale market participants are part of a Balancing Re-

sponsible Party (BRP), which is responsible for compensating TSOs for the balancing

services required to correct any imbalances caused by market activity. This compen-

sation can be negative, indicating a reversal in the direction of payment. In Germany,

the imbalance price, which determines this compensation, is known as the reBAP (reBi-

lanziertes Ausgleichsenergie-Preis) (50hertz et al., 2022).

Within this market framework, energy suppliers must efficiently manage the charging

of EV fleet while balancing their portfolios. By leveraging EV flexibility, suppliers can

participate in spot markets to procure energy at optimal prices while mitigating imbal-

ances. However, this requires careful coordination to ensure that the procured energy is

effectively allocated to individual vehicles.

This chapter is structured around two key aspects, as illustrated in Figure IV.1: ag-

gregation— focused on procuring energy from the market, and disaggregation- which

involves distributing the procured energy among individual EVs.
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Quantifying EV fleet 
flexibility 

Aggregation - Section 4.1

Chapter III Chapter IV

Disaggregation - Section 4.2 
Market evaluation of EV 

flexibility
Power allocation to 

each EV
Aggregated schedule

Figure IV.1: Overview of Chapter IV structure.

Section 4.1 focuses on aggregation, evaluating the monetary value of EV flexibility. It

examines how charging preferences influence financial outcomes in the spot market and

explores trading strategies to manage imbalances. These strategies help suppliers hedge

against uncertainties arising from EV users and market fluctuations while leveraging

arbitrage opportunities. Section 4.2 focuses on disaggregation, i.e., power allocation

at the individual vehicle level. It introduces an optimization approach that efficiently

distributes the procured energy among EVs while accounting for uncertainties between

trading and actual delivery.

4.1 Spot Markets Exploration

4.1.1 Impact of Charging Preferences on Monetary Value

Smart charging enables energy suppliers to optimize EV charging, reducing electric-

ity procurement costs (EPC) by scheduling charging during periods of lower electricity

prices (Foley et al., 2013; Okur et al., 2021). This smart charging process can be formu-

lated as an optimization problem because it involves allocating resources (i.e., charging

power) to maximize the objectives (such as minimizing energy supplier EPC) while sat-

isfying constraints (e.g. user requirements).

Accounting for user and market price uncertainties is crucial when developing opti-

mization models for trading in electricity markets with EV scheduling. Stochastic op-

timization incorporates probability distributions to model uncertainties in market con-

ditions and EV demand to address these challenges (Ding et al., 2018). By minimiz-

ing expected EPC across multiple demand scenarios, these models improve charging

schedule reliability (Zheng et al., 2020). Some stochastic approaches also integrate risk
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measures, such as Conditional Value at Risk (CVaR) to minimize the EPC while trading

in DA markets (Al-Awami and Sortomme, 2012).

Trading in both DA and ID enables energy providers to fully utilize the flexibility of-

fered by EV across time horizons and market conditions (Z. Liu et al., 2019). Jin et

al. (2020) and Sánchez-Martín et al. (2016) proposed two-stage stochastic optimization

model to minimize the expected EPC of energy suppliers while trading in both DA and

ID markets.

In contrast, robust optimization offers a more conservative approach to managing un-

certainty in EV scheduling. Unlike stochastic models, which rely on probability dis-

tributions, robust optimization considers a worst-case scenario framework, ensuring

feasible and cost-effective charging schedules under the most adverse conditions (Ko-

rolko and Sahinoglu, 2017). Energy suppliers use robust optimization to hedge against

uncertainties in EV usage and electricity prices by optimizing charging schedules that

remain viable across a predefined set of scenarios (Pavić et al., 2023). In this notion, Ko-

rolko and Sahinoglu (2017) formulated the objective function as a “min-max” model,

aiming to minimize the energy provider’s EPC for the worst scenario across all scenar-

ios while trading in DA markets. Morales et al. (2014) proposed scenario-based robust

optimization to facilitate trading in DA and ID markets. Their scenario-based robust

optimization model aims to minimize the worst scenarios EPC, which could include

DA EPC and ID worst scenario costs.

Previous studies (Jin et al., 2020; Korolko and Sahinoglu, 2017; Z. Liu et al., 2019; Pavić

et al., 2023; Sánchez-Martín et al., 2016) have developed optimization models to manage

uncertainties related to EV usage and market and leveraged EV flexibility to minimize

EPC. However, they have overlooked uncertainties arising from charging preferences,

such as SOCmin and the frequency of EV connections to the charging point. Charging

preferences are crucial in determining the flexibility available to energy suppliers. The

flexibility is significantly reduced if users impose strict constraints—such as requiring a

high SOCmin or charging infrequently. It could impact the monetary value of flexibility

when trading in spot markets.

Thus, RP4 and RP5, investigated the impact of charging preferences on the monetary

value of EV flexibility. Specifically, RP4 focuses on evaluating the impact of SOCmin re-

quirement on the EPC while trading in DA and ID markets. To assess this, my coauthors
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and I employ a two-stage stochastic optimization model to minimize the EPC while ac-

counting for user-defined SOCmin constraints and market price uncertainty.

Building upon RP4, RP5 evaluates the monetary value of EV flexibility while consider-

ing the uncertainties due to variable driving patterns and charging preferences. With re-

spect to charging preferences, RP5 specifically focuses on evaluating the impact SOCmin

and the frequency of EV connections to the charging point on the monetary value of EV

flexibility while trading in spot markets. To evaluate the monetary value, RP5 develops

a scenario-based robust optimization model aimed at minimizing the EPC while partic-

ipating in both DA and ID. By incorporating flexibility scenarios into the optimization

model, the model minimizes the EPC for the worst scenario, ensuring a robust assess-

ment of the financial viability of trading EV flexibility in spot markets. For more details

on the optimization model and relevant assumptions, please refer to RP5

To analyze the impact of charging preferences on the monetary value of EV flexibility,

my coauthors and I conducted a cost sensitivity analysis by generating different use

cases in RP5. These use cases are generated by varying two key parameters:

• Charging threshold: The charging threshold values were varied from 20% to 100%

in increments of 20%. Higher thresholds correspond to more frequent EV connec-

tions to charging stations.

• SOCmin: This ranged from 0% (full flexibility) to 100% (no flexibility) in the incre-

ments of 20%.

For each use case, the study calculates the EPC required to charge 1,000 EVs for one

week across all months in 2022 and 2023. The input data includes DA and ID3 index

market price data from 2022 and 2023 (EPEX, 2024b), along with flexibility scenarios

that represent the aggregated flexibility metrics of 1,000 EVs over one week. For more

details on input data, flexibility scenario generation process, and relevant assumptions,

please refer to RP5

Figure IV.2 presents one of the results from RP5, illustrating the EPC for various combi-

nations of charging thresholds and SOCmin values in July 2023 (results for other months

follow similar trends, though the specific values differ; refer to RP5 for details). The
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analysis indicates that EPC decreases with higher charging thresholds, while higher

SOCmin values result in increased EPC.
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Figure IV.2: Electricity procurement costs of one week in July 2023 for different SOCmin and charging
thresholds, extracted from RP5.

A key observation is that EPC remains relatively stable for lower SOCmin values up to a

critical threshold, beyond which costs rise sharply. For instance, at 80% and 100% charg-

ing thresholds, EPC remains nearly constant up to 80% SOCmin, after which it escalates.

This trend arises because higher charging thresholds lead to higher state of charge upon

arrival (SOCarr), meaning that for most EVs, SOCarr already exceeds SOCmin, thereby re-

ducing the impact of SOCmin on EPC.

Figure IV.3 presents one of the results from RP5, illustrating the relative EPC reduc-

tions across different charging thresholds for July 2023 (results for other months follow

similar trends, though the specific values differ; refer to RP5 for details). Under full

flexibility (0% SOCmin), reductions range from 33.9% to 49.6%, while even with limited

flexibility (80% SOCmin), savings between 11.8% and 36.9% are achieved compared to

the no-flexibility case (100% SOCmin).
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Figure IV.3: Relative cost reduction for one week in July 2023 of different SOCmin values compared to
100% SOCmin across different charging thresholds ,extracted from RP5.

These findings from RP5 demonstrate that EPC reductions depend on both the fre-

quency of EV connections and the degree of charging flexibility. While full flexibility

yields the highest savings, even low flexibility can lead to significant reductions, par-

ticularly when EVs charge more frequently. This enables energy suppliers to optimize

costs without requiring users to relinquish full control over their charging schedules.

To illustrate this balance, I define three key SOCmin cases:

• Full Flexibility (0% SOCmin) – Maximizes cost savings but reduces user control,

as charging is entirely managed by suppliers.

• No Flexibility (100% SOCmin) – Ensures full user convenience but eliminates sup-

plier flexibility, leading to higher EPC.

• Low Flexibility (80% SOCmin) – Provides a balanced approach, allowing suppliers

to manage charging after 80% charge while ensuring users have sufficient battery

for most trips, including emergencies.

Even at 80% SOCmin, suppliers can achieve up to a 33.9% reduction in EPC, with full

flexibility offering slightly higher savings of 49.6%. The impact is most pronounced
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at higher charging thresholds (60%–100%), where frequent charging further enhances

savings. While some users hesitate to charge often due to battery health concerns, stud-

ies (Kostopoulos et al., 2020) suggest the optimal operating range is 20%–80%. Encour-

aging charging within the 60%–80% range can help balance cost savings and battery

longevity.

Overall, findings from RP5 imply that flexible EV charging offers significant economic

benefits, enabling substantial cost reductions for energy suppliers while maintaining

user convenience.

4.1.2 Trading Strategies to Maximize Energy Supplier’s Profits

The analysis in RP5 underscores the substantial economic value of EV flexibility. How-

ever, energy suppliers must overcome challenges related to uncertain EV behavior and

market prices to capitalize on this potential fully. To mitigate these risks and lever-

age flexibility for profit, energy suppliers need dynamic trading strategies that address

market imbalances and optimize portfolio management.

The variable nature of EV user driving behaviors and evolving charging preferences

causes discrepancies between actual and forecasted charging demand (Pareschi et al.,

2020). These discrepancies can pose financial risks for energy suppliers, particularly in

European markets where market participants incur penalties for imbalances between

expected and actual demand (KULeuven, 2015). To manage these uncertainties, sup-

pliers can participate in the DA and CID markets. The DA market allows for advance

procurement, while the CID market enables suppliers to adjust schedules closer to real-

time, mitigating imbalance penalties. Additionally, suppliers can leverage EV flexibility

through smart charging, capitalizing on arbitrage opportunities in both the DA and CID

markets to boost revenues.

To facilitate EV flexibility trading in the CID market, Naharudinsyah and Limmer (2018)

and Tepe et al. (2022) proposed rolling window (RW) horizon optimization methods.

These models enable energy suppliers to dynamically adapt to CID market conditions.

By employing a sequential trading strategy, suppliers can first acquire most of the power

needed for charging from the DA market, minimizing costs, and then capitalize on arbi-

trage opportunities in the CID market (Tepe et al., 2022; Vardanyan and Madsen, 2019).
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Shinde et al. (2022) and Vardanyan and Madsen (2019) model price uncertainties in the

CID market by considering different price scenarios and their associated probabilities.

However, many studies (Shinde and Amelin, 2019; Tepe et al., 2022; Vardanyan and

Madsen, 2019) assume that EV demand forecasts remain constant when trading in both

the DA and CID markets, overlooking the inherent variability in EV behavior.

Relying solely on DA EV demand forecasts for CID trading is impractical since these

forecasts are typically made 36 hours or more in advance, increasing the likelihood of

inaccuracies. As the forecast is made closer to delivery time, its accuracy improves due

to the inclusion of real-time user data, such as plug-in and plug-out times. Static fore-

casts may also overlook imbalance costs resulting from deviations in charging behavior.

Additionally, price uncertainty in the CID market complicates forecasting, often lead-

ing to unrealistic scenarios based on perfect foresight. To address these challenges, RP6

proposes an optimization model that integrates real-time EV flexibility forecasts with

dynamic price forecasting.

Figure IV.4 illustrates the sequence of trading and optimization steps my coauthors and

I developed and applied in RP6 to determine the final EV charging schedule.

DA Auction

CID Trading

Imbalance
Settlement

DA Charging Schedule

ID Charging Schedule

DA EV Forecast
DA Prices

ID EV Forecast
CID Price Forecasts

EV Charging Schedule
Imbalance Prices

Figure IV.4: Overview of trading steps extracted from RP6.

The first step is securing energy in the DA market, which offers high liquidity and a sin-

gle clearing price (EPEX, 2024a). The optimization model selects cost-effective charging

periods within the DA timeframe, assuming perfect foresight of prices and an initial EV

flexibility forecast, resulting in a preliminary charging schedule.
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During the ID period, an updated EV flexibility forecast becomes available. For simplic-

ity, RP6 assumes that this forecast aligns perfectly with actual EV flexibility at the time

of charging (refer to RP6 for more details). Three distinct trading strategies are then

proposed in RP6 to update the DA charging schedule based on new ID EV forecasts:

• Baseline strategy (BLreBAP
P ) – This strategy settles power volumes required for

the ID schedule at the imbalance price, known as reBAP in Germany (50hertz et

al., 2022). It minimizes the difference between DA and ID power needs, thereby

reducing imbalances and associated costs.

• Static CID strategy (BLID1
P ) – Similar to the baseline strategy, this approach makes

the same power volume adjustments but settles them in the CID market instead

of treating them as imbalances. It uses the ID1, a price index published by EPEX,

which reflects the price during the final trading hour of each product in the CID

market (EPEX, 2025).

• Dynamic CID strategy (CIDx
E) – This strategy continuously adjusts positions in

the CID market using a RW approach, allowing multiple re-optimizations during

the CID trading window. It leverages EV charging flexibility to arbitrage from

changing prices between products trading in parallel.

Each strategy results in a final ID charging schedule that determines when and how

EVs are charged. The baseline and static CID strategies both aim to align the ID power

schedule with the DA power schedule, but they differ in how they handle discrepan-

cies. In contrast, the dynamic CID strategy continuously participates in the CID market,

making adjustments based on trading frequency, with optimization intervals of 2, 5, 10,

15, 20, 30, or 60 minutes. For further details on the trading strategies and the optimiza-

tion models developed to implement them, please refer to RP6.

Trading strategies are tested using market prices from 2019 and 2022 (EPEX, 2024b).

Each strategy is evaluated across four different EV flexibility scenarios, each with in-

creasing deviation from the DA flexibility forecast for a fleet of 1,000 EVs. For more

details on input data and flexibility scenario generation process, please refer to RP6.

Our energy supplier’s financial evaluation in RP6 involves calculating expected yearly

profits for different trading strategies. Annual profits during the ID period are deter-
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mined by aggregating all trade values, including CID fees and imbalance settlement

costs. Profit dynamics depend on market prices—under positive prices, selling power

increases profits while acquiring power reduces them; under negative prices, the rela-

tionship reverses. Our optimization models in RP6 rely on forecasts to compute sched-

ules, while actual market prices determine final profit calculations.

Figure IV.5 illustrates the mean annual profits (based on the results from RP6) across

various trading strategies, with four bars per strategy representing different levels of

forecast deviation between DA and ID flexibility: perfect forecast (blue), low deviation

(orange), medium deviation (green), and high deviation (red). Whiskers indicate two

standard deviations above and below the mean profit, capturing uncertainty in out-

comes.
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Figure IV.5: Comparison of yearly profits for different trading strategies, extracted from RP6 (Part 1).
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Figure IV.5: Comparison of yearly profits for different trading strategies, extracted from RP6 (Part 2).

Profits decline as forecast deviations increase, leading to higher profit variability due

to greater involuntary rescheduling. This reduces the available flexibility for volun-

tary rescheduling, increasing exposure to unfavorable market conditions. Baseline and

static CID strategies (BLreBAP
P and BLID1

P ) yield zero profit under perfect forecasts since

they minimize traded volumes. However, as deviations grow, these strategies become

unprofitable due to limited flexibility and increased imbalance costs.

In contrast, dynamic CID strategies (CID2min
E to CID60min

E ) adapt to ID market

conditions, leveraging EV flexibility for arbitrage opportunities. In 2019, only

CID20min
E consistently generates positive profits, peaking at e1,067.98. By 2022, in-

creased market volatility enhances profitability, with all dynamic strategies—except

CID60min
E —yielding positive returns. The CID5min

E strategy achieves the highest profit,

reaching e10,670.59.

A comparison between 2019 and 2022 reveals two key trends. First, profits are signif-

icantly higher in 2022 due to greater price volatility and market liquidity. Second, the

optimal dynamic strategy shifts from CID20min
E in 2019 to CID5min

E in 2022, highlighting

the advantage of higher trading frequency in more dynamic market conditions.
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To further evaluate the financial benefits of trading in the CID market, each strategy’s

profitability is compared against the baseline (BLreBAP
P ), which settles imbalances at the

reBAP price. This relative assessment that my coauthors and I conducted in RP6 high-

lights the advantages of proactive CID participation over passive imbalance settlement.

Figure IV.6, presents results from RP6, displaying the profit differences across different

strategies in the CID market (BLID1
P and CID2min

E to CID60min
E ) relative to the baseline.

Uncertainty is depicted by whiskers extending two standard deviations above and be-

low the mean profit differences, with results illustrated for varying deviations between

DA and ID flexibility forecasts in 2019 and 2022.
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Figure IV.6: Comparison of yearly improvement over BLreBAP
P as a share of DA costs, extracted from RP6

(Part 1).

43



Chapter IV. EV Flexibility in European Electricity Markets

B
L

ID
1

P

C
ID

2
m
in

E

C
ID

5
m
in

E

C
ID

1
0m

in
E

C
ID

1
5m

in
E

C
ID

2
0m

in
E

C
ID

3
0m

in
E

C
ID

6
0m

in
E

Trading Strategy

5000

0

5000

10000

15000

20000

Pr
of

it 
Di

ffe
re

nc
e 

[
]

Perfect Forecast
Low Deviation
Medium Deviation
High Deviation

(b) 2022

Figure IV.6: Comparison of yearly improvement over BLreBAP
P as a share of DA costs, extracted from RP6

(Part 2).

The static CID strategy (BLID1
P ), which settles at the ID1 price, yields similar profits to the

baseline, offering minimal financial advantage. However, most dynamic CID strategies

outperform the baseline, except CID2min
E under perfect forecasts in 2019, which slightly

underperforms. The increased profitability of dynamic strategies under uncertain EV

schedules stems from their ability to exploit EV charging flexibility for arbitrage across

products with different delivery intervals. This flexibility allows for strategic reschedul-

ing that reduces imbalance costs while capitalizing on price differentials.

Thus, with an effective trading strategy, energy suppliers serving EV users can miti-

gate financial risks associated with forecast inaccuracies. The success of such a strategy

depends on two critical factors: smart charging practices by EV users and strategic trad-

ing in the CID market. Encouraging flexible charging behavior enhances the ability to

optimize schedules, while leveraging arbitrage opportunities across different market

products improves profitability and reduces exposure to imbalance costs.

Overall, the results from RP6 underscore the importance of accurate EV flexibility fore-

casts and adaptive trading strategies. While baseline and static strategies fail to cap-

ture market benefits, dynamic strategies—especially those with higher trading frequen-
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cies—prove more effective in volatile markets. As market conditions evolve, aligning

trading strategies with real-time flexibility and market liquidity will be crucial for max-

imizing financial returns.

4.2 From Fleet to Individual Schedule

After energy suppliers trade in the market and procure aggregated power for charging

the EV fleet, they must optimally allocate this power to individual vehicles. However,

a time lag exists between the trading and delivery periods. During this interval, initial

user requirements predicted during trading may change. For example, users may up-

date their plug-in durations or adjust their energy requests. These updates can lead to

discrepancies between the procured power and the updated power demand at the time

of delivery, resulting in imbalances and failing to satisfy users’ energy requirements.

However, if EVs possess sufficient flexibility, energy providers can reschedule power

allocation to accommodate these updated requirements and reduce imbalance costs. To

investigate this, RP7 examines whether EVs have enough flexibility to address uncer-

tainties in user demand, satisfy energy requirements, and minimize imbalance costs for

energy providers.

Figure IV.7 gives an overview of our optimization approach implemented in RP7. The

first step involves procuring aggregated power while trading in DA electricity market,

where we developed a linear optimization model to procure the required power for EV

charging based on predicted user requirements while minimizing procurement costs.

The second step focuses on rescheduling, where we proposed three strategies to reallo-

cate power among EVs, ensuring that updated energy needs are met while managing

imbalances efficiently.
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Figure IV.7: Overview of our two step optimization approach adopted in RP7.

The three rescheduling strategies that my coauthors and I proposed in RP7 were:

• Strategy 1: Uses the same aggregated DA schedule to satisfy the updated user re-

quirements without settling imbalances in the market. Power is reallocated among

EVs to minimize deviations between their updated energy needs and their actual

energy levels at departure.

• Strategy 2: Settles imbalances in the imbalance market to fulfill updated user re-

quirements while minimizing imbalance volume. This strategy adjusts the aggre-

gated power schedule at the time of delivery to match the updated energy needs.

• Strategy 3: Settles imbalances in the imbalance market while minimizing imbal-

ance costs. Similar to the second strategy, this approach modifies the aggregated

power schedule at delivery but prioritizes cost reduction.

Using a synthetic mobility dataset (Gaete-Morales et al., 2021), we generate multiple

scenarios in which the user requirements of the entire EV fleet vary across cases. One

scenario represents the initial or predicted requirements used for market trading, while

the remaining scenarios reflect updated user behavior. These scenarios allow us to test

the rescheduling strategies under different conditions and evaluate their effectiveness in

managing flexibility and minimizing imbalance costs. For further details on the scenario

generation, rescheduling strategies, relevant assumptions, and the optimization models

used, please refer to RP7.
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Our optimization model incorporates German DA market price data from January

15–21, 2024 (EPEX, 2024b), and reBAP prices from the ENTSO-E Transparency Plat-

form (ENTSOE-E, 2024) for the same period. Imbalance costs for all strategies are cal-

culated ex-post using reBAP price data. For more information on the input data and

modeling approach, refer to RP7.

Our findings from RP7 demonstrate that using the first strategy, energy suppliers can

meet most user energy needs by redistributing the available power. However, some

users may not receive their full requested energy, potentially affecting charging relia-

bility and driving needs. If users are flexible in their energy requests, power can be

reallocated to ensure all EVs receive enough energy for their next trip without major

inconvenience. However, users are prone to discomfort when significant deviations re-

main between scheduled and actual energy levels at departure. In such cases, relying

solely on this strategy may not be sufficient, prompting the need for imbalance market

adjustments, as explored in the second strategy.

The second strategy in RP7 ensures users receive their requested energy by the end

of the charging session by adjusting the power schedule through the imbalance mar-

ket. While the model attempts to minimize deviations from the aggregated DA power

schedule using EV flexibility, instances of both positive and negative imbalances still oc-

cur. A positive imbalance arises when the rescheduled power is less than the aggregated

DA power, requiring energy suppliers to sell the excess power in the imbalance market.

If the price during this period is positive, suppliers generate revenue, leading to nega-

tive imbalance costs. However, if the price is negative, the imbalance cost is positive,

increasing overall costs. Conversely, a negative imbalance occurs when rescheduled

power exceeds the aggregated DA power, requiring suppliers to buy additional energy

from the imbalance market. A positive price results in a cost, whereas a negative price

generates revenue.

As a result, overall imbalance costs varied across scenarios RP7 considers. In some

cases, negative imbalance costs occur due to favorable combinations of imbalance prices

and deviations. However, procuring excess power in the DA market does not always

guarantee revenue, as positive imbalances do not necessarily coincide with profitable

price conditions.
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The third strategy in RP7 assumes perfect foresight of imbalance prices, allowing the

model to strategically create positive and negative imbalances to minimize costs. As a

result, the imbalance costs are negative across all scenarios. However, this assumption is

purely theoretical, as energy suppliers cannot predict imbalance prices in real time. De-

spite its impracticality for direct implementation, this strategy highlights the potential

of EV flexibility in providing balancing services. Since balancing energy prices influence

imbalance prices, leveraging EV flexibility can help reduce overall system imbalances.

Overall, the findings from RP7 demonstrate that leveraging EV flexibility enables en-

ergy suppliers to meet most user energy requirements while reducing imbalance costs.

Suppliers can minimize user impact and reduce imbalance costs by adjusting power al-

location and using the imbalance market. These findings highlight the potential of EV

flexibility to mitigate uncertainties in user behavior while supporting system reliability

and cost efficiency.
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V Conclusion

5.1 Contributions

This thesis advances the development of smart charging solutions for energy suppliers,

enabling them to optimize EV charging, reduce portfolio costs, and effectively manage

user behavior and market dynamics. The contributions span three key dimensions: un-

derstanding user preferences and factors influencing their EV flexibility provision, de-

veloping a quantitative model to assess EV flexibility, and designing trading strategies

to mitigate uncertainties and optimize power allocation for EVs. These insights equip

energy suppliers with the necessary tools to enhance market efficiency, improve portfo-

lio performance, and maximize the economic benefits of EV flexibility while maintain-

ing user satisfaction.

The first contribution of this thesis focuses on understanding user preferences and fac-

tors influencing their EV flexibility provision. A critical aspect of implementing smart

charging is user willingness to participate in smart charging programs, provide flexi-

bility, and share data. Through an experimental survey, this thesis empirically inves-

tigates different behavioral interventions that could enhance user flexibility provision.

The findings from our survey reveal that financial incentives significantly increase user

willingness to provide flexibility, whereas nudges and tips have limited impact. Ad-

ditionally, a separate survey on data-sharing behavior indicates that while users are

generally open to sharing less sensitive data like charging data, they are more reluctant

to disclose sensitive information such as location and calendar details, often demanding

high compensation. These findings underscore the need for energy suppliers to priori-
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tize financial incentives for flexibility participation and develop data-sharing strategies

that balance operational efficiency with user privacy concerns.

The second contribution of this thesis is developing a quantitative model to assess EV

flexibility for market participation. This thesis introduces a mathematical model that

quantifies flexibility using key metrics such as minimum and maximum power and en-

ergy values to support energy suppliers in leveraging flexibility. This model provides

a structured approach for evaluating fleet-level flexibility and optimizing EV schedul-

ing for electricity market participation. Furthermore, by applying this model, the thesis

quantitatively demonstrates how variations in driving patterns and charging prefer-

ences impact flexibility potential. These insights offer energy suppliers a clearer under-

standing of how different user behaviors affect available flexibility and inform strategies

to maximize flexibility utilization.

The third contribution of this thesis addresses the challenge energy suppliers face in

managing uncertainties in user behavior and market conditions to optimize EV charg-

ing. To tackle this, the thesis proposes trading strategies enabling energy suppliers to

participate in spot markets while accounting for user behavior and market price un-

certainties. These strategies incorporate different EV flexibility scenarios to model user

behavior variability and employ forecasting techniques to address price fluctuations.

The findings demonstrate that, rather than relying solely on imbalance settlements, ac-

tive participation in short-term markets such as CID markets allows energy suppliers to

reduce imbalance costs and capitalize on arbitrage opportunities by leveraging both EV

flexibility and market price volatility, ultimately improving overall revenues. Further-

more, this thesis introduces rescheduling strategies to address discrepancies between

procured power from the market and actual demand due to trading and delivery time

lags. These rescheduling strategies dynamically adjust individual EV power schedules

by leveraging EV flexibility. These strategies minimize imbalance costs while ensuring

minimal disruption to users.

Overall, this thesis demonstrates that integrating EV flexibility into electricity markets

offers significant economic benefits for energy suppliers. By leveraging financial in-

centives, developing a flexibility model, and applying dynamic trading and scheduling

strategies, suppliers can improve market performance while ensuring user satisfaction.
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These contributions enable energy suppliers to fully capitalize on EV flexibility, paving

the way for more efficient, user-centric smart charging solutions.

5.2 Limitations and outlook

While this thesis provides valuable insights into EV flexibility, several limitations must

be acknowledged. One key constraint is the reliance on survey data to evaluate the ef-

fectiveness of interventions. Though the survey approach helps capture initial user in-

tentions, there is an inherent gap between stated intentions and actual behavior. This in-

herent gap makes it challenging to assess user responses to incentives and smart charg-

ing programs accurately. Similarly, the evaluation of gamification is limited, as users

did not directly interact with gamified elements, preventing a full assessment of their

real-world impact. Future research should incorporate field studies or longitudinal data

to understand better how users engage with smart charging over time.

Another limitation lies in using synthetic mobility datasets to estimate EV flexibility.

While these datasets are useful for estimating key parameters, they may not fully cap-

ture real-world variations in driving behaviors. Factors such as seasonal fluctuations,

holiday travel, and regional differences are often overlooked, potentially affecting the

accuracy of flexibility assessments. Integrating real-world mobility data would improve

the applicability of findings across diverse user groups and geographic locations.

Additionally, technical assumptions within my flexibility model also introduce some

limitations. The flexibility model simplifies charging processes by assuming linear

charging, whereas, in reality, charging power decreases as the battery approaches full

capacity. This simplification may lead to overestimations of available flexibility. Fur-

thermore, variations in battery size and vehicle specifications influence user charging

preferences, affecting overall flexibility potential. Incorporating more detailed charging

profiles and a wider range of vehicle characteristics would enhance the robustness of

flexibility models.

While this thesis clearly demonstrates the value of EV flexibility and its potential

system-level benefits, the exact monetary outcomes—such as cost savings or percentage

reductions—are influenced by the specific input data and boundary conditions consid-

ered in the analysis.
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Beyond modeling constraints, this thesis primarily focuses on spot markets for lever-

aging EV flexibility while trading. However, additional revenue streams remain un-

derexplored. EVs could play a valuable role in reserve markets, where fast-response

flexibility is highly valued. Integrating EV flexibility into ancillary services, such as

frequency regulation and balancing markets, could enhance economic returns for en-

ergy suppliers while improving grid stability. Future research should investigate multi-

market optimization strategies to maximize the value of EV flexibility across different

market structures.

Another promising avenue for future exploration is vehicle-to-grid (V2G) technology,

which enables EVs to supply electricity back to the grid. V2G has the potential to en-

hance grid stability further and create additional revenue opportunities for EV owners.

However, its adoption depends on user willingness to allow battery discharge, con-

cerns over battery degradation, and supportive regulatory frameworks. Future studies

should explore strategies to integrate V2G into market mechanisms while addressing

technical and behavioral challenges.

Despite these limitations, the findings in this thesis highlight the substantial flexibil-

ity potential of EVs. Addressing these challenges through improved data integration,

refined modeling approaches, expanded market participation, and adopting V2G tech-

nology will further enhance the role of EV flexibility in future power systems.
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5.3 Recognition of previous and related work

The foundational work of my colleagues in the FINATRAX group and previous insti-

tutions, along with collaborations with the University of Hohenheim/Forschungszen-

trum für Informationsmanagement, played a crucial role in shaping my research. Their

prior investigations provided essential insights and methodologies, directly influencing

my research questions, models, and analyses. Their work on behavioral interventions,

data sharing in smart charging, and the monetary value of flexibility in electricity mar-

kets laid a strong theoretical and empirical foundation for my studies.

Research from studies (Bauer et al., 2017; Drasch et al., 2020; Fridgen et al., 2016a; Frid-

gen et al., 2020; Fridgen et al., 2021a; Heffron et al., 2020; Keller et al., 2020; Körner et

al., 2019; Lindner et al., 2022; Rieger et al., 2016; Roesch et al., 2019; Wederhake et al.,

2022) provided key insights into designing programs to harness demand-side flexibility

to enhance power system reliability and value for stakeholders. These studies provided

a strong conceptual and methodological basis for identifying, structuring, and opera-

tionalizing flexibility across different use cases. Building on this foundation, my thesis

applies these concepts to EV smart charging, developing models and frameworks to

leverage EV flexibility for reducing energy suppliers’ portfolio costs.

User preferences play a critical role in developing effective smart charging solutions.

Behavioral studies, particularly Graf et al. (2020) and Wagon et al. (2024), helped me

understand how interventions such as gamification and financial incentives can moti-

vate more sustainable charging behaviors. These insights shaped the behavioral focus

of RP1 and RP2, where I explored user motivations and their willingness to provide

flexibility. Similarly, the work of Fridgen et al. (2022) and Fridgen et al. (2014) helped

identify which user data are most relevant for smart charging. This influenced the de-

sign of a privacy and data-sharing survey in RP3, which analyzed user willingness to

share data for smart charging applications.

Additional studies (Bahmani et al., 2023; Fridgen et al., 2017; Schott et al., 2019; Thim-

mel et al., 2019) helped me understand the key information a flexibility model should

provide while quantifying the flexibility of an asset to serve as a dependable grid as-

set. These insights supported the development of a flexibility model that quantifies EV
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flexibility, which I used to estimate potential and support scheduling strategies in RP4,

RP5, and RP6.

Further prior research (Fridgen et al., 2016b; Fridgen et al., 2014; Fridgen et al., 2021b;

Haupt et al., 2020; Pavić et al., 2018b; Pavić et al., 2020) on EV scheduling from both

user and system operators/utilities perspectives helped me understand the key con-

siderations and trade-offs involved in developing optimization models. These insights

guided the design of my optimization models in RP4-RP7, enabling me to balance user

needs with the operational goals of energy suppliers.

Another crucial aspect of my research involved developing strategies to harness EV

flexibility in electricity markets, particularly by modeling uncertainties arising from EV

usage and fluctuating market prices. The studies by Pavić et al. (2023), Pavić et al. (2015),

Pavić et al. (2018a), and Pavić et al. (2021) provided a solid theoretical and methodologi-

cal foundation for addressing these uncertainties. Their contributions guided the devel-

opment of optimization models in RP4, RP5, RP6, and RP7, where I explored strategies

to mitigate market price uncertainty (RP4, RP5) and user behavior uncertainty (RP5,

RP6, and RP7).

Overall, the contributions of these previous studies provided a strong interdisciplinary

foundation for this thesis. By building upon this foundational work, I developed novel

perspectives and methodologies, furthering the understanding of how EV flexibility can

be optimized to benefit both users and energy suppliers.
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• Ivan Pavić: Conceptualization, Writing – review & editing, Supervision.

• Sergio Potenciano Menci: Writing – review & editing, Supervision.

79



Chapter A. Appendix

As a joint primary author, I was part of the development of the initial concept and

conducted the literature review. In addition, I wrote key portions of the code for the

simulations and was responsible for procuring the mobility data used in the analysis. I

also authored most of the sections and contributed to reviewing and refining the entire

paper.

RP7 - Electric Vehicle Scheduling Strategies to Reduce the Imbalances

due to User Uncertainties

• Raviteja Chemudupaty: Conceptualization, Methodology, Data curation, Writing

– original draft, Software, Writing – review & editing, Visualization.
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Abstract  
Electric vehicles (EVs) are an important cornerstone to achieve transport decarbonization. Still, 
simultaneous charging of EVs when home charging increases peak demand, especially during evenings. 
Smart charging allows optimal distribution of load, thus preventing peak loads. Nevertheless, this 
incorporates certain risks for the EV user, e.g., unavailability of EVs for unplanned events. This might 
lead to a lack of user acceptance. This paper focuses on specific incentives and nudges, motivating users 
to adopt smart charging. We conducted an integrative literature review, bringing together literature 
from different areas. Possible incentives and nudges are monetary incentives, feedback, gamification, 
or smart charging as a default-setting. We conducted three focus groups with 13 EV users in 
Luxembourg to get first insights into which of those incentives and nudges they prefer. Preliminary 
results indicate that incentives and nudges should be individualized. In the future, we would use these 
first insights to develop a large-scale survey. 
 
Keywords: Smart charging, incentives, nudges, user behaviour. 

1 Introduction 
A central step towards mitigating climate change includes the transformation of society towards carbon 
neutrality. Thereby, particularly the decarbonization of the transport sector is paramount, as this sector 
accounts for a quarter of the EU’s total greenhouse gas emissions (European Environment Agency, 
2021). Out of the many solutions to reduce the emissions associated with the transport sector, replacing 
the internal combustion engine with an electric drivetrain seems to be the most viable one (Wentland, 
2016): When charged with renewable energy, the emissions of electric vehicle (EV) usage are almost 
negligible. Thus, electric vehicles (EVs) represent a key lever for putting the brakes on carbon emissions 
(Huber et al., 2019a). In that notion, favorable conditions such as EV-friendly policies, efficient 
drivetrains, or reduction in battery costs have rapidly increased the EV market penetration. This 
development is expected to accelerate in the forthcoming years (International Energy Agency, 2020). 
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Still, even if EVs address aspects of the climate crisis, the rapid electrification of the transport sector 
causes a rise in electricity demand. The situation further exacerbates when EVs charge simultaneously, 
thus causing a significant strain on the power grid (Huber et al., 2019b). This caveat could be tackled 
either from the supply side or the demand side: First, solutions associated with the supply side imply an 
increase in conventional generation capacity to meet the rising peak demand due to EV charging. This 
is quite expensive and incompatible with the renewable energy expansion goals (Amin et al., 2020). 
Second, solutions associated with the demand side refer to the control of EV charging by using demand 
response programs (Ireshika et al., 2019). Within such demand response programs, the EV load is 
controlled using indirect and direct load control strategies. In an indirect load control strategy, various 
dynamic pricing schemes are designed that positively correlate with peak demand, and users adapt their 
charging schedules to minimize their total cost (Amin et al., 2020). In a direct load control mechanism, 
the electricity provider alters the load based on the requirements of power systems, albeit adhering to 
the user requirements (Eid et al., 2016). The adaption of EV charge cycles to the conditions of power 
systems and the user requirements is known as ‘Smart Charging’ (IRENA, 2019).  
Several studies have already investigated the economic feasibility of smart charging (e.g., Alghamdi et 
al., 2021; Eldeeb et al., 2018; Rashidizadeh-Kermani et al., 2018; van der Meer et al., 2018). All of them 
optimally scheduled the EV charging to maximize the profits of energy suppliers by considering the 
electricity market prices. Further studies ascertain that smart charging is feasible from both an economic 
and a technical perspective (Deilami et al., 2011; Franco et al., 2015; Richardson, 2011). These works 
developed an optimal solution for the efficient integration of EVs into the existing distribution systems. 
However, the acceptance of EV users, which is pivotal in large-scale adoption of smart charging, was 
rarely discussed in the studies mentioned above. This is somewhat counterintuitive since incentivizing 
the users is one of the most obvious ways to promote smart charging usage among EV users.  
These studies on incentivizing the users to use smart charging mostly investigate the impact of monetary 
incentives on EV users’ smart charging acceptance but less on the influence of non-monetary options. 
For example, Ensslen et al., (2018) developed a ‘load-shifting-incentivizing’ (dynamic) tariff which 
benefits both users and the energy suppliers. A smart charging trial in the UK found out that by 
implementing dynamic tariffs, most EV users shifted their charging events to off-peak periods 
(Greenflux, 2020). However, a recent report from the UK suggests that “over a quarter of EV users 
charge their vehicles during peak hours despite the cost benefits and carbon impacts” (Grundy, 2021, 
p.1). These contradictory results imply that monetary incentives alone might not suffice for large-scale 
adoption of smart charging (Will and Schuller, 2016). This ascertains that while developing an incentive 
scheme and strategies for smart charging, nudges should also be considered. Thaler and Sunstein (2008) 
define nudges as “any aspect of the choice architecture that alters people’s behavior predictably without 
forbidding any options or significantly changing their economic incentives” (p.6). Incentives in contrast, 
refer to monetary benefits which arise from the choice of the desired alternative. Incentives and nudges 
could help ensure that smart charging is attractive to users and that they are willing to accept a certain 
degree of discomfort. Our research in progress study aims to better understand the behavioral component 
in smart charging systems and, specifically, the role of incentives and nudges for smart charging. We 
thus formulate two research questions: 
RQ1: Which incentives and nudges in the context of smart charging are regarded as most attractive 
regarding user perception? 
RQ2: What is the user’s motivation for regarding certain incentives and nudges as attractive?  
Figure 1 depicts an overview of our approach to answer these research questions. We first conducted an 
integrative literature review in different streams of research. Based on the literature review results, we 
identified incentives and nudges, which could be important from a smart charging perspective. We 
conducted three focus groups with 13 EV users in Luxembourg to get first insights into how attractive 
they perceive different incentives and nudges. 
Preliminary results in this research in progress paper are that different motivations for EV usage seem 
to influence which incentives and nudges EV users prefer. The three motivations were ecological, 
economic, and technological. We will analyze focus group material using qualitative content analysis 
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(QCA) as a method. We will conduct a large-scale survey in a follow-up full paper to validate and 
determine which factors affect the perception of incentives and nudges. 
 

 
Figure 1. Research Approach. 

2 Integrative literature review 
Previous research has already described the impact of incentives and nudges on smart charging adoption 
to a small degree. Still, the number of those studies is limited. Therefore, we conducted a first integrative 
literature review, bringing together smart charging, energy saving and information system (IS) 
intersecting sustainability literature (e.g., Green IS, ICT4D). As a lens for our methodological 
proceeding, we used the guidelines for integrative literature reviews (Torraco, 2016). We searched in 
the SCOPUS and Google scholar data bases with combinations of search strings of two categories (Table 
1). The search strings of the first category refer to smart charging and related concepts. Related concepts 
are similar to smart charging as they have the same underlying principle where the energy consumption 
is adapted based on the user requirements (e.g., residential). We also consider studies on energy savings. 
These are mostly referred to in the existing literature on incentives and nudges for smart charging (e.g., 
Huber et al., 2019b). The search strings of the second category are related to incentives and nudges.  
Our search comprised two steps: The first step was structured with the aim to find as many relevant 
papers as possible about incentives and nudges for smart charging. We searched with the search strings 
of the first category (e.g., “smart charging”) and combined them with those of the second category (e.g., 
"incentive"). We looked further into the identified papers using the forward-backward search to find 
more relevant papers. We also included papers focusing on incentives and nudges for vehicle to grid 
technology, a further development of smart charging technology that allows the power flow from the 
EV batteries to the power grid. In the second step, we focused on the papers that designed incentives 
and nudges to other similar concepts that could be theoretically transferred to smart charging. We 
combined the search strings of the first category (e.g., “EV adoption”) with those of the second category 
(e.g., “nudge”). As there is a lot of literature on this in related fields, we aimed to get an overview of the 
literature and not cover the whole literature. Thus, we followed a narrative approach. In our team, we 
discussed and evaluated the applicability of incentives and nudges from other sectors to smart charging. 
The combination of the structured and narrative approach should yield a broad understanding on which 
incentives and nudges exist and are potentially effective for smart charging. 
  

 Category 1  Category 2 

Step 1 
Structured 
approach 

“smart charging” OR “flexible charging” AND “incentive” OR nudge” OR 
“behavior change” OR “consumer 
perspective” OR “user perspective” 
OR “motivation” OR “persuasion” 

Step 1 
Narrative 
approach 

“load shift” OR “demand shift” OR “demand side 
management” OR “demand response” OR “EV 
adoption” OR “EV acceptance” OR “energy 
saving” OR “energy-efficient” OR “smart home 
management” OR “green information system” 

AND 

Table 1.  Search strings for the integrative literature review in step 1 and step 2. 
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Inclusion criteria for papers were the following: Papers needed to be in English or German and should 
state or measure the effect of incentives and nudges. In the first step, to find as much smart charging 
incentive literature as possible, we considered empirical papers, theoretical papers, conference papers, 
journal papers, doctoral theses, and university project reviews. In the second step, as fields related to 
smart charging were not the core focus of the paper, we mainly looked at the reviews and meta-analyses. 
In the first step, we found 12 papers1. In the second step, we selected 23 papers2. We looked more closely 
at those 35 papers. The results of the integrative literature review are that monetary incentives and the 
nudges framing, feedback, gamification, or default-setting can motivate people to use smart charging. 
In the following, we summarize this literature and provide details on related research. 
First, monetary incentives in the context of smart charging, often refer to a discount on every kWh or 
the monthly base prize (Will and Schuller, 2016). Studies come to different conclusions regarding the 
effect of incentives and nudges on the use of smart charging. In the study of Schmalfuss et al., 
participants who tested smart charging for five months named monetary incentives most frequently as 
benefit for smart charging. Handke et al. (2012) claim that users need monetary incentives to accept 
smart charging. However, according to the survey results by Will and Schuller (2016), monetary 
incentives do not affect the acceptance of smart charging. Paetz et al. (2012b) tested a time-shifted 
charging concept for the charging of electric vehicles with 14 participants. The time-shifted charging 
mechanism allows users to adapt their charging schedule based on their requirements. For the 
participants of this study, however, monetary incentives were not the reason for time-shifted charging, 
but environmental aspects. The authors also doubt that time-shifted charging can work completely 
without monetary incentives. 
Also, in the energy-saving literature, the effect of monetary incentives on energy-saving behavior is 
mixed. Some studies claim or find a positive effect (Alasseri et al., 2020; Azarova et al., 2020; Dütschke 
et al., 2013; Ito et al., 2018; Spandagos et al., 2021). However, a meta-analysis, which included 52 
empirical studies, found a negative effect of monetary incentives on energy-saving behavior: Cost-
saving information led even to higher energy consumption (Buckley, 2020). Despite disparate results, 
in the context of smart charging, monetary incentives may have a certain impact. According to 
Schmalfuß et al., (2015) and Tamis et al. (2018), EV users expect financial compensation for making 
their flexibility available to the energy provider. In summary, monetary incentives are potentially 
promising for smart charging. Previous smart charging studies mostly look at the perception of monetary 
incentives. Future studies on monetary incentives should also examine the impact of incentives on 
behavior change. But in practice, as monetary incentives are not effective for everyone, they should not 
be the only incentive (Tamis et al., 2018); nudges should also be considered. 
Framing can be regarded as a nudge and “is the conscious formulation and description of the decision 
situation to encourage people to behave in a certain way” (Huber, 2020, p. 87). In the context of smart 
charging, this could mean using text messages to influence the decision-making situation so that EV 
users are more likely to use smart charging. Framing messages can be shown in an application before 
the user decides whether to use smart charging or not. In the study by Huber et al. (2019a), only cost 
frames were effective, environmental frames had no effect and social frames led even to a lower 
intention to use smart charging. Before charging, cost frames inform EV users to save money through 
smart charging (Huber et al., 2019b). Environmental frames make clear to the EV user that smart 
charging contributes to environmental protection (Huber et al., 2019b). Social frames show the user that 
the network is shared with other users and that everyone benefits from using smart charging (Huber et 

 
1 Selected papers in step 1: Antunes et al., 2018; Delmonte et al., 2020; Geske, 2014; Handke et al., 2012; Huber et al., 2019a; 
Huber et al., 2019b; Huber & Weinhardt, 2018; Jochem et al., 2012; Paetz et al., 2012b; Schmalfuß et al., 2015; Tamis et al., 
2018; Will & Schuller, 2016. 
2 Selected papers in step 2: Alasseri et al., 2020; Allcott & Rogers, 2014; Azarova et al., 2020; Broman Toft et al., 2014; 
Buckley, 2020; Chatzigeorgiou & Andreou, 2021; Delmas et al., 2013; Dütschke et al., 2013; Frenzel et al., 2015; Günther et 
al., 2020; Horne & Kennedy, 2017; Ito et al., 2018; Johnson et al., 2017; Ming et al., 2020; Momsen & Stoerk, 2014; Morganti 
et al., 2017; Paetz et al., 2012a; Paetz et al., 2012c; Schaule & Meinzer, 2020; Soomro et al., 2021; Spandagos et al., 2021; 
Tiefenbeck et al., 2019; Vetter & Kutzner, 2016. 
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al., 2019b). In the energy-saving literature, Schaule and Meinzer (2020) had similar results: Cost frames 
led to an increased willingness to shift the run times of dishwashers and washing machines, and 
environmental frames showed no effect. “Social framing even showed a slight decrease in the readiness 
to shift run times for dishwashers” (Schaule and Meinzer, 2020, p. 1).  
To summarize, especially cost framing messages seem to be successful. However, researchers should 
further investigate the effect of framing messages on the smart charging decision. Here, studies should 
investigate the effect of framing messages on real EV users' actual smart charging behavior. 
Third, Feedback could be a significant nudge for smart charging. It can be given on the financial 
consequences or the respective carbon footprint of a user’s charging behavior (Huber and Weinhardt, 
2018). However, according to the meta-analysis of Delmas et al. (2013), feedback on cost savings in 
terms of energy savings leads to an increase in energy consumption and not a decrease (Delmas et al., 
2013). Still, especially feedback on environmental contribution could be significant because eco-values, 
as well as ecological motives, are considered the main motivation for smart charging and the integration 
of renewable energy sources as the main acceptance factor (Frenzel et al., 2015; Geske, 2014; Huber et 
al., 2019a; Jochem et al., 2012; Paetz et al., 2012c; Schmalfuß et al., 2015; Tamis et al., 2018; Will and 
Schuller, 2016). Feedback on an environmental contribution would show users their contribution to 
environmental protection and motivate them to continue using smart charging. Schmalfuß et al. (2015) 
show in their survey study, for example, that EV users “are motivated by the feeling of doing something 
good” (p. 9) to use smart charging. The way feedback is given could be, e.g., historical, real-time, or 
socially comparative. Regarding the energy-saving literature, Chatzigeorgiou and Andreou (2021) 
regard historical feedback as a standard for feedback on energy consumption on mobile devices. 
Research results show that comparative social feedback and real-time feedback are particularly 
effective. Regarding comparative social feedback, US energy provider OPOWER received information 
every month about how their energy consumption varies compared to their neighbors (Allcott and 
Rogers, 2014). Even after the feedback reports were stopped for two years, there was an energy saving 
of 10-20% compared to when the feedback reports were received. According to Allcott and Rogers 
(2014), comparative social feedback could also be effective in the long term. Besides comparisons with 
other consumers, artificial norms can also be successful if the target group feels addressed (Soomro et 
al., 2021), e.g., encouraging hotel guests to reuse their towels. Concerning real-time feedback, Buckley 
(2020) concludes in his meta-analysis that real-time feedback is one of the most promising ways to give 
feedback. To give an example, hotel guests who “received real-time feedback on their energy 
consumption while showering used 11.4% (0.21kWh) less energy than guests in a control group“ 
(Tiefenbeck et al., 2019, p.1). In addition to the distinction between historical, real-time, and social 
comparative feedback, feedback can be personalized or, for example, reflect the behavioral tendency. 
This is where personalized feedback seems most effective (Buckley, 2020; Delmas et al., 2013). 
Fourth, gamification is “the use of game design elements in non-game contexts” (Deterding et al., 2011, 
p.9), e.g., tips, virtual currency, or badges (AlSkaif et al., 2018). It can be regarded as a form of feedback 
(Chatzigeorgiou and Andreou, 2021). The demarcations between gamification and feedback are blurred. 
Feedback and gamification differ, however, in their aims. Feedback aims to get the users to reflect on 
their behaviors. Gamification aims to engage the user and to enhance their activity and retention 
(Deterding et al., 2011). Game elements “vary widely in terms of the type of games, target, and features 
that might be appealing and motivating” (Morganti et al., 2017, p. 101). AlSkaif et al. (2018) classified 
the most important game elements for residential energy applications into the following categories: 
Information provision (e.g., tips), rewarding system (e.g., virtual currency), social connection (e.g., 
energy community), performance status (e.g., badges) and user interface (e.g., progress bar). 
There is a lack of studies investigating the effect of gamification on the smart charging behavior of EV 
users. Still, in practice, current smart charging applications use numerous gamification elements (e.g., 
ev.energy, 2020). With regard to energy-saving behavior, studies find a positive effect of gamification 
elements (Chatzigeorgiou and Andreou, 2021; Johnson et al., 2017; Morganti et al., 2017). Gamification 
elements (e.g., personalized goals, feedback, social comparison, prizes, lottery) can enhance energy 
saving behavior and eco-driving (Günther et al., 2020; Ming et al., 2020). Regarding mobile energy 
applications, a limited number of studies examine the effect of gamification on behavior change (Beck 
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et al., 2019). Also, existing studies often only consider individual gamification elements in isolation or 
differ in the combination of gamification elements they consider, e.g., compare the study of Ming et al. 
(2020) and Günther et al. (2020). It, therefore, seems difficult to describe the effect of the gamification 
elements on behavior change. However, some authors describe individual gamification elements further 
in literature and the effect on behavior: According to Buckley (2020), e.g. tips fall into the information 
provision category are very effective if individualized. According to their meta-analysis, general tips on 
saving energy even led to an increase in consumption. In general, the core principle behind tips is like 
feedback and framing. However, tips solely focus on improving user performance based on their 
behavioral patterns. Concerning social connection, Horne and Kennedy (2017) emphasize the role of 
social norms, which can be established via new technologies and can influence energy-related behavior. 
Peer pressure can be built up online and can impact the behavior of users (Spandagos et al., 2021).  
Fifth, to set smart charging as a default is recommended by the UK Energy Task Force (Energy Task 
Force, 2019) and Delmonte et al. (2020), as this reduces user interaction with the smart charging system. 
In other areas, setting a desirable option as the default has proven effective, e.g., for organ donations 
(Shafir, 2013). Regarding the choice of environmentally friendly energy contracts, to set a contract with 
energy from renewables as the default was the only incentive that had an impact on whether people 
chose a contract where the energy came from renewable sources (Momsen and Stoerk, 2014): The 
default setting increased the proportion of those who opted for the green contract by 44.6%. In the study 
by Vetter and Kutzner (2016), the default setting also influenced whether a green contract was selected: 
Environmental attitudes did not influence the decision. For smart grids, the use of an opt-out frame leads 
to a significantly higher participation rate than the opt-in frame (Broman Toft et al., 2014). However, to 
make smart charging the default, smart meters and wall boxes should first be installed. If these 
conditions are met in the future, smart charging as a default could be possible. Still, EV users might just 
use it if there are no additional costs for purchasing infrastructure.  
According to initial research results, different groups of people perceive incentives and nudges as 
differently attractive. Cultural and demographic factors and different motivations (e.g., ecological versus 
economic) influence, for example, how different they are perceived. Regarding cultural differences, e.g., 
monetary incentives are perceived as more attractive in Portugal than in the Netherlands; in contrast, 
social comparison is perceived as more negative in Portugal than in the Netherlands (Antunes et al., 
2018). Besides cultural factors, different motivations for smart charging could also influence how 
attractive incentives and nudges are for different groups of EV users. Bailey and Axsen (2015) 
distinguish between EV users who could be motivated by cost-saving and those motivated by using 
electricity from renewable energy sources. In terms of how different consumers respond to demand 
response, Sharda et al. (2021) describe consumers based on the literature using four dimensions: 
Selfishness, importance of price, eco consumption, and demand responsiveness. 
Concerning the price dimension, Sharda et al. (2021) distinguish between price optimizers (price 
prioritized over comfort), price-sensitive (tradeoff between comfort and price), and price-insensitive 
consumers (comfort prioritized over price). Regarding eco consumption, they distinguish between eco 
consumer (minimum power demand from the grid), the average consumer (average power demand from 
the grid), and waste consumer (comfort prioritized over price). Before incentives and nudges are applied, 
researchers need to conduct consumer research to investigate which incentives and nudges are 
appropriate for the respective target group. They “must fit the context and the targeted user group, as 
otherwise, they can backfire and even have adverse effects” (Huber, 2020, p. 68). 

3 Focus groups 
Focus groups are a well-established method to get customers’ and users’ perspectives on new 
technologies or products (Paetz et al., 2012a). In that, focus groups allow a deep investigation of reasons 
underlying a product evaluation and thus go far beyond superficial responses (Mert and Tritthart, 2009). 
Participants get the possibility to „ask questions and also to stimulate each other in evoking associations 
and perceptions to discuss them as a group” (Paetz et al., 2012a, p. 28).  
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To analyze the feedback and input received in the focus group, we later plan to use qualitative content 
analysis (QCA) as a deductive and an inductive approach to analyze data (Cho and Lee, 2014): We will 
first deductively develop categories according to which the data will be coded. Afterward, we will derive 
further categories with the help of an inductive procedure. 

3.1 Conduct of focus groups 

The primary goal of our focus groups was to perceive the users’ preferences for different incentives and 
nudges in the context of EV charging and understand the factors driving these preferences. We 
conducted three focus groups (n1 = 4, n2 = 4, and n3 = 5) in Luxembourg with 13 EV users (2 female, 11 
male). We selected the EV users who drove their EV for at least several months. Participation was 
voluntary. All the focus groups were recorded and transcribed.  
We conducted the focus groups onsite with a predefined agenda: After a short introduction, this agenda 
contained three central building blocks lasting 30, 15, and 90 minutes. First, we asked the participants 
to share their EV usage patterns as it also might influence the perceived attractiveness of incentives. 
Second, we described the concept of smart charging. We illustrated the importance of customer 
flexibility, which served as a transition for the third part, “discussion about incentives.” Third, we 
selected the incentives and nudges based on the results of the integrative literature review. We discussed 
the five incentive and nudge groups monetary incentives, framing, feedback, gamification, and smart 
charging as a default with the participants. Regarding gamification, we discussed four gamification 
elements: badges, credit points, tips, and energy communities. Each gamification element reflects a 
category of AlSkaif et al. (2018). We created a presentation containing a brief description of the 
incentives and nudges and discussion questions to guide the discussion. Respective discussion questions 
were to deduce the rationale behind the participants’ interest/disinterest towards a specific incentive or 
nudge. After the discussion, we asked participants to rank first the five incentives and nudges and 
second, the four gamification elements according to attractiveness using a survey. 

4 Preliminary results and discussion 

In the following, we provide some preliminary results of the focus groups and the participants’ ranking 
of incentives and nudges. Regarding the first research question, “Which incentives and nudges in the 
context of smart charging are regarded as most attractive regarding user perception?”, the rankings 
provide the first results (see table 2). For example, out of 13 participants, five participants ranked 
monetary incentives as first. Overall, the participants regarded monetary incentives and smart charging 
as default as most attractive. Concerning gamification, they considered tips as most attractive. 
 

Incentives/ Nudges Ranking results 
Monetary incentives ranked 1st (n = 5), 2nd (n = 1), 3rd (n = 1), 4th (n = 2), 5th (n = 1) 
Smart charging as default ranked 1st (n = 5), 2nd (n = 4), 3rd (n = 3), 4th (n = 0), 5th (n = 1) 
Feedback ranked 1st (n = 0), 2nd (n = 3), 3rd (n = 4), 4th (n = 4), 5th (n = 0) 
Framing Messages ranked 1st (n = 1), 2nd (n = 2), 3rd (n = 2), 4th (n = 2), 5th (n = 4) 
Gamification ranked 1st (n = 0), 2nd (n = 1), 3rd (n = 2), 4th (n = 3), 5th (n = 5) 

1. Tips ranked 1st (n = 6), 2nd (n = 2), 3rd (n = 2), 4th (n = 2) 
2. Credit points ranked 1st (n = 5), 2nd (n = 4), 3rd (n = 3), 4th (n = 0) 
3. Energy communities ranked 1st (n = 1), 2nd (n = 3), 3rd (n = 4), 4th (n = 4) 
4. Badges ranked 1st (n = 0), 2nd (n = 3), 3rd (n = 3), 4th (n = 6) 

Table 2. Ranking perceived attractiveness of incentives and nudges. 

The ranking of the incentives and nudges was mostly consistent with the participants’ answers during 
the focus group discussions. About the focus group discussions, we want to highlight two striking 
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features. First, the participants, in general, were concerned about information overload. Thus, in the 
context of feedback, framing, and tips, they wanted to receive only a limited number of messages on 
their smartphone, e.g., one message per week or just when they open their smart charging application. 
Second, participants largely rejected most gamification elements in the discussion. However, 
participants in all three focus groups considered gamification elements might be attractive for the 
younger generation.  
Regarding the second research question, “What is the user’s motivation for regarding certain incentives 
and nudges as attractive?”, participants’ motivation seemed to be related to their motivation to purchase 
an EV. Three motivations for purchasing an EV were ecological, economic, and technological. 
Participants with an ecological motivation had their EV for ideological reasons, to contribute to 
environmental protection. They were mainly interested in nudges indicating their contribution to 
environmental protection (e.g., feedback, framing). Participants with an economic motivation owned 
their EV mainly because their company covered most of their purchase costs and partly charged their 
EV at work. They had a higher preference for monetary incentives. Participants with technological 
motivation purchased EVs for their driving experience. It was not clear which incentives or nudges they 
preferred. 
As the three motivations seem to be related to different incentives and nudges, it might be useful to 
incentivize and nudge EV users differently. Analog to different contexts, individualization approaches 
foster an effective EV user targeting for smart charging. Besides different underlying motivations, also 
socioeconomic characteristics (e.g., age) may influence the perception of incentives and nudges. 
The results of the integrative literature review inform researchers and practitioners which incentives and 
nudges can potentially be effective. The review is comprehensive as we looked at the incentives and 
nudges literature for smart charging and other relevant sectors. A limitation of the integrative literature 
review is that we only used two data bases. Future research should extend the literature review and 
include data bases as AIS E-library, IEE Xplore, ScienceDirect and SAGE Journals.  
The focus groups helped to get an insight into which incentives and nudges are attractive for EV users. 
One limitation of the focus groups is that the sample size of 13 is small, and therefore its results cannot 
be generalized. This is the reason why after analyzing the focus group transcripts, we want to design a 
large-scale survey based on the focus group’s results. One main goal of this large-scale survey is to 
obtain generalizable results on users’ perceptions of different incentives and nudges. We aim at 
investigating which incentives and nudges are attractive for different EV users and which factors (age, 
nationality, income, education level, occupation, ecological, economic, and technological motivation) 
influence individuals’ perception. Incentives and nudges and the above-mentioned factors are 
independent variables. Using multiple regression, we then want to investigate the influence of these 
independent variables on the perception of incentives and nudges. Here, we want to investigate how 
both EV users and non-EV users perceive the incentives and nudges and compare their perceptions—
the rationale behind including non-EV users as they could serve as potential EV users. In addition, 
however, we want to test in an experiment within the framework of the survey which incentives and 
nudges are effective.  
The results will help practitioners develop individualized incentive schemes in different contexts (e.g., 
different countries). In the academic field, we want to initiate research that further investigates the 
behavioral aspects of smart charging. Such research is highly relevant, as smart charging cannot be 
established without the acceptance of EV users. 
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A B S T R A C T

The growing adoption of Electric vehicles (EVs) puts pressure on the power grid, and implement-
ing smart solutions can ease this pressure. Smart charging at home is a solution where users
offer flexibility in their charging schedule, which energy suppliers and/or other aggregators
can exploit by charging during times of low demand and low market prices. However, giving
charging control to the energy provider can concern EV users, particularly about driving range,
and give a sense of loss of control. We conducted an experimental online survey with EV users
(n = 289), examining the effect and perception of different behavioral interventions to improve
flexibility provision. We found that all monetary incentives (high, low, credit points) resulted
in higher flexibility, while environmental framing, feedback and badges, default-setting, and
battery-related tips had no effect. The perception of all behavioral interventions did not correlate
significantly with the flexibility offered for any of the interventions.

1. Introduction

Many countries worldwide tackle climate change by aiming to reduce their greenhouse gas emissions (IEA, 2022). One relevant
goal is to electrify the transportation sector, where burning fossil fuels contributes a large portion of greenhouse gas emissions.
Here, electric vehicles (EVs) have the potential to make a significant impact (IEA, 2022). EV uptake is accelerated by EV-friendly
regulations and improved EV range, especially in industrialized countries. The International Energy Agency projects that by 2030,
EVs will account for 30% of all vehicle sales globally (IEA, 2022).

This tremendous rise in EVs increases electricity demand. When EVs charge simultaneously, a significant strain is imposed on
the power grid (Huber et al., 2019b). Smart charging can help alleviate this issue. Smart charging involves adapting the charging
schedule of EVs to both the conditions of the power system and the needs of the EV users (IRENA, 2019). This can drastically
reduce the need for expanding grid capacity at both distribution and transmission system levels. As two examples, studies focused
on Germany (Schmidt and Busse, 2013) and the United Kingdom (Greenflux, 2020) have illustrated that using smart charging
algorithms can move charging to low demand periods and thus mitigate demand peaks.

To make the charging process smart, the EV user must provide charging flexibility to the energy provider. In the case of home
charging, which is our focus, this includes leaving the EV plugged in while it is parked, selecting a low power for charging, and a low
final state of charge (SOC). The more flexibility the EV user offers, the more the energy provider can charge the EV during periods of
no grid congestion. Additional relevant benefits could also exist, such as when charging during periods with low electricity market
prices and high renewable energy sources (RES) generation. For the EV user to provide flexibility means relinquishing control over
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when exactly the EV is charged. This lack of control and/or the possibility of having insufficient battery charge for the next trip can
concern EV users (Delmonte et al., 2020; Bailey and Axsen, 2015; Libertson, 2022) who may thus be hesitant to provide flexibility.

Encouraging EV users to embrace flexibility (Kubli, 2022), despite any potential risks or discomfort is important. Flexibility
provision can be achieved through monetary incentives, nudges and tips (Schuitema et al., 2017; Huber et al., 2019b,a; Huber
and Weinhardt, 2018). Incentives are monetary benefits from choosing the desired alternative. In contrast, nudges focus on non-
economic benefits. They are ‘‘any aspect of the choice architecture that alters people’s behavior predictably without forbidding any
options or significantly changing their economic incentives’’ (Thaler and Sunstein, 2008, p.6). It is thus a way to influence people’s
behavior without issuing prohibitions (e.g., feedback messages on previous energy consumption are supposed to influence future
consumption). By tips, we refer to rational advice based on which users can make an informed decision (e.g. tips on what battery
percentage is optimal for charging the EV).

Many studies have looked at incentives and/or nudges for smart charging decisions (Will and Schuller, 2016; Huber et al., 2019a;
Huber and Weinhardt, 2018; Huber et al., 2019b; Kacperski and Kutzner, 2020; Kramer and Petzoldt, 2022; Kacperski et al., 2022;
Ensslen et al., 2018; Verbong et al., 2013; Wong et al., 2023). These studies use different study designs to investigate the effect
of incentives and nudges. They often do not consider several incentives and nudges in their study designs, making it difficult to
compare their effectiveness.

Moreover, previous studies on these interventions mainly assess either the perception or efficacy, but not both. Studies also did
not explicitly distinguish between perception and effectiveness. In our study, ‘‘perception’’ refers to how positively or negatively
people assess interventions. With ‘‘effectiveness’’, we refer to its effect on people’s behavior, in this case, flexibility provision.
Effectiveness is typically assessed through experimental designs or real-life observations (Huber et al., 2019a; Kacperski et al., 2022).
Perception, in contrast, is commonly measured through qualitative studies or those that do not employ experimental designs (Huber
et al., 2019b; Delmonte et al., 2020). As the measurement can influence the outcome, we distinguish between them.

The link between the perception and effectiveness of incentives, nudges, and tips is especially relevant in practice: If incentives,
nudges, and tips are viewed favorably but have no actual effect, there is no point in deploying them. For water saving, Tijs et al.
(2017) point to a difference: Although people perceived the monetary appeal as most attractive, the environmental appeal was more
effective in water saving while showering. Few studies in the smart charging domain look at both perception and effectiveness. Thus,
it is uncertain whether the effectiveness of incentives, nudges, and tips is directly related to a positive perception of them.

In an experimental survey design, we investigate the effect of different behavioral interventions, (i) monetary incentives, (ii)
nudges, and (iii) tips on flexibility decisions in the context of charging. We aim to identify which incentives, nudges, and tips
are most effective in fostering smart charging. These results are particularly interesting for practitioners who aim for (increased)
flexibility provision via home smart charging. Also, we investigate for which incentives, nudges, and tips a positive perception is
related to a higher flexibility provision. These findings are of particular methodological relevance for consumer researchers designing
studies to evaluate the impact of these behavioral interventions. Our research questions are as follows:

RQ1: Which incentives, nudges, and tips lead to a higher flexibility provision in electric vehicle charging?
RQ2: Is a positive perception of incentives, nudges, and tips associated with increased flexibility provision?
In the subsequent section, we discuss the literature surrounding different incentives, nudges, and tips for smart charging and

derive our hypotheses. In Section 3, we describe our survey design based on the results of focus groups and the recruitment procedure
for participants. In the results Section 4, we analyze if incentives, nudges, and tips lead to a higher flexibility provision and whether
this is linked to their perception. This Section also contains an exploratory analysis of smart charging literacy and the minimum
required state of charge. Section 5 discusses the survey results, illustrates practical and theoretical implications, and points out
limitations.

2. Theoretical background and hypothesis development

So far, academic literature and real-world mobile applications have mainly focused on monetary incentives for smart charging.
However, an increasing amount of authors also point to the importance of factors such as the integration of renewables (Will and
Schuller, 2016; Huber et al., 2019b). In the study by Will and Schuller (2016), the integration of renewables affected the acceptance
of smart charging, while monetary incentives did not. Verbong et al. (2013) even went as far to say that ‘‘too much focus on [. . . ]
economic incentives can become a barrier’’. Tarroja and Hittinger (2021, p.1) argued that ‘‘non-monetary incentives may be needed
to increase smart charging participation’’. These non-monetary incentives may refer to nudges or tips. This study focuses on the
monetary incentives and environmental nudges, which have been identified as the primary motivators for smart charging (Will and
Schuller, 2016; Huber et al., 2019b). Additionally, we look at smart charging as a default option, battery-related tips and how the
character trait risk aversion influences charging flexibility.

2.1. Monetary incentives

Literature has explored the effects of monetary incentives in various manners. These incentives refer to dynamic pricing schemes
and discounts on the final energy bill (Will and Schuller, 2016). During peak periods, electricity prices are at their highest and vice
versa during off-peak hours; thus, customers can reduce their electricity bills by shifting their load to off-peak times. The frequency
of price variation is dependent on the particular dynamic tariff plan. In specific dynamic pricing systems, tariffs alter hourly or
every few minutes to reflect the real-time energy market (e.g., real-time pricing) (Dutta and Mitra, 2017). While in other schemes,
the different block rate tariffs are offered to consumers within a period (e.g., time of use, critical peak pricing) (Zhang et al., 2017;
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Newsham and Bowker, 2010). A smart charging trial in the UK discovered that by utilizing dynamic tariffs, most of the EV users
shifted their charging events to off-peak times (Greenflux, 2020). Another smart charging trial in Canada looked into the influence
of dynamic pricing on the charging behavior of users (Goody et al., 2020). They found that, compared to a control group, the
dynamic pricing group offered more flexibility and charged their EVs more often in the off-peak period around midnight. However,
consumers might only be willing to accept dynamic tariffs if they perceive a significant difference in their final energy bills.

Incentives can also be given directly on the monthly energy bill. Will and Schuller (2016) conducted a survey asking EV users
what the minimum discount would be on their electricity bill to participate in smart charging. Surprisingly, the anticipated discount
had no notable influence on the willingness to participate in smart charging. Furthermore, in the interview study by Paetz et al.
(2012a), EV smart charging was not motivated by cost savings but rather the desire to drive free of emissions.

In addition to reduced tariffs and cheaper electricity bills, incentives could be paid every time EV users allow smart charging,
i.e., offer flexibility. Kramer and Petzoldt (2022) conducted an experimental survey where they examined the effect of cost saving
on smart charging decisions: Cost savings had a statistically significant effect on the decision to select regular or smart charging for
public charging (Kramer and Petzoldt, 2022).

EV users can also be rewarded with monetary incentives for participating in a smart charging program. Wong et al. (2023)
conducted a survey and found that monetary incentives increased the interest to participate in a smart charging program for EV
owners/lessees and EV interested buyers/lessees. Delmonte et al. (2020) conducted interviews with actual and potential EV users.
Also, here, the EV users’ willingness to participate in smart charging programs was related to reduced charging costs.

Overall, studies have differing results on the effectiveness of monetary incentives for smart charging. These discrepancies could
be due to the different study designs and operationalizations of monetary incentives. However, as most studies state that monetary
incentives lead individuals to participate in smart charging programs, we hypothesize:

H1: Monetary incentives lead to a higher flexibility provision.
The amount of monetary incentives may also affect the flexibility provision. Prior studies, for example Delmonte et al. (2020),

mention that regular EV charging costs are already lower than refueling an internal combustion engine vehicle. With cheaper regular
charging, motivating people to use smart charging further would require incentives significantly higher than those savings. Wong
et al. (2023), who conducted a survey asking participants to join a smart charging program based on increasing monetary incentives,
had similar results: Higher incentives were attributed to an increased interest in smart charging programs. To confirm this effect,
we formulate the following hypothesis:

H2: High monetary incentives lead to a higher flexibility provision than low monetary incentives.
Monetary incentives can also be given in a fun and engaging manner on a digital interface using game elements. Game elements

‘‘vary widely in terms of the type of games, target, and features that might be appealing and motivating’’ (AlSkaif et al., 2018,
p.101). Morganti et al. (2017) and AlSkaif et al. (2018) classified a rewarding system as a game element. These elements include
credit points, which users can collect in an app through a desired behavior. The desired behavior would be smart charging in our
study. These credit points have a monetary value and could be accumulated and utilized, for example, to charge EVs. With credit
points, transparency (calculating and accumulating them) is important (Tamis et al., 2018). Credit points may function similarly to
other monetary incentives because they have a monetary value. Therefore, we propose the following hypothesis:

H3: Credit points lead to a higher flexibility provision.

2.2. Nudges

Many studies have found that environmental values are essential for users of EVs. Eco-values, as well as ecological motives such
as usage of RES while smart charging is considered highly relevant for the acceptance of smart charging (Frenzel et al., 2015; Geske,
2014; Huber et al., 2019b; Jochem et al., 2012; Paetz et al., 2012b; Schmalfuß et al., 2015; Tamis et al., 2018; Will and Schuller,
2016). In the following, we describe environmental nudges like framing, feedback, and badges, which might influence the charging
choices of EV users.

First, framing ‘‘is the conscious formulation and description of the decision situation to encourage people to behave in a certain
way’’ (Huber et al., 2019a, p.87). In the context of smart charging, framing can be using text messages to influence the EV users’
decision-making so that they are more likely to provide high flexibility. Framing messages can be depicted in an application prior
to the charging decision. Environmental frames make it clear to the EV user that smart charging contributes to environmental
protection (Huber et al., 2019a). Huber et al. (2019a)’s study found that environmental frames did not affect the smart charging
decision of participants. This result differs from results of studies in other adjacent research areas, such as energy-saving literature,
where such frames were found to be effective (Schaule and Meinzer, 2020). In certain studies, environmental and monetary frames
were both effective (Steinhorst and Klöckner, 2018), while in others, environmental frames were more effective (Asensio and
Delmas, 2015). One possible explanation for the latter finding is that environmental frames enhance pro-environmental intrinsic
motivation (Steinhorst and Klöckner, 2018). Steinhorst and Klöckner (2018) also hypothesized that environmental framing, contrary
to monetary framing, influences long-term behavior change. However, they did not find any support in their study: The framing
messages did not affect long-term self-reported energy-saving behavior and neither the yearly household electricity consumption. In
a further experiment, Berger et al. (2022) tested the effectiveness of environmental framing when selecting programs for the washing
machine and dishwasher. The use of environmental frames resulted in participants being more inclined to choose the eco-program
over shorter alternatives. The effect of environmental frames was even more potent than default nudges. Based on these findings,
we formulate the following hypothesis:

H4: Environmental framing leads to a higher flexibility provision.
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Second, feedback allows users to be informed about their electricity consumption. It also assists them in interpreting their
data and serves as a catalyst for behavioral change (Verbong et al., 2013). Environmental feedback could be provided on
the corresponding carbon footprint, i.e., the amount of carbon emissions saved by smart charging when compared to regular
charging (Huber and Weinhardt, 2018). Schmalfuß et al. (2015, p.9) indicate that EV users might use smart charging as they are
‘‘motivated by the feeling of doing something good’’. Seeing positive environmental consequences could be a motivator to use smart
charging further. With reference to the energy-saving literature, Tiefenbeck et al. (2019, p.1) found environmental feedback to be
specifically effective: Hotel guests who ‘‘received real-time feedback on their energy consumption while showering consumed 11.4%
(0.21 kWh) less energy than guests in a control group’’, even without receiving any monetary incentives. Thus, we also hypothesize
for smart charging:

H5: Environmental feedback leads to a higher flexibility provision.
Third, badges are a gamification element (AlSkaif et al., 2018) and should have their typical functions: to appeal, motivate,

and include users (Morganti et al., 2017). This engagement is necessary as Lagomarsino et al. (2022, p.11) have pointed out
that ‘‘a mere automatization of smart charging choices without user integration is likely to fail, and decrease[s] the acceptance
of the technology’’. Badges can be considered as a ‘nice-to-have functionality,’ a feature that enhances the enjoyment of an
application (Tamis et al., 2018) and displays the user’s achievement level (Beck et al., 2019). In practice, some smart charging
applications already use environmental badges. For example, the US-American application Fleetcarma awards badges to users for
achieving minimum emission savings (FleetCarma, 2018). To the best of our knowledge, there is a lack of research on the impact
of badges on smart charging behavior or similar behaviors such as energy-saving behavior. In the longitudinal study by Cominola
et al. (2021), participants earned points, badges, and rewards and received recommendations for conserving water in a 6-month
period. Two years later, 47% of households had reduced their consumption by 8% compared to before the project. Although the
effect of all behavioral interventions was measured, it is possible that the badges may have contributed to this outcome. Based on
this, we propose the following hypothesis:

H6: Environmental badges lead to a higher flexibility provision.
Fourth, we describe studies on the nudge smart charging as a default. Setting high charging flexibility as the default option for

smart charging is a way to nudge users to choose this option. Users would have the option to opt-out for another choice, but the
default option would encourage them to choose high flexibility. For example, when selecting an energy contract, energy providers
often offer green energy contracts as the default option, where energy is generated using RES. In the study by Momsen and Stoerk
(2014), by setting a contract with energy from RES as the default, the proportion of individuals who chose this contract increased
by 44.6%. Vetter and Kutzner (2016) had similar results, which were independent of individuals’ environmental attitudes. Similarly,
default nudges can significantly increase participation in smart grids (Toft et al., 2014).

Smart charging as a default is recommended by the UK Energy Task Force (Force, 2019) and Delmonte et al. (2020). Currently, the
standard practice is to charge EVs immediately, similar to how people are used to fully refueling their conventional cars (Lagomarsino
et al., 2022). However, setting smart charging as the default option could reduce the number of decisions and cognitive effort
required for the user and decrease interaction with the smart charging system (Delmonte et al., 2020). Based on this, we propose
the following hypothesis:

H7: The default setting leads to a higher flexibility provision.

2.3. Battery-related tips

Battery-related tips can also be considered as gamification elements (AlSkaif et al., 2018). Strictly speaking, they are not nudges,
as they provide the user with information that allows them to make a rational decision about charging. For some batteries, charging
to a low battery percentage is better for the battery life (Tan et al., 2016) and offers more flexibility to the energy provider (Huber
et al., 2019b). In focus groups conducted by Huber et al. (2019b), experts identified low battery degradation as one of the benefits
of smart charging. Preserving the battery should also interest EV users.

Nevertheless, they must first be aware of the benefits of not fully charging the battery to make informed decisions. This
information can be provided through battery-related tips. Therefore, we propose the following hypothesis:

H8: Battery-related tips lead to a higher flexibility provision.

2.4. Risk aversion and smart charging

Range anxiety, defined as ‘‘the worry that one will run out of battery before reaching the destination’’ (Herberz et al., 2022,
p.2), is a frequently discussed topic. Range anxiety is related to risk aversion, a character trait in which people prefer low-risk
alternatives to high-risk alternatives, even if the average outcome is equal or higher (Werner, 2008). As EV users become more
risk-averse, they become more concerned about their remaining battery capacity, tend to charge more frequently, and draw more
energy when charging (Xing et al., 2021). The counterparts of risk-averse individuals are risk-seeking ones. Risk-seeking people
consider variables such as battery percentage, prices, and charging location when charging. In contrast, risk-averse people primarily
focus on ensuring enough charge for the next trip (Pan et al., 2019). In the experiment by Huber et al. (2019a, p.11), ‘‘participants
who consider[ed] themselves more willing to take risks [were] slightly more flexible’’ and selected a lower state of charge. Thus,
we hypothesize:

H9: The lower the personal risk aversion, the higher the flexibility provision.1

1 H9 was slightly adapted after the preregistration. Previous version: A high personal risk assessment negatively moderates the relationship between the
nudge/incentive group and the flexibility provided.
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2.5. Perception versus the effectiveness of incentives, nudges, and tips

The above-described studies differ in various characteristics, such as whether they use quantitative or qualitative analysis,
whether they measure the effectiveness or perception of incentives or nudges, or how they operationalize the dependent variable
flexibility or smart charging acceptance. Hence, it is difficult for these studies to compare the effectiveness of all the incentives
and nudges. Also, most studies measure the perception or effectiveness of incentives and/or nudges. However, Tijs et al. (2017)
demonstrate that the perception and effect of incentives and nudges do not always align for water-saving. In the flexibility field, we
have not found any study investigating the perception and effectiveness of incentives, nudges, and tips. For this reason, in addition
to examining the effect of these behavioral interventions, we aim to investigate how these perceptions relate to their effectiveness.

3. Methods

3.1. Focus groups and survey development

Before conducting the survey, we sought to gain a preliminary understanding of user preferences for different incentives, nudges,
and tips in the context of EV smart charging and the factors driving these preferences. To do this, we conducted three focus groups
(𝑛1 = 4, 𝑛2 = 4, 𝑛3 = 5) with 13 EV users in Luxembourg (2 women, 11 men). We took the help of one of our industry partner
Enovos Luxembourg SA, who started a call for our focus groups. From the pool of participants, we selected all EV users who had
been driving their EV for several months or more. The focus groups were recorded and transcribed and were conducted onsite
with a predetermined agenda. Further information and results of the focus groups can be found in Appendix A and more detailed
information in the paper by Marxen et al. (2022).

The results of the focus groups helped us design the survey but did not provide a clear indication of user preferences for different
incentives, nudges, and tips. Therefore, the survey included all incentives, nudges, and tips. We also wanted to measure different
motivations for EV usage (environmental, financial, technological, and social) in the survey, as the focus group results indicated
that those are related to preferences for incentives, nudges, and tips.

We designed the survey material, and then discussed a first draft with five energy researchers/experts and three non-experts to
ensure comprehensibility. Subsequently, we conducted the adapted survey in a pre-test with 25 participants, who left comments
on various aspects of the survey. We simplified the content, including the definition of smart charging, and then preregistered our
survey at Aspredicted.2

3.2. Recruitment, procedure for participants and measures

The questionnaire was available online from February 22, 2022, to June 29, 2022. The whole survey can be found in the
supplementary material. Participants could answer the survey in English, German, or French. The primary goal was to obtain a
sample of EV users from Luxembourg, Germany, Belgium, and France, all of whom speak French and/or German. So, we primarily
shared the survey on German-and French-speaking platforms. However, we did not restrict participation from individuals residing
in other countries. We shared the survey across various online platforms, such as Facebook groups, LinkedIn, Twitter, email
distributions, and EV and university forums.

For the participants, the survey consisted of an experiment and a part in which they replied to items of questionnaires and
further questions. Fig. 1 gives an overview of the experimental part of the survey. Before the experiment, participants indicated
their familiarity with smart charging on a scale from 1 (‘‘not familiar at all’’) to 7 (‘‘extremely familiar’’). They read an explanation
of the concept of smart charging (Appendix A) and answered an attention question to confirm their understanding. Afterward, we
measured their willingness to allow their energy provider to control the charging process with one item: ‘‘I would have the charging
process of my EV controlled by my energy supplier’’. They indicated their agreement on a 7-point Likert scale (‘‘strongly disagree’’
to ‘‘strongly agree’’).

Participants then read a scenario in which they imagined the following smart charging situation: You come home at 18:00 with
your electric vehicle (EV). Your battery percentage is 15%. The next day, you have to leave at 8:00 and drive 200 km (round trip). You
have told your smart charging app that you have to drive 200 km the next day. We used the term ‘‘battery percentage’’ instead of ‘‘SOC’’
for a better understanding. For the scenario, EV users would need a SOC of 40%

In our study, flexibility relates to the charging flexibility of the energy provider. This charging flexibility is higher if the user
requests a lower SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 for a charging session. Within our paper, we use the term SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 whenever users request a SOC
for the end of the charging session. To simplify our study design, we set a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 of 65% as an anchor point to differentiate
between high and low flexibility. Therefore, in our study, high flexibility entails that users select a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 of up to 65% and
above and vice versa for low flexibility (Fig. 2). We intentionally have set the beneficial SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (anchor point) at an acceptable
level. For example, if the beneficial SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 is 90%, the small margin of 10% would greatly impact the effect size and make it
difficult to test the effect of incentives, nudges, and tips with a suitable sample size and statistical power.

After reading the scenario, the participants were randomly assigned to either the control group or one of the eight experimental
groups. In the control group, the participants saw a neutral message. An incentive, nudge, or tip message was given in the

2 https://aspredicted.org/9ji4w.pdf.
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Fig. 1. Overview of the experimental survey design.

Fig. 2. Illustration of the simplified flexibility definition for the experimental design.

experimental groups regarding participants charging their EV only up to a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 of 65%. Fig. 3 depicts the messages for
the high monetary incentives group, and other messages are in Appendix B (Fig. B.5). Regarding the high, low monetary incentives
and credit points messages, we assumed a baseline electricity tariff of 25 ct/kWh. We established this baseline tariff after considering
the electricity prices in Luxembourg and Germany during the years 2021–2022, which ranged roughly from 20–30 ct/kWh (Eurostat,
2022; Economy, 2022). In the high incentives group, participants got a reduction of 40% (15 ct/kWh) if they chose a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
up to 65%, and in the low incentives group, a reduction of 20% (20 ct/kWh). The participants also read the exact amounts they
would save.

On the following page, participants in the experimental groups saw the message again, this time on a smartphone mock-up with
an option to select the SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 for the next day. We decided to repeat this message to ensure that all participants saw it; in the
pretest survey, two participants missed it when it was only displayed once with further information. In addition to the smartphone
mock-up, they saw an information table on how far they could travel with different SOC levels. Fig. 4 depicts this for the high
incentives group. In the other groups, participants saw the exact mock-up and information table, respectively, with their group’s
message.

Then, all participants selected a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (0%–100%) and a desired minimum SOC (SOC𝑀𝑖𝑛) (0%–100%). SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 is
the desired battery percentage for the following day. SOC𝑀𝑖𝑛 is the battery percentage up to which the EV will be charged in an
uncontrolled manner at full power right after it is connected to the charger (Fridgen et al., 2016).

Participants in the experimental groups then answered an attention question on the content of the message and questions on how
they perceived the message. To measure the perception of the intervention message, we used the satisfaction sub-scale from Van
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Fig. 3. Example of message for the high monetary incentives group.

Fig. 4. Example mock-up and information sheet for the high monetary incentives group.

Der Laan et al. (1997). On a scale from 1 to 7, participants evaluated the message based on four pairs of adjectives (e.g., ‘‘1 unpleasant
– 7 pleasant’’). The scale had satisfactory internal consistencies in the different experimental groups of our survey, with Cronbach’s
alphas above the threshold of 𝛼 = .70 (Hair et al., 2021): Perception of high incentives (𝛼 = .75), low incentives (𝛼 = .83), framing
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Table 1
Distribution of participants in experimental and control groups.
Groups Frequency Percentage

High monetary incentives 24 8.30
Low monetary incentives 34 11.76
Framing 32 11.07
Feedback 30 10.38
Badges 31 10.73
Credit coins 37 12.80
Battery tips 28 9.69
Smart charging as default 39 13.49
Control group 34 11.76

(𝛼 = .90), feedback (𝛼 = .95), badge (𝛼 = .92), credit points (𝛼 = .96), battery tips (𝛼 = .87), and smart charging as a default (𝛼 =
.92).

After the experiment, participants answered questions about their mobility behavior and vehicle and EV usage. These questions
were about the most used transportation means, EV usage, number of vehicles, number of household members with a driving
license, and daily kilometers driven. Participants additionally answered questions about their vehicle’s range and battery capacity,
the average distance they drive it, the time it spends at home on weekdays and weekends, and their usual charging location. They
then answered questions about their motivations to drive an EV. These questions were presented on a 7-point Likert scale (ranging
from ‘‘strongly disagree’’ to ‘‘strongly agree’’). To measure technological motivation, we adapted four items from Kacperski and
Kutzner (2020) (in our survey Cronbach’s 𝛼 = .77, example item: ‘‘I drive an electric vehicle because it is comfortable to drive
due to its silent motor’’.). For environmental EV usage motivation, we adapted three items from Kacperski and Kutzner (2020) (in
our survey 𝛼 = .88, example item ‘‘. . . I can be part of the sustainability movement’’.). To measure financial EV usage motivation,
we adapted three items by He et al. (2018) (in our survey 𝛼 = .66, example item ‘‘. . . it helps me spend less on fuel’’.) and for
social EV usage motivation four items from Wang et al. (2021) (in our survey 𝛼 = .89, example item: ‘‘. . . I am judged favorably
by others’’.). All participants then answered questions about their environmental concerns and risk aversion level. To measure
environmental concern, we used the brief ecological paradigm scale (López-Bonilla and López-Bonilla, 2016), a short version of
the new environmental paradigm (in our survey 𝛼 = .80, example item: ‘‘Humans are severely abusing the environment’’.). To
measure risk aversion, we used the general risk aversion scale by Mandrik and Bao (2005) (in our survey 𝛼 = .83, example item:
‘‘I feel comfortable improvising in new situations’’). Finally, participants answered demographic questions about their gender, age,
nationality, highest level of education, occupation, industry, monthly income, and country of residence. In the end, participants
were allowed to read about the background and research goals of the study. They could also provide feedback on the study and
enter a raffle to win a voucher.

3.3. Sample

To determine the sample size for a multiple logistic regression a priori, we followed the method by Hsieh et al. (1998), which
delivers accurate results for sample sizes of n > 200 (HHU, 2021). Using Python, we simulated all possible combinations of the
following ranges: OR (2.0, 2.5 and 3.0) as similar studies used OR = 2.5 (Kramer and Petzoldt, 2022), Pr(Y = 1/X = 1) H0 (0.15,
0.2, 0.25), the proportion of the sample size experimental/control group (0.4, 0.45, 0.5, 0.55, 0.60), R2 between the variables
(0.01–0.2 in 0.01 steps). We aim for a sample size that covers at least 75% of the simulated cases. The simulations indicated we
need a minimum sample of n = 282.

A total of n = 306 EV users completed the survey. We considered only participants who indicated that an EV was associated with
their household. We also eliminated n = 17 participants for the following reasons: Participants answered both attention questions
incorrectly (n = 12), were multivariate outliers according to the Mahalanobis statistic measure (n = 2) or said they did not understand
the messages (n = 3). The final sample size was n = 289. The number of participants was similar across the different groups (Table 1).

Most of the participants are from Germany, Luxembourg, or France and reside in these countries (see Table C.5). The sample is
predominantly male and highly educated, with an average age of 43.03. Our sample can be considered representative for EV users,
as research from both Europe and the United States has found that EV users are typically male, middle-aged, well-educated, and
have high incomes (Sovacool et al., 2018b; Shin et al., 2019; Plötz et al., 2014). The International Energy Agency also reports that
EV users generally have high socio-economic status (IEA, 2022).

3.4. Analysis

We calculated a multiple logistic regression to answer research question 1 (Which incentives, nudges, and tips are effective for
individuals’ flexibility provision in electric vehicle charging?) and H1 and H3–H8. The aim was to ascertain the effects of seeing an
incentive or nudge message on the likelihood of choosing a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 up to 65% (offering high flexibility) versus over 65% (offering
low flexibility). To do this, we transformed the dependent variable SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 into a categorical variable, with 1 representing
a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 up to 65% and 0 representing a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 of 66%–100%. We created a dummy variable for each of the eight
experimental groups, with the control group receiving a value of 0 for each dummy variable. We then compare the effect of each



Transportation Research Part D 123 (2023) 103897

9

H. Marxen et al.

Table 2
Results of multiple logistic regression testing the effect of incentives, nudges and tips on flexibility provision (Model 1) and with risk aversion (Model 2).

Dummy variable Model 1 (H1, H3-8) Model 2 (H9)

z p OR 95% CI z p OR 95% CI

High monetary vs. Control 2.89 .004 5.42 [1.72; 17.02] 2.91 .004 5.57 [1.75; 17.72]
Low monetary vs. Control 2.44 .015 3.66 [1.29; 10.34] 2.60 .009 4.06 [1.41; 11.64]
Framing vs. Control 1.72 .085 2.53 [0.88; 7.27] 1.86 .064 2.75 [0.94; 8.03]
Feedback vs. Control 0.87 .386 1.63 [0.54; 4.87] 0.95 .343 1.71 [0.57; 5.18]
Badge vs. Control −0.74 .458 0.63 [0.18; 2.17] −0.72 .473 0.63 [0.18; 2.21]
Credit Coins vs. Control 2.37 .018 3.43 [1.24; 9.53] 2.49 .013 3.74 [1.33; 10.55]
Battery tips vs. Control −0.20 .844 0.89 [0.27; 2.95] −0.12 .901 0.93 [0.28; 3.11]
Default vs. Control 0.69 .490 1.44 [0.51; 4.10] 0.84 .399 1.58 [0.55; 4.53]
Constant −2.92 .004 0.31 −0.10 .920 0.76
Risk aversion −2.30 .021 0.94 [0.60; 0.96]

Nagelkerke (Pseudo R2) .122 .146

experimental group with the control group using logistic regression. We used the following multiple logistic regression formula as
illustrated in Eq. (1) below3:

𝐿 = 𝑙𝑛(𝑝∕1 − 𝑝) = 𝑏0 +
8∑
𝑖=1

𝑏𝑖𝑥𝑖 + 𝑒 (1)

In this context, L represents the log odds of 𝑝, which is the probability of choosing a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 up to 65%. 𝑏0 indicates the
(predicted) SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 value of the control group. In contrast, 𝑏𝑖 indicates the difference between the respective experimental and
control groups concerning the selected SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒.

To test H9, we added risk aversion to the same logistic regression model to see if it increases the exploratory power. To test H2,
we calculated a Chi-square test to compare the high and low monetary incentive groups concerning the chosen SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒.

To answer our second research question (Is a positive perception of incentives, nudges, and tips associated with increased flexibility
provision?), we calculated Spearman’s correlations (𝑟𝑆𝑝) between the categorical variable SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 and the perception of the
respective intervention messages. We also conducted Independent-Sample Kruskal–Wallis Tests to determine whether the perception
of the intervention message differed for the different types of intervention messages. This non-parametric test was used because the
perception of the intervention message was not normally distributed for all eight groups.

As an exploratory analysis, we also calculated Pearson correlations (r) between SOC𝑀𝑖𝑛 and further variables as SOC𝑀𝑖𝑛 is part of
the flexibility concept but less studied. Additionally, we calculated correlations between income, risk aversion, and further variables.
If income was correlated with the main variables (SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, risk aversion), we controlled for its influence in our analysis.

4. Results

We calculated a logistic regression to test H1, H3-H8 if seeing incentive, nudge, or tip messages leads to higher odds of choosing a
SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 up to 65% (offering high flexibility) versus over 65% (offering low flexibility). This is the Model 1, which was significant,
X2 (8, n = 289) = 27.13, p <.001 and explained 12.20% (Nagelkerke R2) of the variance in the choice of SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒. Seeing the
high monetary (OR = 5.42, 95% CI [1.72, 17.02]), low monetary (OR = 3.66, 95% CI [1.29, 10.34]), or credit point message (OR
= 3.43, 95% CI [1.24, 9.53]) increased the odds of offering high flexibility in comparison to the control group. Seeing the framing,
feedback, badge, battery tips or default message did not increase likelihood to choose a high flexibility in comparison to the control
group (Model 1, Table 2).

To test H9 (The lower the personal risk aversion, the higher the flexibility provided), we added risk aversion to the model (Model 2,
Table 2). Adding the continuous predictor risk aversion to our logistic regression requires checking if the preconditions of logistic
regression are observed: 1. No extreme outliers, 2. linearity of the logit, and 3. no multicollinearity. First, Cook’s influence statistics
were below 1.0, indicating no extreme outliers. Second, the Box-Tidwell test was non-significant, indicating the logit’s linearity.
Third, Variance Inflation Factor values are around 1, and tolerance values above 0.2, indicating no multicollinearity between
the independent variables. By adding risk aversion, Model 2 was statistically significant, X2 (9, n = 289) = 32.62, p <.001 and
explained 14.60% (Nagelkerke R2) of the variance in the choice of SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒. The change in comparison to Model 1 was statistically
significant, X2(1, n = 286) = 5.49, p = .019. High monetary incentives (OR = 5.57, 95% CI [1.75, 17.72]), low monetary incentives
(OR = 4.06, 95% CI [1.41, 11.64]), credit points (OR = 3.74, 95% CI [1.33, 10.55]), and lower risk aversion (OR = 0.76, 95%
CI [0.60, .96]) increased the odds of choosing high flexibility in comparison to the control group, whereas the framing, feedback,
badge, battery tips, or default message did not.

3 x1: 1 if high monetary group, 0 otherwise, x2: 1 if low monetary group, 0 otherwise, x3: 1 if framing group, 0 otherwise, x4: 1 if feedback group, 0
otherwise, x5: 1 if badge group, 0 otherwise, x6: 1 if credit points group, 0 otherwise, x7: 1 if tips group, 0 otherwise, x8: 1 if default group, 0 otherwise, e:
random error.
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Table 3
Overview on hypotheses related to RQ1: Which incentives, nudges, and tips lead to a higher flexibility provision in electric vehicle charging?

Hypotheses Confirmed or rejected

H1: Monetary incentives lead to a higher flexibility provision. Confirmed
H2: High monetary incentives lead to a higher flexibility provision than low monetary incentives. Rejected
H3: Credit points lead to a higher flexibility provision. Confirmed
H4: Environmental framing leads to a higher flexibility provision. Rejected
H5: Environmental feedback leads to a higher flexibility provision. Rejected
H6: Environmental badges lead to a higher flexibility provision. Rejected
H7: The default setting leads to a higher flexibility provision. Rejected
H8: Battery-related tips lead to a higher flexibility provision. Rejected
H9: The lower the personal risk aversion, the higher the flexibility provision. Confirmed

Table 4
Spearman correlations between perception of incentive, nudge or tips message and selected SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒.

Perception of message SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

Spearman’s r p-value

High monetary incentives −.03 .908
Low monetary incentives .21 .237
Environmental framing .22 .236
Environmental feedback .24 .198
Environmental badges .23 .221
Credit coins −.02 .917
Battery tips .26 .182
Smart charging as default −.03 .857

To test H2 (High monetary incentives lead to a higher flexibility provision than low monetary incentives.), the results of the Chi-
squared association test indicate that subjects who saw the high monetary incentive message were not more likely to choose a
high SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 than subjects who saw the low monetary incentive message, X2(1, n = 67) = 0.15, p = .703. Table 3 presents an
overview on whether the hypotheses 1–9 were confirmed or rejected.

Concerning RQ2 (Is a positive perception of incentives, nudges and tips associated with increased flexibility provision?), the Spearman’s
correlations between SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 and the perception of the respective stimulus messages were not significant for any of the stimulus
messages (Table 4). Thus, the perception of the stimulus messages was not related to offering flexibility.

As an additional analysis, we conducted a Kruskal–Wallis test to identify if the perception of the message differed between
participants of the different experimental groups. The test demonstrated that the perception of the stimulus messages did not differ
based on the content EV users saw, H(7) = 7.51, p = .378. Thus, participants evaluated the eight messages equally well.

4.1. Exploratory analysis

In our exploratory analysis, we calculated correlations between 1. SOC𝑀𝑖𝑛, 2. risk aversion, and 3. income with further variables.
The higher the selected SOC𝑀𝑖𝑛 value, the more participants tended to be risk averse (r = .13, p = .029). Risk-averse participants
tended to be generally older (r = −.17, p = .005).

Participants indicating a higher SOC𝑀𝑖𝑛 also tended to be less familiar with smart charging at the beginning of the survey,
i.e., had a lower smart charging literacy, (r = −.14, p = .014) and were less willing to give their energy provider control on their
charging process (r = −.28, p <.001). The selected SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, however, was not related to familiarity with smart charging (𝑟𝑆𝑝 =
.05, p = .435) and the willingness to give the energy supplier control on the charging process (𝑟𝑆𝑝 = .09, p = .133).

Those selecting higher SOC𝑀𝑖𝑛 values also tended to 1. provide a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 of above 65% (r = −.25, p <.001), to 2. have less
environmental motivations to drive an EV (r = −.15, p = .012), and to 3. be less educated (r = −.19, p = .001).

Income was not correlated with SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (𝑟𝑆𝑝 = −.05, p = .408), SOC𝑀𝑖𝑛 (r = −.03, p = .628), or with risk aversion (r = .01,
p = .821).

5. Discussion

Concerning the first research question (RQ1: Which incentives, nudges, and tips are effective for individuals’ flexibility provision in
electric vehicle charging?), H1 and H3 were confirmed. All monetary incentives, namely high incentives, low incentives, and credit
points, led to a higher flexibility provision (choice of a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 of 65% vs. a SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 of 66%–100%). H4-H8 were rejected:
The nudges and battery-related tips did not lead to a higher flexibility provision. Nevertheless, they did not have a negative effect
either. These results are in line with those of Bailey and Axsen (2015): For EV users, monetary incentives (reduced electricity bill)
were more effective than environmental nudges. It appears that monetary incentives are generally more attractive to (mainstream)
EV users than environmental or social nudges (Delmonte et al., 2020). Our study also demonstrated that this applies to various
monetary incentives (low, high, and credit points).



Transportation Research Part D 123 (2023) 103897

11

H. Marxen et al.

Another question relates to whether a higher monetary incentive leads to better flexibility provision. In our study, H2 was
rejected: There was no significant difference between groups given high and low monetary incentives regarding flexibility provision,
i.e. low incentives were as effective as high incentives. This result is also supported by other academic studies (Kacperski and Kutzner,
2020; Kacperski et al., 2022). EV users seem to expect financial compensation for their flexibility, although this magnitude does not
play a major role in whether or not they choose to provide this flexibility (Lagomarsino et al., 2022).

About the second research question (RQ2: Is a positive perception of incentives, nudges, and tips associated with increased flexibility
provision?), perception of the incentives, nudges, and tips was not correlated with flexibility provision. This finding applied to all
individual monetary incentives, nudges, and tips. The results align with Tijs et al. (2017), who also did not find a link between
perception and effectiveness of nudges in a similar setting (water-saving while showering). This result implies that perceptions
regarding these interventions might not play a crucial role for developing and designing behavioral interventions for smart charging
as they might not be related to their actual effect.

The results confirmed H9, i.e. low risk aversion was related to high flexibility provision and explained additional variance. This
finding aligns with the study by Huber et al. (2019a): People who consider themselves more willing to take risks are more likely to
offer high flexibility.

Our exploratory analysis found that people who report lower SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 values also report lower SOC𝑀𝑖𝑛 values and that SOC𝑀𝑖𝑛
correlates with risk aversion. These results suggest that factors associated with SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, such as risk aversion, are also related to
SOC𝑀𝑖𝑛. Little research exists on SOC𝑀𝑖𝑛 in the behavioral context, although it is said that SOC𝑀𝑖𝑛 values increase the acceptance
of smart charging (Will and Schuller, 2016; Ensslen et al., 2018; Geske and Schumann, 2018).

Another result of the exploratory correlation analysis was that participants with higher education levels and those more familiar
with smart charging tended to choose a lower SOC𝑀𝑖𝑛. Familiarity with smart charging is a form of smart charging literacy. Studies
demonstrate that energy literacy is related to a higher flexibility provision (Reis et al., 2021). Our study further confirms that
for smart charging. The correlation between SOC𝑀𝑖𝑛 and familiarity with smart charging indicates that people with higher smart
charging literacy tend to provide higher flexibility. Our study is one of the first to demonstrate a relationship between smart charging
literacy and the flexibility component SOC𝑀𝑖𝑛. Another study by Baumgartner et al. (2022) examined the relationship between user
experience and desired SOC𝑀𝑖𝑛 values. Surprisingly, the authors discovered no relationship between user experience and SOC𝑀𝑖𝑛
values. However, it is essential to note that in their study, user experience referred to the level of familiarity with EVs rather than
knowledge specifically about smart charging.

5.1. Theoretical implications and directions for future research

Our results indicate that monetary incentives are most important to motivate EV users to provide charging flexibility.4 Further
research should focus on using monetary incentives for smart charging rather than on nudges and/or tips. In particular, research
could be conducted to determine the minimum monetary incentive energy providers should offer to get charging flexibility. It would
be further interesting to investigate how combining monetary incentives and environmental nudges impacts flexibility provision as
explored by Kacperski et al. (2022) and to determine whether this combined approach is more effective than monetary incentives
alone.

Our results also highlight the importance of appropriate experimental design for answering research questions. Although our
results show the effectiveness of some behavioral interventions, we find no correlation between the perception of incentives, nudges,
and tips and their effectiveness in improving flexibility provision. When the goal is to evaluate the effectiveness of such behavioral
interventions, experimental approaches are highly valuable. Conducting a pilot study can also be beneficial. On the other hand, if
the goal is to understand how incentives, nudges, and tips are perceived, focus groups or surveys without an experimental design
might be a good choice. Measuring perception can be important in contexts where it is crucial for EV users to be engaged and to
like the smart charging app.

Our study found a correlation between familiarity with smart charging and SOC𝑀𝑖𝑛. Further research should be conducted to
investigate this relationship in more depth. Instead of measuring familiarity with smart charging with a single item, it would be
helpful to measure smart charging and energy literacy in more detail and investigate their relationship with flexibility provision.
Smart charging literacy programs could also be explored to understand their impact on flexibility provision. It would be essential to
determine the content and implementation of such programs, for example, by explaining to EV users how far they can travel with
different SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 values and how this relates to their specific profile. It is worth noting that participants who only drive short
distances tend to overestimate the importance of SOC (Lagomarsino et al., 2022). Also Franke et al. (2017) did not find a significant
correlation between daily travel distances and lower range satisfaction.

Regarding the link of risk aversion with flexibility provision, risk-averse people may particularly benefit from improved education
and information. Additionally, it may be helpful to consider how this information is presented to users. As Lagomarsino et al. (2022)
note, laypeople may need help understanding energy information presented in units like kWh or battery percentage (e.g., for how
many kilometers which SOC would be sufficient). Therefore, future research should examine effective methods of transmitting
information to EV users and the potential for educational programs to improve understanding. Studies can also be conducted on
how information can be best transmitted to EV users about smart charging and related educational programs.

4 Note however power limitations, discussed further below in the Limitations subsection.



Transportation Research Part D 123 (2023) 103897

12

H. Marxen et al.

5.2. Practical implications for energy providers

The results of the survey have several practical implications. For energy providers, our results indicate that offering monetary
incentives can encourage users to provide higher levels of flexibility. The amount of the incentives does not appear to be as
substantial as the fact that they are offered.

In this study, we only tested two realistically payable incentives by energy providers, so it cannot be ruled out that much
higher incentives may lead to even higher levels of flexibility. The energy providers could design an incentive scheme for flexibility
provision. Within this incentive scheme, energy providers can motivate EV users based on the monetary benefits the providers
achieve while trading this flexibility in electricity markets.

Also, energy providers should provide their users with smart charging literacy programs, including a clear and easy-to-understand
introduction to smart charging, perhaps through a smart charging application. These programs could include information about the
risks and benefits of using smart charging and explanations of SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 and SOC𝑀𝑖𝑛 data.

5.3. Limitations

There are several limitations to our study design. First, a simplification of the concept of flexibility was necessary to facilitate our
experimental design. Flexibility is a continuous variable that includes factors other than SOC𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, such as SOC𝑀𝑖𝑛 and parking
duration. Therefore, our study’s categorical representation of flexibility gives an approximation of the reality of flexibility with EV
smart charging.

Gamification elements must be analyzed engagingly within a dynamic setting; whereas our study allowed for gamification
elements in a static and non-interactive setting. Since gamification elements are all about engagement, the best way to understand
how they work is through direct interaction with an app. In our study, we only used a smart charging app interface, but participants
did not have the opportunity to interact with the app and click through it. To more accurately assess the effectiveness of gamification
elements, they should be tested in a more interactive experimental design.

Our sample size (n = 289) is relatively small. According to a posthoc power analysis in G Power (Faul et al., 2007) for the
multiple logistic regression, only for the effect of the high monetary incentives group, a sufficient power of above 0.80 was reached.
This value fell short of low monetary incentives and credit points (0.65, 0.64). The reasons for this are a priori unexpectedly high
correlations between the independent variables. However, the results of the high monetary incentives are substantive. Since the
slightly underpowered variables, low monetary incentives, and credit points are related in content with high monetary incentives;
it can be assumed that monetary incentives generally work.

Even though our sample can be considered representative of current EV users, it might suffer from non-response errors. For this
reason, individuals who voluntarily participated in the study might differ from those who decided not to do so (Sovacool et al.,
2018a). EV users interested in our topic may have reacted differently to behavioral interventions than those who did not show this
interest.

Furthermore, our study includes a sample of EV users from various countries, primarily Luxembourg and Germany, and other
German- and French-speaking European countries. As a result, our sample predominantly represents EV users in Luxembourg and
its border region. Samples per country are too small to perform a country comparison analysis with sufficient power.

The external validity of our study is also limited by the experimental design. The scenario-based nature of the experiment impacts
the results (Lagomarsino et al., 2022). A field study (e.g., a pilot study) should be conducted to increase external validity.

Moreover, our study is a snapshot of a single decision, while users have to make multiple smart charging decisions over time.
For smart charging to reach its full potential, it must be used regularly. Therefore, it is important to investigate how frequently EV
users choose to use smart charging and what factors influence this decision (Lagomarsino et al., 2022).

6. Conclusion

In an experimental survey, we assessed whether various behavioral interventions, i.e. monetary incentives (low, high, credit
points), framing, feedback, badge, smart charging as a default, and battery-related tips, lead to a high flexibility provision for smart
home charging. We also explored whether the perceived effectiveness of these interventions is linked to their overall effectiveness.

Out of all the behavioral interventions, only the monetary incentives (low incentives, high incentives, and credit points) affected
increased flexibility provision. At the same time, nudges and tips had neither a positive nor negative effect. Low and high monetary
incentives were equally effective. The results indicate that energy providers should incentivize EV users for their flexibility, while
the incentive amount does not appear to play a decisive role.

A positive perception of the behavioral intervention was not correlated with their effectiveness for any of the interventions.
This result has theoretical and methodological implications for future research. If the effect of behavioral interventions is to be
determined, experiments should be employed rather than relying on perceptions of hypothetical behavioral interventions.

In our exploratory correlation analysis, we found that participants with higher smart charging literacy and higher education level
indicate lower SOC𝑀𝑖𝑛 values, i.e. higher flexibility provision. This result indicates that smart charging literacy programs could help
to achieve higher charging flexibility.
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Fig. B.5. Intervention messages and control group messages. 1. High monetary, 2. Low monetary, 3. Framing, 4. Feedback, 5. Badge, 6. Credit points, 7. Tips,
8. Default-setting, 9. Control group.
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Appendix A. Focus groups

Our focus groups followed a predefined agenda of 120 min. The focus was to discuss the incentives, nudges and tips. After the
discussion, we asked the participants to rank those according to their perceived attractiveness using a short survey. Five participants
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Table C.5
Description of the sample - EV users.

Frequency Percentage

Gender

Male 235 81.31
Female 48 16.61
Transgender female 1 0.35
Gender variant/Non-conforming 2 0.69
Prefer not to disclose 1 0.69
Others 2 0.35

Highest degree of education

Some high school 6 2.08
Highschool/GED 24 8.30
Some college 27 9.34
Associates’ degree 53 18.34
Bachelor’s degree 64 22.15
Master’s degree 103 35.64
Doctoral degree’ 12 4.15

Occupation

Student 16 5.54
Working (full-time) 220 76.12
Working (part-time) 25 8.65
Housewife/househusband 18 6.23
Pensioner 7 2.42
Unemployed 3 1.04

Income (net)

less than 1000 € 10 3.46
1000–2999 € 76 26.30
3000–4999 € 100 34.60
5000–6999 € 42 14.53
7000–8999 € 16 5.54
≥9000 € 12 4.15
No indication 33 11.42

Nationality

German 165 57.09
Luxembourgish 46 15.92
French 17 5.88
US-American 12 4.15
Swiss 7 2.42
Austrian 6 2.08
Others 36 11.07

Residence country

Luxembourg 158 54.67
Germany 69 23.88
France 17 5.88
US 13 4.50
Austria 9 3.11
Switzerland 5 1.73
Belgium 3 1.04
Others 18 6.23

indicated monetary incentives as most attractive, five participants smart charging as default, one participant framing, no one
feedback and gamification, and one participant did not do the ranking. Looking at the next ranks, there was no clear ranking of
the incentives, nudges and tips participants found most attractive. This was different for the ranking of the gamification elements.
Here, six participants ranked tips first, five credit points, one energy communities, and no-one badges. These results were consistent
with the next ranks. With regard to gamification, participants also mentioned the point that younger people might like it more.
Furthermore, we investigate whether motivations for purchasing electric vehicles and incentives preferences are related. For this, we
transcribed the focus group recordings and analyzed them using qualitative content analysis, a method that combines the deductive
and inductive coding approach (Cho and Lee, 2014). We first deductively defined categories (e.g., different incentives, nudges,
motivations) and coded them in the transcripts. Second, we inductively coded additional constructs, such as further motivations.
Then we looked at the overlaps of different codes. In our analysis, the environmental and economic motivations to purchase an EV
seemed to be related to the preference for incentives and nudges. Participants with environmental EV purchase motivation were
mainly interested in nudges indicating their contribution to environmental protection (e.g., feedback, framing). Participants with
economic motivation owned their EV mainly because their companies covered most of their purchase and charging costs. They had
a higher preference for monetary incentives.
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Appendix B. Survey material

See Fig. B.5.

Appendix C. Description of the sample

See Table C.5.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.trd.2023.103897.
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Survey related to the paper “Empirical 
evaluation of behavioral interventions to 
enhance flexibility provision in smart 
charging” 
 

 

Dear participant, 

 
thank you for your interest in this study.  

This study is conducted at the department FINATRAX of SnT, University of Luxembourg. By your 
participation, you support our research project on behaviors in electric vehicle charging. It takes a 
maximum of 10-15 minutes to complete the survey.  

There are no right or wrong answers, we are only interested in your true and honest perspective. To 
ensure that the results of our study are meaningful, we would ask you to answer the survey completely 
and seriously. Participation in the survey is voluntary and open to anybody aged 18 and over. You can 
terminate the survey any time without stating reasons. All data will be kept strictly confidential.  

At the end of the study you can take part in a lottery for five Amazon vouchers (1* 100€, 1* 40€, 3* 
20€).  

Thank you for your participation!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Part 1 
How familiar are you with smart charging of electric vehicles?  

Please rate yourself on a scale from 0 (not familiar at all) to 7 (extremely familiar). Please select 0 if 
you have never heard about it.  

not familiar at all (1) (2) (3) (4) (5) (6) extremely familiar (7) 

 

In order to be able to answer the questions in the survey, it is important to understand the explanation 
of smart charging. Please read it carefully:  

Smart charging is a technology that allows the energy supplier to manage the charging of electric 
vehicles (EVs): The energy supplier considers both the requirements of the power system and the EV 
user needs.  

Requirements of the power system: If most EVs are charged at the same time (e.g., after rush hour), 
this can overload the electricity grid. Imagine a residential neighbourhood with several EVs plugged in 
overnight at their home charging stations. By using smart charging, the load can be distributed across 
the time period EVs are plugged in. Some of those EVs can for example be charged between 22:00 and 
1:00, some between 1:00 and 4:00 and some between 4:00 and 7:00.  

EV user needs: Before charging, EV users enter their needs in a smart charging application:  

o Departure time: The user says when to leave the next morning.  

o Battery percentage: The user specifies how much battery percentage he/ she wants at departure 
time.  

This way, the energy supplier knows which preferences to consider when managing the charging.  

 

Based on the explanation of smart charging you just read, please select the appropriate answer.  

Smart charging ...  

o takes into account the requirements of the EV user and the power system.  

o gives the energy provider complete control over the charging of EVs without considering EV 
user needs.  

o exclusively maximises the EV users' profit.  

 

Please indicate whether you would allow your energy supplier to control the charging process of 
your EV. Your energy supplier would ensure that your EV is charged to the desired battery 
percentage at departure.  

 Strongly 
disagree  

Disagree  Some-
what 
disagree  

 

Neither 
agree 
nor 
disagree  

Some-
what 
agree  

Agree  

  

Strongly 
agree  

I would have the 
charging process of 
my EV controlled by 
my energy supplier. 

       

 



Please imagine this scenario to answer the next questions:  

You come home at 18:00 with your electric vehicle (EV). Your battery percentage is 15%. The next 
day, you have to leave at 8:00 and drive 200km (round trip).  

You have told your smart charging app that you have to drive 200km the next day.  

Your smart charging app displays the following message:1 

 

  

 

 

 

 

 

 

 

 
Your smart charging app asks you what battery percentage you want the next morning.  

Reminder scenario: You come home at 18:00 with your EV. Your battery percentage is 15%. The next 
day, you have to leave at 8:00 and drive 200km (round trip).  

 
 

Which battery percentage would you like to have at departure the next morning?  

Please choose a battery percentage from 0-100%. (Participants can select a value from 0-100%) 

 
1 The interven*on message is just illustrated for the high incen*ves group, but the other messages can be 
found in the paper. 



Which battery percentage should your EV always have as a mininum in case of unforeseen 
emergencies? (This implies that your EV would be always charged to that level at maximum charging 
power when plugged in.) This question does not refer to the previously described scenario.  
 
Please choose an absolute minimum battery percentage from 0-100%. (Participants can select a 
value from 0-100%) 

 

What information did you perceive on the mobile phone screen?  

o Information on ...  

o how I can save money.  

o how I can get money in form of digital vouchers.  

o that I saved CO2.  

o how I can obtain more energy from renewables when charging.  

o that I am among the 20% top smart chargers and received an environmental badge.  

o the default battery percentage.  

o that my EV is connected to the charging station.  

o which battery percentage is best for the battery of my EV.  

2 

 

How did you perceive the following message (see screenshot below)? Your answers should reflect 
you personally and should not reflect any ideal case from your point of view. Please note that there are 
no right and wrong answers.  Please choose a value from 1-7 in each row.  

My judgement of this message is ...  

Unpleasant (1) (2) (3) (4) (5) (6) Pleasant (7) 

Annoying (1)  

 

(2) (3) (4) (5) (6) Nice (7) 

Irritating (1) (2) (3) (4) (5) (6) Likeable (7) 

Undesirable (1)  (2) (3) (4) (5) (6) Desirable (7) 

 
2 The interven*on message is just illustrated for the high incen*ves group, but the other messages can be 
found in the paper. 



Part 2 

The following questions are about your mobility behavior and vehicle usage.  

 

Which of those transportation means cover currently the most of your mobility needs?  

Please select 1-3 answers that apply to you.  

o Electric vehicle  

o Plug-in hybrid  

o Combustion engine vehicle  

o Public transport  

o Bicycle  

o Other: 

 

How often do you drive an electric vehicle*?  

Please select the answer that applies to you.  

*Electric vehicles (EVs) are vehicles that are electrically powered (only fully battery-powered vehicles 
are considered in this study). They use electric motors for propulsion, which are powered by a battery.  

o Never  

o Once or twice a year  

o Once or twice a month  

o Once or twice a week  

o Many times a week  

o Every day  

o Many times a day  

 

How many vehicles does your household own?  

o 0 

o 1 

o 2 

o 3 

o 4 

o 5 

o 6 

o 7 

o 8 

o 9 

o 10 

 



How many of all your vehicles are electric vehicles?  

o 0 

o 1 

o 2 

o 3 

o 4 

o 5 

o 6 

 

How many people in your household have a driving licence?  

o 0 

o 1 

o 2 

o 3 

o 4 

o 5 

o 6 

o 7 

o 8 

o 9 

o 10 

 

Please indicate how many kilometres on average you daily drive your vehicle. (in km)  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Part 3 
The following questions are about your electric vehicle usage.  

 

The electric vehicle I am using is ...  

o a bought EV 

o a leased EV 

o a company EV 

o Other: 

 

How many kilometres can your electric vehicle roughly drive in electric mode? (in km)  

 

 

 

What is the battery capacity of your electric vehicle in kWh? (in kWh)  

 

 

 

Please indicate how many kilometres on average you daily drive your electric vehicle. (in km)  

 

 

 

For how long is your electric vehicle standing at home on average on a weekday? (in hours)  

(participants can select a value between 0-24h) 

 

For how long is your electric vehicle standing at home on average on a weekend day? (in hours)  

(participants can select a value between 0-24h) 

 

Where do you mostly charge your electric vehicle?  

o At home  

o At work  

o At a public charging station  

o At commercial places  

o Other: 

  



Part 4 
In the following, we ask you for your reasons to drive an electric vehicle. Your answers should reflect 
you personally and should not reflect any ideal case from your point of view. Please note that there are 
no right and wrong answers.  

For each statement, please indicate how much you disagree or agree.  

 

I drive an electric vehicle, because ...  

 Strongly 
disagree 

Disagree Some-
what 

disagree 

Neither 
agree 
nor 

disagree 

Some-
what 
agree 

Agree 

 

Strongly 
agree 

it is comfortable to 
drive due to its 
silent motor.  

       

it is easy to drive 
(e.g. no changing 
of the gears).  

       

it is fun to drive 
due to its quick 
acceleration.  

       

I like to try new 
technologies.  

       

I can be part of the 
sustainability 
movement.  

       

it is healthier due to 
lack of fumes and 
pollution.  

       

I can be 
environmentally 
friendly. it helps 
me spend less on 
fuel.  

       

it gives me 
governmental 
incentives (e.g. no 
taxes, no tolls, free 
parking spaces).  

       

considering all 
costs, it is cheaper 
for me than driving 
conventional cars.  

       

it helps me show 
others my personal 
values. it makes me 
feel proud. it is part 

       



of my identity. I am 
judged favourably 
by others.  

it gives me 
governmental 
incentives (e.g. no 
taxes, no tolls, free 
parking spaces).  

       

considering all 
costs, it is cheaper 
for me than driving 
conventional cars.  

       

it helps me show 
others my personal 
values. it makes me 
feel proud. it is part 
of my identity. I am 
judged favourably 
by others.  

       

it makes me feel 
proud. it is part of 
my identity.  

       

I am judged 
favourably by 
others. 

       

 

Are there other important reasons why you drive an electric vehicle?  

If yes, please feel free to share them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



In the following, you see statements about environmental concerns and on the role of risk in life. Your 
answers should reflect you personally and should not reflect any ideal case from your point of view. 
There are no right and wrong answers.  

For each statement, please indicate how much you disagree or agree.  

 Strongly 
disagree 

Disagree Some-
what 

disagree 

Neither 
agree nor 
disagree 

Somewh
at agree 

Agree 

 

Strongly 
agree 

Humans are 
severely 
abusing the 
environment.  

       

Despite our 
special abilities 
humans are 
still subject to 
the laws of 
nature.  

       

The earth is 
like a 
spaceship with 
very limited 
room and 
resources.  

       

The balance of 
nature is very 
delicate and 
easily upset.  

       

If things 
continue on 
their present 
course, we will 
soon 
experience a 
major 
ecological 
catastrophe.  

       

 

 Strongly 
disagree 

Disagree Some-
what 

disagree 

Neither 
agree nor 
disagree 

Some-
what 
agree 

Agree 

 

Strongly 
agree 

I do not feel 
comfortable 
about taking 
chances.  

       

I prefer 
situations that 
have 
foreseeable 
outcomes.  

       



Before I make 
a decision, I 
like to be 
absolutely sure 
how things 
will turn out.  

       

I avoid 
situations that 
have uncertain 
outcomes.  

       

I feel 
comfortable 
improvising in 
new situations.  

       

I feel nervous 
when I have to 
make 
decisions in 
uncertain 
situations.  

       

 

  



Part 5 
In this last part of this survey, we would like to ask you to provide some personal information. 
Your information will be kept anonymous and strictly confidential. However, this Information is 
important for our research.  
 

What is your gender?  

o Male  

o Female  

o Transgender Female  

o Transgender Male  

o Gender Variant/ Non-Conforming  

o Prefer not to disclose  

o Other: 

 

How old are you? (in years)  

(Participants can select a value between 18-100) 

 

What is your nationality?  

Please name the country or countries that apply. If you have several nationalities, please select the last 
option (other) and specify.  

(Participants can select their nationalit(y)/(ies) out of a list of all nationalities) 

 

Which highest degree of education do you have?  

o No school diploma  

o Some high school  

o Highschool/ GED 

o Some college  

o Associates' degree  

o Bachelor's degree  

o Master's degree  

o Doctoral degree  

o Other: 
 

What is your current occupation?  

o Working professional (full-time)  

o Working professional (part-time)  

o Student Pensioner  

o Housewife/ househusband  



o Unemployed  

o Other: 

 

To which of the following industries is/ was your work or study field primarily related?  

o Business, consultancy or management  

o Accountancy, banking or finance  

o Charity and voluntary work  

o Creative arts or design  

o Energy and utilities  

o Engineering or manufacturing  

o Environment or agriculture  

o Healthcare  

o Hospitality or events  

o Computing or IT 

o Law  

o Law enforcement and security  

o Leisure, sport or tourism  

o Marketing, advertising or PR  

o Media or digital  

o Property or construction  

o Public services or administration  

o Recruitment or HR  

o Retail  

o Sales  

o Science or pharmaceuticals  

o Social care  

o Teacher training or education  

o Transport or logistics  

o Other  

 

What is your monthly net income?  

o less than 1000 €  

o 1000-2999 €  

o 3000-4999 €  

o 5000-6999 €  

o 7000-8999 €  

o ≥ 9000 €  



In which country do you live?  

(Participants could choose between all possible countries) 

 

Do you feel that this survey has changed your attitude towards the topic of electric vehicles 
charging?  

 Strongly 
disagree 

Disagree Somewh
at 

disagree 

Neither 
agree nor 
disagree 

Somewh
at agree 

Agree 

 

Strongly 
agree 

This survey has 
changed my 
attitude towards 
the topic of 
electric vehicles 
charging.  

       

 

Thank you for your participation in this study.  

In the following, you are invited to read information about the background and aim of this study. If you 
want to participate in the lottery, you can enter your email address in the next comment field. You can 
also indicate whether you would like to take part in two more of our surveys on smart charging in the 
future.  
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Abstract 
Smart charging has the potential to shift peak load to times of lower demand, which 
better exploits renewable generation and enhances grid resilience. For increased 
effectiveness, smart charging requires access to data that consumers might be hesitant to 
share. To explore which data consumers would share and which factors influence this 
decision, we adopt the Barth and de Jong’s risk-benefit calculation framework to smart 
charging and conduct an online-survey (n = 479). We find that most respondents who 
would share charging details with a smart charging application, are ambivalent about 
location data and would never share calendar details. When presented with concrete 
monetary rewards, participants lose their initial reservations and would share all data 
for an amount dependent on the data’s sensitivity. Thus, our study contributes to research 
on the privacy paradox by highlighting the importance of calculations between perceived 
risks and benefits for the decision to share data.  

Keywords:  Smart charging, consumer data, data sharing, privacy concerns, monetary 
incentives 

Introduction 
The use of electric vehicles (EVs) has increased rapidly in recent years. Governmental incentive schemes 
and sales bans on combustion vehicles will likely bolster this trend (Shepardson et al., 2021). What appears 
at first glance to be a big step towards more sustainability also puts tremendous pressure on the energy grid 
(IEA, 2022). Managing thousands of simultaneous EV charging events combined with regular peaks in 
electricity consumption and volatility of renewable energy sources (RES) could strain the grid and threaten 
energy security (Papaefthymiou et al., 2018). However, if EVs are charged in a controlled manner, i.e., 
through smart charging, they could instead become a flexible asset and support grid stability. Smart 
charging means that energy providers can optimally adjust the EV charging schedule in response to power 
system signals (e.g., RES generation) while meeting user requirements (IRENA, 2019). 
To fully exploit the flexibility potential of EVs and implement smart charging, it is imperative for energy 
providers to understand the charging patterns of EVs. Understanding and accurately predicting these 
charging patterns helps energy providers tailor their services to individual EV users and support grid 
resilience. Charging patterns typically manifest for different types of data: Historical charging behavior and 
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smartphone location data will help predict future charging behavior. Data linked to a person's schedule 
(e.g., via a calendar) can be even more accurate and helpful to optimize EV charging. Advances in pattern 
prediction may further automate smart charging so EV users become less involved.  
Despite the advantages of accurate charging pattern prediction, consumers might be reluctant to share their 
data due to privacy concerns (Aloise-Young et al., 2021; Barth et al., 2019; Smith, 2008; Smith et al., 2011). 
They fear losing control of who has access to and can use their data (Cichy et al., 2021). At the same time, 
consumers readily share data in online contexts, such as social media or e-commerce, sometimes forgetting 
their initial concerns about data privacy (Chakraborty et al., 2013; Kokolakis, 2017). This ambiguous 
relationship between privacy and data sharing is often termed as the ‘privacy paradox’ and is a well-
researched phenomenon (Buckman et al., 2019; Kim et al., 2019; Wu et al., 2020). Moreover, studies on 
social-hedonic and financial rewards have indicated that risk-taking behavior, such as excessive private 
data sharing, depends on the ratio of perceived benefits versus perceived risks (Turel, 2021).  
Most privacy paradox studies focus on the active sharing of information with an online service provider. 
However, the findings of these studies may not be fully applicable in the context of smart charging. Cichy 
et al. (2021) argue in their research on data sharing for connected cars, which – much like location data 
sharing for smart charging – relies on IoT devices, that common data sharing reservations in online service 
contexts may not apply to IoT devices. “IoT devices (1) tend to be ‘always on’ and generate continuous data 
streams, (2) give users little or no power to control the data flows, (3) require unrestricted data access to 
fully function, and (4) invade users’ virtual and physical space given the increasingly powerful actuators—
components that transform electric impulses into physical actions—they are equipped with” (p. 1864).  
These four characteristics distinguish data sharing mechanisms of IoT and connected cars from data 
sharing mechanisms in online contexts, such as social media and e-commerce (Cichy et al., 2021). For 
example, sharing data on social media or online shopping does not typically require a user’s current location 
or access to their calendars. Thus, smart charging comes with different privacy concerns than social media 
or online shopping.  

Since most observations focus on the privacy paradox in e-commerce and social media interactions, there 
is a need to investigate factors influencing the readiness to share data in an IoT context, such as smart 
charging. Although studies have highlighted the importance of sensitive data for smart charging (Bhusal et 
al., 2021; Habbak et al., 2022), we just found one study that examined whether privacy concerns, perceived 
risks, and potential environmental benefits influence data sharing with EVs (Alotaibi et al., 2023). The 
study explored the general data sharing behavior for different EV services. Still, it does not elaborate on the 
readiness to share data for smart charging nor does it say anything about the sharing behavior of different 
data types with varying degrees of sensitivity. The study also did not investigate whether people would be 
more willing to share their personal information when presented with some form of monetary 
compensation (Hirschprung et al., 2016; Wagner et al., 2018). The relevance of monetary compensation to 
balance perceived risks is well known from financial economics (e.g., Caraco et al. 1980; Payne et al. 2017), 
so our study aims to explore its applicability to data sharing with a smart charging application. We therefore 
asked the following research questions:  
RQ1: What data types do individuals intend to share for smart charging?  
RQ2: Which factors impact individual’s intention to share data with their smart charging application? 

RQ3: How much does the monetary incentive need to be for individuals to share different data types for 
smart charging?  
We conducted a large-scale survey to answer our research questions. For RQ1, we explored which data types 
participants would be most comfortable sharing to enable smart charging. For this evaluation, we included 
three different types of data (charging history, smartphone location, calendar data). Each of these data types 
came with varying degrees of sensitivity. To answer RQ2, we used the theoretical framework of Barth and 
de Jong (2017), commonly applied in privacy paradox research, which integrated key theories on mobile 
computing. Unlike the thematically related framework of Cichy et al. (2021), the Barth and de Jong (2017) 
framework specifically focuses on data sharing in mobile computing, making it more suitable for our 
context. We also explored attitudes towards data sharing and perceived risks and benefits of using the smart 
charging application, building on theories like foraging and risk sensitivity (Turel, 2021). We additionally 
assessed data sharing habits and their effect on participants’ data sharing intentions. To evaluate the impact 
of monetary incentives, we introduced an experimental setting to our survey with one experimental and 
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one control group. To answer RQ3, we explored the amount participants would request from the energy 
provider for sharing data with varying degrees of sensitivity. Answering these research questions 
contributes to both theory and practice. 
Our contributions are three-fold. First, we apply the framework of Barth and de Jong to the context of smart 
charging. We add to this framework by investigating data sharing behavior for data with varying degrees of 
sensitivity. Specifically, we look into the differences between moderately and highly sensitive data and how 
far the framework would still apply. Second, we provide a deeper understanding on the trade-off between 
perceived risks and benefits by applying a risk-sensitivity and foraging theory perspective. Third, we 
demonstrate the effect of monetary rewards on data sharing behavior, even for highly sensitive data.  
The rest of the paper is structured as follows. The theoretical background elaborates on smart charging and 
the role of data, Barth and de Jong's (2017) theoretical framework and a short introduction to risk-
sensitivity and foraging theory. In the third section, we describe our method, data collection, and analysis. 
In the fourth section, we present the findings of our SEM and the calculation of monetary incentives. In the 
fifth section, we critically discuss our findings, elaborate on our theoretical and practical contributions, and 
outline related limitations. We conclude with a summary of our study.  

Theoretical Background 

Smart charging and the role of data 

Adapting the charging behavior of EVs in response to the power system signals whilst considering the user 
requirements is known as smart charging (IRENA, 2019). Smart charging algorithms help shift the EV 
charging process to low-demand periods, drastically reducing the need for additional generation capacities 
(Pawlowski & Dinther, 2020; Schmidt & Busse, 2013). Moreover, EV charging can be synchronized to the 
availability of energy from RES to reduce grid imbalances due to generation peaks and simultaneously 
maximize RES consumption (Eldeeb et al., 2018; van der Meer et al., 2018). To best leverage the potential 
of smart charging solutions, it is vital to accurately predict the flexibility provided by each EV. Flexibility in 
the context of smart charging describes the amount of energy that the energy provider can shift until the 
EV battery has reached the desired percentage within the indicated parking time (Develder et al., 2016; 
Guthoff et al., 2021; Saxena et al., 2015). Practitioners typically use mobility data (e.g., arrival time, 
departure time, distance traveled), charging requests (e.g., energy required at the departure time), EV 
specifications (e.g., battery capacity and maximum charging power) to calculate the flexibility (Daina et al., 
2017; Fridgen et al., 2014).  
For smart charging solutions to function efficiently, they require bidirectional data exchange between EV 
users and the energy provider. This data exchange comes with two obstacles: First, regulations, such as the 
GDPR (General Data Protection Regulations in Europe), require a high degree of user privacy, complicating 
the collection of relevant data. Second, users are often cautious when sharing sensitive data (Strüker & 
Kerschbaum, 2012). 
There are a variety of technical and sociotechnical measures to overcome these obstacles. Studies on 
technical measures aim to increase privacy by design without impeding access to (relevant) data (Teng et 
al., 2022). Examples of such privacy measures are differential privacy (Fernández et al., 2022), 
homomorphic encryption (Teng et al., 2022), and distributed learning techniques (McMahan et al., 2017). 
These measures can also be leveraged for smart charging to improve confidence in the data sharing process. 
They are, however, not subject to this paper. 
Sociotechnical measures typically support the acceptance of data sharing. Although sociotechnical 
measures have already been established in other contexts, they have not been tested for the acceptance of 
data sharing in smart charging. Monetary incentives are a prominent sociotechnical measure influencing 
users’ intention to share data in various contexts. Thus, we also investigated their effect in our study along 
with the type of data people would share with the smart charging application and the factors influencing 
this decision. 
We ground our investigations in the rational risk-benefit calculation framework (Barth and Jong, 2017) and 
make links to IS theories on risk-sensitivity and the privacy paradox. Based on these theories, we derive our 
hypotheses and research model. 
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Rational risk-benefit calculation framework (Barth and de Jong, 2017) 

Our study is grounded in the theoretical framework of Barth and de Jong (2017), which is related to the 
privacy paradox, which describes the contradictory behavior of individuals who express concerns about 
privacy but often share their data freely. Barth and de Jong (2017) aimed to uncover the factors behind this 
paradox. They summarize and explain theories of private information sharing with mobile apps. They 
differentiated between rational and biased decision-making theories in the absence or presence of risk 
factors and consolidated these ideas in a theoretical framework. Barth and de Jong’s framework was 
referred to in different contexts as health technologies (Fox, 2020) and e-commerce (Kolotylo-Kulkarni et 
al., 2021). Unlike social media and mobile apps, the privacy paradox hasn't been explored in smart charging, 
so we applied their rational decision-making framework to this context.  

According to the rational decision making framework (Barth & de Jong, 2017), individuals choose the 
option with the greatest benefits. Attitudes towards information disclosure affect context factors and 
ultimately influence the readiness to disclose certain information. These attitudes can be privacy concerns, 
general (institutional) trust, or personality traits. Context factors encompass situational factors or 
individual and environmental characteristics. Individuals weigh perceived risks against perceived benefits, 
which affects their disclosure intentions and actions. While Barth and de Jong (2017) tie together multiple 
literature streams to elaborate on risk-benefit calculations, the perspective introduced by risk sensitivity 
and foraging theory might suit the context of smart charging. These theories include factors such as esteem 
and self-actualization that may present interesting angles of explanations for our observations in the users' 
strive to optimize their gains (Turel, 2021). 

Risk sensitivity theory and foraging theory in information systems  

The assessment of perceived risks and benefits is also at the core of two theories adapted from behavioral 
biology. Foraging theory suggests that individuals aim to maximize their benefits while considering the 
dangers of the activities involved in receiving the benefits (Payne et al., 2017; Stephens & Charnov, 1982). 
They typically base their decision-making on assessing one particular problem, a ‘currency’ by which they 
decide between options, and considering external and internal constraints (Stephens & Krebs, 1986).  
Risk sensitivity theory (RST) extends foraging theory by adding flexibility to the interplay between internal 
and external motivators and constraints. Suppose that perceived benefits, for instance, social-hedonic 
rewards for displaying ‘green’ behavior in smart charging, outweigh the perceived risks, such as sharing 
personal data to maximize energy flexibility. In that case, the reward-utility curve may switch from risk 
averse to risk prone (Mishra & Fiddick, 2012). Thus, people may share sensitive data in high-risk high-
reward contexts (Caraco et al., 1980). 
Turel (2021) has only recently adapted both theories to analyze technology-mediated dangerous behaviors. 
More specifically, he explored the role of social-hedonic rewards on risk-taking in social media contexts and 
found significant overlap with foraging behavior. Such behavior depends on several external and internal 
context factors that influence the risk proneness and, dependent on their expression, may drive risk-shifting 
(Cartar, 1991). That is, the relationship between perceived risks and benefits fluctuates, highly dependent 
on the information provided (Turel, 2021). The level of provided information is also crucial for privacy 
considerations, especially in the context of smart charging. – where the use of data is unclear for EV users.  

Development of hypotheses and research model 

In the following section, we describe the development of our hypotheses derived from the literature. Figure 
1 illustrates our research model and hypotheses. As noted earlier, attitudes towards disclosure of 
information play a crucial role in shaping the decision-making context and, consequently on the perception 
of risks and benefits (Barth & de Jong, 2017). Such attitudes can encompass general privacy awareness and 
trust towards the provider who manages the smart charging application. People who are generally more 
concerned about how their data are handled tend to perceive greater risks and have higher levels of risk 
awareness (Fortes et al., 2017; Van Slyke et al., 2006). Thus, we propose the following hypothesis: 

H1a: Privacy awareness is positively related to perceived risks with the smart charging application. 
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An energy provider typically controls smart charging applications. The level of trust people have in their 
energy provider can significantly impact their perception of smart charging applications (Utz et al., 2023). 
Studies conducted in various areas, such as IoT and e-commerce, suggest that lower trust in the service 
provider leads to greater perceived privacy risks (Kim et al., 2019; Kim et al., 2008). This concept could be 
applied to smart charging applications since consumers would have a more direct relationship with their 
energy provider than with other online service providers. Thus, we hypothesize the following: 
H1b: Trust in the energy provider is negatively related to perceived risks with the smart charging 
application.  

If people’s trust in their energy provider influences the perceived risks of smart charging applications, it can 
also affect the perceived benefits. Such benefits could encompass the optimal use of sustainable energy, 
contributing to stable and sustainable grid infrastructure, and reduced charging costs (Brey et al., 2021). 
Individuals who have built experience-based trust in their energy provider may perceive the potential 
benefits of the smart charging application more strongly (Utz et al., 2023). In the study by Söllner et al. 
(2016), trust in the application provider predicted the perceived usefulness of an application. Thus, we 
formulate the following hypothesis: 
H1c: Trust in the energy provider is positively related to perceived benefits with the smart charging 
application.  

Research indicates that prior behavior can be a reliable indicator of future behavior (Ouellette & Wood, 
1998). In an experimental setting, Söllner et al. (2022) demonstrated that habitual use of an application 
positively influences continuous information system (IS) use. Such IS usage habits might also extend to 
data sharing habits. Barth and de Jong (2017) included this in their model as an antecedent for data sharing. 
For this reason, we suggest the following hypothesis: 

H2: Prior data-sharing habits are positively related to the intention to share data for smart charging.  
According to the framework of Barth and de Jong (2017), attitudes influence the intention to share data and 
resulting data sharing behavior (Theory of Reasoned Action/ Theory of Planned Behavior, Ajzen, 1985; 
Ajzen and Fishbein, 1980). Data sharing is often considered risky, as some personal data are sensitive. In 
the context of smart charging, different data types, such as charging history, smartphone location, and 
calendar data, can help identify behavioral patterns and create user profiles. We want to determine which 
types of data individuals would share with a smart charging application.  
Data sharing decisions typically depend on evaluating risks against potential benefits (Privacy calculus 
theory, Culnan and Armstrong, 1999). In the context of smart charging, violation of user privacy could be 
the greatest perceived risks (Bailey & Axsen, 2015), along with the fear that personal data are used for 
purposes beyond smart charging (Xu et al., 2012). According to risk-benefit calculation theories, such as 
privacy calculus theory (Culnan & Armstrong, 1999) or risk-sensitivity theory (Mishra & Fiddick, 2012), the 
perceived risks and benefits of the smart charging application will influence the intention to share data. 
According to Alotaibi et al. (2023), the privacy calculus is also crucial to explain data sharing with EV 
services. Based on this, we formulate the following hypotheses: 

H3: (H3a) Perceived risks are negatively, and (H3b) perceived benefits are positively related to the 
intention to share data for smart charging.  
The theoretical framework of Barth and Jong (2017) assumes that contextual factors can influence decision 
making. In this study, we focus on two contextual factors: The desired level of automation of the smart 
charging application and monetary incentives. Some studies, for instance, Xu et al. (2008), have treated 
these factors as inherent benefits of data sharing. We did not include automation as a benefit, as it is unclear 
if it will become the norm. Instead, we explore the desired level of automation as a variable and its effect on 
the intention to share data.  
Resource exchange theory suggests that users are willing to share some of their data in exchange for services 
(Donnenwerth & Foa, 1974; Foa, 1971). Services can be personalized and automated (Shah, 2015), or come 
in the form of monetary rewards. However, to increase service automation, the smart charging application 
requires more data that users who want automation should be willing to share. This assumption is 
supported by Kim et al. (2019), who found that people share their data for better personalized services 
without considering privacy risks. Thus, we hypothesize the following.  



 Data Sharing for Smart Charging of EVs 

 Forty-Fourth International Conference on Information Systems, Hyderabad 2023
 6 

H4: The desired app automation is positively related to the intention to share data for smart charging.  
We consider monetary incentives as both a context factor and a benefit of smart charging. This approach 
enables us to test how monetary incentives impact data sharing. Previous studies indicated that privacy 
comes at a cost with different ‘price tags’ depending on the sensitivity of shared data (Hirschprung et al., 
2016) or the context in which the data are shared (Acquisti et al., 2013).  

Other immaterial rewards could also play a role, such as increased user convenience or social-hedonic 
rewards (Turel, 2021). They are, however, difficult to measure in this context and may have different effects 
on the readiness to share data. Social-hedonic rewards, for instance, could backfire if users’ social network 
criticizes their readiness to share important data for smart charging instead of applauding their 
contribution to the environment. Thus, we focus primarily on material rewards whose use is established in 
the literature (Acquisti et al., 2013; Hirschprung et al., 2016). Monetary rewards have also been proven to 
be effective in related contexts, such as the general acceptance of smart charging (Kramer & Petzoldt, 2022; 
Wong et al., 2023). They might effectively encourage data sharing (Cichy et al., 2021). We thus propose the 
following hypothesis: 

H5: Participants who receive monetary incentives have a higher intention to share data for smart 
charging than participants who do not. 

 
 
 
 

Figure 1. Representation of the hypotheses and research model 

Methods 
Before conducting the survey, we did a pre-test survey with 20 participants. We included a comment section 
in the survey to receive impromptu feedback from our pilot group. Feedback primarily concerned the 
complexity of questions and statements. We changed the survey accordingly and submitted the final draft 
to the university’s ethics committee. After receiving approval from the ethics committee, we started 
disseminating the survey. Our goal was to get a sample of EV and non-EV users. To achieve this, we 
distributed the survey widely, including social media and EV user forums, as well as to prolific academics. 
The survey, which included a questionnaire and a related experiment, was available in English and German. 
It took about 10-15 minutes to complete the survey.  
At the beginning of the survey, we asked participants if they were smartphone users. If they answered “Yes”, 
they received questions about their data sharing habits, such as how many apps they use a month and how 
many continuously track their location. We measured data sharing habits, as people have many smartphone 
applications that require location sharing. Additionally, participants rated their familiarity with smart 
charging on a scale from 1 “not familiar at all” to 7 “extremely familiar”. Regardless of their answer, they 
received a short explanation of smart charging, including potential benefits and requirements. In this way, 
we wanted to ensure they can make informed decisions when answering our survey. 

Participants also received information on how sharing certain data can help the application become more 
automated and tailored to the charging patterns of users. We assure them that the data would only be shared 
with the energy provider and not transferred to a third party. Once they finished reading, participants rated 
the importance of three proposed benefits – facilitating an optimal use of sustainable energy, contributing 
to a stable energy grid, and reducing charging costs – when using the smart charging application (Brey et 
al., 2014). They also replied to items on perceived risks during usage (Secondary use of personnel 
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information by Xu et al., 2012) and answered a related attention question. Participants responded to 
partially adapted scales on privacy awareness (Ponnurangam  Kumaraguru & Cranor, 2005), and trust in 
the energy provider (Döbelt et al., 2015). They indicated their agreement to the respective items on a 7-
point Likert scale (1 “Strongly disagree” – 7 – “Strongly agree”).  
The participants continued with a hypothetical smart charging scenario. They saw a screenshotted mock-
up of the smart charging application, which depicted the charging preferences. They selected their 
preferences by responding to three questions written below the mock-up. These questions inquired about 
the state of charge (SOC) at arrival, desired SOC at departure, and parking duration. To measure the desired 
level of automation, participants replied to how often they would want to enter such information manually 
(1 “before every trip / settings manually” – 9 “once when installing the app / mostly automated”). 
For the experiment, we randomly assigned participants to the control or experimental group. Participants 
in the experimental group were notified that they could recover some of their electricity costs if they shared 
their data with the application. Participants in the control group did not receive this information. After that, 
we asked all participants which data they would share with the application. They each indicated their 
willingness to share charging times and preferences, smartphone’s location, and full calendar details on a 
7-point Likert scale (1 “Strongly disagree” – 7 – “Strongly agree”). In the experimental group, participants 
also had to imagine that they were frequent drivers with a monthly charging cost of 100 euros. We asked 
them to indicate how much of the total charging costs they wished to be redeemed for sharing each data 
type. They could also choose not to share any data type for money. At the end of the survey, participants 
were informed about the background and purpose of the study and could provide feedback on the survey. 
To honor their participation, they could sign up for a lottery.  
We used structural equation modeling (SEM) to address RQ1 (What data types do individuals intend to 
share?) and answer H1-H5. To calculate the dependent variable, the intention of sharing data, we used a 
standardized mean of the three data sharing items (composite score). To answer RQ2 (Which factors 
impact individual’s intention to share data with their smart charging app?) and RQ3 (How much does the 
monetary incentive need to be for individuals to share different data types?), we analyzed our results 
descriptively. 

Sample 

To determine the necessary sample size for the SEM, we used a sample size calculator (Soper, 2022) based 
on Cohen (2013) and Westland (2010). This analysis indicated that we needed a sample of n = 314 
(considering a medium effect and a power of 0.8) to calculate our model and detect effects. 501 participants 
completed the survey. We eliminated participants (n = 22) for the following reasons: 1) Participants were 
not smartphone users (n = 10), 2) we detected multivariate outliers according to the Mahalonibis statistical 
measure (n = 12) and/or they answered the survey in less than three minutes or had evident response 
patterns for different items (n = 4). We conducted the analysis with 479 participants. 
225 participants (46.97%) were in the experimental group to measure monetary incentives and 254 
(53.03%) were in the control group. Most of the participants identified either as men (55.95%), female 
(40.71%) or diverse (3.34%). They were students (50.31%), worked full time (37.37%), or had other 
occupations (12.32%). Most of the participants had a master’s (44.05%), a bachelor’s (21.71%), or different 
degrees (34.24%). Participants predominantly lived in Luxembourg (50.73%), Germany (33.83%), France 
(6.26%), Belgium (2.71%), and other countries (6.89%). The three main nationalities were German 
(31.11%), Luxembourgish (16.70%), and French (6.26%). The mean age was 31.78 (SD = 13.03). While 
28.18% of participants were EV users and 71.82% were non-EV users, our sample isn't specific to or 
representative of EV users. Our study primarily examines the willingness to share data for smart charging, 
irrespective of personal EV experience. Therefore, both EV and non-EV users can answer the survey in the 
same way. 

Results 
To answer RQ1, we calculated the mean values of the three data sharing variables for the control and 
experimental groups. We measured data sharing with a 7-point Likert scale (1 “Strongly disagree” – 7 – 
“Strongly agree”). Values above 4 indicate that people intend to share these data. The results indicate that 
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the participants are comfortable sharing their charging history and patterns (Exp. Group: M = 5.47, SD 
=1.48, Md = 6 – “agree”, Control group: M = 5.65, SD = 1.28, Md = 6 – “agree”) and their location on the 
smartphone irrespective of monetary incentives (Exp. Group: M = 3.92, SD = 1.95, Md = 4 – “neither agree 
nor disagree”, Control group: M = 4.13, SD = 1.85, Md = 5 – “somewhat agree”). In contrast, participants 
are not comfortable sharing full calendar details (Exp. Group: M = 2.75, SD = 1.86, Md = 2 – “disagree”, 
Control group: M = 2.57, SD = 1.77, Md = 2 – “disagree”).  
To test RQ2 and hypotheses 1-5, we calculated a structural equation model, using the package “Lavaan” for 
“R” (Rosseel, 2012). We checked for the one-dimensionality of the measured items. Each item loaded on its 
respective underlying concept, and all loadings were significant (see Table 1). The scales’ construct 
reliabilities (CR) were good (Hair, 2017), except for the composite score of intention to share data. Due to 
variance in the composite score of intention to share data, we additionally calculated three single SEMs 
with the dependent variables charging history (SEM2), location of the smartphone (SEM3), and calendar 
details (SEM4). 

 Standardized factor loadings 
 SEM1 SEM2 SEM3 SEM4 
 Composite 

score 
Historical 
data 

Location 
data 

Calendar 
data 

Privacy awareness  (CR =.73) (CR = .73) (CR = .73) (CR = .73) 

Consumers have lost all control over how 
personal information is collected and used by 
companies. (inverted)*deleted in the analysis 

    

Most businesses handle the personal 
information they collect about consumers in a 
proper and confidential way. 

.773 .772 .773 .773 

Existing laws and organizational practices 
provide a reasonable level of protection for 
consumer privacy today. 

.740 .740 .740 .740 

Trust Energy provider (CR =.81) (CR = .81) (CR = .81) (CR = .81) 

My consumption data is being managed 
securely by my energy supplier. 

.652 .652 .651 .650 

My energy supplier is billing my consumption 
correctly. 

.757 .757 .757 .756 

I can rely on my energy supplier. .884 .884 .885 .886 

Perceived privacy risks with the 
application  

(CR =.92) (CR = .92) (CR = .92) (CR = 
.92) 

I am concerned that a smart charging app 
may use my personal information for other 
purposes without notifying me or getting my 
authorization. 

.873 .874 .874 .873 

When I give personal information to a smart 
charging app, I am concerned that the app 
may use it for other purposes. 

.910 .908 .910 .910 

I am concerned that a smart charging app 
may share my personal information with 
other entities without getting my 
authorization. 

.876 .878 .875 .876 

Perceived benefits with the application  (CR =.75) (CR = .76) (CR = .76) (CR = .76) 

Facilitating optimal use of sustainable energy .837 .822 .846 .859 
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 Standardized factor loadings 
 SEM1 SEM2 SEM3 SEM4 
 Composite 

score 
Historical 
data 

Location 
data 

Calendar 
data 

Facilitating contribution to a stable energy 
grid 

.689 .700 .685 .677 

Facilitating reduced charging costs .597 .604 .592 .586 

Intention to share data (CR =.63)  

The location of my smartphone .726 

My charging times and preferences .573 

Full details of my calendar (time, subject, 
location, and other details of all items in your 
calendar) 

.508 

Table 1. Scales of the research model with respective factor loadings and composite 
reliability (CR). Note: All factor loadings are statistically significant. 

The fit of the model with the composite score intention to share data as dependent variable suggests that 
the model fits the data (χ2 = 237.598, df = 110, p < .001, Comparative Fit Index [CFI] = .945, Tucker Lewis 
Index [TLI] = .934, Root Mean Square Error of Approximation [RMSEA] = .053, Standardized Root Mean 
Square Residual [SRMR] = .068). Yet, fit indices for the three models with the single data sharing types as 
dependent variables suggest that the separate models fit even better to the data. The fit indices are as 
follows: For charging history and patterns as dependent variable (χ2= 138.965, df = 82, p < .001, CFI = .972, 
TLI = .965, RMSEA = .041, SRMR = .057), for the location of the smartphone (χ2 = 141.326, df = 82, p< 
.001, CFI = .971, TLI = .963, RMSEA = .042, SRMR = .059) and for the calendar details (χ2 = 152.446, df = 
82, p < .001, CFI = .965, TLI = .956, RMSEA = .046, SRMR = .060). Since privacy awareness and trust in 
the energy provider were highly correlated, we tested this correlation in all four models. Table 2 illustrates 
the standardized path coefficients and if the hypotheses could be confirmed or rejected for the four models. 

 Composite 
score  

Historical 
data 

Location 
data 

Calendar 
data 

SEM1 SEM2 SEM3 SEM4 
Standardized path coefficients (t-values) 

H1a: Privacy awareness -> Perceived privacy 
risks app use 

.261*** .430*** .430*** .433*** 

H1b: Trust in energy provider -> Perceived risks 
app use 

-.164** -.163* -.164** -.166** 

H1c: Trust in energy provider -> Perceived 
benefits app use 

.261*** .260*** .255*** .247*** 

H2: Prior location sharing habits -> Intention to 
share data 

.278*** .052  
p = .089 

.153*** .123*** 

H3a: Perceived privacy risks app use -> 
Intention to share data 

-.457*** -.278*** -.277*** -.336*** 

H3b: Perceived benefits app use-> Intention to 
share data 

.339*** .379*** .234*** -.025  
p = .559 

H4: Desired automation of the app -> Intention 
to share data 

.047* -.003 
p = .872 

.055** .014 
p = .452 

H5: Monetary incentives message -> Intention 
to share data 

-.049 
p = .614 

-.081 
p = .321 

-.083 
p =.313 

.149 
p = .079 

Privacy awareness <-> Trust in energy provider -.356*** -.356*** -.356*** -.354*** 
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 Composite 
score  

Historical 
data 

Location 
data 

Calendar 
data 

SEM1 SEM2 SEM3 SEM4 
Standardized path coefficients (t-values) 

Table 2. Empirical evaluation of hypotheses and standardized path coefficients, *p < .05, 
**p < .01, ***p < .001. 

To answer RQ3, we grouped the amount of money participants would need to recover from their charging 
bill to share data. We can interpret the desired amount as percentages since we asked participants to 
imagine that their electricity bill was 100 euros. Figure 2 illustrates the results. The more sensitive the data 
is (from charging history to calendar details), the more reluctant participants are to share their data, and 
the higher the monetary reward participants request. We observed that more than 50% of participants 
would share their data for money for all three data types, 

 
Figure 2. Euros which participants require back to share their data 

We calculated the correlations between demographic variables and our main variables in an exploratory 
analysis. Women were less willing than men to share their calendar data (rSp = -.12, p = .012) and perceived 
more benefits with the smart charging application (rSp = .11, p = .017). Also, increasing age had a direct 
negative effect on the willingness to share location data (r = -.13, p = .005) and a direct positive effect with 
greater trust in their energy provider (r = .13, p = .006).  

Discussion 
Our findings provide food for thought about the applicability of the privacy paradox to smart charging. In 
our answer to RQ1 (What data types do individuals intend to share for smart charging?), we found that 
most people would share their charging history with a smart charging application. Participants are more 
ambivalent about their smartphone location data and are reluctant to share their calendar details. These 
findings are consistent with previous studies on data sharing with websites (Malhotra, 2012; Smith et al., 
2011) and indicate that the readiness to share data decreases with increasing data sensitivity.  
For RQ2 (Which factors impact individual’s intention to share data with their smart charging app?), we 
calculated the structural equation model four times, once with the intention to share data composite score 
(SEM1), the intention to share charging history (SEM2), the intention to share the location of the 
smartphone (SEM3), and the intention to share calendar details (SEM4) as dependent variables. In general, 
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our analysis indicates that Barth and de Jong’s model is also valid in data sharing with a smart charging 
application. However, depending on the sensitivity of the data to be shared, not all factors, especially 
contextual ones, impact the intention to share data.  
For all four models, trust and privacy awareness had a statistically significant negative impact on perceived 
risks and a positive effect on perceived benefits. That is, people who trusted their energy provider perceived 
fewer risks and more benefits with the smart charging application. While the role of institution-based trust 
is well-researched for customer loyalty (Utz et al., 2023) and e-commerce (McKnight & Choudhury, 2006), 
it also appears to play an important role for the readiness to share sensitive data with a service provider. 
Furthermore, people with greater awareness of privacy perceived greater risks. The general perception of 
greater risks in a data sharing context highlights the importance of information on data use and full 
transparency. This is in line with findings on risk-taking behavior, which show that the information 
available to individuals has a significant influence on their risk behavior (Turel, 2021). 
For SEM1-3, perceived risks had a negative influence, and perceived benefits had a significant positive 
impact on the general intention to share data. These results align with the risk-benefit calculation since 
perceived benefits are often weighed against the risk probability. The higher the benefits, the easier it is to 
level perceived risks (Barth & de Jong, 2017; Culnan & Armstrong, 1999). However, for calendar data 
(SEM4), the perceived benefits of the smart charging application did not influence the intention to share 
data. They were insufficient to push the curve from high-risk low-benefit to high-risk high-benefit, which 
encouraged risk-averse behavior (Turel, 2021). The perceived risk of sharing sensitive data outweighed the 
perceived benefits of personalized charging, which has created a negative reward-utility balance and 
triggered risk averse behavior (Turel, 2021). These explanations from risk-sensitivity and foraging theory 
explicate risk-benefit calculations of Barth and de Jong’s (2017) framework, wherein users refrain from 
sharing data when the risk probability is unfavorable. However, the underscoring of perceived benefits as 
opposed to the perceived risks of sharing sensitive data for smart charging can have significant implications 
for the design of smart charging applications. Either users enter their charging preferences for every 
charging event, which will be inconvenient, or smart charging will be limited. The success of smart charging 
depends on the ability to collect and analyze data to optimize charging processes. 
Prior location-sharing habits had a statistically significant impact on the intention to share data for the 
composite score (SEM1), location data (SEM3), and calendar data (SEM4) but not for charging history 
(SEM2). This finding aligns with research on data sharing habits in the context of the privacy paradox 
(Awad & Krishnan, 2006). Despite privacy concerns, people overshare sensitive data on, for instance, social 
media (e.g., Chakraborty et al. 2013). Since experience-based trust might also be extendable to the action 
and not tied exclusively to the institution, people right- or wrongfully assume that sharing  previously 
disclosed data does not carry any substantial risk (McKnight et al., 1998). 

Our analysis of contextual factors demonstrated that the desired automation of the application positively 
influenced the intention to share data for the composite score (SEM1) and location data (SEM3) but not for 
historical data (SEM2) or calendar data (SEM4). This reflects findings from previous research on the 
privacy paradox wherein controlling the terms under which sensitive information is acquired and used was 
a key component of user privacy (Awad & Krishnan, 2006). While automation of data sharing would 
tremendously improve personalization and user experience, users appear reluctant to share such 
information unconditionally.  
Despite the level of desired control, our analysis of RQ3 (How much does the monetary incentive need to 
be for individuals to share different data types for smart charging?) revealed that more than 50% of the 
participants would share all data types (historical data/pattern, location data, calendar data) in exchange 
for money. The more sensitive the data, the higher the expected monetary reward. For charging history 
data, over half of the participants required 20% of their monthly charging costs to be recovered. For the 
location of the smartphone, more than half of the participants wanted 40% of their monthly charging costs 
to be recovered. For calendar details, more than half of the participants required at least 100% of their 
monthly charging costs to be recovered. These findings reflect behavior explained in risk-sensitivity and 
foraging theory. The higher the risk, the higher the required benefits to switch from risk-averse to risk-
prone behavior (Stephens & Charnov, 1982; Stephens & Krebs, 1986). However, the required monetary 
compensation may exceed what electricity companies would be willing to pay for the data.  
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Moreover, the results of RQ3 appear to contradict those of the model. Although the SEM model indicates 
that people would not share their data for money, more than 50% of our participants were willing to share 
all data types when explicitly asked how much (RQ3). However, the desired monetary compensation was 
exceptionally high for sensitive data, which is not always consistent with previous research. Dependending 
on the survey design, previous studies yielded different results: Braghin and Del Vecchio (2017), for 
instance, conducted a study in which only 36% of the participants agreed to share their browsing habits on 
an app for money. In contrast, Barak et al. (2013) conducted a field study asking participants for the amount 
required to share their location data. They found that 80% of the participants would share their location 
data for significant monetary rewards, while 20% would not share their data at all. Wagner et al. (2018) 
reviewed the existing literature on data monetarization and concluded that the monetary value of privacy 
is still unclear. They noted that the value people assign to their private information is generally low and that 
some people would sell data for only a little money. Also, Acquisti et al. (2013) suggest that privacy valuation 
depends on the situation’s context and framing.  

Theoretical and practical implications 

Our research has both theoretical and practical implications. The theoretical implications of our study lie 
in the extension of Barth and de Jong's (2017) theoretical framework for smart charging applications. Since 
Cichy et al. (2021) argue in their study on data sharing for connected cars that common data sharing 
reservations in online service contexts do not apply to IoT devices, we demonstrated that the privacy 
paradox and typical data sharing reservations apply to smart charging applications. Depending on the type 
of data they share, users can decide on the level of personalization with a high level of control over their 
private information (Awad & Krishnan, 2006; McKnight et al., 1998). 

However, the framework does not apply to highly sensitive calendar data. In this case, the perceived benefits 
of the smart charging app had no impact on the intention to share data. This demonstrates the influence of 
behavioral principles from foraging theory and risk-sensitivity on the data sharing intention. More 
specifically, some data carry inherent high-risk characteristics, which cannot be balanced even by high 
perceived rewards from a usability and knowledge perspective (Stephens & Charnov, 1982; Stephens & 
Krebs, 1986). However, findings on the effects of monetary rewards indicate differences in the value of 
rewards. That is, experience-based values, such as usability or convenience, appear less influential than 
material values in the form of concrete monetary rewards. Thus, adding of foraging and risk-sensitivity 
theory principles to the framework enhances Barth and de Jong's (2017) explainability of discrepancies 
between perceived risks and benefits.  
Our findings on the effect of monetary rewards also highlight the importance of the research design to 
reliably catch such tendencies despite self-reporting bias. While undefined monetary rewards did not affect 
the readiness to share data, a direct question on the amount of money for which participants would share 
their data yielded different results. More than 50% of the participants were willing to share all data types. 
Thus, researchers might require more direct questions in their studies on the privacy paradox to reliably 
capture the impact of monetary incentives on data sharing. 
Regarding practical implications, we found that customers are willing to share their data if they receive 
monetary compensation. However, the requested amount is often unrealistically high, especially for 
sensitive data such as calendar and smartphone, and may not be financially attractive to energy providers.  
In addition, we found that perceived risks and benefits of the smart charging app have a significant impact 
on people's willingness to share data. Energy providers should, therefore, ensure that customers are well-
informed about the benefits of their application and the use of data for smart charging to lower perceived 
risks. Explanatory videos might help convey the required information.  
Furthermore, it is a good idea for energy providers to limit data collection to only the essential information 
needed to further optimize the charging process. This approach will help to avoid the unnecessary collection 
of data that may concern users. 
Trust in the energy provider also influences how participants perceive the risks and benefits of the 
application. It is therefore important for energy providers to build trust with their customers. This can be 
done by being transparent about how they collect, process, and use data, or through, for instance, customer 
loyalty programs based on transparency-enhancing technology (e.g. Utz et al. 2023).  
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Limitations and future work 

Our research comes with some limitations. First, we measured the intention to share data but not the actual 
behavior. There may be a gap between intention and actual behavior (Sheeran & Webb, 2016). A field study 
measuring the actual behavior could help us fill the gap but would have to be postponed until smart charging 
is more widely adopted. This is also the reason why we restricted our study to the intention of sharing data. 
Second, we applied the rational decision-making framework to smart charging, which assumes that data 
sharing is rational. However, our decisions are also influenced by biases such as heuristics and situational 
cues (Barth & de Jong, 2017). To meet this limitation, future research could carry out a pilot focusing on 
irrational factors influencing decision-making. 
Third, we asked participants for the amount of money rewards required to share their data. However, this 
self-assessment may not necessarily correspond to the actual values at which they would share their data. 
To overcome this limitation, a randomized experimental study could be conducted to test for how much 
money participants would be willing to share their data.  
Fourth, we need to consider the possibility that our findings may not generalize to other cultural groups. 
Researchers claim that people from individualistic cultures value privacy more and show more privacy-
protective behaviors, while in collectivistic cultures, privacy is less protected (Li, 2022). A cross-cultural 
study would help us evaluate the generalizability of our findings. However, previous cross-cultural studies 
on social networks often did not show differences between individualist and collectivist cultures (Li, 2022).  

Conclusion 
Our research aimed to investigate the types of data individuals would share with a smart charging 
application for EVs, such as charging patterns, smartphone location, and calendar details, and the factors 
influencing their decision. We applied the theoretical framework of Barth and de Jong (2017) and 
conducted a large-scale online survey to explore our hypotheses. We also investigated if participants would 
share their data for monetary rewards and, dependent on the data type, for how much. We used the IS 
theories of the privacy paradox (e.g., Barth and de Jong, 2017), foraging theory, and risk sensitivity theory 
to explore this behavior (e.g., Turel 2021) 
We found that most individuals would share their charging history but would not share more sensitive data, 
such as calendar details. Participants were also ambivalent about sharing the location data. To determine 
which factors influenced the decision to share data, we calculated four SEM models, each with one 
dependent variable – charging details, smartphone location, calendar data – and a composite score of all 
three variables. The perceived risks and benefits of the smart charging application determined the intention 
to share charging details and smartphone location. However, perceived benefits did not influence the 
decision to share sensitive calendar data, while perceived risks had a significant influence.  
Moreover, we discovered that different contextual factors influenced the data sharing decision for different 
data types. For instance, the desired degree of automation, influenced the intention to share location data 
but not the intention to share the charging history and calendar data. Interestingly, proposed monetary 
rewards did not have a significant impact on the intention to share data in any of the SEM models. However, 
when we asked participants from the monetary rewards group how much money they would share their 
data, most participants indicated willingness to share data for a monetary reward. The requested amount 
increased with the sensitivity of the data. Therefore, the energy supplier needs to decide if it is worth paying 
these rewards to get access to relevant data for smart charging. 

Acknowledgements  
This research was funded in part by the Luxembourg National Research Fund (FNR) and PayPal, PEARL 
grant reference 13342933/Gilbert Fridgen. For the purpose of open access, the authors have applied a 
Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript 
version arising from this submission. Additionally, the authors gratefully acknowledge the Fondation 
Enovos under the aegis of the Fondation de Luxembourg in the frame of the philanthropic funding for the 
research project INDUCTIVE which is the initiator of this applied research. We thank Dr. Valerie Graf-
Drasch, Dr. Mohammad Ansarin, and Dr. Michael Schöpf for their input regarding the study design. 



 Data Sharing for Smart Charging of EVs 

 Forty-Fourth International Conference on Information Systems, Hyderabad 2023
 14 

References 
 Acquisti, A., John, L. K., & Loewenstein, G. (2013). What Is privacy worth? The Journal of Legal Studies, 

42(2), 249–274. https://doi.org/10.1086/671754 
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Springer. 
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predictiing social behavior. Prentice-Hall. 
Aloise-Young, P. A., Lurbe, S., Isley, S., Kadavil, R., Suryanarayanan, S., & Christensen, D. (2021). Dirty 

dishes or dirty laundry? Comparing two methods for quantifying American consumers’ preferences 
for load management in a smart home. Energy Research & Social Science, 71, 101781. 
https://doi.org/10.1016/j.erss.2020.101781 

Alotaibi, A. K., Barros, A. P., & Degirmenci, K. (2023). Co-Creating Value from Electric Vehicle Digital 
Services: Effect of Perceived Environmental Performance on Personal Data Sharing. European 
Conference on Information Systems. 

Awad & Krishnan. (2006). The Personalization Privacy Paradox: An Empirical Evaluation of Information 
Transparency and the Willingness to Be Profiled Online for Personalization. MIS Quarterly, 30(1), 13. 
https://doi.org/10.2307/25148715 

Bailey, J., & Axsen, J. (2015). Anticipating PEV buyers’ acceptance of utility controlled charging. 
Transportation Research Part A: Policy and Practice, 82, 29–46. 
https://doi.org/10.1016/j.tra.2015.09.004 

Barak, O., Cohen, G., Gazit, A., & Toch, E. (2013). The price is right?: Economic value of location sharing. 
Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct 
Publication, 891–900. https://doi.org/10.1145/2494091.2497343 

Barth, S., & de Jong, M. D. T. (2017). The privacy paradox – Investigating discrepancies between expressed 
privacy concerns and actual online behavior – A systematic literature review. Telematics and 
Informatics, 34(7), 1038–1058. https://doi.org/10.1016/j.tele.2017.04.013 

Barth, S., de Jong, M. D. T., Junger, M., Hartel, P. H., & Roppelt, J. C. (2019). Putting the privacy paradox 
to the test: Online privacy and security behaviors among users with technical knowledge, privacy 
awareness, and financial resources. Telematics and Informatics, 41, 55–69. 
https://doi.org/10.1016/j.tele.2019.03.003 

Bhusal, N., Gautam, M., & Benidris, M. (2021). Cybersecurity of Electric Vehicle Smart Charging 
Management Systems. 2020 52nd North American Power Symposium (NAPS), 1–6. 
https://doi.org/10.1109/NAPS50074.2021.9449758 

Braghin, C., & Del Vecchio, M. (2017). Is Pokémon GO watching you? A survey on the privacy-awareness 
of location-based apps’ users. 2017 IEEE 41st Annual Computer Software and Applications 
Conference (COMPSAC), 164–169. https://doi.org/10.1109/COMPSAC.2017.158 

Brey, B. de, Gardien, L., & Hiep, E. (2021). Smart charging needs, wants and demands, charging 
experiences and opinions of EV drivers. World Electric Vehicle Journal, 12(4), 168. 
https://doi.org/10.3390/wevj12040168 

Brey, J. J., Brey, R., Contreras, I., & Carazo, A. F. (2014). Roll-out of hydrogen fueling stations in Spain 
through a procedure based on data envelopment analysis. International Journal of Hydrogen 
Energy, 39(8), 4116–4122. https://doi.org/10.1016/j.ijhydene.2013.09.141 

Caraco, T., Martindale, S., & Whittam, T. S. (1980). An empirical demonstration of risk-sensitive foraging 
preferences. Animal Behaviour, 28(3), 820–830. https://doi.org/10.1016/S0003-
3472(80)80142-4 

Cartar, R. V. (1991). A Test of Risk-Sensitive Foraging in Wild Bumble Bees. Ecology, 72(3), 888–895. 
https://doi.org/10.2307/1940590 

Chakraborty, R., Vishik, C., & Rao, H. R. (2013). Privacy preserving actions of older adults on social media: 
Exploring the behavior of opting out of information sharing. Decision Support Systems, 55(4), 948–
956. https://doi.org/10.1016/j.dss.2013.01.004 

Cichy, P., Salge, T. O., & Kohli, R. (2021). Privacy concerns and data sharing in the internet of things: 
Mixed methods evidence from connected cars. MIS Quarterly, 45(4), 1863-1892. 
https://doi.org/10.25300/MISQ/2021/14165 

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge. 
Culnan, M. J., & Armstrong, P. K. (1999). Information privacy concerns, procedural fairness, and 

impersonal trust: An empirical investigation. Organization Science, 10(1), 104–115. 
https://doi.org/10.1287/orsc.10.1.104 



 Data Sharing for Smart Charging of EVs 

 Forty-Fourth International Conference on Information Systems, Hyderabad 2023
 15 

Daina, N., Sivakumar, A., & Polak, J. W. (2017). Modelling electric vehicles use: A survey on the methods. 
Renewable and Sustainable Energy Reviews, 68, 447–460. 
https://doi.org/10.1016/j.rser.2016.10.005 

Develder, C., Sadeghianpourhamami, N., Strobbe, M., & Refa, N. (2016). Quantifying flexibility in EV 
charging as DR potential: Analysis of two real-world data sets. 2016 IEEE International Conference 
on Smart Grid Communications (SmartGridComm), 600–605. 
https://doi.org/10.1109/SmartGridComm.2016.7778827 

Döbelt, S., Jung, M., Busch, M., & Tscheligi, M. (2015). Consumers’ privacy concerns and implications for 
a privacy preserving Smart Grid architecture—Results of an Austrian study. Energy Research & Social 
Science, 9, 137–145. https://doi.org/10.1016/j.erss.2015.08.022 

Donnenwerth, G. V., & Foa, U. G. (1974). Effect of resource class on retaliation to injustice in interpersonal 
exchange. Journal of Personality and Social Psychology, 29(6), 785–793. 
https://doi.org/10.1037/h0036201 

Eldeeb, H. H., Faddel, S., & Mohammed, O. A. (2018). Multi-objective optimization technique for the 
operation of grid tied PV powered EV charging station. Electric Power Systems Research, 164, 201–
211. https://doi.org/10.1016/j.epsr.2018.08.004 

Fernández, J. D., Menci, S. P., Lee, C. M., Rieger, A., & Fridgen, G. (2022). Privacy-preserving federated 
learning for residential short-term load forecasting. Applied Energy, 326, 119915. 
https://doi.org/10.1016/j.apenergy.2022.119915 

Foa, U. G. (1971). Interpersonal and economic resources: Their structure and differential properties offer 
new insight into problems of modern society. Science, 171(3969), 345–351. 
https://doi.org/10.1126/science.171.3969.345 

Fortes, N., Rita, P., & Pagani, M. (2017). The effects of privacy concerns, perceived risk and trust on online 
purchasing behaviour. International Journal of Internet Marketing and Advertising, 11(4), 307. 
https://doi.org/10.1504/IJIMA.2017.087269 

Fox, G. (2020). To protect my health or to protect my health privacy? A mixed-methods investigation of 
the privacy paradox. Journal of the Association for Information Science and Technology, 71(9), 1015–
1029. https://doi.org/10.1002/asi.24369 

Fridgen, G., Mette, P., & Thimmel, M. (2014). The Value of Information Exchange in Electric Vehicle 
Charging. ICIS 2014 Proceedings. 
https://aisel.aisnet.org/icis2014/proceedings/ConferenceTheme/4 

Guthoff, F., Klempp, N., & Hufendiek, K. (2021). Quantification of the Flexibility Potential through Smart 
Charging of Battery Electric Vehicles and the Effects on the Future Electricity Supply System in 
Germany. Energies, 14(9), 2383. https://doi.org/10.3390/en14092383 

Habbak, H., Baza, M., Mahmoud, M. M. E. A., Metwally, K., Mattar, A., & Salama, G. I. (2022). Privacy-
Preserving Charging Coordination Scheme for Smart Power Grids Using a Blockchain. Energies, 
15(23), Article 23. https://doi.org/10.3390/en15238996 

Hair, J. F. (Ed.). (2017). A primer on partial least squares structural equations modeling (PLS-SEM). 
SAGE. 

Hirschprung, R., Toch, E., Bolton, F., & Maimon, O. (2016). A methodology for estimating the value of 
privacy in information disclosure systems. Computers in Human Behavior, 61, 443–453. 
https://doi.org/10.1016/j.chb.2016.03.033 

IEA. (2022). Global EV Outlook 2022 Securing supplies for an electric future (pp. 1–221). 
IRENA. (2019). Innovation Landscape brief: Electric-vehicle smart charging. International Renewable 

Energy Agency (IRENA). https://books.google.lu/books?id=Kh0DEAAAQBAJ 
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic 

commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 
544–564. https://doi.org/10.1016/j.dss.2007.07.001 

Kim, D., Park, K., Park, Y., & Ahn, J.-H. (2019). Willingness to provide personal information: Perspective 
of privacy calculus in IoT services. Computers in Human Behavior, 92, 273–281. 
https://doi.org/10.1016/j.chb.2018.11.022 

Kokolakis, S. (2017). Privacy attitudes and privacy behaviour: A review of current research on the privacy 
paradox phenomenon. Computers & Security, 64, 122–134. 
https://doi.org/10.1016/j.cose.2015.07.002 



 Data Sharing for Smart Charging of EVs 

 Forty-Fourth International Conference on Information Systems, Hyderabad 2023
 16 

Kolotylo-Kulkarni, M., Xia, W., & Dhillon, G. (2021). Information disclosure in e-commerce: A systematic 
review and agenda for future research. Journal of Business Research, 126, 221–238. 
https://doi.org/10.1016/j.jbusres.2020.12.006 

Kramer, J., & Petzoldt, T. (2022). A matter of behavioral cost: Contextual factors and behavioral 
interventions interactively influence pro-environmental charging decisions. Journal of 
Environmental Psychology, 84, 1–9. https://doi.org/10.1016/j.jenvp.2022.101878 

Li, Y. (2022). Cross-cultural privacy differences. In Modern Socio-Technical Perspectives on Privacy (pp. 
267–292). Springer International Publishing Cham. 

Malhotra, P. (2012). Recruitment and Training of Higher Civil Service: A Case for Change. Indian Journal 
of Public Administration, 58(3), 544–551. https://doi.org/10.1177/0019556120120323 

McKnight, D. H., & Choudhury, V. (2006). Distrust and trust in B2C e-commerce: Do they differ? 
Proceedings of the 8th International Conference on Electronic Commerce The New E-Commerce: 
Innovations for Conquering Current Barriers, Obstacles and Limitations to Conducting Successful 
Business on the Internet - ICEC ’06, 482. https://doi.org/10.1145/1151454.1151527 

McKnight, D. H., Cummings, L. L., & Chervany, N. L. (1998). Initial Trust Formation in New 
Organizational Relationships. The Academy of Management Review, 23(3), 473. 
https://doi.org/10.2307/259290 

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. (2017). Communication-Efficient 
Learning of Deep Networks from Decentralized Data. Proceedings of the 20th International 
Conference on Artificial Intelligence and Statistics, 1273–1282. 
https://proceedings.mlr.press/v54/mcmahan17a.html 

Mishra, S., & Fiddick, L. (2012). Beyond gains and losses: The effect of need on risky choice in framed 
decisions. Journal of Personality and Social Psychology, 102(6), 1136–1147. 
https://doi.org/10.1037/a0027855 

Ouellette, J. A., & Wood, W. (1998). Habit and intention in everyday life: The multiple processes by which 
past behavior predicts future behavior. Psychological Bulletin, 124(1), 54–74. 
https://doi.org/10.1037/0033-2909.124.1.54 

Papaefthymiou, G., Haesen, E., & Sach, T. (2018). Power System Flexibility Tracker: Indicators to track 
flexibility progress towards high-RES systems. Renewable Energy, 127, 1026–1035. 
https://doi.org/10.1016/j.renene.2018.04.094 

Pawlowski, T., & Dinther, C. van. (2020). Assessing the Impact of Electric Vehicle Charging Behavior on 
the Distribution Grid. AMCIS 2020 Proceedings. 
https://aisel.aisnet.org/amcis2020/sig_green/sig_green/12 

Payne, B. K., Brown-Iannuzzi, J. L., & Hannay, J. W. (2017). Economic inequality increases risk taking. 
Proceedings of the National Academy of Sciences, 114(18), 4643–4648. 
https://doi.org/10.1073/pnas.1616453114 

Ponnurangam  Kumaraguru, & Cranor, L. Faith. (2005). Privacy indexes: A survey of Westin’s studies. 
1341067 Bytes. https://doi.org/10.1184/R1/6625406.V1 

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical 
Software, 48(2). https://doi.org/10.18637/jss.v048.i02 

Saxena, S., MacDonald, J., Black, D., & Kiliccote, S. (2015). Quantifying the Flexibility for Electric Vehicles 
to Offer Demand Response to Reduce Grid Impacts without Compromising Individual Driver 
Mobility Needs. 2015-01–0304. https://doi.org/10.4271/2015-01-0304 

Schmidt, J., & Busse, S. (2013). The Value of IS to Ensure the Security of Energy Supply – The Case of 
Electric Vehicle Charging. AMCIS 2013 Proceedings. 
https://aisel.aisnet.org/amcis2013/GreenIS/GeneralPresentations/6 

Shah, R. (2015). Do Privacy Concerns Really Change With The Internet of Things? Forbes. 
Sheeran, P., & Webb, T. L. (2016). The Intention-Behavior Gap: The Intention-Behavior Gap. Social and 

Personality Psychology Compass, 10(9), 503–518. https://doi.org/10.1111/spc3.12265 
Shepardson, D., Klayman, B., & Klayman, B. (2021, December 8). U.S. government to end gas-powered 

vehicle purchases by 2035 under Biden order. Reuters. 
https://www.reuters.com/world/us/biden-pledges-end-gas-powered-federal-vehicle-
purchases-by-2035-2021-12-08/ 

Smith, H. J. (2008). Information privacy and its management. MIS Quarterly Executive, 3(4), 6. 
https://aisel.aisnet.org/misqe/vol3/iss4/6 

Smith, H. J., Dinev, T., & Xu, H. (2011). Information privacy research: An interdisciplinary review. MIS 
Quarterly, 35(4), 989–1015. https://doi.org/10.2307/41409970 



 Data Sharing for Smart Charging of EVs 

 Forty-Fourth International Conference on Information Systems, Hyderabad 2023
 17 

Söllner, M., Hoffmann, A., & Leimeister, J. M. (2016). Why different trust relationships matter for 
information systems users. European Journal of Information Systems, 25(3), 274–287. 
https://doi.org/10.1057/ejis.2015.17 

Söllner, M., Mishra, A. N., Becker, J.-M., & Leimeister, J. M. (2022). Use IT again? Dynamic roles of habit, 
intention and their interaction on continued system use by individuals in utilitarian, volitional 
contexts. European Journal of Information Systems, 1–17. 
https://doi.org/10.1080/0960085X.2022.2115949 

Soper, D. S. (2022). A-priori sample size calculator for structural equation models [Software] [Computer 
software]. https://www.danielsoper.com/statcalc 

Stephens, D. V., & Charnov, E. L. (1982). Optimal foraging: Some simple stochastic models. Behavioral 
Ecology and Sociobiology. 

Stephens, D. V., & Krebs, J. R. (1986). Foraging theory (Vol. 6). Princeton university press. 
Strüker, J., & Kerschbaum, F. (2012). From a Barrier to a Bridge: Data-Privacy in Deregulated Smart 

Grids. ICIS 2012 Proceedings. 
https://aisel.aisnet.org/icis2012/proceedings/BreakthroughIdeas/2 

Teng, F., Chhachhi, S., Ge, P., Graham, J., & Gunduz, D. (2022). Balancing privacy and access to smart 
meter data: An Energy Futures Lab briefing paper. Imperial College London. 
https://doi.org/10.25561/96974 

Turel, O. (2021). Technology-Mediated Dangerous Behaviors as Foraging for Social-Hedonic Rewards: 
The Role of Implied Inequality. MIS Quarterly, 45(3), 1249–1286. 
https://doi.org/10.25300/MISQ/2021/16353 

Utz, M., Johanning, S., Roth, T., Bruckner, T., & Strüker, J. (2023). From ambivalence to trust: Using 
blockchain in customer loyalty programs. International Journal of Information Management, 68, 
102496. https://doi.org/10.1016/j.ijinfomgt.2022.102496 

van der Meer, D., Chandra Mouli, G. R., Morales-Espana Mouli, G., Elizondo, L. R., & Bauer, P. (2018). 
Energy Management System With PV Power Forecast to Optimally Charge EVs at the Workplace. 
IEEE Transactions on Industrial Informatics, 14(1), 311–320. 
https://doi.org/10.1109/TII.2016.2634624 

Van Slyke, C., Shim, J. T., Johnson, R., & Jiang, J. J. (2006). Concern for information privacy and online 
consumer purchasing. Journal of the Association for Information Systems, 7(6), 1. 
https://aisel.aisnet.org/jais/vol7/iss6/16 

Wagner, A., Wessels, N., Buxmann, P., & Krasnova, H. (2018). Putting a price tag on personal information-
A literature review. Proceedings of the 51st Hawaii International Conference on System Sciences, 1–
10. 

Westland, J. C. (2010). Lower bounds on sample size in structural equation modeling. Electronic 
Commerce Research and Applications, 9(6), 476–487. 
https://doi.org/10.1016/j.elerap.2010.07.003 

Wong, S. D., Shaheen, S. A., Martin, E., & Uyeki, R. (2023). Do incentives make a difference? 
Understanding smart charging program adoption for electric vehicles. Transportation Research Part 
C: Emerging Technologies, 151, 104123. https://doi.org/10.1016/j.trc.2023.104123 

Xu, H., Gupta, S., Rosson, M. B., & Carroll, J. M. (2012). Measuring mobile users’ concerns for information 
privacy. ICIS 2012 Proceedings, 1–16. 

Xu, H., Rosson, M. B., & Carroll, J. M. (2008). Mobile user’s privacy decision making: Integrating 
economic exchange and social justice perspectives. AMCIS 2008 Proceedings, 1–10. 
https://aisel.aisnet.org/amcis2008/179 

 



Chapter A. Appendix

A.3.4 Research Paper 4 - Impact of Minimum Energy Requirement

on Electric Vehicle Charging Costs on Spot Markets

146



Impact of minimum energy requirement on electric
vehicle charging costs on spot markets

Raviteja Chemudupaty1, Mohammad Ansarin1,2, Ramin Bahmani1, Gilbert Fridgen1, Hanna Marxen1, Ivan Pavić1
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Abstract—Simultaneous charging of electric vehicles (EVs)
increases the peak demand and might lead to higher electricity
prices. This could increase EV charging costs and make EVs
unattractive. Smart charging utilizes the flexibility provided by
EVs and adapts charging behavior in response to the electricity
market price signals. However, some studies indicate users’
reluctance to participate in smart charging programs, as they
perceive the risk of their vehicle not being charged sufficiently at
required times. As a countermeasure, several researchers use the
concept of minimum state of charge (SOCmin). It is the percentage
of the battery up to which the EV is charged uncontrollably at
full power right after it is connected to the charger. Depending on
the users’ SOCmin requirement, there might be an impact on EV
flexibility and subsequently on EV charging costs. We developed a
novel flexibility algorithm which quantifies EV flexibility in terms
of both energy and power as a function of time. To calculate
the EV charging costs, we developed a two-stage scenario-based
stochastic optimization model. Optimization utilizes flexibility
input and minimizes charging costs while participating in both
day-ahead and intraday markets. We found that in most cases
where EVs provide some flexibility, there was no significant
increase in charging costs. However, we observed a 50% increase
in costs when EVs do not provide flexibility. Therefore, EVs
possess high flexibility potential. This flexibility can be provided
almost without any loss of user comfort for high monetary gains.

Index Terms—Electric vehicles, Flexibility, Electricity markets

I. INTRODUCTION

During the last couple of years due to its environmentally
positive effects, we have seen a rapid increase in electric
vehicle (EV) penetration. This trend is expected to continue
in the coming years [1]. However, the introduction of EVs
brings new challenges to the existing power system. When
EVs charge simultaneously, it could lead to an increase in peak
power demand. This could subsequently lead to significant
increase in wholesale market prices [2]. Furthermore, existing
power grid capacities should be increased to prevent the grid
from overloading and voltage issues [3]. All these factors
would increase the costs of electricity procurement, which is
reflected in the user’s bill, making EVs unattractive.

This caveat could be addressed by using demand response
(DR) programs [4]. DR refers to the alteration of user demand
in response to signals coming from the power system. In that
notion, the charging behavior of EVs can be used as flexibility
service where charging adapts to the power system conditions

and to the user mobility requirements. This is commonly
termed as smart charging. The electricity prices are usually
lower during the off-peak periods. Therefore, charging EVs
at lower prices would simultaneously reduce the procurement
costs of energy suppliers and reduce the peak demand.

Several studies have developed optimization models for
smart charging of EVs with the objective to maximize the
revenue of EV aggregator while participating in electricity
markets [5], [6]. To consider uncertainties of electricity market
prices and vehicle availability, [7]–[9] proposed two-stage
stochastic optimization models with objective to maximize the
revenue of EV aggregators. These studies optimally scheduled
EV charging while considering price uncertainty in electricity
markets and different travel patterns for EVs. However, all the
above studies assumed that users would participate in smart
charging programs and thus provide full flexibility throughout
the charging session.

There are some studies that indicate users’ reluctance to
participate in smart charging programs [10], [11]. This is
because users perceive certain risks in smart charging pro-
grams, including fear of losing control and not being charged
sufficiently at the required times. As a countermeasure, several
researchers and practitioners use the concept of SOCmin [12]–
[14]. SOCmin is the percentage of the battery up to which the
EV will be charged in an uncontrolled manner at full power
right after it is connected to the charger. SOCmin plays a large
role in the acceptance of smart charging and counteracting
range anxiety [15]. [15] evaluated the charging costs incurred
for smart charging with this additional user requirement,
i.e. SOCmin, while participating in the German day-ahead
electricity market. We extend their work by considering several
cases with different possible SOCmin values and we evaluate
EV flexibility for each of the cases. Additionally, we evaluate
monetary value of EV flexibility when participating in both
day-ahead and intraday markets. In our paper, we strive to
answer the following research questions:

• RQ1: How does the SOCmin requirement impact the EVs
flexibility potential?

• RQ2: What is the monetary value of EV flexibility
depending on SOCmin when participating in wholesale
electricity spot markets?

To answer RQ 1, we propose a novel flexibility algorithm
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to quantify flexibility. We quantify EV flexibility in terms of
both energy and power as a function of time. This will tell
us the amount of power that can be varied in each timestep
whilst maintaining the required energy level to satisfy user
requirements. To evaluate the flexibility algorithm, we use
synthetic mobility dataset based on German mobility behavior.
We then use this flexibility as an input to our optimization
model to simulate EV charging.

To answer RQ 2, we developed a two-stage scenario-based
stochastic optimization model with the objective to minimize
the charging costs while participating in both day-ahead and
intraday markets. To consider the uncertainty in the intraday
market, we modelled different prices scenarios. We used
German day-ahead and intraday electricity market data to
evaluate our optimization model.

II. MATHEMATICAL FRAMEWORK

In this section, we present the mathematical formulation
used for flexibility algorithm and optimization model used to
optimize the EV charging behavior.

A. Flexibility algorithm

The flexibility provided by an EV varies for each charg-
ing session based on the user charging requirements. These
requirements include Earrival, the energy level of the EV
battery at the time of arrival (tarrival). Edeparture, the energy
that should be transferred to EV by the time of departure
(tdeparture). Eminimum, the energy that should be transferred
to satisfy the SOCmin requirement. The maximum charging
power of EV is PEV,max. As we only consider unidirectional
charging, we can only use Edeparture for flexibility provision.

We only consider the part of EV battery capacity which
offers flexibility, Edeparture, and model the flexibility metrics
- energy and power metrics accordingly. The energy metrics
are minimum energy level (Emin

t ) and maximum energy level
(Emax

t ). The minimum energy level represents the minimum
cumulative energy that must be transferred to the EV at time
t to satisfy the user’s energy requirements. As we assume
a linear charging of the EV, we calculate Emin

t by using
Equation (1), where charging power at time t is Pt. The
charging process to determine Emin

t is divided into three
phases within its plugin duration (Equation (2)). The first
phase is between tarrival and time taken for the minimum
energy transfer, which is tmin. The second phase is between
tmin and tcritical, where tcritical is the time after which the Pt

should be maximum to satisfy the user’s energy requirement.
The third phase is the time between tcritical and tdeparture.
Hence, the Pt in the first phase, second phase, and third phase
are PEV,max, 0, and PEV,max respectively.

Emin
t = Emin

t−1 + Pt ×∆t (1)

Pt =





PEV,max tarrival < t ≤ tmin

0 tmin < t ≤ tcritical

PEV,max tcritical < t ≤ tdeparture
(2)

The maximum energy level (Emax
t ) represents the maximum

cumulative energy that can be transferred to the EV at time
t. As we assume a linear charging of EV, the maximum
energy level at time t , Emax

t is calculated by Equation (3).
The charging process to determine Emin

t is divided into two
phases (Equation (4)). The first phase is between tarrival and
tinstant. tinstant is the time it takes to transfer Edeparture

when charged at full power. The second phase is between
tinstant and tdeparture where there is no energy transfer.
Hence, the charging power in first phase and second phase
is PEV,max and 0 respectively.

Emax
t = Emax

t−1 + Pt ×∆t (3)

Pt =

{
PEV,max tarrival < t ≤ tinst

0 tinst < t ≤ tdeparture
(4)

Fig. 1. Representing EV flexibility in energy vs. time graph.

The minimum and maximum energy levels can be repre-
sented in the energy vs. time graph as illustrated in Figure 1
above. From the Figure 1 it is quite evident that EV does not
provide any flexibility until tmin. The power flexibility metrics
are minimum power (Pmin

t ) and maximum power (Pmax
t ) at

time t. The (Pmin
t ) when there is no flexibility, that is until

tmin, is equal to PEV,max. When EV offers flexibility, from
tmin to tdeparture, (Pmin

t ) is equal to 0. The maximum power
(Pmax

t ) during the whole plugin duration is equal to PEV,max.
The flexibility provided by an EV during its plugin duration

is quantified by using energy (Emin
t , Emax

t ) and power param-
eters (Pmin

t , Pmax
t ). These parameters will convey the amount

of power with which EV can be charged while maintaining
upper and lower limits of cumulative energy transfer.

In our study, we calculate the individual flexibilities of each
EV separately and then aggregate them (i.e, summation of
the flexibility metrics of individual EV) to obtain the aggre-
gated flexibility of all EVs. We represent the corresponding
aggregated energy and power flexibility metrics as Emin,agg

t ,
Emax,agg

t and Pmin,agg
t , Pmax,agg

t . Thus, it represents a
virtual battery with minimum and maximum power and energy
levels.

B. Optimization model
This section presents the mathematical model to minimze

the energy provider’s costs incurred for EV charging. We
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developed a two-stage scenario-based stochastic optimization
model considering the price uncertainty of the intraday market.
To consider intraday price uncertainty, we generate scenarios
for intraday electricity prices first and employ them as opti-
mization input afterwards.

We consider the uncertainty of intraday prices by utilizing
probability density function (PDF) to create scenarios based
on historical data and to model probabilistic nature of intraday
market behavior. We employ normal PDF to generate scenarios
for intraday prices as illustrated in Equation (5) below [16].

PDF (x) = 1/(δ
√
2π) exp(−(x− µ)2/(2δ2 )). (5)

using normal PDF, we generate different scenarios for intraday
price. The value for each scenario and its corresponding prob-
ability are calculated using Equations (6) and (7) respectively:

χx, nx
=

1

ρx, nx

×
(∫ xend, nx

xstart, nx

x.PDF (x) dx

)
,

nx = 1, 2, . . . , Nx

(6)

ρx, nx
=

∫ xend, nx

xstart, nx

PDF (x) dx , nx = 1, 2, . . . , Nx.

(7)
where χx, nx , ρx, nx , and nx are value, probability, and
number of intervals for the scenario x,respectively. In this
paper, we consider 7 intervals illustrating 7 scenarios for
intraday prices of each time period.

The objective function in this paper is to minimize the
costs of energy provider using our two-stage scenario-based
stochastic optimization method. One prominent feature of two-
stage stochastic optimization is the division of decisions in two
stages. The energy provider takes some decisions in the first
stage, and compensates any unfulfilled resource allocation in
the second stage of the optimization. The objective function
used in our paper is illustrated in Equation (8):
∑

t∈T

(PDA
t × cDA

t )∆t+
∑

w∈W

∑

t∈T

ρw × (PRT
t,w × cRT

t,w )∆t.

(8)
The objective function is divided into two parts. The first part
is the total cost of energy provider in day-ahead market in the
optimization period T , and the second part is expected cost of
the energy provider in intraday market under various scenarios,
W . The energy provider purchases the required power from
the day-ahead market in the first stage, and compensates the
rest of the required power based on the occurring scenario
in the second stage. We use the generated scenarios from
the previous section as input for the stochastic optimization.
PDA
t and cDA

t are power purchased from the day-ahead and
day-ahead price, respectively at time t. ρw is the probability
of occurrence of each scenario w. Moreover, PRT

t,w and cRT
t,w

are variable and parameter illustrating the purchased power
from intraday market and intraday market prices at time t for
scenario w.

In the scenario-based stochastic optimization used in this
paper, PDA

t is the same for all the scenarios. Therefore, the

power balance between day-ahead and intraday is attained by
using the Equation (9) below:

PDA
t + PRT

t,w = P agg
t,w ∀ t ∈ T,w ∈ W. (9)

P agg
t,w is the variable for aggregated charging power of EVs,

which is restricted by the connected vehicles to the grid,
illustrated in the Equation (10):

Pmin,agg
t ≤ P

agg

t,w ≤ Pmax,agg
t ∀ t ∈ T ,w ∈ W. (10)

Pmin,agg
t and Pmax,agg

t are inputs from the flexibility algo-
rithm from previous section and are restricting the allowed
charging power for EVs.

In this paper, we assume that all the EVs connected to the
grid create a large virtual battery. This virtual battery can
describe the characteristics of the connected vehicles while
giving a proper understanding for mathematical modeling of
EVs. By aggregating the effect of all connected EVs in Eagg

t,w

variable, Equation (11) can depict the virtual battery energy
balance:

Eagg
t,w = Eagg

t−1,w + P agg
t,w ×∆t− Ecars,disconnected

t

∀ t ∈ T,w ∈ W.
(11)

In this regard, Eagg
t,w is the variable illustrating the energy

capacity of virtual battery which is affected by Eagg
t−1,w, P agg

t,w ,
and Ecars,disconnected

t which are energy capacity of virtual
battery in prior time step, aggregated charging power of EVs
at current time step t for scenario w, and the energy capacity
related to EVs which left their chargers at current time step
t, respectively. Ecars,disconnected

t resulted from the flexibility
calculations and is the same for all scenarios. Moreover, Eagg

t,w

is restricted by the aggregated energy metrics of connected
EVs as illustrated in the following Equation (12):

Emin,agg
t ≤ Eagg

t,w ≤ Emax,agg
t ∀ t ∈ T ,w ∈ W (12)

where Emin,agg
t and Emax,agg

t are minimum and maximum
energy levels of connected EVs, respectively.

III. TESTING AND VALIDATION

A. Datasets

We use existing synthetic mobility data to derive the re-
quired inputs for calculating the EV flexibilities [17]. We
consider mobility data of 1000 EVs with battery capacity
of 75 kWh and max charging power of 7.4 kW. For the
SOCmin values, we generate different cases where all the EV
users chose a specific SOCmin value in each case. The cases
are illustrated in Table I below. We analyze only the home
charging case, with following assumptions 1. all vehicles will
predominantly charge at home, and 2. all vehicles are always
plugged in while parked at home. 3. all vehicles are charged
until 100% SOC is reached or max SOC that can be reached
within parking duration.

Please note that our model results hold, even if users decide
to charge their battery only up to, e.g., 80% of their capacity
to avoid battery degradation. In that case, 100% SOC would
just correspond to 80% of the battery capacity. However, for
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reasons of simplicity, we will not make this distinction in the
following.

TABLE I
EV CASES BASED ON SOCMIN REQUIREMENT

Case Description
0% SOCmin All vehicles offer full flexibility
x% SOCmin All vehicles have SOC minimum requirement of x%

100% SOCmin All vehicles offer zero flexibility (uncontrolled charging)

We used German wholesale electricity market price data
to calculate procurement costs. For day-ahead prices, we use
historical data for January 2020 [18]. We generate scenarios
individually for one day and compile intraday price scenarios
for the whole month. In Figure 2, we illustrate the average
electricity prices of German day-ahead and intraday market of
a typical representative day of January.
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Fig. 2. Average day-ahead and intraday scnearios electricity prices.

B. Results

We calculate EV flexibilities for all the SOCmin cases for
one month using the flexibility algorithm described in Section
II-A. EV flexibilities are timeseries of energy (Emin,agg

t and
Emax,agg

t ) and power (Pmin,agg
t and Pmax,agg

t ) flexibility
metrics. Used timeseries data are for the range of one month
and resolution of 15 minutes.

We model the EV as virtual battery, albeit only with
the possibility of charging. Therefore, the energy metrics -
Emin,agg

t and Emax,agg
t , can be interpreted as minimum and

maximum energy level of the virtual battery at time t. The
power metrics - Pmin,agg

t and Pmax,agg
t , can be interpreted

as minimum and maximum charging capacity of the virtual
battery.

Figure 3 illustrates the average power metrics for a typ-
ical day in month of January. As depicted in Figure 3, the
maximum power curve for all the cases is the same. This
is because maximum power is simply the sum of maximum
charging power of all EVs connected to the charger. The value
of Pmax,agg

t is maximum between midnight and 06:00, which
is basically when the most EVs are connected to the charger.
The Pmin,agg

t is zero when all EVs offer full flexibility at
time t. Therefore, in the 0% SOCmin case the minimum power
curve is always zero. In other SOCmin cases, EVs do not

offer full flexibility until their SOCmin requirement is satisfied.
Therefore, there are very few instances where Pmin,agg

t value
is little over zero. This is because for most EVs, the SOCarrival
is already greater than or equal to the SOCmin values. For
EVs, whose SOCarrival value is already less than their SOCmin
values; the power required to satisfy their SOCmin requirement
is not significant. Therefore, the variation in minimum power
curves for all SOCmin cases is not very significant.
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Fig. 3. Power metrics.
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Fig. 4. Energy metrics.

Figure 4 illustrates the average energy metrics of a typical
day in January. The maximum energy curve is the same for all
cases as it just gives the sum of maximum allowable energy
level of the EVs connected to the charger. The minimum
energy level gives the cumulative energy that must be trans-
ferred at each time interval to satisfy the user requirements.
Therefore, as the value of SOCmin increases, the value of the
minimum energy level curve also increases. The difference
between minimum and maximum energy gives the operational
energy capacity of the virtual battery. As power metrics
are almost similar for all cases, a higher operational energy
capacity represents greater flexibility. Therefore, we can see a
reduction in flexibility as the value of SOCmin increases.

We will illustrate how we optimally scheduled the electric
vehicle charging using the modelled flexibilities. In Figures 5
and 6, we can observe the power procured from day-ahead
and intraday market for EV charging on a random day (y axis
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scales are different in two figures, values in y-axis of Figure 5
are lower). The objective of energy provider is to minimize the
overall costs. Therefore, the energy provider prefers to procure
the power when the prices are low. Due to lower prices in the
intraday market, most of the power is purchased from intraday
market. In this regard, as illustrated in figure 6, most of the
power for charging EVs is procured at 00:45, 04:00, 20:45,
and 21:45, when the prices are lowest. Moreover, at times
such as 02:00 and 04:00 some part of the required power can
be provided from the day-ahead market, where the prices are
lower in the day-ahead market.
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Fig. 5. Aggregated power procured for EV charging on a random day from
day-ahead market
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Fig. 6. Aggregated power procured for EV charging on a random day from
intraday market

The total energy consumed to charge the EVs is 200 MWh
for one month. From Figure 7, we can observe that the
majority of the energy is procured from the intraday market
for all SOCmin cases. However, as the flexibility decreases,
the share of energy procured from the day-ahead market
increases. It is evident that the intraday market prices are
quite volatile as depicted in Figure 2. Prices can be extremely
high or extremely low compared to the day-ahead market. As
flexibility decreases, the probability of purchasing energy at
lower prices decreases. This results in a slight increase in share
of energy procured from the day-ahead market.

We illustrate the corresponding costs incurred to procure the
required energy from the electricity markets for all SOCmin
cases in Figure 8. We can observe that as the flexibility
decreases, the costs increase. The charging costs until 80%
SOCmin are almost similar. The charging costs starts to in-
crease from 85% SOCmin case. However, the difference in
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costs between the cases where the EVs offer flexibility and
no flexibility is quite considerable. Costs increased by almost
50% for the 100% SOCmin case even when compared to the
95% SOCmin case.
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IV. DISCUSSION

We found that as the SOCmin value increases, the flexibility
decreases. However, the reduction in flexibility was consid-
erable only for the cases where SOCmin value was greater
than 80% compared to 0% SOCmin case. This is because for
most EVs, the battery percentage rarely drops below 80% due
to their mobility patterns, given available charging options.
The same holds true for charging costs where the costs were
almost similar until the 80% SOCmin case and increased only
for the cases where the SOCmin was above 85%. However, even
compared to the case of 95% SOCmin, the charging costs for
the case where EVs do not offer flexibility were 50% higher.
This further ascertains the importance of flexibility for the
energy providers.

For EV users, it makes little difference whether their EV
is charged instantaneously every day to a SOCmin of 80% or
100%. Even for an emergency at night (e.g., to the nearby
hospital), a SOCmin of 80% would be sufficient for most.
However, people are used to fill the tank of conventional cars
immediately to their full capacity; thus, full charging of EVs
is rather standard [19]. This standard needs to be changed as
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it is quite evident that it might not affect user comfort to a
relevant amount.

There are some limitations in our paper that we would
like to address in our future research. We assumed that all
vehicles have the same specifications and undergo the linear
charging process without efficiency losses. In reality, vehicle
specifications will be different and the charging process is not
linear. In principle, all EVs do not charge every day, but only
a couple of times a week, depending on the user. We assumed
that we know the user mobility patterns and corresponding
requirements. However, these limitations will not have a major
influence on the final outcome, i.e., high monetary value for
the flexibility of EVs. In future research, we will consider
more stochastic user scenarios and evaluate their impact on
EV flexibility and charging costs.

V. CONCLUSION

In our paper, we evaluate the impact of the minimum SOC
requirement on EV flexibility potential and charging costs. We
developed a flexibility algorithm to quantify flexibility using
energy and power metrics as a function of time. We then
calculated the flexibility for each case and use it as input to
the optimization model to simulate EV charging. To evaluate
the monetary value of flexibility, we developed scenario-based
stochastic optimization model with the objective of minimizing
EV charging costs while participating in both the day-ahead
and intraday markets. We modelled 7 different intraday prices
scenarios to consider the uncertainty in the intraday market.

In summary, EVs possess high flexibility that can be pro-
vided without almost any loss of comfort (80% of the SOC is
sufficient for almost all daily driving needs) for high monetary
gains (160% reduction in charging costs). Therefore, it is vital
that EV users provide this kind of flexibility. Energy providers
could motivate users to provide flexibility by incentivizing
them. These incentives can be financed by revenues generated
from the flexibility of EV users.
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H I G H L I G H T S

∙ Integration of behavioural factors while estimating the user charging preferences.

∙ Focus on two charging preferences: minimum state of charge and charging frequency.

∙ Flexibility model to quantify the flexibility provided by electric vehicles.

∙ Robust optimisation model facilitating energy providers to trade in spot markets.

∙ Flexible charging offers high economic value with minimal user inconvenience.
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A B S T R A C T

Simultaneous charging of electric vehicles (EVs) increases peak demand, potentially causing higher electricity 

prices and increased procurement costs for charging, making EVs less economically appealing. Smart charging 

addresses this challenge by utilising EVs as flexible assets, adjusting their charging behaviour in response to 

both power system conditions and user requirements. In our paper, we take the perspective of an energy provider 

using smart charging algorithms to reduce their electricity procurement costs (EPC) by charging the EVs when the 

electricity prices are lower. However, EV usage uncertainties introduce variability in the flexibility EVs provide 

and subsequently impact the energy providers’ EPC when trading in electricity markets. Our paper considers 

uncertainties arising due to variable driving patterns and charging preferences. Within the charging preferences, 

we specifically focus on two charging preferences such as a minimum state of charge (SOC 

min ) requirement – the 

percentage of the battery up to which EV needs to be charged immediately at full power when connected to the 

charging point; and the frequency of EV connection to the charging point – how often EV users connect their EV to

the charging point. We develop a flexibility model that quantifies the flexibility in terms of energy and power as a 

function of time. To calculate the energy provider’s EPC, we develop a scenario-based robust optimisation model, 

minimising the energy provider’s EPC while trading in German day-ahead and intraday markets. As expected, an 

increase in SOC 

min requirements and a decrease in frequency of EV connections results in reduced EV flexibility 

and subsequently increases the EPC. However, our cost sensitivity analysis reveals that even with an 80 % SOC 

min, 

EPC can be reduced by up to 33.5 % and 36.9 % for the years 2022 and 2023, respectively, compared to fully 

uncontrolled charging. When EVs offer full flexibility (0 % SOC 

min ), the cost reduction is only slightly higher, 

at around 43.6 % and 49.6 % for the years 2022 and 2023, respectively. Flexible EV charging, even with low 

flexibility, thus possesses high economic value, allowing energy providers to achieve substantial monetary gains 

with minimal impact on user convenience.

1. Introduction

Electric vehicles (EVs) are a cornerstone of transport decarboni-

sation as they aid in reducing greenhouse gas emissions, particularly

when charged with renewable energy sources (RES). The positive im-

pact on the environment and targeted political measures have led to a

significant rise in EV market penetration in recent years. This trend is 

expected to gain even more traction in forthcoming years [1]. However,
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Nomenclature

Indices/sets

𝑡 Index of time step 

𝑇 Set of time steps

𝑤 Index of electric vehicle uncertain scenarios

𝑊 Set of electric vehicle uncertain scenarios

Parameters

𝐸min,agg
 𝑡,𝑤 

Aggregated minimum energy flexibility metric at time 𝑡 for

scenario 𝑤, in MWh 

𝐸max,agg
 𝑡,𝑤 

Aggregated maximum energy flexibility metric at time 𝑡 for

scenario 𝑤, in MWh 

𝑃min,agg
 𝑡,𝑤 

Aggregated minimum power flexibility metric at time 𝑡 for

scenario 𝑤, in MW 

𝑃max,agg
 𝑡,𝑤 Aggregated maximum power flexibility metric at time 𝑡 for

scenario 𝑤, in MW

𝐸vehicles,dis
 𝑡,𝑤 

Cumulative energy transferred to EVs disconnected from 

charging point at time 𝑡 for scenario 𝑤, in MWh 

𝐶DA
 𝑡 

Day-ahead market price at time 𝑡, in EUR/MWh 

𝐶 ID
 𝑡
Length of time step, in hour

Intraday market price at time 𝑡, in EUR/MWh

Δ𝑡

Variables

𝛽 Auxiliary decision variable to capture worst scenario in

intraday market

𝑃DA
𝑡 Power procured from day-ahead market at time 𝑡, in MW 

𝑃 ID
𝑡,𝑤 Power procured from intraday market at time 𝑡, in MW 

𝑃 agg
𝑡,𝑤 Aggregated charging power procured for the electric vehi-

cle fleet at time 𝑡 for scenario 𝑤, in MW 

𝐸agg
 𝑡,𝑤 Cumulative energy transferred to the electric vehicle fleet

at time 𝑡 for scenario 𝑤, in MWh

the simultaneous charging of multiple EVs raises concerns, as it con-

tributes to higher peak power demand, leading to increased wholesale 

prices [2,3]. These factors can increase electricity procurement costs 

(EPC), potentially affecting users’ bills and making the transition to EVs 

less economically appealing.

Smart charging addresses the challenges of simultaneous charging 

by utilising EVs as flexible assets, adjusting their charging behaviour 

in response to both power system conditions and user mobility require-

ments [4,5]. In this paper, we take the perspective of the energy provider 

(such as aggregators and energy suppliers), who uses smart charging al-

gorithms to control the charging behaviour of EVs. Typically, electricity 

market prices are lower during off-peak periods. Smart charging algo-

rithms leverage the flexibility of EVs by scheduling their charging during 

these periods of low electricity prices, thereby reducing EPC for en-

ergy providers and possibly overall peak demand [6]. These algorithms 

can employ linear optimisation models, assuming deterministic EV us-

age behaviour, with the objective of minimising EPC while trading in 

electricity markets such as day-ahead markets [7,8].

EV usage is subject to several uncertainties due to diverse driving 

patterns and charging preferences. Uncertainties stem from EV user trip 

distances, parking durations, arrival and departure times, and energy 

requirements [9]. Being inherent in EV usage, uncertainties introduce 

variability in the flexibility offered by EVs, posing challenges for en-

ergy providers in predicting and managing the EV schedules [10,11]. 

Energy providers can employ stochastic or robust optimisation models to 

address the challenges associated with EV uncertainties. Stochastic op-

timisation models represent uncertainties using probability distribution 

functions (PDFs), allowing energy providers to account for a spectrum 

of scenarios and minimize their average EPC while trading in electric-

ity markets [12]. Conversely, robust optimisation models characterize 

uncertainties using an uncertainty set or range of scenarios to mini-

mize EPC while preparing for worst-case scenarios [13,14]. However, 

while modelling the uncertainties due to charging preferences, authors 

often assume that users would provide full flexibility - meaning no 

minimum state of charge (SOC 

min ) requirement, and that users always 

connect their EVs to the charging point when the vehicle is parked 

[10–14]. 

However, EV users could be reluctant to provide flexibility for smart 

charging due to behavioural aspects such as range anxiety and loss 

of control [15–17]. As a countermeasure, authors have introduced the 

concept of the minimum state of charge (SOC 

min ) [18–20]. SOC 

min rep-

resents the percentage of the battery capacity up to which an EV is 

charged at full power immediately upon connection to the charging 

point. SOC 

min provides users with a sense of security, as it ensures that 

their required battery capacity will be available to them as soon as

possible. The SOC 

min values that EV users choose could vary, introducing 

uncertainty in energy requirements.

Moreover, users might not always connect their EVs to the charg-

ing point whenever it is parked, especially in the context of residential 

charging, which is the primary focus of our paper [21]. The frequency of 

EV connections can vary due to various factors. Users with higher range 

anxiety opt for more frequent charging and vice versa [21]. While, some 

users could plug in their vehicles less frequently due to concerns about 

potential battery damage [22]. The frequency of EV connections influ-

ences the energy requirements and the total number of EVs connected 

to the grid.

Both the SOC 

min and the frequency of EV connections to the charg-

ing point introduce uncertainties in the EV usage and impact the overall 

flexibility available to the energy provider. Consequently, these addi-

tional behavioural uncertainties pose significant challenges for energy 

providers in accurately assessing the monetary value of EV flexibility 

while trading in the spot markets (day-ahead and intraday electric-

ity markets). Thus, in our paper, we aim to answer the following two 

research questions:

RQ1: What is the impact of behavioural uncertainties on overall EV

flexibility? 

RQ1a: What is the impact of SOC 

min requirements on overall EV

flexibility? 

RQ1b: What is the impact of the frequency of EVs connections to the

charging point on overall EV flexibility? 

RQ2: What is the impact of behavioural uncertainties on the monetary

value of EV flexibility in spot markets? 

RQ2a: What is the impact of SOC 

min requirements on the monetary

value of EV flexibility in spot markets? 

RQ2b: What is the impact of the frequency of EVs connections to the

charging point on the monetary value of EV flexibility in spot 

markets?

To answer RQ1, we propose a flexibility model that quantifies flex-

ibility in terms of energy and power as a function of time. This model 

provides insights into the dynamic power adjustment at each time step 

while ensuring the necessary energy levels to meet user requirements. To 

evaluate the flexibility model, we use an existing mobility dataset based 

on German mobility behaviour for driving patterns [23]. Additionally, 

we derive user charging preferences, such as SOC 

min requirements and 

the frequency of EV connections to the charging point, from the “large 

scale survey data on behavioural aspects of charging” [17]. We first 

represent the variability in driving patterns by generating distinct sce-

narios. We assume different user charging preferences and calculate
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the flexibility for each scenario. In our paper, we assume unidirec-

tional charging and accordingly calculate the flexibility of the EVs in 

each scenario. We then incorporate these flexibility scenarios into our 

optimisation model for evaluating the monetary value of EV flexibility.

To answer RQ2, we develop a scenario-based robust optimisation 

model with the objective of minimising the EPC while participating in 

both day-ahead and intraday markets. By implementing a robust optimi-

sation approach, we optimise the EPC over the worst scenario, helping 

energy providers to clearly assess the financial viability of trading EV 

flexibility in spot markets. We used the German day-ahead and intra-

day electricity market data to evaluate our optimisation model and to 

test the impact of EV user uncertainties on the technical and financial 

indicators of flexibility provision.

The remainder of the paper is structured as follows. In Section 2, we 

discuss the literature on modelling EV usage patterns, EV scheduling 

algorithms, and different user charging preferences. Section 3 intro-

duces our flexibility and scenario-based robust optimisation models. 

Section 4 gives an overview of scenarios and the data used for our simu-

lations. Section 5 presents our results, and we discuss them in Section 6. 

Section 7 concludes the paper.

2. Related work

In this section, we first outline the different methods employed in 

the previous publications for modelling EV usage, accounting for inher-

ent uncertainties. We then present how different papers utilised these 

EV usage models to estimate EV flexibility and develop smart charg-

ing algorithms. We primarily focus on optimisation/scheduling models 

that optimised the EV charging with the objective to minimise the EPC 

or maximise the revenue of the energy provider while participating in 

electricity markets. Lastly, we explore the impact of behavioural fac-

tors on charging preferences, highlighting their potential effects on the 

provision of EV flexibility and its corresponding monetary value.

2.1. EV usage models

The models to generate EV usage patterns are classified into annual 

mileage models and daily pattern models based on their time resolu-

tion [9]. Annual mileage models typically model vehicle usage as annual 

distances travelled by vehicles [24]. In contrast, daily pattern models, 

employed to develop EV scheduling algorithms typically focus on mod-

elling the usage metrics such as the number of trips, daily mileage, daily 

activity-travel schedules (i.e., trip chains interspersed with non-travel 

activities) [9,25]. Daily pattern models are usually referred to as short-

period models, as the time resolution typically ranges from hours to 

quarter hours [26,27].

Due to the limited availability of EV data, short-period models of-

ten rely on conventional vehicle usage patterns to generate EV usage 

patterns. These patterns, extracted from travel journals, are obtained 

through travel surveys, questionnaires, or GPS data. Authors [28–31] 

analyse these conventional patterns, focusing on parameters such as trip 

distance, trip frequency, trip duration, trip start and end times, and park-

ing duration. The two predominant approaches to capture the variability 

in these parameters are PDFs and Markov chains [32]. In the first ap-

proach, authors in [33] used different types of PDFs such as uniform, 

normal, exponential, Gaussian, and Rician. Authors in [33] fit these 

PDFs to the observed data to find the distribution that best represents 

the different parameters. To simulate the stochastic behaviour of EV us-

age, authors in [11,29–31] employed Monte Carlo simulations, drawing 

random samples from the PDFs of various EV parameters.

The second approach to model the stochastic usage of EVs is by using 

a Markov chain. A Markov chain’s next state is solely determined by the 

current state, based on the Markov property [34]. To generate a consis-

tent EV usage pattern, authors in [10,35] used discrete time state Markov 

chain, which gives the state of each EV for each time interval (e.g., 

15 min, 30 min, 1 h) over a defined period (e.g., week, month, year). 

These EV states can include information on whether the EV is driving,

parked at work, at home, or in commercial areas. Transition probabili-

ties, which indicate the likelihood of moving from one state to another 

for a given period, are usually derived from statistical information on 

traffic patterns in the region of analysis [23,26].

The energy that an EV consumes while driving can be estimated 

by multiplying its consumption rate by the distance travelled. To cal-

culate the consumption rate, authors in [23,36,37] developed complex 

models that consider several factors like average velocity, aerodynamic 

efficiency, ambient temperature, and power consumption of auxiliary 

equipment. To estimate the charging demand of EVs, authors in [38–40] 

often assume an uncontrolled charging regime, where an EV is charged 

at full power until its energy requirement is fulfilled. The energy re-

quired for a charging session is assumed to be either equal to the 

estimated energy consumption of the EV for its next trip or the energy 

needed to reach maximum battery capacity. The required charging time 

is calculated based on the maximum charging power and the needed en-

ergy. In reality, EV maximum charging power is not always equal to the 

rated charging capacity of the charging point. The charging process typ-

ically involves various stages, including constant current and voltage, to 

preserve battery health and safety [41]. For simplicity, the authors [42] 

usually assume that maximum charging power is constant throughout 

the charging process and equal to the maximum rated charging capac-

ity. The load profile for each EV, which gives the electricity consumption 

pattern of each EV, is computed and superimposed, representing the 

overall EVs demand at each time step for a given period.

2.2. EV charging scheduling algorithms

The actual charging duration of EVs is usually less than their park-

ing duration, which makes the EV charging temporally flexible. This 

flexibility allows the energy providers to alter the EV charging schedule 

within a specific time period [43]. Consequently, using smart charging, 

energy providers can leverage the flexibility provided by EVs to min-

imise their EPC by scheduling the charging at times when market prices 

are low [44]. To smart charge, the EVs, the EV charging schedule can be 

formulated as a mathematical optimisation problem while considering 

various uncertainties [45]. Smart charging can be formulated as an opti-

misation problem because it typically involves allocating resources (i.e., 

charging power) to optimise the objectives (such as minimising energy 

supplier EPC) while satisfying constraints (e.g., user requirements). The 

performance of these optimised charging schedules is then compared 

with an uncontrolled charging schedule derived directly from the EV 

usage models [6,46].

Energy providers can use stochastic optimisation models to deal 

with uncertainties associated with EV usage in EV scheduling prob-

lems [12,47]. The stochastic optimisation model utilises probability 

distributions to represent uncertainties in EV behaviour, enabling the 

model to account for a spectrum of potential scenarios [48,49]. The 

energy provider could implement diverse approaches to formulating ob-

jective functions to minimise EPC when trading in electricity markets.

For example, authors in [49] formulated the objective function to max-

imise the expected revenue of the energy provider in the reserve market 

by calculating the average performance across different EV demand 

scenarios based on their respective probabilities. Additionally, some 

stochastic optimisation models incorporate risk measures such as condi-

tional value at risk (CVaR) [12,48,50] or variance [47] into the objective 

function. This inclusion serves to maximise energy provider’s revenue 

in the day-ahead market [12,48,50] or reserve markets [47] while pe-

nalising outcomes with high variability or undesirable characteristics. 

Authors in [31,51] proposed two-staged stochastic optimisation models. 

The goal of these optimisation models is to minimise the expected EPC of 

energy providers while trading in both day-ahead and real-time/intra-

day markets. In the first stage, decisions aim to minimise the energy 

provider’s EPC in the day-ahead market scheduling [51]. In the sec-

ond stage, decisions correspond to the real-time/intraday markets where 

energy providers minimise the expected EPC of the anticipated energy
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procured in the real-time/intraday markets markets [31,51,52]. Trading 

in both day-ahead and intraday markets enables energy providers to 

fully utilise the flexibility offered by EVs across time horizons and 

market conditions [53].

In contrast to stochastic optimisation, energy providers can employ 

robust optimisation models in EV scheduling problems to adopt a more 

conservative and resilient strategy to address the uncertainties [13,14]. 

Within robust optimisation models, energy providers can model the un-

certainties in EV usage [14] and market prices [13] by considering 

a set of uncertain scenarios without explicitly relying on probability 

distributions. While robust optimisation does not rely on probability 

distributions as stochastic optimisation does, its effectiveness is highly 

dependent on the chosen uncertainty set. A narrowly defined uncer-

tainty set may only protect against a limited range of outcomes, similar 

to how scenario selection in stochastic optimisation can restrict the 

model’s scope [54]. This connection parallels chance-constrained op-

timisation approaches, which address uncertainty without assuming a 

single probability distribution function and extend the applicability and 

robustness of the model [55]. The uncertainties related to EV usage 

could be, for example, the number of vehicles charging, the arrival or de-

parture times, and the required energy [56]. Robust optimisation models 

aim to optimise the EV charging schedules to perform well under the 

worst-case scenarios. In this notion, authors in [57,58] formulated the 

objective function as a “min-max” model, aiming to minimise the en-

ergy provider’s EPC for the worst-case scenario across all scenarios while 

trading in day-ahead markets. Another approach to model the objective 

function in robust optimisation models is by introducing a penalty term 

or robustness term in the original objective function [14]. Introducing 

a penalty or robustness term would penalise the deviations from the 

expected values within the uncertainty set. Authors in [59] proposed 

scenario-based robust optimisation to facilitate trading in day-ahead and 

intraday markets. Their scenario-based robust optimisation model aims 

to minimise the worst scenarios EPC, which could include day-ahead 

EPC and intraday worst scenario costs.

Our literature review reveals that most papers primarily relied on sta-

tistical models to derive the charging requirements and, consequently, to 

estimate the flexibility provided by EVs. They did not comprehensively 

consider the effect of behavioural factors on the charging preferences, 

such as SOC 

min requirements and frequency of charging events, and 

consequently their influence on the EV flexibility potential.

2.3. Charging preferences as an uncertainty

In our paper, the primary objective is to address limitations in previ-

ous research by integrating more realistic behavioural uncertainties into 

our charging algorithms. In this subsection, we elaborate on how spe-

cific behavioural factors can shape charging preferences, subsequently 

impacting both EV flexibility provision and EPC.

First, as previously mentioned, papers indicate that users are re-

luctant to participate in smart charging programs and thus provide 

flexibility [15,16]. Some users feel they lose control of the charging pro-

cess and are concerned that the charge provided by the energy provider 

will not be sufficient in an emergency [15], such as a night-time hospital 

visit. To counteract this range anxiety, papers introduced the concept 

of SOC 

min [18,20]. SOC 

min offers users assurance that their EV will 

be instantly charged to their desired SOC 

min , ensuring sufficiency in 

emergency situations [15]. By implementing this SOC 

min requirement, 

energy providers anticipate that users will provide some flexibility for 

smart charging from SOC 

min to the required state of charge at depar-

ture SOC 

dep . However, the decisions of EV users are susceptible to 

behavioural factors like range anxiety [60], which is related to risk aver-

sity – a personality trait in which individuals tend to prefer lower risks 

over higher risks, even if there is a good chance of a more advantageous 

outcome [61]. Risk-averse individuals may choose higher SOC 

min values 

than risk-prone individuals, impacting EV flexibility provision and the 

energy provider’s EPC.

Second, papers indicate that EV users do not charge daily, but rather 

two to four times a week [21,62]. The charging frequency might depend 

on objective and subjective reasons. Regarding objective reasons, charg-

ing frequency correlates with the number of kilometres people drive per 

day [63]. It may also depend on other driving habits, such as the ra-

dius they drive from home and the number of trips they make. Weather 

and temperature as external factors could also influence the charging 

behaviour of EV users [64]. When the sun is shining, those with pho-

tovoltaic installations and the ability to charge at home can charge for 

free. Besides objective reasons, a subjective reason influencing the charg-

ing frequency might be range anxiety [21], which might be influenced 

by risk aversity [17]. Risk-averse people might tend to charge their EV 

more often to reduce the risk that the range will not be sufficient for up-

coming trips. The frequency of EV connections influences the number of 

EVs connecting to the grid and their energy requirements, consequently 

impacting the EV flexibility potential.

3. Mathematical framework

In this section, we present the mathematical formulation of our flex-

ibility model, which quantifies the EV flexibility in terms of power and 

energy flexibility metrics as a function of time. These flexibility met-

rics convey information on the amount of power that can be varied in 

each time step while maintaining the required energy level to meet the 

users’ requirements. We then present the mathematical formulation of 

our scenario-based robust optimisation model, which uses this flexibility 

information for different scenarios and electricity market price data as 

an input to minimise the EPC for EV charging.

3.1. Flexibility model

The necessity of developing our flexibility model is twofold. Firstly, 

to evaluate the EV flexibility potential and secondly, to aid in EV flexibil-

ity trading. Within our model, we calculate individual flexibility metrics 

for each EV based on the user requirements. These flexibility metrics 

include time-dependent power and energy metrics, providing insights 

into how much power can be varied while maintaining energy levels re-

quired to meet EV user needs. By aggregating these individual flexibility 

metrics, we derive aggregated flexibility metrics. These aggregated flex-

ibility metrics give a comprehensive view of the fleet’s capacity to adjust 

power levels while maintaining energy requirements, allowing us to es-

timate the flexibility potential. Furthermore, these aggregated metrics 

serve as direct inputs to our optimisation model, reducing the complexity 

of our optimisation model by eliminating the need for individual-level 

computations for each EV.

3.1.1. Input data to quantify individual EV flexibility

The level of flexibility an EV offers varies with each charging session, 

influenced by the user’s driving patterns and charging preferences, EV 

battery and charging point specifications.

To quantify EV flexibility, we require maximum charging power, en-

ergy requirements and parking duration. The maximum charging power 

(𝑃 

max ) is the maximum power at which an EV can be charged. We derive 

the energy requirements from the user’s SOC 

min and SOC 

dep require-

ments. SOC 

min represents the battery percentage up to which an EV will 

be charged at full power immediately upon connection to the charg-

ing point. SOC 

dep is the battery percentage requested by the user that 

should be fulfilled at departure time (𝑡 

dep ). 𝐸 

SOCmin denotes the energy 

that should be transferred to satisfy the SOC 

min requirement. The energy 

that should be transferred to satisfy the user’s SOC 

dep requirement is de-

noted by 𝐸 

dep . Plugin duration is the time throughout which the EV is 

connected to the charging point. We calculate the plugin duration using 

the user’s arrival time (𝑡 

arr ) and departure time (𝑡 

dep ).

In Fig. 1, we illustrate the typical EV battery with different energy 

values at the time of arrival. 𝐸 

max is the total battery capacity of the EV, 

𝐸 

arr is the energy level of EV battery at 𝑡 

arr , and 𝐸 

dep is the energy that 

should be transferred to satisfy the SOC 

dep requirement.
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Fig. 1. Typical EV battery and different energy values.

As we only consider unidirectional charging, the overall energy ca-

pacity of the battery can never drop below 𝐸 

arr . Furthermore, the user 

might not always request 100 % SOC 

dep . This would mean that the sum 

of 𝐸 

arr and 𝐸 

dep would not always be equal to 𝐸 

max . Therefore, when 

evaluating the flexibility metrics, we only consider the part of the battery 

that can be charged, i.e., 𝐸 

dep .

3.1.2. Mathematical formulation to quantify individual EV flexibility

We derive time-dependent energy and power flexibility metrics to 

quantify the flexibility provided by an EV during its plugin duration, us-

ing the parameters introduced in the previous Section 3.1.1. The energy 

flexibility metrics are minimum energy (𝐸 

min
𝑡 ) and maximum energy 

(𝐸max
𝑡 ) at time 𝑡. The power flexibility metrics are minimum power (𝑃 

min
𝑡 ) 

and maximum power (𝑃max
𝑡 ) at time 𝑡. These flexibility metrics will 

convey the amount of power with which an EV can be charged while 

maintaining upper and lower limits of cumulative energy transfer. 𝐸 

min 

𝑡
represents the minimum cumulative energy that must be transferred to 

the EV at time 𝑡 to fulfil the user’s energy requirements, i.e. 𝐸 

dep and

𝐸 

SOCmin. The process to determine 𝐸 

min
𝑡 is divided into three phases 

within its plugin duration as we illustrate in Fig. 2. The first phase is 

between 𝑡 

arr and the time taken to transfer 𝐸 

SOCmin , which is 𝑡 

min . In the 

first phase, the vehicle is charged at full power until 𝐸 

SOCmin is trans-

ferred. The second phase is between 𝑡 

min and 𝑡 

c , where 𝑡 

c is the time 

after which the 𝑃 𝑡 

should be maximum to transfer the remaining energy 

to fulfil 𝐸 

dep . In the second phase, the vehicle is in an idle state. The third 

phase is the time between 𝑡 

c and 𝑡 

dep . In the third phase, the vehicle is

Fig. 2. Representing EV flexibility in energy vs. time graph.

charged at full power until it transfers the remaining energy required to 

fulfil 𝐸 

dep . We present the mathematical formulation for the process to 

determine 𝐸 

min
𝑡 in Eqs. (1) and (2). 

𝐸 

min
𝑡 = 𝐸 

min
𝑡−1 + 𝑃 𝑡 × 𝜂 × Δ𝑡 (1)

𝑃 𝑡 =
⎧
⎪⎨⎪⎩

𝑃 

max , 𝑡 

arr < 𝑡 ≤ 𝑡 

min (Phase 1)
0, 𝑡 

min < 𝑡 ≤ 𝑡 

c (Phase 2)
𝑃 

max , 𝑡 

c < 𝑡 ≤ 𝑡 

dep (Phase 3)
(2)

In reality, EV charging is not linear and involves different stages, 

such as constant current and voltage, to optimise the charging process 

for battery health and safety [41]. However, for simplicity, we assume

a linear charging of the EV where the charging power takes continuous

values. Therefore, we calculate 𝐸 

min 

𝑡 using the Eq. (1), where charging 

power at time 𝑡 is 𝑃 𝑡 

, and 𝜂 is the charging efficiency to account for

power losses while charging. The value of 𝑃 𝑡 

to calculate 𝐸 

min 

𝑡 in the first

phase, second phase, and third phase is 𝑃 

max , 0, and 𝑃 

max respectively, 

as depicted in Eq. (2).

𝐸 

max 

𝑡 represents the maximum cumulative energy that can be trans-

ferred to the EV at time 𝑡 to satisfy the user’s energy requirement, i.e.,

𝐸 

dep. The process to determine 𝐸 

max
𝑡 is divided into two phases as illus-

trated in Fig. 2. The first phase is between 𝑡 

arr and 𝑡 

inst . 𝑡 

inst is the time it 

takes to transfer 𝐸 

dep when charged at full power. The second phase is 

between 𝑡 

inst and 𝑡 

dep where there is no energy transfer. We present the 

mathematical formulation to calculate 𝐸 

max
𝑡 in Eqs. (3) and (4).

𝐸 

max
𝑡 = 𝐸 

max
𝑡−1 + 𝑃 𝑡 × 𝜂 × Δ𝑡 (3)

𝑃 𝑡 = 

{
𝑃 

max , 𝑡 

arr < 𝑡 ≤ 𝑡 

inst (Phase 1)
0, 𝑡 

inst < 𝑡 ≤ 𝑡 

dep (Phase 2) 

(4)

As we assume a linear charging of EV, 𝐸 

max
𝑡 is calculated by Eq. (3). 

The value of 𝑃 𝑡 to calculate 𝐸 

max 

𝑡 in the first and the second phase is 

equal to 𝑃 

max and 0, respectively, as depicted in Eq. (4).

When plotting 𝐸 

min
𝑡 and 𝐸 

max
𝑡 on the energy vs time graph, the re-

gion bounded by these two energy metrics represents the flexibility (see 

Fig. 2). From the Fig. 2, we can observe that EV does not provide any 

flexibility until 𝑡 

min. 
𝑃min

 represents the minimum allowable power at which EV can𝑡   be 

charged at time 𝑡. When there is min
 no flexibility, until 𝑡  

 , 𝑃min
𝑡 is equal 

to 𝑃max 

 . When EV offers flexibility, from 𝑡min
 to 𝑡dep 

 , 𝑃min
𝑡 is equal to 0.

𝑃max
 represents the maximum allowable power at which EV can𝑡   be 

charged at time 𝑡. Therefore, 𝑃max
    𝑡 for the whole plugin duration equals

𝑃max
 . 

3.1.3. Aggregated flexibilities for an EV fleet

In our paper, we consider different scenarios where the energy 

requirements, time of arrival and time of departure of the EVs are dif-

ferent in each scenario. For each scenario, we calculate the aggregated 

flexibility of the EV fleet as depicted in Fig. 3. We compute the indi-

vidual flexibilities for each EV separately using user input data (refer 

to Section 3.1.2) for each specific scenario. We then aggregate the flex-

ibility metrics of the EV fleet for a given scenario by summing up the 

individual flexibility metrics of each EV.

We repeat the same process for all scenarios and calculate the aggre

gated flexibility metrics for each scenario. The corresponding aggregated

energy and power flexibility metrics for each scenario 𝑤 are denoted as

𝐸min,agg
 𝑡,𝑤 

, 𝐸max,agg
𝑡,𝑤 and 𝑃min,agg

𝑡,𝑤 

 

, 𝑃max,agg
which serves as an input to our𝑡,𝑤        

optimisation model. We will present our optimisation model in the next 

-

 

Section 3.2.

3.2. Optimisation model

Our paper aims to assess the monetary value of EV flexibility in elec-

tricity spot markets considering inherent uncertainties in EV usage. To
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Fig. 3. Flexibility model to calculate aggregated flexibilities.

achieve this, we opt for a scenario-based robust optimisation model to 

minimise the EPC for the worst case while trading in day-ahead and in-

traday markets. We consider predetermined scenarios across which we 

calculate the aggregated flexibility metrics by varying the time of arrival, 

time of departure and energy requirements of each EV as discussed in 

Section 3.1.3

The robust optimisation model enables us to evaluate the worst-case 

scenario in terms of cost, providing a conservative estimate of the value 

of flexibility. Moreover, the robust optimisation approach allows us to 

develop charging schedules by considering various potential scenarios, 

providing resilience against different uncertainties related to EV usage. 

By accounting for these uncertainties in the optimisation model and 

optimising for the worst-case scenario, we can further ascertain if it 

is worthwhile to trade EV flexibility in electricity markets despite the 

uncertainties.

In line with prevalent scenario-based robust optimisation models, we 

assume that power acquired in the day-ahead market is the same for all 

scenarios, and the power is varied for each scenario while trading in the 

intraday market [59]. We assume perfect foresight of day-ahead and in-

traday market prices. Fig. 4 gives an overview of our optimisation model, 

illustrating the input data, objective function, relevant constraints and 

the resulting output.

Accordingly, we formulate the objective function of our optimisa-

tion model using Eq. (5). The first part is the energy provider’s EPC of 

the day-ahead market, and 𝛽 is an auxiliary decision variable used to 

capture the worst scenario intraday market EPC. In other words, 𝛽 is a 

robustness variable that identifies the solution optimised for the worst 

scenario among all the modelled scenarios in the robust optimisation 

framework. The variable 𝑃DA 

 represents𝑡  the power procured from the 

day-ahead market at time 𝑡, while 𝐶DA 

 denotes the corresponding day-𝑡
ahead market price at time 𝑡. 𝑇 gives the set of time steps, and Δ𝑡 gives 

the length of the time step. In our paper, the time resolution is 15 min, 

and the time period is one week. Thus, the set 𝑇 = {1, … , 672}, and 

value of Δ𝑡 is equal to 0.25 h

min 

∑
𝑡∈𝑇

(𝑃DA
𝑡 × 𝐶 

DA 

𝑡 )Δ𝑡 + 𝛽 (5)

We formulate the constraint that relates the decisions taken in the 

intraday market to the objective function using Eq. (6). This constraint 

ensures that intraday EPC for all scenarios are less than or equal to the

auxiliary decision variable . 𝑃 

ID 

𝑡,𝑤 represents the power procured from

the intraday market at time 𝑡 for scenario 𝑤, and the parameter 𝐶 

ID
𝑡

represents intraday market prices at time 𝑡. 𝑊 is the set of scenarios; 

we model 52 EV flexibility scenarios, which we describe in detail in 

Section 4.1. Thus, the set 𝑊 = {1, … , 52}.
∑ 

𝑡∈𝑇
(𝑃 ID

𝑡,𝑤 × 𝐶 

ID
𝑡 )Δ𝑡 ≤ 𝛽 ∀𝑤 ∈ 𝑊 (6)

As we assume 𝑃 

DA 

𝑡 to be the same for all the scenarios, the power 

balance between day-ahead and intraday market for each scenario 𝑤 

is attained using the Eq. (7). 𝑃 

agg
𝑡,𝑤 is the variable for the aggregated

charging power of EVs for scenario 𝑤 at time 𝑡.

𝑃 

DA
𝑡 + 𝑃 

ID
𝑡,𝑤 = 𝑃 

agg
𝑡,𝑤 ∀ 𝑡 ∈ 𝑇 , 𝑤 ∈ 𝑊 . (7)

The number of vehicles connected to the charging point limits the 

variable 𝑃 

agg 

𝑡,𝑤 . The constraint, which we illustrate in the Eq. (8), ensures 

agg
the 𝑃 

 

is always within the values of𝑡,𝑤   aggregated power flexibility met-

𝑃min,agg 𝑃max,agg
rics.  and𝑡,𝑤  𝑡,𝑤 are the aggregated power flexibility parameters 

at time 𝑡 agg 

 for each scenario 𝑤 within which 𝑃𝑡,𝑤 can vary. We determine

these power flexibility metrics using the flexibility model described in 

Section 3.1.

𝑃 

min,agg
𝑡,𝑤 ≤ 𝑃 

agg
𝑡,𝑤 ≤ 𝑃 

max,agg
𝑡,𝑤 ∀ 𝑡 ∈ 𝑇 𝑤 ∈ 𝑊 . (8)

As we trade the aggregated flexibility of the EV fleet, we assume 

that all the EVs connected to their respective charging points at the 

residential level create a large virtual battery [65]. This virtual bat-

tery can describe the connected vehicles’ characteristics while properly 

understanding the mathematical modelling of EVs. The variable 𝐸 

agg 

𝑡,𝑤
illustrates the cumulative energy transferred to this virtual battery at 

time 𝑡 for each scenario 𝑤. 𝐸 

agg 

𝑡,𝑤 is restricted by the aggregated energy

flexibility metrics as illustrated in the Eq. (9). 𝐸 

min,agg 

𝑡,𝑤 and 𝐸 

max,agg
𝑡,𝑤 are

Fig. 4. Optimisation model.
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the aggregated energy flexibility metrics at time 𝑡 for scenario 𝑤. We 

determine these energy flexibility metrics using the flexibility model 

described in Section 3.1.

𝐸 

min,agg
𝑡,𝑤 ≤ 𝐸 

agg 

𝑡,𝑤 ≤ 𝐸 

max,agg
𝑡,𝑤 ∀ 𝑡 ∈ 𝑇 𝑤 ∈ 𝑊 (9)

The following Eq. (10) depicts the energy balance of the virtual 

battery:

𝐸 

agg
𝑡,𝑤 

= 𝐸 

agg
𝑡−1,𝑤 + 𝑃 

agg 

𝑡,𝑤 × Δ𝑡 − 𝐸 

vehicles,dis
𝑡,𝑤 ∀ 𝑡 ∈ 𝑇 , 𝑤 ∈ 𝑊 . (10)

𝐸agg
 is cumulative𝑡,𝑤  the variable illustrating the   

 

energy transferred to this 

virtual battery at time 𝑡 for each scenario 𝑤. Its value is affected by

𝐸agg agg
 , , and vehicles,dis agg

. is the cumulative energy transferred𝑡−1,𝑤 𝑃𝑡,𝑤  𝐸 𝑡,𝑤  𝐸𝑡 −1,𝑤      

 
 agg

to the virtual battery in the previous time step
 

  for scenario 𝑤. 𝑃 is𝑡,𝑤  

the aggregated charging power of EVs or power procured to charge the 

virtual battery at the current time step 𝑡 for scenario 𝑤. 𝐸vehicles,dis 

𝑡,𝑤 is the 

cumulative energy transferred to EVs disconnected from the charging 

points at the current time step 𝑡 for scenario 𝑤, respectively.

4. Scenario generation and datasets

This section describes the approach and relevant datasets for gener-

ating flexibility scenarios and calculating the EPC.

We model uncertainties due to driving patterns by generating scenar-

ios with different EV user driving patterns. We explain the methodology 

used to generate different scenarios in Section 4.1. These driving pat-

terns provide information on the plugin duration of individual EV 

across different scenarios. We also need energy requirements to calcu-

late flexibility for each scenario, which depends on charging preferences. 

Section 4.2 outlines the different charging preferences we assume, from 

which we derive the energy requirements for each EV across the sce-

narios. The information on plugin duration and energy requirements, 

derived from driving pattern scenarios and charging preferences, serves 

as input to the flexibility model, allowing us to calculate the aggregated 

flexibility metrics for each scenario.

Section 4.3 provides an overview of the electricity market price data 

used in our optimisation model to calculate EPC.

4.1. Modelling uncertainties due to driving patterns

To model uncertainties stemming from diverse driving patterns, we 

generate diverse scenarios reflecting various EV user driving patterns. 

We create the scenarios using synthetic mobility data derived from the 

German mobility survey [23]. We consider the mobility data of 1000 

EVs. The mobility data comprises one-year mobility profiles for each EV. 

Each mobility profile represents a year-long time series capturing vehi-

cle location, distance travelled, and energy consumption at 15-minute 

intervals. Our paper exclusively focuses on home charging, assuming all 

EVs charge when parked at home. Additionally, we assume the following 

specifications for all EVs.

• The battery capacity 𝐸 

max of all vehicles is 75 kWh, which is similar

to Tesla Model S [66].

• As per IEC 61851–1:2017 standard, we consider a Level 2 charger

with a mean power rating of 7.4 kW, typically used for home 

charging [67].

• The charging efficiency 𝜂 is 95 % which is within the efficiency range

of Level 2 charger [68]. 

Fig. 5 outlines our approach to generate 52 scenarios to capture the 

uncertainties arising from variable driving patterns. We divide the mo-

bility dataset – which contains individual profiles for the entire fleet 

(1000 EVs) over one year, into weekly datasets. This results in 52 

datasets comprising the individual mobility profiles for the entire EV 

fleet over one week each. We utilise weekly datasets to better repre-

sent real-world charging behaviour, as EV users commonly plan their 

charging schedules every week. It also allows us to capture variations

in charging behaviour between weekdays and weekends, which can dif-

fer significantly. Each weekly dataset is assigned to a unique scenario, 

totalling 52 scenarios. This approach introduces uncertainties in arrival 

and departure times, trip distances, and trip start and end times.

These driving pattern scenarios allow us to estimate the energy con-

sumed by an EV during driving and the plugin duration for charging 

sessions in different scenarios. However, to quantify flexibility across all 

scenarios, we also require the energy requirements of EV users. The en-

ergy requirements depend on different charging preferences, which we 

discuss in the next section.

Overall, using our approach, we generate 52 different flexibility sce-

narios to model the uncertainty. These 52 scenarios serve as potential 

scenarios for one week that energy provider should consider while mak-

ing the procurement decisions for that week. These scenarios serve as 

inputs for our robust optimisation model, which calculates the EPC for 

the worst scenario over the week (refer to Section 3.2).

4.2. Use cases for charging preferences 

4.2.1. Definition of the use cases

EV users’ charging preferences include SOC 

dep , SOC 

min , and the fre-

quency of EV connection to the charging point. To determine SOC 

dep , 

we assume that all EV users charge their vehicles until they reach ei-

ther 100 % SOC or the maximum SOC at departure. Various possibilities 

exist regarding SOC 

min and the frequency of EV connection to the charg-

ing point. For instance, the SOC 

min requirement might vary between 

different EV users; some EV users may connect to the charging point 

every time they park with/without SOC 

min requirement; some EV users 

may not connect to the charging point every time they park with/with-

out SOC 

min requirement. To deal with these different possibilities, we 

develop four different cases to cover all these possibilities.

• Case 1: We assume that all EVs are connected to the charging point

whenever they are parked at home and offer full flexibility, i.e. 0 % 

SOC 

min requirement.

• Case 2: We assume that all EVs are connected to the charging point

whenever parked at home, each having a unique SOC 

min require-

ment. We explain the methodology used to derive the SOC 

min values 

in Section 4.2.2.

• Case 3: We assume that EVs are not always connected to the charging

point when parked at home and offer full flexibility (i.e., no SOC 

min 

requirement) when connected to the charging point. Connection oc-

curs when state of charge at arrival SOC 

arr values drop below a 

certain state of charge (SOC) value, which we define as the charging 

threshold. Thus, we assume that EV users plugin the vehicle when 

the SOC 

arr is below the charging threshold. The charging threshold 

is unique for each EV, and Section 4.2.2 explains the approach to 

derive this value.

• Case 4: We assume that EVs are not always connected to the charg-

ing point when parked at home and have an SOC 

min requirement 

when connected. In other words, here we consider both SOC 

min and 

irregular EV connection to the charging point. 

Table 1 provides an overview of the assumed charging preferences 

for each case. We consider Case 1 as the base case with no SOC 

min re-

quirement and with the assumption that EVs are always connected to the 

charging point when they are at home. Hence, we compare the results 

of other cases with Case 1 to analyse the impact of charging preferences 

on EV flexibility potential and its monetary value.

4.2.2. Deriving input data for each use case

We obtained the values for SOC 

min requirements and charging 

thresholds from our large-scale survey data [17]. The survey, detailed 

in the paper by Marxen et al. [17], gathered data on various variables, 

including risk aversion, from n = 289 participants. To derive SOC 

min 

requirements and charging thresholds, we used participants’ responses 

to the question: “Which battery percentage should your EV always have 

as a minimum in case of unforeseen emergencies? (This implies that
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Fig. 5. Our approach to generating different scenarios.

Table 1 

Charging preferences for different cases.

SOC 

min requirement Irregular connection

Case 1 ❌ ❌

Case 2 ✓ ❌

Case 3 ❌ ✓

Case 4 ✓ ✓

your EV would always be charged to that level at maximum charging 

power when plugged in.)” Participants selected values between 0 % and 

100 %. We then created a frequency distribution of their responses and 

randomly assigned SOC 

min and charging threshold values to the 1000 

EVs. In our survey, we also asked the participants about the battery ca-

pacity of their EV and the kilometres which they daily drive their EV. 

As these values did not correlate with SOC 

min , we randomly assigned 

the SOC 

min values for the scenarios. Fig. 6 illustrates the distribution of 

SOC 

min /charging threshold values for 1000 EVs.

This distribution guides the definition of both SOC 

min and charg-

ing threshold values, as the rationale behind the charging threshold 

is similar to that of SOC 

min . The charging threshold also represents 

the battery percentage users would like to have for a sense of secu-

rity. Therefore, we assumed that the values of SOC 

min and the charging 

threshold would be the same for an individual EV. An assumption 

in our study is that the SOC 

min values are based on survey data, 

which reflect behavioural intentions rather than actual behaviour. While 

behavioural intentions are generally considered a good proxy for ac-

tual behaviour [69], we acknowledge that a gap may exist between 

intentions and actual behaviour.

4.3. Electricity market price data

We use German wholesale electricity market price data from the 

day-ahead and intraday (ID3 index) markets for the years 2022 and 

2023 [70] to calculate EPC. We include 2022 due to its high prices and 

increased market price volatility and analyse its impact on EPC [71]. 

The resolution of the prices is a quarter-hour.

Since our uncertain EV flexibility scenarios are modelled over a one-

week period (refer to Section 4.1), we perform the optimisation for a 

single week to determine EPC over that time frame. To avoid bias from 

choosing a specific week, we use the weekly median price for a given

Fig. 6. Frequency distribution of SOC 

min and charging thresholds derived from 

our survey data.

month as input to our optimisation model. The weekly median price 

is calculated with a 15-minute resolution. For each 15-minute interval 

within the week, we take the corresponding prices from all weeks in the 

given month and calculate their median. To analyse the seasonal price 

impact on EPC, we run the optimisation separately for each month. For 

each run, we use that month’s weekly median price data to calculate 

the EPC incurred by the energy provider to charge the vehicles for one 

week. Fig. 7 illustrates the price data (median value) for a typical week 

in September 2022 (see Fig. 7(a)) and September 2023 (see Fig. 7(b)).

4.4. Simulation setup

Fig. 8 gives an overview of our methodology for calculating aggre-

gated flexibilities and EPC for a single use case. We generate different 

scenarios and obtain the plugin duration of all EVs for each scenario (re-

fer to Section 4.1). By considering one of the four charging preference 

use cases (refer to Section 4.2, we determine the energy requirements 

of all EVs for each scenario. These user requirements, such as plugin 

duration and energy requirements, serve as an input to calculate the 

aggregated flexibility metrics for each scenario using our flexibility
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Fig. 7: Electricity market price data for a typical week.

model (refer to Section 3.1). Subsequently, we employ our optimisa-

tion model to compute the worst scenario EPC (refer to Section 3.2) for 

one week in a specific month. We run the optimisation model separately 

for one month based on the weekly price input in each month (refer to 

Section 4.3) and calculate the worst-scenario EPC costs for all months 

in both 2022 and 2023.

We replicate this approach for each charging preference use case, 

determining flexibility scenarios for each use case separately.

5. Results

This section addresses our two research questions by presenting 

the results. We begin in Section 5.1 with the aggregated flexibility

metrics calculated for all use cases using our flexibility model (refer to 

Section 3.1). Section 5.2 presents the EPC incurred for charging the EVs 

across all use cases. Finally, Section 5.3 explores the results of our cost-

sensitivity analysis, where we determine the EPC incurred by varying 

the SOC 

min and charging threshold values.

5.1. EV flexibilities

In this section, we present quantile distribution graphs illustrating 

aggregated flexibility metrics for all cases (refer to Section 4.2) we con-

sider in our paper. As we describe in Section 3.1.3, the aggregated 

flexibility metrics are energy metrics - 𝐸 

max,agg
𝑡,𝑤 and 𝐸 

min,agg
𝑡,𝑤 ; power met-

rics - 𝑃 

max,agg 

𝑡,𝑤 and 𝑃 

max,agg
𝑡,𝑤 . We create these quantile distribution plots 

for typical weekdays and weekends to showcase the variability of EV 

flexibility across the 52 scenarios. To analyse the impact of SOC 

min re-

quirements and frequency of EV connections to the charging point on 

the flexibility, we compare the aggregated flexibility metrics of different 

cases with Case 1, the base case.

For the quantile distribution plots, we group weekdays (Monday to 

Friday) and weekends (Saturday and Sunday) separately and calculate 

the median value of the aggregated flexibility metrics for each scenario. 

We then plot the quantile distribution of these medians for weekdays 

and weekends. We use these typical plots to generalise the results across 

all weekdays and weekends. A solid red/orange line represents each flex-

ibility metric’s median (q50) value in these quantile distribution plots. 

Different shades of green around the central line indicate various quan-

tile values for the flexibility metric. For example, in Fig. 9(c), the red line 

represents median (q50) of 𝐸 

max,agg
𝑡,𝑤 

metric, and adjacent green shades 

are different quantiles of 𝐸 

max,agg
𝑡,𝑤 metric. 

In the subsequent subsections, we detail the quantile distributions of 

all flexibility metrics for Cases 1–4, depicted in Figs. 9–12, respectively.

5.1.1. EV flexibilities for case 1

Figs. 9(a) and (b) illustrate the quantile distribution of power metrics 

for Case 1 on a typical weekday and weekend, respectively.

The 𝑃 

max,agg
𝑡,𝑤 metric displays slight variability for weekdays and week-

ends. Variability occurs due to different arrival and departure times of 

EVs in different scenarios, resulting in the difference in the number of 

vehicles connected to the charging point for a given period in different 

scenarios. On weekdays, the median value of 𝑃 

max,agg 

𝑡,𝑤 is highest (7 MW) 

between midnight and 06:15 when most EVs are at home and connected 

to the charging point. Then it decreases as many people go to work. The 

median value increases again after 15:00 as people return home from 

work. On weekends, the median value of 𝑃 

max,agg 

𝑡,𝑤 is highest (7 MW) just 

after midnight and remains constant until 08:45, when most EVs are at 

home. Its value drops slightly after 08:45, possibly due to short leisure 

trips some EV users take on weekends.

Fig. 8. Overview of our methodology for one use case.

Applied Energy 394 (2025) 126063 

9 



R. Chemudupaty, R. Bahmani, G. Fridgen et al.

Fig. 9. Quantile distribution of flexibility metrics for Case 1.

𝑃max,agg
𝑡,𝑤 is zero during both weekdays and weekends during all hours, 

as all EVs offer full flexibility throughout the plugin duration.
max,agg

The energy metric for Case 1, especially 𝐸 , exhibits 𝑡,𝑤   some vari

ability throughout the day, with its values varying by ± 1 MWh from 

the median value for both weekdays (refer to 

-

Fig. 9(c)) and weekends 

(refer to Fig. 9(d)). The variability is predominantly due to the differ

ent energy requirements (𝐸dep 

 ) caused by variable driving patterns of 

each EV across the scenarios. The median values are highest around 

06:15 (11 MWh) and 08:45 (7 MWh) for weekdays and weekends, re

spectively. 𝐸max,agg
𝑡,𝑤 is the sum of the maximum cumulative energy that 

could be transferred to all connected EVs. Therefore, its value increases 

when more vehicles start connecting to the charging point, reaches a 

peak, and decreases when the number of vehicles leaving is relatively 

max,agg
higher than the number

 

  of connected vehicles. The 𝐸𝑡,𝑤 values are 

higher on weekdays than weekends. These high values at weekends can 

be attributed to the fact that many EVs are more active on weekdays 

than weekends.

-

-

min,agg
For weekdays, the median value of 𝐸 is𝑡,𝑤  almost close to zero 

from 17:30 to 23:45 and only increases after midnight with a peak (3 

MWh) around 06:15, although many users connect their EVs to their 

charging points. The increase in the value only after midnight suggests 

that most EVs only need to be charged for a fraction of their plugin time. 

Onweekends, the 𝐸min,agg
 curve𝑡,𝑤  is much flatter than on weekdays, with a

small peak (1 MWh) around 08:45, and the values are also much lower. 

These low values are because the energy requirements of the EVs are

much lower on weekdays, likely due to short leisure trips taken by the 

EV users on weekends.

5.1.2. EV flexibilities for case 2
max,agg

For Case 2, the 𝑃 values𝑡,𝑤  for both weekday (refer Fig. 10(a)) 

and weekend (refer Fig. 10(b)) are the same as those of Case 1. The 

similarity is because the number of EVs connected in Case 2 is identical 

to that in Case 1.
max,agg

However, the 𝑃𝑡,𝑤 values are slightly higher in Case 2 compared 

max,agg
to Case 1

 

 for weekdays and weekends. The increase in 𝑃𝑡,𝑤 values 

is due to the min
 SOC  

 requirement in Case 2, which mandates that EVs 

charge at full power min 

 until their SOC value reaches SOC . Nevertheless, 
max,agg

the increase in 𝑃 is zero.𝑡,𝑤  marginal, with a median value just above  

This minimal increase could be attributed to two main factors: first, most 

EVs already have SOCarr 

 values greater than min 

 or equal to SOC ; second, 

for EVs where SOCarr 

 is less than min
 SOC  

 , the power required to meet 

SOCmin is not very high.
max,agg

The 𝐸  

 values𝑡,𝑤  for both weekdays (refer Fig. 10(c)) and week

ends (refer 10(d)) are the same as in Case 1. The similarity is because

𝐸max,agg
 is𝑡,𝑤  the sum of the maximum cumulative energy of all the EVs, and 

the number of EVs connected dep 

 and their 𝐸 requirements are similar to 

those of Case 1.

-

min,agg
The 𝐸 values for both weekdays and weekends are higher than𝑡,𝑤   

those of Case 1 due to the SOCmin 

 requirement. The peak median value of

𝐸min,agg
 is𝑡,𝑤  4 MWh and 2 MWh for weekdays and weekends, respectively,
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Fig. 10. Quantile distribution of flexibility metrics for Case 2.

which is 1 MWh higher than in Case 1. The values are higher in Case 

2 because, unlike Case 1, the amount of energy (𝐸 

SOCmin ) needed to 

meet SOC 

min requirement should be immediately transferred to each 

EV. Since 𝐸 

min,agg 

𝑡,𝑤 represents the minimum cumulative energy transfer, 

this additional transfer of 𝐸 

SOCmin for each EV at the start of the plugin 

duration contributes to higher overall values.

5.1.3. EV flexibilities for case 3

For Case 3, the shape of the 𝑃 

max,agg
𝑡,𝑤 quantile distribution is similar 

to that of Case 1, both for weekdays (refer Fig. 11(a)) and weekends 

(refer Fig. 11(b)), due to similar driving patterns. However, there is 

slightly higher variability in the quantile distribution, and the values of

𝑃 

max,agg
𝑡,𝑤 metric are notably lower than those of Case 1. The peak median 

value of 𝑃 

max,agg 

𝑡,𝑤 is 2.25 MW and 1.75 MW for weekdays and weekends, 

respectively, 4.75 MW and 5.25 MW lower than in Case 1.

The variable frequency of EV connections means that most users do 

not connect their EVs to the charging point daily, which was the sit-

uation in Case 1. This varying number of connected vehicles leads to 

variability in the 𝑃 

max,agg
𝑡,𝑤 metric. Consequently, these irregular connec-

tions also lead to a reduced number of EVs connected to the charging 

point, contributing to lower 𝑃 

max,agg
𝑡,𝑤 values. 

𝑃 

max,agg
𝑡,𝑤 values are equal to zero, which is similar to those of Case 1 

because EVs offers full flexibility throughout the plugin duration.

The variability of different quantile values of 𝐸 

max,agg 

𝑡,𝑤 in Case 3 is 

slightly higher than that of Case 1, both for weekdays (refer to Fig. 11(c)) 

and weekends (refer to Fig. 11(d)). This difference could be primarily

due to the varying number of EVs connected to the charging point on a 

given day, with more diverse energy requirements (𝐸 

dep ) across different 

scenarios.

However, the peak median value of 𝐸 

max,agg 

𝑡,𝑤 , particularly for week-

days, is similar (11 MWh) to that of Case 1. Although the number of 

connected EVs is lower than in Case 1, their energy requirement, i.e., 

𝐸 

dep value, within a charging session is higher than in Case 1. In Case 3, 

the 𝐸 

dep value for each user is higher because they have to meet the en-

ergy required for their weekly driving needs in fewer charging sessions 

than in Case 1. Therefore, at the aggregate level, the total energy could 

be similar.

The values of 𝐸 

min,agg 

𝑡,𝑤 are significantly higher for weekdays and week-

ends in Case 3 than in Case 1. The peak median value of 𝐸 

min,agg 

𝑡,𝑤 is 4 

MWh and 2 MWh for weekdays and weekends, respectively, 2 MWh and 

1 MWh higher than in Case 1. This disparity is due to the higher energy 

requirements (𝐸 

dep ) of EVs in Case 3, where these vehicles need more 

time to meet their energy requirements compared to Case 1.

5.1.4. EV flexibilities for case 4

For Case 4, the values of 𝑃 

max,agg 

𝑡,𝑤 are similar to those of Case 3, both 

for weekdays (refer to Fig. 12(a)) and for weekends (refer to Fig. 12(b)). 

The values in both cases are similar because the number of EVs con-

nected to the charging point is similar to Case 3. Therefore, the reason 

for the difference in values compared to Case 1 is similar to Case 3.

However, the 𝑃 

max,agg
𝑡,𝑤 values are slightly higher in Case 4 compared 

to Case 1 for both weekdays and weekends. This increase could be
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Fig. 11. Quantile distribution of flexibility metrics for Case 3.

primarily attributed to the SOC 

min requirement, which forces EVs to 

charge at full power until the SOC 

min requirement is met. Nevertheless, 

the increase in 𝑃 

max,agg 

𝑡,𝑤 is marginal, with a median value just above zero. 

The increase in 𝑃 

max,agg 

𝑡,𝑤 is minimal because the power required to meet 

SOC 

min is low.

The 𝐸 

max,agg
𝑡,𝑤 values for Case 4 are the same as those in Case 3, both 

for weekdays (refer to Fig. 12(c)) and weekends (refer to Fig. 12(d)). 

The similarity in both cases is because the number of EVs connected to 

the charging point and the energy requirement (𝐸 

dep ) of EVs is similar to 

that of Case 3. Therefore, the rationale behind the differences in values 

compared to Case 1 is similar to that of Case 3.

The 𝐸 

min,agg
𝑡,𝑤 values for weekdays and weekends are higher than in 

Case 1. The peak median value of 𝐸 

min,agg 

𝑡,𝑤 is 6 MWh and 3 MWh for 

weekdays and weekends, respectively, 4 MWh and 2 MWh higher than 

in Case 1. The values in Case 4 are higher because the combination 

of irregular charging and SOC 

min leads to higher energy requirements 

(𝐸 

SOCmin and 𝐸 

dep ) within a charging session, which would mean that 

the minimum cumulative energy that should be transferred to EV would 

be higher compared to Case 1.

5.1.5. Comparison of EV flexibilities for all cases

When comparing the aggregated flexibility of cases with Case 1, we 

observe changes in both power and energy flexibility metrics for all three

cases. Specifically, Case 2 exhibits an increase in 𝑃 

max,agg 

𝑡,𝑤 and 𝐸 

min,agg
𝑡,𝑤

values compared to Case 1, attributed to the requirements of SOC 

min .

Case 3 exhibits a decrease in 𝑃 

max,agg 

𝑡,𝑤 and an increase in 𝐸 

min,agg 

𝑡,𝑤 values,

compared to Case 1, owing to irregular EV connection to the charging 

point. Case 4 indicates a decrease in 𝑃 

max,agg
𝑡,𝑤 and an increase in both 

𝑃 

max,agg
𝑡,𝑤 and 𝐸 

min,agg
𝑡,𝑤 values, compared to Case 1, influenced by SOC 

min 

requirements and irregular EV connections to the charging point.

Considering that we model aggregated flexibility metrics, we can 

assume that all EVs connected to the charging point create a sizeable 

virtual battery. Hence, 𝐸 

min,agg
𝑡,𝑤 and 𝐸 

max,agg
𝑡,𝑤 represent the minimum

and maximum energy capacity of this virtual battery, while 𝑃 

max,agg
𝑡,𝑤

and 𝑃 

max,agg
𝑡,𝑤 signify its minimum and maximum charging capacity. Any 

increase in 𝑃 

max,agg 

𝑡,𝑤 or decrease in 𝑃 

max,agg
𝑡,𝑤 suggests a reduction in the 

power capacity of this virtual battery, indicating decreased flexibility. 

Similarly, an increase in 𝐸 

min,agg 

𝑡,𝑤 or a decrease in 𝐸 

max,agg
𝑡,𝑤 

implies a reduc-

tion in the energy capacity of the virtual battery, signifying decreased 

flexibility. Thus, observed increases in 𝑃 

max,agg 

𝑡,𝑤 and 𝐸 

min,agg
𝑡,𝑤 for cases with 

SOC 

min requirements indicate a reduction in flexibility due to SOC 

min re-

quirements. A decrease in 𝑃 

max,agg 

𝑡,𝑤 and an increase in 𝐸 

min,agg 

𝑡,𝑤 for cases 

with irregular EV connections to the charging point, indicate reduced 

flexibility due to irregular EV connections to the charging point.

5.2. Monetary value of EV flexibility

Fig. 13 illustrates the corresponding EPC incurred for procuring the 

energy required (87.16 MWh) to charge the EVs for one week in each 

month across the years 2022 and 2023. The bars represent the absolute 

EPC and the dashed lines represent the average EPC incurred for each 

case.

Applied Energy 394 (2025) 126063 

12 



R. Chemudupaty, R. Bahmani, G. Fridgen et al.

Fig. 12. Quantile distribution of flexibility metrics for Case 4.

From Fig. 13(a), we can observe that in 2022, EPC are highest for 

August and lowest for February. In all cases, the EPC exhibit a simi-

lar trend for all three months. This trend persists in all three months, 

with EPC increasing for cases with SOC 

min requirements and irregular 

EV connection frequency to charging points. To analyse the impact of 

SOC 

min requirements and charging frequency on EPC, we compare the 

EPC of the different cases with Case 1, which is the base case. We se-

lected August and February for a detailed comparison, as these months 

depict the lowest and highest cost increases, respectively, compared to 

other months in 2022 (Appendix A illustrates the relative increase in 

EPC when compared to Case 1 for all the months in the year 2022).

First, comparing Case 2 with Case 1 reveals that EPC increases by 

3.6 % (1166 EUR) in August and 11.3 % (505 EUR) in February, demon-

strating the effect of SOC 

min requirements. Second, comparing Case 3 

with Case 1 exhibits a rise of 3.3 % (1075 EUR) in August and 16.5 % 

(736 EUR) in February, demonstrating the effect of the frequency of EV 

connection to the charging point. Third, comparing Case 4 with Case 1 

reveals an increase of 8.1 % (2644 EUR) in August and 30.3 % (1350 

EUR) in February, demonstrating the effect of the SOC 

min requirement 

and charging frequency.

From Fig. 13(b), we can observe that in 2023, EPC are highest for 

February and lowest for December. In all cases, the EPC exhibit a similar 

trend for all the months. Although the EPC for the different cases exhibit 

a similar trend as in 2022, the EPC are much lower than those of 2022.

Similar to the year 2022, to analyse the impact of SOC 

min requirements 

and charging frequency on EPC, we compare the EPC of the different 

cases with Case 1, which is the base case. We selected February and 

July for detailed comparison, as these months depict the lowest and 

highest cost increases, respectively, compared to other months in 2023 

(Appendix A illustrates the relative increase in EPC when compared to 

Case 1 for all the months in the year 2023).

First, comparing Case 2 with Case 1 reveals that EPC increases by 

2.8 % (296 EUR) in February and 14 % (589 EUR) in July, demonstrat-

ing the effect of SOC 

min requirements. Second, comparing Case 3 with 

Case 1 exhibits a rise of 3.3 % (341 EUR) in February and 21 % (882 

EUR) in July, demonstrating the effect of the frequency of EV connec-

tion to the charging point. Third, comparing Case 4 with Case 1 reveals 

an increase of 8.6 % (891 EUR) in February and 38.4 % (1613 EUR) in 

July, demonstrating the effect of the SOC 

min requirement and charging

frequency.

In both years, the EPC are higher for the cases with SOC 

min require-

ments, variable frequency of the EV connection, and combination of

SOC 

min and variable frequency of the EV connection when compared to

Case 1. The increase in EPC implies that as the EV flexibility decreases,

the EPC increases. When comparing the EPC between the two years, the

EPC are much higher for 2022 due to high market prices, yet we still

observed a notable reduction in the EPC for the cases offering higher

flexibility.
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Fig. 13. Electricity procurement costs for one week across all months.

5.3. Cost sensitivity analysis

We perform a sensitivity analysis to assess how varying the SOC 

min 

and charging threshold values will affect the EPC. In our cost sensitivity 

analysis, we vary the charging thresholds and SOC 

min values for all EVs. 

We vary the charging threshold values from 20 % to 100 % in 20 % 

increments, while SOC 

min values vary from 0 % to 100 % in the same 

increments. The higher charging threshold implies that users connect 

their EVs more frequently. An SOC 

min requirement of 100 % is similar 

to uncontrolled charging, where an EV does not offer flexibility, whereas 

0 % is when the EV offers full flexibility i.e., energy provider can control 

the charging throughout the plugin duration.

Fig. 14 illustrates the EPC incurred for different combinations of 

charging thresholds and SOC 

min values for February 2022 and July 2023. 

We selected February and July for our detailed analysis, as these months 

depict the highest cost variation compared to other months in 2022 and 

2023, respectively (refer to Appendix B for the analysis of other months). 

From the sensitivity analysis of two months (refer to Figs. 14(a) and 

(b), we observe a trend where EPC decreases as the charging threshold

value increases, and conversely, EPC tends to rise with higher SOC 

min 

requirements.

From the sensitivity analysis, it is evident that the EPC varies consid-

erably. We observe the highest EPC is 7917.68 EUR and 8335.05 EUR 

for February 2022 and July 2023, respectively, reflecting uncontrolled 

charging where EVs provide no flexibility. The lowest EPC are 4464 

EUR and 4197.37 EUR, for February 2022 and July 2023, respectively, 

representing the combination with the highest overall flexibility (0 % 

SOC 

min and 100 % charging threshold).

Furthermore, we observe a notable trend in the EPC variations con-

cerning SOC 

min values. The EPC remains relatively stable for certain 

charging thresholds until a particular value of SOC 

min , after which the 

EPC escalates rapidly. For instance, for charging thresholds 80 % and 

100 %, EPC is almost similar up to 80 % SOC 

min , after which it in-

creases significantly. This is because higher charging thresholds entail a 

higher SOC 

arr value, which means that for most of EVs when they arrive, 

the SOC 

arr might be already higher than SOC 

min requirement, thus not 

having much impact on the EPC.
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Expanding our cost sensitivity analysis, we evaluate the relative re-

duction of EPC for the cases with 0 % SOC 

min and 80 % SOC 

min compared 

to the EPC of 100 % SOC 

min across various charging threshold values. 

With 0 % SOC 

min reflecting a full flexibility and 80 % SOC 

min a low flex-

ibility case. This comparison allows us to estimate a range for potential 

EPC reductions when EVs provide flexibility for smart charging as op-

posed to uncontrolled charging where EVs provide no flexibility (100 % 

SOC 

min). 

Fig. 15 illustrates the relative EPC reduction for February 2022 and 

July 2023 (refer to C for the analysis of other months). For 0 % SOC 

min, 

the EPC reduction ranges from 28.6 % to 43.6 % in February 2022 (re-

fer to Fig. 15(a)) and from 33.9 % to 49.6 % in July 2023 (refer to 

Fig. 15(b)).

Even with low flexibility (80 % SOC 

min ), we observe a substantial 

reduction in EPC compared to uncontrolled charging. The EPC reduction 

ranges from 11.9 % to 33.5 % for February 2022 (refer to Fig. 15(a)) and 

from 11.8 % to 36.9 % for July 2023 (refer to Fig. 15(b)).

6. Discussion and limitations 

6.1. Implications to energy providers

In our analysis, an increase in SOC 

min requirements and a decrease in 

the frequency of EV connections to the charging point result in reduced 

EV flexibility, which subsequently increases overall EPC. Therefore, high 

flexibility, i.e., low SOC 

min requirements and high frequency of EV

connections, is desirable for energy providers. While energy providers

Fig. 14. Electricity procurement costs of one week for different SOC 

min and 

charging threshold combinations.

Fig. 15. Relative cost reduction of different SOC 

min values compared to 100 %

SOC 

min values across different charging thresholds.

cannot directly control the EV user charging preferences, they can in-

centivise users to adapt their preferences in a certain way, resulting in 

higher flexibility provision. Thus, users could be persuaded with mon-

etary incentives to provide low SOC 

min values and frequently connect 

their EV to the charging point.

With regard to our cost sensitivity analysis, we would like to define 

three cases for the SOC 

min values to guide the discussion. We distinguish

these three cases in terms of their flexibility and convenience to the

users. First, we define 0 % SOC 

min as the case offering full flexibility 

but low convenience. This case gives energy providers full control over 

charging during the plugin duration, but it can be inconvenient for users 

as they are unsure when their energy needs will be met. Second, we 

define 100 % SOC 

min as the case offering no flexibility but high conve-

nience. Here, users retain full control over their charging, ensuring their 

energy requirements are met immediately but providing no flexibility to 

energy providers. Third, we define 80 % SOC 

min as offering low flexibil-

ity and maximum convenience. Energy providers can control charging 

only after EV reaches 80 % of the total battery, but users are assured that 

80 % of their battery will be charged immediately. For most EV users, 

an 80 % SOC 

min is nearly as effective as 100 %, as 80 % of the battery 

is sufficient for most trips, even in emergencies such as a nighttime trip 

to a nearby hospital. Therefore, this case also does not affect the user’s

convenience to a large extent.

Energy providers are concerned that users might set a high SOC 

min 

to preserve their convenience, which would reduce flexibility and in-

crease the EPC. However, our cost sensitivity analysis illustrates that 

even with low flexibility, energy providers can reduce their EPC up to
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33.9 %, compared to no flexibility case. The EPC reduction at full flexi-

bility is only slightly higher, at around 49.6 %. These results indicate 

that energy providers could achieve a similar magnitude of reduc-

tion as full flexibility, even with low flexibility, without causing much 

inconvenience to the users.

Our cost sensitivity analysis suggests that considerable cost reduc-

tions in low flexibility cases can be achieved when EVs connect more 

frequently to the charging point. The cost reductions for low flexibility 

are notably higher for higher charging thresholds (60 %–100 %). Many 

EV owners tend to plug in their vehicles less frequently, i.e., at lower 

battery thresholds, fearing potential battery degradation. However, the 

preferable operating range is typically between 20 % and 80 % [22]. 

Hence, energy providers could incentivize users to plug in their ve-

hicles when their battery is between 60 % and 80 % (which is still 

within the preferable operating range), benefiting both users and energy 

providers.

6.2. Limitations and Outlook

There are several limitations in our study that we intend to address 

in future research.

We assumed linear charging when calculating EV flexibilities. In re-

ality, charging power decreases as the battery’s SOC approaches full 

capacity, which may extend charging times and slightly reduce flexi-

bility. Additionally, battery degradation over time may affect charging 

efficiency and usable capacity, further influencing available flexibility. 

However, when flexibility is aggregated across multiple EVs, these in-

dividual discrepancies are minimized, resulting in a relatively small 

impact on the monetary value of EV flexibility in spot market trad-

ing. Future research could incorporate more realistic charging profiles 

to improve the accuracy of the flexibility modelling.

Beyond charging dynamics, our flexibility estimations rely on 

synthetic mobility data based on German driving patterns. While this 

approach provides a structured dataset, it does not fully capture real-

world uncertainties, such as seasonal variations. For example, holiday 

mobility patterns often differ significantly from typical workdays, influ-

encing driving and charging behaviours. Additionally, our estimations 

do not account for variability in vehicle specifications, such as battery 

size. Since battery capacity can influence user charging preferences— 

particularly their SOC 

min thresholds—it may affect both the flexibility 

provided by EVs and overall user behaviour. Future studies could 

integrate real-world data to enhance modelling accuracy, refining sce-

narios and adapting them to specific periods.

Moreover, while we provide general recommendations to energy 

providers on incentivizing users to adapt their charging preferences for 

greater flexibility at an aggregated level, we did not differentiate be-

tween demographic factors such as income, urban versus rural location, 

or access to home charging. Different demographic groups may respond 

differently to incentives for flexible EV charging. Future research could 

explore how various user segments react to different levels of mone-

tary incentives, enabling more tailored strategies that optimise flexibility 

provision across diverse demographic profiles.

When estimating the monetary value of flexibility, our model as-

sumes perfect foresight for electricity prices for simplicity. However, 

in reality, energy providers face price uncertainty. Future research 

could address this limitation by incorporating uncertain price scenarios 

or integrating price forecasting techniques into the optimisation 

process, making the model more reflective of real-world market 

conditions.

The role of bidirectional charging (V2G) also warrants further explo-

ration. With V2G, providers could arbitrage price differences across mar-

kets, potentially increasing revenue compared to unidirectional charg-

ing, as demonstrated in [25,31]. However, revenue potential depends on 

users’ willingness to allow battery discharge, which varies and should be

considered in future assessments. Integrating these behavioural aspects 

into flexibility modelling could provide a more realistic assessment of 

V2G’s benefits.

Beyond economic optimisation, aligning EV charging with periods 

of high renewable energy availability enhances sustainability by reduc-

ing reliance on fossil-based electricity. While our approach indirectly 

captures this effect—since lower electricity prices often coincide with 

higher renewable generation—future studies could explicitly integrate 

renewable energy forecasts into optimisation models. A multi-objective 

approach that balances cost-efficiency with sustainability considerations 

could provide deeper insights into effectively managing EV charging 

under real-world conditions.

Our study focuses on energy providers who leverage aggregated EV

flexibility to minimize costs while trading in the market and procuring 

power for the entire fleet. Yet, when allocating power to individual EVs, 

grid constraints may restrict the ability to shift all charging to lower-

cost periods, potentially leading to additional redispatch costs, thereby 

diminishing the financial benefits of flexible charging. Future research 

could integrate these constraints into optimisation models to better as-

sess their impact on cost savings and the feasibility of flexible charging 

strategies in real-world applications.

Despite these limitations, they do not diminish the key conclusion of 

our study: EVs possess significant flexibility that energy providers can 

utilise to reduce their EPC, even under the uncertainties considered in 

this work.

7. Conclusion

Our paper evaluated the impact of uncertain user behaviour on the 

EV flexibility potential and its monetary value in both day-ahead and in-

traday markets. We consider uncertainties arising from variable driving 

patterns and charging preferences. We introduced 52 distinct scenarios 

to model uncertainties in driving patterns effectively. Regarding charg-

ing preferences, our paper considered variations in both the SOC 

min 

requirement and the frequency with which users connect their EVs 

to charging points. By assuming four use cases that reflect different 

possibilities of these charging preferences, we computed flexibility for 

each scenario using a dedicated flexibility model. We then used these 

flexibility scenarios as input to our scenario-based robust optimisa-

tion model to calculate the EPC for each use case. We calculated the

EPC for each use case for one week across all months for 2022 and 

2023.

Our findings indicate that a decrease in the frequency of EV connec-

tions to the charging point and an increase in the SOC 

min requirement 

resulted in reduced EV flexibility, subsequently leading to increased 

EPC. The cases’ EPC were much higher in 2022 than in 2023 due to 

high market prices. Nevertheless, we still observed a notable reduction 

in the EPC for the cases offering higher flexibility in 2022.

We also performed a cost sensitivity analysis, where we varied the 

charging thresholds- below which users plugin their EVs and SOC 

min 

values and calculated the corresponding EPC for all months in the years 

2022 and 2023. We observed the highest reductions in EPC for the 

months of February and July in 2022 and 2023, respectively, when EVs

offer flexibility as opposed to uncontrolled charging where EVs offer no 

flexibility.
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The reductions in EPC when EVs offer high flexibility (0 % SOC 

min 

and 100 % charging threshold) were up to 43.6 % for February 2022 

and 49.6 % for July 2023. Furthermore, we found that the EPC reduces 

up to 33.5 % for February 2022 and 36.9 % for July 2023 even when 

SOC 

min values are as high as 80 % when compared to 100 % SOC 

min 

values. These results indicate that an 80 % SOC 

min achieves nearly the 

same EPC reduction as when 0 % SOC 

min values. Our findings outline 

that flexible EVs charging thus possesses high economic value, allowing 

energy providers to achieve substantial monetary gains with minimal 

impact on user convenience.
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Appendix A. Relative values of increase in EPC for different use

cases

See Fig. A.16(a) and (b).

Fig. A.16. Electricity procurement cost reduction for different cases when 

compared to Case 1 for one week across all months.
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Appendix B. Cost sensitivity analysis for all months across 

the years 2022 and 2023

See Figs. B.17 and B.18.

Fig. B.17. Electricity procurement costs of one week for different SOC 

min and charging threshold combinations for each month in 2022.
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Fig. B.17. (Continued)
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Fig. B.18. Electricity procurement costs of one week for different SOCmin and charging threshold combinations for each month in 2023.
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Fig. B.18. (Continued)
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Appendix C. Relative reduction of EPC for different SOC 

min for all 

months across the years 2022 and 2023

See Figs. C.19 and C.20.

Fig. C.19. Relative cost reduction of different SOC 

min values compared to 100 % SOC 

min values across different charging threshold for each month in 2022.
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Fig. C.19. (Continued)
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Fig. C.20. Relative cost reduction of different SOC 

min values compared to 100 % SOC 

min values across different charging threshold for each month in 2023.
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Fig. C.20. (Continued)

Data availability

Data will be made available on request. 
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A B S T R A C T

The rise in electric vehicles (EVs) challenges energy suppliers with unpredictable charging behavior, making
demand forecasts less accurate and increasing financial risks from power imbalances. In Europe, retailers can
trade these imbalances in short-term markets like the continuous intraday (CID) market. By controlling EV
charging times, suppliers can shift charging to periods with lower prices, potentially benefiting financially.
However, the financial gains from trading this flexibility in the CID market remain uncertain due to EV user
behavior and price fluctuations. In this study, we develop and test trading strategies designed to manage the
power needs of a fleet of 1000 EVs across different segments of short-term electricity markets, focusing on the
day-ahead (DA) auction, and the CID market. To address EV-use uncertainty, we take an initial EV charging
flexibility forecast for the DA auction, and an updated forecast for the CID market. We find that trading in
the CID market reduces the overall cost of making power purchases by capitalizing on the flexibilities of EV
charging times. Our results suggest that energy suppliers trading in the CID market significantly reduce their
financial risk, even when there are high margins of error in EV flexibility forecasts. In our scenario with the
highest deviation between the DA and intraday (ID) flexibility metrics, applying the best CID strategies yielded
an average yearly profit of e37.52 and e4,840.63 in 2019 and 2022 respectively. In comparison to the baseline
strategy, which clears volumes as imbalances, the corresponding financial savings amounted to e1978.52 and
e16,632.25, respectively.

1. Introduction

There has been significant growth in the use of EVs in recent
years, boosted by regulation and the provision of state-financed incen-
tives. As this growth is expected to continue in the coming years [1],
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energy suppliers will need to meet growing power demands for EV
charging [2].

Energy suppliers use EV demand forecasts to help them plan, with
these often based on historical driving and charging patterns [3].
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However, due to the variable nature of EV users’ driving behaviors
and their evolving charging preferences, discrepancies arise between
forecast and actual charging demand [4]. These discrepancies might
pose financial risks for energy suppliers, particularly in European mar-
kets where market participants pay penalties if there are ‘‘imbalances’’
between expected and actual demand [5].

Energy suppliers in Europe can mitigate power imbalance penalties
by participating in short-term electricity markets, such as the DA
market and the CID market. In Europe, the main difference between
these markets is their gate closure times. In the DA market, gate closure
is typically around noon on the day prior to the product’s due delivery
date. In the CID market, trading occurs up to a few minutes before
delivery, thus enabling energy suppliers to adjust schedules to real-time
demand [5]. Furthermore, when charging EVs in a controlled manner
(i.e. using ‘‘smart charging’’ techniques), EVs can serve as a flexible
asset [6,7]. Energy suppliers can leverage the flexibility provided by
EVs to charge the vehicles when prices are lower, enabling the energy
supplier to reduce procurement costs [8,9]. However, there remains
a lack of clarity regarding the potential financial gains and risks for
energy suppliers regarding the trading of EV charging flexibility in the
CID market. This is due to uncertainties in EV usage and electricity
market price fluctuations.

In the interests of facilitating EV flexibility trading in the CID
market, rolling window (RW) horizon optimization methods have been
proposed [10,11]. RW horizon optimization models allow energy sup-
pliers to adapt dynamically to CID market conditions. By using a
sequential trading strategy, energy suppliers can first acquire most
of the power required to satisfy charging needs from the DA market
while minimizing costs, and then also realize arbitrage gains by trading
on the CID market [11,12]. Modeling price uncertainties in the CID
market is achieved by modeling different price scenarios with their
associated probabilities [12,13]. When modeling EVs flexibility, many
authors [11,12,14] assumed that the forecast demand from EVs would
remain constant when trading in the DA and CID markets.

Relying solely on the same DA EV demand forecasts when trading in
the CID market could be impractical. DA demand forecasts (including
EV power requirements) are typically generated at least 36 h before
delivery, hence increasing the likelihood of inaccuracies due to changed
circumstances. The closer a forecast is made to delivery time, the more
accurate it will be thanks to the integration of the latest user data, such
as on-going plug-in and plug-out times. Also, using the same forecast for
both DA and CID markets risks overlooking potential additional imbal-
ance costs stemming from changes in demand for EV charging capacity.
Furthermore, including price uncertainty in modeled scenarios requires
prior knowledge of market prices, as these scenarios often fit the whole
modeling interval [12]. However, future market prices are difficult to
predict, leading to unrealistic forecast scenarios which are poorly suited
for practical applications. These require dynamic adaptation to changes
in market prices. In our paper, we propose a novel optimization model
that takes account of the uncertainties arising from (1) EV charging
flexibility, and (2) price volatility in the CID market.

To effectively model the uncertainties implicit in the provision of
EV charging flexibility, we quantify the flexibility of an EV fleet by
stochastically combining individual flexibility metrics derived from a
synthetic mobility dataset [15]. In our paper, we focus solely on the
demands of EV charging at home, specifically unidirectional charging.
Accordingly, we calculate the flexibility metrics for EVs connected to
home charging stations. These flexibility metrics include measurements
of power and energy over time. These metrics provide insights into the
extent to which charging power can be adjusted at each time step of
the process, while still ensuring that the EV battery receives sufficient
charge to meet the user’s needs when they are ready to depart. We
generate two sets of flexibility metrics: one that serves as a forecast for
the DA period, and a subsequent ID set updates the former, which then
serves as a forecast for all ID trading activities.

To realistically capture price uncertainty in the CID market, we
create a price forecasting model that features the average of the four
most recent transactions in the current product. We thereby incorporate
the latest market price information into the model [16]. This approach
allows for optimized decisions to be made, given the difficulty of
anticipating future CID market price movements. In contrast, we use
realized market price data to evaluate the results of the optimization
process, thus measuring performance against real-world conditions.

Consequently, in this paper, we examine three different trading
strategies. In all three strategies, we first seek to procure most of the
power needs required for EV charging from the DA market using the DA
EV flexibility forecast. This is done while also seeking to minimize costs.
During the subsequent ID period, market positions must be updated to
account for the updated ID EV flexibility forecast. The three strategies
feature different approaches to rescheduling during the ID period:

1. Baseline Strategy: This strategy settles power volumes neces-
sary to fulfill the ID schedule for the imbalance price, known
as "regelzonen bergreifender einheitlicher Bilanzausgleichsen-
ergiepreis" (cross-control area uniform balancing energy price)
(reBAP) in Germany [17]. The strategy minimizes the difference
between DA and ID power needs, thereby reducing imbalances
and the associated costs.

2. Static CID Strategy: Similar to the baseline strategy, this ap-
proach makes the same power volume adjustments but settles
them in the CID market instead of treating them as imbalances.
For simplicity, the strategy uses the ID1, a price index published
by the European Power Exchange (EPEX), which reflects the
price during the final trading hour of each product in the CID
market [18].

3. Dynamic CID Strategy: This strategy continuously adjusts posi-
tions in the CID market using a RW approach. The RW method
allows multiple re-optimizations during the CID trading window,
leveraging EV charging flexibility to arbitrage from changing
prices between products trading in parallel.

We evaluate all strategies on German EPEX market data for two sep-
arate years, 2019 and 2022, thereby providing an understanding of
the strategies’ efficacy in different market conditions. Specifically, we
quantify the benefit of adjusting positions taken in the DA market
by trading in the CID market, as opposed to settling deviations as
imbalances [5].

The remainder of the paper is structured as follows. Section 2
contains an introduction to the European wholesale power markets,
particularly to CID markets, using Germany as an example. Further-
more, we discuss the literature on EV power flexibility modeling and
trading. Section 3 introduces our sequential optimization model and
CID trading strategies. Section 4 gives an overview of the data used
in our paper. Section 5 covers the scenarios used for our simulations.
Section 6 presents and discusses our simulation results. Section 7
concludes the paper.

2. Background and related work

Section 2.1 provides a brief overview of European electricity mar-
kets to facilitate understanding of the rest of the paper. Subsequently,
Section 2.2 reviews related work and situates our study within the
existing literature.

2.1. Background: Electricity spot markets

In Europe, power market participants such as energy suppliers
can trade in short-term markets to reduce their demand and supply
imbalances until just a few minutes before delivery. Although these
markets are technically futures markets that feature a lag between
trading and physical delivery, they are commonly referred to as spot
markets [5]. Germany serves as an instructive case, as it is one of
Europe’s largest power markets by traded volume [19]. The German
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spot market includes a DA auction and an ID market. The ID market
is divided into two parts: an auction market, known as the intraday
auction (IDA) market, and a continuous market, referred to as the
CID market. Products traded in the spot market are characterized by
their different delivery time intervals, which can be one hour, thirty
minutes, or fifteen minutes in length [20]. Within the German market,
hourly products exhibit the highest liquidity, followed by quarter-
hourly products [19,21]. Market participants such as energy suppliers
can meet their short-term power needs by participating in the different
parts of the spot market.

To participate in the European DA market, participants submit
hourly orders to the DA auction, which clears through an auction
mechanism. Orders can contain two types of offers: (1) bids, i.e., prices
participants are willing to pay to buy power, and (2) asks, i.e., prices
they are willing to accept to sell power. In Germany the DA auction
takes place every day at noon for all hours of the following day [22].
Upon reaching the gate closure time (after which no more offers can
be posted), a clearing algorithm matches these orders to establish a
single product-specific clearing price for each market area, such as
the German-Luxembourgish market area, adhering to the merit order
principle [23].

While it is only possible to trade hourly products in the European
DA market, the European ID market also allows trading in thirty minute
and fifteen minute products [24]. The IDA works similarly to the DA
auction and takes place every day at 3 PM for the products with
delivery during the following day [22]. Unlike auctions, where all
orders are cleared simultaneously based on the merit order princi-
ple, continuous trading in the CID market enables bids to be cleared
continuously throughout the trading period. At 3 PM, trading in the
European CID market starts [25]. In the CID market, the trading system
instantaneously clears bids and asks whenever an ask price undercuts
a bid [26]. In Germany, the CID market closes five minutes before
delivery, i.e., before the start of the respective product.

After ID market closure ex-post imbalances are handled by transmis-
sion system operators (TSOs) [27]. All wholesale market participants
belong to a balance responsible party (BRP), which compensates the
TSOs for activating the balancing services required to minimize the
imbalances caused by the activity of market players. It is important
to note that the compensation can be negative, indicating a reversal
in the direction of payment. In Germany, the compensation, (i.e., the
imbalance price) is called the reBAP [17].

2.2. Related work: EV smart charging algorithms

Smart charging enables energy suppliers to manage EV charging,
thereby reducing procurement costs by charging EVs when electricity
prices are lower [28,29]. Properly estimating EV flexibility is crucial
in developing smart charging algorithms. By accurately estimating
the flexibility provided by EVs, energy suppliers could determine the
potential for shifting the charging patterns while meeting EV users’
energy requirements. This flexibility, derived from historical mobility
patterns and charging preferences, requires accurate modeling of EV
usage [3].

EV usage is subject to several uncertainties due to variable driving
patterns and charging preferences. EV uncertainties could be related
to the number of vehicles connected to charging points at any mo-
ment, the arrival and departure times of the vehicles, and the energy
required for powering EVs [30,31]. To capture EV uncertainty, the
likelihood of various parameters, such as trip distance, trip dura-
tion, trip start/end times, and others, are characterized by probability
distribution functions (PDFs) [32].

These PDFs then serve as an input to Monte Carlo simulations,
where stochastic EV usage patterns are modeled by drawing various
EV parameters from the PDFs [33,34]. Another approach to model
the stochastic EV usage patterns is by using a Markov chain. In a
Markov chain, the transition between driving, parking/charging at

different locations (e.g. workplace, home, commercial areas), and other
states are determined by using transition probabilities [35,36]. The
transition probabilities give the likelihood of the EV moving from one
state to another in the next time step, with this based solely on the
current state. These aid in developing a discrete-time state Markov
chain which captures the spatio-temporal dynamics of EV usage over
defined intervals (15 min, 30 min, 1 h) for a specific period (week,
month, year) [15,37].

With these usage patterns as inputs, the charging demand is es-
timated by implementing an uncontrolled charging regime in which
an EV is charged at full power until its requested energy need is
fulfilled [38]. The energy required for a charging session is assumed
to be equal to the estimated energy consumption of the EV for its next
trip, or the energy required to reach maximum battery capacity. The
necessary charging time can be calculated from the maximum charging
power and the required energy. The load profile, which gives an elec-
tricity consumption pattern of each EV, is calculated and superimposed,
representing the overall demand of EVs at each time step for a given
time period [39,40].

To smart charge EVs, EV charging scheduling can be formulated as
a mathematical optimization problem. This is because smart charging
typically involves allocating resources (i.e., charging power) to maxi-
mize the objectives (such as minimizing energy supplier costs) while
satisfying constraints (e.g. user requirements). In this notion, smart
charging algorithms can employ stochastic optimization models to
optimally schedule EV charging whilst dealing with uncertainties [41].
A stochastic optimization model utilizes probability distributions to
represent uncertainties, allowing the model to account for a spectrum
of potential scenarios [42]. When formulating objective functions to
minimize costs for an energy supplier, various approaches are used.
For instance, the objective function might focus on maximizing the
expected profits in the DA market by calculating the average perfor-
mance across different EV demand scenarios, based on their respective
probabilities [43]. Additionally, some stochastic optimization models
incorporate risk measures such as conditional value at risk (CVaR) [41,
44,45] or variance [42] into the objective function, which could be
to minimize the costs in the DA market [44] or maximize the energy
suppliers profits [45]. Authors in [46] propose a hybrid stochastic and
Information Gap Decision Theory (IGDT) optimization to maximize the
EV aggregator profits. EV uncertainties are modeled with scenarios,
while price risk is handled through IGDT.

Authors in [41,43,44,46] focused on the trading of EV flexibility
primarily in DA markets. This is because these markets often exhibit
more stable and predictable price patterns compared to ID markets,
thus making it easier to model and optimize EV charging schedules.

However, by participating in DA and ID markets, energy suppliers
can spread their risk exposure and hedge against the uncertainties
created by fluctuating EV usage and market prices. Day-ahead markets
offer energy suppliers foresight to help them plan strategically for the
manifestation of anticipated patterns, while ID markets provide the
flexibility to respond quickly to unforeseen changes in EV demand.
The ID markets are also referred to as real-time (RT) markets in some
electricity markets, such as the Iberian market [47], the Nordic RT
market [48], and the PJM (US based) RT market [34,49].

Two-stage optimization models enable energy suppliers to optimize
EV charging in both DA and RT/ID markets. The first-stage decisions
usually correspond to DA market scheduling with the objective of
minimizing the costs of the energy supplier. The second-stage decisions
usually correspond to RT/ID markets where authors in [34,47] model
the objective function in order to reduce the power imbalances and
minimize the energy supplier’s costs. Liu et al. [48] formulated the
objective function to maximize the revenues of the energy supplier
while considering bidirectional charging. Many authors [34,48,49]
assumed perfect foresight, while in reality, market prices are uncertain
and not known in advance, as explained in Section 2.1. To model the
uncertainty in market prices, the authors in Sánchez-Martín et al. [47]
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Table 1
Literature overview — Electricity markets
† non-German market.

Research paper Electricity markets

DA IDA CID

Al-Awami and Sortomme [44] ✓ ✗ ✗

Aliasghari et al. [46] ✓ ✗ ✗

Balram et al. [45] ✓ ✗ ✗

Xu et al. [41] ✓ ✗ ✗

Zheng et al. [43] ✓ ✗ ✗

Liu et al. [48] ✓ ✓† ✗

Jin et al. [34] ✓ ✓† ✗

Silva et al. [49] ✓ ✓† ✗

Sánchez-Martín et al. [47] ✓ ✓† ✗

Naharudinsyah and Limmer [10] ✗ ✗ ✓

Chemudupaty et al. [51] ✓ ✗ ✓

Tepe et al. [11] ✓ ✗ ✓

Corinaldesi et al. [52] ✓ ✗ ✓

Shinde et al. [13] ✓ ✗ ✓

Vardanyan and Madsen [12] ✓ ✓ ✓

Meese et al. [50] ✓ ✓ ✓

Our paper ✓ ✗ ✓

employed forecasting models which predict price movements in ID
markets. Meanwhile, the authors in [34,47–49] focused on modeling
RT/ID markets which are similar to the IDA, where products are not
traded continuously, as we explained in Section 2.1.

To capture the dynamics of the CID markets where trading occurs
continuously, authors in [10,11] proposed an RW horizon optimization
method to optimize the EV charging schedule. The RW method divides
the problem into several windows over a specific time frame, allowing
continuous adaptation of evolving constraints and data. Consequently,
in the context of EV charging, the RW optimization model facilitates
the recurrent updating of EV scheduling decisions within each window,
while still minimizing the energy supplier’s costs when trading in CID
markets [10,13]. To represent the CID prices, authors implemented
two approaches. In the first approach, authors in [11,50,51] consider
single prices for each product. While in the second approach, authors
in [10,14] consider multiple prices along the trading period. Multi-
price modeling considers the price evolution within the trading sessions
of CID products by reoptimizing positions repeatedly throughout the
trading period [12,52]. At every repetition, the optimizations require
price inputs to calculate the energy supplier’s costs, since the opti-
mization objectives rely on minimizing costs. Most authors [10,11,50,
52] assumed perfect foresight of CID prices. Other authors in [12,13,
51] model the prices by assuming different scenarios, with associated
probabilities to account for uncertainty in CID prices.

In sequential trading across DA and ID markets, authors in [11,50]
procured most of the power required for EV charging from the DA
market while still minimizing costs. Subsequently, the authors in [11,
50] only traded power in the ID markets if this produces additional
revenues. However, while modeling EV flexibility, most authors in [11–
13,50–52] assumed the same EV demand forecast for both DA and ID
markets. Thus, they also did not account for the potential imbalances
and additional costs that could be incurred due to changes in EV
demand while trading in CID markets.

To draw attention to the contributions of our paper, we summarize
our literature review and compare existing literature with our paper in
Tables 1 and 2.

In Table 1, we present the electricity markets considered by various
papers for trading EV flexibility. Our paper focuses on trading EV
flexibility in DA and CID markets. We do not investigate the IDA due
to it having a similar clearing mechanism to the DA auction and lower
liquidity in the German market compared to the DA auction [19].

In Table 2, we compile the papers that explore the trading of EV
flexibility in CID markets, given our primary focus on modeling the
CID market. We differentiate papers based on their approaches to CID

Table 2
Literature overview — CID Modeling.

Research paper CID price modeling Multistage
EV modeling

Multi-price Price input

Naharudinsyah and Limmer [10] ✓ perfect foresight ✗

Chemudupaty et al. [51] ✗ scenarios ✗

Tepe et al. [11] ✗ perfect foresight ✗

Corinaldesi et al. [52] ✓ perfect foresight ✗

Shinde et al. [13] ✓ scenarios ✗

Vardanyan and Madsen [12] ✓ scenarios ✗

Meese et al. [50] ✗ perfect foresight ✗

Our paper ✓ price forecast ✓

price modeling and EV flexibility modeling. Table 2 lists all the papers
focused on EV trading strategies within CID markets. We included all
relevant studies from our initial search that addressed CID trading
alongside EV flexibility. To the best of our knowledge, none of these
papers integrated CID market price forecasts into their EV trading
models. Our paper employs multiple prices for price modeling and
utilizes price forecasts. By using price forecasts, we eliminate the need
for prior knowledge of future prices during optimization. The price
forecasting approach better reflects real-world trading scenarios, where
decisions are made within trading sessions without prior knowledge
of future price developments. We also consider the variation in EV
demand between DA and CID markets. Therefore, we use an initial
DA forecast for DA optimization, and update it with an ID forecast for
CID trading. Using an updated ID forecast for CID trading enhances the
accuracy of EV charging schedule optimization because the forecasts
become more reliable over time. Additionally, we test different trading
frequencies within the CID market and compare CID trading with
settlement as an imbalance.

3. Methods

To enable the energy supplier to trade EV flexibility, we quantify the
EV flexibility in terms of power and energy as functions of time. This
will convey the information on the amount of power that can be varied
in a controllable fashion during each time step, while maintaining the
energy levels required to meet the users’ requirements, and keeping
charging power below charger limits. We then use this aggregated
flexibility as an input to our optimization models to facilitate EV
flexibility trading in both the DA and the CID markets. Fig. 1 illustrates
the sequence of the different trading and optimization steps to obtain
the final EV charging schedule.

Consistent with prevalent hedging strategies in short-term power
markets, the objective is to meet all the power needs resulting from
the DA EV flexibility forecast in the DA market while minimizing
the procurement costs in line with [52]. Securing all volumes in the
DA market is advantageous for hedging, offering higher liquidity than
the CID [19] and a single clearing price per product. Conversely,
continuous trading in the CID market increases risk due to fluctuating
and volatile prices [53]. The model tries to find the cheapest periods in
the DA timeframe to charge EVs without factoring in the ID markets or
any possible imbalances. The DA optimization runs with the assumption
of having perfect foresight of DA prices and an initial EV flexibility
forecast, resulting in a preliminary DA charging schedule.

During the ID period, a more accurate EV flexibility forecast be-
comes available. For simplicity’s sake, we assume that this forecast
matches actual EV flexibility at the time of charging. To adjust the
charging schedule to the updated flexibility forecast, we propose three
strategies. The first strategy, the baseline strategy, aims to reschedule
EV charging to minimize imbalances, specifically changes in the power
of the EV charging schedule. Afterwards, the strategy settles remaining
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Fig. 1. Overview of trading steps.

imbalances for the reBAP. The second strategy, the static CID strategy,
is similar, since it uses the same ID charging schedule. However, instead
of settling power volumes for the reBAP, it settles power volumes in
the CID market at the ID1 price. The third strategy, the dynamic CID
strategy, trades in the CID market, where the optimization model takes
account of CID price forecasts. The strategy uses an RW approach,
involving successive rounds of optimization and trading for the same
product. Note, that opting to trade in the CID market eliminates im-
balances, as all open volumes are traded in the CID market. All three
strategies result in a final ID charging schedule, according to which EVs
can be charged.

Section 3.1 quantifies the flexibility provided by an aggregated fleet
of EVs. Sections 3.2 and 3.3 illustrate how our optimization models
trade EV flexibility in the DA and CID markets, respectively. Section 3.4
summarizes the sequential optimization process.

3.1. EV flexibility model

3.1.1. Input parameters to quantify EV flexibility
In this Section, we outline the parameters of different user inputs,

EV batteries, and EV chargers that are relevant for quantifying EV
flexibility. The level of flexibility offered by an EV varies with each
charging session; influenced by the user’s driving and charging habits,
as well as the EV battery and charger specification.

To quantify the EV flexibility, we need the maximum charging
power of an EV charger, the plugin duration, and the energy that should
be transferred within a charging session. The maximum charging power
is the maximum power at which an EV can be charged (𝑃max

𝑣 ). The
plugin duration is the time between EV arrival time (𝑡arr) and departure
time (𝑡dep). The energy that should be transferred to satisfy the user’s
state of energy at departure (SOEdep) requirement is denoted by 𝐸dep

𝑣 .
In Fig. 2, we illustrate the typical EV battery with different energy

values. 𝐸max
𝑣 is the total battery capacity of the EV, 𝐸arr

𝑣 is the EV
battery capacity at the time of arrival (𝑡arr), and 𝐸dep

𝑣 is the energy that
should be transferred to satisfy the SOEdep requirement.

As we only consider unidirectional charging, the overall energy
capacity of the battery can never drop below 𝐸arr

𝑣 . Furthermore, the
user might not always request maximum SOEdep. This would mean that
the sum of 𝐸arr

𝑣 and 𝐸dep
𝑣 would not always be equal to 𝐸max

𝑣 . Therefore,
we only consider the part of the battery that can be charged i.e., 𝐸dep

𝑣
while estimating EV flexibility.

Fig. 2. Typical EV battery and different energy values.

Fig. 3. Representation of EV flexibility in energy vs. time graph.

3.1.2. Quantification of individual EV flexibility
To estimate the flexibility provided by an EV, we quantify EV

flexibility during its plugin duration using time-dependent energy and
power metrics which are derived by using the parameters introduced
in Section 3.1.1. The energy metrics are minimum energy (𝐸min

𝑡,𝑣 ) and
maximum energy (𝐸max

𝑡,𝑣 ) at time 𝑡. The power metrics are minimum
power (𝑃min

𝑡,𝑣 ) and maximum power (𝑃max
𝑡,𝑣 ) at time 𝑡. These metrics will

convey the amount of power with which an EV can be charged while
maintaining upper and lower limits of cumulative energy transfer.

𝐸min
𝑡,𝑣 represents the minimum cumulative energy that must be trans-

ferred to the EV at time 𝑡 to satisfy the user’s energy requirement
i.e., 𝐸dep

𝑣 . The process to determine 𝐸min
𝑡,𝑣 is divided into two phases

within its plugin duration as illustrated in Fig. 3.
The first phase is the idle state where there is no energy transfer

to the EV until critical time (𝑡c). 𝑡c marks the moment when the EV
must begin charging at full power to meet the required energy level
by departure time (𝐸dep

𝑣 ). Therefore, the first phase to determine 𝐸min
𝑡,𝑣

extends from the 𝑡arr to the 𝑡c. The second phase covers the time
between 𝑡c and the time of departure (𝑡dep). During this phase, the EV is
charged at full power to ensure that 𝐸dep

𝑣 is achieved by the departure
time. We present the mathematical formulation to determine 𝐸min

𝑡,𝑣 in
Eqs. (1) and (2).

𝐸min
𝑡,𝑣 = 𝐸min

𝑡−1,𝑣 + 𝑃𝑡,𝑣 × 𝜂 × 𝛥𝑡 (1)

𝑃𝑡,𝑣 =

{
0 𝑡arr < 𝑡 ≤ 𝑡𝑐 (Phase 1)
𝑃max
𝑣 𝑡𝑐 < 𝑡 ≤ 𝑡dep (Phase 2)

(2)
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In reality, EV charging is not linear and involves different stages
(such as constant current and constant voltage) to optimize the charg-
ing process for safety and battery health [54]. However, for simplicity,
we assume linear charging of the EV where the charging power takes
continuous values. Therefore, we calculate 𝐸min

𝑡,𝑣 by using Eq. (1), where
𝑃𝑡,𝑣 is the charging power at time 𝑡, 𝜂 is the charging efficiency to
account for power losses while charging, and 𝛥𝑡 is the time interval
during which the charging power is delivered. The value of 𝑃𝑡,𝑣 to
calculate 𝐸min

𝑡,𝑣 in the first phase and the second phase are 0 and 𝑃max
𝑣

respectively, as depicted in Eq. (2).
𝐸max
𝑡,𝑣 represents the maximum cumulative energy that can be trans-

ferred to the EV at time 𝑡. Similar to 𝐸min
𝑡,𝑣 , the process for determining

𝐸max
𝑡,𝑣 is divided into two distinct phases (as illustrated in Fig. 3).

In the first phase, the EV is charged instantaneously at maximum
power until the energy required for departure, 𝐸dep

𝑣 , is met. The dura-
tion of this phase is from 𝑡arr (arrival time) to 𝑡inst, where 𝑡inst is the
time needed to transfer 𝐸dep

𝑣 instantaneously at full power. The second
phase starts at 𝑡inst and lasts until 𝑡dep (departure time), during which
no energy transfer occurs.

We present the mathematical formulation for calculating 𝐸max
𝑡,𝑣 in

Eqs. (3) and (4). As we assume the linear charging of the EV, the
maximum energy level at time 𝑡, 𝐸max

𝑡,𝑣 is calculated by Eq. (3). The
𝑃𝑡,𝑣 value to calculate 𝐸max

𝑡,𝑣 in the first phase and second phase is 𝑃max
𝑣

and 0 respectively, as depicted in Eq. (4).

𝐸max
𝑡,𝑣 = 𝐸max

𝑡−1,𝑣 + 𝑃𝑡,𝑣 × 𝜂 × 𝛥𝑡 (3)

𝑃𝑡,𝑣 =

{
𝑃max
𝑣 𝑡arr < 𝑡 ≤ 𝑡inst (Phase 1)

0 𝑡inst < 𝑡 ≤ 𝑡dep (Phase 2)
(4)

When plotting 𝐸max
𝑡,𝑣 and 𝐸min

𝑡,𝑣 on the energy vs. time graph, the
region bounded by these two energy metrics represents the degree of
flexibility (see Fig. 3). As depicted in Fig. 3, the EV offers flexibility
throughout the plugin duration, allowing the charging power to fluc-
tuate between maximum and minimum possible values. This variation
in charging power is possible as long as the cumulative energy transfer
remains within the defined flexibility region. Therefore, the value of
the minimum power flexibility metric - 𝑃min

𝑡,𝑣 , which represents the
minimum allowable power at which the EV must be charged at time
𝑡, is equal to 0 for the whole plugin duration.

The maximum power flexibility metric - 𝑃max
𝑡,𝑣 , represents the max-

imum allowable power at which the EV can be charged at time 𝑡.
Therefore, 𝑃max

𝑡,𝑣 for the whole plugin duration is equal to 𝑃max
𝑣 .

3.1.3. Quantification of EV fleet flexibility
As we manage a portfolio of an energy supplier, (which includes an

EV fleet) aggregating their flexibilities becomes essential to facilitating
trading in electricity markets. To obtain the aggregated flexibility of an
EVs fleet, we sum up the flexibilities of individual EVs. We represent the
resulting aggregated energy and power flexibility metrics as 𝐸min

𝑡 , 𝐸max
𝑡

and 𝑃min
𝑡 , 𝑃max

𝑡 . These metrics characterize a virtual battery model,
defined by its minimum and maximum thresholds for both power and
energy levels. To account for uncertainties in EV flexibility forecasts,
we generate different flexibility metrics for the DA and ID period by
applying different weights to individual EV flexibility metrics during
summation. Section 4.2 provides more details on the generation of
the EV flexibility metrics. Consequently, we adapt the notation of
the flexibility metrics to distinguish between both periods. Taking the
minimum energy flexibility metric (𝐸min

𝑡 ) as an example, we denote the
DA metric as 𝐸min,DA

𝑡 and the ID metric as 𝐸min,ID
𝑡 .

3.2. DA optimization

We develop a linear optimization model with the objective of mini-
mizing procurement costs incurred for charging the EV fleet. The input
data for our optimization model are DA market prices and EV flexibility

forecasts. The EV flexibility forecasts for the DA market are calculated
using the flexibility model, detailed in Section 3.1. We assume perfect
foresight of DA prices in line with [43]. This assumption allows us to
isolate price uncertainty specifically within the CID market, aligning
with our study’s focus. Importantly, this assumption’s impact is limited,
as the DA schedule serves only as an initial reference for subsequent
ID rescheduling, with our analysis centered on schedule changes made
during the ID phase.

Our objective function aims to minimize the energy supplier’s DA
procurement costs (see Eq. (5)). The objective function considers the
variable 𝑃DA

𝑡 and parameter 𝐶DA,true
𝑡 , which are the power purchased

from DA market and the DA price at time 𝑡, respectively. As we assume
perfect foresight of the DA price, 𝐶DA,true

𝑡 is the same as the clearing
price of the DA market at time 𝑡.

min
𝑃DA
𝑡 ,𝐸DA

𝑡

∑
𝑡
𝐶DA,true
𝑡 × 𝑃DA

𝑡 × 𝛥𝑡 (5)

As we trade the aggregated flexibility of the EV fleet, we assume that
all the EVs connected to their respective charging points at residential
level create a large virtual battery [55]. In this regard, the power
and energy flexibility metrics represent the minimum and maximum
power and energy thresholds of the virtual battery (see Section 3.1.3).
Therefore, 𝑃min,DA

𝑡 and 𝑃max,DA
𝑡 represent the minimum and maximum

charging power of the virtual battery for the DA market at time 𝑡. While,
𝐸min,DA
𝑡 and 𝐸max,DA

𝑡 represent the minimum and maximum energy that
could be transferred to the virtual battery at time 𝑡, for the DA market.

In the context of the virtual battery, 𝑃DA
𝑡 represents the power

procured from the DA market to charge the virtual battery. Thus, the
𝑃DA
𝑡 value should always be between 𝑃min,DA

𝑡 and 𝑃max,DA
𝑡 , ensured by

the constraint formulated in Eq. (6):

𝑃min,DA
𝑡 ≤ 𝑃DA

𝑡 ≤ 𝑃max,DA
𝑡 ∀ 𝑡 ∈ 𝑇 . (6)

The variable 𝐸DA
𝑡 represents the cumulative energy transferred to

this virtual battery at time 𝑡 in the DA market. The value of variable
𝐸DA
𝑡 should always be within 𝐸min,DA

𝑡 and 𝐸max,DA
𝑡 , ensured by the

constraint formulated in Eq. (7):

0 ≤ 𝐸min,DA
𝑡 ≤ 𝐸DA

𝑡 ≤ 𝐸max,DA
𝑡 ∀ 𝑡 ∈ 𝑇 . (7)

The following Eq. (8) depicts the energy balance of the virtual
battery:

𝐸DA
𝑡 = 𝐸DA

𝑡−1 + 𝑃DA
𝑡 × 𝛥𝑡 − 𝐸left,DA

𝑡 ∀ 𝑡 ∈ 𝑇 . (8)

𝐸DA
𝑡 is the variable illustrating the cumulative energy transferred to

the virtual battery at the time step 𝑡. Its value is affected by 𝐸DA
𝑡−1, 𝑃

DA
𝑡 ,

and 𝐸left,DA
𝑡 . 𝐸DA

𝑡−1 is the cumulative energy transferred to the virtual
battery in the previous time step. 𝑃DA

𝑡 is the power procured to charge
the virtual battery at the current time step 𝑡. 𝐸left,DA

𝑡 is the cumulative
energy transferred to the EVs that disconnect from the chargers at the
current time step 𝑡, i.e., they no longer contribute to the virtual battery.

3.3. CID optimization

While we assume perfect foresight of DA market prices during DA
optimization (see Section 3.2), we perform the CID optimization pro-
cess using price forecasts of hourly CID products. Using price forecasts
for CID optimization aligns with a realistic scenario in which trading
decisions are made given uncertain knowledge of future prices. Given
that the CID market is typically only highly liquid during the last
few hours before delivery, we start optimization four hours before
delivery [56].

Fig. 4 illustrates the simultaneous trading process for multiple
hourly products, each represented by a distinct timeline. Each product
is defined by two characteristics: the delivery start and the delivery
period. The delivery start (indicated by the red dot) marks the exact
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Fig. 4. Parallel trading of several hourly CID products.

moment when power delivery begins, while the delivery period (repre-
sented by the shaded area following the red dot) specifies the duration
over which the power is supplied. For every product, the trading period
opens four hours before delivery starts and closes half an hour before
delivery starts. A timeline for a single product contains the following
subintervals (from left to right): The chronological breakdown of a
single product’s timeline contains the following three segments:

1. The first segment spans three hours and covers the CID trading
window of the respective product (light blue interval). This
phase permits the re-optimization of the power schedule follow-
ing updates in CID price forecasts.

2. The second segment, lasting 30 min, is a transition period where
re-optimization ceases, yet the trading of remaining open posi-
tions continues (dark blue interval). Trading activity then stops
30 min before the start of delivery, which aligns with the decou-
pling of German control areas [25].

3. The third segment, which extends for one hour, denotes the
product delivery period (light red interval). The start of this
period is indicated by a red dot.

At any point in time, three hourly products can be traded in parallel,
as highlighted by the dashed rectangles in Fig. 4.

We enter the CID market with an updated set of EV flexibility
metrics, which may differ from the DA metrics (see Section 3.1.3). The
updated flexibility metrics lead to updated ID constraints for the ID
charging schedules depicted by the Eqs. (9), (10), and (11):

𝑃min,ID
𝑡 ≤ 𝑃 ID

𝑡 ≤ 𝑃max,ID
𝑡 ∀𝑡 ∈ 𝑇 , (9)

0 ≤ 𝐸min,ID
𝑡 ≤ 𝐸ID

𝑡 ≤ 𝐸max,ID
𝑡 ∀𝑡 ∈ 𝑇 , (10)

𝐸ID
𝑡 = 𝐸ID

𝑡−1 + 𝑃 ID
𝑡 × 𝛥𝑡 − 𝐸left,ID

𝑡 ∀𝑡 ∈ 𝑇 . (11)

The corresponding DA constraints are depicted by the Eqs. (6), (7), and
(8). These constraint alterations could cause the DA solution (i.e., the
planned EV charging schedule comprising 𝐸DA

𝑡 and 𝑃DA
𝑡 ), to violate the

new ID constraints. As a result, it becomes necessary to reoptimize the
charging schedule to comply with the updated constraints, yielding an
ID charging schedule comprising 𝐸ID

𝑡 and 𝑃 ID
𝑡 .

We present three strategies for ID rescheduling. First, Section 3.3.1
discusses a baseline strategy aimed at minimizing deviations from the
DA power schedule. The strategy settles power volumes as imbalances
for the reBAP. Second, Section 3.3.2 introduces our static CID trading
strategy, that relies on the market index ID1 for power volume settle-
ment. Third, Section 3.3.3 presents our dynamic CID trading strategy
that takes advantage of parallel trading across different products. Par-
allel trading allows for arbitrage between the different CID products
within the limits of the constraints for the ID schedule.

3.3.1. Baseline strategy
Our baseline strategy ignores market prices while rescheduling.

Instead, it focuses solely on minimizing deviations from the DA sched-
ule. Not considering market prices significantly reduces rescheduling
complexity, since it allows for a single optimization run for every prod-
uct. This method starkly contrasts with strategies aiming to capitalize

on the CID market’s continuous dynamics, which requires repeated
optimization runs in a RW fashion (see Section 3.3.3). The baseline
optimization serves as a benchmark for evaluating the continuous
optimization strategy. The optimization approach is also valuable for
market participants such as EV aggregators who aim to minimize
imbalances without delving into the complexities of forecasting CID
prices.

To express this strategy formally, for each product with a delivery
start time of 𝑡, we reoptimize the power and energy schedules one
hour before delivery, specifically at 𝑡− 1ℎ, using the objective function
corresponding to Eq. (12):

min
𝑃 ID
𝑘 ,𝐸ID

𝑘

∑
𝑘=𝑡,𝑡+1ℎ,𝑡+2ℎ

|𝑃DA
𝑘 − 𝑃 ID

𝑘 |. (12)

We apply the ID constraints given by the Eqs. (9), (10), and (11).
The optimization aims to minimize the gap between the DA and ID
EV power schedules, since any deviation requires market settlement.
Although the formulation of the objective function (Eq. (12)) is non-
linear, the objective function can be rendered linear (see Appendix A).
Note that the optimization takes account of three products simultane-
ously. Also note that a single optimization iteration only fixes 𝑃 ID

𝑘 and
𝐸ID
𝑘 for 𝑘 = 𝑡, as the decision variables for products with a later delivery

start (i.e., with larger 𝑘), might still undergo changes in subsequent
rounds of optimization.

After calculating the new schedules, we contemplate two options
for balancing the discrepancy between the DA power schedule 𝑃DA

𝑡
and the ID power schedule 𝑃 ID

𝑡 . The first option involves settling
open volumes as imbalances, effectively bypassing the CID market to
settle the difference and invoice the imbalance price (reBAP). The
corresponding formula for the ex-post evaluation of this approach is
Eq. (13):
∑
𝑡
𝐶reBAP
𝑡 × (𝑃DA

𝑡 − 𝑃 ID
𝑡 ) × 𝛥𝑡. (13)

Settling for the imbalance price eliminates the need to trade in the CID
market. This market can be complex due to its continuous nature.

3.3.2. Static CID strategy
Our second strategy reschedules power volumes in the same manner

as the baseline strategy (see Section 3.3.1). However the strategy settles
the power volumes financially in the CID market. According to the base-
line optimization schedule, the final schedule for any product becomes
known one hour before delivery, providing a half-hour trading window
before the decoupling of the German control areas [25]. The ID1 price
index, a volume-weighted average published by the EPEX, reflects
all transaction prices during this specific half-hour interval [18]. We
employ the ID1 price for settlement as it encompasses the relevant
trading period. Moreover, the ID1 serves as an indicator of the expected
transaction price within the given interval — a price that can be
expected in the long term. The corresponding formula for the ex-post
evaluation is Eq. (14):

∑
𝑡
𝐶𝑡 × (𝑃DA

𝑡 − 𝑃 ID
𝑡 ) × 𝛥𝑡

−𝐶CID,fee × |𝑃DA
𝑡 − 𝑃 ID

𝑡 | × 𝛥𝑡, (14)

where 𝐶CID,fee is a CID trading fee in e/MWh.
A limitation of this optimization strategy is that rescheduling is

price agnostic, penalizing any deviation from the DA power schedule
uniformly, regardless of variations in price signals. The subsequent
section will present an approach that incorporates CID price dynamics
and forecasts.

3.3.3. Dynamic CID strategy
This section explains our CID trading strategy, tailored to adapt

to CID market trends. The foundation of our trading strategy lies
in the DA schedule, available for all considered products during ID
reoptimization. As Fig. 4 illustrates (see Section 3.3), at any time the
CID strategy focuses on three hourly products at once in a RW fashion.
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Limiting the optimization interval to a three-hour window, starting
four hours before delivery, neglects charging needs beyond the three
products considered in parallel at any time. In practice, this means that
when prices are positive, the optimization may sell off any excess power
not required within that window, neglecting future charging needs.

To address this issue, our CID optimization consists of two stages.
The first stage identifies a ‘‘feasible energy target’’ based on the DA
energy schedule. We use the DA schedule as a reference since it reflects
power needs beyond the immediate CID optimization window, while
still maintaining flexibility for trading within the current window. A
‘‘feasible energy target’’ is the minimum amount of energy that must
be stored in the virtual battery at the defined product delivery time.
Following this, the second stage trades in the CID market. The ‘‘feasible
energy target’’ is the result of the first stage of our CID optimization.

The first stage runs two hours before the delivery start 𝑡 of every
product, i.e., at 𝑡 − 2ℎ. Eq. (15) depicts the objective function used to
find a viable energy target for the product scheduled for delivery at
𝑡 + 2ℎ:

min
𝑃 ID,target
𝑘 ,𝐸ID,target

𝑘

|𝐸DA
𝑡+2ℎ − 𝐸ID,target

𝑡+2ℎ |, (15)

where 𝑘 represents the set of times {𝑡, 𝑡 + 1ℎ, 𝑡 + 2ℎ}, covering the
three hourly products that are traded simultaneously in the subsequent
hour. Note, that the optimization adheres to the ID constraints (see
Eqs. (9), (10), and (11)). The objective function (Eq. (15)) minimizes
the difference between the scheduled DA and a feasible ID energy target
(𝐸ID,target

𝑡+2ℎ ). When the DA schedule is feasible under the ID constraints,
the energy target defaults to the DA schedule. The objective function
(Eq. (15)) only considers the product with the latest delivery start
(𝑡+ 2ℎ), as the goal is to align with the DA energy forecast in a longer-
term perspective, thus providing flexibility in the preceding hours. The
remaining flexibility can then be leveraged to trade in the CID market.

The second stage covers the CID trading approach. To model con-
tinuous trading, we introduce the additional index 𝓁, representing
continuous decision making during a specific hour. For every product
with delivery start 𝑡, the optimization runs at 𝑡 − 2ℎ + 1ℎ

|𝐿| × 𝓁 for
𝓁 ∈ 𝐿. For instance, when trading at quarter-hourly frequency, we
obtain 𝐿 = {0, 1, 2, 3}, given that 1ℎ

|𝐿| = 15𝑚𝑖𝑛. For every delivery start
𝑡 and every index 𝓁, we repeat the profit maximization optimization
process with the objective function given by Eq. (16) to obtain the ID
schedules for EV charging, which is composed of the power and energy
schedules (𝑃 ID

𝑘,𝓁 and 𝐸ID
𝑘,𝓁 respectively):

max
𝑃 ID
𝑘,𝓁 ,𝐸

ID
𝑘,𝓁

∑
𝑘=𝑡,𝑡+1ℎ,𝑡+2ℎ

𝐶CID,fcst
𝑘,𝓁 × (𝑃 ID

𝑘,𝓁−1 − 𝑃 ID
𝑘,𝓁) × 𝛥𝑡

−𝐶CID,fee × |𝑃 ID
𝑘,𝓁−1 − 𝑃 ID

𝑘,𝓁| × 𝛥𝑡. (16)

This operates under the ID constraints (see Eqs. (9), (10), and (11)) and
under the additional energy level constraint (Eq. (17)):

𝐸ID
𝑡+2,𝓁 ≥ 𝐸ID,target

𝑡+2 . (17)

This forces the energy schedule to meet or exceed the energy target
𝐸ID,target
𝑡+2 . The first term in the objective function estimates the value

of trades which consider price forecasts 𝐶CID,fcst
𝑘,𝓁 . Here, 𝑃 ID

𝑘,𝓁−1 = 𝑃DA
𝑡 in

the first iteration of 𝓁. The second term considers volume-dependent
trading fees 𝐶CID,fee.

From this optimization, we obtain 𝑃 ID
𝑘,𝓁 and 𝐸ID

𝑘,𝓁 as the results, which
enable the calculation of the trading profit for the current 𝓁 with the
true future market prices 𝐶CID,true

𝑘,𝓁 using Eq. (18):
∑

𝑘=𝑡,𝑡+1ℎ,𝑡+2ℎ
𝐶CID,true
𝑘,𝓁 × (𝑃 ID

𝑘,𝓁−1 − 𝑃 ID
𝑘,𝓁) × 𝛥𝑡

−𝐶CID,fee × |𝑃 ID
𝑘,𝓁−1 − 𝑃 ID

𝑘,𝓁| × 𝛥𝑡, (18)

We repeat this procedure for all iterations of 𝓁 within a specific
trading hour. Thus, the presented method aims to follow the DA energy
schedule closely while executing a continuous optimization strategy in
the CID market. This allows adaptation to ID constraints and offers
a degree of freedom to facilitate a shift of power volumes between
products.

Table 3
Overview of optimization processes.

DA Stage 1
Objective (5)

Constraints (6), (7), (8)

Result DA Schedule

Approach 1 Approach 2

ID

Stage 2
Objective (12) (15)

Constraints (9), (10), (11) (9), (10), (11)

Result ID Schedule Energy target

Stage 3
Objective N/A (16)

Constraints N/A (9), (10), (11), (17)

Result N/A ID Schedule

3.4. Optimization process summary

To summarize the optimization processes discussed in this paper,
Table 3 presents an overview. It lists the optimization stages along with
references to the objective and constraints of the respective optimiza-
tion problems. The first stage (Stage 1) contains the DA optimization
procedure and yields a DA charging schedule. During the ID period,
we propose two possible optimization approaches. First, the baseline
strategy and the static CID strategy requires only one additional stage
(Stage 2) to compute an ID charging schedule. Second, the dynamic
CID strategy requires two additional optimization stages (Stage 2 and
Stage 3). Stage 2 yields an energy target, i.e., a lower bound for the
battery energy level. Afterwards, Stage 3 optimizes the CID schedule,
taking into account the energy level bound from the previous stage.
Regardless of the approach chosen, both approaches result in a final ID
schedule for EV charging.

4. Data

The following section introduces the data we use in this paper.
Section 4.1 outlines the mobility data. Section 4.2 describes the com-
putation of flexibilities for both the DA and ID periods, based on the
mobility data. Finally, Section 4.3 details the price data used in our
study.

4.1. Mobility data

We use existing synthetic mobility data to derive the inputs required
to calculate the flexibility metrics for each EV [15]. The synthetic
mobility data stems from a German mobility survey [57]. The mobility
data consists of 200 unique mobility profiles of residential EVs. The
mobility profile is time series data that gives the location of the vehicle,
the distance traveled, and the energy consumed every 15 min over a
one year period. We analyze only the home charging case since major-
ity of the vehicles currently charge at home [58], with the following
assumptions:

• All vehicles charge at home as our focus is on home charging.
• To simplify our model, we assume that all vehicles are plugged in

whenever parked at home. We consider that plugging in the ve-
hicle daily might not be a significant burden for users, especially
if they could derive tangible benefits from participating in smart
charging programs.

• All vehicles are charged until maximum state of energy (SOE) is
reached, or the highest possible SOE that can be reached during
the time the vehicle is plugged in.

• The battery capacity of all vehicles is 75 kWh, which is similar to
that of the Tesla Model S [59].

• As per IEC 61851-1:2017 standard, we consider a Level 2 charger
with a mean power rating of 7.4 kW, typically used for home
charging [60].

• The charging efficiency 𝜂 is 95% which is within the efficiency
range of a Level 2 charger [61].
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4.2. EV flexibility data

As input for the optimization process, we generate multiple flex-
ibility forecasts for the EV fleet, distinguishing between forecasts for
the DA period and the ID period. These forecasts depend on individ-
ual EV flexibility metrics (see Section 4.1). Specifically, we construct
linear combinations of the 200 individual EV flexibility metrics (see
Section 4.1). Each aggregated flexibility metric incorporates variables
𝐸min
𝑡 , 𝐸max

𝑡 , 𝑃min
𝑡 , 𝑃max

𝑡 , and 𝐸left
𝑡 . The computational approach remains

consistent across all variables, thus we present equations only for
𝐸min
𝑡 . For the DA period, we use a single aggregated flexibility metric

computed using Eq. (19):

𝐸min,DA
𝑡 =

200∑
𝑣=1

𝑤𝑣 × 𝐸min
𝑡,𝑣 ∀𝑡 ∈ 𝑇 , (19)

Here, the individual vehicle weight 𝑤𝑣 = 5 holds for all vehicles (𝑣),
leading to an aggregated flexibility metric for 1000 EVs (200 × 5). In
other words, we assume that the fleet of 1000 EVs has five types of EV,
of which there are 200 each. For the ID period, we introduce variations
by altering the weights associated with individual EV flexibility metrics,
following Eq. (20):

𝐸min,ID
𝑡 =

200∑
𝑣=1

round(𝑤̃𝑣) × 𝐸min
𝑡,𝑣 ∀𝑡 ∈ 𝑇 , (20)

with 𝑤̃𝑣 ∼  (𝜇 = 5, 𝜎2) truncated to [−0.49̄, 10.49̄] for ∀𝑣. Since
individual EV metrics represent discrete users, we round the weights
to integers. Truncation guarantees that the values of the final weights
(𝑤̃) are non-negative and less than or equal to ten, thus obtaining a
symmetrical distribution of weights. The degree of divergence from the
DA schedule increases with higher variance 𝜎2 in the truncated normal
distribution.

After drawing weights from the distribution, we correct them to
achieve unbiased power consumption estimates in the specific ID and
DA schedules. Mathematically, we minimize the difference between the
energy consumption in the DA and ID periods (see Eq. (21)):

min
𝑤̃𝑣

|||||
∑
𝑡
𝐸left,ID
𝑡 −

∑
𝑡
𝐸left,DA
𝑡

|||||
, (21)

where, ∑𝑡 𝐸
left,ID
𝑡 and ∑

𝑡 𝐸
left,DA
𝑡 represent the total energy consump-

tion in the ID and DA schedules, respectively. Long-term lack of bias
requires there to be no overestimation nor underestimation of power
consumption occurring throughout the simulation. This is an important
factor for schedules which are used as forecasts for power procurement.

4.3. Price data

Our study uses various historical price datasets, using the German
market as a reference: DA auction prices, CID market transactions,
and reBAPs. We obtain all DA and CID market data from EPEX [24]
and focus solely on hourly product price data. For the DA market, we
directly use auction clearing prices. However, handling CID market
data is more complex due to the large number and random timing
of trades. As a solution, we calculate volume-weighted average prices
(VWAPs) at different intervals.

We generate two types of VWAPs for calculating the price forecasts
and transaction prices during CID optimization. For forecasting, we
calculate backward-looking price averages aligning with the efficient
market hypothesis, which states that current asset prices reflect avail-
able information at any given time [62]. More specifically, we use
the average price of the four most recent completed trades, as this
method has demonstrated strong forecasting accuracy across various
forecasting horizons [16]. Within the CID market context, this implies
that the latest transaction prices are indicative of the most up-to-
date information available. For ex-post price calculation, we employ
forward-looking quarter-hourly VWAPs. Although market liquidity is

generally high, there is no guarantee that trades occur for a prod-
uct during every considered interval, potentially leading to situations
where orders remain uncleared. To address this, we use a backfilling
approach, relying on future prices to fill these gaps. While this method
introduces a delay in the timing of specific transactions, the trades
are still executed, ensuring that the simulation results remain valid.
Meanwhile, for CID prices, we also use a VWAP, considering trades
between one hour and half an hour before delivery, known as ID1 and
available from EPEX since 2021 [18]. For periods predating 2021, we
compute our own ID1 index. For trades in the CID market, we assume
a volume trading fee of 0.1e∕MWh [63].

Lastly, we obtain reBAP prices from TransnetBW [64] up to 2022
and Netztransparentz.de [65] starting from 2023. Since reBAP prices
are quarter-hourly [17] and our study focuses on hourly products, we
average the quarter-hourly prices to derive hourly prices.

5. Scenarios

We run our optimization across different scenarios defined by sev-
eral dimensions. Section 5.1 presents the time frames, specifically the
time period used for testing. Section 5.2 contains the parameterizations
for the uncertainty modeling of EV flexibility. Section 5.3 covers the
parameterization of the different trading strategies.

5.1. Timeframe

The study focuses on two specific time frames: the years 2019
and 2022. The year 2019 is chosen as it precedes both the Covid-
19 pandemic and the Ukraine war, events that significantly impacted
electricity markets [66]. In contrast, we include 2022 due to the
heightened market price volatility in this year [66]. Examining periods
of high price volatility contributes to the evaluation of the resilience of
trading strategies under atypical market conditions. In our study, the
EV schedules follow weekly patterns, requiring us to adjust the time
intervals to start on the first Monday of the relevant year. For scenarios
set in 2019, the specific dates range from January 2, 2019, to January
1, 2020. Similarly, for the 2022 scenarios, the time frame extends from
January 5, 2022, to January 4, 2023.

5.2. EV uncertainty parameterization

We examine multiple forecasting scenarios for EVs. We employ
the same DA flexibility metrics across all scenarios and generate a
collection of ID flexibility metrics, each varying to a certain degree from
the DA schedule. Section 4.2 elaborates on the method we use to create
these flexibility metrics, based on individual EV profiles. We consider
four different scenarios with increasing deviation between the DA and
ID metrics, each characterized by a distinct standard deviation 𝜎 used
for the distribution of the weights of individual EV metrics 𝑤̃𝑣:

1. Perfect forecast: 𝜎 = 0
2. Low deviation: 𝜎 = 1
3. Medium deviation: 𝜎 = 2
4. High deviation: 𝜎 = 3

Appendix B contains a more detailed evaluation of EV flexibility met-
rics. To obtain robust results, we repeat the calculations 128 times.
The reason to do this is that we generate the aggregated ID flexibility
metrics randomly. We selected 128 repetitions to match the hardware
on which we carry out the computations: a high performance comput-
ing (HPC) node with two physical sockets, each containing an AMD
Epyc ROME 7H12 processor with 64 cores, resulting in a total of 128
cores per node [67]. This hardware configuration enables the parallel
execution of all scenarios.
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Table 4
Trading strategies.

Strategy Description Section Parameters

𝐵 𝐿reBAP
𝑃 Baseline strategy

with settlement of
volumes for reBAP

3.3.1 N/A

𝐵 𝐿ID1
𝑃 Static CID strategy

with settlement of
volumes for ID1

3.3.2 N/A

𝐶 𝐼 𝐷𝑥
𝐸 Dynamic CID strategy

with continuous
settlement of volumes
in CID market

3.3.3 x∈{2 min, 5 min,
10 min, 15 min,
20 min, 30 min,

60 min}

5.3. Trading strategies

We investigate various trading strategies for power settlement in
the ID period. While the volumes acquired in the DA market stay
constant across all trading strategies, we assess three unique trading
strategies for rescheduling in response to the ID updates to EV sched-
ules. Table 4 contains an overview of these strategies. The first two
strategies (𝐵 𝐿reBAP

𝑃 and 𝐵 𝐿ID1
𝑃 ) aim to closely align the ID schedule

(𝑃 ID
𝑡 ) with the DA power schedule (𝑃DA

𝑡 )(see Sections 3.3.1 and 3.3.2).
However, these two strategies settle the discrepancies in the power
schedules differently. The first strategy (𝐵 𝐿reBAP

𝑃 ) settles power volumes
as imbalances for the reBAP and the second strategy (𝐵 𝐿ID1

𝑃 ) settles
power volumes in the CID market for the ID1 price, which is a VWAP
covering the period from one hour to half an hour before the start of
delivery. Our third trading strategy (𝐶 𝐼 𝐷𝑥

𝐸), operates continuously in
the CID market and has different parametrizations (see Section 3.3.3).
More specifically, these parameters define the hourly frequency at
which the strategy runs, as defined by the period length (𝑥) between
single runs. We consider seven different such period lengths (𝑥): 2 min,
5 min, 10 min, 15 min, 20 min, 30 min, and 60 min, which means that
the optimization runs between thirty times and once per hour.

Our analysis evaluates the three trading strategies across two dis-
tinct periods, specifically the years 2019 and 2022 (see Section 5.1).
Furthermore, we assess each strategy under a range of different EV
flexibility uncertainties (see Section 5.2). We structure the analysis of
our optimization strategies around the different trading strategies.

6. Results and discussion

This study introduces optimization models for EV scheduling in both
DA and ID markets. In particular, our study focuses on the rescheduling
of DA schedules during the ID period, taking account of price and
EV user uncertainties. Section 6.1 illustrates the rescheduling process
across the DA and ID time periods by discussing an exemplary period.
Section 6.2, compares the different trading strategies, calculating the
annual profit derived from trading EV flexibility in ID markets. Sec-
tion 6.3 broadens the scope of comparison by evaluating the different
trading strategies.

6.1. Rescheduling example

To illustrate the rescheduling process, we present results for an
exemplary period of three days: June 6 to June 8, 2022. Each step
contains flexibility metrics and schedules for power and energy respec-
tively. The power schedule corresponds to the power purchased from
the respective power markets. The energy schedule is the cumulative
energy of all EVs connected to the grid. At any time, the power and
energy schedules must stay between the bounds determined by the
flexibility metrics, i.e., 𝑃min

𝑡 and 𝑃max
𝑡 for the power procured from

market and 𝐸min
𝑡 and 𝐸max

𝑡 for the cumulative energy.
Fig. 5 contains the results of the DA optimization step (see Sec-

tion 3.2). The DA energy and power schedules (𝐸DA
𝑡 and 𝑃DA

𝑡 ) are

Fig. 5. Exemplary DA schedule for EV fleet from June 6 to June 8, 2022.

depicted as dashed lines (in gray), whereas the flexibility metrics are
in the form of lower (𝐸min,DA

𝑡 , 𝑃min,DA
𝑡 ) and upper bounds (𝐸max,DA

𝑡 ,
𝑃max,DA
𝑡 ) are shown as dashed lines with double dots (blue and orange

respectively). The DA schedule (𝑃DA
𝑡 , 𝐸DA

𝑡 ) always stays between the
limits defined by the flexibility metrics. The power schedule (𝑃DA

𝑡 )
never reaches the upper limit and often takes the value of its lower
limit (𝑃min,DA

𝑡 ) which is zero. In contrast, the energy schedule (𝐸DA
𝑡 )

reaches both the bottom and the top limit, for example on June 6
during the intervals of 8:00–13:00 and 14:00–17:00 respectively. The
DA schedule (𝐸DA

𝑡 , 𝑃DA
𝑡 ) serve as the starting points for the subsequent

ID optimizations, for which the paper covers three options: a baseline
strategy (see Section 3.3.1), a static CID strategy (see Section 3.3.2),
and a dynamic CID strategy (see Section 3.3.3). Note that both the
baseline strategy and the static CID strategy produce identical power
and energy schedules, as neither incorporates price signals during
rescheduling.

Fig. 6 illustrates the rescheduling in the ID period by the baseline
strategy (or the static CID strategy), extending Fig. 5. In addition to
the DA flexibility metrics and schedules, it additionally contains the
ID flexibility metrics and the baseline ID schedule. The lower (𝐸min,ID

𝑡 ,
𝑃min,ID
𝑡 ) and upper bounds (𝐸max,ID

𝑡 , 𝑃max,ID
𝑡 ) are dashed lines with

double dots (green and red respectively); and the ID baseline schedule
(𝑃 BL

𝑡 , 𝐸BL
𝑡 ) is the dashdot line (black). Similar to the DA case, the

baseline ID schedule remains within the boundaries defined by the ID
flexibility metrics. More specifically, the power schedule (𝑃 BL

𝑡 ) never
reaches its upper limit, while the energy schedule (𝐸BL

𝑡 ) reaches both
the upper and the lower limits.

Fig. 7 exemplifies the dynamic CID rescheduling by extending Fig. 5.
Just as for the baseline rescheduling, the figure contains the ID bounds.
In addition, it also contains the final ID schedule for a CID optimization
(𝐸CID

𝑡 , 𝑃 CID
𝑡 ) with 15 min trading frequency as dashdot line (cyan).

Similarly to the DA and baseline cases, the CID schedule (𝐸CID
𝑡 , 𝑃 CID

𝑡 )
stays within the bounds set by the ID flexibility metrics, where the
power schedule (𝑃 CID

𝑡 ) mostly follows the lower bound (𝑃min,ID
𝑡 ) and the

energy schedule reaches both the lower and the higher energy bounds
(𝐸min,ID

𝑡 and 𝐸max,ID
𝑡 ).

Taking a closer look at Fig. 6 or Fig. 7, we observe that the DA
schedule violates the ID bounds. Note that the ID flexibility metrics are
the same in both figures. For example, on June 6 at 14:00–18:00 the DA
energy schedule (𝐸DA

𝑡 ) violates the ID upper energy boundary (𝐸max,ID
𝑡 ).

This violation highlights the need for rescheduling the DA schedule to
comply with the ID boundaries.

We discuss two distinct rescheduling approaches: the baseline (or
static CID) rescheduling (see Fig. 6) and the CID trading strategy (see
Fig. 7). The core difference between these approaches lies in their
power schedules. The baseline strategy and static CID strategy (see
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Fig. 6. Exemplary baseline schedule for EV fleet from June 6 to June 8, 2022.

Fig. 7. Exemplary CID final schedule for EV fleet from June 6 to June 8, 2022.

Fig. 6) aim to minimize trading volumes. Therefore, they selects a
power schedule that tracks closely the DA schedule (𝐸DA

𝑡 ). As a result,
the resulting power schedule (𝑃 BL

𝑡 ) predominantly adjusts the power
magnitude, while maintaining the original timing of the DA power
schedule (𝑃DA

𝑡 ). An instance of such an adjustment occurs on June 7
at 3:00. In contrast, the power schedule of the dynamic CID strategy
(𝑃 CID

𝑡 ) deviates significantly from the DA power schedule (𝑃DA
𝑡 ) in both

timing and magnitude (see Fig. 7). For example, this deviation can be
seen on June 7 where the optimization shifts power from 3:00 in DA
to 1:00 in CID. The different rescheduling results are a consequence
of the strategy’s dual objectives: to adhere to ID constraints and to
capitalize on price arbitrage opportunities. Consequently, the times
when charging power is scheduled differ between the DA and ID
schedules. This leads to situations where EVs end up being charged at
different times under the ID schedule compared to what was originally
planned in the DA period.

To sum up, all strategies successfully adjust their schedules to stay
within the ID energy and power constraints. However, the differences
in their power schedules highlight their different optimization targets.

6.2. Trading profit

The financial evaluation of the rescheduling strategies involves
calculating the expected yearly profits for 1000 EVs under each strat-
egy. For each strategy, we compute the annual profits during the ID
period by aggregating the value of all transactions occurring within

Fig. 8. Comparison of yearly profits for different trading strategies in 2019 and 2022.

this period. This includes all trades in the CID including CID fees and
imbalance settlement costs. More precisely, under the assumption of
positive prices, profit rises when selling power volumes and declines
when acquiring power volumes. Conversely, when prices are negative,
the profit directions invert. The optimization algorithms behind the
strategies operate without knowledge of future prices. They rely on
price forecasts. However, the computation of profit uses actual prices
for both the CID and imbalances, namely the reBAP. We analyze the
two years 2019 and 2022 separately due to different market conditions,
yielding two sets of profits.

The bar charts in Fig. 8 illustrates the mean annual profits generated
by the various trading strategies. The chart contains four bars for each
strategy, with each bar representing a different level of discrepancy
between the DA and ID EV flexibility forecasts. From left to right the
bars represent a perfect forecast (in blue), low deviation (in orange),
a medium deviation (in green), and high deviation (in red) (see Sec-
tions 4.2 and 5.2 for more details on EV flexibility forecasts). To provide
information on the variability of profit, each bar includes whiskers that
extend to show a range of two standard deviations above and below
the average profit. The strategies 𝐵 𝐿reBAP

𝑃 and 𝐵 𝐿ID1
𝑃 only vary in their

power volume clearing approach. The strategy 𝐵 𝐿reBAP
𝑃 takes power

volumes to the imbalance market, clearing for the reBAP, and 𝐵 𝐿ID1
𝑃

trades in the CID market clearing for the ID1 price. The range of strate-
gies from 𝐶 𝐼 𝐷2𝑚𝑖𝑛

𝐸 to 𝐶 𝐼 𝐷60𝑚𝑖𝑛
𝐸 represent different parametrizations of

the dynamic CID strategy, distinguished by their decision frequency
intervals, specifically 2 min and 60 min in the mentioned strategies,
as described in Sections 3.3.3 and 5.3.

Analyzing the strategies employed during these two years, we ob-
serve a consistent trend across all strategies. Profit declines noticeably
as the deviation between the DA and ID EV flexibility forecasts in-
creases. Further, the decline of profit correlates with an increase in
profit variability, as indicated by the expanding whisker intervals. This
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trend occurs since larger deviations between the DA and ID EV flex-
ibility forecasts necessitate more involuntary rescheduling. The term
‘‘involuntary rescheduling’’ refers to rescheduling due to violations of
ID flexibility metrics, in contrast to ‘‘voluntary rescheduling’’, which
occurs exclusively to enhance profit through arbitrage. The occurrence
of involuntary rescheduling reduces the flexibility available for volun-
tary rescheduling, thereby reducing the potential and increasing the
volatility of profits.

Focusing on the baseline strategy and the static CID strategy, namely
𝐵 𝐿ID1

𝑃 and 𝐵 𝐿reBAP
𝑃 , the strategies yield zero profit in the perfect

forecast scenario. This outcome is a consequence of their design, which
minimizes traded volumes. In other words, when forecasts are perfect,
these strategies do not engage in trading, leading to the generation
of neutral profits. However, the profits from these strategies become
increasingly negative in the scenarios with higher deviation between
the DA and ID EV flexibility forecasts. These negative profits are a
consequence of involuntary rescheduling and limited exploitation of EV
flexibility inherent to these strategies, as they only adapt schedules to
ID flexibility metrics.

In contrast, the outcomes for the dynamic CID strategies are more
favorable. These strategies (ranging from 𝐶 𝐼 𝐷2𝑚𝑖𝑛

𝐸 to 𝐶 𝐼 𝐷60𝑚𝑖𝑛
𝐸 ), do not

only adjust positions to comply with the ID flexibility constraints, but
they also exploit arbitrage opportunities when trading across different
products. In the year 2019, only the 𝐶 𝐼 𝐷20𝑚𝑖𝑛

𝐸 strategy yields positive
profits across all levels of deviation, reaching up to e1,067.98. The
year 2022 has different characteristics, with all CID strategies except
𝐶 𝐼 𝐷60𝑚𝑖𝑛

𝐸 generating positive profits at all deviation levels. Notably,
the overall profit in 2022 is significantly higher. The top-performing
strategy 𝐶 𝐼 𝐷5𝑚𝑖𝑛

𝐸 reaches profit of up to e10,670.59.
The comparison of the results from 2019 and 2022 reveals two dif-

ferences. First, profit margins vary significantly between the two years,
being significantly higher in 2022. This rise reflects the differing market
conditions, particularly the higher prices in 2022 and the ensuing rise
in volatility. Secondly, the optimal dynamic CID strategy differed be-
tween the years. In 2019, the 𝐶 𝐼 𝐷20𝑚𝑖𝑛

𝐸 strategy performs best, whereas
in 2022, the 𝐶 𝐼 𝐷5𝑚𝑖𝑛

𝐸 strategy performs best. The strategies differ in
their trading frequency (every 5 min as opposed to every 20 min).
This difference indicates that a higher trading frequency was beneficial
in 2022, contrary to 2019. This finding contradicts the expectation
that higher frequency trading should yield more profit by revealing
a greater arbitrage opportunities. However, market liquidity is limited
and changes over time. Markets in 2019 were less liquid than those in
2022. The increase in CID market liquidity from 2019 to 2022 provides
a plausible explanation for the shift towards a higher optimal trading
frequency.

In summary, the analysis over two years reveals that trading profit
decreases with downgrades of EV flexibility forecasts. The baseline
strategy and the static CID strategy minimize traded volumes, and
therefore yield no profits under perfect forecasts, and lead to losses
with greater forecast deviations. In contrast, dynamic CID strategies
can incur profits, with higher frequency CID trading strategies being
more profitable in 2022 than in 2019. Overall margins are significantly
higher in 2022 than in 2019. Additionally, the results underscore the
importance of accurate EV flexibility forecasts, and the need for trading
to adapt to market conditions.

6.3. Trading profits over imbalance baseline

Expanding our analysis, we evaluate the relative profitability of
strategies trading in the CID market against the baseline strategy
(𝐵 𝐿reBAP

𝑃 ) that takes volumes to the imbalance market and incurs the
reBAP. Consideration of relative profits enables us to illustrate the
financial implications of participating in the CID market, as opposed
to settling volumes as imbalances which incur the reBAP price.

Fig. 9 displays differences in profits of the 1000 EVs for all strategies
trading in the CID (𝐵 𝐿ID1

𝑃 , and 𝐶 𝐼 𝐷2𝑚𝑖𝑛
𝐸 to 𝐶 𝐼 𝐷60𝑚𝑖𝑛

𝐸 ) over the baseline

Fig. 9. Comparison of yearly improvement over 𝐵 𝐿reBAP
𝑃 as a share of DA costs in 2019

and 2022.

strategy 𝐵 𝐿reBAP
𝑃 . To represent uncertainty, each bar has whiskers that

extend two standard deviations above and below the mean profit dif-
ferences. Echoing the approach in Fig. 8, Fig. 9 also displays results for
different levels of deviation between the DA and ID flexibility forecasts.
It also features two plots, one for each of the years 2019 and 2022.

Comparing the various strategies, the static CID strategy 𝐵 𝐿ID1
𝑃 ,

which settles volumes at the ID1 price, performs similarly to the base-
line strategy (𝐵 𝐿reBAP

𝑃 ), as indicated by the approximate zero values
in the figure. Within the dynamic CID strategies, the most yield an
improvement over the static CID strategy 𝐵 𝐿ID1

𝑃 in both 2019 and
2022. A singular exception is the 𝐶 𝐼 𝐷2𝑚𝑖𝑛

𝐸 strategy under the perfect
forecast scenario in 2019, which under-performs relative to the baseline
strategy, a fact underscored by the negative values on the graph. Con-
versely, all other dynamic CID strategies show gains over the baseline
strategy, suggesting that energy suppliers would benefit from adopting
these strategies rather than depending on the baseline strategy and
settling additional power needs in imbalance markets. The extent of
these improvements increases with the level of deviation between the
DA and ID schedules.

The increased benefit of participating in the CID market under
conditions of higher uncertainty in EV schedules arises from the dy-
namic CID strategy being able to facilitate the exploitation of EV
charging flexibility for arbitrage across products with different delivery
intervals. Our dynamic CID trading strategy capitalizes efficiently on
these arbitrage opportunities. EV charging is particularly suitable for
such optimization. Given the constraints set by user requirements, the
charging intervals can be optimized not only to reduce imbalances, but
also to generate profit.
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6.4. Limitations and outlook

We acknowledge limitations in our study that open avenues for
future research. Although we focused on the German market, our
methodology could be adapted to other European markets due to the
harmonization of power market designs [68]. Incorporating additional
market segments like the IDA could provide more trading opportunities.
Applying cross-market optimization instead of sequential optimization
might increase profits and allow for the selection of the most favorable
prices. Future research could explore the optimal distribution of pur-
chase volumes across various markets in a multi-market optimization
framework, though this requires advanced price forecasts beyond our
current scope.

Enhancing CID price forecasting models and increasing the temporal
resolution of products to 15-minute intervals could improve profitabil-
ity and provide more granular insights. Our assumption that ID EV
flexibility forecasts equal realized flexibility stems from the fact that the
ID forecasting time is very close to the actual realization and that we are
considering a fleet of EVs. However, this assumption requires further
investigation, as there may still be discrepancies between forecasts and
actual flexibility.

To quantify EV flexibility in our paper, we use synthetic data
generated from the German mobility patterns. While this approach is
effective, it may overlook certain uncertainties in driving and charg-
ing behaviors. For instance, mobility patterns in Germany could shift
during the holiday season—a detail that synthetic data may not fully
capture. Future research could use real-world data to quantify EV flexi-
bility, allowing for a more precise modeling of such seasonal variations
and behavioral uncertainties. Additionally, we assume linear charging
for simplicity. In reality, charging power decreases when the state of
charge (SOC) of the battery is getting closer to full battery capacity,
which can extend charging times and might reduce flexibility. Despite
this, aggregating multiple EVs helps minimize the individual discrepan-
cies, so the impact on overall profits from trading EV flexibility in the
CID market remains relatively small. Finally, while our current model
assumes full flexibility provision by EV users, exploring scenarios with
partial flexibility provision is essential for understanding the strategies’
applicability.

7. Conclusion

In this paper we explored the potential of EV charging flexibility
trading in the CID market. Our focus was twofold: examining market
price dynamics in the CID market, and the uncertainties caused by
unpredictable EV user behavior. To address CID price uncertainties, we
used a forecasting model to inform trading decisions. When considering
the uncertainties of EV charging requirements, we took account of a DA
forecast, which later underwent an update with a new forecast made
during the ID period.

Our method involved a two-step optimization process. First, we
optimized power acquisition in the DA market according to the DA EV
charging flexibility forecast. Second, based on an updated ID EV flexi-
bility forecast, we reoptimized the charging schedules. We introduced
several trading strategies for this readjustment. The baseline strategy
avoids completely any trading in the CID market, opting instead to
always settle imbalances through the reBAP. In contrast, our alternative
strategies settle power volumes directly in the CID market. We paid
special attention to strategies that exploit EV charging flexibility, as
these feature arbitrage opportunities within the CID market. We also
explored rolling windows with their different trading frequencies.

The empirical results suggest that higher differences in EV charging
flexibility metrics between the DA and ID coincide with decreased
profits across all examined strategies. Nonetheless, the advantage of
trading in the CID market increases with greater EV charging schedule
uncertainty. Active trading in CID markets improves profit margins, as
this creates market arbitrage opportunities by exploiting EVs’ charging

flexibility. Adhering to a baseline strategy and clearing the remaining
power differences through imbalance markets incurs considerable costs.
Our optimization method can facilitate more successful trading in
the CID market, thus helping to manage forecast discrepancies in EV
schedules and potentially generating profits. In our scenario with the
highest deviation between the DA and ID flexibility metrics, applying
the best CID strategies yielded an average yearly profit of e37.52 and
e4,840.63 for 1000 EVs in 2019 and 2022 respectively. In comparison
to the baseline strategy, which clears volumes as imbalances, the cor-
responding financial savings amounted to e1,978.52 and e16,632.25
respectively.

Our findings suggest that with an appropriate trading strategy, en-
ergy suppliers serving EV users can mitigate financial risks arising from
inaccuracies in the forecasts of EV power requirements. The efficacy
of such a strategy relies on two key components: First, it requires
EV users to facilitate flexibility, specifically through the adoption of
smart charging practices. Second, it requires strategic trading in the CID
market. A profitable trading strategy should not only take account of
the flexibility offered by EVs, but should also feature arbitrage between
products that are traded in parallel.
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Appendix A. Absolute values in LP objective functions

Objective functions containing absolute values are not inherently
solvable by a linear programming (LP) solvers. However, in specific
scenarios, these objective functions can be linearized. Consider the
objective function expressed in Eq. (A.1):

min
∑
𝑖
|𝑎𝑖 − 𝑏𝑖|, (A.1)

where 𝑎𝑖 and 𝑏𝑖 represent variables, potentially subject to linear con-
straints. Linearizing this objective function involves introducing auxil-
iary variables (𝑧𝑖∀𝑖) alongside additional constraints (see Eqs. (A.3) and
(A.4)). The modified optimization problem is defined by the objective
function in Eq. (A.2):

min
∑
𝑖
𝑧𝑖, (A.2)

subject to the new constraints:

𝑧𝑖 ≥ 𝑎𝑖 − 𝑏𝑖 ∀𝑖, (A.3)

𝑧𝑖 ≥ 𝑏𝑖 − 𝑎𝑖 ∀𝑖, (A.4)

in addition to the original problem’s constraints. This reformulation
aligns with an LP formulation. Note that this transformation is applica-
ble exclusively to minimization problems.

Appendix B. Aggregated EV flexibility evaluation

To validate the parameterization of the resulting schedules, we
quantify the deviation between the DA and ID schedules using two
established error metrics: the root mean squared error (RMSE) and
the mean absolute error (MAE). For instance, the respective metric
definitions for 𝐸min

𝑡 are given by:

𝑀 𝐴𝐸(𝐸min
𝑡 ) = 1

|𝑇 |
∑
𝑡∈𝑇

|||𝐸
min,ID
𝑡 − 𝐸min,DA

𝑡
||| (B.1)

𝑅𝑀 𝑆 𝐸(𝐸min
𝑡 ) =

√
1
|𝑇 |

∑
𝑡∈𝑇

(
𝐸min,ID
𝑡 − 𝐸min,DA

𝑡

)2
, (B.2)

where 𝐸min,ID
𝑡 denotes the ID bound for 𝐸min

𝑡 , while 𝐸min,DA
𝑡 denotes the

DA bound for 𝐸min
𝑡 . The same definition applies to: 𝐸min

𝑡 , 𝐸max
𝑡 , 𝑃max

𝑡 ,
and 𝐸left

𝑡 . We omit 𝑃min
𝑡 from further consideration as we assume that

𝑃min,DA
𝑡 = 𝑃min,ID

𝑡 = 0, implying that both RMSE and MAE yield errors
of zero.

Fig. B.10 depicts the resulting error metric values for the low,
medium, and high deviations between the DA and ID flexibility metrics
(see Section 3.1.3). Table B.5 contains the exact values depicted in
Fig. B.10. We omit the results for the perfect forecast scenario in the
figure, since all errors are zero. In the figure, the whiskers span two
standard deviations both above and below the mean, meaning that, if
we assume normality of the errors, the whiskers cover over 95% of the
target population.

Comparing the different variables, both the RMSE and MAE errors
for the maximum energy level 𝐸max

𝑡 exceed the errors of the other
variables. This implies, that the maximum energy level 𝐸max

𝑡 is most
sensitive to forecast errors in EV user behavior. Comparing the different
scenarios yields a consistent pattern across variables. The errors for
the variables increase in line with the deviation level between the DA
and ID schedules, validating our generation approach for the schedule
bounds.

Data availability

The authors do not have permission to share data.

Fig. B.10. Mean absolute percentage error (MAPE) and root mean squared percentage
error (RMSPE) for the different flexibility metrics.

Table B.5
Means and standard deviations of relative errors of EV schedule variables for different
levels of deviations EV flexibility forecast deviations in %.

(a) 2019

Strategy Mean Std.

Low Medium High Low Medium High

MAE(𝑃max
𝑡 ) 3.23 5.94 7.54 0.71 1.16 1.45

MAE(𝐸min
𝑡 ) 4.0 7.54 9.73 0.23 0.41 0.48

MAE(𝐸max
𝑡 ) 11.67 21.8 27.91 0.8 1.37 1.68

MAE(𝐸 lef t
𝑡 ) 2.08 3.95 5.12 0.12 0.22 0.25

RMSE(𝑃max
𝑡 ) 4.22 7.78 9.9 0.64 1.03 1.29

RMSE(𝐸min
𝑡 ) 6.47 12.11 15.46 0.38 0.66 0.76

RMSE(𝐸max
𝑡 ) 14.98 27.99 35.73 1.04 1.76 2.17

RMSE(𝐸 lef t
𝑡 ) 3.96 7.41 9.45 0.22 0.38 0.43

(b) 2022

Strategy Mean Std.

Low Medium High Low Medium High

MAE(𝑃max
𝑡 ) 3.22 5.92 7.57 0.67 1.18 1.48

MAE(𝐸min
𝑡 ) 4.01 7.52 9.71 0.22 0.41 0.45

MAE(𝐸max
𝑡 ) 11.66 21.77 27.89 0.74 1.4 1.58

MAE(𝐸 lef t
𝑡 ) 2.08 3.94 5.11 0.12 0.22 0.25

RMSE(𝑃max
𝑡 ) 4.2 7.76 9.92 0.6 1.05 1.3

RMSE(𝐸min
𝑡 ) 6.48 12.08 15.43 0.36 0.68 0.73

RMSE(𝐸max
𝑡 ) 14.98 27.95 35.7 0.98 1.81 2.06

RMSE(𝐸 lef t
𝑡 ) 3.96 7.39 9.44 0.21 0.39 0.42
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ABSTRACT

There has been an increase in the adoption of electric

vehicles (EVs) due to growing environmental concerns,

technological advancements, and supportive govern-

ment policies. This rapid increase in EVs necessitates

energy providers to procure sufficient power to meet

the charging demands. However, uncertainties in EV us-

age due to variable driving patterns and charging pref-

erences make it challenging for energy providers to pre-

dict the charging demand. To address these uncertain-

ties, energy providers can use stochastic models and

trade in multiple short-term electricity markets. More-

over, when smart charging, energy providers can use the

EV flexibility to charge the vehicles during lower mar-

ket price periods, reducing procurement costs. Despite

these strategies, there is a time lag between trading and

delivery during which users could change their EV us-

age patterns, leading to new user requirements during

delivery. This update in the user requirements creates

discrepancies between procured and updated power

needs, causing imbalances. Our study analyzes whether

EVs possess enough flexibility to overcome their uncer-

tainties, satisfy user energy requirements, and reduce

imbalance costs. We develop a two-step approach:

1) procuring energy in the day-ahead market and 2)

rescheduling across each EV to meet updated require-

ments. We test three rescheduling strategies across

51 scenarios, reflecting the updated user requirements.

Our findings reveal that, despite uncertainties, EVs have

enough flexibility to meet user needs and reduce imbal-

ance costs, with the potential for additional revenues.

Keywords: Smart charging, Electric vehicle flexibility,

Optimization, Day-ahead market, Imbalance costs

NOMENCLATURE

Abbreviations

DA day-ahead

EV electric vehicle

reBAP imbalance price

1. INTRODUCTION

In recent years, there has been a surge in the adop-

tion of electric vehicles (EVs) [1]. This growth is ex-

pected to continue, compelling energy providers to

meet the escalating power demands of EV charging.

Typically, energy providers can use EV demand forecasts

based on historical driving and charging patterns to help

them better predict the demand and procure the power

required to satisfy the charging demand [2].

However, diverse driving patterns and charging pref-

erences create uncertainties in EV usage, posing chal-

lenges to energy providers [3]. Factors such as EV user

trip distances, parking durations, arrival and departure

times, and energy requirements contribute to these un-

certainties, making accurate prediction difficult for the

energy providers [4, 5]. To address these challenges, en-

ergy providers can utilize Monte Carlo simulation mod-

els based on probability functions [6, 7] orMarkov chain

models [8]. Thesemodelling techniques enable the rep-

resentation of stochastic EV usage patterns and facili-

tate better estimation of charging demand.

Furthermore, the actual charging duration of EVs is

often less than their plugin duration, especially in the

case of residential charging, which is the focus of this pa-

per. This makes EV charging temporally flexible [9]. This

temporal flexibility allows the energy providers to con-

trol and adjust the EV charging schedule within a spe-

cific period [10, 11]. Thus, when smart charging energy

providers can leverage the flexibility provided by EVs to

minimize their procurement costs by scheduling the EV

charging when the market prices are lower [12, 13].

To handle the EV uncertainties while trading in day-

ahead (DA) market, energy providers can use stochastic

optimization models [14]. These models aim to mini-

mize the expected costs while satisfying user require-

ments. Authors in [15] developed a stochastic optimiza-

tion model with the objective to minimize the energy

provider’s expected cost in DA market. Within the op-

timization model, they considered the EV uncertainties

by modelling different demand scenarios. Additionally,

authors in [16, 14] include risk measures such as condi-

tional value at risk (CVar) in their stochasticmodels. The

inclusion of risk measures to mitigate the financial risks

# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan.
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incurred due EV uncertainty while trading in DAmarket.

Two-stage optimization models enable energy

providers to optimize the EV charging in both DA and

intraday markets [17]. The first-stage decisions usually

correspond to DA market scheduling to minimize the

costs of the energy provider. The second-stage deci-

sions usually correspond to intraday markets where the

objective function is to reduce the power imbalances

and minimize the energy provider’s costs [18]. Further-

more, authors in [19] developed a sequential trading

strategy to trade in both DA and intraday markets. They

developed a rolling window optimization model to deal

with uncertainties while trading in the intraday market.

While the above studies effectively handle uncertain-

ties by integrating them into their models and trading

in multiple markets, a time lag exists between trading

and the delivery period. During this interval, the ini-

tial user requirements predicted during the trading time

may change; for instance, users may update their plu-

gin duration and energy requests. This update in user

requirements would lead to discrepancies between the

procured power while trading and the updated power

demand during delivery time, causing imbalances. In

Europe, energy providers must settle these imbalances

in the imbalance market and pay additional costs. How-

ever, if EVs possess sufficient flexibility, energy providers

can reschedule the allocated power to each EV to meet

the updated EV requirements and reduce imbalance

costs. Therefore, our research paper aims to answer the

following research questions:

RQ 1) To what extent can energy providers use the EV

flexibility to satisfy the updated energy require-

ments at delivery time?

RQ 2) Do EVs possess enough flexibility to reduce the

energy provider’s overall imbalance costs?

To answer the above research questions, we develop

a two-step optimization approach. In the first step, we

procure the aggregated power required for EV charg-

ing from the DA market using the initial user require-

ments. We develop a linear optimization model to facil-

itate trading in DAmarket to minimize the procurement

costs. In the second step, we update the user require-

ments and reschedule the power allocated to each EV.

We use three rescheduling strategies and evaluate the

imbalance costs for each strategy. In the first strategy,

we assume that the energy provider tries to satisfy the

updated energy requirements by reallocating the power

to each EV using the aggregated power from DA mar-

ket. In this strategy, the energy provider settles in the

imbalance market only if they have excess power. In

the second strategy, the energy provider settles all the

imbalances in the imbalance market to satisfy the up-

dated energy requirements whileminimizing the overall

imbalance volume. The third strategy is similar to the

second, but we minimize the energy provider’s overall

imbalance costs in this strategy.

2. METHODS

Figure 1 gives an overview of our two-step opti-

mization approach. The first step is related to the DA

scheduling based on initial user requirements, where

the energy provider procures the aggregated power re-

quired for EV charging while trading in DA market. Sec-

tion 2.1 presents our optimization model and relevant

data required for trading in DAmarket. The second part
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Fig. 1 Overview of our two-step optimization approach.

relates to rescheduling, where the energy provider allo-

cates the power to each EV based on the updated user

requirements using three strategies for which we de-

velop three optimization models. Section 2.2 presents

the optimization models and relevant data required to

reschedule the power allocated to each EV.

2.1 Day-ahead market optimization model

We develop a linear optimization model to minimize

energy provider’s procurement costs incurred for charg-

ing the EV fleet while trading in DA market. The input

data for our optimization model are DA market prices

(CDA
t ), EV specifications and user requirements. The EV

specifications include the maximum charging power of

each EV (Pmax
v ) and maximum battery capacity (Emax

v ).

The user requirements include plugin duration (tpluginv )

and energy level requested at departure (Edep,DA
v ). We

assume perfect foresight of DA prices in line with [20].

Our objective function aims to minimize the energy

provider’s DA procurement costs (see Equation 1). The

objective function considers the variableP agg,DA
t andpa-

rameterCDA
t , which are the aggregated power procured

from DAmarket for charging the EVs and the DA price at

time t, respectively.

min
∑

t

CDA
t × P agg,DA

t ×∆t (1)

The aggregated power procured from DA market

(P agg,DA
t ) should be equal to the power allocated to each

EV while trading in DA market (P DA
t,v ) and this is ensured

by Equation (2).
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∑

v

(
P DA
t,v

)
= P agg,DA

t ∀t (2)

Since P DA
t,v is the power with which each vehicle is

charged, its value should always be within the limits of

themaximumcharging capacity of the EV. Thus, the con-

straint in Equation (3) ensures thatP DA
t,v value is between

0 and Pmax
v during the plugin duration.

0 ≤ P DA
t,v ≤ Pmax

v for t ∈ tpluginv ∀v (3)

EDA
t,v is the energy level of the vehicle at time t, and

it should be within the battery capacity limits, which is

ensured by Equation (4).

0 ≤ EDA
t,v ≤ Emax

v for t ∈ tpluginv ∀v (4)

The constraints in Equations (5), (6), and (7) ensure

the energy balance of EVs at the time of arrival (tarrv ),

throughout the plugin duration (tpluginv ) and at the time

of departure (tdepv ).

EDA
t,v gives the energy level of an EV at timestep t,

Earr,DA
v is the energy level of an EV at tarrv which we ob-

tain from user input,EDA
t−1,v gives the energy level of an

EV at previous timestep, ηch is the charging efficiency,

Edep,DA
v is the energy level of EV at tdepv .

EDA
t,v = Earr,DA

v for t = tarrv ∀v (5)

EDA
t,v = EDA

t−1,v + ηch · P DA
t,v ·∆t for t ∈ tpluginv ∀v

(6)

EDA
t,v = Edep,DA

v for t = tdepv ∀v (7)

2.2 Rescheduling optimization model

Trading in the DAmarket occurs up to 36 hours before

energy delivery, in our case, before EV charging. During

the time between trading and delivery, the users might

change their arrival time, departure time and energy

level requested at departure. This update in the user re-

quirementswouldmean that theremight be amismatch

between the procured power from DA markets (aggre-

gated DA power schedule) and updated power needs

for charging, causing imbalances. The energy providers

can reschedule the power allocated to each EV to ad-

dress these imbalances. In our paper, we propose three

rescheduling strategies for energy providers:

• First strategy: uses the same aggregated DA sched-

ule to satisfy the updated user requirements with-

out settling in the imbalancemarket. We reallocate

the power to each EV to minimize the deviation

between their updated energy level requirement

at departure and the actual energy level resulting

from the updated power we allocate to each EV.

• Second strategy: settling the imbalances in the im-

balancemarket to satisfy the updated user require-

ments while minimizing the imbalance volume. By

doing this, we change the aggregatedpower sched-

ule at delivery (updated power schedule), ensuring

we meet the updated energy requirements.

• Third strategy: settling the imbalances in the im-

balancemarket to satisfy the updated user require-

ments while minimizing the imbalance costs. By

doing this, we change the aggregatedpower sched-

ule at delivery time (updated power schedule), en-

suring we meet the updated energy requirement.

The following subsections will describe each of the

strategies in more detail.

2.2.1 First strategy: Minimizing energy deviation

In the first strategy, we assume that energy providers

reschedule the power allocated to each EV using the

same aggregated power procured from DA market. In-

stead of procuring additional power from the imbalance

market, the energy provider reallocates the power to

each EV to reduce the deviation of the energy level re-

quested by EV users at departures. Thus, the objective

of the energy provider is to minimize the sum of the dif-

ference between the updated energy level request of

the user at the departure (Edep,R
v ) and the actual en-

ergy level of the user at departure time after the deliv-

ery (Ẽdep,R
v ) for all vehicles. Equation (8) represents the

mathematical formulation of the objective function.

min
∑

v

(
Edep,R

v − Ẽdep,R
v

)
(8)

The constraint in the Equation (9) ensures that the

sum of the updated power allocated to each EV (P R
t,v)

is equal to the updated aggregated power schedule

(P agg,R
t ). ∑

v

(
P R
t,v

)
= P agg,R

t ∀t (9)

In this strategy, energy providers use the same DA ag-

gregated power schedule tomeet users updated energy

requirements by utilizing the flexibility provided by EVs.

Ideally, if all the updated energy requirements are sat-

isfied, P agg,R
t should equal P agg,DA

t . However, with up-

dated requirements, P agg,R
t might be higher or lower

than P agg,DA
t . Since we assume that the energy provider

does not procure additional power from the imbalance

market,P agg,R
t can never exceedP agg,DA

t . Instead,P agg,R
t

can be less than P agg,DA
t to ensure feasibility if the over-

all P agg,R
t needed is less than the overall P agg,DA

t . When

P agg,R
t is less than P agg,DA

t , the energy provider settles

the excess power in the imbalance market. Equation

(10) ensures the power balance between P agg,R
t and

P agg,DA
t .

3



P agg,R
t ≤ P agg,DA

t ∀t (10)

Furthermore, the objective function is subject to up-

dated constraints given by (11), (12), (13), (14), and (15).

0 ≤ P R
t,v ≤ Pmax

v for t ∈ tpluginv ∀v (11)

0 ≤ ER
t,v ≤ Emax

v for t ∈ tpluginv ∀v (12)

ER
t,v = Earr,DA

v for t = tarrv ∀v
(13)

ER
t,v = ER

t−1,v + ηch · P DA
t,v ·∆t for t ∈ tpluginv ∀v

(14)

ER
t,v ≤ Edep,R

v for t = tdepv ∀v
(15)

The only major difference compared to DA optimiza-

tion model is the energy balance equation at tdepv that

is relaxed. We depict this using Equation (15). This con-

straint ensures that the actual energy level at departure

can be less than the requested one.

ER
t,v = Ẽdep,R

v for t = tdepv ∀v (16)

The Equation (16) gives the mathematical represen-

tation of howwe calculate the actual energy level at de-

parture (Ẽdep,R
v ), which is also the decision variable of

the objective function (see Equation 8)

2.2.2 Second strategy: Minimize power deviation

In this strategy, we assume that the energy provider

settles all the imbalances in the imbalance market and

reallocates the power to each EV. While doing so, the

energy provider tries to reduce the imbalance volumes

whilst satisfying the user requirements. Accordingly, we

formulate our objective function in Equation (17), which

is to minimize the sum of the absolute power differ-

ence between the updated aggregated power schedule

(P agg,R
t ) and aggregated DA power schedule (P agg,DA

t ).

min
∑

t

∣∣∣P agg,R
t − P agg,DA

t

∣∣∣ (17)

We can observe that the objective function (Equa-

tion (17)) is non-linear as we are minimizing an abso-

lute value. To make the objective function linear, we

introduce an auxiliary variable for each time t denoted
by zt and additional constraints formulated in Equations

(19) and (20). Accordingly, we present the modified op-

timization problem with an updated objective function

in Equation (18) to minimize the sum of variable zt.

min
∑

t

zt (18)

The constraints (refer to Equations (19) and (20)) en-

sure that zt is at least as large as the absolute value of

the expression inside.

zt ≥
(
P agg,R
t − P agg,DA

t

)
∀t (19)

zt ≥ −
(
P agg,R
t − P agg,DA

t

)
∀t (20)

The objective function is subject to the same con-

straints as the first strategy (refer to Section 2.2.1) given

by Equations (9), (11), (12), (13), and (14). However, the

constraint in Equation (21) is different compared to the

first strategy as the energy provider must ensure that

they satisfy the EV user’s energy requirements.

ER
t,v = Edep,R

v for t = tdepv ∀v (21)

2.2.3 Third strategy: Minimizing imbalance costs

In the third strategy, we assume that the energy

provider has perfect foresight of imbalance prices and

aims to reduce the imbalance costs. Accordingly, our

objective function (refer to Equation 22) is to minimize

the energy provider’s imbalance costs when settling in

the imbalance market.

min
∑

t

(
P agg,R
t − P agg,DA

t

)
× CreBAP

t ×∆t (22)

The objective function is subject to the same con-

straints as in the second strategy (refer to Section 2.2.2),

given by Equations (9), (11), (12), (13), (14), and (21).

3. DATA AND SIMULATION SETUP

3.1 Mobility data

We use existing synthetic mobility data to derive the

user requirements for each EV [21]. The synthetic mo-

bility data stems from a German mobility survey [22].

The mobility data consists of 200 unique mobility pro-

files of residential EVs. We analyze only the home charg-

ing case with the following assumptions:

• All vehicles are always plugged in when parked at

home.

• All vehicles are charged until they reach Emax
v , or

the maximum energy level they can reach when

the users plugin their vehicle.

• The battery capacity of all vehicles is 75 kWh

• We consider a Level 2 charger with a mean power

rating of 7.4 kW and charging efficiency (η) of 95%,
typically used for home charging [23].

We divide the mobility dataset, containing individual

profiles for the entire fleet of 200 EVs over one year,

into weekly datasets. This results in 52 datasets com-

prising the individual mobility profiles for the entire EV

fleet over one week each. Out of the 52 new datasets,

we use one dataset to reflect the predicted (initial) user

requirements while trading in DA market, and we use
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the other 51 datasets to reflect the change in user re-

quirements and to test our rescheduling strategies for

each of the 51 datasets separately.

3.2 Market data

We use the German DA market’s one week’s price

data from January 2024 for trading in DA [24]. The re-

sulting price data is from 15th January 2024 to 21st Jan-

uary 2024. We obtain imbalance price (reBAP) prices

from ENTSOE-E Transparency Platform [25] for the same

period as that of DA market data. We calculate the im-

balance costs for all strategies ex-post using the reBAP

price data. Equation (23) gives the formula we use to

calculate the total imbalance costs for each reschedul-

ing trading strategy.

∑

t

(
P agg,R
t − P agg,DA

t

)
× CreBAP

t ×∆t (23)

4. RESULTS AND DISCUSSION

In this section, we present the results to answer our

research questions. Section 4.1 presents the aggregated

power schedule resulting from the DA optimization and

updated aggregated power schedules resulting from the

three rescheduling strategies. In Section 4.2, we com-

pare the three strategies by calculating the energy de-

viation incurred for the EVs across all the charging ses-

sions. Section 4.3 compares the three strategies, calcu-

lating the imbalance costs incurred while settling in the

imbalance market.

4.1 Aggregated EV schedules

Wefirst present the aggregated power schedule from

the DA optimization. To illustrate our rescheduling pro-

cess, we plot the updated aggregated power schedules

from our three strategies and compare them with the

DA aggregated power schedule. We present the ag-

gregated power schedules for a single day: January 18,

2024.

Figure 2 presents the aggregated DA power sched-

ule (P agg,DA
t ) based on DA market optimization (refer to

Section 2.1) and DA market prices (CDA
t ). As the objec-

tive of the DAmarket optimization model is to minimize

the overall costs, it tries to procure the power when

prices are lower. Therefore, we can observe thatmost of

the power procured for EV is between 02:00 and 04:00

when the prices are lower.

Figure 3 presents two aggregated power schedules -

P agg,DA
t and P agg,R1

t . P agg,R1
t is the updated aggregated

power schedule based on the first strategy (refer to Sec-

tion 2.2.1). We can observe that both power schedules

are overlapping each other, indicating thatP agg,R1
t is the

same as that ofP agg,DA
t . This is because, in the first strat-

egy, the model tries to allocate the power to each EV

while still using the P agg,DA
t .

Figure 4 presents two aggregated power schedules -
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Fig. 2 Day-ahead schedule on 18th Jan 2024.
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Fig. 3 Updated schedule based on first strategy on 18th

Jan 2024.

P agg,DA
t and P agg,R2

t . P agg,R2
t is the updated aggregated

power schedule based on the second strategy (refer to

Section 2.2.2). The objective of the second strategy is

to minimize the power deviation. Therefore, we can

observe that P agg,R2
t profile is very similar to P agg,DA

t

albeit, there are few instances where the magnitude

of P agg,R2
t is different to that of P agg,DA

t to account for

imbalances caused due to the change in user require-

ments. One instance where the imbalance occurs is

around 05:00. This is a negative imbalance since the

P agg,R2
t value is higher than that of P agg,DA

t during this

instance (at 05:00), which means the energy provider

has to procuremore power to satisfy the users’ updated

energy requirements.

Figure 5 presents the results for the third strategy (re-

fer to Section 2.2.3). In the figure, we present P agg,DA
t ,

P agg,R3 - the updated aggregated power schedule based

on the third rescheduling strategy, and imbalance prices

(CreBAP
t ). We can observe that P agg,R3 is quite differ-

ent from P agg,DA. The difference is because the third

rescheduling strategy aims to minimize the imbalance

costs. Therefore, the model utilizes the EV flexibility to

create a negative imbalance when the imbalance prices

are lower and procure the power from the imbalance

market, and create a positive imbalance when the im-
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Fig. 4 Updated schedule based on second strategy on

18th Jan 2024.

balance prices are high and sell the imbalance power to

the market. A few instances where we can observe in-

stances of negative imbalance are around 02:00, 04:00

and 23:00. One instance of positive imbalance is around

03:00.
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Fig. 5 Updated schedule based on third strategy on

18th Jan 2024.

4.2 Deviation in requested energy

The energy level deviation gives the difference be-

tween the updated energy level requested by users and

the actual energy level that EVs have at the departure

time after the rescheduling. Figure 6 shows the his-

togram of energy level deviations for all EVs at depar-

ture time in all 51 scenarios over one week for the first

trading strategy. The x-axis represents the energy level

deviation of each EV in kWh, and the y-axis represents

the percentage of occurrences. We limit the x-axis data

to 25 kWh to better illustrate the distribution of val-

ues. From the figure, we observe that in about 85% of

cases, the energy level deviation is zero; for the remain-

ing 15%, the deviation is spread from 1 kWh to 60 kWh,

most of which are under 15 kWh. These results indicate

that using the first strategy, the energy providers could

satisfy the energy requirements of users for about 85%

of the cases.
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Fig. 6 Energy level deviation across all scenarios.

The energy level deviation for all EVs across all sce-

narios in the second and third strategies is equal to zero.

The value is zero because themodel allocates the power

to each EV in a way that satisfies the user requirements,

which means that the actual energy level is equal to the

updated energy level requested by the user.

In the first strategy, energy deviations primarily occur

in scenarios where overall energy requirements signifi-

cantly exceed the anticipated levels during DA trading,

resulting in insufficient power to meet the demand. In

our study, we assume that all EVswould be charged until

they reach theirmaximumbattery capacity, which trans-

lates to EV users requesting 100%battery capacity at the

time of departure. Often, EV users do not need 100% of

their battery for their daily driving needs. For example,

the average daily distance in Germany is around 33 km,

which requires approximately 9% of the total battery ca-

pacity for a vehicle with a 75 kWh battery. In the 15% of

instanceswhere the updated energy requirementswere

not satisfied, the energy deviation is less than 15 kWh

for most instances. The 15 kWh deviation implies that

their battery percentage is at least 80%, which is suffi-

cient formost of the trips and thusmight not hinder user

comfort in terms of their driving needs.

4.3 Imbalance costs

Figure 7 depicts the distribution of imbalance costs

incurred across all scenarios for each rescheduling strat-

egy. In the first strategy, the imbalance costs vary from

around -71 to 0 EUR for a week across all scenarios. The

imbalance costs are negative because, in the first strat-

egy, the model uses EV flexibility and tries to reallocate

the power to each EV based on DA. In case of potential

imbalance, the energy provider only settles in the imbal-

ancewhen there is a positive imbalance, i.e., aggregated

DA power is higher than updated aggregated power. As

most imbalance prices are positive, the overall imbal-

ance cost is negative (refer to the formula in Equation

23).

In the second strategy, the imbalance costs vary from

around -50 EUR to 200 EUR for one week across all sce-
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Fig. 7 Distribution of imbalance costs for each strategy.

narios, with a median value of around 60 EUR. Though

the model tries to use the EV flexibility to minimize

the power deviation from the aggregated DA power

schedule while rescheduling, there could be several in-

stances where there is a positive or negative imbal-

ance. The positive imbalance occurs when the aggre-

gated rescheduled power is less than the aggregated DA

power. During the positive imbalance period, the en-

ergy provider settles (sells) the excess power in the im-

balance market. If the price during the positive imbal-

ance period is positive, the imbalance cost is negative

(the provider makes revenue); else, the imbalance cost

is positive (refer to the formula in Equation (23)).

The negative imbalance occurs if the aggregated

rescheduled power exceeds the aggregated DA power.

During the negative imbalance period, the energy

provider settles (buys) the excess power in the imbal-

ance market. If the price during the negative imbalance

period is positive, the imbalance cost is positive; else,

the imbalance cost is negative (the provider makes rev-

enue) (refer to the formula in Equation (23)).

Therefore, overall imbalance costs are negative in

some scenarios because there are more periods with

a combination of positive imbalance and negative price

and/or negative imbalance and positive price. Similarly,

overall imbalance costs are negative in some scenar-

ios because there are more periods with a combination

of positive imbalance and positive price and/or nega-

tive imbalance and negative price. Therefore, creating a

positive imbalance by procuringmore power in DA does

not always create revenues.

In the third strategy, the imbalance costs are negative,

ranging from -850 EUR to -750 EUR, with amedian value

of -780 EUR. This strategy assumes perfect foresight of

imbalance prices, allowing the model to utilize the flex-

ibility provided by EVs to create positive and negative

imbalances during periods that minimize costs. Conse-

quently, the imbalance costs are negative in all scenar-

ios.

However, the third strategy is purely theoretical since

providers cannot predict imbalance prices upfront and

thus cannot reschedule power to EVs to generate such

revenues. These results highlight that advanced knowl-

edge of imbalance prices could help minimize overall

imbalance costs. However, this strategy illustrates that

energy providers can harness EV flexibility to provide

balancing energy services to system operators, helping

tominimize overall system imbalances and generate ad-

ditional revenues for suppliers or EV owners. This is be-

cause balancing energy prices is used to establish imbal-

ance prices in the first place.

4.4 Discussion

Using the first strategy, energy providers could meet

most users’ energy needs. There is a risk that theymight

not fully satisfy the user’s energy requirement, reduc-

ing the charging reliability and impacting user comfort

regarding their driving needs. Suppose users offer more

flexibility by reducing their energy requirements. In that

case, energy providers can allocate power in a way that

ensures all EVs have enough energy to complete their

next trip without significantly impacting user comfort.

In caseswhere there is still a high deviation between the

energy levels at departure for the EVs, causing substan-

tial discomfort and preventing users frommeeting their

driving needs, the energy provider can then resort to the

second strategy. The second strategy involves settling

the imbalances through the imbalance markets to meet

the user’s energy requirements. Thus, using the sec-

ond strategy would not impact the user’s comfort and

charging reliability as theywould have the requested en-

ergy by the end of the charging session. Furthermore,

though the third strategy is impractical to implement di-

rectly, it illustrates that EVs possess enough flexibility

to provide balancing energy services to system opera-

tors, helping to minimize overall system imbalances and

generate additional revenues for energy providers or EV

owners.

In our study, we recognize several limitations that

highlight opportunities for future research. We used

price data for one week to test our strategies and cal-

culate the imbalance costs. We could extend our study

for longer periods, allowing us to capture the seasonal

effects. From the wholesale market model perspective,

we only considered DA market because it is more liq-

uid than the intraday market. However, for future work,

we can also consider trading in the intraday market,

where trading goes on until a few minutes before de-

livery, and analyze if trading multiple markets would re-

duce the imbalance costs. However, these limitations

will not significantly impact our overall result, which is

that despite uncertainties, EVs possess enough flexibil-

ity to meet user requirements and reduce imbalance

costs.
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5. CONCLUSION

Our paper analyzed if EVs possess enough flexibil-

ity to overcome the uncertainties arising due to vari-

able EV usage, satisfy the user requirements, and re-

duce the energy provider’s imbalance costs. We pro-

posed a two-step scheduling approach. The first step

relates to DA scheduling, where we developed a linear

optimization model to procure the power required for

EV charging based on the predicted initial user require-

ments while minimizing the energy provider’s procure-

ment costs. The second step relates to rescheduling,

where we proposed three strategies to reallocate the

power allocated to each EV to satisfy their updated user

requirements. The first strategy reallocated power to

EVs without settling in the imbalance market, minimiz-

ing deviation from updated energy requirements. The

second strategyminimized imbalance volume by adjust-

ing the aggregated power schedule at delivery. The third

strategy focused onminimizing imbalance costs and ad-

justing the power schedule to meet updated energy re-

quirements.

Our analysis demonstrated that energy providers

could meet most of the users’ energy needs by leverag-

ing EV flexibility. Additionally, we found that providers

could minimize user impact and imbalance costs by

adjusting power allocation and utilizing the imbalance

markets. Although the third strategy assumed perfect

foresight of imbalance prices and was impractical for di-

rect use, it illustrated that EVs possessed enough flex-

ibility to provide balancing energy services, minimize

system imbalances, and generate additional revenue.

These findings highlighted the potential of EV flexibility

to overcome their own uncertainties and use this flex-

ibility to satisfy user energy requirements and reduce

imbalance costs - potentially generating additional rev-

enues.
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