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A Machine-Learning Approach Identifies Rejuvenating
Interventions in the Human Brain

Guillem Santamaria, Cristina Iglesias, Sascha Jung, Javier Arcos Hodar, Ruben Nogueiras,
and Antonio del Sol*

The increase in life expectancy has caused a rise in age-related brain
disorders. Although brain rejuvenation is a promising strategy to counteract
brain functional decline, systematic discovery methods for efficient
interventions are lacking. A computational platform based on a transcriptional
brain aging clock capable of detecting age- and neurodegeneration-related
changes is developed. Applied to neurodegeneration-positive samples, it
reveals that neurodegenerative disease presence and severity significantly
increase predicted age. By screening 43840 transcriptional profiles of chemical
and genetic perturbations, it identifies 453 unique rejuvenating interventions,
several of which are known to extend lifespan in animal models. Additionally,
the identified interventions include drugs already used to treat neurological
disorders, Alzheimer’s disease among them. A combination of compounds
predicted by the platform reduced anxiety, improved memory, and rejuvenated
the brain cortex transcriptome in aged mice. These results demonstrate the
platform’s ability to identify brain-rejuvenating interventions, offering
potential treatments for neurodegenerative diseases.
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1. Introduction

The global population is aging rapidly, with
over two billion people projected to be
above the age of 60 by 2050.[1] While in-
creased lifespan is positive, it has led to
a rise of age-related conditions, resulting
in more individuals living longer in poor
health.[2,3] In 2017, age-related diseases ac-
counted for more than 50% of the global
disease burden and are expected to rise
further.[4] This poses significant health chal-
lenges and places substantial financial pres-
sure on healthcare systems. Neurodegener-
ative disorders comprise a large portion of
the disease burden.[5] Therefore, discover-
ing effective strategies to protect the aging
population from neurodegeneration is crit-
ical.
Neurodegeneration and aging are closely

interconnected. During aging, cellular
homeostasis declines, leading to increased

neuroinflammation, DNA damage, oxidative stress, and mito-
chondrial malfunction. Over time, quality control systems fail to
counteract these defects, eventually leading to neuropathologi-
cal states.[6–8] As such, aging is the primary risk factor for sev-
eral neurodegenerative disorders that most older adults eventu-
ally face. While it remains debated whether neurodegeneration
represents accelerated aging or a distinct pathological process,[9]

there is growing evidence of shared molecular hallmarks that are
exacerbated in patients.[10–12]

The concept of neurodegeneration as accelerated aging
has spurred interest in rejuvenation-based interventions for
treatment.[12–14] Promising approaches as parabiosis, exercise
and caloric restriction, have shown positive results in slow-
ing and reversing neurodegeneration.[14–19] Chemical rejuve-
nating interventions like senolytics and SIRT1 activators (e.g.,
resveratrol) also have been shown to mitigate neurodegenera-
tive traits.[20,21] At the molecular level, these interventions repro-
gram the transcriptional state of cells and restore their methy-
lome to a more youthful profile.[22–26] Furthermore, a recent
study showed that rejuvenating the mouse brain by inducing Ya-
manaka factors expression prevented the development of several
hallmarks of Alzheimer’s disease.[27] However, these strategies
present notable limitations. For example, resveratrol suffers from
low bioavailability, and interventions that promote cellular de-
differentiation raise safety concerns.[28,29] In addition, the appli-
cation of parabiosis to humans involves complex ethical issues.
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Figure 1. Overview of the development and use of our computational platform for identifying brain rejuvenating interventions. At the core of our platform
is a brain-specific transcriptomic clock, trained on cross-sectional bulk brain expression data from healthy individuals, aged 20 to 97. This clock employs
a generalized linear model, with log2 quantile-normalized counts as explanatory variables and chronological age as the response variable. Through Lasso
regularization, a set of 365 key predictors of brain age was identified. By applying our platform to pre- and post-treatment gene expression data, the clock
can identify interventions that significantly rejuvenate the transcriptome. Given the demonstrated positive association between neurodegeneration
and transcriptional age, we hypothesize that interventions predicted to reduce transcriptional age may also serve as neuroprotective agents against
neurodegenerative disorders.

Current interventions have been identified through
knowledge-based targeting strategies. A systematic identifi-
cation of rejuvenating interventions for the central nervous
system would be highly beneficial. The observation that various
omics profiles are reprogrammed after applying brain rejuve-
nating interventions highlights the potential of using omics
aging clocks to identify interventions that possess rejuvenating
effects.[30] Methylation clocks have been regarded as the best
given the stability of methylation compared to other omics and
their accuracy for estimating age, as evidenced per multiple
studies.[31,32] However, epigenetic clocks are less functionally
interpretable compared to other omics approaches, such as
transcriptomics and proteomics, which provide direct insights
into altered cellular functions.[33] Furthermore, methylation
changes take longer to manifest. Another limitation is that
most clocks are based on peripheral tissues, which may not cap-
ture the brain-specific changes. While multi-tissue epigenetic
clocks have shown positive correlation with neurodegeneration
traits,[34] brain-specific clocks demonstrate stronger associations
with neuropathological traits.[35,36] Lastly, the use of transcrip-
tomics over epigenomics offers the advantage of being more
cost-effective, facilitating its systematic application in computa-
tional drug screening pipelines. However, this comes at the cost
of greater variability, making it more challenging to achieve the
level of accuracy typically observed with epigenetic clocks.
Recently, we developed a functionally interpretable cell

type-specific transcriptional aging clock that identifies reju-

venating factors in human skin fibroblasts.[37] However, the
limited availability of brain cell type-specific gene expression
data throughout human lifespan hinders the development of
brain cell type-specific transcriptomic clocks. Nevertheless, a
tissue-specific clock can serve as a suitable proxy for identifying
rejuvenating perturbations in brain cell types. In this study, we
evaluated 43 840 transcriptional profiles of 5771 chemical and
genetic perturbations in neural progenitor cells (NPCs) and
neurons for their rejuvenating properties. To achieve that, we
developed a computational platform that identifies interventions
that significantly shift the transcriptional age of brain cells, based
on a transcriptomic brain-specific aging clock that accurately
predicts age from a signature of 365 genes (Figure 1). Our plat-
form identified 971 unique perturbations that rejuvenated the
transcriptome in NPCs, and 68 in neurons, many of which had
been previously validated. The positive association between neu-
rodegeneration severity and transcriptional age suggests that the
interventions predicted as rejuvenating could serve as neuropro-
tective agents against neurodegenerative disorders. Finally, we
tested three of the identified compounds on aged mice, observ-
ing reduced anxiety and improved memory, and transcriptomic
rejuvenation of the cortical transcriptome. Thus, we anticipate
that our computational platform, implemented as the R pack-
age ’brainAgeShiftR’, will serve as a valuable resource for iden-
tifying compounds with therapeutic potential in neurodegener-
ative diseases, providing a foundation for further research and
validation.
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Figure 2. Performance metrics of our transcriptome-based brain aging clock and main biological processes the genes used by it are involved in. A) R2

computed in training set, 10-fold cross-validation, internal test set (1/3 held out), and external validation set. B) Mean average error computed in train
set, 10-fold cross-validation, internal test set (1/3 held out), and external validation set. C) Enriched biological processes in the expression signatures of
brain aging used by our clock, determined by NEAT enrichment, and sorted according to FDR. In the X axis it is represented the ratio between the number
of links between the genes used by our clock and the biological process and the expected number of links in the absence of enrichment is represented.

2. Results

2.1. Our Computational Platform can Accurately Predict the
Chronological Age of Brain Bulk Transcriptomic Profiles,
Identifying Brain-Specific Aging Signatures

In order to evaluate the rejuvenating properties of chemical and
genetic perturbations, we developed a computational platform
using bulk transcriptome data from brain samples. Compared
to the epigenome, the transcriptome offers the advantage of be-
ing highly interpretable, thus allowing for a direct mapping of
genes to specific functions and enabling the identification of age-
related processes in the brain. Importantly, we employed bulk
data originating from the whole tissue instead of single-cell data.
The motivation behind this choice was twofold, first, the greater
availability of brain bulk samples in humans, driven by its lower
costs and earlier adoption, second, the fact that drug screenings
for the discovery of novel compounds are initially performed on
cell cultures, from which bulk transcriptomic profiles can be eas-
ily obtained.
We used a combination of bulk RNA-seq datasets sourced

from the Alzheimer’s Disease (AMP-AD) Knowledge Portal,[38]

the Genotype-Tissue Expression (GTEx) project,[39] the Aging,
Dementia and Traumatic Brain Injury Study (TBI),[40] and the
BrainSeq Phase 2 study[41] to train the machine-learning model
underlying our platform, a brain-specific transcriptional aging
clock. From the combination of these datasets, we obtained a to-
tal of 2456 samples coming from 778 unique healthy individu-
als, ranging from ages 20 to 97 years. After data preprocessing
(including normalization, transformation, and batch effects re-
moval – see Experimental section for details), we split the sam-
ples into training and testing sets (2, 1), stratifying by donor to
avoid data leakage. A generalized linear model was then fit on the
training set, using the chronological age as the response variable.

The expression of all the genes common to all included datasets
was used as explanatory variables, with L1 regularization applied
to determine what genes significantly contribute to age explana-
tion.
The final clock uses 365 genes to make predictions (Table S1,

Supporting Information), achieving a coefficient of determina-
tion (R2) of 0.945 in the training set, an average R2 of 0.857 for 10-
fold cross-validation, and R2 0.808 in the testing set (Figure 2A,
Table 1). The mean absolute error (MAE) was 2.55 years in the
training set, an average of 4.04 years in 10-fold cross-validation,
and 4.81 years in the test set (Figure 2B, Table 1). Other metrics
for the testing set are shown in Table 1.
Additionally, to assess the clock’s performance across the dif-

ferent sub-studies, brain regions, and sexes represented in our
dataset, we computed both R2 and MAE for each of these sub-
sets, extracted from the internal test set (Figure S1, Supporting
Information). While R2 dropped in certain datasets — such as
MSBB, TBI or, to a lesser extent, ROSMAP — this was largely
due to the limited age range within those cohorts, often span-
ning no more than two decades (Figure S1A,B, Supporting In-
formation). In such cases, R2 becomes a less reliable indicator

Table 1. Performance metrics of the transcriptomic clock on the internal
(1/3 held-out) test set and the external validation set.

Metric Internal test set External validation set

MAE 4.814 6.013

MSE 37.251 51.422

RMSE 6.103 7.171

MAPE 9.208 13.516

R2 0.808 0.778

Pearson2 0.813 0.865
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of model fit. Nevertheless, the MAE across all datasets remained
between 3.91 and 8.55 years, indicating acceptable prediction ac-
curacy (Figure S1C, Supporting Information). When stratifying
by sex, R2 was 0.844 in females, and 0.780 in males (Figure S1E,
Supporting Information). This modest decrease in male perfor-
mancemight be attributable to a narrower distribution of chrono-
logical ages, likely due to lower male longevity (Figure S1D, Sup-
porting Information). MAE was nearly identical between sexes,
4.82 years in males and 4.8 in females (Figure S1F, Supporting
Information).
Performance across individual brain regions followed a sim-

ilar pattern to the sub-study analysis, R2 values were posi-
tively correlated with the standard deviation of chronological
ages (Figure S1G, Supporting Information). MAE across regions
ranged from 3.695 and 6.685 years (Figure S1H, Supporting In-
formation), supporting the model’s accuracy across anatomical
contexts.
Finally, we evaluated the model on a completely independent

external validation set — 22 samples from the BrainSeq Phase
1 study[42] — achieving an R2 of 0.778 and a MAE of 6.01 years
(Figure 2A,B, Table 1). Altogether, these results show our clock’s
strong predictive performance and generalizability across diverse
biological and technical conditions.
The 365 genes constitute the expression signatures of brain ag-

ing. Among these genes, 91 are directly related to brain processes
(Table S2, Supporting Information). The brain-related GO term
with most genes associated to was “synapse”. In order to charac-
terize the 365 genes, we performed a Network Enrichment Anal-
ysis Test (NEAT)[43] to determine which are the functional impli-
cations of these changes in expression (Figure 2C; Figures S2–S4,
Supporting Information). We detected 14 significantly enriched
biological processes (Table S3 and Figure S2, Supporting Infor-
mation), 11 molecular functions (Table S4 and Figure S3, Sup-
porting Information), and 12 cellular components (Table S5 and
Figure S4, Supporting Information). The process with highest ra-
tio of enrichment was microglia development. Interestingly, the
majority of significantly altered processes were not directly re-
lated with brain pathology. Instead, most of themwere associated
with DNA metabolism and repair (Figure 1C; Figure S2, Sup-
porting Information). Unexpectedly, the enriched cellular com-
ponents were structures related to DNA as well, such as nucleo-
plasm, chromosomes, and nucleolus (Figures S4 and S5B, Sup-
porting Information). Some lysosome-related components ap-
peared too. A similar trend is observed in molecular functions,
where many of the enriched terms are DNA-related (Figures S3–
S5A, Supporting Information). Interestingly, the most enriched
molecular function was sterol transporter activity. Alterations in
sterol metabolism have been observed during brain aging.[44]

2.2. A Bulk Transcriptome-Based Clock is a Good Proxy for
Identifying Differences in Transcriptional Age at the Cell Type
Level

Single-cell RNA sequencing (scRNA-seq) has only been widely
adopted for about a decade, and its current cost is roughly 10
times higher than bulk RNA-seq. As a result, there are insuffi-
cient scRNA-seq data of human brain that include the age infor-
mation necessary to train a high-quality predictive aging clock

for specific brain cell types. However, we used the scRNA-seq
brain datasets available in the ageAnno database[45] to validate
our clock’s ability to capture transcriptional age differences in in-
dividual brain cell types. Specifically, we used the preprocessed
pseudo-bulk counts for each individual cell typewithin each brain
sample in the database to predict the ages. We assessed the statis-
tical significance of the differences in the predicted ages between
the young (age between 18 and 30) and the old samples (age be-
tween 70 and 100) (Figure 3A).
An increase in the median predicted age was observed in old

samples across all cell types. Statistically significant differences
were found for excitatory neurons, inhibitory neurons and oligo-
dendrocytes, with p-values of 6.13·10−6, 2.3·10−2 and 1.5·10−2,
respectively (3.67·10−5, 4.6·10−2, and 4.6·10−2 after Benjamini-
Hochberg p-value adjustment). We also examined the proportion
of the genes used by the clock that show a positive correlation
with the clock’s coefficients in a comparison of old versus young
samples for each cell type (Figure 3B). These proportions were
0.545 for astrocytes, 0.501 for endothelial cells, 0.663 for excita-
tory neurons, 0.562 for inhibitory neurons, 0.567 for oligodendro-
cytes, and 0.545 forOPCs. A permutation test (n= 10000) showed
significant enrichment of correlated genes in excitatory neurons,
inhibitory neurons, and oligodendrocytes, with BH-adjusted p-
values of < 1·10−4, 2.42·10−2, and 2.42·10−2, respectively. Finally,
F-tests showed that there is a significant association between the
chronological age and the transcriptional age for all the cell types,
with the exception of astrocytes (Table 2, Figure S6, Supporting
Information).
These results demonstrate that, although our clock was trained

on bulk RNA-seq brain samples, it can effectively identify aging-
related differences at the individual cell type level, with particu-
larly strong performance in neurons and oligodendrocytes.

2.3. Evaluating Chemical and Genetic in Vitro Perturbations for
Rejuvenating Effects

After demonstrating that our clock can identify age-related dif-
ferences at the cell type level, we applied it to a combina-
tion of Library of Integrated Network-Based Cellular Signatures
(LINCS) L1000 chemical perturbation data[46] and several genetic
perturbation datasets (Table S6, Supporting Information) for dif-
ferent brain cell types, specifically neurons and NPCs. In par-
ticular, we selected 4047 and 5770 genetic and chemical pertur-
bations in neurons and NPCs, respectively. Using this data, we
sought to determine whether our clock can identify rejuvenat-
ing interventions based on significant transcriptional age differ-
ences before and after perturbation (Figure 4). A two-sided t-test
comparing the predicted ages before and after each perturbation
was conducted, identifying 971 unique perturbations that sig-
nificantly rejuvenated the transcriptomic profiles of NPCs, and
68 in neurons (Figure 4; Tables S7 and S8, Supporting Informa-
tion respectively, FDR ≤ 0.05, log2FC < 0). These perturbations
were produced by 411 unique perturbagens in NPCs, and 67 per-
turbagens in neurons (Tables S9 and S10, Supporting Informa-
tion).
In NPCs, the top 5 perturbations that induced more tran-

scriptomic rejuvenation—measured as delta age (treated minus
untreated) — were BGT-226, alvocidib, WYE-354, iloprost, and
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Figure 3. Application of the brain-specific clock on cell-type pseudo-bulk transcriptomic data. A) Comparison of predicted ages per cell type, old (age
higher than 70, included) versus young (ages from 18 to 30, both included). The results of a t-test are displayed on top of each comparison. B) Proportion
of genes used by the clock that, in the pseudo-bulk old versus young individual cell type comparison, have a positive correlation with the coefficient in
the clock.

BRD-K48950795 (Figure 4A, Table 3). BGT-226 is a pan-PI3K and
mTOR inhibitor that underwent clinical trials for cancer but was
never approved for clinical use.[47] Although its effects on aging
have not been assessed to our knowledge, several anti-aging com-
pounds such as rapamycin, everolimus or wortmannin share a
similar mechanism of action.[48] Alvocivid, a cyclin-dependent ki-
nase inhibitor that is FDA-approved for acute myeloid leukemia,

Table 2. p-values of the association between chronological age and the pre-
dicted age obtained after applying the transcriptomic clock to AgeAnno’s
pseudo-bulk samples, for each cell type. The p-values were calculated us-
ing an F-test and adjusted using Benjamini-Hochberg’s method.

Cell type p-value Adj. p-value (BH)

Astrocytes 1.06·10−1 1.06·10−1

Endothelial 2.1·10−2 3.15·10−2

Excitatory neurons 7.09·10−7 4.26·10−6

Inhibitory neurons 4.35·10−4 1.3·10−3

Oligodendrocytes 1.47·10−3 2.95·10−3

OPCs 3.9·10−2 4.67·10−2

has shown behavioral and cognitive improvements in ADmouse
models.[49] WYE-354, like BGT-226, is an mTOR inhibitor with
demonstrated anticancer efficacy in pre-clinical studies, but has
not progressed to clinical approval.[50] Iloprost, a prostacyclin
analog approved for idiopathic pulmonary arterial hypertension,
has not been linked to aging-related benefits.[51] Lastly, BRD-
K48950795 is an experimental compound with no known ther-
apeutic application.
In neurons, top 5 rejuvenating perturbations were KIN-001-

220, ponatinib, CX-5461, AZD-7762, and PF-573228. These five
compounds, though not being linked to aging, have shown effi-
cacy against several types of cancer.[52–56]

We focused on chemical perturbations to assess if any of them
had demonstrated rejuvenating properties. For this, we queried
the DrugAge database[57] with the predicted perturbations. As
a result, three compounds predicted in neurons (dopamine,
nemonapride, and TAK-175) and 20 compounds predicted in
NPCs were found to significantly extend lifespan in animal mod-
els, according to DrugAge (Figure 4C). Interestingly, a larger
number of predicted rejuvenating compounds emerged inNPCs.
This may reflect the higher plasticity of progenitor cells or the
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Figure 4. Interventions that shift the transcriptomic age. A and B. Delta age produced by each perturbation (median(treated) minusmedian(untreated)).
The perturbations that are statistically significant are shown in green, the not significant ones in red. A) Neural progenitor cells (NPCs). B) Neurons.
C and D. Predicted compounds with known rejuvenation effects. C) Mechanism of action of all predicted compounds that have been shown to extend
lifespan in animal models. D) Structural similarity of predicted compounds that are known to extend lifespan (red) to those without experimental
validation (green). The line size corresponds to ten times the Tanimoto similarity between the SMILES representations of the connected compounds.
Relationships are only shown if the Tanimoto similarity is greater or equal to 0.5 (weight greater or equal 5).

increased responsiveness of stem-like cells to pharmacological
modulation, which is consistent with the broader research fo-
cus on reversing stem cell decline as a strategy to enhance tis-
sue regeneration and longevity.[58] The identified perturbations
have diverse mechanisms of action, many of which are directly
related to the hallmarks of aging (Figure 4C).[59] Curcumin and
erythromycin-ethylsuccinate, for instance, are modulators of in-
flammation, thus targeting directly the detrimental effect of age-
related neuroinflammation on brain function.[60] In addition,

brain aging is associated with hypermethylation of CpG islands
and the progressive loss of histone acetylation.[61,62] Azacitidine
can counteract these dysregulations by inhibiting DNA methyl-
transferases. Our predictions with known rejuvenating effects
also contain a modulator of ion homeostasis, KN-93, which is
frequently dysregulated due to altered levels of ion channels.[63]

Finally, the mTOR inhibitor everolimus has been predicted.[48]

Although several compounds predicted by our model have
been shown to extend lifespan, the vast majority of perturbations

Adv. Sci. 2025, e03344 e03344 (6 of 17) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Table 3. Top 15 drugs for neural progenitor cells (NPCs) and neurons in
terms of average Δ age across the perturbations that used that drug (dif-
ferent doses and treatment times).

NPCs Neurons

Drug Mean Δ age (years) Drug Mean Δ age (years)

BGT-226 −19,49 KIN-001-220 −14,32

alvocidib −30,06 ponatinib −11,24

WYE-354 −28,06 CX-5461 −6,84

iloprost −27,32 AZD-7762 −10,44

BRD-K48950795 −26,05 PF-573228 −10,30

BRD-K23657553 −24,69 pyrazolanthrone −9,76

GSK-2110183 −24,59 CTPB −9,69

mitoxantrone −24,25 SB-239063 −9,05

HG-14-10-04 −16,04 SB-203580 −9,03

BRD-K74949371 −24,19 BRD-K69458799 −8,84

PHA-767491 −13,63 XMD-892 −8,69

ST-4029573 −23,41 JNJ-38877605 −8,38

BRD-K76236182 −23,26 BRD-K83620635 −8,16

NVP-TAE684 −22,86 zacopride −7,64

AZD-6482 −22,80 BRD-A35825362 −7,30

has not been studied in the context of health- or lifespan ex-
tension. Moreover, many predicted compounds are still experi-
mental, which is evidenced by the generic names assigned to
them (e.g., compound names starting with ‘BRD-‘), and their
mechanism of action remains elusive. To shed light on their po-
tential modes of action, we sought to interrogate the relation-
ship between these compounds and predicted perturbations with
known rejuvenating effects. In lieu of functional information, we
compared their 2D structures grounded on the fact that similar
compounds may possess similar functions.[64] To achieve that,
we computed the Tanimoto similarity (TS), where the size of
the compound intersection is divided by the size of the smaller
descriptor, between the SMILES representation of any two pre-
dicted compounds and retained those showing at least intermedi-
ate similarity (TS greater or equal 0.75). As a result, we identified
several structurally similar compounds in NPCs while no signif-
icant association could be found in neurons (Figure 4D). In total,
34 predicted compounds could be structurally linked to 13 per-
turbations with known rejuvenating effects. The largest cluster of
compounds is centered around the mTOR inhibitor everolimus.
Other compounds belonging to this cluster are pravastatin,
cyclosporin-a, and erythromycin-ethylsuccinate, which also ap-
pear in DrugAge as lifespan extending, and tranylcypromine,
a compound that has been shown to have neuroprotective ef-
fects against amyloid-𝛽-induced toxicity.[65,66] The second largest
cluster was centered around resveratrol, xanthohumol, and cur-
cumin, the three of them nutraceuticals that appear in Dru-
gAge as lifespan extending and that possess antioxidant, anti-
inflammatory, and anti-cancer properties.[67–69] In summary, the
structural similarities identified between compounds with and
without a demonstrated ability to extend lifespan support the hy-
pothesis that all of these compounds indeed display rejuvenating
effects.

2.4. Transcriptional Age is Related to Neurological Disorders

Although our clock accurately predicted the chronological age of
brain sample donors based on the expression of the 365 genes
and successfully identified chemical perturbations that are able to
expand lifespan in animal models, it has not yet been shown that
these perturbations could also counteract neurodegeneration.
Despite the fact that lifespan is the main readout in most cur-
rent rejuvenation studies, the extension of healthspan requires
restoring the functional capacity of tissues. To investigate this, we
first used our clock to predict the age in samples of donors suffer-
ing from neurodegenerative disorders compiled from the Accel-
erating Medicine Partnership: Alzheimer’s Disease (AMD-AD)
database,[38] as well as from the Traumatic Brain Injury (TBI)[40]

and Genotype-Tissue Expression (GTEx) databases.[39]

To start with, we observed that neurodegenerative samples ex-
hibited a transcriptional age higher than that of control samples
(Figure 5A). This was particularly evident in samples coming
from donors aged 60 to 70, with the neurodegenerative samples
having a transcriptional age 15.23 years higher than the healthy
individuals at 60 years old. As chronological age increased, the
transcriptional ages of neurodegenerative and control samples
converged. An ANCOVA test validated the significance of these
differences, indicating both neurodegeneration status and the in-
teraction between neurodegeneration status and chronological
age to be significant predictors of transcriptional age (p-values
of 2.18·10−48 and 1.92·10−23).
Next, we evaluated whether transcriptional age is associated

with neurodegeneration stage. For this, we used the Braak in-
dex, a metric that classifies pathology severity in Parkinson’s and
Alzheimer’s diseases. A linear model was fitted using predicted
age as the response variable, Braak index as the main predictor,
and chronological age as a covariate to adjust for potential con-
founding (Figure 5B). The Braak index to was statistically associ-
ated with transcriptional age (p-value = 0.0102).
To explore age-dependent effects, we repeated the analysis

across chronological decades from 60 to 100 years — the range
covering all neurodegeneration samples (Figure S7, Supporting
Information). From ages 60 to 70, the association remained sig-
nificant (p-value = 1.32·10−3, coefficient = 1.082). The relation-
ship weakened with increasing age, between 70 and 80, the as-
sociation was marginally non-significant (p-value = 7.03·10−2,
coefficient = 0.346), From 80 to 90 it was not significant (p-
value = 0.284, coefficient = 0.12), and between 90 and 100, no
association was observed (p-value = 0.965, coefficient = −0.016).
Overall, these results demonstrate that individuals presenting

brain functional decline exhibit a transcriptomic profile similar
to that of individuals with higher chronological age. In addition
to our clock’s ability to predict accurately the age in healthy in-
dividuals, it can also detect the transcriptomic differences char-
acterizing neurodegeneration. Moreover, our clock revealed that
the stages of neurodegeneration significantly contribute to an in-
creased predicted age, indicating that the degree of brain func-
tional decline significantly correlates with a higher transcrip-
tional age. This increase in transcriptional age among individuals
suffering from neurodegeneration is more marked in younger
subjects, suggesting that neurodegeneration accelerates the ag-
ing process.[35] These results support that differences in brain
transcriptional age imply differences in brain function, which
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Figure 5. Relationship between predicted age (transcriptional age) and brain functionality. A) Differences in predicted age in healthy controls of the
test set (pale red) and samples originating from individuals suffering from neurodegeneration (Braak index ≥ 4). B) Relationship between the Braak
index and the adjusted transcriptional (predicted) age. The transcriptional age was adjusted by regressing out the chronological age, to account for
potential confounding effects. The p-value displayed corresponds to the F-test for Braak index derived from a linear model using adjusted predicted age
as response variable and Braak index as covariate.

further implies that perturbations predicted by our clock to reju-
venate the transcriptomemay have the potential to improve brain
function.
To support this claim, we set out to investigate whether the

predicted compounds in neurons and NPCs have been used
for treating neurological disorders. To achieve that, we collected
a list of drugs that have been used in clinical trials or as a
treatment for 1945 diseases, including 155 neurological disor-
ders such as Alzheimer’s Disease, Parkinson’s Disease or stroke,
from the Therapeutic Target Database (TTD).[70] Due to ambi-
guities of compound names, we associated the predicted com-
pounds to drugs in the TTD based on the TS of their SMILES
representations. In order to avoid false associations, we ap-
plied a strict cutoff of 0.85, which is generally accepted as high
similarity. As a result, the compounds predicted to rejuvenate
NPCs were found to have been applied to 8 neurological disor-
der categories, Alzheimer’s disease, amyotrophic lateral sclero-
sis, fragile X syndrome, neurological disorder, neurofibromato-
sis type 1, neurogenic bladder dysfunction, postherpetic neural-
gia, and schizophrenia. In neurons, the only potentially rejuve-
nating compound that has been used in neurological disorders
was dopamine, for Parkinson’s disease.
Altogether, these results support the relationship between

transcriptional age and brain functioning.

2.5. Drugs Predicted by Our Clock to Rejuvenate the
Transcriptome Reduced Anxiety in Older Mice and Showed a
Trend Toward Improved Memory Performance

Among the brain-rejuvenating interventions that were indi-
vidually predicted by our clock, an interesting subset includes

5-azacytidine, tranylcypromine, and JNK-IN-5A (TCS JNK 5a),
which influence epigenetic regulation.[71] As mentioned earlier,
5-azacitidine was one of the drugs we predicted as rejuvenating,
which appeared as lifespan-extending in DrugAge, while tranyl-
cypromine has considerable structural similarity to everolimus
(Figure 4C,D). On the other hand, JNK-IN-5A is a selective
inhibitor of JNK2 and JNK3, with IC50 values of 316.23 and
199.52 nm, respectively.[72] This inhibitory potency is lower
compared to covalent inhibitors like JNK-IN-8, which exhibits
IC50 values of 4.7, 18.7, and 0.98 nm for JNK1, JNK2, and JNK3,
respectively.[73] Although JNK-IN-8 was not included in the
dataset used to predict rejuvenating interventions, its shared
targets and greater efficacy made it a compelling candidate
for experimental validation. Consequently, we evaluated the
combination of 5-azacytidine, tranylcypromine, and JNK-IN-8 in
aged mice to assess both molecular and functional brain rejuve-
nation.
The combination of these three compounds or vehicle was

administered intraperitoneally for 4 weeks to aged mice (18
months) to evaluate behavioral and cognitive functions. Mice
treated with the combination of the three compounds showed
differences in their exploratory behavior in an Open Field Test
(OFT) compared with animals injected with the vehicle. While
the total distance traveled remained unchanged between the two
groups (Figure 6A), time spent in the central zone was signifi-
cantly higher in treated animals, and their average speed in the
central zone was lower (Figure 6B). Furthermore, time spent in
the periphery was shorter in the treated animals, as was their av-
erage speed (Figure 6C). An increase in central locomotion or
time spent in the central part of the device, without a change
in total locomotion, is interpreted as an anxiolytic-like effect.[74]
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 21983844, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202503344 by A

ntonio del Sol - C
ochrane L

uxem
bourg , W

iley O
nline L

ibrary on [17/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 6. Old mice treated with the combination of three compounds show reduced anxiety and improved spatial memory. A) Track plot of the Open
Field Test (OFT) showing the total distance (in meters) travelled by animals treated with either vehicle or the three-compound combination. B,C)
Representative images of the Open Field square, highlighting the two areas to be analyzed in Any-maze, the center zone and the perimeter (colored
blue). Graphs show the percentage of time spent in each area and the average speed (in meters per second) in both zones for the two groups of animals.
D) Diagram of the Novel Object Location Test (NOLT), indicating the precise location of objects during the training period and the new position for one
object during the testing period. E) Track plot of the NOLT showing the layout of the animals. The percentage of exploring time was calculated by dividing
the time the animals spent exploring the object in the new position by the total duration of the test. F) Percentage of time spent exploring the object
in the new and old locations for both vehicle-treated and treated animals. n = 6 vehicle-injected animals (DMSO) and n = 5 animals injected with the
three-compound combination (5-azacytidine, tranylcypromine, and JNK-IN-8), administered intraperitoneally 8 times. *p < 0.05, **p < 0.01, Student’s
t-test.

Together, these results suggest that this combination reduces
anxiety levels compared to vehicle-treated mice.
The Novel Object Recognition Test (NORT) was also con-

ducted to evaluate both short- and long-term memory in the ani-
mals. Vehicle- and treated animals were compared based on their
ability to recognize when a familiar object had been replaced
by a new one, showing similar performance between the two
groups (Figure S8, Supporting Information). Next, the Novel Ob-
ject Location Test (NOLT) was conducted to assess spatial long-
term memory, as healthy animals typically explore displaced ob-
jects more than those in their familiar locations (Figure 6D).[75]

Although exploratory behaviour did not differ between groups
(Figure 6E), animals administered the three-compound combi-
nation tended to spend more time exploring the newly relocated
objects compared with vehicle-treated animals (Figure 6F). Con-
sistent with this, the time spent exploring the old, familiar ob-
ject was lower in the treated animals (Figure 6F). Finally, the dis-
crimination index, calculated as the ratio of time exploring new
object/time exploring old object), tended to be higher in animals

administered the three-compound combination compared with
vehicle-treated mice (Figure 6F). Therefore, these results indi-
cate that animals treated with the combination of the three com-
pounds have slightly increased spatial memory, though the dif-
ference was not significant.

2.6. Transcriptomic Profiles of Mice Treated with 5-Azacytidine,
Tranylcypromine and JNK-IN-8 Show Brain Rejuvenation

The cortical transcriptome of mice treated with either the com-
bination of 5-azacytidine, tranylcypromine, and JNK-IN-8 or the
vehicle was analyzed through RNA sequencing, identifying 493
differentially expressed genes (adjusted p-value≤ 0.05, Figure S9,
Supporting Information). These genes were categorized into
overexpressed and repressed subsets based on their log2 fold
change, followed by NEAT enrichment analysis for each sub-
set, using as reference MSigDB gene sets.[76] In the downregu-
lated subset, 161 enriched gene sets were identified (Figure 7A;
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Figure 7. Transcriptomic rejuvenation of oldmice after treatment with 5-azacytidine, tranylcypromine, and JNK-IN-8. A,B. Top 15 enriched gene sets in the
differentially expressed genes identified in old mice after treatment with 5-azacytidine, tranylcypromine and JNK-IN-8, determined by NEAT enrichment,
and sorted according to FDR. The gene sets used as a reference were obtained from Tabula Muris Senis. In the X axis it is represented the ratio between
the number of links between either the differentially expressed genes the gene sets used as reference in our enrichment, and the expected number of
links in the absence of enrichment. A) Enrichment performed with the downregulated differentially expressed genes or B) Enrichment performed with
the upregulated differentially expressed genes. C) The differentially expressed genes of mice aged 16 to 20 months versus either mice aged 1 to 5, 6 to
10, or 11 to 15 months were determined, respectively (FDR ≤ 0.05). Then we assessed how many genes were rescued (the log2 fold changed moved
toward the younger phenotype) after a treatment with 5-azacytidine, tranylcypromine, and JNK-IN-8. The significance of the enrichment in rescued genes
was assessed by a right-tailed Fisher exact test (FDR ≤ 0.05, ***p ≤ 0.001, ns > 0.05).

Table S11, Supporting Information). Processes linked to brain ag-
ing were significantly overrepresented within this subset, as con-
firmed by a Fisher exact test (p-value= 0.03). In contrast, analysis
of the upregulated subset revealed 21 significantly enriched gene
sets (Figure 7B; Table S12, Supporting Information). While none
were directly associated with brain aging, several were related to
neural cell types.
Next, we aimed to determine whether the treatment admin-

istered to our mice could shift their brain transcriptome toward
a younger phenotype. To investigate this, we used Tabula Muris
Senis brain bulk expression dataset to identify differentially ex-
pressed genes across age groups.[77] Specifically, we compared
samples from mice aged between 16 and 20 months, which in-
clude the age range of our study subjects, with samples from
three younger age brackets, 1–5, 6–10, and 11–15 months, re-
spectively. For each comparison, we assessed the extent to which
our treatment restored the expression of age-associated genes,
where “rescue” was defined as a post-treatment log2 fold-change
that moved expression closer to that of the younger group. We
evaluated the enrichment of rescued genes for statistical signif-
icance and found a significant enrichment for genes differen-
tially expressed between the 16–20 and 1–5 month age groups
(Figure 7C). This suggests that a notable proportion of age-related

gene expression changes were shifted toward a younger pheno-
type by the treatment.
Altogether, these results show that a selection of compounds

predicted by our clock to transcriptionally rejuvenate the brain
indeed produce rejuvenation at the transcriptome level in aged
mice, which translates into an improvement of the age-derived
functional decline.

3. Discussion

In this study we presented a computational platform designed
to identify interventions that can transcriptionally rejuvenate dif-
ferent human brain cell types, which we implemented as an R
package, brainAgeShiftR. At the core of this platform is a brain-
specific transcriptional aging clock that showed high accuracy
and generalizability in predicting the chronological age of healthy
controls, based on the expression of 365 genes. Though for our
purpose, we aim for a clock that is able to detect changes in age
rather than to predict it accurately, the metrics it achieved are
comparable to other high-quality brain transcriptomic clocks. For
instance, the neural transcriptomic clock developed by Martinez-
Magaña et al. shows a Pearson correlation of 0.89 between tran-
scriptional age and chronological age and a RMSE or 5.55 when
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tested in prefrontal cortex transcriptomic profiles.[78] On the
other hand, RNAAgeCalc shows a Pearson correlation of 0.68 and
a RMSE or 9.09 the same conditions.[79] Ours shows a Pearson
correlation of 0.902 and a RMSE of 6.103 in the internal test set,
while in the external validation set the Pearson correlation was
0.93 and the RMSE 7.171.
By comparing the predicted ages of the healthy controls to

those of individuals suffering with neurological conditions, we
observed that functional impairments are reflected in the tran-
scriptional age of brain cells. Furthermore, the degree of neu-
rodegeneration, as measured by the Braak stage, was signifi-
cantly associated with increased transcriptional age. These find-
ings show that transcriptional age is negatively correlated with
brain function, supporting the view of neurodegeneration as a
form of accelerated aging.[10,12] Therefore, ourmodel captures as-
pects of functional brain fitness, opening the possibility of utiliz-
ing it to identify potential treatments for neurodegenerative dis-
eases and other conditions affecting brain function. While recent
approaches have proposed training transcriptomic clocks on both
healthy and pathological samples to reduce bias and improve cali-
bration across disease states,[80] our aim is to detect perturbation-
induced deviations from a normative aging trajectory. In this con-
text, training exclusively on healthy individuals provides a clear
reference for identifying acceleration or rejuvenation of the aging
process.
The 365 genes used by our model represent the expression

signatures of brain aging. While 91 of these genes were directly
involved in brain-related processes, a NEAT enrichment[43] re-
vealed that none of these processes were significantly enriched.
Instead, these genes showed significant enrichment in biologi-
cal processes related with mitosis, DNA repair, DNA replication,
chromatin dynamics, and RNA transcription and processing. In-
deed, genomic instability is a hallmark of both healthy and patho-
logical aging, not only in the brain but in other tissues.[59,81] De-
spite a considerable number of brain-related genes in our model,
it is likely that their diverse functional categorization makes it
difficult to achieve statistical significance in specific GO terms.
Our model was built based on human brain bulk transcrip-

tomics due its wider availability compared to human single cell
RNA-seq, which, while ideal for capturing brain’s cellular hetero-
geneity, is still an emerging approach and represents the direc-
tion the field is moving toward.[82] However, bulk RNA-seq pro-
vides an averaged representation of all brain cell types, mean-
ing that the age-related processes identified are those shared
across cell types. When we applied our bulk transcriptome-
trained model to single-cell brain pseudo-bulk data, we found
that the trend of increased predicted age in older individuals was
consistent across all cell types. This trend was statistically signifi-
cant in excitatory neurons, inhibitory neurons, and oligodendro-
cytes. In astrocytes, endothelial cells, and OPCs, while the me-
dian predicted age increased in older samples, the high variability
within the groupmade it difficult to find achieve statistical signif-
icance. Additionally, the scarcity of endothelial cells in the brain
meant they were detected in fewer samples, reducing the statis-
tical power and hampering the detection of significance. How-
ever, the relationship between chronological and transcriptional
ages was found to be significant for all the cell types. Despite the
challenges associated with scRNA-seq, such as low coverage and
dropout events,[83] our model successfully captured aging trends

in individual cell types. Though the prediction of ages was not as
accurate as with bulk data, being able to detect the aging trends
in single cell types renders our model apt for the identification of
interventions that modulate transcriptional age in cultured brain
cell types.
As mentioned earlier, our model reveals a significant posi-

tive association between neurodegeneration stage and predicted
age, linking increased transcriptional age to decreased func-
tional performance. Interestingly, these differences are pro-
nounced at earlier ages, progressively diminishing as aging
advances. This observation invites parallels with the fact that
neurodegeneration-like lesions can be found in cognitively unim-
paired older individuals.[84,85] Under this hypothesis, neurode-
generation would be a form of accelerated aging, where the af-
fected subjects reach a physiological state that healthy individu-
als typically attain at a higher chronological age. This has indeed
been observed with several epigenetic clocks.[34,35,86] According
to our model, the largest gap in transcriptional age between in-
dividuals with neurodegeneration and healthy individuals occurs
between ages 60 and 70. It is likely that these individuals experi-
enced an acceleration during their preclinical phase, transition-
ing from healthy aging to pathological aging, as it has been re-
ported in mice.[87] Shifting back to a younger transcriptomic pro-
file might help to improve the phenotype of neurodegenerative
diseases.[88]

Based on this principle, and on the ability of our model to
capture aging differences in individual cell types, with particu-
lar efficacy in neurons, we used LINCS L1000 data to identify
chemical perturbations that could rejuvenate either neural pro-
genitor cells or neurons. In fact, several of these predicted chem-
ical perturbations in both cell types have been previously shown
to extend the lifespan of animal models, although their mech-
anisms of action are vastly different. This observation is in ac-
cordance with previous studies demonstrating that brain aging
is a highly heterogeneous process.[89–91] The rejuvenating chem-
ical compounds identified by our platform were significantly en-
riched in drugs used for the treatment of neurological disorders,
supporting that by shifting brain transcriptome toward a younger
state, its function might improve. Interestingly, well-known reju-
venating compounds like rapamycin (sirolimus) and metformin
were not predicted as rejuvenating by our clock. Rapamycin,
indeed, produced a significantly higher transcriptional age in
NPCs. A recent literature screening showed that rapamycin treat-
ment did not produce significant improvements in neurological
systems.[48] Rapamycin was shown to suppress differentiation of
neural stem cells, which could explain the higher transcriptional
age in NPCs.[92,93] On the other hand, other mTOR inhibitors
such as everolimus were detected as rejuvenating. Metformin,
however, produced rejuvenation in neurons, but this shift was
not statistically significant. It is likely that our model, due to the
linearity assumption, is not capable of capturing the whole extent
of the alterations that happen along aging, focusing only on the
ones that are linearly related to the chronological age.
As a proof of concept of our approach, we tested three pre-

dicted compounds — 5-azacytidine, tranylcypromine, and JNK-
IN-8 — in aged mice. The treatment significantly reduced anxi-
ety, and improved memory in aged mice, addressing well-known
aging-associated alterations.[94,95] At the molecular level, it sig-
nificantly restored the younger phenotype. Notably, all three
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compounds are epigenetic regulators—a category to which sev-
eral compounds identified by our platform belong—highlighting
the promising role of such drugs in counteracting aging.[96] In-
terestingly, this combination of compounds has previously been
used to generate human chemically induced pluripotent stem
cells (hCiPS) through staged reprogramming.[71] In particular,
these compounds were used in stage II of this protocol, shifting
the epigenetic landscape to a more plastic state that permits ded-
ifferentiation in later stages.[71] This plasticity resembles tissue
regeneration programs found in organisms like the axolotl.[97,98]

While partial cell reprogramming is a recognized rejuvenation
strategy,[99] its therapeutic potential is limited by the risk of
tumorigenesis.[28] Although our validation demonstrates the plat-
form’s potential to identify brain-rejuvenating compounds, it was
limited to this combination of three molecules in mice. The hun-
dreds of compounds predicted by our platform require validation
across diverse multiple biological systems to assess their efficacy,
offering extensive opportunities for future research and thera-
peutic development. Another limitation is that themajority of the
data used for our in silico screening comes from LINCS L1000
chemical perturbation profiles, which include only neurons and
NPCs, the latter representing a relatively small fraction of cells in
the human brain. However, NPCs play a critical regenerative role,
and their functional decline significantly contributes to brain ag-
ing. This key position makes NPCs an important target for anti-
neurodegenerative therapies[100]

Our platform’s ability to predict epigenetic drugs with rejuve-
nating properties, including those promoting of a regeneration-
like program, highlights their potential as safer alternatives. Al-
together, these results show that by rejuvenating the brain tran-
scriptome it is possible to improve brain function and to protect
against neurodegenerative disorders. Consequently, our compu-
tational platform represents a valuable resource for identifying
interventions that may counteract age-related brain decline in
brain function. The compounds identified by our platform can
serve as a foundation for further research to validate both their
efficacy and safety.

4. Experimental Section
Description of the Human Postmortem Bulk Brain Expression Data Used:

The human postmortem bulk brain expression data used in this study were
obtained fromGTEx, AMP-AD, TBI, BrainSeq Phase 1, and BrainSeq Phase
2 projects.[38–42]

For GTEx, count data were retrieved from brain regions including amyg-
dala, anterior cingulate cortex, caudate (basal ganglia), cerebral hemi-
sphere, cortex, frontal cortex, hippocampus, hypothalamus, nucleus ac-
cumbens (basal ganglia), putamen (basal ganglia), spinal cord (cervi-
cal) and substantia nigra — excluding the cerebellum due to its distinct
transcriptomic profile. Data were downloaded from the GTEx portal on
05/13/24.

From synapse.org, RNA-seq count data were used from the RNAseq
Harmonization Study, which includes samples from the ROSMAP,[101]

MayoRNAseq[102] and Mount Sinai Brain Bank (MSBB)[103] cohorts, as
well as from the Living Brain Project (LBP). TBI data consisted in gene
counts as well. Only those samples with no reported traumatic brain in-
jury (i.e., metadata column “age_at_first_tbi” = 0) were retained. As with
GTEx, samples originating from cerebellumwere excluded all datasets due
to their transcriptomic dissimilarity from other brain regions, as observed
in PCAs.

For BrainSeq Phase 1 and BrainSeq Phase 2, only individuals labeled
as “control” were included, since the remaining samples came from in-
dividuals with schizophrenia. Although BrainSeq Phase 1 and BrainSeq
Phase 2 were distinct studies, some individuals were represented in both.
To avoid data leakage, any Phase 1 samples originating from individuals
also present in Phase 2, were removed as Phase 1 was used as an external
validation set.

For all the datasets, samples associated with psychiatric diseases or
drug abuse were excluded. Additionally, only samples with an RNA in-
tegrity number (RIN) ≥ 6 were retained for analysis.

Criteria for Defining Healthy Controls: Control definitions varied by
dataset based on the available metadata. For GTEx, samples were consid-
ered controls if negative for dementia, Parkinson’s disease, Alzheimer’s
disease, and ALS. In the Mayo cohort, control samples were those labeled
as such in the clinical diagnosis, and had a Braak stage ≤ 3 and a Thal
phase of 0. ForMSBB, samples were considered healthy if they had a Braak
stage ≤ 3 and a CERAD score indicating no Alzheimer’s pathology. In the
ROSMAP dataset, control status required both the clinical diagnosis of
cognitive status and the final consensus cognitive diagnosis to indicate
no cognitive impairment, along with a Braak stage ≤ 3 and a CERAD score
showing no Alzheimer’s disease. Samples from the Living Brain Project
(LBP) were classified as controls if annotated as such. For the TBI dataset,
samples were considered controls if they were diagnosed with “No De-
mentia” according to both the DSM-IV and NINCDS-ARDA criteria, with
a Braak stage ≤ 3, and a CERAD score showing no Alzheimer’s disease.
Finally, in BrainSeq Phase 1 and Phase 2, all retained samples were labeled
as controls.

The final dataset included samples classified either as controls—which
were used for model training and model validation — or cases presenting
with evidence of neurodegeneration.Within the neurodegeneration group,
only samples with available Braak stage were retained. After filtering, the
dataset comprised 2478 control samples from 800 unique individuals, and
1885 neurodegeneration samples from 1045 unique individuals.

Description of the Genetic and Chemical Perturbation Data Used: The
majority of the perturbation data used in this study came from the LINCS
L1000 dataset, specifically the chemical perturbation profiles.[46] To fo-
cus on brain-relevant effects, only samples derived from neural progen-
itor cells (NPCs) and neurons were retained. In addition, a curated com-
pendium of both genetic and chemical perturbation datasets conducted
in brain cell was incorporated types, which are detailed in Table S6 (Sup-
porting Information).

Description and Preprocessing of Brain AgeAnno Single Cell RNA-seq
Data: The single-cell RNA-seq data from human brain tissue used in
this study were obtained from AgeAnno database.[45] It was started from
the brain Seurat object provided by the authors of the database, ac-
cessed on 07/05/2025. Preprocessing was performed with Seurat 5.0.0 R
package.[104] Quality control was done at the sample level, retaining cells
whose mitochondrial gene content fell within three median absolute de-
viations (MADs) from the median. The same MAD threshold was applied
to filter cells based on the number of detected features and total tran-
script counts. To further refine cell quantity, a linear model was fitted to
log10(number of counts) versus log10(number of features), and excluded
cells that fell below the regression line, using an offset of −0.09. Doublets
were identified and removed using the DoubletFinder 2.0.4 R package.[105]

Samples were then integrated using Seurat’s sketch integration work-
flow (n = 5000), clusters were identified using Louvain’s algorithm with
Seurat’s FindClusters function (resolution = 0.2), and were manually an-
notated using the same marker genes used in AgeAnno. These were
CLDN5, EPAS1 and VTN for endothelial cells, GLUL, SOX9, AQP4, GJA1,
NDRG2, GFAP, ALDH1A1, ALDH1L1 and VIM for astrocytes, PTGDS,
PDGFRA, PCDH15, OLIG1 and OLIG2 for OPCs (oligodendrocytes pre-
cursor cells), PLP1, MAG, MOG, MOBP and MBP for oligodendrocytes,
SATB2, SLC17A6 and SLC17A7 for excitatory neurons and NRGN, GAD1,
GAD2 and SLC32A1 for inhibitory neurons.

For each sample, pseudo-bulk expression profiles per cell type were
computed by summing the counts of cells annotated with the same cell
identity.
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Integration and Preprocessing of the Bulk and Pseudo-Bulk Human Post-
mortem Datasets: The counts of the human postmortem brain expres-
sion data, encompassing all the bulk datasets and the pseudo-bulk scRNA-
seq dataset, were merged, and genes with zero counts in ≥80% of sam-
ples were excluded. Additionally, genes not present in the LINCS ex-
pression dataset were excluded, resulting in a final set of 13445 genes.
The filtered count matrix was then log2-transformed using the formula
log2(counts + 1).

To avoid data leakage between training and testing sets, the data split
was performed at this stage. Samples were divided into training and test-
ing sets in a 2, 1 ratio, stratified by donor to maintain sample indepen-
dence and ensuring that each 5-year interval was represented in the train-
ing set. BrainSeq Phase 1 samples were excluded from both sets and re-
served for final external validation, as well as pseudo-bulk scRNA-seq sam-
ples.

After splitting, the log2-transformed data were quantile-normalized, us-
ing the distribution derived from the training set as the reference. Batch
effects were then addressed using surrogate variable analysis (SVA). The
number of surrogate variables was estimated using the num.sv function
from the sva R package (version 3.48.0) with the “leek”, and the surro-
gate variables were compute using the SmartSVA 0.1.3 R package.[106,107]

SVA was conducted with a null model containing no covariates, and a full
model including only chronological age.

Transcriptomic Clock Training: The brain-specific transcriptomic clock
was trained in two sequential rounds. In the first round, a generalized
linear model (GLM) was fitted to the training set samples of the SVA-
corrected merged dataset. This was performed using the h2o 3.46.0.2 R
package,[108] specifying a Gaussian family with an identity link function
and applying Lasso regularization. This initial model selected 558 genes
with non-zero coefficients.

In the second round, the preprocessing pipeline described previously
was repeated, but restricted to the 558 genes identified in the first round.
A GLM was then re-trained again on this reduced dataset using the same
settings. This second fitting step further reduced the number of predictors
to 365.

This 2-step approach was achieved to reduce the size of the model by
34.59% with no decline in performance, as assessed by R2 and mean aver-
age error (MAE). This streamlined model facilitates deployment by requir-
ing only the expression of the initial 558 selected genes. A reference distri-
bution derived from these genes in the training set was used for quantile
normalization of new samples, eliminating the need for transcriptomic-
wide data.

Transcriptomic Clock Validation: Model validation was conducted
through internal 10-fold cross-validation, stratified by donor, on the train-
ing set. Additionally, performance was evaluated on the held-out test set, a
randomly sampled subset of the control samples, and on an external vali-
dation set (BrainSeq Phase 1). Model generalizability was assessed using
R2 and MAE metrics across all evaluation sets.

Functional Characterization of the Brain Aging Expression Signature: To
functionally characterize the 365 genes used as predictors in the tran-
scriptomic clock, the Network Enrichment Analysis Test (NEAT) was
applied.[43] TheHomo sapiens FunCoup 5.0 network,[109] considering only
interactions with a confidence score≥ 0.75 was used. Gene sets for enrich-
ment analysis were drawn either from Gene Ontology (GO), as provided
by org.Hs.eg.db 3.17.0 R package,[110] or from the Molecular Signatures
Database (MSigDB).[76] A gene set was considered significantly enriched
if the Benjamini-Hochberg adjusted p-value (FDR) ≤ 0.05 and the ratio of
observed to expected network-associated genes (NAB/expected NAB) ex-
ceded> 1. Here, NAB represents the number of links between clock genes
and genes associated with a given gene set. For determining the genes
that were associated to brain-related processes, was looked for GO biolog-
ical processes for each gene that contained the words with the following
lexemes, “synap-”, “brain-”, “cereb-”, “neur-”, “dendr”, “axon-”, “cort-”,
“hippo-”, “thalam-”, “medul-”, or “glia-”.

Brain Cell Type Analysis: The transcriptomic clock was applied on the
preprocessed pseudo-bulk counts of each cell type of each sample using
h2o.predict function from h2o R package. 108 Two groups of samples were
obtained, young, which were the samples aged from 18 to 30, both in-

cluded, and old from 70, included, onward. A two-sided t-test was then
conducted for each cell type to assess the statistical significance of the
differences in predicted ages between young and old samples.

To assess the alignment between gene expression changes and the co-
efficients in the clock, the difference in median expression between young
and old samples was calculated for each cell type. Quantified the propor-
tion of genes whose expression changes matched the direction of their
corresponding clock coefficients was then. Statistical significance of this
proportion was evaluated with a permutation test (n = 10000).

Integration and Preprocessing of the Perturbation Data: The perturba-
tion transcriptomic profiles listed in Table S6 (Supporting Information)
were combined with LINCS L1000 Level 3 expression data from brain cell
types to form a single dataset. Gene filtering was applied to retain only
the 558 genes identified during the first round of the transcriptomic clock
training. The resulting matrix was then quantile-normalized, using the dis-
tribution derived from the training samples in the SVA-processed dataset
used during the first round of model training as the reference, taking only
into account the 558 genes identified during the first round of training.

Perturbation Analysis: As with the individual cell data, the ages were
predicted in the preprocessed perturbation data using h2o.pedict func-
tion from the h2o R package (v3.46.0.2).[108] As such, the transcriptional
age was computed for each one of the 43840 transcriptional profiles were
collected, and assessed the statistical significance of the differences in
ages between controls and samples subjected to the same perturbation
though a two-sided t-test. Samples were considered to be subjected to the
same chemical perturbation if they shared perturbation, dose, and treat-
ment time. For genetic perturbation, they were considered to be the same
perturbation if they shared gene and perturbation mechanism. P-values
were adjusted using Benjamini-Hochberg method, across all comparison
done within the same cell type. The unique perturbagens involved in the
significant perturbations were then determined.

Drugswith demonstrated lifespan extending effects were obtained from
DrugAge.[57] In particular, only significant changes according to DrugAge
were considered regardless of the animal model. The resulting drugs were
then matched to perturbations predicted to have a significant age reduc-
tion through manual curation to avoid mismatches due to different nam-
ing conventions.

Finally, similarity of chemical perturbations with predicted rejuvenating
effect was assessed using Tanimoto similarity (TS) of the SMILES repre-
sentations contained in the LINCS L1000 metadata where the size of the
intersection is divided by the size of the smaller compound. Perturbations
with a TS greater or equal to 0.75 were considered similar. TS was com-
puted using the ChemmineR 3.56.0 R package.[111]

Analysis of the Relationship Between Transcriptional Age and Neurode-
generation: To determine the relationship between higher transcriptional
ages and functional decline, transcriptional ages were obtained as pre-
viously described for preprocessed samples that were not classified as
healthy controls and had a Braak ≥ 4. Conducted an ANCOVA was then
to assess both the effect of neurodegeneration status and its interaction
with chronological age, using the rstatix 0.7.2 R package.[112] The following
model was used,

aget = agec +ND +ND ∙ agec (1)

where aget and agec are transcriptional and chronological age, respectively,
and ND represents neurodegeneration status.

The age difference between the neurodegeneration-positive individuals
and healthy controls at age 60 was calculated by adding the product of 60
and the coefficient of the interaction term (−0.46636) to the coefficient of
neurodegeneration status (43.21325).

To evaluate the relationship between neurodegeneration stage and tran-
scriptional age, the transcriptional age was computed for all the sam-
ples not classified as controls and with available Braak index information.
Chronological age was first regressed out from transcriptional age, and a
linear model was fitted with Braak index as the explanatory variable and
chronological age-corrected transcriptional age as the response variable.
An F-test was used to determine the significance of the relationship. Simi-
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larly, this significance was assessed within each age decade by fitting sep-
arate models for the age groups 60–69, 70–79, 80–89, and 90–99.

To identify chemical perturbations previously used to treat neurolog-
ical disorders, the complete Therapeutic Target Database (TTD)[70] was
retrieved and manually selected all entries related to neurological disor-
ders. The Tanimoto similarity (TS) between all drugs in the TTD and pre-
dicted compounds was then computed using the ChemmineR 3.56.0 R
package.[111] A compound-drug relationship was established if the TS was
greater or equal to 0.85.

Animals: Experiments were performed in wild-type aged animals from
the C57BL/6J strain purchased from Charles Rivers Laboratories (France)
at 18months age. Animal experiments were conducted in accordance with
the standards approved by the Animal Care Committee at University of
Santiago de Compostela, and the experiments were performed in agree-
ment with the institutional guidelines and the European Union standards
for the care and use of experimental animals. Animals were housed and
maintained in a controlled environment at 22–24 °C and 55% humidity,
on 12 h light/dark cycles, and fed with regular rodent chow and water ad
libitum.

Drug Treatment: The three compounds — 5-azacytidine (Sigma-
Aldrich #A2385), tranylcypromine-HCl (Merck #616431) and JNK-IN-8
(Sigma-Aldrich #SML1246) — were each dissolved separately in DMSO
(Sigma-Aldrich #D8418) as the sole solvent at room temperature, achiev-
ing concentrations of 49, 50, and 20mgmL−1, respectively. After preparing
the solutions, mice were administered the compounds intraperitoneally
using a 27G syringe at the following doses, 0,5 mg kg−1 for 5-azacytidine,
1,5 mg kg−1 for tranylcypromine, and 2 mg kg−1 for JNK-IN-8. The drug
solutions were combined to achieve the required final dosage for each in-
jection. Injections were administered at a volume of 2.5 μL per gram of
body weight, twice per week for one month.

Behavioral Tests: The week before starting the behavioral tests, ani-
mals were placed in the experimental room with faint light to adapt them
to the light conditions. Animal performance in all the tests was recorded
with a camera and the Free2x Webcam recorder software.

Open Field Test (OFT): The open field test was used to evaluate spon-
taneous locomotor activity, emotional response, and exploratory behavior.
Briefly, animals were placed in the empty field (45 × 45 cm cage) during
60 min and allowed to move freely and recorded. Total distance travelled
(m) and speed (m/s), and time (s) spent in the center zone (20 × 20 cm)
and perimeter area were measured.

Object Recognition Tests: Two different object recognition tests were
used to evaluate short-termmemory, long-termmemory, and spatialmem-
ory.

The first test performed was the Novel Object Recognition Test (NORT)
for short and long-term memory evaluation. Animals were placed in the
field with two identical objects and were allowed to explore them for 10
min. After this time, mice were put back in their home cages and one of
the objects was removed to put in its place a new one with different shape.
1 h after the first trial, animals were placed again in the field and allowed
to explore the objects for 10 min. Performance in this trial was used to
analyze short-term memory. 24 h after the NORT for short-term memory
evaluation, the test was repeated for the study of long-term memory. Mice
were put again in the field with the same original object and a new object
different from the previous one and allowed to explore for 10 min.

The second test performed was the Novel Object Location Test (NOLT)
for spatial memory evaluation. After the exposure of the animals to two
identical objects in the field for 10 min, the location of one of the objects
was changed. 24 h later, animals were placed again in the field so they
could explore the objects again for 10 min.

Exploratory behavior, represented by the percentage of total time spent
by the animals exploring both objects, and preference for the new object,
represented by percentage of time spent exploring the new object and the
discrimination index, were measured in both tests.

Behavioral Tests Analysis: All the tests were analyzed using ANY-maze
software. Statistical analysis was performed using GraphPad Prism, and
data were expressed as mean ± S.E.M. Statistical differences regarding
group were assessed by unpaired t-test. Statistical significance was set at
p < 0.05, and normality and outlier test were performed for each dataset.

Cortex Bulk RNA Extraction: Following the behavioral tests, mice
received an additional two weeks of treatment with the same three-
compound regimen described previously. Afterward, mice were sacrificed,
and cortical tissue was collected for RNA extraction. Between 20 and 30mg
of cortex were immediately frozen upon dissection. Tissue was homoge-
nized in 500 μl of TRIzol (Invitrogen) using a TissueLyser II (Quiagen).
Next steps of the RNA extraction were performed following the TRIzol
manufacturer´s instructions. RNA pellets were resuspended in 50 μl of
RNase-free water and further purified using the GeneJet RNA Cleanup and
Concentration Micro kit (Thermo Scientific, K0841). RNA concentration
was determined using the Qubit RNA HS Assay Kit (Thermo Fisher Sci-
entific). RNA quality was assessed with Agilent RNA 6000 Nano and Pico
Chips (Agilent Technologies), and RNA integrity numbers (RINs) were ob-
tained using the Agilent 2100 Bioanalyzer.

Cortex Bulk RNA-seq Library Preparation, Sequencing and Alignment:
TruSeq Stranded Total RNA libraries were prepared with the Ribo-Zero
Globin kit and TruSeq RNACD Index Plate (both from Illumina Inc.) follow-
ing the manufacturer’s instructions (Part #15031048 Rev. E). In particular,
starting with 500 ng of total RNA, rRNA and globin mRNA were depleted,
and the remaining RNA was purified, fragmented, and primed for cDNA
synthesis. First-strand cDNA synthesis was performed using SuperScript-
II Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA) under
the following conditions, 10 min at 25 °C, 15 min at 42 °C, 15 min at 70 °C,
and pause at 4 °C. Second-strand synthesis was carried out with Illumina
reagents at 16 °C for 1 h, followed by A-tailing and adaptor ligation. Finally,
RNA was amplified by PCR (30 s at 98 °C, 15 cycles of 10 s at 98 °C, 30 s at
60 °C, 30 s at 72 °C, 5min at 72 °C, and pause at 4 °C). The libraries were se-
quenced in a NovaSeq-6000 (Illumina Inc.), generating a minimum of 100
million paired-end 150 nt reads. Reads were subsequently aligned to the
GRCm39 genome using STAR v2.7.1[113] with GENCODEM36 annotation.
Gene-level expression quantification was conducted using featurecounts
from the Subread package (v2.0.8).[114]

Tabula Muris Senis data: The brain bulk data was obtained using Tab-
ulaMurisSenisData R package (v3.20).

Differential Expression Analysis: To perform differential expression
analysis, only genes were retained that had at least 5 raw counts in at
least two samples. Differential expression testing was performed using
the DESeq function from the DESeq2 R package (v1.36.0).[115] In partic-
ular, a Wald-test was performed, and dispersion was estimated using the
glmGamPoi R package (v1.8.0).[116] All analyses have been performed us-
ing R 4.2.1. Genes with an adjusted p-value less than 0.05 were considered
to be significant.

Statistical Analysis: All statistical analyses were performed using R
(v4.3.1), unless otherwise specified. The specific packages were detailed
through the Experimental section. Information on statistical tests and
sample sizes can be found in the relevant subsections.

Ethics Approval and Patient Consent Statement: The animal experi-
ments conducted in this study were approved by the Animal Care Com-
mittee of the University of Santiago de Compostela, in accordance with
the institutional guidelines and the European Union standards for the care
and use of experimental animals. The publicly available human data used
in this study was fully anonymized, and did not require any additional eth-
ical approval or informed consent for its use. All data were obtained and
analyzed in compliance with the respective data repository’s guidelines
and ethical regulations. Access to the protected information in GTEx was
approved by the relevant review board (application number: #39922).
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