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Abstract

Satellite Edge Computing (SEC) extends the Mobile Edge Computing (MEC) paradigm

by deploying cloud computing resource pools on in-orbit satellite nodes within a constella-

tion. By enabling computational offloading to space, SEC empowers the on-board execution

and seamless completion of service. At the same time, its in-orbit storage capacity facili-

tates proactive content caching and efficient content delivery to end users. The distributed

and localized processing and storage capabilities of satellites in the SEC paradigm, unlike

the traditional bent-pipe satellite architecture, ensure high service availability and coverage,

particularly for users in remote, underserved, and disaster-stricken areas where terrestrial

networks are unavailable. The ubiquitous service coverage, low latency, and high bandwidth

enhance scalability and meet the stringent requirements of next-generation applications such

as mission-critical services, real-time analytics, and high-quality multimedia delivery, making

the SEC paradigm a promising solution for service provisioning in future networks. In this

context, service provisioning refers to allocating and managing resources to deliver services

to end users based on application-specific requirements.

Although SEC-enabled platforms provide tremendous advantages, service provisioning in

these networks faces several significant challenges. Firstly, on-board satellite resources are

limited, so they cannot process or store all the tasks and data that users request. This ne-

cessitates advanced optimization algorithms to manage and allocate these scarce resources

efficiently. Furthermore, the requirements of emerging next-generation applications and ser-

vices are stringent (e.g., low latency, high reliability, and high bandwidth) and often complex

to achieve, particularly in the satellite environment where resource constraints and long

propagation delays are prevalent. The dynamic nature of service requests, with their het-

erogeneous and sometimes intricate requirements, adds another layer of difficulty in meeting

these demands. Additionally, the mobility of satellites results in dynamic coverage areas,

time-varying topologies, and fluctuations in link characteristics. These factors hinder seam-

v



less service provisioning and complicate the design of effective service provisioning strategies.

An advanced service provisioning scheme is required to alleviate these challenges and fully

leverage the benefits of the SEC. This scheme must comprehensively accommodate heteroge-

neous requirements, dynamic traffic requests, and evolving topologies while meeting stringent

service requirements. Such a scheme is crucial in next-generation networks like 5G/6G, where

Non-Terrestrial Networks (NTN) are considered a key enabling technology. NTNs improve

network resilience by integrating terrestrial and satellite networks, providing ubiquitous con-

nectivity, and improving overall network performance.

Motivated by these challenges, in this thesis, we explore service provisioning schemes for

next-generation applications by leveraging the in-orbit computational and storage power of

SEC. In the first contribution, we proposed a Virtual Network Function (VNF) mapping and

scheduling scheme for mission-critical applications, which enables Network Functions (NFs)

execution on-board in the constellation to maximize fairness in terms of End-to-End (E2E)

service delay margin and reduce the E2E service delay among competing services. In the

second contribution, we propose an efficient storage resource utilization method for on-board

content caching by designing a novel satellite proximity-based content popularity scheme.

Furthermore, we proposed an optimization framework for cache reconfiguration overhead-

aware on-board content caching. We also study on-board cache-to-cache updates to reduce

reconfiguration overhead, followed by an Age of Information (AoI)-aware content caching

scheme to ensure cached content freshness. Additionally, in the third contribution, we focus

on service provider revenue generation through ad monetization while enhancing efficient

content distribution schemes. We study the impact of excessive ad insertion, which leads to

user disengagement and indirectly reduces the content provider’s revenue. We model and

propose a joint optimization algorithm that balances revenue and end-user delivery delay

while considering the constraints. We also propose seamless content delivery by allowing

distributed Server-Side Ad Insertion (SSAI) and service continuity-aware content distribution

strategies to mitigate user disengagement and network fluctuations.
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Chapter 1

Introduction

Cloud Computing (CC) revolutionizes the way we store, manage, and access data, enabling

unprecedented scalability, flexibility, and cost-effective solutions. CC resources include phys-

ical or virtual servers for computing, storing, and networking capabilities [1]. This approach

allows businesses and individuals to access powerful computing and storage capacities hosted

at distant data centers managed by Cloud Service Providers (CSPs) [2], such as Amazon

Web Services (AWS) [3], Google Cloud Platform (GCP) [4], IBM Cloud [5], and Microsoft

Azure [6], without the need for excessive local IT infrastructure to effectively facilitate ser-

vice provisioning through efficient allocation, configuration and management of the cloud

resource pools. Satellite networks are widely regarded as a viable solution for addressing con-

nectivity challenges in regions where the deployment of terrestrial networks is not feasible.

Satellite-backhauled Cloud Computing (SCC) empowers remote, underserved, or disaster-

stricken areas to access CC resources over satellite networks [7, 8]. The services are central-

ized in traditional SCC architecture, where all service requests need to reach the centralized

cloud server for processing, storage, and access. Traditional satellite networks often use a

bent-pipe architecture, where the satellite receives raw data and sends it back to the ground

without processing it. While this centralized architecture approach may be beneficial for

latency-tolerant services under low-scale traffic demands, it may not give real-time solutions

to high-scale traffic demand conditions and latency-sensitive applications, such as mission-

critical operations, Virtual Reality (VR), and Augmented Reality (AR), which require low

latency and high reliability. This is because the link between the satellite and the cloud

computing service provider is long, which results in a high propagation delay. Furthermore,

service requests from remote users must be transmitted through limited-capacity feeder links

1
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to reach cloud servers, which can result in link congestion and service disruptions, especially

under high traffic demand, thereby limiting the overall scalability of the system.

Motivated by the challenges of traditional SCC, a groundbreaking paradigm called Satel-

lite Edge Computing (SEC) has emerged [9–11]. Inspired by the Mobile Edge Computing

(MEC) framework [12], SEC revolutionizes the landscape by relocating computational and

storage power and networking capabilities to space, creating in-orbit edge computing within

satellite constellations [10, 11, 13–15]. This innovative approach addresses key challenges in

traditional SCC by providing space-based computing and storage capabilities within the con-

stellation that reduce reliance on remotely placed cloud servers, enhance scalability, minimize

latency and bandwidth usage, and alleviate central server load. This framework offers ubiqui-

tous service coverage, independent of terrestrial infrastructure, enabling reliable, low-latency

service delivery anytime and anywhere. Compared to traditional centralized cloud models,

this distributed architecture offers significantly improved service availability, resilience, and

efficiency, making it a more suitable solution to meet the stringent requirements of next-

generation applications.

The following section provides an overview of an SCC and an SEC. In addition, the

motivation, methodology, scope, and contribution of the thesis are discussed.

1.1 SCC

SCC enables satellite operators to leverage CC resources such as computing, storage, and

networking capabilities provided by cloud service vendors, eliminating the need to build and

maintain costly private data center infrastructures. This paradigm allows users in rural,

remote, and underserved areas and disaster-stricken regions to access cloud services via satel-

lite constellations when there is no or limited ground-based infrastructure availability. This

is especially crucial for disaster recovery, remote healthcare, and Internet of Things (IoTs)

data transmission applications [16]. Furthermore, this paradigm enhances the performance,

manageability, flexibility, and scalability of Satellite Communication (SatCom) operators. It

improves operational efficiency, reduces Capital Expenditures (CAPEX), creates new business

opportunities, and provides unprecedented agility for ground station operations [7, 8].

As shown in Figure 1.1, in SCC, when a remote user requests a cloud service, the request

is transmitted via the user terminal to a satellite through the user uplink. The satellite then



Introduction 3

relays the request via a feeder downlink to the ground station gateway. From there, the

gateway forwards the request to remotely located cloud servers for processing, retrieval, or

content access, depending on the request type. Cloud access follows one of the three com-

monly used cloud computing service models: Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), or Software as a Service (SaaS) [17–19]. The IaaS model provides on-demand

access to fundamental infrastructure resources, such as computing power, storage, and net-

working, over the Internet. This eliminates the need for users to invest in or maintain local

data center infrastructure. Instead, users can provision and manage resources like Virtual

Machines (VMs), containers, and virtualized network components directly from the cloud,

enabling scalable and flexible infrastructure management [17]. The PaaS model offers a cloud-

based platform with tools, middleware, and databases, allowing users to develop and manage

applications without handling underlying infrastructure or local resource maintenance [19].

In the SaaS cloud service model, users are provided with a complete application stack that

can be accessed and used over the internet without the need to install, manage, or deploy

the application on local machines [18]. Once processed, the response is sent from the cloud

computing servers through the terrestrial infrastructure to the ground station gateway. The

gateway then transmits the response to the satellite via the feeder uplink, and finally, the

satellite beams it down to the user terminal. The network management and orchestration

are performed in the Central Network Hub (CNH). Multiple gateways connect to this hub to

receive services. The CNH determines how to execute, store, and deliver these services based

on an optimization strategy for each gateway.
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Figure 1.1: Traditional satellite network architecture for cloud computing service

In traditional satellite networks for cloud computing, service requests must be transmit-
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ted to centralized cloud servers for processing, as satellites operate under a bent-pipe model,

merely relaying data without on-board processing or storage. Furthermore, current regenera-

tive satellites [20] mainly handle signal processing and lack full MEC capabilities for efficient

service execution. As a result, both bent-pipe and regenerative architectures depend heavily

on ground cloud infrastructure. This architecture introduces high service delays due to long

transmission distances and leads to excessive bandwidth consumption, particularly on the

feeder links. On the other hand, as data volumes and user demands grow, this centralized

approach struggles to meet the stringent requirements of next-generation applications, caus-

ing inefficiencies and bottlenecks. To address these challenges, a new paradigm, SEC, has

emerged, inspired by terrestrial MEC [9,13,21,22].

1.2 SEC

Advancements in satellite processing capabilities have progressed rapidly, with major sup-

pliers such as Airbus and Honeywell now offering on-board processors [23, 24]. These high-

performance processors enable satellites to perform complex data processing tasks directly

on-board, significantly enhancing operational efficiency and reducing dependency on ground

stations. Similarly, satellite storage capabilities have advanced substantially, with modern

satellites now managing terabytes of data storage [25]. This increased storage capacity enables

satellites to handle and analyze large volumes of data locally, reducing reliance on continuous

communication with ground stations. It also supports real-time decision-making, critical for

latency-sensitive and mission-critical applications. These technological advancements in pro-

cessing and storage capabilities collectively empower more autonomous and efficient satellite

operations, laying a strong foundation for the effective implementation of SEC.

Conventional centralized cloud computing may not be efficient for latency-sensitive ser-

vices (e.g., real-time gaming or video conferencing), and it can also become a bottleneck in

meeting stringent requirements as data and service demands grow. SEC architecture is a

new paradigm designed to overcome the limitations of traditional satellite networks in cloud

computing services by placing cloud computing resources in a satellite constellation [13]. In

the SEC, computational and storage resources are deployed in space, enabling satellite nodes

to perform cloud computing tasks in orbit instead of relying solely on terrestrial data centers.

Furthermore, this architecture facilitates task execution through collaboration among satel-
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lites via Inter-Satellite Links (ISLs) and Inter-Orbit Links (IOLs) (i.e., Free Space Optical

Links (FSO) or Radio Frequency (RF) wireless links), enhancing performance by efficiently

solving complex tasks in a distributed manner [11]. The adoption of SEC provides two key

advantages: (1) computation offloading , enabling users to access extensive computational

resources in space, and (2) content caching/storage , allowing satellites to cache content

and store data files, thereby reducing redundant transmissions from remote cloud data cen-

ters [9, 13,21,22].
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Figure 1.2: SEC network architecture for cloud computing service

Figure 1.2 illustrates an end-to-end SEC-enabled satellite network architecture for cloud

computing service provisioning. The architecture comprises three main components: the

ground, space, and user segments. The detailed functional components of the SEC-enabled

satellite network are discussed as follows:

1. Ground Segment: The Ground Segment manages, controls, and orchestrates the

cloud service provisioning process. It includes several cloud servers with vast cloud re-

sources, encompassing computing, storage, and networking. The computing resources

are used for processing data requests, the storage resources are responsible for stor-

ing content items, and the networking resources provide connectivity, such as routing.

Furthermore, the ground segment includes the CNH. The CNH manages, controls, and

orchestrates resources to provide seamless cloud service. It also integrates cloud servers

and satellite resources to ensure seamless content delivery and efficient service provision-

ing. The CNH in a network can be centralized or distributed, depending on the system

design. This configuration is selected to enhance system performance by improving the
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responsiveness and scalability of the CNH. In addition, the ground station gateways act

as communication bridges between ground-based systems and satellites, receiving and

transmitting service requests via feeder downlinks and uplinks, respectively, to ensure

smooth communication between segments.

2. Space Segment: The space segment includes MEC servers within satellite nodes,

providing computing, storage, and networking resource pools that enable distributed

computing, storage, and networking capabilities, allowing efficient content caching, pro-

cessing, and dynamic decision-making. The Space Segment of the network architecture

includes satellites classified into three categories based on their orbital positions: Geo-

stationary Earth Orbit (GEO), Medium Earth Orbit (MEO), and Low Earth Orbit

(LEO). Each type of satellite serves a distinct role within the overall system, with

its specific characteristics influencing data transmission, content caching, and resource

management [26]. GEO satellites are positioned approximately 35,786 km above the

Earth and remain stationary relative to the Earth’s surface, providing broad coverage

and continuous connectivity for large areas. While they have higher latency, GEO

satellites are ideal for global content distribution and backhaul communication. MEO

satellites orbit approximately 20,200 km, serving as intermediaries between GEO and

LEO satellites. They balance coverage and latency, making them particularly useful

for data aggregation, content prefetching, and load balancing across different network

segments. LEO satellites are positioned at altitudes between 300 km and 2,000 km,

offering low latency due to their proximity to Earth. This makes them well-suited for

real-time applications such as live streaming, dynamic ad insertion, and mission-critical

services. Equipped with MEC servers, LEO satellites enable edge computing capabil-

ities, local data processing, and efficient content caching, which reduces dependency

on ground-based servers. Therefore, a multi-layer satellite network that includes SEC-

enabled LEO, MEO, and GEO satellites offers comprehensive service provisioning that

can meet the diverse requirements of various applications. This architecture ensures

high reliability, resilience, and the ability to satisfy stringent user demands.

3. User Segment: The User Segment includes the user terminals, local networks, and

User Equipment (UE). The user terminal serves as the data reception and transmission

gateway, connecting UEs (e.g., smartphones, laptops, and IoTs) to the satellite network
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via the user downlink and uplink. This segment is where cloud service requests are

generated. Users submit service requests to the satellite through their local network

user terminal, and the request is processed based on the service type and the policies

obtained from the CNH. Actions are then taken to fulfill the service request according

to user requirements. For example, services may be processed locally on the satellite or

cloud servers, depending on user requirements and resource availability in each network

segment.

Advantages of SEC

SEC offers several advantages over traditional SCC by processing data closer to end users

rather than relying solely on centralized cloud servers. The key benefits include:

• Reduced Latency: The computational and storage capabilities in space enable users

in remote areas to access and complete service requests with minimal delay, rather than

relying on centralized cloud servers. This approach ensures ubiquitous service coverage

and significantly reduces latency, making it well-suited for time-sensitive applications.

These include mission-critical services, disaster recovery, real-time services, live video

streaming, IoT, and sensor networks, where immediate data processing is essential.

• Reduced Bandwidth Consumption: Service provisioning on-board satellites in an

SEC-enabled satellite network reduces the data traffic transmitted to centralized cloud

servers, minimizing bandwidth consumption, particularly on feeder links. This approach

alleviates feeder link load, reduces traffic congestion, and lowers communication costs

by processing and completing services on-board.

• Improved Security and Privacy: Completing service requests closer to the user

terminal in an SEC-enabled network reduces the need to traverse multiple network

hops compared to traditional SCC. This minimizes the risk of cyber threats and data

breaches, enhancing data security and privacy. Additionally, it improves data confiden-

tiality and ensures better compliance with data privacy regulations such as the General

Data Protection Regulation (GDPR) [27].

• Improved Scalability Distributed decision-making and the ubiquitous availability of

cloud resources near end users enhance service accessibility, supporting a larger number

of users and accommodating large-scale data volumes.



8 Chapter 1

Key Enabling Technologies of SEC

SEC leverages various key enabling technologies to achieve these advantages, ensuring high

performance, scalable, and efficient services for remote users. These technologies enable

efficient computational offloading and content caching/storage, including:

• Network Virtualization: Network Virtualization (NV) is a crucial technology that

enhances the flexibility and scalability of SEC by abstracting and decoupling network

functions from hardware. It creates multiple virtual network environments while sharing

the same physical infrastructure [28]. This enables dynamic management and configu-

ration of network resources based on user demand, allowing service provisioning tailored

to their requirements. NV leverages two key emerging technologies: Software Defined

Networking (SDN) [29] and Network Function Virtualization (NFV) [30], which enable

multiple virtual networks to operate over a shared physical infrastructure. This allows

for network segmentation, isolation, and resource allocation tailored to different services

and users based on predefined configurations, plans, or designs.

■ SDN : SDN is an emerging network architecture advanced by the Open Network-

ing Foundation (ONF) where network control is decoupled from forwarding and

is directly programmable [29,31]. SDN decouples the control plane from the data

plane, allowing for flexible and efficient network management and operation via

software programs. This agility enhances innovation, ensuring that service re-

quests meet their requirements. An SDN controller has a global view of network

elements and can improve network performance through programmability. It dy-

namically optimizes network operations based on real-time status, enhancing data

traffic scheduling, end-to-end congestion control, load balanced packet routing, and

Quality of Service (QoS) support. Additionally, SDN reduces costs by simplifying

forwarding devices and streamlining network operations.

■ NFV : NFV is an emerging technology that decouples network functions from

dedicated hardware, enhancing flexibility and scalability while meeting user re-

quirements [30, 31]. NFV enables network functions to run on general purpose

Commercial Off-The-Shelf (COTS) computing hardware, storage, and networking

infrastructure. Compared to traditional proprietary network function devices, this

significantly reduces CAPEX and Operational Expenditure (OPEX). With NFV, a
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service can be decomposed into Virtual Network Functions (VNFs) that operate as

software instances running on industry standard physical servers. This allows con-

solidating multiple network equipment types onto high-volume servers, switches,

and storage in data centers, distributed network nodes, or end user premises. NFV

employs virtual resources, abstracting computing, storage, and network resources

through a hypervisor, effectively decoupling virtual resources from their underly-

ing physical infrastructure. Virtual networks in NFV consist of: 1). Virtual Nodes

Software components with either hosting or routing functionality (e.g., an OS run-

ning in a virtual machine). 2). Virtual Links Logical interconnections between

virtual nodes, appearing as direct physical links. A service in NFV comprises one

or more NFs, which must be executed sequentially to complete a service request.

The ordered sequence of VNF components that make up a service is called Ser-

vice Function Chaining (SFC). SFC ensures that network services are dynamically

orchestrated to meet user demands efficiently.

• Server Virtualization: Server Virtualization (SV) is an emerging technology that ab-

stracts physical server resources, such as Central Processing Unit (CPU), memory, and

storage, into multiple virtual nodes, each with its own virtualized resources (e.g., virtual

CPU, memory, and storage) [32]. These virtual nodes operate independently, accommo-

dating diverse service requests while enhancing flexibility and scalability to meet user

demands. This technology efficiently utilizes Satellite-backhauled server nodes, maxi-

mizing resource allocation and flexibility. Hypervisors, such as VMware [33], KVM [34],

and Xen [35], facilitate SV by managing multiple VMs on a single physical server. There

are two primary types of SV technologies: 1). VMs provide complete isolation by virtu-

alizing hardware resources. Each VM runs its complete operating system (including its

kernel) on top of a hypervisor [36]. 2). Containers are lightweight and provide isolation

at the OS level [37]. They share the host OS kernel and run as isolated processes in user

space. Popular containerization technologies include Docker [38] and Linux Containers

(LXC) [39], which allow multiple containers to run on a single physical server node.

The choice between VMs and containers depends on the level of virtualization required.

VMs offer more substantial isolation and are suitable for applications needing separate

OS environments, while containers provide greater efficiency and speed due to their

lightweight nature.
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• Content Delivery Network (CDN): A CDN is an emerging technology that utilizes

a distributed network of servers to deliver content faster and more efficiently to end

users [40]. In a CDN, content is cached in distributed nodes closer to users, reducing

delivery delay by offloading requests from the original servers, primarily cloud servers.

This approach enhances system performance by reducing latency, as content is served

from nearby nodes instead of distant cloud servers. It also improves reliability by

ensuring content availability through redundant caching across multiple nodes, even in

the case of failures. Additionally, scalability is enhanced as distributing content across

multiple nodes allows the system to handle increased user demand more efficiently. CDN

is crucial in SEC-enabled satellite networks, enabling content caching and distribution

for remote users [41]. It supports various services by optimizing content delivery based

on service requests and user requirements.

1.3 Motivation

With the rapid proliferation of internet-connected devices and continuous advancements in

data quality, the demand for data-intensive applications is growing at an unprecedented rate.

According to the Ericsson Mobility Report (2024), global mobile data traffic is expected to

grow more than 2.85 times by 2030 compared to 2024 [42]. Furthermore, this significant

growth is driven by the increasing adoption of 5G technology and the proliferation of high-

bandwidth applications such as ultra-high-definition video streaming (4K, 8K, and 16K),

as well as extended reality (XR) services, including augmented reality (AR), virtual reality

(VR), and mixed reality (MR). This surge in data consumption presents significant challenges

for traditional cloud-based service provisioning, particularly in ensuring low latency, high

reliability, and efficient bandwidth utilization. On the other hand, according to a report by

Nutanix, nearly 75% of companies have migrated their mission-critical applications to the

cloud [43]. The need for greater flexibility, adaptability, and resilience in business operations

drives this shift. These applications impose stringent requirements, as their failure can result

in significant losses, including financial damage, operational disruptions, and even threats

to human life, such as in disaster recovery, military operations, and economic analysis. A

comprehensive service provisioning scheme is required to meet the stringent requirements of

modern applications, particularly in terms of bandwidth and delay. However, according to
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the ITU Report (2023), approximately 33% of the global population lacks internet access,

primarily due to the absence of terrestrial network coverage [44], which extends to only 20%

of the globe [45]. Moreover, the terrestrial network is vulnerable to natural disasters like

floods, earthquakes, and tsunamis. This digital divide underscores the need for alternative

network infrastructures, such as satellite-based solutions, to ensure seamless connectivity and

service accessibility in underserved regions, leveraging their global coverage [46].

The traditional bent-pipe satellite network architecture [9] is inadequate for meeting the

stringent requirements of diverse and heterogeneous applications that demand high quality

and low latency. In contrast, the SEC-enabled satellite network is better suited for such ap-

plications due to its ubiquitous coverage, high availability, low latency, and high bandwidth,

effectively addressing the growing demand for service provisioning. SEC-enabled satellite

networks are crucial in addressing growing demands and complementing terrestrial infras-

tructure. However, conventional networks and standalone SEC-enabled satellite deployments

are insufficient to meet the increasing user demand due to several key factors:

• Limited Computing and Storage On-Board Resources: As mentioned, SEC-

enabled networks facilitate computational offloading and content caching/storage [15,

47] to enhance service provisioning by offering further service innovation and business

agility. However, satellite nodes have significant computational limitations [11], mak-

ing them unsuitable for processing highly compute-intensive services. In SDN/NFV-

enabled networks, services are represented as sequentially ordered VNF components in

an SFC request. The service is completed when all its VNF components are executed

in the specified order [48]. Due to limited onboard computational capacity, a single

satellite node is often unable to execute all the VNF components of an SFC request,

especially when dealing with computation-intensive services or a high number of concur-

rent requests. To address this limitation, the VNF components within an SFC request

need to be executed separately across multiple satellite nodes within the constellation,

depending on their computational requirements [49–51]. Similarly, the limited storage

capacity of satellite nodes [14,51] makes storing all requested content on a single node

infeasible. As a result, content items must be stored across multiple satellite nodes.

While this distributed approach to both VNF execution and content storage enables

the fulfillment of complex service requests, it introduces additional complexity and risks

violating the required service performance guarantees.
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• Dynamic Channel Conditions and Limited Link Capacity: The channel condi-

tions between satellites and ground users, as well as between satellites themselves, vary

dynamically due to weather conditions and mobility. Not only do channel characteristics

such as bandwidth capacity and propagation delay fluctuate due to satellite mobility

and environmental factors, but link availability is also affected [49,50,52]. Consequently,

satellite communication links exhibit high variability in bandwidth capacity and prop-

agation delay due to the movement of Non-Geostationary Orbit (NGSO) satellites,

atmospheric interference, and line-of-sight obstructions. This results in unpredictable

QoS, particularly for real-time applications, and adversely affects computational of-

floading, routing, and content distribution. Additionally, the links in the network have

limited bandwidth capacity, which may lead to congestion during high-demand scenar-

ios, thereby degrading system performance.

• Highly Dynamic Network Topology: Satellites in NGSO constellations, such as

LEO and MEO satellites, move around the Earth at very high speeds. For instance,

LEO satellites span approximately 7.8 km per second relative to Earth, completing an

orbit in about 90 minutes. As a result, the International Space Station (ISS), which

also operates in LEO, orbits the Earth roughly 16 times per day [53]. In an NGSO

constellation, the network topology constantly changes as satellites move in orbit. The

dynamic nature of satellite networks presents significant challenges in service provision-

ing, including computational offloading, content caching, and distribution. Satellite

mobility can lead to improper placement of VNFs, content, and routing paths, causing

service disruptions and violations of service requirements, resulting in overall system

performance degradation.

• Dynamic and Diverse Service Request Requirements: Different applications

have varying demand requirements [54], such as E2E service delay and bandwidth.

Meeting these diverse requirements necessitates adaptive and dynamic service provi-

sioning, which can allocate resources efficiently in real-time based on user needs and

network conditions. Furthermore, the dynamic spatial and temporal variations in ser-

vice requests pose a significant challenge in efficiently responding to user demands while

meeting user requirements [54,55]. For example, users in densely populated urban areas

generate more frequent and concentrated service requests compared to those in remote
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or rural regions. Additionally, service requests and requirements vary widely, rang-

ing from time-sensitive, mission-critical, and IoT applications to data-intensive services

such as 4K/8K videos, VR, and AR. Meeting these heterogeneous and often complex

requirements is particularly challenging, especially in large-scale systems. The dynamic

and diverse nature of these requests makes designing an optimal service provisioning

scheme increasingly complex.

• Scalability and Service Orchestration: The massive and complex multi-orbit con-

stellations present another challenge for service provisioning and resource orchestration.

For instance, according to Orbiting Now, as of March 5th, 2025, there are 11,833 active

satellites across various Earth orbits [56, 57]. The Starlink satellite megaconstellation

currently consists of 7,086 satellites, 7,052 of which are operational. SpaceX ultimately

aims to deploy up to 42,000 satellites in this megaconstellation [58, 59]. Managing re-

sources in this vast, heterogeneous, and dynamic satellite network remains a significant

challenge, particularly in meeting user requirements. As the satellite network scales

with an increasing number of nodes and user terminals, effective resource orchestra-

tion becomes more complex. This underscores the need for intelligent orchestration

frameworks that span multiple satellite layers (LEO, MEO, GEO) to ensure consistent

service quality and performance.

The SEC-enabled network can operate more efficiently by addressing specific challenges.

However, additional issues must be tackled during service provisioning to further enhance its

performance. The key challenges include:

• Strategic Storage and Computing Placement: Along with the inherent resource

constraints of on-board computing and storage, strategic resource placement is crucial

for efficient service provisioning in SEC-enabled satellite networks. For instance, in SFC

requests, system performance depends on where the VNF components of each service

are executed [60, 61]. Similarly, for content retrieval or distribution requests, such as

multimedia applications, performance is influenced by the CDN node from which the

content is fetched [62, 63]. Therefore, strategic resource placement is vital in meeting

user requirements and must be carefully considered during service provisioning in SEC-

enabled satellite networks.

• On-board Resource Optimization: Beyond the challenges of on-board resource
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placement, efficiently managing available communication, computational, and storage

resources is essential for improving overall system performance. For instance, executing

all VNF components of an SFC request within a single satellite node is often infeasible

due to computational limitations for processing and communication constraints for

forwarding while meeting user requirements [60,61]. Similarly, storing all content items

on a single satellite node is impractical due to storage limitations and communication

constraints that affect content distribution [62, 63]. Therefore, an optimal on-board

resource optimization strategy is crucial to effectively meet end-user requirements.

1.4 Research Questions

Following a detailed understanding of the limitations of traditional SCC systems and the chal-

lenges in service provisioning within SEC-enabled satellite networks, this thesis investigates

the following research questions to develop novel methods for optimizing service provisioning

in next-generation networks.

Research Question 1 (RQ1)

How can the VNF components of a mission-critical application service request be ef-

ficiently deployed on resource-constrained satellite nodes within a time-varying SEC-

enabled satellite network topology, while accounting for dynamic service request patterns

across time and space to meet their diverse and stringent performance requirements?

In this work, we focus on optimizing VNF mapping and scheduling to meet the stringent

requirements of mission-critical applications while considering the computational constraints

of on-board resources and bandwidth capacity. This is achieved by enhancing fairness in E2E

service delay margins among competing service requests. Additionally, we examine the impact

of service continuity and the challenges posed by time-varying network topologies. Finally,

we analyze the temporal variability of link quality regarding propagation delay, bandwidth

capacity, and availability to assess their impact on overall system performance.
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Research Question 2 (RQ2)

How can on-board resources be efficiently utilized for content caching to improve sys-

tem performance while minimizing cache reconfiguration overhead in a dynamic-topology,

resource-constrained, SEC-enabled multi-layer satellite network, while ensuring content

freshness and accommodating spatiotemporal service requests with heterogeneous require-

ments?

This work presents on-board content cache placement strategy focusing on the trade-off

between system performance and content cache reconfiguration overhead, specifically cache

update delay and feeder link load. Furthermore, we study and model the impact of content

freshness and relevance on system performance. Additionally, we model content caching

strategy for efficient on-board resource utilization to enhance performance in multi-layer

SEC-enabled satellite networks while accounting for on-board resource limitations, dynamic

topology, and the massive, heterogeneous, and dynamic traffic demands of non-uniformly

distributed users.

Research Question 3 (RQ3)

How can a joint ad insertion, content caching, and distribution method be developed

to maximize content provider revenue in time-varying and resource-constrained MEC-

enabled Satellite-Terrestrial Integrated Networks (STINs), while accommodating dynamic

service requests with heterogeneous requirements, reducing service disruption, and ensur-

ing end-user satisfaction?

In this work, we study an efficient joint ad insertion, content caching, and distribu-

tion scheme while incorporating a service continuity mechanism in SEC-enabled multi-layer

STINs. This work addresses the challenge of content delivery disruptions caused by service

continuity constraints, dynamic satellite mobility, and link availability. Furthermore, we in-

vestigate the trade-off between content provider revenue generation through ad monetization

and the potential costs associated with user disengagement, while accounting for dynamically

distributed content requests and heterogeneous service requirements.

1.5 Scope of the Thesis and Research Methodology

This section presents the methodology for designing optimized service provisioning in SEC-

enabled satellite networks. Figure 1.3 illustrates the research methodology adopted in this



16 Chapter 1

thesis. First, a comprehensive review of the state-of-the-art (SOTA) in conventional and

SEC-enabled satellite networks was conducted to identify potential research gaps. Based on

these gaps, an SEC-enabled satellite network system model was designed and formulated for

the research gap problem. In the problem formulation stage, the objective function(s) were

strategically selected among the potential key performance metrics, accompanied by all rel-

evant constraints, to represent the corresponding research gaps as an optimization problem.

Next, appropriate solution methods were proposed based on the class of the formulated prob-

lem. The proposed solution was then compared to benchmark approaches and the optimal

solution to evaluate the optimality gap. Finally, the conclusions were outlined.

In the system model, the time-varying topology of the SEC-enabled network is considered,

while user distribution is assumed to be randomly distributed geographically. Furthermore,

service requests are modeled using a Poisson distribution. Before formulating the optimization

problem, the objective function is identified based on the objective of the research idea,

which may be either a single-objective or multi-objective function. The problem is then

formulated by incorporating the objective function and relevant constraints. The formulated

optimization problem can be classified as either convex or non-convex, depending on the

nature of its objective function and constraints.

• Convex Optimization Problem: An optimization problem is convex if its objective

function is convex, and the feasible region defined by the constraints is also convex. A

function f(x) is convex if:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), ∀x1, x2 ∈ Rn, λ ∈ [0, 1]

Convex problems guarantee global optimality, as any local minimum is also a global

minimum, making them easier to solve and highly practical for various applications.

• Non-Convex Optimization Problem: An optimization problem is non-convex if

the objective function or any constraint is non-convex, meaning the feasible region

may have multiple local optima instead of a single global optimum. The local min-

imum of the problem may not be the same as the global minimum of the prob-

lem. Mathematically, a function is non-convex if it fails the convexity condition (i.e.,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), ∀x1, x2 ∈ Rn, λ ∈ [0, 1]). Unfortunately,

many service provisioning schemes are classified as non-convex optimization since they
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Figure 1.3: Research methodology.

involve non-linear functions as well as integer variables. This thesis typically consid-

ers service provisioning methods, non-linear, and combinatorial optimization. Hence,

convexification and reformulation techniques are required for this optimization to ob-

tain sub-optimal solutions. In this thesis, Success Convex Approximation (SCA) [64],

heuristic, metaheuristic and combinatorial methods are used separately or together to

solve the formulated problems. Furthermore, the tools used to solve the optimization

problems are MATLAB with CVX solver [65]. However, in this thesis, we employ heuris-

tic and metaheuristic approaches, as the computational complexity of optimal solution

methods is very high, making them infeasible for resource-limited environments such

as SEC-enabled on-board systems.

Furthermore, in MATLAB, extensive simulations are conducted using realistic datasets, in-

cluding satellite constellation data and user distributions, to evaluate the effectiveness of each

method. This thesis focuses on service provisioning schemes where SDN controllers orches-

trate the strategy process. However, the placement of SDN controllers is beyond the scope of

this thesis. Additionally, the channel model is not considered; instead, channels are assumed

to be error-free and ideal.

1.6 Contributions and Related Publications

This section presents the contribution of the thesis and the related publication as the result of

the research, peer-reviewed journal, and conference papers that have already been published

and are currently under review. These papers are listed below in the text under J ≡ Journals,

C ≡ Conferences.

Chapter 2

In this chapter, we develop an optimization framework for VNF mapping and schedul-

ing in SDN/NFV-enabled SEC-enabled satellite networks, addressing RQ1. Our study

presents a novel VNF mapping and scheduling strategy for mission-critical applications,

advancing SEC for timely and reliable communication. The approach holds potential
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for applications in disaster response, remote medical care, and other time-sensitive

operations. In this framework, services are represented as sequentially ordered VNF

components, and a service request is considered complete if all its VNF components are

executed on-board satellite nodes while meeting the required constraints. To reduce

computational complexity, we employ a decomposition scheme that divides it into two

subproblems: VNF mapping and VNF scheduling. These subproblems are transformed

using the Convex-Concave Procedure (CCP) to facilitate linearization and are then

solved efficiently using CVX. Additionally, we employ SCA to find an optimal solution.

Although this approach is optimal, it is computationally intensive. Given the resource

limitations in SEC-enabled satellite networks, we propose a metaheuristic approach

to solve the problem efficiently. Specifically, we use a Greedy-based solution for fast

computations on small-scale problems. For larger-scale scenarios, we employ Simulated

Annealing (SA), using the Greedy solution as an initial input, to refine the solution

and achieve near-optimal results. This hybrid approach balances computational effi-

ciency with solution quality, as the analytical decomposition scheme is computationally

intensive. This approach selects and compares a state-of-the-art benchmark with our

approach. Furthermore, our approach is compared to the optimal solution to evaluate

the optimality gap or penalty, assessing how far our proposed solution is from the op-

timal solution. We also evaluate the proposed solution’s time complexity, both for the

optimal solution and the benchmark. The simulation results validate that the proposed

solution significantly improves system performance with low time complexity.

Related Publications

[J1]. H. G. Abreha, H. Chougrani, I. Maity, Y. Drif, C. Politis and S. Chatzino-

tas, “Fairness-Aware VNF Mapping and Scheduling in Satellite Edge Networks for

Mission-Critical Applications,”in IEEE Transactions on Network and Service Man-

agement, vol. 21, no. 6, pp. 6716-6730, Dec. 2024, doi: 10.1109/TNSM.2024.3452031.

[C1]. H. G. Abreha, H. Chougrani, I. Maity, V. -D. Nguyen, S. Chatzinotas and

C. Politis, “Fairness-Aware Dynamic VNF Mapping and Scheduling in SDN/NFV-

Enabled Satellite Edge Networks,”ICC 2023 - IEEE International Conference on

Communications, Rome, Italy, 2023, pp. 4892-4898, doi: 10.1109/ICC45041.2023.10279545.

Chapter 3
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In this chapter, we present an on-board content cache placement strategy in a multi-

layer SEC-enabled satellite network, which includes satellites in LEO, MEO, and GEO

orbital constellations to address RQ2. We primarily focus on content requests that

demand stored content. This research involves three main subproblems: (i) efficient on-

board resource utilization, (ii) maintaining a trade-off between system performance and

cache reconfiguration overhead, and (iii) ensuring cached content relevance, timeliness,

or freshness. To tackle these challenges, we formulate a joint optimization problem with

a multi-objective function. To solve the problem, we employ a Greedy algorithm for fast,

low-scale solutions and a Genetic Algorithm (GA)-based approach, using the Greedy

solution as an initial point to refine and achieve a near-optimal solution. Our approach is

evaluated against selected benchmarks. We design the satellite network using a realistic

satellite constellation dataset and model user distribution based on the geographical

population distribution in the U.S.. Additionally, a Machine Learning (ML) approach

is utilized for randomized user selection. Furthermore, our solution is compared to

benchmarks to assess its performance and evaluated against the optimal solution, solved

using CVX, to measure the optimality gap, quantifying how close our solution is to the

optimal. Extensive simulations demonstrate that our proposed approach outperforms

all benchmarks and achieves near-optimal performance.

Related Publications

[J2]. H. G. Abreha, I. Maity, H. Chougrani, C. Politis, and S. Chatzinotas,

“ On-board content caching in multi-layer satellite edge networks with dynamic

cache reconfiguration,”IEEE Open Journal of the Communications Society, (Under

Review)

[C2]. H. G. Abreha, I. Maity, H. Chougrani, C. Politis and S. Chatzinotas,

“Resource-Aware On-board Content Caching in Multi-Layer Satellite Edge Net-

works,” ICC 2024 - IEEE International Conference on Communications, Denver,

CO, USA, 2024, pp. 3943-3949, doi: 10.1109/ICC51166.2024.10622513.

Chapter 4

In this chapter, we present a joint on-board content caching and seamless content

distribution strategy with Dynamic Ad Insertion (DAI) in MEC-enabled multi-layer

STINs, integrating LEO, GEO, and ground terrestrial networks. In this research, we
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focus on seamless content distribution, which can only be achieved through service

continuity-aware content caching and distribution, considering service request continu-

ity and topology variability. Furthermore, we incorporate advertisement monetization

to generate content provider revenue while modeling its impact on user engagement

costs. We model the service disruption cost arising from early content cache dispatch

due to the time-varying topology and user disengagement caused by excessive, un-

planned, and unoptimized ad insertions in content requests. Finally, we formulate

the problem as a joint optimization problem, where the objective function captures

the trade-off between content provider revenue and end-user requirements. We solve

this problem using metaheuristic algorithms, initially employing a Greedy-based so-

lution for fast computation, suitable for small-scale problems with low computational

complexity. The choice of a metaheuristic approach is driven by its simplicity and

efficiency in handling complex optimization scenarios. Furthermore, considering the

Greedy-based solution as an initial step, we propose a Binary Particle Swarm Opti-

mization (BPSO)-based content distribution strategy as an enhanced solution. This

approach incorporates a collaborative mechanism to handle unassociated requests, en-

suring a more refined solution for large-scale problems while maintaining reasonable

time complexity and achieving near-optimal performance. We compare the proposed

solution with selected benchmarks to evaluate its performance. Additionally, we solve

the problem using the CVX optimization solver to determine how close our solution is

to the optimal one, measure the penalty deviation from optimality (optimality gap),

and compare its time complexity with the optimal solution to quantify the computa-

tional efficiency gain. The results demonstrate that our proposed solution outperforms

the benchmarks and achieves near-optimal performance with significantly lower com-

putational complexity.

Related Publications

[J3]. H. G. Abreha, I. Maity, Y. Drif, C. Politis, and S. Chatzinotas, “Revenue-

Aware Seamless Content Distribution In Satellite-Terrestrial Integrated Networks,”IEEE

Transactions on Network and Service Management, (Under Review)

Chapter 5

In this chapter, we present the main conclusions of the thesis and discuss potential
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directions for future research.



Chapter 2

VNF Mapping and Scheduling in

Satellite Edge Networks

SEC is seen as a promising solution for deploying NFs in orbit to provide ubiquitous ser-

vices with low latency and bandwidth. SDN and NFV enable SEC to manage and deploy

services more flexibly. In this chapter, we study a dynamic and topology-aware VNF map-

ping and scheduling strategy within an SDN/NFV-enabled SEC infrastructure. Our focus

is on meeting the stringent requirements of mission-critical applications, recognizing their

significance in both satellite-to-satellite and edge-to-satellite communications while ensuring

service delay margin fairness across various time-sensitive service requests. We formulate the

VNF mapping and scheduling problem as an Integer Nonlinear Programming (INLP), with

the objective of minimax fairness among specified requests while considering dynamic satel-

lite network topology, traffic, and resource constraints. We then propose two algorithms for

solving the INLP problem: Fairness-Aware Greedy Algorithm for Dynamic VNF Mapping and

Scheduling (FAGD MASC) and Fairness-Aware SA-Based Algorithm for Dynamic VNF Map-

ping and Scheduling (FASD MASC), which are suitable for low and high service arrival rates,

respectively. Extensive simulations demonstrate that both FAGD MASC and FASD MASC ap-

proaches are very close to the optimization-based solution and outperform the Tabu search

VNF remapping and rescheduling (TS MAPSCH) benchmark. In particular, FASD MASC achieves

over 10% and 15% improvements in service acceptance rate and fairness, respectively.

22
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2.1 Introduction

The ever-increasing demand for mission-critical applications in 6G has attracted the attention

of researchers [66]. Mission-critical applications typically deal with very serious situations,

such as disaster management, rescue, and military operations, with stringent requirements

such as latency and reliability, as their failure can result in the loss of lives and property [67].

Therefore, network architectures that provide high Quality Of Service (QoS) and network

coverage are crucial to meet the requirements. Terrestrial networks are vulnerable to natural

disasters, such as earthquakes and hurricanes. In this context, satellite networks can be an

alternative solution to overcome the challenges of network disruption.

Mission critic applications rely on satellite networks during terrestrial communication fail-

ures, particularly in scenarios requiring low latency and real-time decision-making supported

by satellite-to-satellite links, such as emergency response operations [68]. The urgency of the

services varies: for example, early warnings require rapid responses [69], while relief logis-

tics can tolerate some delays [70]. Therefore, effective demand-driven service provisioning

is crucial in satellite networks to accommodate these diverse requirements [71]. However,

the traditional bent-pipe satellite architecture, which involves raw data transmission from

satellites to remote terrestrial data centers without on-board processing, is not suitable for

mission-critical applications. This architecture suffers from limitations in latency and band-

width consumption, hindering the timely delivery and processing of critical information and

impeding swift decision-making and response. SEC addresses this challenge by providing

computing resources on-board in a compute-as-a-service model [13,15,72]. In this paradigm,

satellites are equipped with microservers, enabling in-orbit data processing without rely-

ing on remote terrestrial data centers [72]. An SEC-enabled network facilitates ubiquitous,

low latency, and bandwidth efficient service provisioning, making it particularly suitable for

mission-critical applications.

Despite the advantages of SEC in the delivery of services for mission-critical applications,

effectively managing the diverse and dynamic nature of network resources, such as computing,

storage, and bandwidth, and traffic demands poses a challenge [15]. NFV [30] and SDN

[29] are two networking virtualization technologies that address this challenge by enabling

agile and flexible network management and orchestrating service delivery. In an SDN/NFV-

enabled environment, network services are represented as sequentially ordered VNFs known
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as SFC [60]. In an SEC-enabled network, an SFC request is completed by executing its

VNF components on the SEC nodes on-board1, and selecting the actual path for SFC traffic

to traverse between the source and destination nodes. The challenge of deploying VNF

components for a service request in an SEC-enabled network with limited resources to meet

the predefined requirements of mission-critical applications is a significant research question.

Addressing this challenge involves designing an appropriate VNF mapping and scheduling

strategy [60]. The VNF mapping identifies optimal nodes for executing VNF components

and the sets of physical links connecting these nodes, while VNF scheduling selects the most

suitable time slots to process each VNF component on designated nodes.

Extensive research on the SEC [10, 13, 15, 21, 22, 72] has primarily focused on computa-

tional offloading strategies. However, optimal offloading performance relies on precise ser-

vice provisioning, emphasizing the need for effective VNF mapping and scheduling strate-

gies [50, 60, 73–78]. Furthermore, except [60], the existing works emphasize VNF mapping,

neglecting VNF scheduling, potentially leading to request rejections for violating service re-

quirements, especially with multiple VNFs mapped to an SEC node. Current solutions use

static approaches, causing inefficiencies and service blockage in dynamic traffic. Dynamic

VNF mapping and scheduling improve resource use for better request acceptance, but satel-

lite mobility hampers system performance in NGSO systems. Certain studies [74, 76, 78, 79]

tackle the issue by discretizing the topology into quasi-static snapshots. They focus on link

availability at a specific snapshot but overlook crucial details such as data rate and delay in

link states while employing VNF mapping strategies. This approach may lead to performance

degradation due to potential changes in link states between snapshots. To manage service

requests spanning across multiple snapshots, some work [75] applies VNF re-mapping at the

onset of each snapshot. However, this method encounters challenges in the resource-limited

SEC environment due to significant energy and computational costs [74, 80] associated with

frequent reconfiguration.

Fairness is a crucial metric for fairly allocating resources like virtual machines, CPUs,

and bandwidth in CC systems [81,82]. Although fairness can encompass various dimensions,

our emphasis lies on ensuring fairness in terms of the service delay margin. This choice is

motivated by the unique demands of mission-critical applications, which demand stringent

latency requirements to ensure timely and effective responses to critical situations [83, 84].

1On-board or in-orbit computing is a future data center in orbit, where satellites act as small data centers
and offer cloud-like services in-space.
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Maintaining fairness of E2E service delays among requests can ensure service sensitivity and

improve overall system QoS by treating time-critical and time-tolerant services differently.

Furthermore, mission-critical applications benefit from fairness by treating requests for ser-

vices with the same delay requirements equally to ensure the QoS of the system. Existing

research on SEC and VNF mapping has often focused on computational offloading, net-

work integration, and dynamic resource allocation. However, there is a gap in integrating

mission-critical requirements and fairness considerations into VNF mapping and scheduling

in SEC-enabled networks.

2.1.1 Contributions

This chapter investigates VNF mapping and scheduling strategies in the context of mission-

critical applications, to maximize E2E service delay margin2 fairness among competing service

requests. Through this work, we aim to enhance the reliability and efficiency of mission-

critical operations in SEC-enabled networks by incorporating both link availability and link

state information. Focusing on dynamic network architecture, our study facilitates inter-

actions between ground-based users and satellites. This architecture integrates satellite-

to-satellite collaborations and edge-to-satellite interactions for efficient service provisioning.

Mathematically, we formulate a dynamic and topology-aware VNF mapping and scheduling

as an INLP problem to maximize the fairness of the service delay margin among compet-

ing services, with specified minimax fairness. We initially address the problem using an

optimization-based solution formulated with the SCA method; however, due to its high time

complexity, we subsequently propose two computationally efficient algorithms: FAGD MASC

and FASD MASC. Both FAGD MASC and FASD MASC perform similarly and effectively under low

service arrival rates. However, their design objectives target distinct operating conditions.

FAGD MASC, based on a greedy approach, achieves faster convergence and is tailored for scenar-

ios with low arrival rates and stringent responsiveness requirements. In contrast, FASD MASC

employs an iterative and exhaustive search process, leading to higher fairness and service

acceptance rates, making it more suitable for high arrival rate scenarios where maximizing

resource allocation fairness and service acceptance is critical. The proposed solutions are eval-

uated through extensive simulations. The main contributions of this chapter are summarized

2An E2E service delay margin of a service is defined as the safe margin to reach the upper bound of the
delay required by the request.
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as follows.

• While existing works handle time-varying network topology by using sequential quasi-

static topology snapshots, our approach goes further by conducting a comprehensive

evaluation of link quality, considering both propagation delay and availability.

• We propose a novel integration of mission-critical requirements and fairness constraints

into dynamic VNF mapping and scheduling strategies within SEC-enabled networks.

Our approach addresses the challenges posed by time-varying traffic workloads and

changing network topologies, striving to achieve E2E service delay margin fairness. We

first model the E2E service delay taking into account the time-varying traffic requests

and network topology challenges. We then introduce a dynamic VNF mapping and

scheduling strategy in which the strategies are readjusted in response to traffic demand

and network topology. Furthermore, we describe the network topology as a sequence

of snapshots, where each snapshot shows a quasi-static network topology. We then

formulate a dynamic and topology-aware VNF mapping and scheduling strategy to

maximize the service delay margin fairness between competing services as an INLP

problem with specified minimax.

• We solve the problem INLP using an optimization-based approach by applying the

SCA method. Due to the time complexity of the optimization-based solution, we

proposed two lower complex algorithms to solve the INLP problem: FAGD MASC and

FASD MASC. We also evaluate the proposed algorithms compared to the optimization-

based approach.

• We perform extensive simulations to evaluate the proposed solutions. The results show

that the proposed strategies are close enough to the optimization-based solution and

outperform the benchmark.

This chapter is organized into five sections. Section 2.2 provides a literature review of related

works and state-of-the-art approaches. Section 2.3 presents the system model and problem

formulation for fairness-aware dynamic VNF mapping and scheduling. The proposed solu-

tions are described in Section 2.4. Section 2.5 presents the performance evaluation of the

proposed solutions and approach. Finally, Section 2.6 concludes the chapter and outlines

directions for future work.
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2.2 Related Works

In this subsection, we review recent advances in SEC and VNF mapping and scheduling

schemes developed for SEC-enabled networks.

2.2.1 Satellite Edge Computing

Research on computing services in space has become an increasingly hot topic in recent

years [10, 13, 15,21, 22, 72, 85]. To overcome the drawbacks of the bent pipe satellite network

architecture, Denby et al. [13] proposed an orbital edge computing architecture that supports

edge computing in nanosatellites for sensing, processing, and communication to maintain the

required latency and energy. In [72], the in-orbit computing as a service model was presented

to provide ubiquitous computing services to users. However, the above works [13, 72] focus

on the placement of MEC servers on satellite nodes. Yuxuan et al. [21] proposed a space

edge computing architecture to deploy software in orbit and coordinate with cloud data

centers. Furthermore, the authors of [15] discussed a satellite-terrestrial collaboration model

to offload computations. However, none of them addressed the service delivery schemes,

unlike our work.

Integrating network virtualization technologies like SDN/NFV with SEC-enabled net-

works enhances network management flexibility. In [10], the authors proposed an SDN/NFV-

enabled virtualized resource and a multilayer architecture for integrated satellite-terrestrial

edge computing networks. Lei et al. [22] introduced 5GsatEC, an SEC framework, enhancing

coverage and reducing service delay through embedded hardware and microservices on satel-

lites. In [15] and [85], the authors discussed cooperative computing in a Space-Air-Ground

Integrated Network (SAGIN) architecture. Similarly, [67] studied integrating ultra-reliable,

low-latency edge intelligence into the 6G cellular network for mission-critical service support.

The existing literature focused on computational offloading and integration with terrestrial

networks. However, in the absence of an appropriate service provisioning scheme, offloading

performance cannot be guaranteed. In contrast, our work emphasizes VNF mapping and

scheduling strategies for service provisioning in an SEC-enabled network for mission-critical

applications.
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2.2.2 VNF Mapping and Scheduling in SEC Environment

Wang et al. [73] demonstrated a reconfigurable SFC-based service provisioning framework in

a SAGIN environment. The authors defined the VNF mapping problem as INLP to maxi-

mize service acceptance rates while minimizing computational resource consumption. The

work primarily explores VNF mapping in static scenarios. In this chapter, our focus is on

dynamic VNF mapping, enabling the readjustment of the VNF mapping strategy for existing

service requests in an SEC-enabled network. In [60], the authors introduced a dynamic VNF

mapping and scheduling scheme within a SAGIN architecture for Internet of Vehicles (IoV)

applications, formulated as a Mixed-Integer Linear Programming (MILP) problem. Unlike

our work, they overlooked the impact of the time-varying satellite network topology, poten-

tially causing variations in QoS that may not meet the stringent requirements for services in

mission-critical applications.

Several service provisioning schemes [50,74–78], aimed to address challenges arising from

the time-varying network topology inherent in NGSO constellations. Current methodolo-

gies often segment the NGSO topology into snapshots, with each snapshot portraying a

quasi-static topology, primarily emphasizing link availability to distinguish between snap-

shots. However, knowing link availability alone is inadequate. Overlooking variations in

link states (e.g., bandwidth, propagation delay) across snapshots may lead to E2E service

delay requirement violations. Some literature [50, 75] addresses the impact of time-varying

satellite network topology on system performance during VNF mapping, particularly for

services spanning multiple snapshots. They proposed triggering a VNF migration and re-

configuration scheme in response to topology changes. In [75], the authors introduced a

dynamic service migration and reconfiguration scheme based on satellite and ground user

mobility for ensuring service continuity and meeting QoS requirements. Excluding [60], all

existing work [50,74–78] on service provisioning in satellite networks manage the VNF map-

ping strategy independently, neglecting the VNF scheduling strategy. In contrast, our work

concentrates on topology-aware dynamic VNF mapping and scheduling schemes, discretiz-

ing the topology into snapshots while considering both link state and availability with prior

knowledge of temporal variations.

While existing work on SEC and VNF mapping largely addresses computational offload-

ing, network convergence, and dynamic resource allocation, the integration of mission-critical

demands and fairness into VNF mapping remains underexplored. While resource allocation
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is essential, maintaining fairness in service delay margins for mission-critical applications has

been overlooked. Furthermore, existing solutions seldom address the time-varying topology

of satellite networks, impacting the quality of service. Our work addresses these gaps by

proposing dynamic, topology-aware optimizations for VNF mapping and scheduling. We aim

to maximize fairness in service delay margins by considering satellite network dynamics and

mission-critical requirements.

In summary, although there is some research on VNF mapping and scheduling in NTNs,

more research is needed. Existing approaches in VNF mapping and scheduling often fall short

in addressing the stringent requirements of mission-critical applications. Our work aims to

fill this gap by integrating service delay margin fairness with the specific demands of mission-

critical communication. Therefore, in this study, we focus mainly on the optimal selection of

VNF mapping and scheduling strategies for dynamic traffic demands and topologies to meet

the critical service requirements of mission-critical applications in an MEC-enabled satellite

network.

2.3 System Model and Problem Formulation

This section presents the system model, encompassing the substrate network and service re-

quests. Figure 2.1 depicts the general SDN/NFV-enabled SEC network architecture for an

NGSO satellite constellation, as elaborated in Section 2.3.1. The NGSO architecture com-

prises MEC-enabled satellite nodes, capable of hosting and processing VNFs to fulfill services

with critical requirements in orbit. This allows users to connect to SEC nodes via a wireless

link and complete service requests in orbit. We assume two adjacent SEC nodes are con-

nected via a wireless RF or FSO ISL. An SDN controller manages the VNF mapping and

scheduling strategy, orchestrating VNF placement, network topology, and resource availabil-

ity. The controller is assumed to be located on one of the SEC-enabled satellite nodes in the

constellation. However, the specific placement of an SDN controller for VNF mapping and

scheduling in a satellite network requires further research and is beyond the scope of this

study.

We assume a service request comprises the service type, source, and destination addresses,

detailed in Section 2.3.2. The sources and destinations of service requests are users without

access to the terrestrial network. These users communicate directly with satellites via Very
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SDN Controller
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Figure 2.1: SDN/NFV-enabled SEC network architecture.

Small Aperture Terminals (VSATs) over wireless links (e.g., satellites 1 and 2 in Figure 2.1).

2.3.1 Substrate Network

We define the SEC-enabled network as an undirected graph G = (N,E), where the set N

contains physical nodes and E contains all possible links among the nodes. Additionally, N

is subdivided into two subsets, namely, S and U, representing the SEC nodes and end user

terminals, respectively. Importantly, it holds that N = S ∪ U. Each SEC node k ∈ S is

characterized by its processing capacity (i.e., CPU ) kµ and storage space (i.e., buffer size)

kβ that can process VNFs and store the forwarding table for routing SFC traffic. End users

act as both the source and destination devices for service requests, and it is assumed that they

cannot process or store VNFs (i.e., kβ = 0 and kµ = 0, ∀k ∈ U). The link eh,k ∈ E represents

the connection between nodes h ∈ N and k ∈ N. The satellite network topology in the NGSO

constellation is time-varying due to satellite mobility. Consequently, link availability, delay,

and rate vary, posing challenges for service provisioning. Fortunately, satellite mobility is

predictable and periodic. To address this challenge, we subdivide the network topology into

T sets of periodic quasi-static snapshots, represented as a set of time sequences of sub-

topologies G = {G1, ..., Gt, ..., GT }, where Gt ∈ G denotes the tth snapshot. The number

of snapshots, T , within a recurrence period relies on the satellite mobility rate. Notably,
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these snapshots can be pre-calculated from the prior knowledge of the satellite ephemeris

and user locations. The quality and availability of each link are time-varying. Therefore,

each link eh,k ∈ E is characterized by its time-varying propagation delay eDh,k(t) and data rate

capacity eΩh,k(t) at snapshot t. In addition, we define the availability of the link eh,k ∈ E at

the snapshot time t, eγh,k(t), as:

eγh,k(t) =


1, if link eh,k ∈ E is available at snapshot t,

0, Otherwise.

(2.1)

Link availability in snapshots alone does not ensure QoS requirements due to variations

in link states, impacting network performance and potentially causing incomplete or blocked

service requests. To address this, we introduce a binary variable eρh,k(t) to compare the

propagation delay of the eh,k ∈ E link between the snapshots Gt ∈ G and the subsequent

snapshot Gt+1 ∈ G, defined as:

eρh,k(t) =


1, if eDh,k(t) ≥ eDh,k(t+ 1),

0, Otherwise.

(2.2)

where, eDh,k(t) and eDh,k(t + 1) represent the propagation delay of link eh,k ∈ E in snapshot

Gt ∈ G and subsequent snapshot Gt+1 ∈ G, respectively.

2.3.2 Service Request Model

We consider scenarios where terrestrial networks are unavailable; we rely exclusively on satel-

lite networks as the primary infrastructure to provide mission-critical services. This approach

guarantees reliable connectivity and QoS communication for remote users, meeting the strin-

gent requirements of mission-critical services. We assume that service requests arrive ran-

domly, each with unique requirements, service type, source, and destination address, following

a Poisson distribution. Each service type comprises a sequentially ordered set of VNF com-

ponents. Due to limited resources on SEC nodes, deploying all VNF types on a single node

poses a significant challenge. Consequently, different VNF components are distributed across

various nodes based on resource availability. However, this distribution of VNF deployment

introduces additional propagation delays, potentially violating the service requirements. To

address this challenge, careful VNF mapping is required.
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We consider Ssfc(t) as a set of active mission critic service requests in the system (i.e.,

newly arrived or currently in-process) at the snapshot t. As mentioned earlier, we assume that

users generate and receive SFC request traffic. A service request comprises the source and

destination addresses, representing the locations where the service originates and finishes. Ad-

ditionally, it includes the service type, which defines the nature of the service request and its

requirements. Each service request s ∈ Ssfc(t), is represented as s = ⟨ssrc, svnf , sB, sD, sdst⟩,

where ssrc ∈ U, sdst ∈ U are the source and destination user addresses, respectively. svnf is

the ordered set of VNF components of service request s, with fs,j ∈ svnf representing the

jth VNF component of the service request. The notation f cpus,j and fstors,j denote the comput-

ing and storage space resources required to execute fs,j . s
B and sD are the minimum E2E

bandwidth and maximum E2E delay tolerated by the service request s, respectively. These

parameters ensure that mission-critical service requests exhibit diverse requirements in terms

of bandwidth and delay, with specific services demanding high E2E bandwidth for rapid data

transmission and others requiring stringent delay constraints for real-time communication.

The decision of mapping the VNF fs,j to the physical node k at snapshot t is represented

by a binary variable, defined as:

xs,jk (t) =


1, fs,j is mapped onto node k at t,

0, Otherwise.

(2.3)

Furthermore, we assume each SEC node can support specific VNF types due to the diverse

resource requirements and operational characteristics of the VNFs. We describe a binary

variable f c,ks,j (t) ∈ {0, 1} to describe the VNF supporting node indicator as follows:

f c,ks,j (t) =


1, if fs,j is supported by node k at t,

0, Otherwise

(2.4)

We consider that a virtual link between consecutive VNF components of a service request

can be mapped onto a path with multiple physical links in the absence of direct connections

between the nodes hosting the VNFs. Therefore, we define the decision to map the virtual

link connecting VNFs fs,j ∈ svnf and fs,j−1 ∈ svnf to the physical path that comprises link
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eh,k ∈ E in Gt ∈ G as:

ys,jh,k(t) =


1,

If virtual link between fs,j andfs,j−1 is mapped to a physical path

that includes the link eh,k ∈ E at snapshot t,

0, Otherwise.

(2.5)

We assume the sets of physical links Eh,k(t) ∈ E, which form the shortest physical path

connecting the nodes h ∈ N and k ∈ N. This path can be computed using a shortest path

algorithm, such as the Dijkstra algorithm.

An efficient VNF scheduling scheme is necessary when the resources on a node are insuf-

ficient to process concurrent service requests. The decision of processing order for concurrent

VNF components of competing service requests s ∈ Ssfc(t) and g ∈ Ssfc(t), represented by

fs,j ∈ svnf and fg,q ∈ gvnf respectively, at node k and snapshot t is defined as:

χksj,gq(t) =


1, if fs,j processes at k after fg,q at t,

0, Otherwise.

(2.6)

Service requests may start and end at a specific snapshot, t, or extend to the next snapshot,

t+1. The service continuity indicator, sΥ(t), indicates if service request s spans from the tth

snapshot to the subsequent (t+ 1)th snapshot and is defined as:

sΥ(t) =


1, if s starts at t and continues in t+ 1,

0, Otherwise.

(2.7)

2.3.3 E2E Service Delay and Service Delay Margin Model

In our work, we consider the E2E service delay to be composed of three fundamental compo-

nents: 1) propagation delay, 2) processing delay, and 3) queuing delay. The propagation delay

accounts for the cumulative propagation delay of the selected links to fulfill a given request.

Similarly, the processing delay is the total delay required to execute the VNF components

of the service request. Additionally, the queuing delay represents the overall delay for the

VNF components of a given service request to wait before starting execution due to resource

limitations for concurrent VNF processing. Please refer to Appendix 5.2 for a detailed ex-

planation of delay components. Notably, our analysis excludes the deployment time required
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for the SDN/NFV orchestrator, as it falls beyond the scope of this study.

Within this context, the service delay comprises two primary components: the VNF

mapping delay, encompassing processing and propagation delays, and the VNF scheduling

delay, involving queuing delay. The VNF scheduling delay for a service request is determined

by its processing delay and the arrival time of competing VNFs at the selected nodes for

processing their VNF components. Thus, fA,ks,j (t), denoting the arrival time of VNF fs,j at

node k, is considered and its successive VNF fs,j−1 is mapped to node h at snapshot t (i.e.,

xs,j−1
h (t) = 1). This is defined as:

fA,ks,j (t) =
(
fA,hs,j−1(t) + f ℓ,hs,j−1

)
xs,j−1
h (t) + dproph,k (t), (2.8)

where fA,hs,j−1(t) and f ℓ,hs,j−1 represent the arrival time and processing delay of the preceding

VNF component, fs,j−1, in the service s at its designated node, h, respectively. dproph,k (t)

represents the total propagation delay between the nodes h ∈ N and k ∈ N.

We accordingly model the E2E service delay of a service request s at a given snapshot t,

dtots (t) as the sum of the VNF mapping delay dvms (t) and VNF scheduling delay dvss (t).

dtots (t) = dvms (t) + dvss (t), (2.9)

See appendix A 5.2 for details of dtots (t), dvms (t), and dvss (t).

Remark 1. Propagation delay usually dominates the service delay, but when multiple VNFs

are assigned to limited nodes, the queuing delay can become comparable.

Definition 1. The service delay margin of a service request s is defined as the difference

between its maximum tolerable delay sD and its actual E2E service delay dtots (t) at a given

snapshot t.

ηvnfs,d (t) =
dtots (t)

sD
, (2.10)

Using Equation (2.9), we redefine (2.10) as the sum of service delay margins related to

VNF mapping and scheduling as:

ηvnfs,d (t) = ηvms,d (t) + ηvss,d(t), (2.11)

where ηvms,d (t) and η
vs
s,d(t) are the service delay margins related to VNF mapping and schedul-



VNF Mapping and Scheduling in Satellite Edge Networks 35

ing, calculated as ηvms,d (t) =
dvms (t)
sD

and ηvss,d(t) =
dvss (t)
sD

. The set of service delay margins for

competing services is denoted as ηvnfd (t) = {η1(t), · · · , ηi(t), · · · , η|Ssfc(t)|}. Using Equation

(2.11), it can be further written as:

ηvnfd (t) = ηvmd (t) + ηvsd (t), (2.12)

where ηvmd (t) and ηvsd (t) are sets of service delay margins for VNF mapping and scheduling,

respectively.

2.3.4 Problem Formulation

We formulate the optimization problem to maximize fairness in the service delay margin

among competing mission-critical service requests. Decision variables x(t), y(t), and χ(t),

representing VNF node mapping, virtual link mapping, and VNF scheduling in snapshot t,

are involved. The goal is to minimize ηvnfs,d (t), the service delay margin for the most adversely

treated service request, s (i.e., minimize the maximum), among competing services. This

improves overall system performance and ensures a balanced distribution of service delay

margins among the competing requests. The objective function can be defined as Min-Max
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fairness of the service delay margin, ηvnfd (t) at snapshot t.

minimize
x(t),y(t),χ(t)

{max
s

ηvnfd (t)} (2.13a)

s.t. xs,jk (t) ∈ {0, 1}, ∀fs,j ∈ svnf , ∀s ∈ Ssfc(t), ∀k ∈ N, (2.13b)

ys,jh,k(t) ∈ {0, 1}, ∀fs,j ∈ s
vnf , ∀s ∈ Ssfc(t), ∀eh,k ∈ E, (2.13c)

χksj,gq(t) ∈ {0, 1}, ∀fs,j ∈ svnf , fg,q ∈ gvnf , ∀k ∈ N, ∀s ∈ Ssfc(t), ∀g ∈ Ssfc(t), (2.13d)∑
k∈N

xs,jk (t) = 1, ∀fs,j ∈ svnf , ∀s ∈ Ssfc(t), (2.13e)

xs,jk (t) ≤ f c,ks,j (t), ∀fs,j ∈ svnf , ∀k ∈ N, ∀s ∈ Ssfc(t), (2.13f)∑
s∈Ssfc(t)

∑
fs,j∈svnf

xs,jk (t)f cpus,j ≤ k
µ, ∀k ∈ N, (2.13g)

∑
s∈Ssfc(t)

∑
fs,j∈svnf

xs,jk (t)fstors,j ≤ kβ, ∀k ∈ N, (2.13h)

∑
eh,k∈E

ys,jh,k(t)e
γ
h,k(t) ≥ 1, ∀fs,j ∈ svnf , ∀s ∈ Ssfc(t), (2.13i)

∑
s∈Ssfc(t)

∑
fs,j∈svnf

ys,jh,k(t)s
Beγh,k(t) ≤ e

Ω
h,k(t), ∀eh,k ∈ E, (2.13j)

fA,ks,j (t)xs,jk (t) ≥ fA,ks,j (t)xs,j−1
h (t), ∀xs,j−1

h (t) = 1, ∀fs,j ∈ svnf , ∀s ∈ Ssfc(t), (2.13k)

ys,jh,k(t) ≤ e
γ
h,k(t)

(
1− sΥ(t) + eγh,k(t+ 1)eρh,k(t)

)
, ∀eh,k ∈ E, ∀s ∈ Ssfc(t), (2.13l)

χksj,gq(t) + χksj,gq(t) = 1, ∀{g ̸= s OR q ̸= j, k ∈ N}, ∀s ∈ Ssfc(t), ∀g ∈ Ssfc(t), (2.13m)

ys,jm,n(t) ≥ x
s,j−1
h (t) + xs,jk (t)− 1, ∀em,n ∈ Eh,k(t), k ∈ N, h ∈ N, ∀s ∈ Ssfc(t), (2.13n)

ys,jm,n(t) ≤
∑
k∈N

(xs,j−1
h (t) + xs,jk (t))− 1, ∀em,n ∈ Eh,k(t), h ∈ N, ∀s ∈ Ssfc(t), (2.13o)

ys,jm,n(t) = 0, ∀em,n /∈ Eh,k(t), xs,j−1
h (t) = 1, xs,jk (t) = 1, ∀fs,j ∈ svnf , ∀s ∈ Ssfc(t), (2.13p)

Constraints (2.13b), (2.13c), and (2.13d) indicate binary decision variables. Constraint

(2.13e) ensures that a VNF component of a service request is processed by only one node.

Constraint (2.13f) specifies that a VNF can only be mapped to a node that has the ability to

execute it. Constraints (2.13g) and (2.13h) assert that a VNF can only be mapped to a node

with sufficient storage and processing capacity, respectively. Constraint (2.13i) conveys that

every virtual link must be mapped to at least one physical link that exists in a given snapshot.

Constraint (2.13j) maintains that a virtual link can only be mapped to links with sufficient

bandwidth for the VNF to transmit. Constraint (2.13k) requires the sequential processing

of VNF components within a service request, ensuring adherence to their specified order for
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completion. Constraint (2.13l) allows assigning a service from snapshot Gt ∈ G to Gt+1 ∈ G

to a link if two conditions are met: the link must exist in both snapshots, and its propagation

delay in Gt+1 ∈ G should not exceed that in Gt ∈ G. Constraint (2.13m) guarantees that

a node processes only one VNF at a time. In case of two simultaneous requests, it dictates

processing one while the other awaits execution, maintaining a specific order. Constraints

(2.13n)-(2.13p) ensure that the virtual link between consecutive VNF components in a ser-

vice request is assigned to all physical links along the shortest path connecting their hosting

nodes. The Constraint (2.13o) affirms the precise mapping of the virtual link, accommodating

scenarios in which a physical link is part of multiple shortest paths or a single shortest path

between SEC nodes. Constraint (2.13p) ensures that a virtual link cannot be mapped to a

physical link that is not part of the shortest path between the nodes hosting two consecutive

VNF components of a service request.

The optimization problem formulated in Equation (2.13) falls within the class of INLP

problems. The nonlinearity arises from the product of decision variables x(t) and y(t) in

Equation (4) from Appendix A 5.2. Furthermore, the node mapping, xs,jk , in Equations

(2.8) and (4), depends on the preceding VNF mapping xs,j−1
h . This complexity makes the

optimization problem computationally expensive to solve. Consequently, we decompose the

problem into two stages: the VNF mapping optimization problem (P1) and the VNF schedul-

ing optimization problem (P2). This decomposition linearizes the problem, allowing for the

analysis of problem (2.13) as two linear subproblems, P1 and P2, described in Equations

(2.14) and (2.15), respectively. P1 represents the VNF mapping optimization problem with

decision variables x(t) and y(t) as defined below.

P1 : minimize
x(t),y(t)

{max
s

ηvmd (t)}

s.t., (2.13b), (2.13c), (2.13e)− (2.13l), (2.13n)− (2.13p),

(2.14)

Furthermore, P2 is the VNF scheduling optimization problem with the decision variable χ(t)

as defined below.

P2 : minimize
χ(t)

{
max
s

ηvsd (t)
}

s.t., (2.13d), (2.13m),

(2.15)

We address the challenge of the sequential dependence of the variable x(t) initially by solving

P1 (i.e., x∗(t), y∗(t)) and then solving P2 (i.e., χ∗(t)). In this case, the solution to problem
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P1 is the input to problem P2. However, due to the binary variables of x(t), y(t), and

χ(t); P1 and P2 are combinatorial problems. Inspired by [86], we apply a binary relaxation

technique to solve the subproblems efficiently where the binary variables are relaxed to satisfy

0 ≤ x(t) ≤ 1, 0 ≤ y(t) ≤ 1, and 0 ≤ χ(t) ≤ 1. Moreover, it is essential to employ an efficient

and suitable relaxation method to ensure that the relaxed formulations of P1 and P2 produce

output variables x∗(t), y∗(t), χ∗(t) constrained to binary values of either 1 or 0, as stated in

Equations (2.16) and (2.17). We transform the problems P1 and P2 into the CCP P3 and

P4, respectively [87] by carefully selecting the penalty function and parameters so that can

be solved directly using mathematical optimization solvers such as CVX [65] iteratively.

P3 minimize
x(t),y(t)

{max
s

[ηvmd (t)− (−ψxy)]}

s.t., 0 ≤ x(t) ≤ 1, 0 ≤ y(t) ≤ 1, (2.13e)− (2.13l), (2.13n)− (2.13p),

(2.16)

P4 minimize
χ(t)

{
max
s

[ηvsd (t)− (−ψχ)]}

s.t., 0 ≤ χ(t) ≤ 1, (2.13m),

(2.17)

Here, ψxy and ψχ are the penalty functions of the original VNF mapping and scheduling

optimization problems, respectively. The details of the penalty functions and parameters for

binary relaxation can be seen in Appendix B 3. The subproblems P3 and P4 are convex prob-

lems that can be effectively solved using standard optimization software tools. Furthermore,

the problems P3 and P4 are classified as Difference of Convex (DC) programming problems.

Fortunately, these problems can be effectively solved using an iterative algorithm based on

the CCP [87]. The CCP algorithm provides a systematic approach to iteratively handle the

convex and concave components of the objective function, leading to convergence to optimal

solutions for the DC programming problems. Therefore, we apply the decomposition and

relaxation methods to problem (2.13) and an optimization-based approach based on SCA to

solve them iteratively. We solve P3 to obtain the optimal solution x∗(t) and y∗(t) and update

xi and yi by using CVX, where xi and yi are the VNF node mapping and virtual link mapping

solutions in the ith iteration, respectively. Then we solve P4 for a given xi and yi to obtain

the optimal solution χ∗(t) using CVX and update χi by χ∗(t), where χi is the VNF schedul-

ing solution in the ith iteration. This process repeats until the solution converges by updating

i = i + 1 and finally, we obtain the optimal solution x∗(t), y∗(t), and χ∗(t). However, the
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high complexity of the optimization-based solution makes it unsuitable for mission-critical

applications. Typically, VNF mapping and scheduling problems are NP-hard, inspiring the

common use of heuristic algorithms for resolution [76,77]. Consequently, we present two less

complex algorithms suited for different traffic arrival rates to address the INLP problem.

2.4 Fairness-aware dynamic VNF mapping and scheduling for

time-varying satellite network

In this section, we introduce two heuristic algorithms, namely FAGD MASC and FASD MASC, to

efficiently obtain near-optimal solutions for the INLP problem in low and high traffic demand

scenarios, respectively. Initially, the algorithms configure VNF mapping and then initiate

a VNF scheduling strategy based on service delay margin values. They dynamically adapt

to changing traffic demands through VNF re-mapping and re-scheduling, triggered by new

service requests and E2E service delay violations. Further details are provided in the next

subsections.

2.4.1 Feasible VNF Mapping Strategy Generator Algorithm

Algorithm 1 initializes the VNF mapping strategy πvnfx,y = {x(t),y(t)} for the proposed

solutions FAGD MASC and FASD MASC as described in subsections 2.4.2 and 2.4.3, respectively.

Here, x(t) and y(t) are the set of nodes and virtual link mapping strategies, respectively, of

competing services in the system Ssfc(t). Given a service request s ∈ Ssfc(t) as an input

parameter in the current snapshot t, the algorithm returns the VNF mapping strategy πvnfx,y .

First, the algorithm extracts the VNF component svnf of the service request s (line

1). The next step is to identify and group the specific nodes that support the VNF. For

example, fNs,j denotes the sets of all nodes that can support and process the VNF fs,j (line

3). For each VNF component of the service request s, an SEC node is randomly selected

from the corresponding VNF supporting nodes that satisfy the Constraints (2.13f), (2.13g)

and (2.13h), (line 4). The VNF mapping strategy is updated for each VNF component in

the service request. For example, for VNF fs,j ∈ svnf on an SEC node k ∈ fNs,j in Gt ∈ G,

it is denoted as xs,jk (t) = 1 (line 5). The algorithm selects the shortest path between nodes

hosting consecutive VNF components in the service request, adhering to Constraints (2.13i)

and (2.13j). Moreover, to account for services continuing from the current snapshot t to



40 Chapter 2

the next snapshot t + 1 (i.e., the snapshot in which the VNF mapping decision is made),

the selected links must satisfy the constraint specified in Equation (2.13l). Therefore, the

Dijkstra algorithm is used to determine the shortest path, adhering to Constraints (2.13n)-

(2.13o) (line 7). The algorithm updates the corresponding node and link of the VNF mapping

strategies x(t) and y(t) (lines 8 and 9) and returns the updated πvnfx,y (line 12).

Algorithm 1: Feasible VNF Mapping Strategy Generator Algorithm

Input: SFC request s in snapshot Gt ∈ G
Output: πvnfx,y ← {x(t),y(t)} VNF Mapping strategy
1: Extract the VNF components svnf of the service request s
2: for each fs,j ∈ svnf do
3: fNs,j ← Sets of SEC nodes that can process the VNF, fs,j
4: Select a node k ∈ fNs,j randomly satisfying Constraints (2.13g) and (2.13h)

5: xs,jk (t)← 1 ▷ Update the VNF node mapping strategy

6: if xs,j−1
h (t) == 1 and k ∈ N (fs,j−1) then

7: Find the shortest path between h and k satisfying Constraints (2.13i), (2.13j),
(2.13l), (2.13n)- (2.13p) using Dijkstra’s algorithm.

8: ys,jh,k(t)← 1 ▷ Update the Virtual link mapping strategy

9: πvnfx,y ← {xs,jk (t), ys,jh,k(t)} ▷ Update the VNF mapping for fs,j
10: end if
11: end for
12: return πvnfx,y

2.4.2 Fairness-Aware Greedy Algorithm for Dynamic VNF Mapping and

Scheduling

In this subsection, we propose FAGD MASC to solve the INLP problem, as outlined in Algo-

rithm 2. The algorithm takes the set of competing mission-critical service requests Ssfc(t)

in snapshot t as input and outputs a sub-optimal VNF mapping and scheduling strategy

πvnfx,y,χ(t). First, the VNF mapping strategy πvnfx,y (t) is initialized using Algorithm 1 for the

sets of service requests Ssfc(t) (line 1). Then, the corresponding VNF scheduling in the

selected VNF mapping and scheduling strategy, πvnfχ (t), is calculated (line 2). Furthermore,

the optimal VNF mapping and scheduling strategy πvnfx,y,χ(t) is updated by the initial strat-

egy {πvnfx,y (t),πvnfχ (t)} (line 3). Similarly, the maximum service delay margin ηvnf,∗s,d (t) is also

updated from the optimum strategy obtained (line 4).

For each service request s ∈ Ssfc(t), the algorithm first checks if there exists a path

paths(t) ∈ E with a set of physical links that meet the Constraints (2.13i), (2.13j), and
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(2.13l) (line 7). When there is no possible path to accommodate the service request s (i.e.,

paths(t) = ∅), the algorithm invokes the VNF re-mapping and re-scheduling strategy (line

8). Otherwise, if there are feasible paths (paths(t) ̸= ∅), the algorithm calculates the VNF

mapping for the service request s using Algorithm 1 (line 10). The algorithm FAGD MASC

computes the VNF scheduling for each VNF component svnf based on the service delay

margin η(t) (line 11). The algorithm then updates the VNF mapping and scheduling πvnfx,y,χ(t)

(line 12). In addition, it updates the maximum service delay margin among service requests

(ηvnfs,d (t) = max
i
{ηvnfd (t)}) (line 13). FAGD MASC updates the optimal VNF mapping and

scheduling, πvnfx,y,χ(t) with the current, π(t) if and only if the current maximum service delay

margin is less than or equal to that of the previous iteration (i.e., ηvnfs,d (t) ≤ ηvnf,∗s,d (t)), where

ηvnf,∗s,d (t) is the maximum optimal service delay margin obtained in the previous (lines 14-17).

The process continues until the stop condition is reached, determined by the StopCondi-

tionNotMet() function (line 5). The iteration stops if: 1) the maximum number of iterations

is reached, 2) the objective function value (ηvnf,∗s,d (t)) remains unchanged, or 3) no candidate

path in paths(t) satisfies the constraints after VNF re-mapping and re-scheduling (lines 5-19).

Finally, the algorithm returns the optimal VNF mapping and scheduling strategy πvnfx,y,χ(t)

at snapshot time, t, updating the network resources (lines 20-21).

2.4.3 Fairness-Aware SA-based Algorithm for Dynamic VNF Mapping and

Scheduling

FASD MASC algorithm is an SA-based approach [88] proposed to solve the INLP problem. SA is

inspired by metallurgical annealing, where controlled heating and cooling create a crystalline

structure with minimal errors. Our choice of SA is driven by its simplicity and maturity as

a metaheuristic algorithm, with theoretical convergence proofs [88].

FASD MASC algorithm generates sub-optimal VNF mapping and scheduling decisions based

on SFC requests, available network resources, and network topology over the snapshots.

Given the set of mission-critical service requests Ssfc(t) and the initial state of the VNF

mapping and scheduling strategy state πvnf,0x,y,χ (t) in snapshot Gt ∈ G, it returns the optimum

VNF mapping and scheduling strategy πvnfx,y,χ(t) as the final state, considering the current

state. Algorithm 3 outlines the steps of the proposed FASD MASC algorithm. Furthermore,

the SA parameters, including the initial temperature Temp0, cooling rate rcool, Markov chain

length L, and acceptance probability p, are also input parameters for the FASD MASC algo-
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Algorithm 2: Proposed FAGD MASC Algorithm

Input: Sets of competing mission-critical service requests, Ssfc(t)

Output: πvnf,∗x,y,χ (t)← {x∗(t), y∗(t), χ∗(t)}: ▷ Optimal VNF Mapping and Scheduling

1: πvnfx,y (t) ▷ Initialize the VNF mapping strategy using Algorithm 1

2: πvnfχ (t) ▷ Compute the corresponding VNF scheduling on πvnfx,y (t)

3: πvnfx,y,χ(t)← {πvnfx,y (t),πvnfχ (t)} ▷ Update the optimal VNF mapping and scheduling

4: ηvnf,∗s,d (t)← max
s
{ηvnfd (t)}

5: while StopConditionNotMet() do
6: for each competing service request s ∈ Ssfc(t) do
7: if paths(t) == ∅ then
8: Trigger VNF Re-mapping and Re-scheduling function
9: end if

10: πvnfx,y (t) ▷ Generate a VNF mapping using Algorithm 1

11: πvnfχ (t) ▷ Compute the corresponding VNF scheduling from πvnfx,y (t)

12: πvnfx,y,χ(t)← {πvnfx,y (t),πvnfχ (t)}
13: ηvnfs,d (t)← max

s
{ηvnfd (t)}

14: if ηvnfs,d (t) ≤ ηvnf,∗s,d (t) then

15: πvnf,∗x,y,χ (t)← πvnfx,y,χ(t)

16: ηvnf,∗s,d (t)← ηvnfs,d (t) ▷ Update the optimal service delay margin
17: end if
18: end for
19: end while
20: Update the available resources of the network
21: return πvnf,∗x,y,χ (t)

rithm. These parameters significantly impact the algorithm’s performance, necessitating

careful selection [88]. Temp0 determines the speed of convergence to the global optimum:

higher values lead to slower convergence, while lower values risk premature convergence to

a local optimum. The cooling rate rcool determines the rate of temperature reduction at

each iteration until Temp reaches zero, indicating the end of the iterations. Similarly, the

Markov chain length L specifies the number of iterations before a temperature decreases.

Furthermore, the acceptance probability p determines the acceptability of new solutions.

The FASD MASC algorithm starts by initializing the current temperature Temp to the

initial temperature Temp0 (line 1). It uses Algorithm 1 to create the initial VNF mapping

strategy. A demand-driven approach based on the service delay margin ηvnfd (t) generates

a VNF scheduling strategy for active service requests Ssfc(t), updating the initial VNF

mapping and scheduling strategy πvnf,0x,y,χ (t) at snapshot t. This strategy serves as the initial

state of the process. Then, the current VNF mapping and scheduling strategy πvnfx,y,χ(t)
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Algorithm 3: Proposed FASD MASC Algorithm

Input: Ssfc(t),π
vnf,0
x,y,χ (t), T emp0, rcool, L, p

Output: πvnf,∗x,y,χ (t) ▷ Final VNF Mapping and Scheduling strategy
1: Temp← Temp0 ▷ Initialize current temperature
2: π ← πvnf,0x,y,χ (t) ▷ Initiate the current VNF mapping strategy state
3: while Temp > 0 do
4: while L > 0 do
5: πvnf,Nextx,y,χ (t) ← GenerateNextStrategy(πvnfx,y,χ(t)) ▷ Next VNF mapping and

scheduling

6: if exp(
fitness(πvnf

x,y,χ(t))−fitness(πvnf,Next
x,y,χ (t))

B∗Temp ) > p then

7: πvnfx,y,χ(t)← πvnf,Nextx,y,χ (t) ▷ Update the current VNF mapping and scheduling
8: end if
9: L ← L− 1

10: end while
11: Temp ← rcool ∗ Temp
12: end while
13: Update the available resources of the network
14: return πvnfx,y,χ(t)

vnf,∗
x,y,χ (t) ← πvnfx,y,χ(t)

Algorithm 4: GenerateNextStrategy

Input: πvnfx,y,χ(t) ▷ Current VNF Mapping and Scheduling strategy

Output: πvnf,Nextx,y,χ (t) ▷ Next VNF Mapping and Scheduling strategy
1: Randomly select a service request s from the set of active mission-critical service

requests Ssfc(t) in the current state, πvnfx,y,χ(t).
2: Randomly choose a VNF component fs,j associated with s.

3: Identify the source node k to which fs,j is currently mapped (xs,jk = 1) in the current

state, πvnfx,y,χ(t).
4: Determine potential target nodes fNs,j for relocation, considering resource availability

and constraints.
5: Randomly select a suitable target node k from fNs,j .

6: Perform the relocation operation: Update the VNF mapping, xNext, from the current
state, πvnfx,y,χ(t), by setting xs,jk to 0 and xs,jh to 1.

7: Adjust virtual link mapping, yNext from xNext to account for the relocation.
8: Adjust VNF scheduling, χNext from xNext and yNext

9: return πvnf,Nextx,y,χ (t) ← {xNext,yNext,χNext}
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is set as the current state, initialized using the initial state πvnf,0x,y,χ (t) (line 2). The main

goal of the FASD MASC algorithm is to determine an optimal VNF mapping and scheduling

strategy that improves service delay margin fairness among competing mission-critical service

requests. The algorithm iterates a maximum of L times for each current temperature value

Temp. Within each iteration, the algorithm generates the next state πvnf,Nextx,y,χ (t) using

Algorithm 4 based on the current state πvnfx,y,χ(t) (line 5). FASD MASC uses Algorithm 5 to

calculate the fitness of a given VNF mapping and scheduling in a specific state. Fitness is

determined based on the highest service delay margin ηvnfs,d (t) among active service requests,

as indicated in line 2 of Algorithm 5. Consequently, the algorithm evaluates the fitness

of both the current and next states (line 6). The next state replaces the current state if

exp(
fitness(πvnf

x,y,χ(t))−fitness(πvnf,Next
x,y,χ (t))

BT ) > p, where B represents the Boltzmann constant, and

this value is compared against the predetermined acceptance probability threshold p. Upon

completing L iterations, the algorithm decreases the current temperature by the cooling factor

rcool (line 11).

Algorithm 5: Fitness Computation

Input: πvnfx,y,χ(t) ▷ VNF Mapping and Scheduling strategy

Output: fitness(πvnfx,y,χ(t)) ▷ fitness for πvnfx,y,χ(t)

1: Compute the service delay margin η from πvnfx,y,χ(t) for requests using Equation (2.12).

2: ηvnfs,d (t) ← max
s
{ηvnfd (t)} ▷ The highest service service delay margin

3: return fitness(πvnfx,y,χ(t)) ← ηvnfs,d (t)

Algorithm 4 outlines the procedure for generating the next state πvnf,Nextx,y,χ (t) from the

current state πvnfx,y,χ(t). The algorithm starts by selecting a service request s from the set of

active mission-critical service requests Ssfc(t) in the current state πvnfx,y,χ(t) (line 1). Next,

it randomly selects a VNF component fs,j ∈ svnf of the chosen service s (line 2). Then, it

identifies the source node k to which fs,j is currently mapped (with xs,jk = 1) in the current

state πvnfx,y,χ(t) (line 3). Furthermore, it identifies potential target nodes fNs,j for relocation,

considering resource availability and constraints outlined in Constraints (2.13f), (2.13g), and

(2.13h) (line 4). Then, it randomly selects one of the candidate target nodes k ∈ fNs,j and

performs the relocation or swapping operation by setting xs,jk = 0 and xs,jh = 1 (line 6). The

algorithm updates the VNF node mapping strategy, xNext, and then adjusts the virtual link

mapping, yNext, by applying the Dijkstra shortest path selection algorithm from xNext to

account for the swap (line 8). Similarly, the VNF scheduling, χNext, is adjusted by applying
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the demand-based scheduling scheme from xNext and yNext to account for the relocation

(line 9). The final next state is generated by updating the next state with xNext, yNext, and

χNext (line 10).

2.5 Performance Evaluation

In this section, we compare our proposed algorithms with the benchmark algorithm TS MAPSCH

[61] and the optimization-based optimal INLP solution obtained using decomposition and

relaxation methods discussed in Section 2.3.4. The benchmark algorithm completes VNF

mapping and scheduling of service requests on a service-by-service basis, indicating that the

mapping and scheduling of one service must be finished before proceeding to the next one. In

TS MAPSCH, VNF re-mapping and re-scheduling occur only when there are violations in the

E2E service delay demand.

Table 2.1: Simulation parameters for VNF mapping and scheduling

Parameters Value

Topology SES O3b MEO constellation [74]

Number of SEC 20 [74]

Satellite Ground Station Locations 9 [74]

Number of snapshots 24 [74]

Service Arrival Rate [0.05− 0.20] requests/ms [61]

VNF Processing delay [5− 10] ms [61]

ISL propagation delay [20− 40] ms [74]

Uplink/downlink propagation delay [29− 75] ms [89]

Maximum tolerable E2E service delay {200, 250, 300} ms [83,84]

Number of VNFs per an SFC request [3− 5] [74]

Number of VNFs per an SEC node [1− 5] [74]

Processing capacity of an SEC node 96 vCPUs [77]

Storage capacity of an SEC node 112 GB [77]

Processing units required by a VNF [2− 4] vCPU [77]

Storage units required by a VNF [4− 8] GB [77]

Capacity of physical ISL 1 Gbps [77]

Capacity of physical uplink/downlink 1 Gbps [77]

Minimum tolerable E2E service bandwidth [10− 20] Mbps [77]

2.5.1 Simulation Settings

Our simulations utilize the MEO constellation as the network topology, consisting of 20 SEC

nodes and 9 satellite ground station locations, where users can submit service requests. We



46 Chapter 2

use the System Toolkit (STK) [89] to generate network topologies and data in each snap-

shot. As a result, we consider 24 snapshots (i.e., M = 24) for the periodic satellite network

with a recurrence period of 6 hours. Hence, each snapshot has a duration of 15 minutes.

Furthermore, we assume 10 mission-critical service types with specified VNF components,

E2E delay, and bandwidth requirements. We assume that each mission-critical service re-

quest is provisioned on the SEC nodes, characterized by a service type, a continuity indicator

indicating whether it spans multiple snapshots, and source-destination addresses. We ran-

domly generate service requests with varied parameters to ensure both heterogeneity and

dynamism in traffic demand. We modeled the inter-arrival time among service requests using

the Poisson distribution (i.e., M/M/1 queuing model), expressed as: Trarrpois = − log(1−R)
λ ,

where R and λ represent the probability of a service request arrival and the mean arrival

rate, respectively [90]. We choose a service arrival rate [0.05− 0.20] requests/ms for mathe-

matical simplicity [61], aligning with specified service delay demands in milliseconds [83,84].

Additionally, the uplink and downlink propagation delays are randomly generated within the

specified range outlined in Table 2.1, showcasing how the delay varies based on the user’s

location on the ground. For FASD MASC, SA parameters are set as: the initial temperature

Temp0 = 100, Markov chain length L0 = 200, cooling rate r = 0.97, and acceptance proba-

bility p = 0.85 [91]. The remaining simulation parameters and their values are summarized

in Table 2.1.

2.5.2 Running time comparison

In this subsection, we compare the proposed solutions with both the benchmark and optimization-

based optimal INLP solutions in terms of their running time, considering the significance of

this metric in network infrastructures with limited resources, such as SEC-enabled networks.

Note that all algorithms run on DELL Precision 3551 laptop, Intel(R) Core(TM) RAM 32.0

GB i9-10885H CPU @ 2.40GHz. We assume the arrival rate λ = 0.05, and R is a random

variable uniformly distributed over the interval R ∼ U(0, 1).

As shown in Table 2.2, the proposed algorithms FAGD MASC and FASD MASC converge in

approximately 0.01357 and 0.0876 seconds, respectively. In contrast, the optimization-based

optimal INLP solution takes at least 60 seconds to converge. As a result, the optimization-

based optimal solution for INLP is impractical to meet the demands of mission-critical ap-

plications due to its significant computational time requirements, which do not align with
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the urgent and time-sensitive decision-making needs of mission-critical applications. This

motivated the proposal of FAGD MASC and FASD MASC algorithms to achieve reasonable results

in shorter convergence times. Specifically, FAGD MASC achieves faster convergence compared

to the benchmark algorithm, while FASD MASC shows a comparable convergence time.

Table 2.2: Running time comparison

Metrics FAGD MASC FASD MASC TS MAPSCH INLP

Running Time 0.01357sec 0.0876sec 0.0872 sec > 60sec

ηvnfs,d (t)(t) = max
s
{ηvnfd (t)} 1.04791 1.04782 1.04791 1.04597

2.5.3 Performance difference between the proposed solution and optimization-

based optimal INLP solution

Initially, we employ the optimization solver CVX to solve the optimization-based optimal

solution for INLP and obtain the optimal solution. For each snapshot (G1, G2, . . . , G24), we

conduct individual experiments, and the final results are obtained by calculating the average

values across all snapshots. We evaluate the performance of the proposed algorithms in terms

of their deviation from the optimization-based optimal INLP solution in three scenarios with

varying arrival rates λ: Low (λ = 0.05), Medium (λ = 0.1), and High (λ = 0.2) traffic scales.

We compare the proposed solutions against the optimization-based optimal INLP solution in

terms of two metrics: service request acceptance rate and service delay margin fairness.

Definition 2. Service Acceptance Rate

We define this performance metric as the ratio of service requests that satisfy their E2E

service delay requirement to the total number of service requests. We express a service request

s acceptance function at snapshot t as saccept(t) as:

saccept(t) =


1, if ηvnfs,d (t) ≤ 1,

0, Otherwise.

(2.18)

where ηvnfs,d (t) is the service delay margin of the service request s. Therefore, the acceptance

rate of the service requests at snapshot time t is expressed as [74]:

AR(t) =

∑
s∈Ssfc(t)

saccept(t)

|Ssfc(t)|
, (2.19)
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Definition 3. The service delay margin fairness is defined using Jain’s fairness index JF (ηvnfd (t))

[92]:

JF (ηvnfd (t)) =

( ∑
s∈Ssfc(t)

ηvnfs,d (t)

)2

|Ssfc(t)|
∑

s∈Ssfc(t)

(ηvnfs,d (t))2
, (2.20)

where ηvnfd (t) is the service delay margin matrix for Ssfc(t) at t.

In Figure 2.2, the proposed algorithms exhibit a performance comparable to the optimization-

based optimal INLP solution under low traffic arrival scale, with deviations of less than 0.70%

and 0.07% in service acceptance rate and service delay margin fairness, respectively. However,

unlike the FAGD MASC algorithm, FASD MASC demonstrates robustness even with high traffic

rates, showing less than 1.1% and 0.6% deviation in service acceptance rate and service de-

lay margin fairness compared to the optimization-based optimal INLP solution as shown in

Figures (2.2b) and (2.2a), respectively.
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Figure 2.2: Performance comparison of the proposed solutions with the optimization-based
optimal INLP solution

2.5.4 Performance comparison between the proposed solutions and the

benchmark

In this subsection, we evaluate the performance of the proposed algorithms against the bench-

mark solution in terms of service request delay margin fairness, acceptance rate, and node

resource utilization. We assess the results individually in each snapshot, and the final result

is the average value in all snapshots.
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Fairness for Varied Service Request Arrival Rates

This study aims to maximize fairness in service delay margins between competing mission-

critical service requests. As shown in Figure 2.3a, both the proposed algorithms FAGD MASC

and FASD MASC outperform the benchmark by more than 14.6% and 19.5% in fairness for the

arrival rates of λ = 0.05 and λ = 0.2, respectively. The reason for this is that the TS MAPSCH

algorithm performs VNF mapping and scheduling to achieve maximum profit for a service

provider. It is obvious that maximum profit could be achieved while some requests are dis-

criminated against, resulting in poor service delay margin fairness. The proposed algorithms

prioritize maintaining fairness in the service delay margins for all requests, resulting in bet-

ter fairness performance compared to the benchmark algorithm, as evident in Figure 2.3a.

However, fairness is expected to decrease with increasing arrival rates. This is due to the

challenge of finding link and node mapping strategies to maintain fairness when faced with

an influx of mission-critical service requests and limited network resources. However, the

proposed algorithms consistently strive to maintain service delay margin fairness, unlike the

benchmark solution, resulting in gradual and slight degradation.

Acceptance rates for different service request arrival rates

We compare the performance of the proposed algorithms with the benchmark in terms of the

acceptance rate of service requests at different arrival rates. As depicted in Figure 2.3b, the

proposed solutions exhibit higher service acceptance rates compared to the benchmark. At a

service rate of λ = 0.05, there is a gap of approximately 2.0% between the proposed algorithms

and the benchmark. This gap widens further at higher service rates (e.g., at λ = 0.2, the

gap exceeds 12.6%). This improvement comes from two main factors: i) Unlike TS MAPSCH,

FAGD MASC and FASD MASC employ a fine-grained VNF mapping and scheduling strategy at the

VNF level, enhancing resource utilization efficiency to accommodate more service requests.

ii) The topology-aware VNF mapping and scheduling strategies of the proposed algorithms

result in accepting more service requests, considering factors such as the continuity indicator

and link availability (as described in Equation (2.13l) and elaborated in Section (2.5.4)).

Average Number of Nodes Used Per Service

The number of nodes used per service is defined as the total number of nodes required

to process the VNF components to complete a corresponding service request. As shown in



50 Chapter 2

Figure 2.3c, the proposed algorithms accept service requests with fewer nodes than TS MAPSCH.

Unlike the benchmark, the proposed algorithms apply the VNF mapping and scheduling

strategy at the VNF level instead of the service level ( service-by-service scheme), which

provides a more fine-grained strategy to deploy service requests with fewer SEC nodes and

network links. For example, as shown in Figure 2.3c, the number of nodes used to deliver

service requests shows that the gap between the proposed algorithms and the benchmark

reaches approximately 8.75% and 22.46% for λ = 0.05 and λ = 0.20, respectively. In other

words, the FASD MASC algorithm enables the provisioning of 100 service requests with at least

8-22 fewer nodes than the benchmark. Therefore, the proposed algorithms ensure better

resource utilization than the benchmark, which consumes fewer nodes and links.
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Figure 2.3: Performance evaluation with varying service arrival rate
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Acceptance Rate with Varying Service Request Continuity

To assess the effect of dynamic satellite network topology on the acceptance rate of ser-

vice requests spanning multiple snapshots, we compare the proposed algorithms with the

benchmark. We initially analyze scenarios where no requests continue between snapshots

(0% continuation rate), gradually increasing the continuation rate to 100% in each experi-

ment. As illustrated in Figure 2.4, the service acceptance rate of the proposed algorithms

experiences a slight decline with an increasing number of service requests continuing into the

next snapshot. In contrast, the performance of the benchmark deteriorates notably as the

proportion of continuing requests increases. For example, when no requests continue to the

next snapshot (i.e., 0% of available requests), the benchmark achieves an acceptance rate of

around 90.9%. However, when all service requests continue to the next snapshot (i.e., 100%

of available requests), the service request acceptance rate of the benchmark drops to approx-

imately 83%, signifying a degradation of nearly 7.9% due to the time-varying topology. This

degradation is expected to be more pronounced in highly dynamic network topologies like

LEO constellations. In contrast, the proposed algorithms show only a slight degradation of

less than 0.81% because they consider both the state and availability of the link in their VNF

mapping and scheduling strategies. Therefore, substantial improvements in the performance

of the proposed algorithms over the benchmark can be attributed to their effective mitigation

of time-varying topology challenges.
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Figure 2.4: Service acceptance rate continuity over snapshots
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2.5.5 Algorithm Complexity

Time Complexity Analysis for Algorithm 1

In this algorithm, the innermost function, the Dijkstra shortest path algorithm, is invoked

O(nvnf ) times, where nvnf is the maximum number of VNF components per service request.

The time complexity of the Dijkstra shortest path algorithm is O(|E|+|N|log|N|) in a graph

G = (N,E) [93], where |N| and |E| are the number of nodes and links in the graph topology,

respectively. Therefore, Algorithm 1 has a time complexity of O(nvnf · (|E|+|N|log|N|)),

depending on the number of VNF components in a service request and the size of the network.

Time Complexity Analysis for FAGD MASC Algorithm

If we denote maxitr as the maximum number of iterations to find the optimum solution, the

Dijkstra shortest path algorithm is invoked maxitr times for each service request. Therefore,

the time complexity of Algorithm 2 can be defined as O(|N|·|Ssfc(t)|·nvnf · (|E|+|N|log|N|)),

which mainly depends on the size of the network (|N| and |E|), the number of requests

(|Ssfc(t)|), and the number of VNF components per service request (nvnf ).

Time Complexity Analysis for FASD MASC Algorithm

The time complexity of the FASD MASC algorithm depends on the SA parameters, including the

initial temperature Temp0, cooling rate rcool, and Markov chain length L. The time complex-

ity of an SA algorithm can be defined by L log 1
rcool

Temp0 [88]. Therefore, the time complexity

of FASD MASC shown in Algorithm 3 is O(L log 1
rcool

Temp0 · |Ssfc(t)|·nvnf · (|E|+|N|log|N|)),

which depends not only on the initial SA parameters but also on the sizes of the service

requests and the network.

The TS MAPSCH algorithm has a time complexity of O(|Ssfc(t)|· log(|Ssfc(t)|)) for sorting

service sets and O(|N|·nneigh · |N|· log(|N|) + |Ssfc(t)|log|Ssfc(t)|) overall, where nneigh is the

number of neighbors and maxitr is the maximum allowed iterations.

The computational complexity of TS MAPSCH is higher than that of FASD MASC in terms of

service requests O(|Ssfc(t)|· log(|Ssfc(t)|)). However, FAGD MASC shares the same complexity

as TS MAPSCH in this aspect. Moreover, both the proposed algorithms and the benchmark

have similar complexities regarding network size, such as the number of SEC nodes. While

FASD MASC exhibits higher computational complexity than FAGD MASC due to its initial pa-
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rameters, it performs steadily in high service arrival scenarios. Thus, FASD MASC is preferable

for high service arrival rates, while FAGD MASC is better suited for low arrival rates due to its

lower convergence time and comparable performance.

Algorithm Complexity

FAGD MASC O(|N|·|Ssfc(t)|·nvnf · (|E|+|N|·log(|N|)))

FASD MASC O
(
L · log 1

rcool

(Temp0) · |Ssfc(t)|·nvnf · (|E|+|N|·log(|N|))
)

TS MAPSCH O(|N|·M · |N|·log(|N|) + |Ssfc(t)|·log(|Ssfc(t)|)) [61]

Table 2.3: Algorithm complexity comparison

In summary, the proposed FASD MASC outperforms benchmarks in service acceptance rate

and fairness, with improvements of 10% and 15%, respectively. This superior performance is

due to two main factors: (1) It facilitates VNF re-mapping and re-scheduling, dynamically

adjusting strategies to match traffic demand and infrastructure changes. (2) Its topological

awareness, considering link state and availability, enhances performance. Besides its superior

performance, the proposed solution’s lower time complexity renders it well-suited for prompt

service provisioning, especially for mission-critical services. From an end-user perspective,

this improvement ensures consistent service delivery, reduced latency, and higher reliability.

For service providers, optimized resource utilization and increased service acceptance rates

enhance operational efficiency and support a larger user base without compromising quality.

2.6 Conclusion

In this chapter, we study dynamic VNF mapping and scheduling strategies in SDN/NFV-

enabled satellite edge networks for mission-critical applications. We proposed two heuristic

algorithms, a greedy-based and an SA-based approach, to address the VNF mapping and

scheduling problem in a dynamic NGSO system. The algorithms facilitate VNF re-mapping

and re-scheduling, dynamically adjusting strategies to match traffic demand and infrastruc-

ture changes. Their topological awareness, considering link state and availability, results

in superior performance compared to existing solutions. In conclusion, our study presents

a novel VNF mapping and scheduling strategy for mission-critical applications, advancing

satellite edge computing for timely and reliable communication. The approach holds po-

tential for applications in disaster response, remote medical care, and other time-sensitive

operations.
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Content Caching in Multi-Layer

Satellite Edge Networks

Satellite Edge Computing (SEC) integrated with multi-layer networks is a promising solution

for on-board content caching to meet the stringent content delivery requirements in the future

network. On-board content caching is challenging in satellite edge networks because of lim-

ited on-board resources, dynamic topology, and fluctuating traffic demand. Addressing the

challenges of dynamic network topology and fluctuating traffic demands requires frequent

cache updates. However, this introduces cache reconfiguration overhead, which overloads

feeder links and increases cache update delays. To address these challenges, we propose an

on-board dynamic cache reconfiguration strategy that maximizes the cache hit rate while min-

imizing reconfiguration overhead. We propose a proximity-based content popularity model

and an AoI-aware caching strategy to optimize on-board satellite resources, enhancing the

cache hit rate and ensuring content freshness. We propose a greedy algorithm for an initial

and fast solution for caching contents and enhance it with a GA-based approach. Simulations

with realistic datasets demonstrate that the proposed solution outperforms the Cooperative

Content Caching (CCC) benchmark by 11.63% and 9.25% in terms of cache hit ratio and

feeder link load, respectively.

3.1 Introduction

In recent years, there has been a surge in demand for mobile data traffic. According to the

Ericsson forecast, mobile data traffic is expected to triple by 2030 [94], with video traffic com-

54
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prising over 74% of the total. With the exponential growth of such data-hungry applications

and increasing demand for ubiquitous connectivity, satellite networks are becoming integral to

extending network services to remote and underserved areas. However, the inherent latency

and limited bandwidth of satellite links remain significant challenges in traditional bent-pipe

satellite architecture, especially for delay-sensitive or data-intensive applications.

To alleviate these challenges, on-board content caching is considered as a promising so-

lution. On-board caching involves storing frequently requested or latency-sensitive content

directly on satellites, which significantly reduces content retrieval latency and feeder link

load, enhancing the overall Quality of Experience (QoE). In contrast to conventional caching

strategies that rely on ground-based infrastructure, on-board caching leverages satellite stor-

age resources, Inter-Satellite Links (ISLs), and global satellite network coverage to facilitate

more efficient and ubiquitous content distribution. Satellite Edge Computing (SEC)which

integrates computing and storage resources within satellite constellations [95] is considered a

key enabler of on-board caching by providing satellite-based storage capabilities.

To achieve seamless global coverage and address the diverse performance requirements

of next-generation services, modern satellite networks are evolving into multi-layer architec-

tures comprising Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary

Earth Orbit (GEO) satellites [96]. Integrating on-board caching across all layers unlocks

its full potential by leveraging the distinct advantages of each orbital layer. SEC-enabled

GEO satellites offer persistent wide-area coverage and are well-suited for long-term caching

of globally popular or archival content. However, their long distance from the ground results

in high content distribution and cache update delays, limiting their suitability for real-time

content delivery. In contrast, with their limited coverage and low latency, LEO satellites

are well-suited for caching locally popular and time-sensitive content. However, their high

mobility results in frequent handovers, and their limited coverage constrains consistent and

sustained content distribution. MEO satellites, orbiting between GEO and LEO, offer a bal-

ance of coverage, latency, and handover frequency, making them suitable for caching content

moderately in terms of global and local popularity and delay sensitivity. This hierarchical

caching strategy enhances scalability, content availability, and network robustness to support

applications with diverse requirements.

Although on-board content caching in multi-layer satellite networks is a promising so-

lution for next-generation applications, it also introduces new challenges due to the unique
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characteristics of satellite networks. These challenges include dynamic network coverage and

topology, as well as limited on-board resources, which can impact the content availability and

reliability of content distribution. Satellites have limited storage capacity, which restricts the

number of contents that can be cached on-board. This limitation necessitates an efficient

and effective caching strategy, making the design of such strategies challenging in order to

meet diverse user requirements. Content popularity-based content caching is a commonly

used content cache placement strategy that prioritizes caching frequently requested content

to improve retrieval speed and reduce latency [97, 98]. By guiding which content is cached

on each satellite node, the content popularity model directly influences storage allocation.

Given the limited on-board capacity, leveraging an accurate and adaptive popularity model

is vital to optimize storage utilization, enhance content availability across satellite nodes and

ultimately improve overall system performance.

The inherent mobility of non-geostationary orbit (NGSO) satellites leads to a dynamic

network topology, adding significant complexity to content caching strategies. Figure 3.1

illustrates the impact of satellite mobility on system performance. Satellite mobility in the

LEO and MEO layers causes link connectivity to change dynamically over time, resulting

in a time-varying network topology that directly affects content delivery paths and overall

service reliability. For example, at time τ = 1, satellite S5 cached the requested content and

successfully delivers it to the user through access satellite S4 via an established path (shown

by red arrows). At τ = 2, the link between satellites S1 and S4 becomes unavailable due to

relative mobility and changes in line of sight, requiring content access through satellite S2 and

resulting in increased delivery delay. At τ = 3, the disappearance of the link between S2 and

S5 renders the content inaccessible to the user, resulting in a cache miss unless the cache is

updated accordingly. Beyond these link dynamics, satellite mobility also causes time-varying

coverage areas that impact both user connectivity and the accuracy of content popularity

estimation. Since the content popularity model relies on request patterns within a satellites

current coverage area, retaining historical user request statistics without adaptation can lead

to irrelevant caching and inefficient content placement. Consequently, this inefficiency may

cause longer delivery delays or increased cache misses.

Furthermore, the dynamic and heterogeneous nature of ground service requests, combined

with the rapid movement of NGSO satellites, complicates caching decisions in multi-layer

satellite networks. To mitigate these issues, frequent and timely cache updates are necessary;
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Figure 3.1: Time-varying satellite network topology.

however, this introduces cache reconfiguration overhead, which can overload feeder links and

lead to increased update delays. A cache-to-cache update scheme can reduce this overhead by

updating caches using existing on-board content rather than relying on ground-based sources.

Nevertheless, repeatedly relying on on-board caches as content servers risks serving outdated

or less relevant information, particularly for highly dynamic content such as social media

feeds, weather updates, and road condition reports that require timely refreshes.

3.1.1 Contributions

In this work, we propose an on-board content caching with a dynamic cache reconfiguration

(OCCR) scheme for multi-layer satellite networks consisting of SEC-enabled LEO, MEO, and

GEO satellites that jointly optimizes cache hit rate and cache reconfiguration overhead. In

the context of this work, the caching process involves two key decisions: (1) content cache

placement, which identifies an optimal satellite node to cache a content item, and (2) content

server selection, which determines an optimal node to update the designated cache. Cache

reconfiguration overhead refers to the combined impact of feeder link load and content cache

placement delay. Moreover, OCCR performs the cache placement by optimizing storage re-

sources in the satellite constellation to maximize cache hit rate and ensure user requirements.

Concurrently, OCCR proposes an on-board cache update scheme where satellites with cached

content serve as content servers to minimize reconfiguration overhead. However, using on-

board caches repeatedly as content servers can lead to outdated or less relevant information,

especially for dynamic content such as social media feeds, weather updates, and road condi-

tion reports, which need frequent updates to remain relevant. Therefore, in this study, we

utilize the AoI [99], a widely recognized metric that quantifies the time elapsed since the last

content update. We model the AoI of on-board cached content to assess its freshness and
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relevance- an important aspect that existing studies on on-board content caching have not

adequately addressed. The key contributions of this work are summarized as follows:

• We design a proximity-based content popularity model that optimizes content caching

by leveraging nearby satellite resources to enhance cache hit rates.

• We present an on-board cache update scheme that allows cache nodes to serve as addi-

tional content servers alongside traditional cloud-based servers, thereby reducing recon-

figuration overhead. Moreover, we introduce an AoI-aware on-board content caching

scheme to monitor and ensure content freshness.

• We formulate a joint on-board content cache placement and server selection problem

as an Integer Linear Programming (ILP), which aims to maximize the cache hit rate

while minimizing reconfiguration overhead.

• We propose a greedy heuristic approach to obtain a fast initial solution to the ILP

problem. Subsequently, we introduce a GA-based approach to enhance the cache hit

rate and reduce the cache reconfiguration overhead.

• We perform extensive simulations to evaluate the effectiveness of OCCR. The simulation

results show that the GA-based solution achieves a higher cache hit rate, lower feeder

link load, and cache placement delay compared to benchmarks.

3.2 Related Works

In this subsection, we discuss the existing literature on content caching in satellite networks,

content popularity-based cache placement, and cache reconfiguration. Table 3.1 summarizes

the literature review.

3.2.1 Content Caching in Satellite Networks

Existing literature [113] primarily utilizes bent-pipe architecture satellites for content distri-

bution. In addition, several existing works focus on content caching within a single orbit,

particularly on GEO [105, 108] and LEO [102] satellites. Du et al. [105] utilized Deep Re-

inforcement Learning (DRL) for content caching in GEO-based 6G networks. In [108], the

authors investigated resource allocation for content caching using a GEO satellite as a cloud

server. The study in [110] focused on cache placement in LEO satellite networks.
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Table 3.1: Literature review for on-board content caching

Related Works
Satellite Types Popularity

AoI
Reconfiguration
Overhead

Time-
Varying
Topology

LEO MEO GEO Local Proximity-
based

Zhu et al. [95], Bao et
al. [100]

✓ ✓ X ✓ X X X X

Rui et al. [101], Liu et
al. [98], He et al. [102],
Liang et al. [103], Hu et
al. [104]

✓ X X ✓ X X X ✓

Du et al. [105] X X ✓ ✓ X X X ✓
Nguyen et al. [106], Han
et al. [107], Gu et al.
[108], Chen et al. [97]

✓ X X ✓ X X X X

Manyou et al. [109] X X X ✓ X ✓ X X

Jiang et al. [110] ✓ X X X X X X ✓
Liu et al. [111] ✓ X ✓ ✓ X X X ✓
Tang et al. [112] ✓ X X ✓ X X X ✓
OCCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Some studies also explored cooperative content caching among satellites [95, 100], [112].

However, these studies are limited to satellites within the same orbital constellation. In [95]

and [112], the authors investigated cooperative content caching in NGSO satellites within

a single-orbit constellation. Some works [101–104, 111], [112] incorporate dynamic network

topology constraints into their cache placement strategies. The authors of [111] propose a

spectral clustering scheme to partition the satellite network to manage its dynamic topology

and the Artificial Bee Colony (ABC) algorithm for optimal cache placement. Rui et al. [101]

proposed a content caching strategy for LEO satellite networks with time-varying topology.

In [104], Hu et al. investigated a data-sharing strategy among NGSO satellites within a

single orbital constellation, considering satellite movement constraints. The authors in [102]

introduced a framework for learning-based content caching with dynamic topologies in STINs.

Liang et al. [103] explored content cache placement and scheduling in LEO-based STINs with

dynamic network topologies. To reduce content delivery latency, the authors of [112] explored

content caching within the LEO satellite constellation by employing a game theory-based

cooperative caching algorithm to optimize caching decisions across STINs while considering

the dynamic satellite coverage area and user request preferences.
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3.2.2 Content Popularity-based Cache Placement

Some recent works on content caching in satellite networks in [97,98] use content popularity

functions to prioritize content items and select corresponding cache nodes. These functions

dictate on-board resource utilization efficiency, ultimately determining overall system per-

formance. Chen et al. [97] proposed an energy-aware cache placement strategy for LEO

STINs by leveraging file popularity. In [98], the authors introduced a popularity-based cache

replacement scheme to improve caching performance.

3.2.3 Cache Reconfiguration

Liu et al. [111] investigated collaborative cache placement with inter-satellite updates. The

authors proposed transferring a copy of content items offloaded from a cloud-based content

provider between on-board caches. Manyou et al. et al. [109] proposed a queue-aware cache

content update scheduling algorithm to minimize the average AoI in terrestrial networks.

They leveraged user request queues and employed a constrained Markov Decision Process

(CMDP) and DRL to model the AoI of dynamic contents.

As depicted in Table 3.1, the existing literature does not address content caching in a

multi-layer satellite network integrating GEO, MEO, and LEO satellites, nor on-board re-

source utilization through an appropriate content popularity design. In addition, prior studies

overlook the impact of cache reconfiguration overhead and content freshness on system per-

formance. To bridge this gap, in this work, we optimize the cache hit rate and reconfiguration

overhead while ensuring content freshness. Unlike existing literature, this work focuses on ef-

ficient on-board resource utilization by designing an optimized content popularity function to

maximize the cache hit rate. Additionally, it leverages on-board cached content for updates

to minimize reconfiguration overhead.

3.3 System Model and Problem Formulation

As shown in Figure 3.2, we consider a multi-layer satellite network supporting on-board

content caching and distribution. RF or FSO ISLs connect adjacent satellites. Remote users

lack terrestrial network access and are covered by at least one satellite. They request content

items via RF uplinks using VSATs as user terminals. Each satellite gateway is connected

to specified satellites via FSO feeder links and to a cloud-based content provider server via
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Figure 3.2: Multi-layer satellite edge network for on-board content caching

fiber cables. The content provider server initially stores all content items, each representing

the most recent and up-to-date version. Based on content requests, copies of selected content

items are offloaded from the content provider server through the feeder links and cached on

designated satellites. To address the dynamic topology challenge, we segment the network

into sequential ordered time slots, within which the topology remains static.

We consider a distributed set of SDN controllers to manage and orchestrate content cache

placement and server selection. During each time slot, each satellite collects content request

statistics within its coverage area and reports them to a designated SDN controller at the end

of the time slot. The controllers then collaboratively aggregate data from their designated

satellites and other SDN controllers to make content caching decisions at the start of the next

time slot. Any standard SDN controller placement algorithm for satellite networks [114] can

be used to determine the SDN controllerh locations in our use case. Satellites with up-to-date

cached content serve as potential content servers for their respective items. Each satellite

receives content requests from its coverage area and associates each request with the nearest

node with the requested content.
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3.3.1 Network Model

In this work, we define a set of sequentially ordered time slots as T = ⟨1, . . . , t, . . . , T ⟩, where

each time slot has a duration of ∆t time units and T represents the recurrence period. We

model the multi-layer network at t ∈ T as an undirected graph Gt = (N,E), where N and

E denotes the set of all nodes and links in the network at time t. N is further divided

into subsets G, M, L, U, J, and cps, representing the sets of SEC-enabled GEO, MEO,

and LEO satellites, VSATs, gateways, and the content provider server, respectively. Thus,

N = G∪M∪L∪U∪ J∪ cps. We assume that the set of satellites, denoted S = {G∪M∪L},

where each satellite k ∈ S has a storage capacity kβ and a set of neighboring satellites kN (t)

at t. Each link eh,k ∈ E between nodes h ∈ N and k ∈ N has a bandwidth capacity eΩh,k(t) and

a propagation delay eDh,k(t) at t. Each user terminal k ∈ U is identified by its geographical

location and has no caching capability kβ = 0.

We assume A as the global coverage area that includes all possible areas the satellite

network can cover. A is represented as the set of M small regions A = ⟨1, · · · ,m, · · · ,M⟩.

We define the substellar point of k ∈ S at t as ek(RE , θk(t), ϕk(t)), where RE is the Earth’s

radius, θk(t) represents the complementary angle to the latitude of k ∈ S, π2 − latitude, and

ϕk(t) is the longitude of k ∈ S. The collection of all points within the k ∈ S coverage area at

t is defined as [50]:

Ak(t) = {ek(RE , θ, ϕ)|sin θ sin θk(t) cos (ϕ− ϕk(t))

+ cos θ cos θk(t) ≤ cosΨ},
(3.1)

where Ψ, θ, and ϕ represent the half-cone angle to the Earth’s core, the polar angle corre-

sponding to the latitude, and the azimuthal angle corresponding to longitude, respectively.

We define Rk
m(t) = 1 if satellite k ∈ S covers region m at time t (i.e., m ∈ Ak(t)) and 0

otherwise. Given the periodic motion of the satellite, Rk
m(t) is predetermined. We assume

each region is relatively small compared to each satellite coverage area. User terminals are

randomly distributed across the global coverage area. We define ℓmk (t) as a location indicator

for k ∈ U at t, which equals 1 if k ∈ U is located in region m ∈ A and 0 otherwise. Each user

terminal is located in exactly one region at t, and this is expressed as
∑
m∈A

ℓmk (t) = 1 where

k ∈ U. Two satellites h ∈ S and k ∈ S are visible to each other at t if both satellites are in
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Line-of-Sight (LoS), denoted as LoShk (t) and defined as:

LoShk (t) =


1 if Dh,k

euc(t) ≤ Dh,k
max(t)

0 otherwise,

(3.2)

where Dh,k
euc(t) is the Euclidean distance between h ∈ S and k ∈ S at t, and Dh,k

max(t) is their

LoS threshold [110]. In general, we model the visibility between nodes h ∈ N and k ∈ N

using an adjacency matrix, which is a common approach in graph-theoretic representations

of network topology. It is defined as:

Vkh(t) =


LoShk (t) if h ∈ S and k ∈ S∑
m∈A

ℓmk (t)R
h
k(t) if h ∈ S and k ∈ U,

(3.3)

We assume mutual visibility between nodes, i.e., Vhk(t) = Vkh(t). Additionally, no direct

connection exists between any two user terminals, i.e., Vhk (t) = 0 for k, h ∈ U.

3.3.2 Content Caching And Content Server Selection Model

We consider a set of C content items originally stored at the cloud content provider cps to

be cached on-board, denoted as C = ⟨1, . . . , c, . . . , C⟩. Each content item c ∈ C has a specific

storage requirement cβ and packet size cL. We define crk(t) = 1 if there is at least one request

for content item c ∈ C from user terminal k ∈ U at t and crk(t) = 0 otherwise. We model

the set of content popularity at satellite k ∈ S as Pk(t), where p
c
k(t) ∈ Pk(t) denotes the

hierarchical proximity-based content popularity of c ∈ C at k ∈ S at t.

Local Content Popularity Model

The local content popularity of c ∈ C at satellite k ∈ S is measured based on requests for the

content item c directly requested within the satellite coverage area, Ak(t), at t. We assume

this popularity follows a Zipf-like distribution, defined as [115]:

p1,ck (t) =
n−δ∑

l∈C
l−δ

, (3.4)
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where δ is the Zipf exponent that characterizes content preference and n is the rank of c ∈ C

at k ∈ S at t. A high δ indicates that demand is concentrated on a few popular content items,

while a low δ shows a more even distribution of requests across content items.

Proximity-Based Content Popularity Model

We model proximity-based content popularity p2,ck (t) in t is the popularity of a content item

c ∈ C requested in the coverage area of source satellite h ∈ S and is measured at a target

satellite k ∈ S, where both h and k belong to the same orbital layer. This popularity model

helps to utilize the storage resources of k to cache c that is requested at Ah(t).

p2,ck (t) =
1

|S|
∑

h∈S|h̸=k

p1,ch (t)(
Hh
k (t) + 1

)α , (3.5)

where, p1,ch (t) represents the local popularity of c ∈ C within Ah(t) at t. Hh
k (t) > 0 is a

proximity factor, which quantifies the number of hops between the target satellite k ∈ S

and the source satellite h ∈ S. The exponent α ≥ 0 determines the rate at which proximity

influences the propagation of content popularity. A higher α decreases the contribution of

more distant source satellites, ensuring that content requests from satellites closer to the

target satellite k ∈ S have a greater impact on proximity-based popularity estimation.

Hierarchical Proximity-Based Content Popularity

We calculate hierarchical proximity-based content popularity by considering the visibility

between satellites across different layers. In the multi-layer satellite network, the content

popularity of each item at a satellite in an orbital layer is the aggregated content popularity

from its visible satellites in the lower layer. The hierarchical proximity-based popularity of

c ∈ C at an LEO satellite k ∈ L at t is defined as:

p̂ck(t) =
p1,ck (t) + p2,ck (t)

2
, ∀k ∈ L (3.6)

where p1,ck (t) and p2,ck (t) represent the local and proximity based popularity of c ∈ C at

k ∈ S at t, respectively. For an MEO satellite k ∈ M at time t, the hierarchical proximity-

based popularity of c ∈ C is defined as the weighted sum of the hierarchical proximity-based
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popularity of c ∈ C at the set of LEO satellites h ∈ L visible to k at t (i.e., Vkh(t) = 1).

p̂ck(t) =

∑
h∈L
Vhk (t)p̂ch(t)∑

h∈L
Vkh(t)

, ∀k ∈M (3.7)

The hierarchical proximity-based popularity of c at a GEO satellite k ∈ G at t is defined

as the weighted sum of the hierarchical proximity-based popularity of c at the set of visible

MEO satellites h ∈M to k at t (i.e., Vkh(t) = 1).

p̂ck(t) =

∑
h∈M
Vkh(t)p̂ch(t)∑

h∈M
Vkh(t)

, ∀k ∈ G (3.8)

Remark 2. From equations (3.6), (3.7), and (3.8), it is evident that global content popularity

increases for the transition from lower-layer (LEO) to higher-layer (GEO). Consequently, the

proposed content popularity model suggests that globally popular content should be prioritized

for placement on higher-layer satellites (MEO or GEO). In contrast, locally popular content

should precede lower-layer satellites.

Finally, to ensure a valid probability distribution (i.e.,
∑
c∈C

pck(t) = 1, ∀k ∈ S), we normal-

ize the popularity derived from Equations (3.6), (3.7), and (3.8).

pck(t) =
p̂ck(t)∑

c′∈C
p̂c

′

k (t)
. (3.9)

AoI Model For Cached Content

To ensure the freshness and relevance of cached content, we introduce an AoI-aware caching

strategy. Specifically, for each content item c ∈ C cached at satellite node k ∈ S, the param-

eter ack(t) quantifies its age at time slot t. This parameter enforces a freshness constraint,

ensuring that only timely and relevant content is eligible to be used as a source for cache

updates. By prioritizing fresher on-board content from neighboring satellites, the proposed

approach reduces reliance on terrestrial cloud servers and mitigates feeder link load and con-

tent placement delay, thereby minimizing cache reconfiguration overhead. In communication

systems, status update information is regularly transmitted from a source to a remote desti-

nation to track the status of the destination system or data [116]. These status updates are
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Figure 3.3: Representation of a sample AoI process of content, c cached at node k with
timestamp, τ .

messages, encapsulated in packets, each containing information about one or more variables

of interest along with the timestamp indicating when the sample was generated [117]. In this

work, we consider the cloud-based content provider server, cps ∈ N, as the source node for

dynamic content items and a selected satellite node as the destination for each cached content

item. To track and update the timeliness of cached content, status update are periodically

transmitted from the cloud content provider server to the corresponding on-board cache node.

Using content servers from the on-board cache at different time slots can compromise content

freshness. We propose an AoI-based model to ensure the freshness of cached content. Inspired

by [118], we model cached content status information updates as a communication system in-

volving a cloud-based content provider, cps ∈ N and SEC-enabled satellites, k ∈ S, as source

and destination nodes, respectively, interconnected via a communication link that includes

the terrestrial links, gateways, and feeder links. The content provider server generates and

transmits status updates to designated on-board cache nodes to monitor the timeliness and

freshness of cached content. This process is modeled as an M/M/1 queueing system, where

status update follow a Poisson distribution with an arrival rate λ and are transmitted at an

average service rate µ [118].

We consider a status update i for c ∈ C be generated at cloud server cps at time τ
(c,cps)
i ≥ 0
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and received by k ∈ S at time τ ′i
(c,k) ≥ τ (c,cps)i . In this chapter, we adopt the AoI model of the

sawtooth function [118]. Figure 3.3 illustrates a sample AoI process for a content item cached

on-board with varying timestamps. τ
′(c,k)
i denotes the arrival time at destination node k of

the ith update packet belonging to content c. Conversely, τ
(c,cps)
i represents the generation

time of the ith update packet for content c at the source node (content provider) cps. First,

upon the arrival of the first update, (i.e., i = 1) at the cache node, we initialize the AoI for

c at k as the system delay, Ti
(c,k) as:

ack(τ
′
i
(c,k)) = Ti

(c,k) = τ ′i
(c,k) − τi(c,cps), (3.10)

In addition, during the interval τ ∈ [τ ′i−1
(c,k), τ ′i

(c,k)], if no updates are received at the desti-

nation k ∈ S, the AoI of c ∈ C increases linearly and is defined as:

ack(τ) = Ti−1
(c,k) + (τ − τ ′i−1

(c,k)) (3.11)

Upon receiving an update for i ≥ 2, the AoI resets to the system time, which is the delay in

traversing the communication medium and is defined as:

ack(τ) = Ti
(c,k) = ack(τ

′
i
(c,k))− (τi

(c,cps) − τi−1
c,cps) (3.12)

Therefore, the AoI is updated after the arrival of the update as ack(τ) = T
(c,k)
i . In addition, we

model the interarrival time Trarrpois(c, k)i between the ith and (i− 1)th status updates of c ∈ C

in k ∈ S employing an exponential distribution, which is characteristic of the Poisson arrival

process in a M/M/1 queuing model [90] and defined as Trarrpois(c, k)i = −
log(1−R)

λ . Where λ

is the mean arrival rate, and R ∼ U(0, 1) is a uniformly distributed random variable.

From our on-board content cache placement strategy, placement is executed at the be-

ginning of each time slot defined as τ = t∆t. Therefore, the AoI of content c ∈ C cached

k ∈ S at the beginning of the tth time slot, t∆t ∈ [τ ′i−1
(c,k), τ ′i

(c,k)), i ≥ 1 is computed using

Equation (3.11):

ack(t) = Ti−1
(c,k) + (t∆t− τ ′i−1

(c,k)), (3.13)

The AoI increases linearly until the next update is received. If no status update is received at

τ = t∆t, the AoI follows the linear increase model. If a status update arrives at τ = t∆t, the
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AoI is updated using Equations (3.10) and (3.12). The following binary variable expresses

whether c ∈ C cached at k ∈ S is up-to-date at t:

cγ,k(t) =


1, if ack(t) ≤ acmax,

0, otherwise.

(3.14)

where acmax is the maximum allowable AoI threshold for c ∈ C. A cached item is considered

outdated if its AoI exceeds this threshold. We consider the cloud-based content provider cps

stores all fresh content items (i.e., accps(t) = 0, ∀c ∈ C).

3.3.3 Problem Formulation

This section presents the formulation for on-board content caching with dynamic reconfigu-

ration, focusing on content cache placement and server selection strategies. The formulation

incorporates two key constraints: reconfiguration overhead and cached content freshness.

We define the decision variable x
′c
k (t) as a binary variable that indicates whether c ∈ C is

cached at k ∈ S at t

x
′c
k (t) =


1, if content c is cached at satellite k at t,

0, Otherwise.

(3.15)

We consider a content server h that can either be an on-board cache, where a copy of the

cached content is used to update another cache without relying on the cloud-based content

provider server, or a cloud-based content provider server, denoted as h ∈ {S ∪ cps}. The

destination is a satellite k ∈ S. Content cache placement involves migrating a selected c ∈ C

from the chosen content server h to the designated cache k at t. We define a content server

selection strategy, y
′c
k,h(t), which determines whether h ∈ {S ∪ cps} is selected as the content

server for c ∈ C to cache at k ∈ S and expressed as:

y
′c
k,h(t) =


1, if h ∈ N is selected to update on-board cache k ∈ S to cache c at t,

0, Otherwise.

(3.16)
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Cache Hit Rate

The cache hit rate is defined as the probability of serving a request from an on-board cache.

The hit rate of contents at a node k ∈ S at t is:

ηcnt,Hk (t) =
1

|C|
∑
c∈C

pck(t) x
′c
k (t) (3.17)

where pck(t) is the popularity of c ∈ C at k ∈ S at t.

Cache Reconfiguration Overhead

We model the cache reconfiguration overhead in terms of content placement delay and feeder

link load.

• Content Placement Delay

The content placement delay of c ∈ C from h ∈ {S ∪ cps} to cache at k ∈ S at t is

defined as:

dcnt,ck,h (t) = y
′c
k,h(t)

( ∑
eh,k∈Eh,k(t)

eDh,k(t) + dtxt,ck,h (t)

)
, (3.18)

where Eh,k(t) denotes the set of links that belong to the shortest path between h ∈ N

and k ∈ S at t, eDh,k(t) is the propagation delay of eh,k ∈ E, and dtxt,ck,h (t) signifies the

transmission delay for c from h to k at t. The normalized placement delay Equation

(3.18) is expressed as:

ηcnt,Dk (t) =
1

|C|(|S|+1)

∑
c∈C

∑
h∈{S∪cps}

dcnt,ck,h (t)− dcnt,ck,k (t)

dcnt,ck,cps(t)− d
cnt,c
k,k (t)

, (3.19)

dcnt,ck,cps(t) represents the cache placement delay when cps is selected as the content server

for caching c at k. Since the feeder link is a bottleneck for content cache placement, we

focus on its capacity to model the transmission delay from cps to the selected satellites

although there can be multiple links between gateways and cps. The placement delay

for c from cps to k is given by:

dcnt,ck,cps(t) = y
′c
k,cps(t)

∑
j∈J

ζjk(t)(e
D
cps,j(t) + eDj,k(t) + dtxt,cj,k (t)), (3.20)
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where J denotes the set of gateways associated with satellites. ζjk(t) is a binary variable,

equal to 1 if gateway j ∈ J is assigned to satellite k ∈ S at time slot t, and 0 other-

wise. We assume that each satellite node is associated with exactly one gateway, i.e.,∑
j∈J

ζjk(t) = 1. Additionally, eDcps,j(t) and eDj,k(t) represent the propagation delay of the

link between the cloud server cps and gateway j, and the feeder link between gateway

j and satellite node k, respectively, at time slot t. dtxt,cj,k (t) denotes the transmission

delay for content item c over the feeder link ej,k at time slot t.

• Feeder Link Load

The feeder link load is the ratio of consumed bandwidth to its total capacity, comprising

two main components:

1. Status Update Information Streaming

This component represents the bandwidth allocated to transmit status updates

to track the timeliness of cached content and ensure its relevance. We assume

that update packets are generated exclusively by the content provider cps and are

delivered through feeder links to satellites caching the corresponding content item.

The average bandwidth allocation for streaming the status update of c ∈ C cached

at k ∈ S via feeder link ek,j ∈ E at t is given by:

ω1,c
k,j (t) = ζjk(t) lim

∆τ→0

1

∆τ

∫ t∆t+∆τ

t∆t
λccLx

′c
k (t)dt, (3.21)

where, cL and λc represent the packet size and arrival rate of c ∈ C at k, respec-

tively.

2. Content Cache Placement

This component quantifies the bandwidth of a feeder link utilized for transferring

c ∈ C from cps to k ∈ S at t (i.e., x
′c
k (t) = 1, y

′c
k,cps(t) = 1). The resulting traffic

load on feeder link ek,j ∈ E due to caching c at k is given by:

ω2,c
k,j (t) = ζjk(t)

cβ

dcnt,ck,cps(t)
y
′c
k,cps(t). (3.22)

The total normalized traffic load per content item on the feeder link associated
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with k ∈ S at t is defined as:

ηcnt,Lk (t) =
1

|C| |J|
∑
j∈J

ζjk(t)
∑
c∈C

ω1,c
k,j (t) + ω2,c

k,j (t)

eΩk,j(t)
. (3.23)

where |J| and |C| denote the number of gateways and content items in the network,

respectively. Moreover, eΩk,j(t) represents the bandwidth capacity of the link ek,j ∈

E at time t.

The on-board content caching with dynamic cache reconfiguration problem aims to de-

termine the optimal content cache placement and content server selection strategy in each

time slot that jointly maximizes cache hit rate and minimizes reconfiguration overhead while

ensuring content freshness. x
′
(t) and y

′
(t) are the decision variables for content cache place-

ment and content server selection, respectively, at t. The problem formulation is as follows:

max
x′ (t),y′ (t)

∑
k∈S

(
w1η

cnt,H
k (t)− (w2η

cnt,D
k (t) + w3η

cnt,L
k (t))

)
, (3.24a)

s.t. y
′c
k,h(t) ≤ x

′c
k (t)c

γ,h(t)x
′c
h (t− 1), ∀k ∈ S,∀h ∈ S ∪ cps, ∀c ∈ C, (3.24b)

y
′c
k,h(t) ≤ 1− cγ,k(t)xck(t− 1), , ∀k ∈ S,∀h ∈ S ∪ cps, ∀c ∈ C (3.24c)∑
h∈S∪cps

y
′c
k,h(t) ≤ x

′c
k (t), ∀k ∈ S, ∀c ∈ C (3.24d)

∑
c∈C

∑
k∈S

∑
h∈S∪cps

cβ

dcnt,ck,h (t)
y
′c
k,h(t) ≤ eΩm,n(t), ∀em,n ∈ Eh,k(t), (3.24e)∑

c∈C
(ω1,c
k,j (t) + ω2,c

k,j (t)) ≤ e
Ω
k,j(t), ∀k ∈ S, ∀j ∈ J (3.24f)∑

c∈C
cβx

′c
k (t) ≤ kβ, ∀k ∈ S, (3.24g)∑

h∈S∪cps
y
′c
k,h(t) ≥ (1− x′c

k (t− 1)cγ,k(t))x
′c
k (t), ∀k ∈ S,∀c ∈ C, (3.24h)

x
′c
k (t) ≤

∑
u∈U

cru(t), ∀k ∈ S, ∀c ∈ C, (3.24i)∑
n∈kN (t)

x
′c
n (t) ≤ 1, ∀k ∈ S, ∀c ∈ C, (3.24j)

cγ,cps(t)x
′c
cps(t) ≥ 1, ∀c ∈ ,∀t ∈ T, (3.24k)

{x′c
k (t), y

′c
k,h(t)} ∈ {0, 1}, ∀k ∈ S, ∀h ∈ S ∪ cps, ∀c ∈ C, (3.24l)

where w1, w2, and w3 represent weight factors for the cache hit rate, content placement delay,
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and feeder link load, respectively, with w1 + w2 + w3 = 1. The weighting factors w1, w2,

and w3 are operator-defined parameters, empirically tuned to balance the trade-off between

cache hit rate and cache reconfiguration overhead, in line with network policy and service

priorities. Constraint (3.24b) ensures that cache reconfiguration is initiated only if: 1) an on-

board cache node is selected to cache a corresponding content item in the current time slot.

2) The selected content server has cached the content item, and 3) the content item is still

up-to-date in the current time slot t which ensures the freshness of the contents. Constraint

(3.24c) prevents redundant cache placement of a content item that is already cached and

up-to-date on a node, while constraint (3.24d) ensures that each content cache is updated

by a single designated content server, thereby enhancing operational efficiency. Constraints

(3.24f) and (3.24e) ensure that a feeder link and ISL do not exceed their bandwidth capacity,

preventing traffic congestion, respectively. Constraint (3.24g) guarantees that the on-board

cache remains within the storage limits of each satellite. Constraint (3.24h) ensures that

a cache reconfiguration occurs if the following conditions are met: the on-board cache is

selected to store a content item, and either the content item is outdated or the cache does

not contain the specified content item. The parameter ack(t) quantifies the age of content

item k ∈ C at satellite node k ∈ S and serves as an offline-computed input to enforce content

freshness constraints, ensuring only timely content is eligible for cache updates. In such

cases, a content server must be selected from the available content servers in the network.

Constraint (3.24i) ensures that a content item cannot be cached unless it has been requested.

Constraint (3.24j) ensures that only one type of content is cached on adjacent satellites,

promoting the efficient use of ISLs and storage resources. Constraint (3.24k) ensures that

the content provider maintains all possible content items, and these items remain fresh or

up-to-date throughout all time slots, while Constraint (3.24l) enforces the binary nature of

the decision variables.

The problem in Equation (3.24) is an ILP problem with binary decision variables x
′
(t)

and y
′
(t). Since content cache placement problems are typically NP-hard [119], we propose a

GA-based solution for its ability to explore complex solution spaces and fast and near-optimal

solutions efficiently.
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3.4 Proposed Dynamic Content Caching For Time-Varying

Satellite Network

Greedy algorithms are widely used in satellite content caching due to their low time com-

plexity and ease of implementation [103]. However, they often converge to local optima and

are generally insufficient to solve large-scale problems. On the other hand, GAs are effective

in solving large-scale problems and can provide near-optimal solutions [119] but are prone to

slow convergence. To take advantage of the low complexity of greedy algorithms along with

the large-scale optimization capabilities of GAs, we propose Greedy-enhanced Genetic algo-

rithm for content Cache (G-GenCache), a two-stage heuristic algorithm to obtain suboptimal

solutions to the ILP problem. In the first stage, a greedy-based approach generates a fast

initial solution. In the second stage, a GA-based algorithm refines the solution, enhancing

accuracy and overcoming local optima to achieve near-optimal performance. This allows the

GA to start from a solution that is closer to the optimum, unlike the randomly initialized GA,

which typically begins far from the optimal region of the search space. Although incorporat-

ing the greedy algorithm introduces a slight additional delay during the initialization phase,

it significantly accelerates the overall convergence of the GA by providing a more informed

starting point.

3.4.1 Greedy Based Algorithm

We design a Greedy algorithm for Content Caching and Server Selection (GR CCSS) to

obtain a fast initial solution to the ILP problem. Algorithm 6 outlines the workflow of

GR CCSS, which takes a set of content items C, SEC-enabled satellites S, content popularity

P(t), and network topology Gt at each time slot t as input. The algorithm returns a jointly

optimized strategy for content cache placement and content server selection at each time

slot t as output {x′∗(t), y
′∗(t)}. Initially, x

′∗(t) and y
′∗(t) are defined as zero matrices of

dimensions |C|×|S| and |C|×|S|×(|S|+1), respectively (line 1 ), signifying that all caches are

initially unoccupied and no content servers have been designated. Next, the content items at

each satellite node are ranked in descending order based on their popularity values, computed

using Equation (3.9) (line 2 ). The caching process then proceeds sequentially, prioritizing the

most popular content items while ensuring compliance with Constraints (3.24g), (3.24i), and

(3.24j) (line 6 ). Concurrently, for each cached content item, the nearest node that satisfies
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Algorithm 6: Proposed GR CCSS Algorithm

Input: S,C,p(t), Gt
Output: πcnt,∗(t)← {x′∗(t), y

′∗(t)} ▷ Optimal solution at t
1: {x′∗(t), y

′∗(t)} ← {0|C|×|S|, 0|C|×|S|×(|S|+1)}
2: Sort content items C on each satellite by popularity p(t) in descending order
3: for Each satellite, k ∈ S in the network do
4: for Each content type, c ∈ C in the sorted list do
5: if Constraints (3.24g), (3.24i) and (3.24j) holds True then
6: x

′c
k (t) ← 1 ▷ Cache c

7: y
′c
k,h(t) ← 1 ▷ Find the nearest node h satisfying constraints (3.24b)− (3.24f),
(3.24h) and (3.24k)

8: end if
9: end for

10: end for
11: return πcnt,∗(t)← {x′∗(t), y

′∗(t)} ▷ Update the optimal solution at t.

Constraints (3.24g), (3.24i), and (3.24j) is selected as the designated content server (line

7 ), where the Dijkstra algorithm is used to find the path between the cache and potential

content servers. Finally, the algorithm updates and returns the optimal solution, πcnt,∗(t) =

{x′∗(t), y
′∗(t)} (line 11 ).

In Algorithm 6, the Dijkstra algorithm is executed O(|S|×|C|) times, each with a time

complexity of O(|E|+|N|log|N|) [119]. Thus, the overall time complexity of Algorithm 6

is O(|S|×|C| (|E|+|N|log|N|)), indicating its dependence on both network size and content

volume.

3.4.2 GA Based Algorithm

In this stage, we develop a GA-based meta-heuristic algorithm within G-GenCache to obtain

a near-optimal solution to the ILP problem, achieving better performance than the Greedy-

based approach within a reasonable computational time. GA is well-suited for solving this

problem as it efficiently explores large solution spaces and proven convergence. Moreover,

GAs provide a robust balance between exploration and exploitation, making them highly

effective for NP-hard problems, including content caching tasks [119]. Inspired by biolog-

ical evolution, GAs utilize terms such as chromosome, gene, population, parents, offspring,

and fitness function. In GAs, each individual in a population represents a potential solu-

tion encoded by a chromosome composed of genes. In each generation, individuals with

high fitness values are selected as parents for the next generation through a natural selection
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process. These parents undergo crossover operations to generate offspring, followed by mu-

tation, which enhances genetic diversity by randomly modifying genes to prevent premature

convergence. The proposed algorithm can address the risk of premature convergence to local

optima by carefully selecting its parameters and leveraging the GA exploration-exploitation

functionality. The primary components of GA are as follows:

Chromosome Encoding

G-GenCache has two components for chromosome encoding: content cache placement, x
′
(t)

and content server selection, y
′
(t) strategy. We formulate chromosome q based on the solution

represented by the joint decision variables x
′
(t) and y

′
(t), which have dimensions |C|×|S| and

|C|×|S|×(|S|+1), respectively. Each gene within the chromosome corresponds to a binary

entry x
′c
k (t) ∈ x

′
(t) and y

′c
k,h(t) ∈ y

′
(t).

Population Initialization

In G-GenCache, we begin by creating a population of size Np. Each chromosome q is gener-

ated by randomly generating the genes x
′c
k (t) ∈ x

′
(t) and y

′c
k,h(t) ∈ y

′
(t) while ensuring they

satisfy Constraints (3.24b) to (3.24j). A diversified population enhances the ability to explore

new solutions and avoid premature convergence.

Fitness Evaluation

In G-GenCache, the fitness of an individual q, denoted as fitness(q), is evaluated using the

objective function in Equation (3.24a). It is expressed as:

fitness(q) =
∑
k∈S

(
w1η

cnt,H
k (t)− (w2η

cnt,D
k (t) + w3η

cnt,L
k (t))

)
(3.25)

where ηcnt,Hk (t), ηcnt,Dk (t), and ηcnt,Lk (t) represent the average cache hit rate, content cache

placement delay, and feeder link load, respectively, for the corresponding x
′
(t) and y

′
(t) of q.

Selection Operation

The selection process prioritizes individuals with higher fitness, increasing their chances

of being chosen as parents for the next generation. We employ the roulette wheel selec-

tion method [120], which assigns selection probabilities to chromosomes based on their fit-



76 Chapter 3

ness. The selection probability of chromosome q from the current population is given by:

P(q) = fitness(q)
Np∑
l=1

fitness(l)

. Next, we determine how often a chromosome should appear in the next

generation based on its expected count, defined by selection probability. The expected value

of the selection probability, P(q) is:

E[P(q)] = fitness(q)

1
Np

Np∑
l=1

fitness(l)

. (3.26)

The actual count is obtained by rounding the expected value to the nearest natural number,

indicating which chromosomes are selected and their frequencies. Therefore, individuals with

E[P(q)] ≥ 1 are selected as parents to generate offspring for the next generation. The

frequency of an individual refers to how often it appears as a parent, with a higher frequency

indicating its replacement of weaker individuals.

Crossover Operation

In the G-GenCache, we use the uniform crossover method [121] to create diverse offspring.

This involves randomly selecting two parents (q1 and q2) and combining their cache placement

strategies xq1 and xq2 using a random mask matrix. The mask matrix dictates which parent’s

bit each offspring element inherits. If an element of the mask matrix is greater than the

crossover rate rc, the bit is inherited from the first parent. Otherwise, it is inherited from

the second parent. Careful selection of the crossover rate is important to avoid stagnation

in local optima, ensuring the genetic algorithm maintains a balance between exploring new

solutions and refining existing ones. If any of the offspring bits violates at least one of the

constraints (3.24h) - (3.24j), the violating element is set to 0 to maintain validity. The next

step is to determine the content server selection strategy yq from the content cache placement

strategy xq after the crossover.

Algorithm 7 illustrates the content server selection process in G-GenCache for an indi-

vidual q. It takes the cache placement strategy xq of q, content freshness, cγ,k(t) ∈ Cγ(t),

network topology Gt, and available resources at each time slot t as inputs, returning a feasible

content server selection strategy yq. Initially, yq is set as a zero matrix of size |C|×|S|×(|S|+1)

(line 1 ). For each satellite k ∈ S and content c ∈ C (where x
′c
k = 1 in xq), a content server

h ∈ {S ∪ cps} is randomly selected from nodes satisfying constraints (3.24b) to (3.24f) and
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Algorithm 7: content server Selection Algorithm

Input: xq, Gt, Cγ(t)
Output: Content server selection strategy: yq

1: yq ← 0|C|×|S|×(|S|+1)

2: for Each satellite, k ∈ S in the network do
3: for Each content type, c ∈ C do
4: h ← Select a source node for c randomly from the nodes, S ∪ cps
5: if x

′c
k == 1, then y

′c
k,h ← 1

6: end for
7: end for
8: return yq ▷ Update the content server selection strategy

(3.24h) (line 4 ). The corresponding node selection strategy is set to 1 (y
′c
k,h = 1 in yq),

otherwise set to 0 (line 6 ). This process iterates for all satellites and contents. Finally, the

algorithm returns the content server selection strategy yq of q (line 8 ). The time complexity

of Algorithm 7 is O(|S|·|C|).

Mutation Operation

The mutation process introduces changes in the chromosomes. In this work, we generate a

random value between 0 and 1 to determine the mutation. If this value exceeds the mutation

rate rm, a swap is performed between two satellites - one that already caches the content

and one that does not. This swap updates the cache placement. The content server selection

strategy is then computed using Algorithm 7, with the updated content cache placement

strategy xq as input. Mutation introduces diversity to explore better solutions. Careful

selection of the mutation rate is important to avoid stagnation in local optima, ensuring the

genetic algorithm maintains a balance between exploring new solutions and refining existing

ones.

Termination

The execution of the GA algorithm terminates when the number of generations exceeds the

upper bound Ng, or the fitness of the elite remains unchanged (fitness gap ϵGA ≈ 0) for a

specified number of consecutive generations, constM .

We initialize the population of size Np by randomly selecting cache nodes and content

servers that satisfy the constraints (3.24b)− (3.24j) (line 2 ). Additionally, we determine the

elite solution by computing the optimal strategy using Algorithm 6 (line 4 ). We identify the
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worst-performing individual with the lowest fitness value in the population (line 5 ). If its

fitness is lower than that of the elite, we replace it with the elite and update the population

accordingly (line 7 ). The elite individual is then updated with the best-performing individual

in the population, i.e., the one with the highest fitness value (line 7 ). The algorithm then

iterates through a loop for Ng generations (line 11 ). In each generation, parents are selected

from the current population based on the selection operation (line 13 ). These parents undergo

crossover to generate offspring according to the crossover rate rc (line 14 ). The offspring are

then mutated based on the mutation rate rm to introduce diversity and explore new solutions

(line 15 ). We then evaluate the fitness of these offspring and identify the worst-performing

individual (line 16 ). If its fitness is lower than that of the elite from the previous generation,

the elite replaces the individual (line 18 ) to maintain solution quality. The population is

updated with the new offspring, and the best individual becomes the elite of the current

generation (line 19 ). This iterative process continues until the iteration counter reaches its

maximum generation, Ng, or the fitness of the elite remains unchanged for a specified number

of consecutive generations. Finally, the algorithm updates the resources and outputs the final

elite as the joint optimal content cache placement and content server selection strategy (line

23 ).

The innermost functions of Algorithm 8 include population selection, crossover, and mu-

tation operations, each with a time complexity of O(Np). In addition, the algorithm in-

corporates the fitness function, which involves two main components: calculating the place-

ment delay using the Dijkstra algorithm, with time complexity of O(|E|+|N|log|N|), and

cache hit rate function, with time complexity of O(|S|). These functions are invoked at

most Ng times. Therefore, the overall time complexity of the G-GenCache algorithm is

O(Np Ng(|E|+|N|log|N|)), determined by the number of individuals in each generation, the

total number of generations, the number of contents, and the size of the network. G-GenCache

algorithm is executed on the SDN controller, orchestrating caching across all satellites. In

this model, the AoI parameter is precomputed and serves as input to the on-board caching

algorithms, which do not significantly impact their convergence.
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Algorithm 8: G-GenCache Algorithm

Input: S, C, p(t), Gt, Np, Ng, rc, rm, w1, w2, w3

Output: πcnt,∗(t)← {x′∗(t), y
′∗(t)} Optimal strategy at t

1: Set g ← 0 ▷ Initialize the current generation with 0
2: Initialize population with randomly selected cache nodes and content servers that

comply with the constraints (3.24b)− (3.24j)
3: bestF it ← Fitness based on Eg
4: Set Eg ← Optimal solution using Algorithm 6
5: Set q ← The wort performing individual in the population based on fitness (3.25)
6: worstF it ← Fitness of q
7: if worstF it ≤ bestF it, then q ← Eg
8: Eg ← Update the best performing individual in the population as elite
9: Converged ← False

10: Count ← 0
11: while g ≤ Ng and not Converged do
12: g ← g + 1 ▷ select the next generation
13: Select parents from the population based on the Selection Operation (3.26)
14: Perform crossover to generate offspring based on rc
15: Apply mutation to each offspring based on rm
16: q ← The worst performing individual from the mutated offspring
17: worstF it ← Fitness of q
18: if worstF it ≤ Fitness of Eg−1, then q ← Eg−1

19: Eg ← Update the best performing individual in the population as elite at g
20: if (|Fitness of Eg−Fitness of Eg−1|≤ ϵGA) then Count← Count+1 else Count← 0
21: if (Count ≤ constM ) then Converged ← True
22: end while
23: return {x′∗(t), y

′∗(t)} ← Eg ▷ Update the optimal solution with the elite

3.5 Performance Evaluation

3.5.1 Simulation Settings

We evaluate the performance of G-GenCache by conducting simulations in the MATLAB

platform, utilizing two datasets: (1) the SES Two-Line Element (TLE) CelesTrak dataset and

Iridium NEXT TLE CelesTrak dataset [122] to develop a time-varying multi-layer satellite

network topology and (2) the US Zip Codes with Latitude and Longitude dataset [123] to

identify the locations of user terminals (i.e., VSATs). For the simulation, we consider a

multi-layer satellite network topology that includes 3 GEO satellites from SES, 20 MEO

satellites from SES, and 50 LEO satellites from Iridium NEXT. The US ZIP Code Geolocation

dataset contains approximately 40, 000 ZIP codes across the United States as of 2018 with

their latitude and longitude coordinates. We use the Satellite Communications Toolbox in
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MATLAB to simulate the satellite network. This allows us to identify satellite-to-satellite

and satellite-to-user terminal visibility over a 24 hour period (Jan. 24 - 25, 2024 ) and

determine the evolution of network topology during this time. Through extensive simulations,

we identified a T = 6 hours recurrence period during which the same topology reoccurs and

remains unchanged for ∆t = 15 minutes (i.e., each time slot duration) based on satellite-to-

satellite and satellite-to-user terminal visibility, resulting in a total of T = 24 time slots.

We consider 1000 content items initially stored at cloud-based server, cps. The cloud

content provider stores all content items throughout the time slots, with an AoI of 0 to

indicate that they remain fresh. To account for dynamic content requests, we randomly

select 100 users from the pool of 40, 000 locations at each time slot. These user terminals

then trigger a random set of content item requests following the Zipf probability distribution.

The Zipf distribution exponent is set to δ = 0.5. Before the first time slot (t = 1), all satellite

caches are empty and have not stored any content on-board. We assume that all content items

are initially stored at the cloud-based content provider. Consequently, each cache retrieves

content exclusively from the cloud-based content provider in the first time slot. We set H as

the number of hops between the target satellite and its other satellite along the shortest path

between them. The proximity factor parameter α is set to 10, chosen by varying α ≥ 0 and

analyzing its impact on the cache hit rate. Our observations indicate that the cache hit rate

peaks around α = 10, striking an optimal balance between content localization and resource

utilization by effectively tuning the influence of proximity-based popularity relative to local

content popularity. We also set the weight values as w1 = 0.8, w2 = 0.1, and w3 = 0.1 to

prioritize cache hit rate. The AoI threshold is set to be acmax ∈ [1, 12] time slots [109]. We set

the GA parameters as follows: population size Np = 100, maximum number of generations

Ng = 1000, mutation rate rm = 0.05, and the crossover rate rc = 0.95. The rest of the

simulation parameters are listed in Table 3.2.

3.5.2 Benchmark Scheme for OCCR

We evaluate the performance of G-GenCache against three benchmarks: Region Features

Prediction cache (RFP), Cooperative Content Caching (CCC ), and the Satellite Network

Cache Placement Strategy (PNCCP), as proposed in [112], [95], and [111], respectively. RFP

minimizes content delivery delay and bandwidth consumption by leveraging a region features

prediction model based on ridge regression to update user preferences across geographic areas
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Table 3.2: Simulation parameters for on-board content caching

Parameters Value

Storage capacity of a satellite [10-50] GB

User-LEO latency [10- 20]ms

User-MEO latency [29 - 70]ms

ISL propagation delay [20-40]ms

User-GEO latency [240 - 280]ms

Gateway-cloud delay [100 - 150] ms

Content packet update generation rate, λ [0.05 0.3] Updates
time slot [109]

Packet size of content c, cL { 32, 64K, 128K }
Content size of item c, cβ [1 - 2] GB

Feeder uplink capacity 1 Gbps

ISL capacity 1 Gbps

µ 0.3 Updates
time slot

and employing a game theory-based cooperative caching algorithm for distributed decisions.

However, it overlooks cache reconfiguration overhead and relies solely on ground-based cloud

resources for cache updates. CCC aims to minimize cache content delivery delay by proposing

a delay reduction gain for each cache. This approach focuses on caching content in neighbor-

ing nodes for collaborative caching and utilizing neighboring node resources. However, CCC

does not consider cache reconfiguration overhead, freshness, timeliness of the cached contents,

or caching from existing cached content copies. On the other hand, PNCCP seeks to min-

imize user retrieval delay. It begins by partitioning the topology using a spectral clustering

algorithm. The next step involves collaborating nodes to cache content based on popularity.

PNCCP is proposed for content caching in a single-layer (LEO) satellite network, aiming to

minimize cache fetching delay without considering reconfiguration overhead or the timeliness

and relevance of cached content items. Additionally, we compare G-GenCache with three

commonly used cache replacement policies [124]: (1) First Input First Output (FIFO), which

replaces the oldest content first; (2) Least Recently Used (LRU ), which replaces content that

hasnt been accessed recently; and (3) Least Frequently Used (LFU ), which replaces the con-

tent with the fewest accesses. All benchmarks used cloud-based content provider servers cp

as the primary content servers, except for PNCCP, which also utilizes on-board caches.

3.5.3 Key Performance Indicators (KPIs)

• Average Feeder Link Load is the average bandwidth consumption ratio to a feeder

link capacity, representing the traffic load of the feeder link during content cache place-
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ment (Equation (3.23)).

• Average Content Placement Delay is the average duration to transfer a content

item from a designated server to its selected on-board cache (Equation (3.18)).

• Average Cache Fetching Duration: is the average delay per request to deliver a

content item to an end user. We assume that a user request is associated with its

nearest cache. In addition, cache-missed requests are associated to the cloud-based

server. Moreover, the routing path between a user and its designated node consists of

a set of links that belong to the shortest path determined using the Dijkstra shortest

path algorithm. The average cache fetching delay per request is:

dav =
1

T

T∑
t=1

( ∑
u∈U

∑
c∈C

dcnt,ck,u Qcu(t) x
′c
k (t)∑

u∈U

∑
c∈C

Qcu(t)

)
, (3.27)

where dcnt,ck,u denotes the cache fetching duration of content item c ∈ C to user terminal

u ∈ U, including both transmission and propagation delays, and Qcu(t) represents the

number of requests made by user terminal u for content c during time slot t.

• Average Cache-Hit Rate: is the ratio of user requests successfully served from the

on-board cache with fresh and relevant content (i.e., within its validity timeline) to the

total number of requests at each time slot.

3.5.4 Results And Discussion

Feeder Link Load

As depicted in Figure 3.4a, G-GenCache, RFP and CCC initially show similar performance,

both relying exclusively on cloud-based server to update on-board caches via feeder links.

In contrast, the FIFO, LFU, and LRU algorithms perform poorly due to their sole reliance

on cloud-based content server and inefficient content update models that depend on cache

access timing, leading to excessive content uploads. PNCCP initially results in the lowest

feeder link load compared to other algorithms, as it leverages content copies from other

caches to update caches with similar content. In subsequent time slots (t > 1), G-GenCache

consistently demonstrates a reduced feeder link load compared to all benchmark strategies.

For instance, at the third time slot (t = 3), G-GenCache lowers the feeder link load by 15.4%
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relative to RFP, by 30.4% compared to CCC, and by 31.4% compared to PNCCP. Moreover,

the proposed solution achieves even greater reductions when compared to traditional caching

strategies, with a 36.2% reduction relative to LRU, a 37.2% reduction compared to LFU, and

a 37.9% reduction compared to FIFO at the same time slot (t = 3). Similarly, at the sixth

time slot (t = 6), G-GenCache reduces the feeder link load by 16.1% compared to RFP, by

12.6% compared to CCC, and by 4.1% compared to PNCCP. The feeder link load of the

conventional caching algorithms (LRU, LFU, and FIFO) remains consistently high due to

their reliance on access time rather than content popularity, often causing eviction of popular

content and frequent offloading from the ground. The proposed solution outperforms the

benchmarks by explicitly accounting for cache reconfiguration overhead and employing an

efficient cache-to-cache update scheme. This approach leverages on-board cached content to

update caches, minimizing dependence on ground infrastructure and significantly reducing

feeder link load.

Figure 3.4b demonstrates that applying the proposed G-GenCache results in a lower

feeder link load than all benchmarks across varying satellite storage capacities. For instance,

when the on-board storage capacity is 20 GB, G-GenCache reduces feeder link load by 1.34%

compared to PNCCP, 2.67% compared to CCC, 3.46% compared to RFP, 6.36% compared

to LFU, 7.36% compared to LRU, and 9.36% compared to FIFO. Similarly, when the on-

board storage capacity increases to 50 GB, G-GenCache reduces the feeder link load by 7.0%

compared to PNCCP, 16.08% compared to CCC, 16.95% compared to RFP, 24.0% compared

to LFU, 25.0% compared to LRU, and 25.1% compared to FIFO. This superior performance

of the proposed solution stems from two key factors. First, unlike all benchmark schemes, G-

GenCache explicitly accounts for cache reconfiguration overhead in its optimization process,

avoiding unnecessary cache updates that would otherwise increase feeder link load. Second,

unlike most benchmarks (except PNCCP), G-GenCache employs a cache-to-cache update

mechanism, leveraging already cached on-board content to update neighboring caches, which

reduces reliance on terrestrial infrastructure and significantly lowers the feeder link load. In

Figure 3.4b, the feeder link load fluctuates over time slots due to dynamic content requests

and varying network topologies.

Figure 3.4c illustrates the impact of status update packet streaming on feeder link load

across varying update packet arrival rates, λ. The results demonstrate an approximately

exponential increase in feeder link load as the arrival rate increases. This feeder link load is
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Figure 3.4: Average feeder link load for different on-board content caching schemes

influenced by the number of uniquely cached content items on-boardthe greater the number

of unique content items cached, the more status update packets are required to maintain con-

tent freshness. The figure shows that the FIFO, LRU, and LFU algorithms exhibit higher

feeder link loads due to their suboptimal caching strategies. These algorithms cache content

primarily based on time of arrival or access frequency, rather than content popularity or rel-

evance, leading to a higher number of unique content items that require frequent updates. In

contrast, the proposed algorithm, G-GenCache, incurs a slightly higher feeder link load com-

pared to RFP, CCC, and PNCCP because it utilizes on-board resources more efficiently and

caches a larger number of content items. However, since status update packets are relatively

small, their contribution to the overall feeder link load remains significantly lower compared

to the load associated with caching or offloading primary content items. Consequently, the
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impact of λ is negligible at lower arrival rates but becomes increasingly significant as λ grows.

As demonstrated in Figures 3.4a and 3.4b, the overall feeder link load of the proposed solu-

tion remains lower than that of the benchmark. Although the feeder link load due to status

update packet streaming is slightly higher in the proposed solution, its impact is negligible

and is dominated by the feeder link load associated with primary content caching on-board.

Content Placement Delay

As shown in Figure 3.5a, during the first time slot, G-GenCache performs similarly to RFP

and CCC in terms of content cache placement delay since all schemes rely exclusively on the

cloud-based content provider to update initially empty satellite caches, resulting in uniformly

high delays. In subsequent time slots (t > 1), the content placement delay for G-GenCache

significantly decreases compared to the benchmarks. For example, at the third time slot

(t = 3), the average content cache placement delay of the proposed solution is reduced by

32.41% compared to PNCCP, 39.98% compared to CCC, 41.02% compared to RFP, 45.67%

compared to LFU, 44.25% compared to LRU, and 46.48% compared to FIFO. Similarly, at

the sixth time slot (t = 6), the average content cache placement delay is reduced by 2.29%

compared to PNCCP, 4.92% compared to CCC, 5.69% compared to RFP, 10.44% compared

to LFU, 10.47% compared to LRU, and 11.65% compared to FIFO. The improvement in

performance in G-GenCache is due to its consideration of cache reconfiguration overhead

and the use of cache-to-cache updates by selecting nearby content servers from the on-board

cached content, reducing reliance on ground-based content providers and lowering content

placement delays. The variation in content placement delays across time slots, as shown in

Figure 3.5a, is due to dynamic content requests and fluctuating network topologies.

Figure 3.5b compares the performance of G-GenCache against benchmark algorithms in

content placement delay across varying satellite cache capacities. The figure shows that on-

board cache capacity slightly influences the content cache placement delay. Instead, the delay

primarily depends on content server selection. The figure shows that G-GenCache achieves

faster content placement, reducing delay by 8.37%, 10.10%, 12.27%, 12.26%, 12.67%, and

13.16% compared to PNCCP, CCC, RFP, LFU, LRU, and FIFO, respectively, at a satellite

capacity of 40 GB. The performance improvement of G-GenCache primarily stems from its

focus on minimizing reconfiguration overhead, which directly reduces content cache placement

delays. In addition, the AoI-aware caching scheme in G-GenCache enhances on-board cache
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Figure 3.5: Average content placement delay for different on-board content caching schemes

utilization by using satellites as content servers instead of relying solely on the cloud-based

content provider. This enables cache updates from one satellite to another, facilitating faster

updates.

Cache Fetching Duration

As shown in Figure 3.6a, G-GenCache consistently achieves the fastest average cache fetch-

ing duration compared to all benchmarks across all time slots. For example, at the third

time slot (t = 3), G-GenCache fetches content 33.18% faster than PNCCP, 16.59% faster

than CCC, 5.04% faster than RFP, 107.57% faster than LFU, 90.14% faster than LRU, and

122.48% faster than FIFO. Similarly, at the sixth time slot (t = 6), G-GenCache fetches con-

tent 31.55% faster than PNCCP, 15.78% faster than CCC, 3.61% faster than RFP, 75.26%

faster than LFU, 63.41% faster than LRU, and 83.98% faster than FIFO. These improve-

ments demonstrate the capability of G-GenCache to accelerate content delivery and enhance

system responsiveness in satellite edge networks. This superior performance of G-GenCache

stems from the efficient on-board resource utilization through the proximity-based content

popularity caching scheme proposed in this chapter. This strategy ensures that more popular

content is cached on-board, which reduces cache fetching duration. Furthermore, as observed

from Figure 3.6a, the cache fetching duration varies across time slots due to fluctuations in

the topology. The route from the end user to the caches changes based on the availability of

links across time slots, which leads to fluctuations in the cache fetching duration.

Figure 3.6b illustrates that G-GenCache consistently achieves the fastest content distri-
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Figure 3.6: Average cache fetching duration for different on-board content caching schemes

bution to end users across different satellite capacities compared to all benchmarks. For

example, at a 10GB satellite capacity, G-GenCache outperforms PNCCP by 50.96%, CCC

by 39.59%, RFP by 26.27%, LFU by 61.54%, LRU by 54.53%, and FIFO by 73.63%. At

a higher capacity of 50GB, it maintains a significant advantage, fetching content 37.22%

faster than PNCCP, 9.53% faster than CCC, 5.41% faster than RFP, 47.47% faster than

LFU, 39.53% faster than LRU, and 56.74% faster than FIFO. This performance improve-

ment of G-GenCache is because of the efficient utilization of on-board resources through the

proximity-based content popularity model. Furthermore, we can observe from the figure that

as satellite capacity increases, the cache fetching duration decreases because larger caches

can store more content locally, allowing user requests to be served directly from the onboard

cache instead of relying on the ground infrastructure.

Cache Hit Rate

As shown in Figure 3.7a, in the initial time slot, where the cloud-based content provider server

serves as the sole content source for all content items, G-GenCache demonstrates a cache hit

rate comparable to that of CCC and RFP (i.e., approximately 72.65% ). This is because no

content is cached on-board initially, requiring all content cache updates to be fetched from the

cloud-based provider via feeder links. As a result, the increased feeder link load and content

cache placement delay contribute to a lower cache hit rate in G-GenCache, as the algorithm

seeks to balance the cache hit rate with cache reconfiguration overhead. However, initially,

G-GenCache performs similarly to CCC and RFP due to its effective utilization of on-board
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cache resources, enabled by the novel proximity-based content popularity caching scheme.

However, G-GenCache outperforms the benchmarks in the rest of the time slots, achieving

an average cache hit rate of 82.92%, compared to 77.52% of RFP, 74.36% for CCC, 70.35%

for PNCCP, 50.75% for the FIFO, 53.02% for LFU, and 54.15% for LRU algorithms. The

performance improvement of G-GenCache can be attributed to its focus on maximizing the

cache hit rate through efficient utilization of on-board resources. Incorporating proximity-

based content popularity caching and AoI-aware content caching schemes optimizes the on-

board content caching, resulting in a higher cache hit rate. As shown in Figure 3.7a, the cache

hit rate varies over time due to fluctuations in satellite cache capacities and the mobility of

satellites. Cache node selection is influenced by content requests and satellite capacities,

with satellites having higher cache capacities likely moving closer to users, thus increasing

the cache hit rate. Conversely, lower-capacity satellites may be closer to users, limiting on-

board content storage and reducing the cache hit rate. Therefore, the mobility of satellites

with varying capacities leads to fluctuations in the cache hit rate across time slots.

Figure 3.7b compares the performance of G-GenCache with the benchmarks across dif-

ferent satellite cache capacities. As shown in the figure, G-GenCache consistently achieves a

higher cache hit rate than the benchmarks across all satellite cache capacities. At a satellite

capacity of 10GB, as shown in the figure, G-GenCache outperforms PNCCP by 18.23%,

CCC by 16.10%, and RFP by 11.26%. It also achieves a 19.94% higher cache hit rate than

LFU, 18.84% better than LRU, and 21.65% better than FIFO. At a 50GB satellite capacity,

as shown in the figure, G-GenCache shows a 7.64% improvement over PNCCP, a 1.12% im-

provement over CCC, and a 0.12% improvement over RFP. Notably, it outperforms LFU by

25.88%, LRU by 21.90%, and FIFO by 30.02% at the 50GB satellite capacity. The enhanced

performance of G-GenCache over the benchmarks is because it efficiently utilizes on-board

resources, enabled by integrating the proximity-based content popularity model and the AoI-

aware caching scheme. Moreover, all algorithms show an exponential increase in cache hit

rate as satellite cache capacity grows, as shown in the figure. In addition, the performance

gap narrows as satellite cache capacity increases, since a larger cache allows more content to

be stored on-board, reducing the impact of optimization decisions.

Furthermore, we compare the initial greedy-based solution forG-GenCache (i.e., GR CCSS

algorithm) to assess the benefits of the proposed GA-based solution. As shown in Figure

3.7b, G-GenCache improves the cache hit rate by 9% on average over the GR CCSS. How-
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ever, in scenarios with large cache sizes, both algorithms achieve similar performance since

high-capacity satellite caches provide greater flexibility to store more content. As a result,

the advantage of the GA-based solution diminishes compared to the greedy-based solution,

GR CCSS, which benefits from faster convergence and lower computational complexity.

To assess the impact of AoI-awareness, we compare the cache hit rate performance of

the proposed G-GenCache algorithm with and without AoI-awareness across multiple time

slots. As illustrated in Figure 3.7d, the cache hit rate margin between the AoI-aware and

AoI-unaware schemes increases over time. This improvement is attributed to the fact that,

without AoI-awareness, outdated content is repeatedly utilized as a source for cache updates,

leading to a gradual decline in content relevance. In contrast, AoI-awareness ensures that

only fresh and timely content is used, which improves cache hit rate and overall system

performance in the long term. The cache hit rate margin between the AoI-aware and AoI-

unaware G-GenCache increases over time, as the repeated use of on-board cached content

without freshness consideration leads to content obsolescence and reduced relevance. This

improvement demonstrates that incorporating AoI-awareness, along with the utilization of

on-board cached content as source content, not only reduces cache reconfiguration overhead

but also provides additional flexibility to maintain fresher and more popular content on-board,

thereby enhancing the cache hit rate over time.

Figure 3.7c presents a performance comparison of the proposed solution against the bench-

mark caching strategies under varying Zipf exponents. The results demonstrate that the pro-

posed caching strategy consistently outperforms the benchmark strategies across all values of

δ. When δ is small, content popularity becomes more evenly distributed; in other words, user

requests are spread across a broader range of content items. In such scenarios, increasing the

diversity of cached contents helps improve the average cache hit rate by efficiently utilizing

on-board resources. However, the limited storage capacity of satellites constrains the number

of contents that can be cached, leading to a relatively lower cache hit rate. Conversely, when δ

is large, content popularity becomes highly skewed, with a few content items dominating user

requests. Caching these highly popular content items results in a significantly higher cache

hit rate. Consequently, as shown in the figure, the cache hit rate improves as δ increases. The

proposed proximity-based content popularity model ensures efficient utilization of on-board

resources, outperforming all benchmark strategies across both low (e.g., δ = 0.2) and high

(e.g., δ = 1.0) Zipf exponents. Specifically, at δ = 0.2, the proposed G-GenCache algorithm
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Table 3.3: Hierarchical layer contributions in the three-tier satellite network.

Cache Capacity [GB] LEO [%] MEO [%] GEO [%] System Performance [%]

10 31.8345 19.5036 2.3926 54.333

20 47.6681 29.4819 2.5101 78.419

30 56.3456 32.3611 2.6141 90.675

40 60.7304 33.1016 2.9176 94.184

50 61.3322 34.5085 2.9350 94.847

surpasses RFP by 8%, CCC by 13%, PNCCP by 17%, and FIFO by 30%. When δ = 1.0,

where requests are highly concentrated on a few popular contents, all content popularity-

based caching strategies except FIFO achieve comparable performance due to the dominance

of a small set of contents.

Table 3.3 summarizes the contribution of each satellite layer (LEO, MEO, and GEO)

to the overall cache hit rate in the multi-tier satellite network. We observe that the sum

of the individual cache hit rates from each layer exceeds the overall system cache hit rate.

This is because certain content is redundantly cached across multiple layers to ensure content

availability and improve reliability in delivery. Further analysis shows that the contribution to

the cache hit rate decreases as we move from the LEO to the higher layers (MEO and GEO).

This is attributed to the reduced number of satellites in higher layers, as fewer satellites

are available in MEO and GEO compared to LEO. Additionally, higher-layer satellites are

able to cache a larger proportion of globally popular content, benefiting from their broader

coverage area that attracts a larger number of user requests. On the other hand, lower-layer

satellites primarily cache locally popular content due to the nature of the Zipf distribution

and their limited coverage area. These findings underscore the role of different satellite layers

in optimizing the cache hit rate, with each layer playing a unique role in balancing global

and local content caching and highlighting the trade-off between coverage and the number of

available satellites.

Comparison With Optimal Solution

This subsection evaluates the performance deviation, or optimality gap, between our proposed

G-GenCache and the optimal solution. We used the ILP model formulated in Equation

(3.24), solved with the CVX MOSEK optimization solver [125], considering 50 content items

and a 5GB on-board cache capacity per satellite. To introduce diversity, we set the Zipf

exponent δ = 0.1, considering only the first 5 time slots with an AoI threshold of 30 minutes
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(2 ∆t). Figure 3.8a shows that G-GenCache performs comparably to the optimal CVX

solution, with minimal optimality gaps (0.92% for cache hit rate). Figure 3.8b compares the

maximum cached content’s AoI with the corresponding threshold, highlighting any violations

of the content freshness constraints. G-GenCache employs a caching strategy that ensures

content relevance while approaching the optimal CVX solution performance. The small

margin observed in Figure 3.8 demonstrates that the optimality gap of the proposed algorithm

is minimal, confirming that our approach yields near-optimal performance.

Computational Time

Figure 3.9 compares the time complexity of the proposed G-GenCache algorithm against

benchmark schemes in terms of their running time as the number of content items increases.

As shown in Figure 3.9a, the running time of the optimal CVX solution increases almost expo-

nentially with the number of content items, making it impractical for large-scale problems due

to its high computational cost. Similarly, the game-theoretic RFP algorithm demonstrates

relatively low running time at small scales but grows nearly quadratically as the number of

content items increases, limiting its scalability. The proposed G-GenCache algorithm, which

combines a greedy algorithm for initialization with a GA for refinement, consistently outper-

forms the randomly initialized GA (Random GA) in running time across all content sizes.

This improvement is attributed to the lower complexity of the greedy initialization, which

significantly accelerates convergence, as further illustrated in Figure 4.6. While FIFO shows

the lowest computational complexity, it lacks optimization capability. PNCCP and CCC
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exhibit slightly higher running times than FIFO but remain more efficient than Random GA

and CVX. G-GenCache achieves a balanced trade-off by leveraging the fast convergence of

greedy initialization and the refinement capability of GA, resulting in better performance

with manageable computational complexity. As the number of content items increases, the

running time of the benchmark algorithms grows significantly faster than that of the proposed

solution. In contrast, the proposed G-GenCache algorithm slightly increases in running time,

indicating its stability and scalability, which makes it suitable for large-scale problems.

3.6 Conclusion

This chapter addresses dynamic on-board content cache placement and content server selec-

tion to maximize cache hit rate while minimizing cache reconfiguration overhead in multi-

layer satellite networks, encompassing SEC-enabled LEO, MEO, and GEO satellites. The

G-GenCache algorithm is developed to provide suboptimal solutions to the proposed ILP

problem. We also introduce an AoI-aware content caching approach and a proximity-based

content popularity model to ensure efficient on-board storage use while maintaining cached

content freshness. Extensive simulation results demonstrate the effectiveness of the proposed

algorithm in improving content cache hit rate while reducing cache reconfiguration overhead.

Simulation results demonstrate that G-GenCache outperforms FIFO, LFU, LRU, RFP, CCC,

and PNCCP by achieving a higher cache hit rate while reducing cache fetching duration,

feeder link load, and content placement delay, all with low computational complexity. Specif-
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ically, G-GenCache attains an average cache hit rate that is 7.2% higher than RFP, 13.1%

higher than CCC, 16.5% higher than PNCCP, and over 27.8% higher than FIFO. As future

work, we plan to extend our framework by jointly integrating edge computing tasks with

caching decisions to optimize resource utilization further. Additionally, leveraging machine

learning techniques for adaptive content popularity prediction in highly dynamic network

topologies will be explored to enhance caching efficiency and responsiveness.



Chapter 4

Content Distribution in

Satellite-Terrestrial Integrated

Networks

With the surging demand for data-intensive applications, ensuring seamless content deliv-

ery in STINs is crucial, especially for remote users. DAI enhances monetization and user

experience, while MEC in STINs enables distributed content caching and ad insertion, im-

proving both content provider revenue and user experience. However, satellite mobility and

time–varying topologies cause service disruptions, while excessive or poorly placed ads risk

user disengagement, impacting revenue. This chapter addresses service continuity–aware

caching and revenue–driven collaborative seamless content distribution with DAI in STINs

while modeling user disengagement cost. The problem is formulated as two hierarchical ILP

optimizations: one maximizing cache hit rate and another optimizing content distribution

with DAI to maximize revenue, minimize end–user costs, and enhance user experience. We

proposed algorithms for greedy content caching, greedy content distribution for a fast initial

solution, and BPSO–based content distribution as an enhanced solution with a collabora-

tive strategy to handle unassociated requests. Extensive simulations demonstrate that the

proposed approach closely approximates the optimal ILP solution while outperforming the

benchmarks, achieving over a 5% increase in revenue and a 33% reduction in cache retrieval

duration.

95
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4.1 Introduction

With the growing data–intensive applications, mobile data traffic is surging. According to

the Ericsson Mobility Report 2024, 5G mobile subscriptions are predicted to reach 5.6 billion

by 2029, with video content comprising 80% of the total traffic demand [42]. STINs enhance

broadband connectivity in remote and underserved areas by combining satellite coverage with

terrestrial network capacity [47]. However, as video demand grows, traditional cloud–based

content delivery over satellite networks encounters challenges such as long delays, bandwidth

limits, and feeder link congestion. This drives satellite operators to integrate MEC with

satellite systems, advancing the concept of SEC. For instance, Axiom Space and Red Hat

take edge computing into orbit to support space–based cloud services [126]. SEC reduces

feeder link congestion and delivery delays by allowing satellite nodes to cache content and

process data on–board. However, satellites have limited resources, making it challenging

to handle massive service requests while meeting user requirements. Therefore, integrating

MEC–enabled ground gateways and user terminals is essential for caching content. However,

existing content distribution schemes handle the time–varying topology challenge by designing

strategies for each time slot but often overlook services that span multiple slots, leading to

the eviction of cached content in use and service disruptions.

Advertising is a key revenue driver in content distribution, accounting for a significant

share of profits. According to the 2021 Google report, over 80% of the company’s revenue

comes from online advertising [127]. DAI has become a key tool for content creators and dis-

tributors to maximize advertising monetization. DAI dynamically stitches ads into primary

content using standards like HTTP Live Streaming (HLS) and Dynamic Adaptive Streaming

over HTTP (MPEG–DASH) [128]. However, misaligned SCTE–35 markers [129] (an ad in-

sertion signaling standard) can disrupt the user experience through mistimed ad placements

and improper ad selection, affecting user engagement. This underscores the need for com-

prehensive optimization to maximize ad monetization while minimizing user disengagement.

Furthermore, beyond DAI standardization, some works focus on network architecture, pri-

marily exploring Client–Side Ad Insertion (CSAI) and SSAI, which define the ad stitching

process at the user device and server, respectively [130]. The SSAI architecture is pre-

ferred over CSAI for its robustness against ad blockers, as it stitches ads directly at a cloud

server [130]. Traditional SSAI–based schemes insert ads before caching to ensure personalized
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delivery. However, this approach consumes substantial feeder link bandwidth, as identical

content with different ads must be offloaded and cached in multiple versions. This redun-

dancy strains feeder links and increases storage demands due to duplicate content variations

needed for personalized ad delivery.

We utilize multi–layer satellite networks, comprising GEO and LEO satellites, MEC–

enabled user terminals (e.g., VSATs), and MEC–enabled gateways to enhance content dis-

tribution and DAI. A multi–layer satellite network enables vast and efficient content delivery

by leveraging GEO satellites for broad coverage and distributing content to numerous LEO

satellites. In turn, LEO satellites provide fast, real–time responses to end users and facilitate

cache–to–cache updates, minimizing dependence on remote cloud–based content servers. This

hierarchical structure leverages the strengths of each layer to optimize service delivery. De-

spite these advantages, there remains a lack of research addressing the integration of DAI into

satellite–based content delivery systems. Existing content caching and distribution strategies

fail to address challenges unique to multi–layer satellite networks, such as dynamic user re-

quests, time–varying link quality, and shifting satellite topologies. Moreover, most existing

works analyze content caching and distribution strategies in isolated time slots, neglecting

content requests that persist across multiple time slots, such as those affected by satellite

handovers. Managing such scenarios requires a caching and distribution strategy that can

adapt to the dynamic transitions inherent to satellite networks. Another significant challenge

is orchestrating DAI and content caching efficiently. Centralized orchestration, whether at

a GEO satellite or a ground control station, often struggles with high latencies and limited

adaptability to topology changes and real–time response demands. On the other hand, fully

distributed approaches, where decision–making occurs at individual cache nodes, can result

in suboptimal performance due to limited global visibility, increased communication over-

head, and the added complexity of online decision–making for new unassociated requests.

Therefore, a balanced, collaborative approach is needed to optimize monetization and ensure

seamless user experiences.

This chapter investigates service continuity–aware caching and revenue–driven collabo-

rative seamless content distribution with DAI in STINs while modeling user disengagement

cost. The user disengagement cost is modeled using four engagement sensitivity factors:

content type, ad runtime relative to time slot duration, ad–content language misalignment1,

1Ad–content language misalignment occurs when the language of the ad does not match the language of
the primary content.
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and user demographics. The proposed approach includes algorithms for optimizing con-

tent caching placement, greedy content distribution with DAI, enhanced content distribu-

tion through BPSO, and managing unassociated content requests in a distributed real–time

decision–making framework. Our contributions are summarized as follows:

1. We formulate revenue–driven content caching and distribution with DAI as a hierarchi-

cal ILP optimization to maximize provider revenue while minimizing end–user costs.

We also propose a distributed SSAI–based ad stitching architecture, treating ad inser-

tion as a network function executed at cache nodes constrained by computing capacity.

2. To tackle the NP–hard hierarchical ILP problem, we propose a Greedy–based algo-

rithm for efficient and fast content caching and distribution, and a BPSO–based ap-

proach to refine user–cache associations and ad insertion. Additionally, we discuss a

distributed, real–time decision–making strategy to resolve unassociated requests via

proximity–based collaboration.

3. We conduct extensive simulations using realistic network parameters and datasets to

evaluate our solutions under varying cache node storage capacities and dynamic topolo-

gies. The simulation results demonstrate that our approach approximates the optimal

ILP solution while outperforming existing benchmarks in terms of revenue and cache

retrieval duration.

4.2 Related Works

In this section, we review the existing approaches for content caching and distribution and

DAI in STINs.

4.2.1 Content Caching and Distribution in STINs

With advances in in–orbit processing and caching, recent studies have focused on content

caching and distribution in satellite networks to reduce latency and improve user experience.

However, most of these strategies are often developed independently as cache placement and

content delivery approaches. Zhu et al. [131] presented a delivery delay minimization strategy

for cache placement. In our previous work [132], we studied resource–efficient cache updates

considering reconfiguration overhead. However, these works primarily focus on content cache
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placement, neglecting the critical role of content distribution. In contrast, Bhandari et al.

[133] proposed a content delivery scheme to minimize the delivery delays. Tang et al. [134]

proposed a routing scheme using satellite cached content. However, both approaches focus on

content delivery but overlook cache placement methods. A unified strategy for joint content

caching and distribution is essential for efficient resource utilization and user satisfaction

in dynamic STINs. Relying solely on one of these strategies fails to optimize resources or

ensure a seamless user experience. In this regard, Jiang et al. [110] proposed a density–based

cache distribution strategy for STINs, considering dynamic satellite topology and uneven

user distribution. Similarly, the authors of [135] studied collaborative caching between LEO

satellites and distribution approach, modeling the time–varying topology as a time–varying

graph. Shushi et al. [136] explored a layered coded cache placement and distribution strategy,

enabling collaborative distribution between satellites and base stations.

Although existing works addressed time–varying topology by analyzing content requests

and network topology on a per–time–slot basis, assuming a quasi–static topology within each

slot [110,135,136], they did not consider services that persist across multiple time slots. Ad-

ditionally, these approaches typically rely on centralized orchestrators and periodic decisions,

which struggle to manage real–time content distribution when unassociated requests arrive.

Content distribution decisions are made at the start of each time slot, with cache misses

resulting in requests being forwarded to the cloud for additional processing. Our approach

proposes a joint collaborative distributed content caching and distribution scheme that op-

timizes resource utilization and ensures service continuity. Unlike existing strategies, when

a cache miss occurs, our solution enables nodes to collaborate locally with nearby nodes

for content delivery, eliminating the need to forward requests to the cloud and significantly

enhancing the user experience.

4.2.2 DAI in STINs

Advertising is vital for monetizing content delivery, driving standardization efforts like SCTE–

35 and SCTE–104 [137] and advancements in ad insertion architectures such as SSAI and

CSAI solutions [130]. For example, Pham et al. [138] integrated ad insertion standards

with MPEG DASH for HTML5–based platforms to enable interoperable ad insertion. Sim-

ilarly, the authors of [137] explored ad substitution using SCTE–35 in DASH workflows for

Over–The–Top (OTT) services. On the other hand, the authors of [130] proposed SSAI ar-
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chitectures in cloud–based and cloud–assisted content delivery to enhance ad personalization.

Seeliger et al. [139] demonstrated DAI in OTT streaming workflows. While ad insertion gen-

erates revenue for the service provider, disruptions in content delivery due to excessive ads

or poor timing can lead to user disengagement and service termination. Balancing moneti-

zation and user engagement is key to maximizing revenue while minimizing disengagement.

However, existing works do not focus on ad insertion schemes in content distribution within

STINs.

The SSAI architecture is preferred over CSAI for its robustness against ad blockers, as

it stitches ads directly at the cloud server [130]. Traditional SSAI–based schemes require

ads inserted before caching content on satellites, gateways, and user terminals to ensure

personalized delivery. However, these methods consume substantial feeder link bandwidth

by offloading and caching multiple versions of content with different ads, which strains link

capacity and increases storage demands. In contrast, our approach performs ad stitching

directly at the cache node where the content is stored. This reduces both storage requirements

and feeder link loads in a distributed manner, enabling efficient, real–time ad insertion and

seamless personalized content delivery. However, MEC–enabled nodes such as satellites,

gateways, and user terminals have limited computing and storage resources, requiring a

strategy to manage DAI in STINs. Accordingly, in this work, we mathematically model

and optimize seamless content cache distribution with DAI, using a collaborative distributed

strategy for real–time content delivery in STINs.

While ad insertion boosts revenue for content providers, poor DAI design leads to content

abandonment, ultimately reducing provider revenue. Factors such as ad runtime duration,

relevance to the user (e.g., language alignment with the primary content), and the frequency

of ads influence user engagement. The 2021 Conviva report states that nearly 20% of viewers

abandon the content after a 5 seconds ad delay [140]. This chapter considers four key factors

that contribute to user disengagement: content type (e.g., live sports are more ad–sensitive

than on–demand videos) [141], user demographics (e.g., younger viewers are more sensitive to

ads than older ones) [142,143], ad duration relative to primary content [144], and ad–content

language misalignment with the main content [145].
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4.3 System Model and Problem Formulation

This section presents the mathematical model for collaborative revenue–driven content dis-

tribution with DAI in an MEC–enabled STIN.

GEO

LEO

Internet

Ad providers 
server

Content providers
 server

Fiber link
Feeder uplink

User uplink

Satellite coverage

SDN controller

MEC-enabled satellite gateway

Inter orbit links (IOLs)

SEC-enabled satellite

MEC-enabled  user terminal

User downlink

Inter satellite links (ISLs)

Playout devices

Local network

Figure 4.1: MEC–enabled STIN for supporting content caching and distribution with DAI.

4.3.1 System Model

As illustrated in Figure 4.1, we consider a multi–layer STIN supporting content caching,

distribution, and ad insertion. The satellite network comprises SEC–enabled LEO and GEO

nodes, facilitating communication through ISLs and inter–orbital links RF or FSO links. The

terrestrial network includes a cloud–based Content Provider (CP), a cloud–based Ad Provider

(AP) server, MEC–enabled satellite gateways, and local networks with MEC–enabled termi-

nals like VSATs. Each gateway is connected to CP and AP via fiber optic cables and commu-

nicates with satellites via FSO uplinks. Remote users access the network through RF uplinks

using VSATs, ensuring coverage by at least one satellite. GEO satellites collect caching and

resource information across the network through the corresponding gateways, distributing

content to MEC–enabled ground user terminals and LEO satellites, which handle caching

and delivering content to end users. This framework focuses on remote users lacking ter-

restrial access. We consider VSATs with multi–connectivity capability to track multi–orbit

LEO and GEO satellites [146]. A key challenge is the evolving network topology due to the

mobility of satellites in LEO constellations, which impacts strategy design. To address this,
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the topology is divided into sequential time slots, during which remains quasi–static.

The revenue–driven content delivery system comprises four key entities. The SatCom

operator provides the infrastructure for caching and delivering primary and ad content, in-

cluding high–quality video caching, transcoding, and personalized ad–stitching. Content

providers, such as OTT platforms like YouTube, Netflix, and Hulu supply primary content

based on user preferences. Ad content providers contribute ads to be inserted alongside pri-

mary content, promoting their products or services to users. Lastly, the customers are end

users consuming both primary content and ads. Content providers lease CDN nodes as a

network slice from the SatCom operator to cache content and deploy ad–stitching network

functions on satellites, gateways, and VSATs near end users. The service provider also inte-

grates ads from ad providers based on Service Level Agreements (SLAs) to maximize revenue.

A distributed set of SDN controllers orchestrates content cache distribution and ad insertion

based on data from each gateway, and any standard SDN controller placement algorithm for

satellite networks [114] can be used to determine their location in our use case.

Network Model

We model the time–varying STIN topology as sequential time slots, each with a duration

of ∆t time units (T = ⟨1, · · · , t, · · · , T ⟩), where T is the recurrence period. During each t,

the topology is considered quasi–static and represented by an undirected graph Gt = (N,E),

where N denotes the set of all nodes (i.e., satellites, gateways, VSATs, content provider server,

and ad provider server) and E represents the set of links within the time slot, connecting the

nodes in the network. Each node k ∈ N is represented by a tuple ⟨kβ, kµ, kN (t)⟩, where

kβ, kµ, and kN (t) represents its storage capacity, computing capacity, and set of neighboring

nodes at t, respectively. We define U ⊂ N as the set of user terminals. Additionally, we

represent the cloud content and ad provider servers by cps and aps, respectively. A link eh,k ∈

E between nodes h ∈ N and k ∈ N at t is defined by ⟨eγh,k(t), e
Ω
h,k(t), e

D
h,k(t)⟩, representing its

availability, bandwidth, and propagation delay, respectively. A link between nodes is available

only if they are visible to each other at a given time slot. The visibility between nodes h and

k is defined by their LoS, as discussed in our previous work [132]. We define eγh,k(t) as an

indicator function, where eγh,k(t) = 1 if eh,k is available at time t, and eγh,k(t) = 0 otherwise.

The set of links in the shortest path between nodes h ∈ N and k ∈ N at t is represented by a

set of links Eh,k(t) ∈ E, obtained by Dijkstra’s shortest path algorithm.
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Content Request and Ad Insertion Model

We consider a set of content items, denoted as C, which are initially stored on cps and subse-

quently cached in nodes closer to end users based on their requests and resource availability.

Each content c ∈ C is characterized by its storage requirement cβ and packet size cL, both

measured in bits. In addition, we consider a set of ads denoted as A, stored on aps. Each ad

a ∈ A is defined by its display duration aσ (in seconds) and computing requirement aµ (in

vCPUs). We consider a mid–roll ad insertion scheme [147], where ads are stitched after the

primary content display starts. Ad insertion takes place at the cache node, which stores the

primary content, provided it has sufficient computing capacity. To ensure seamless playback

and bypass ad blockers, we adopt a distributed SSAI approach, stitching ads before content

delivery for uninterrupted ad display [130].

We consider proximity–based content probability model [132] to define the popularity

of a content item c ∈ C at a node k ∈ N at t, denoted as pck(t). We define Scnt(t) as

the set of new and ongoing content requests at t. Each request s ∈ Scnt(t) is defined as

⟨ssrc, sdst, scnt, sB, sD, sψ, st,arr, sΥ(t)⟩, where ssrc ∈ U denotes a source user terminal con-

nected to the local network where the request originates. sdst = cps is a destination node.

scnt ∈ C denotes requested content item, sB is the minimum data rate required to deliver

the content, sD indicates the estimated display duration, sψ ∈ {0, 1} is a binary variable

indicating the users subscription status (1 for premium and 0 for non–premium), and st,arr

specifies the arrival time of the request. Furthermore, sΥ(t) indicates whether the request s

continues from time slot t to the subsequent time slot t+ 1. Mathematically,

sΥ(t) =


1, if sD ≥ t∆t−−st,arr

0, otherwise.

(4.1)

We assume that all content requests of a specific type have the same data rate requirement.

Additionally, all requests from a given user terminal for the same content type are associated

with a single cache node. For mathematical simplicity, we assume that all such requests from

the same user terminal share a common subscription status value. We define ζcu,s(t) if request
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s ∈ Scnt(t) is for c ∈ C from u ∈ U at t expressed as follows.

ζcu,s(t) =


1, if scnt = c and ssrc = u at t

0, otherwise.

(4.2)

We define the binary decision variable x
′c
k (t) ∈ {0, 1} as the content caching strategy,

indicating whether c ∈ C is cached on k ∈ N at t.

x
′c
k (t) =


1, if the content c is cached on node k at t,

0, Otherwise.

(4.3)

The binary decision variable zcu,k(t) ∈ {0, 1} represents the user–cache association (content

distribution) strategy, indicating whether cache node k ∈ N serves content requests from user

terminal u ∈ U for content c ∈ C at t,

zcu,k(t) =


1, if k serves requests from u for c at t.

0, otherwise.

(4.4)

We set sdst = k if zcu,k(t) = 1 for request s ∈ Scnt(t) for content c ∈ C is generated from user

terminal u ∈ U.

Furthermore, we define a binary decision variable z
′c
u,a(t) ∈ {0, 1} as the DAI strategy,

indicating whether ad a ∈ A is inserted into the content requests for content c ∈ C and

requested via the user terminal u ∈ U during t.

z
′c
u,a(t) =


1, if a is inserted into requests for c, via u at t,

0, otherwise.

(4.5)

Content Delivery Delay Model

We consider that the content delivery delay consists of propagation, transmission, and queuing

delays along the shortest path from the source user terminal to the cache node.

• Propagation Delay

The propagation delay for request s ∈ Scnt(t) for content c ∈ C, from user terminal



Content Distribution in Satellite-Terrestrial Integrated Networks 105

u ∈ U to cache node k ∈ N at t is:

dprops,k (t) =
∑

em,n∈Eu,v(t)

eDm,n(t)z
c
u,k(t), (4.6)

where Eu,v(t) represents the set of links that form the shortest path between the selected

cache node k and the source user terminal node u at time t.

3.2. Transmission Delay Transmission delay is the time required to send a packet

over a link, depending on the packet size and link bandwidth. The transmission delay

for content item c over a link eh,k at t is cL

eΩh,k(t)
, where cL is the packet size in bits and

eΩh,k(t) is the link bandwidth in bits
second . The transmission delay for request s ∈ Scnt(t)

for content c ∈ C, from user terminal u ∈ U to cache node k ∈ N, is determined by

the link with the minimum bandwidth along the shortest path. Thus, the transmission

delay dtxts,k(t) is given by:

dtxts,k(t) =
cL

min
em,n∈Eu,k(t)

(eΩm,n(t))
zcu,k(t), (4.7)

• Queuing Delay

We assume an M/M/1 queuing model with a single server, where arrivals follow a

Poisson process and service times are exponentially distributed. The queuing delay is

the time a request waits at the cache node before being served. Let λk(t) represent the

arrival rate in requests
millisecond and µk(t) the service rate in

requests
millisecond at cache node k ∈ N. To

simplify, we model the queuing delay as the mean waiting time for a request s ∈ Scnt(t)

at k ∈ N for content item c ∈ C requested via terminal u ∈ U at t, denoted as dqqs,k(t).

dqqs,k(t) =
ρk(t)

µk(t)(1− ρk(t))
zcu,k(t), (4.8)

where ρk(t) =
λk(t)
µk(t)

denotes the utilization of cache k at t.

The overall content request s ∈ Scnt(t) delivery delay dtots,k(t) is defined as:

dtots,k(t) = dprops,k (t) + dtxts,k(t) + dqqs,k(t). (4.9)
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Content Provider Revenue and Delivery Cost Model

The content provider’s revenue from content delivery comprises two main components: service

subscription and advertising revenues. Service subscription revenue comes from users paying

for services like internet access via telecom providers, while ad revenue is earned through

advertisement monetization. We consider the service subscription revenue as a usage–based,

pay–as–you–go model [148], where pricing depends on data consumption. The service sub-

scription revenue for a content request s ∈ Scnt(t), requesting content c ∈ C via user terminal

u ∈ U, given by:

Rsubs (t) = cRcβzcu,k(t), (4.10)

where cR is the subscription price of content item c per bit. Additionally, we adopt the

Cost–per–Impression ad revenue strategy [149], which advertisers are charged based on the

number of ad impressions. The advertisement monetization for a content request s ∈ Scnt(t),

which requests content c ∈ C via user terminal u ∈ U, is expressed as follows:

Radvs =
∑
a∈A

aRz
′c
u,a(t), (4.11)

where aR is the price per impression for ad item a.

We model the probability of user disengagement using the Kaplan–Meier estimator [150]

and the exponentially decaying survival function [151], which increases exponentially with

sensitivity factors such as content type, user demographies, ad–content language misalign-

ment, and ad runtime, where low values indicate minimal disengagement. The disengagement

cost for the content provider for a request s ∈ Scnt(t) for c ∈ C from u ∈ U at t is expressed

as:

Rdiss (t) = cRcβ
(
1−

∑
a∈A

e−κ
0
s(κts+κds+κms +aσ

∆t )z
′c
u,a(t)

)
(4.12)

where κ0s is a disengagement rate, and κts, κ
d
s , and κms represent factors related to content

type, user demographics, and ad–content language misalignment, respectively. This model

quantifies the revenue loss for content providers due to user disengagement. We define sη(t)
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as a binary variable that indicates if a request s ∈ Scnt(t) is disengaged or not.

sη(t) =


1, if

∑
a∈A

e−κ
0
s(κts+κds+κms +aσ

∆t )z
′c
u,a(t) ≥ 1,

0, otherwise.

(4.13)

The total net revenue for delivering a request s ∈ Scnt(t), which seeks content c ∈ C from

user terminal u ∈ U at time t, can be derived from Equations (4.10), (4.11), and (4.12), and

is given by:

Rtots (t) = Rsubs (t) +Radvs (t)−Rdiss (t) (4.14)

The content delivery cost represents the revenue penalty for distributing content to the end

user. For request s ∈ Scnt(t), requesting for content c ∈ C from user terminal u ∈ U at t is:

Rcoss (t) =
Rsubs (t)

dtots,cps(t)
dtots,k(t), (4.15)

where dtots,cps(t) is the content delivery delay from the cloud server to the end user during t

(when zcu,k(t) = 1|k = cps).

4.3.2 Problem Formulation

In this chapter, we propose a multi–level hierarchical optimization approach to address con-

tent cache placement and content distribution with DAI.

Content Cache Placement Problem

The objective is to maximize the system–wide cache hit rate at a given time slot by storing

frequently requested content on cache nodes. This minimizes distribution delay and delivery

costs by allowing users to retrieve content from nearby caches. Additionally, the goal is to

ensure service continuity across time slots, reducing service disruption. The decision variable

x
′
(t) represents the content cache placement strategy at time slot t. The optimization problem



108 Chapter 4

is formulated as follows:

P1 : max
x′ (t)

∑
c∈C

∑
k∈N

pck(t) · x
′c
k (t), (4.16a)

s.t.
∑
c∈C

cβx
′c
k (t) ≤ kβ, ∀k ∈ N, (4.16b)∑

k∈N
x

′c
k (t) ≥ 1, ∀c ∈ C, (4.16c)

x
′c
k (t) ≥

∑
s∈Scnt(t−1)

zcu,k(t− 1) · sΥ(t− 1)

|Scnt(t− 1)|
ζcu,s(t− 1),∀c ∈ C,∀k ∈ N, (4.16d)

∑
k∈{kN (t)∪k}

x
′c
k (t) ≤ 1, ∀k ∈ N, ∀c ∈ C, (4.16e)

x
′c
k (t) ∈ {0, 1}, ∀k ∈ N,∀c ∈ C, (4.16f)

Constraint (4.16b) limits stored content to each cache node’s capacity. Constraint (4.16c)

ensures every required content item is available on at least one node, including at the cloud

content server, cps. Constraint (4.16d) mandates that content items serving ongoing requests

from the previous time slot remain cached until those requests are completed. Constraint

(4.17e) ensures that only one type of content is cached on adjacent satellites, optimizing ISL

and storage usage. Constraint (4.16f) enforces the binary nature of decision variables. The

formulated optimization problem P1 is classified as an ILP problem.

Content Distribution Problem

This work aims to maximize content provider revenue while minimizing end–user content

delivery cost in a given time slot. The goal is to maximize revenue while minimizing user

dissatisfaction, influenced by transmission costs and delivery delays. The decision variables

z(t) and z
′
(t) represent the content distribution (i.e., user–cache association strategy) and
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ad insertion strategy, respectively. Mathematically,

P2 : Maximize
z(t), z′ (t)

∑
s∈Scnt(t)

(
w1Rtots (t)− w2Rcoss (t)

)
, (4.17a)

s.t. zcu,k(t) ≤ x
′c
k (t), ∀c ∈ C,∀k ∈ N,∀u ∈ U, (4.17b)

z
′c
u,a(t) ≤

∑
k∈N

zcu,k(t), ∀a ∈ A,∀c ∈ C,∀u ∈ U, (4.17c)∑
s∈Scnt(t)

sBζcu,s(t)z
c
u,k(t) ≤ eΩh,k(t), ∀c ∈ C, ∀k ∈ N, ∀u ∈ U, ∀eh,k ∈ Eu,v(t), (4.17d)

∑
k∈N

zcu,k(t) ≤ 1, ∀c ∈ C,∀k ∈ N, ∀u ∈ U, (4.17e)

zcu,k(t) ≤
1

Qcu(t)

∑
s∈Scnt(t)

eγh,k(t)

(
1 + eγh,k(t+ 1)sΥ(t)

)
1 + sΥ(t)

ζcu,s(t),

∀c ∈ C, ∀k ∈ N,∀u ∈ U, eh,k ∈ Eu,k(t) (4.17f)

z
′c
u,a(t) ≤ 1−− 1

Qcu(t)

∑
s∈Scnt(t)

ζcu,s(t)s
ψ(t),∀a ∈ A, ∀c ∈ C, ∀u ∈ U, (4.17g)

∑
a∈A

z
′c
u,a(t) ≤

∆t

Dmin
, ∀a ∈ A,∀c ∈ C,∀u ∈ U, (4.17h)

sDζcu,s(t) ≥ Dminz
′c
u,a(t), ∀s ∈ Scnt(t),∀a ∈ A, ∀c ∈ C, ∀u ∈ U, (4.17i)

z
′c
u,a(t)a

µ ≤ kµzcu,k(t), ∀c ∈ C,∀k ∈ N,∀u ∈ U, (4.17j)

{zcu,k(t), z
′c
u,a(t)} ∈ {0, 1}, ∀c ∈ C,∀k ∈ N,∀u ∈ U (4.17k)

where w1 and w2 are the weighting factors for content provider revenue and content delivery

delay cost, respectively, with w1 + w2 = 1. These weights balance the trade–off between

revenue and delivery delay cost. Qcu(t) =
∑

s∈Scnt(t)

ζau,s(t) is the number of requests for content

c ∈ C from user terminal u ∈ U at t. Constraint (4.17b) ensures that a user request is served

only if the content is cached on the node. Constraint (4.17c) ensures that ads are inserted

only into actively served requests. Constraint (4.17d) ensures that requests are assigned

to cache nodes having sufficient bandwidth on all links on the shortest path between the

node and the user. Constraint (4.17e) guarantees that a request is associated with only one

cache node per time slot. Constraint (4.17f) ensures that content requests spanning from

the current time slot to the next are associated only with a node whose shortest–path links

to the end user remain available in the subsequent time slot. Constraint (4.17g) prevents

ads from displaying to premium users. Constraint (4.17h) ensures that ads per content item
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remain within a predefined threshold. Constraint (4.17j) ensures that ads are added only to

content exceeding a minimum playback duration, Dmin. Constraint (4.17i) ensures that ads

are inserted only if the node has sufficient processing capacity. Constraint (4.17k) states the

binary decision variables. The optimization problem in Equation (4.17) (i.e., P2) belongs to

the class of ILP problems. We propose metaheuristic–based schemes for efficient solutions

since content caching and distribution problems are NP–hard.

4.4 The Proposed Scheme

We propose the Greedy Enhanced Content Caching (GE CC) algorithm to solve the ILP con-

tent caching problem P1. In addition, we introduce the Greedy–based Content Distribution

with DAI (G DAI) and Binary Particle Swarm Optimization for Content Distribution with

DAI (BPSO DAI) algorithms to solve the ILP content distribution with DAI problem P2.

The G DAI algorithm generates a fast initial solution, which is refined by the BPSO DAI

algorithm for further optimization.

4.4.1 Greedy Enhanced Content Caching

The GE CC algorithm optimizes service continuity–aware content cache placement for the

ILP problem in Equation (4.16). Algorithm 9 outline the workflow of GE CC, which effi-

ciently determines the optimal cache placement strategy x
′∗(t) at t. The algorithm takes as

input the set of network nodes N, content items C, content requests Scnt(t) and Scnt(t−1) for

the current and previous time slots t and t− 1 prior cache distribution z(t− 1), the current

topology Gt, and the maximum number of iterations max Iteration.

The algorithm initializes the optimal fitness value to zero (line 1 ). Each iteration gener-

ates a potential placement strategy and updates the optimal strategy based on fitness values

(lines 2-24 ). The current cache placement strategy is initialized as a zero matrix of size

|C|×|N| (line 3 ) with nodes sorted randomly (line 4 ). Here, |C| and |N| denote the total

number of content items and network nodes, respectively. Each node’s available storage ca-

pacity is initialized to its total capacity (line 6). To ensure uninterrupted content delivery, as

per Constraint (4.16d), any cached content still serving at least one request remains cached

(line 7-10). Next, content items are sorted in descending order of popularity at the node. The

algorithm prioritizes caching the most popular items, provided they are not cached on neigh-



Content Distribution in Satellite-Terrestrial Integrated Networks 111

Algorithm 9: Proposed GE CC Algorithm

Input: N, C, z(t− 1), Scnt(t), Scnt(t− 1), Gt, max Iteration
Output: x

′∗(t): Optimal cache placement strategy at time, t
1: optimalF itness ← 0 ▷ Initialize fitness value.
2: while stopConditionNotMet() do
3: x

′ ← 0|C|×|N| ▷ Initialize the cache placement strategy.
4: N ← Extract all node sets and randomize their order.
5: for each node, k ∈ N in the network do
6: Bav

k ← kβ ▷ Set available storage.
7: for each content c ∈ C do
8: x

′c
k ← 1 ▷ Cache unfinished request content.

9: Bav
k ← Bav

k − cβ▷ Update storage.
10: end for
11: for each content item c ∈ sortIDdescend(k) do
12: if notInNieghbourNode(c, k) and Bav

k ≥ cβ then
13: x

′c
k ← 1 ▷ Cache the content item.

14: Bav
k ← Bav

k − cβ▷ Update storage.
15: end if
16: x

′ ← x
′c
k ▷ Update cache placement strategy.

17: end for
18: end for
19: currentF itness← fitness(x

′
) ▷ Compute current fitness using Equation (4.18).

20: if currentF itness ≥ optimalF itness then
21: optimalF itness← currentF itness ▷ Update optimal fitness.
22: x

′∗(t)← x
′
▷ Update optimal strategy.

23: end if
24: end while
25: x

′C
cps ← 1 ▷ Cache all content items at cloud provider.

26: return x
′∗(t) ← x

′
▷ Return optimal strategy.

boring nodes (Constraint (4.16e)) and storage requirements are met (Constraint (4.16b),

line 11-16 ). At each iteration, the strategy with the highest fitness value, computed using

Equation (4.16a), is selected (lines 19-24 ). To ensure content availability as per Constraint

(4.16c), all content items are also cached on the cloud-based content provider server (line 25 ).

Finally, the algorithm updates network resources and returns the optimal content placement

strategy (line 26 ).

The stopConditionNotMet() method determines whether the iteration should continue.

It returns True as long as either of the following conditions is met: (1) the iteration count

has not reached the maximum allowable iterations (i.e., max Iteration), or (2) the number

of consecutive iterations where the fitness values remain nearly unchanged has not exceeded

a predefined threshold. The sortIDdescend(·) method takes a node ID as input and re-
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turns a set of content items sorted in descending order of popularity at that node. The

notInNeighbourNode(·) method accepts a content item and a cache node ID as inputs, re-

turning True if the content item is already cached in one of the neighboring nodes of the

specified node and False otherwise. We define the fitness function as the objective function

of the ILP problem, given in Equation (4.16a), which represents the system’s cache hit rate

and is expressed as follows:

fitness(x
′
) = PTx

′
, (4.18)

where P is the content popularity matrix, and x
′
is the cache placement matrix.

Algorithm 10: Proposed G DAI Algorithm

Input: N, C, z(t− 1), Scnt(t), Scnt(t− 1), Gt, A
Output: {z∗(t), z′∗(t)} ▷ Optimal content request-cache association and ad insertion

strategies at t.
1: x

′ ← x
′∗(t) ▷ Update the optimal cache placement strategy via Algorithm 9.

2: z ← 0|C|×|V|×|N|, z
′ ← 0|C|×|V|×|A| ▷ Initialize the user-cache association and ad

insertion strategies as a zero matrix.
3: for each content request s ∈ Scnt(t) do
4: k ← Select the nearest node to u = ssrc that has cached c = scnt and satisfies

Constraints (4.17b) and (4.17d)–(4.17f).
5: if (k ̸= ∅) then zcu,k ← 1
6: A ← Select the sets of ad contents randomly that satisfies Constraints (4.17c) and

(4.17g)–(4.17j).
7: if (A ≠ ∅) then zcu,A ← 1

8: z ← zcu,k, z
′ ← z

′c
u,A

9: end for
10: return {z∗(t), z′∗(t)} ← {z, z′} ▷ Updates the optimal strategies.

4.4.2 Greedy-based Content Distribution with DAI

We propose the G DAI algorithm to solve the ILP content distribution problem in Equation

(4.17), as outlined in Algorithm 10. The algorithm takes as input set of network nodes

N, content items C, content requests Scnt(t) and Scnt(t − 1) for time slots t and t − 1, the

previous content cache distribution strategy z(t − 1), the current network topology Gt, and

the ad content items A. It provides a fast initial solution for the BPSO DAI algorithm

discussed in Section 4.4.3.

Using Algorithm 9, Algorithm 10 first determines the optimal cache placement strategy
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(line 1). It then initializes the user-cache association and ad insertion strategies as zero

matrices of size |C|×|V|×|N| and |C|×|V|×|A|, respectively (line 2). For each content request

at t, the algorithm uses the Dijkstra Shortest Path algorithm to select the nearest node to

the user terminal source address that has cached the requested content item, while satisfying

Constraints (4.17b) and (4.17d)–(4.17f) (line 4), and if a node is available, associates the

request with the selected cache node (line 5). The algorithm randomly selects a set of ad

content items from all possible ads that satisfy Constraints (4.17c) and (4.17g)–(4.17j) (line

6) and updates the ad insertion strategy for the selected ad content for the request s (line 7).

The user cache association and ad insertion strategies are then updated (line 8). The process

terminates when the iteration counter reaches its maximum or the best solution remains

unchanged for consecutive iterations. Finally, the optimal strategy is updated (line 10).

4.4.3 Binary Particle Swarm Optimization for Content Distribution with

DAI

BPSO DAI is a BPSO-based approach for optimizing ILP content distribution, offering a

more optimal solution than the Greedy-based approach. Binary PSO aligns with the binary

nature of decision variables, making it well-suited for this problem. Inspired by the swarm

behavior, PSO explores the search space by updating particle positions and velocities to

find an optimal solution [152]. We chose BPSO for simplicity, fast convergence, and proven

effectiveness as a metaheuristic [153]. The BPSO DAI algorithm generates suboptimal

solutions for content distribution and ad insertion based on network resources, topology, and

content requests for each t, as outlined in Algorithm 11. It takes the following inputs N

(set of nodes), C (set of content items), z(t− 1) (content cache distribution in previous time

slot), Scnt(t) and Scnt(t − 1) (content requests for the current and previous time slots), Gt

(current network topology), A (set of ad content items), w1 and w2 (weights for the objective

function). It also requires PSO-specific parameters: w (inertia weight), c1 and c2 (cognitive

and social learning factors), Npop (swarm size), and Ngen (maximum iterations).

Algorithm 11 starts by determining the optimal cache placement strategy using Algorithm

9 (line 1). BPSO DAI algorithm initializes the user-cache association and DAI strategy as

zero matrices of size |C|×|V|×|N| and |C|×|V|×|A|, respectively. For each content request, the

algorithm randomly selects a node from the subset that has cached the requested content,

ensuring compliance with Constraints (4.17b) and (4.17d)-(4.17f), and updates the user-
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Algorithm 11: Proposed BPSO DAI Algorithm

Input: N, C, z(t− 1), Scnt(t), Scnt(t− 1), Gt, A, w1, w2, w, c1, c2, Npop, Ngen
Output: {z∗(t), z′∗(t)} ▷ Optimal user-cache association and DAI strategies at t.
1: x

′ ← x
′∗(t) ▷ Update the optimal cache placement strategy via Algorithm 9.

2: Set g ← 0 ▷ Initialize the current iteration with 0
3: for Each particle i = {1, · · · ,Npop} do
4: for each content request s ∈ Scnt(t) do
5: Initialize particle’s position of user-cache association by random selection of a node

that has the requested content and satisfying Constraints (4.17b) and
(4.17d)–(4.17f).

6: Initialize particle’s position of ad insertion by random selection of sets of ads that
meet Constraints (4.17c) and (4.17g)–(4.17j).

7: end for
8: Initialize the particle’s velocity for user-cache association and ad insertion by

generating a small random number from a uniform distribution U(0, 1).
9: Update the personal best and save it as P ibest(g)

10: end for
11: Replace the position of the worst performing particle by the optimal solution obtained

from Algorithm 10.
12: Update the global best and save it as Gbest(g).
13: Converged ← False
14: Count ← 0
15: while g ≤ Ng and not Converged do
16: Set g ← g + 1,
17: Update Gbest(g)← Gbest(g − 1)
18: for Each particle i = {1, · · · ,Npop} do
19: Compute current velocity of the particle using Equations (4.20) and (4.21).
20: Update current position of the particle using Equations (4.24) and (4.25).
21: Update the personal best and save it as P ibest(g)
22: if fitness of P ibest(g) ≤ fitness of P ibest(g − 1) then P ibest(g) ← P ibest(g − 1)
23: if fitness of P ibest(g) ≥ fitness of Gbest(g) then Gibest ← P ibest(g)
24: end for
25: if (|Fitness of Gbest(g)− Fitness of Gbest(g − 1)|≤ ϵPSO) then Count← Count+ 1

else Count← 0
26: if (Count ≤ Cm) then Converged ← True
27: end while
28: for Each unassociated requests qu ∈ Scnt(t) do
29: Perform collaborative user-cache association and ad insertion based on Gbest(g) and

update Gbest(g).
30: end for
31: return (z

′∗(t), z
′∗(t))← Gbest(g) ▷ Update the optimal solution with the global best

position.

cache association accordingly (line 5). Similarly, the algorithm randomly selects a subset

of ad content items that satisfy Constraints (4.17c) and (4.17g)–(4.17j), updating the DAI
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position accordingly (line 6). Then, the algorithm initializes the corresponding velocity

for the user-cache association and ad insertion strategies based on their sizes, assigning a

very small initial velocity randomly generated from a uniform distribution U(0, 1) (line 8).

Each particle updates its corresponding personal best based on its respective position (line

9). The algorithm then replaces the worst-performing particle’s position with the optimal

solution from the G DAI algorithm (lines 12-16), accelerating convergence for fast-response

applications. Finally, the algorithm updates the global best position by selecting the best-

performing particle in the swarm based on the fitness function. We define the fitness function

as the objective function obtained based on the positions of the user-cache, z(t), and ad

insertion, z
′∗(t), at t, expressed as follows:

fitness(z(t), z
′
(t)) =

∑
s∈Scnt(t)

[w1Rtots (t)− w2Rcoss (t)], (4.19)

While the stopping criterion is not met, the algorithm updates the velocity of each particle

as (line 19 ):

V (i)
z (g + 1)← wV (i)

z (g) + c1r1(Pbest,i,z − z(i)(g)) + c2r2(Gbestz − z(i)(g)), (4.20)

V
(i)

z′
(g + 1)← wV

(i)

z′
(g) + c1r1(Pbest,i,z′ − z

′(i)(g)) + c2r2(Gbestz′ − z
′(i)(g)), (4.21)

where w is the inertia weight, c1 and c2 are the cognitive and social coefficients, and r1 and r2

are random numbers between 0 and 1. Pbest,i,z and Pbest,i,z′ are the personal best positions of

particle i for the user-cache association and DAI strategies, respectively, Gbestz and Gbestz′

are the global best positions for these strategies. z(i) and z
′(i) represent the current positions

of particle i. The position of each particle is updated based on its current velocity (line

20). A Sigmoid transformation maps the velocities to probabilities for binary conversion as

follows:

Sz(V
(i)
z (g + 1)) =

1

1 + e−V
(i)
z (g+1)

, (4.22)

Sz′ (V
(i)

z′
(g + 1)) =

1

1 + e
−V (i)

z
′ (g+1)

, (4.23)
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The algorithm updates the positions of the user-cache association and DAI strategies using

Equations (4.24) and (4.25), respectively.

z(i)(g + 1) =


1, if r ≤ Sz(V (i)

z (g + 1)),

0, otherwise.

(4.24)

z
′(i)(g + 1) =


1, if r ≤ Sz′ (V

(i)

z′
(g + 1)),

0, otherwise.

(4.25)

Next, the algorithm computes the fitness of each particle and updates the personal best posi-

tion if the current fitness exceeds the particle’s previous best (line 22). Similarly, the global

best is updated if a particle outperforms the current global best position of the swarm (line

23). The global best from the previous iteration is retained if the global best of the current

iteration performs worse than the last iteration’s global best (lines 17–24 ). This process

continues until the stopping criterion is met (line 25-26), either when the iteration counter

reaches its maximum or the best solution remains unchanged for a predefined number of iter-

ations. The system operates in a distributed manner to accommodate unassociated content

requests and enable real-time user-cache association and DAI strategies for fast decision-

making in dynamic environments. Cache nodes collaborate based on proximity, performing

collaborative user-cache association and ad insertion based on Gbest(g) and updating Gbest(g)

accordingly (lines 28–30 ).

We assume that at the start of each time slot, cache nodes share cache availability infor-

mation with neighbors to ensure efficient content delivery for unassociated requests. Then,

a progressive search is performed to associate a request if there is no existing strategy or

locally cached content. Also, randomly selected ads are inserted into the associated request.

This method emphasizes a distributed approach before resorting to the cloud provider, unlike

existing works that directly associate unassigned requests with the cloud which improves the

system performance significantly. Finally, the optimal user-cache association and ad insertion

strategy for t is updated based on the best global position (line 31), and network resources

are adjusted accordingly.



Content Distribution in Satellite-Terrestrial Integrated Networks 117

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed solution.

4.5.1 Simulation Settings

We use the CelesTrak dataset [122] to develop a multi-layer satellite network comprising 3

GEO and 50 LEO satellites. We integrate Iridium NEXT LEO satellites with SES GEO satel-

lites to establish a comprehensive multi-layer satellite network. The data set is a Two-Line

Element (TLE) file containing the orbital parameters and characteristics of each satellite.

The network includes two SES ground stations for the GEO satellites, located in Brewster,

Washington, USA, and Winnipeg, Manitoba, Canada [154], along with four Iridium ground

stations for the LEO satellites situated in Tempe, Arizona, Fairbanks, Alaska, Svalbard, Nor-

way, and Punta Arenas, Chile [155]. Additionally, we use the 2018 US ZIP Code Geolocation

dataset [123] to map user terminal locations generating content requests. This dataset com-

prises approximately 40, 000 ZIP codes with corresponding geographical coordinates (i.e.,

latitude and longitude) across the United States. The dataset contains three columns: ZIP

Code, Latitude, and Longitude. To select 100 user terminals from the 40, 000 possible loca-

tions uniformly, we apply the k-means clustering algorithm [156]. The simulation models a

satellite constellation with the gateways and user terminals over 24 hours (Jan. 01, 2025 )

using the Satellite Communications Toolbox in MATLAB.

We model the content request arrival at each user terminal as an exponential distribution,

characteristic of the Poisson arrival process in an M/M/1 queuing model, with a mean con-

tent request arrival rate in the range of [0.05, 0.20] requests per millisecond. Additionally, we

model the popularity of generated content requests using a Zipf distribution with a variable

exponent [0.2, 0.8] to capture dynamic content popularity, ensuring adaptability to changing

request patterns over time. Additionally, we consider the proximity-based content probability

model [157] to define the popularity of content item c at cache node k during time slot t. We

consider 200 content items initially stored at a cloud-based content provider (cps) and 100

ads hosted by a cloud-based ad provider. Content cache placement, user-cache association,

and ad insertion strategies are dynamically updated per time slot to adapt to the network

and user requirements. For PSO parameters, we set the inertia w = 0.9, cognitive learning

factor c1 = 2.0 social learning factors c2 = 2.0, swarm size Npop = 50, and maximum itera-
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tions Ngen = 500. Furthermore, we randomly generate the values of κ0s, the disengagement

rate, and κts, κ
d
s , and κ

m
s , which represent factors related to content type, user demographics,

and ad-content language misalignment, respectively. These values are drawn from a uniform

distribution between 0 and 1, denoted as U(0,1), to introduce random variation in the disen-

gagement factors. We consider user playback devices supporting Standard Definition (SD),

High Definition (HD), and 4K resolutions to determine the content display duration. The

main simulation parameters are listed in Table 4.1.

Table 4.1: Simulation parameters for on-board content caching and distribution

Parameters Value

Satellite constellation simulation duration 24 hours

Time slot duration 15 minutes

Number of time slots 24

Recurrence period 6 hours

Number of LEO satellites 50 [122]

Number of GEO satellites 3 [122]

Cache node storage capacity [5-25] GB

User-LEO latency [20 - 30] ms [158]

LEO-GEO latency [110- 120] [158]

User-GEO [120 - 140] ms [158]

User-cloud latency [100 - 150] ms

Zipf exponent δ [0.2, 0.8] [131]

Feeder uplink capacity 1 Gbps [77]

Data rate requirement {3Mbps, 8Mbps, 25Mbps} [159]
Content size [1 - 2] GB

Number of user terminals 100

Number of content items 200

Number of ad content items 100

Ad runtime duration [3 - 30] seconds

Ad price per impression [20 - 10] $ [160]

Content item pricing { 0.08, 0.11, 0.12 } $ per GB [161]

Ad insertion processing requirement [1 - 4] vCPU [157]

Node processing capacity [1 - 16] vCPU [157]

4.5.2 Benchmark Scheme for On-board Content Caching and Distribution

To evaluate the proposed algorithm BPSO DAI, we compare it against three commonly

used cache replacement policies [124]: (1) First-In-First-Out (FIFO), which evicts the oldest

content first; (2) Least Recently Used (LRU ), which removes the least recently accessed

content; and (3) Least Frequently Used (LFU ), which discards the content with the fewest

accesses. We also consider the Density-based Content Distribution (DCD) scheme [110]
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as another benchmark. While DCD minimizes content delivery delay, it does not consider

content requests transitioning between time slots, which our proposed algorithms address.

Moreover, DCD lacks proximity-based content request-cache association in cases of cache

misses or unavailable user-cache associations, instead directly forwarding such requests to

the cloud provider. In contrast, BPSO DAI prioritizes proximity-based cache association,

enabling a more efficient, distributed approach through an online process. Our algorithm

also integrates revenue generation through DAI, a feature absent in DCD. In addition, DCD

employs a content caching scheme based on the degree of satellite nodes-the more connections

a satellite has, the higher its likelihood of being selected for caching content. In contrast, our

proposed solution relies on content popularity while efficiently utilizing neighboring resources

via ISLs.

4.5.3 KPIs for On-board Content Caching and Distribution

• Cache Hit Rate: This metric refers to the average ratio of content requests served by

cache nodes, instead of the cloud-based content provider, to the total number of content

requests in each time slot. The average of the cache hit rate at t is computed as:

CHR(t) =
1

|Scnt(t)|

|Scnt(t)|∑
i=1

|C|∑
f=1

|N|∑
k=1,n ̸=cps

|U|∑
v=1

ζcu,s(t)z
c
u,k(t). (4.26)

• Content Provider Revenue: This metric represents the total revenue generated by the

content provider, calculated based on the number of successfully served requests and the

associated revenue from ad insertions or content delivery. The average revenue of the content

provider at t is calculated as follows:

R(t) =
1

|Scnt(t)|

|Scnt(t)|∑
i=1

(
Rsubs (t) +Radv,as −Rdiss (t)

)
. (4.27)

• Content Delivery Delay: This metric refers to the average delay experienced by end

users when retrieving content from cache nodes. The average content delivery delay per

service request is computed as follows:

CDD(t) =
1

|Scnt(t)|

|Scnt(t)|∑
i=1

|C|∑
f=1

|N|∑
k=1

∑
eh,k∈Eu,v(t)

eDh,k(t)ζ
c
u,s(t)z

c
u,k(t). (4.28)
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• Service Disruption Ratio: This metric measures the incompleteness of user requests

due to two factors – (1) when a request continues into the next time slot, and the cached

content is evicted due to a cache update and (2) when a user terminates a service because ad

duration or frequency exceeds their tolerance threshold, leading to disengagement. Service

disruption occurs when the probability of user disengagement exceeds 1. It is quantified as

the ratio of disrupted servicesdue to either cache eviction or user disengagementto the total

number of service requests in a given time slot, including active requests:

SDR(t) =
1

|Scnt(t)|

|Scnt(t)|∑
i=1

|N|∑
k=1

|x′c
k (t)− x

′c
k (t− 1)|sΥ(t− 1)ζcu,s(t) + sη(t). (4.29)

4.5.4 Results and Discussion

Cache Hit Rate

As illustrated in Figure 4.2a, the proposed solution, BPSO DAI, outperforms benchmarks in

cache hit rate, achieving average improvements of 15%, 20%, 24%, and 27% over DCD, LRU ,

LFU , and FIFO, respectively, across all time slots. Figure 4.2b shows that the cache hit rate

increases with cache size across all algorithms. A larger cache allows storing more content

items, thereby improving the cache hit rate. For instance, the proposed solution outperforms

the benchmark algorithms–DCD, LRU , LFU , and FIFO by more than 10%, 15%, 20%, and

30%, respectively, when the cache size per node is 20GB. This performance gain stems from

BPSO DAI’s ability to utilize more cache nodes, unlike DCD, which restricts caching based

on satellite degree, reducing availability. Additionally, the proposed content popularity–

based caching enhances resource utilization. While the cache hit rate fluctuates due to link

availability and network topology, BPSO DAI remains more stable than DCD, which lacks

service continuity and topology awareness, causing higher fluctuations. In addition, unlike

DCD, the proposed BPSO DAI approach accounts for service continuity, allowing it to

accept more content requests. In DCD, content requests that persist across time slots are

considered cache misses if the content is not cached in the corresponding time slots, leading to

a lower cache hit rate. By contrast, BPSO DAI effectively handles such requests, resulting

in a significantly higher cache hit rate. The main reason the proposed solution outperforms

LRU , LFU , and FIFO is that BPSO DAI, unlike LRU , LFU , and FIFO, follows a content

popularity–based caching scheme, which prioritizes storing more popular content requests,
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thereby improving the cache hit rate. In contrast, LRU , LFU , and FIFO do not directly

consider content popularity but instead rely on content access timing. This approach often

evicts popular content too soon, even if it remains in high demand, leading to a lower cache

hit rate. For example, in LRU , a frequently accessed yet highly popular content item may be

replaced by a newly arrived but less popular item simply because it was not accessed recently.

Similarly, LFU may evict content with a temporary drop in request frequency, even if it is

expected to be popular again. On the other hand, FIFO replaces content strictly based on

arrival time, disregarding popularity altogether, which can lead to unnecessary cache misses.
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Figure 4.2: Average cache hit rate for different on–board content caching and distribution
schemes.
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Figure 4.3: Average content provider revenue for different on–board content caching and
distribution schemes.
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Content Provider Revenue

Figure 4.3 compares the average revenue generated by the content provider from content

delivery and monetized advertising for the proposed solution and the benchmark DCD.

Figure 4.3a shows that BPSO DAI outperforms DCD by an average of more than 50$

in all time intervals. As seen in the figure, the revenue fluctuates across time slots. This

fluctuation in BPSO DAI is primarily due to two factors: (1) variations in network topology,

which impact content delivery delay and force the optimization process to balance revenue

and delay trade–offs, and (2) statistical variations in user requests, which naturally lead to

revenue changes. In contrast, the fluctuations observed in DCD are attributed solely to

statistical variations in content requests. As shown in Figure 4.3b, revenue in BPSO DAI

increases linearly with cache size capacity. This is because larger on–board caches store more

content items, reducing delivery delay. Consequently, the optimization process has greater

flexibility in inserting more ads, leading to higher revenue. In contrast, revenue in DCD

remains unaffected by variations in cache size, as it relies primarily on subscription fees, which

remain constant regardless of whether requests are served from the cloud or on–board caches.

However, at very low cache capacities, BPSO DAI and DCD exhibit similar performance

since revenue is primarily dependent on subscription pricing. As the cache capacity increases,

the proposed solution outperforms the benchmark. For example, as shown in Figure 4.3b,

BPSO DAI achieves an average revenue gain of more than 60$ compared to DCD with a

cache capacity of 25 GB per node.

The improvement in our proposed solution is driven by three key factors. First, it inte-

grates advertising monetization alongside subscription–based pricing, maximizing revenue for

the content provider. Second, it employs a distributed, collaborative content cache distribu-

tion scheme, allowing unassociated service requests to be handled online through cooperation

with neighboring cache nodes. Finally, its topology–aware design ensures seamless handling

of content services that span multiple time slots, enabling more efficient accommodation of

content requests.

Content Delivery Delay

Figure 4.4 presents the average content cache delivery delay, comparing the proposed solution

with DCD. As shown in Figure 4.4a, BPSO DAI achieves an average content delivery

delay of 51 ms, significantly outperforming DCD, which experiences delays exceeding 150
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Figure 4.4: Average content delivery delay for different on–board content caching and distri-
bution schemes.

ms across the time slots. Additionally, Figure 4.4b illustrates that the content delivery

delay decreases as cache storage size increases in both BPSO DAI and DCD. This is

because more extensive cache storage enables more content items to be cached closer to

users, reducing fetching time and improving content delivery performance. However, the

proposed and benchmark solutions exhibit similar delivery delays at very low cache storage

capacities since they rely primarily on remote cloud–based content providers. However, as

the size of the cache increases, the proposed solution consistently outperforms the benchmark

by maintaining lower content delivery delays across various cache capacities. For example,

as shown in Figure 4.4b, BPSO DAI achieves a significantly lower content delivery delay

than DCD, reducing the delay by 95 ms at a cache storage size of 25 GB. This improvement

is attributed to the consideration of service continuity, which minimizes disruptions and

dynamically routes requests to optimal nearby caches. In contrast, DCD restricts caching

decisions based on node degree, which limits its flexibility in handling content requests and

leads to higher delays. Moreover, the proposed solution exhibits more stable content delivery

performance since DCD relies heavily on a dynamically changing node degree in a time–

varying topology, introducing fluctuations in content delivery delay.

Service Disruption Ratio

Figure 4.5 compares the service disruption ratio of the proposed BPSO DAI solution with

the benchmark DCD over the first 5 time slots, with 50% of content requests continuing to
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Figure 4.7: Performance comparison with optimal solution.

the next time slot. The proposed solution shows significantly lower disruption, with less than

2% of content requests disrupted, whereas DCD experiences over 10%. This improvement

results from the topology–aware approach in BPSO DAI, which ensures service continuity

in time–varying topologies. However, a small fraction of content requests still face disruption

due to resource limitations and user disengagement from ad insertions. Figure 4.6 shows that

the BPSO DAI converges in under 200 iterations.

Comparison of BPSO DAI with the Optimal ILP

This section evaluates the optimality gap of the proposed BPSO DAI and the optimal ILP

solution. The ILP model formulated in Equations (4.16) and (4.17) was solved using the CVX

MOSEK optimization solver [125] with 60 content items and 30 ad content items, and a 5GB
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cache storage capacity. We set the Zipf exponent δ = 0.1 to introduce diversity and consider

only the first five time slots. Figure 4.7 illustrates the penalty gap between the proposed

and the optimal ILP solutions. As shown in Figure 4.7a, BPSO DAI achieves a maximum

of 1.3% optimality gap in cache hit rate, demonstrating performance close to ILP. Similarly,

Figure 4.7b shows a 14.32 ms optimality gap for content distribution, with a delivery delay

gap of less than one hop between satellites and between satellite and user terminals. This

small penalty gap arises from the enhancements introduced by the collaborative user–cache

association for unassociated requests, which significantly improves the performance of the

proposed BPSO DAI algorithm.

4.6 Conclusion

In conclusion, this chapter presents a BPSO–based approach for efficient collaborative content

distribution with DAI in multi–layer STINs. It focuses on topology–aware content caching,

revenue–driven cache distribution, and the impact of service continuity and ad insertion on

user engagement in time–varying networks. The proposed solution, BPSO DAI, selects op-

timal cache nodes for storing popular content, handling requests, and performing ad stitching

while considering node storage and processing capacities, link constraints, and network con-

nectivity. It ensures seamless service continuity between time slots, preventing disruptions

during handovers. Additionally, we introduce a collaborative distributed online strategy for

efficient content cache distribution with DAI, specifically addressing unassociated requests in

real–time. Simulation results show significant improvements in cache hit rates, reduced cache

fetching durations, and increased content provider revenues. The proposed solution achieves

over a 5% increase in revenue and reduces cache retrieval duration by 33% compared to the

benchmark DCD.
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Conclusion and Future Work

5.1 Conclusion

This thesis presents service provisioning in SEC-enabled satellite networks for next-generation

applications through two core dimensions that address distinct use cases. The first part ad-

dresses the computing functionality of SEC, with a focus on VNF mapping and scheduling

to efficiently process VNF components and complete SFC service requests for mission-critical

applications. The second part focuses on content caching, distribution, and ad monetiza-

tion, leveraging the storage functionality of SEC to enhance content delivery efficiency. We

consider several challenges, such as capacity constraints, satellite topology dynamism, traf-

fic demands, and heterogeneity of service requirements. In this thesis, we optimize specific

aspects of network performance, user experiences, and service provider profits for different

next-generation applications and use cases that range from mission-critical applications to

VoD over OTT services. Furthermore, we consider every user profile with user distribution,

and demand distribution is non-uniform. Dynamically changing nonuniform user demand,

heterogeneity, and network topology force future service provisioning scheme techniques to

adapt to the network’s dynamic change.

In Chapter 2, we presented a VNF mapping and scheduling scheme for mission-critical

applications, aiming to reduce E2E service delay and ensure fairness in service delay mar-

gins among competing services. The proposed approach meets the stringent requirements of

mission-critical applications by leveraging VNF components of SFC service requests in orbit

to facilitate and complete services with low latency while ensuring ubiquitous delivery en-

abled by the global coverage of satellite networks. We proposed a topology-aware SA-based

126



Conclusion and Future Work 127

algorithm that dynamically optimizes VNF mapping and scheduling in response to changing

network topology and traffic demands, considering resource availability for seamless service

completion. We compare the proposed approach with relevant benchmarks and a Greedy-

based solution, which we designed primarily for low service arrival rates and small network

sizes.

In Chapter 3, we proposed a novel on-board content cache reconfiguration overhead-

aware placement strategy for SEC-enabled multi-layer satellite networks. Furthermore, we

developed an on-board content caching algorithm that optimizes storage resource utilization

through a novel content popularity model. The algorithm also includes a cache-to-cache

update scheme to minimize cache reconfiguration overhead while ensuring content relevance.

Cache reconfiguration overhead is defined in terms of content cache placement delay and

feeder link load. This approach meets end-user requirements while adapting to dynamic

content traffic demands and network topology to meet end-user requirements.

Chapter 4 presented a revenue-driven seamless content distribution framework with a DAI

scheme in STINs. We focused on maximizing content provider revenue through content deliv-

ery and ad monetization while addressing key service disruption challenges. Specifically, we

identified two primary causes of service disruption: (i) dynamic network topology, where links

appear and disappear unpredictably, and (ii) excessive ad insertion, which can lead to user

disengagement. To mitigate these challenges, we proposed a service continuity-aware content

caching and distribution approach to prevent disruptions caused by network dynamics. Addi-

tionally, we introduced an ad user disengagement cost-aware scheme to balance monetization

and user retention. Finally, we developed a BPSO-based joint content caching and distri-

bution algorithm with a DAI mechanism, enabling collaborative cache node management to

handle service requests efficiently. The proposed solution also accounts for dynamic content

traffic patterns and network topology variations. To assess its effectiveness, we compared our

approach against relevant benchmarks.

5.2 Future Work

The results presented in this thesis have shown the potential of the proposed service provi-

sioning in SEC-enabled networks for next-generation applications. However, there are still

many opportunities to extend its scope. This section discusses potential extensions of the
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thesis for future research.

• Toward 3GPP-Compliant SEC – Enabling VNF-Based Service Provisioning

in 5G/6G Networks: In the latest technical specification release of 3GPP (Release

19) [162], support for regenerative payload architectures and enhanced compatibility

with 5G Core (5GC) functions in NTNs has been introduced. A key future direction

emerging from this development is the integration of 3GPP-compliant network functions

within the SEC framework. The SEC framework can enable ubiquitous connectivity

by orchestrating and provisioning services in orbit using core network components such

as the gNB, User Plane Function (UPF), and Access and Mobility Management Func-

tion (AMF). This advancement presents significant opportunities for next-generation

networks (5G/6G) and constitutes one of the potential extensions of this thesis. Inte-

grating 3GPP functions into the SEC architecture ensures interoperability with future

terrestrial networks and enhances the practical feasibility and deployment potential of

SEC-enabled STINs.

• Intelligent Virtual Network Embedding (VNE) in SEC-Enabled Networks:

Another promising direction for extending the VNF mapping and scheduling frame-

work in SEC-enabled networks is incorporating Artificial Intelligence (AI) to enable

predictive and intelligent decision-making during service provisioning. While this work

primarily focuses on point-to-point SFC requests, real-world service demands are often

more complex. These may involve multi-point-to-multi-point, multi-point-to-single-

point, or other non-linear service topologies, where the set of requested VNFs and their

interconnections form arbitrary graphs rather than simple chains. Future work should

explore generic and intelligent VNE approaches to address such scenarios, leveraging

AI/ML techniques to predict resource demand, optimize VNF placement under con-

straints, and dynamically adapt to varying service topologies. Integrating AI-driven

VNE solutions within the SEC framework will enhance flexibility and scalability and

improve the resilience and efficiency of service provisioning in complex and dynamic

satellite networks.

• Enhancing Security and Privacy in Content Distribution and Ad Insertion:

Security and privacy remain critical challenges in content caching, distribution, and

DAI components of SEC-enabled networks. A promising future direction involves the
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integration of quantum communication technologies, particularly Quantum Key Dis-

tribution (QKD) [163], to ensure secure content delivery and protect against advanced

cyber threats. Leveraging quantum-safe mechanisms within satellite-based content dis-

tribution systems can uphold end-to-end confidentiality and integrity, even under evolv-

ing threat landscapes. While this thesis introduces a distributed ad insertion scheme

that inherently reduces privacy exposure compared to centralized approaches such as

SSAI, strict compliance with data privacy regulations, most notably the GDPR, re-

mains essential. Future research should explore privacy-preserving ad personalization

techniques that uphold legal and ethical standards while supporting monetization goals.

Key directions include edge-based anonymization, federated learning for decentralized

user profiling, and user-consent-aware content adaptation. These approaches balance

business objectives and robust privacy protections, marking an essential evolution of

SEC-enabled content services.

• AI-Driven Content Caching and Distribution with Proactive User Disen-

gagement Handling: Another promising extension of this research lies in developing

an intelligent content caching and distribution framework capable of effectively han-

dling service requests, particularly during cache update windows when content avail-

ability may be temporarily reduced. Integrating AI into the caching and distribution

pipeline enables predictive and adaptive decision-making for content placement, update

scheduling, and user association based on historical data and behavioral patterns. This

direction is particularly valuable in addressing user disengagement costs during content

delivery, a critical concern in DAI scenarios where poorly timed or irrelevant content

may lead to user drop-off. An AI-driven caching and DAI system can proactively

adapt to user preferences, contextual demand, and network dynamics to minimize dis-

engagement, enhance QoE, and maximize monetization opportunities. By intelligently

balancing content freshness, user behavior, and ad relevance, such a system would sup-

port more resilient, adaptive, and user-centric content delivery across satellite edge

networks, paving the way for scalable and sustainable deployment in next-generation

network infrastructures.

• Orchestrator Placement for VNF Mapping and Content Caching in SEC: An-

other valuable future research direction involves identifying and optimizing the place-
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ment of orchestration entities, such as SDN controllers, which coordinate both VNF

mapping and scheduling and content caching and distribution decisions. The location

and responsiveness of these orchestrators significantly impact service completion delay

and the overall quality and correctness of the deployed service chains. Poor place-

ment or delayed communication with the orchestrator may result in inefficient VNF

deployments, increased latency, and even service failure in mission-critical scenarios.

Similarly, in content caching systems, the placement of the orchestrator responsible for

cache placement and updates is equally critical. Since this entity determines where and

when content is cached or updated, its proximity to the nodes and decision latency di-

rectly affect the timeliness of cache updates and cache hit performance. Future research

should, therefore, explore dynamic, hierarchical, or distributed placement strategies for

orchestrators in SEC-enabled satellite networks, with optimization objectives that in-

clude delay minimization, load balancing, and resilience to link failures or congestion.
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E2E Service Delay Model

The E2E service delay is the cumulative time taken to complete a service request via the

selected physical path. The E2E service delay dtots (t) for a specific service request s at a given

snapshot time t, is defined as follows:

dtots (t) =
∑

fs,j∈svnf

(∑
k∈N

(∑
h∈N

eDh,k(t) y
s,j
h,k(t)

)
+f ℓ,ks,j x

s,j
k (t) + f τ,ks,j

)
, (1)

The E2E service delay, dtots (t), consists of three components.

1. The propagation delay of a service request includes the cumulative sum of the propa-

gation delays of the physical links along the selected path required to fulfill the service

request. The first component of the service delay dtots (t) for the service request s is the

propagation delay dprops (t), defined as follows:

dprops (t) =
∑

fs,j∈svnf

(∑
k∈N

(∑
h∈N

ys,jh,k(t)e
D
h,k(t)

))
(2)

where dh,k(t) represents the propagation delay between the physical nodes h and k, and

ys,jh,k(t) is the virtual link decision variable indicating whether the virtual link between

VNF fs,j and its preceding VNF fs,j−1 is mapped onto the path containing the link

eh,k at the given snapshot t, respectively.

2. The second component, termed processing delay dprocs (t) within dtots (t), signifies the

cumulative processing delay of the VNF components of s at their designated nodes. It

is defined as:

dprocs (t) =
∑

fs,j∈svnf

f ℓ,ks,j x
s,j
k (t) (3)
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Where f ℓ,ks,j stands for the processing delay necessary to handle the VNF component fs,j

at node k, and xs,jk (t) signifies the VNF mapping decision determining whether VNF

component fs,j is executed at node k during the specified snapshot t.

3. We can define the queuing delay of a VNF as the total delay experienced by the VNF

while it awaits processing at a designated node. This delay arises when the designated

node is occupied with processing another VNF. The third component of dtots (t) is the

total queuing delay for VNF fs,j at node k, denoted as f τ,ks,j , and can be calculated as

follows:

f τ,ks,j = xs,jk (t)
∑

g∈Ssfc(t)

∑
fg,q∈gvnf

((
f ℓ,ks,j − (fA,kg,q (t)− fA,ks,j (t))

)
θksj,gqχ

k
sj,gq(t)

+
(
f ℓ,kg,q − (fA,ks,j (t)− fA,kg,q (t))

)
θkgq,sjχ

k
gq,sj(t)

)
, ∀{g ̸= s OR q ̸= j} (4)

Where θksj,gq is a binary variable that shows whether VNF fs,j arrives while VNF fg,q

waits for processing or is in the middle of processing at node k and can be described as

follows.

θksj,gq =


1, if fs,j arrived while fg,q at k

0, Otherwise.

From Equation (1), the E2E delay of a request can be categorized into two main compo-

nents: VNF mapping delay component and VNF scheduling delay component.

The delay associated with VNF mapping encompasses the processing delay and propaga-

tion delay components, and it can be defined as follows:

dvms (t) =
∑

fs,j∈svnf

(∑
k∈N

(∑
h∈N

ys,jh,k(t)e
D
h,k(t)

)
+xs,jk (t)f ℓ,ks,j

)
(5)

The delay attributed to VNF scheduling encompasses the cumulative queuing delay incurred

by the VNF components within a service request. This delay can be defined as:

dvss (t) =
∑

fs,j∈svnf

f τ,ks,j (6)
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Binary Relaxation

Note that we define X = xs,jk (t), Y = ys,jh,k(t) and χ = χksj,gq(t) to simplify the solution of the

optimization problem. We define the VNF mapping, ψxy, and VNF scheduling, ψχ penalized

functions which include the penalty functions and their corresponding parameters as:

ψxy = µx
∑

fs,j∈svnf

∑
k∈N

(X −Xi−1)∇P(X) + µy
∑

fs,j∈svnf

∑
h∈N

∑
k∈N

(Y − Y i−1)∇P(Y ) (7)

ψχ = µχ
∑

s∈Ssfc(t)

∑
fs,j∈svnf

∑
g∈Ssfc(t)

∑
fg,q∈gvnf

(χ− χi−1)∇P(χ) (8)

Where P(X), P(Y ), and P(χ), are relaxation penalty functions associated with the de-

cision variables for VNF node mapping (X), virtual link mapping (Y ), and VNF scheduling

(χ), respectively and defined as:

P(X) = X2 −X, P(Y ) = Y 2 − Y , and P(χ) = χ2 − χ (12)

The penalty functions are designed to encourage the relaxed problem to generate solution

values within the range of 0 to 1. Additionally, we introduce corresponding penalty param-

eters, represented as µx, µy, and µχ, specifically for the decision variables X(t), Y(t), and

χ(t), respectively. These penalty parameters play a role in shaping the behavior of the re-

laxation to encourage binary-like solutions. We assume that Xi−1 and Y i−1 are the (i− 1)th

VNF node and virtual link mapping solutions, respectively. Similarly, χi−1 is considered the

(i− 1)th VNF scheduling solution.
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