
Programming Contract Amending

Cosimo Laneve1 , Alessandro Parenti2(B) , and Giovanni Sartor2

1 Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

2 Department of Legal Studies, University of Bologna, Bologna, Italy
alessandro.parenti3@unibo.it

Abstract. Legal contracts can be generally amended either because
real-world events require an adaptation of the contract to new circum-
stances or because new agreements between the parties take place. When
legal contracts are defined by a programming language, amendments
likely entail runtime modifications to the contract code. In this paper,
we present a law-derived framework for amending contract codes that are
written in Stipula, a programming language for legal contracts. The full
language, called higher-order Stipula, is applied to modelling real-world
examples of contract amendments, where modifications may add new
clauses or may rewrite (part of) old ones. We also discuss the prototype
implementation of the language and its graphical user interface.

1 Introduction

The use of computer code to represent, monitor or execute a legal agreement
between parties has been studied and employed in various forms since the 1970s
[20]. The coding of contracts can bring several benefits: lower costs of digital
transactions, the monitoring of business procedures, or the avoidance of litigation
because of an ex-ante automatic assessment of compliance [21].

Stipula [6] is a domain-specific language for drafting computable legal con-
tracts. It was designed under the guiding principle of having an abstraction level
as close as possible to contractual practice, to facilitate its use by legal profes-
sionals. For this reason, it is based on a small set of primitives that reflect the
basic elements of legal contracts (permissions, obligations, etc.).

Current Stipula contracts are immutable, i.e., they cannot be modified at run-
time once the execution has been started. However, there may be several reasons
to modify a contract, ranging from the fact that that parties have changed their
mind, to the occurrence of an unexpected event that affects the contractual rela-
tionship. The latter case is usually dealt with in contracts by hardship clauses,
and represents a crucial issue, especially in long-term commercial agreements.
In Sect. 3, we analyse the most common scenarios requiring amendments, and
discuss the legal basis for amending contracts in legal systems.

Because of the immutability of Stipula, in order to model contract amend-
ments, one would have to anticipate the potential modifications causes at the
time of contract formation, and provide for them accordingly, in the contract
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Bono et al. (Eds.): JSAI-isAI 2023 Workshops, LNAI 14644, pp. 19–34, 2024.
https://doi.org/10.1007/978-3-031-60511-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60511-6_2&domain=pdf
http://orcid.org/0000-0002-0052-4061
http://orcid.org/0000-0002-9855-7792
http://orcid.org/0000-0003-2210-0398
https://doi.org/10.1007/978-3-031-60511-6_2

20 C. Laneve et al.

code. Besides being hardly feasible, such a practice would significantly raise the
drafting costs, thus nullifying one of the main purposes for digitalizing legal con-
tracts. Therefore, in the present work, we discuss the addition of a new feature
to Stipula in order to support for future amendments during contract execution.
Up to our knowledge, no other programming language for legal contracts has yet
addressed this issue.

Our full language, called higher-order Stipula features functions that may
carry computer code as an input parameter. The code is run when the function
is invoked, thus possibly modifying the original contract protocol. This solution
allows us to manage situations where the amendment affects the whole body of
the contract, so that only the new provisions are operational, as well as situations
where only some parts are changed, so that the rest of the previous code remains
operational. In Sect. 4, we test the new feature on a real-world example directly
taken from contract practice. In Sect. 5 we discuss two methods for restricting
amendments. The first method requires the parties’ agreement. With the second
method, parties may pre-define constraints against which future amendments can
be verified at run-time. We then explore in Sect. 6 the prototype implementation
of higher-order Stipula and its graphical user interface. We end our contribution
by discussing the state of the art in Sect. 7 and presenting our conclusions in
Sect. 8.

2 Background: Modelling Contracts with Stipula

Stipula is a domain-specific language for modelling legal contracts that has been
designed to be more concrete and execution-oriented than a specification lan-
guage and, at the same time, more abstract than a full-fledged programming
language [6]. Stipula consists of a small set of primitives that reflect some key
features of legal contracts:

– A contract enters into force at the moment of the ‘meeting of the minds’ of the
parties. This is represented by the agreement operator through which parties
are called to agree on the terms of the contract. For example, the following
script

agreement (Supplier , Buyer , PriceProvider) {
Supplier , Buyer : formula

} init => @Start

defines a contracts whose parties are Supplier, Buyer and PriceProvider,
where Supplier and Buyer must initially agree on the value of the field
formula;

– legal contracts may create, extinguish or regulate the parties’ normative posi-
tions such as permissions, prohibitions, obligations or powers. Stipula uses
states to model and automatically enforce prohibitions and permissions. In
each state only certain functions may be invoked while others are precluded.
States are indicated by an “@” in front. In the foregoing code, the state
enabling the invocation of the update_price function is @Start. Functions

Programming Contract Amending 21

are used to express actions of parties and may correspond to contract clauses.
For example, in the state @Start the PriceProvider updates the price and
sends the new value to the Supplier and the Buyer.

@Start PriceProvider: update_price(p)[] {
p → price
p → Supplier , Buyer

} => @Waiting_order

– Legal contracts are usually required to manage currencies or digital goods. In
Stipula these entities are called assets and operations involving them (trans-
fers, escrows, etc.) are characterised by ad hoc syntactical specifications, thus
separating them from other data types. For example, an asset transfer is
expressed by

w � wallet

that empties the asset w and moves its value into wallet (that is, the value
of wallet is augmented by the value of w). In contrast to assets, fields hold
standard values (e.g., price, deadline) and are not diminished by the trans-
ferred value. For example, p → price updates the value of price to p, but p
is not emptied;

– events are used to check the fulfilment of obligations at a certain time and
eventually to issue a penalty. The operation

now + time_due >> @Inactive{
"the contract ends" → Buyer

} => @End

triggers a transition at time now+time_due. The transition, which may only
take place in the state @Inactive, informs the Buyer that the contract is
terminated;

– in most cases, contracts’ execution may depend on external events, such as
updates of timetables, sporting event results, mortgage rates, etc., whose data
need to be fed into the contract. This need is satisfied by involving a trusted
intermediary party, who participates in the contract and is only allowed to
call specific functions. The same solution may be used to solve disputes and
establish non-automatically verifiable (e.g. open-ended) circumstances, such
as force majeure, serious damage, etc.

The formal semantics of Stipula, as well as the definition of techniques for
verifying legal contracts and the design of the prototype, are fully reported in
[6]. Here we only provide a simplified description of the syntax, so as to allow
the comprehension of the examples presented.

As an example of Stipula code, consider the following real-world scenario
directly derived from a contractual dispute which arose before the Court of
Arbitration of the International Chamber of Commerce1. The dispute concerned

1 ICC case n. 10351/2001.

22 C. Laneve et al.

Fig. 1. The Gas Supply contract in Stipula

a long-term contract for the purchase of liquid natural gas. In order to set the
cost of oil, parties define a price formula (that, in our case, for simplicity, is a
multiplicative factor) and agree to refer to a specific pricing agency’s publications
to retrieve the necessary parameters (the market price, in our case). They also
provide for a price revision clause regulating the procedures and conditions for
updating the formula. Table 1 presents a simplified version of the agreement in
its main points. The contract could be represented in Stipula as shown in Fig. 1.

Lines 1–4 define parties, fields, and assets of the contract called GasSupply.
The contract includes the third party PriceProvider representing the reporting
agency to which Supplier and Buyer refer to retrieve the necessary market data

Table 1. The Gas Supply contract in natural language

1. Agreement. Supplier and Buyer stipulate a long term agreement for the supply

of liquified natural gas. Parties indicate Price Provider as the reference

price agency and fix a price formula.
2. Price. Gas price is calculated by applying the price formula to the price

provided by Price Provider.
3. Purchase. Buyer can place an order for gas by paying in advance the

corresponding price, as resulting from the price formula. Supplier shall

deliver the gas ordered and payed without undue delay.
4. Formula Revision. Parties can, upon agreement, decide to revise the price

formula, in order to match market needs.

Programming Contract Amending 23

to calculate the (discounted) price. The formula stores the multiplicative factor
to be applied to the market price; the field order stores the gas order made by
the buyer each time.

Through the agreement clause (lines 6–8) parties set the field formula and
express their binding acceptance of contract terms (meeting of the minds). The
contract is initialised in the state @Start (line 8) where the only action admit-
ted is the setting of price by the reporting agency PriceProvider – lines
10–13. [Line 10 specifies that update_price may be also invoked in the state
@Waiting_order.] Then the contract transits in the state @Waiting_order. In
this state, the Buyer purchases gas by means of the function place_order. This
function takes w representing the currency sent for the purchase (the square
brackets identify the parameters that are assets). The corresponding amount
of gas, i.e. w/(price×formula), is stored into order (line 16) and communi-
cated to the Supplier (line 17); then w is escrowed by the contract and stored
in wallet (line 18). At this point, the contract transits to the @Order state,
enabling the Supplier to call the send_gas function. Through this, the gas
(g) is sent to the Buyer (line 22) and the money stored in wallet sent to the
Supplier (line 25). We remark that send_gas can be invoked provided the gas g
is exactly what has been ordered by the Buyer (that has been stored in order).
Finally, Lines 26–28 define the price determination formula. It can be called by
both parties and allow them to update formula with a new one.

Further transpositions of legal contracts in Stipula can be found in [5].
The basic definition of Stipula does not admit the management of exceptional
behaviours, i.e. all those behaviours that cannot be anticipated due to the occur-
rence of unforeseeable and extraordinary events, which, in legal contracts, are
usually dealt with amendments. The extension of the language with a feature
for modelling amendments is discussed in the following sections.

3 Amending Contracts

The principle of freedom of contract allows parties to modify contracts at their
will, provided that there is an agreement and that the new content is not against
the law. Occasionally, one party may yield to the other the power to change some
parts of the agreement unilaterally [2]. This is a common practice for consumer
contracts and standard terms of service, where the right to modify is usually
tied to certain requirements, such as notifying the other party of the change and
giving them the possibility to withdraw. In specific cases, the right to unilateral
modification (jus variandi) may be directly conferred by the legislator (e.g., in
Italian law, the employer’s right to change employees’ì tasks2).

The modification to contract may also originate externally to the parties,
such as when a court declares a contract partially void due to formal or sub-
stantial flaws or when unexpected events outside the control of parties affect
the contractual relationship. These last cases are particularly relevant in long-
term contracts and require legal solutions in order to deal with occurrences that
couldn’t be anticipated by the parties.
2 Art. 2103 Codice Civile.

24 C. Laneve et al.

Contracts are entered into with the expectation that both parties will ful-
fil their obligations as agreed upon. The roman brocard pacta sunt servanda
(agreement have to be respected), constitutes a foundational principle of con-
tract theory: the contract is a mutual promise in which each party can hold the
other one to the promised performance However, parties accepted to be bound
by those promises under the particular set of circumstances standing at the
time of stipulation: if these circumstances change, this commitment may need
to be revised. For example, the beginning of a war could drastically raise the
price of commodities needed for production or the outbreak of a pandemic could
halt factories’ activity. Such changes of circumstances may make performance of
contractual obligations impossible, excessively onerous or even deprive the per-
formance of its original utility for the counterparty. To address these situations,
a legal basis to justify non-performance or to legitimately request an amend-
ment of the contract is provided by the principle of clausola rebus sic stantibus:
a contract is binding only as far as the relevant circumstances remain the same
as they were at the time of conclusion of the agreement [22].

The matter is known to most legal systems but it is addressed in different
ways. In common law systems, courts have elaborated the doctrine of frustra-
tion3. Frustration represents an excuse when an unforeseen change in circum-
stances deprives the contract of all utility for one party, even though the material
capacity to perform the obligation is not affected. In the United States, one can
also find the notion of impracticability which, recognised by the Uniform Com-
mercial Code (§ 2-615), offers a defense in case performance became impractical
due to a contingency that the parties, at the time of stipulation, assumed would
not take place. Unlike under frustration, impracticability also applies where per-
formance has become extremely difficult or onerous for one party [18].

In civil law countries, the issue is often addressed by national legislation.
For example, in France and Italy, the respective civil codes include a provision
dealing with supervening events that render the performance excessively onerous
for one party (Art. 1195 Code Civìl, art. 1467 Codice Civile). These norms give
to the burdened party the possibility to request an amendment of the contract
in order to recover the original contractual balance.

In contract practice, especially in international context, the eventuality of
unexpected changes in circumstances that might affect the agreement is usually
dealt with by specific clauses defining the conditions and procedures to be fol-
lowed in such cases. By writing such clauses, parties can avoid the uncertainty
of being at the mercy of the relevant national legislation and adjudication [10].
The main examples in this sense are force majeure and hardship clauses. While
force majeure occurs when performance becomes impossible and usually leads to
suspension or termination, hardship cases take place where the equilibrium of a

3 The frustration doctrine was originally developed by English courts as a consequence
to the famous Coronation cases in 1902–1904. The cancellation of King Edward
VII’s coronation frustrated the purpose of the defendants who leased apartments to
witness the procession from a privileged spot. See Krell v Henry (1903).

Programming Contract Amending 25

contract is altered making compliance significantly more onerous for one party4.
In these cases, the burdened party is usually entitled to request an amendment
of the contract, or its termination.

The contract defined in the language of Sect. 2 do not provide ways to deal
directly with modifications during its execution. Therefore, in order to model
either force majeure or hardship, one should anticipate all the appropriate
amendments for each possible circumstance at the time of first drafting. While
this is easy for termination clauses (it is enough to include a transition to a
final state), it is clearly impossible for other kinds of amendments [16]. Even an
attempt to do that would raise drafting costs and introduce huge complexities
in the contract, thus nullifying one of the main objectives of Stipula, which is
to have a simple and intelligible code. For these reasons, in the next section, we
discuss an extension of the language with a feature that allows parties to remove
or amend the effects of a contract in a direct and intelligible way.

4 Stipula with Amendments

Switching to the programming perspective, contract amendments entail a mod-
ification of the contract protocol. However, we notice that different kinds of
amendment produce different effects on the code. Some cases may only require
the addition of a new function or the removal of an old one, while others may
affect the whole existing protocol. Moreover, old and new codes will often have to
be operational at the same time, potentially giving rise to invocation conflicts.
In order to implement amendments, it is necessary to handle these situations
effectively.

Technically, amendments are runtime adjustments to the contract’s behavior.
In programming languages, these runtime adjustment are usually expressed by
higher-order functions that may also take code as an input parameter. This code
is run when such a function is invoked, thus possibly modifying the function’s
behaviour. A higher-order function in Stipula is

@Q Party: amendment �X,Y, Z � {remove X add Y run Z}

This function carries three parameters in brackets � · �, whose roles are indicated
by the directives remove X add Y run Z. X is a sequence of function names that
will be removed from the contract (the terms of the sequence may be either f or
A:f or Q A:f); Y represents the new code added and may include declarations of
new parties, fields, assets as well as new functions that will amend the contract;
Z is the body of the higher-order functions. Therefore Z is defined in the form
{ ..} => @Q, and may also include the new elements defined in Y . It is worth
mentioning that, while X and Y are potentially empty sequences (i.e., optional
parameters), Z is mandatory (it is, in fact, necessary to at least define the state
that the contract will transit to after the function invocation).

The formal semantics of higher-order Stipula has been defined in [15]; the
purpose of this paper is rather to discuss the underlying legal basis to the new
4 Art. 6.2.2 UNIDROIT Principles.

26 C. Laneve et al.

higher-order feature and to provide practical design patterns. We will do this by
presenting real-world cases of contract amendments.

We build on the example presented in Sect. 2, drawing from the dispute arose
in case n. 10351 of the ICC Court of Arbitration (hereinafter, “the dispute”). In
addition to the contract code in Fig. 1, parties provide an amendment clause
which is represented by the higher-order function
@Waiting_order Seller ,Buyer: amendment�X,Y, Z �{remove X add Y run Z}

that can be called by Seller and Buyer to introduce a modification. For the
purposes of this section, we assume that parties find an agreement on the amend-
ment outside the contract. We discuss in Sect. 5 how to constrain amendments
in higher-order Stipula.

4.1 Additive Amendment

From the history of the dispute5 we can see that parties included in their contract
a so-called take-or-pay clause. A take-or-pay clause is a provision in a contract
stating that a buyer has the obligation of either taking delivery of goods from
a Supplier or paying a specified penalty amount to the Supplier for not taking
them. This kind of provision benefits both parties because reduces the risk of
the investment on the supplier side, and allows the buyer to negotiate a lower
price6 For the purposes of our example, we can assume that an external event
(e.g., a war) affected the gas market as to increase the contractual risk on all
market participants. Therefore, parties agree to introduce a take-or-pay clause to
reduce their exposure for the following two years of their business relationship,
providing a penalty in case the purchase threshold is not reached. To do so,
Supplier invokes the amendment function as shown in Fig. 2 from the top.

At this stage, all the function’s parameters (remove X add Y run Z) are
instantiated. The first parameter ε specifies that there are no functions to be
removed from the old code. The second parameter, D, defines a list of new func-
tions. They generally reflect the original code presented in Fig. 1 but with some
additions necessary to implement the take-or-pay clause.

Two fields – threshold and t_thre – as well as the asset penalty are intro-
duced. The fields respectively represent the amount of gas that the buyer com-
mitted to buy and the time span within which the parties have committed to do
it (two years), while the asset will be used to store the escrowed money for the
penalty.

Being the take-or-pay clause essentially an obligation (on the buyer), Stipula
uses events to model it (see Sect. 2). In particular, the function take_or_pay is
used to escrow the penalty fee (line 5) and to schedule an event (lines 6–8) that
can be read as follows: if, after two years, in whatever state @X of the contract,
the threshold amount of gas to be purchased will not be reached yet, then the
penalty fee will automatically be sent to Supplier. Otherwise, the penalty fee
is returned to the Buyer.
5 Available at https://tinyurl.com/Case10351.
6 investopedia.com, available at https://tinyurl.com/5xxjp997.

https://tinyurl.com/Case10351
https://tinyurl.com/5xxjp997

Programming Contract Amending 27

Fig. 2. Take-or-pay amendment

After the execution of this function is over, the contract transits to the new
state @New_Waiting. Both the update_price and the place_order function
mirror the ones present in the old version of the contract, while send_gas features
an important difference. After the Supplier has received the payment for the
gas sold, the threshold field is updated by subtracting to it the value of gas
just purchased by the buyer (line 25). This allows the automatic assessment of
obligation compliance made by the event in lines 6–8.

Finally, the third parameter of the amendment defines its body. The newly
introduced fields are instantiated with the values agreed by the parties and the
contract moves to the new state @Restart. In this state, the buyer can invoke
the take_or_pay function to actually implement the amendment.

Notice that D introduces a whole new set of contract states and none of
the new functions provide transitions to previous states from Fig. 1. This means
that the old code is completely deactivated, even though it is not definitively
removed. In fact, it will be enough to invoke again the amendment function and
make a transition to an old state to render it operational again. For example,
after the two years negotiated by parties, they will be able to get to the old
version of the contract. We call this kind of amendment additive: it introduces
a whole new piece of protocol replacing the old one, and the two never overlap.

28 C. Laneve et al.

Fig. 3. Price revision clause amendment

4.2 Overriding Amendment

Along the course of the contractual relationship, parties from the dispute fre-
quently modified the contract, particularly in relation to the determination of
price. With one of these amendments, in 1981, parties introduced a modification
to the price revision clause, providing for the possibility to replace the price
reporting agency where this had stopped publishing reliable data necessary to
the price determination. Should one party dispute the publications, they would
meet to negotiate a new trusted source.

In order to introduce such a possibility, the amendment function is invoked
by either party as shown in the first line of Fig. 3. Also in this case, there is no
function to remove (the first argument is ε). The short body of the amendment
function, the third parameter, is indicated directly in the first line. It simply
communicates the title of the modification to all parties and makes a transition
to the Waiting_Order state, already existing in the original contract.

In contrast to the previous example, here the new code D does not substitute
completely the old set of states, therefore old functions are kept operational. D
introduces a new version of the price_revision function from Fig. 1 and imple-
ments the possibility of calling a parties meeting in case the provider becomes
unreliable. Having the two functions the same name, the same callers and same
state, the new and the old price_revision function clearly overlap with each
other and enter into conflict once they are invoked. Higher-order Stipula handles
conflicts though priorities and by leveraging constraints. As a general rule, con-
flicts are resolved by giving priority to functions of the newest code. However,
this can be handled more smoothly by providing specific constraints that have
to be satisfied. In this case, the newest price_revision requires the input x to
be equal to the string "dispute_provider" (line 1). This means that, whether
parties want to use that function to change provider, they will have to fulfill
that condition, otherwise they will just call the old version from Fig. 1 and sim-
ply modify the price formula. Once the contract has transited to the @Meeting
state (line 3), parties are enabled to call the define_provider function. This is
modeled as a higher-order one in that it is necessary to modify the code to add
a new party to the contract.

We call this kind of amendment overriding : old and new codes are both
operational at the same time and are linked with each other. Potential conflicts
are solved through priorities and constraint management.

Programming Contract Amending 29

Fig. 4. Substitution of Provider

After some time, according to parties’ opinion, the data published by the
reporting agency stop being truly representative of the market situation and
therefore they decide to change provider by triggering the newly added clause.
To implement this kind of amendment, the intervention needed is two-folded:
on the one hand, a new party has to be introduced into the contract, while,
on the other, the old price provider has to be prevented from interacting with
the contract. Once in the @Meeting state, this can be obtained by invoking
define_Provider.

As shown in Fig. 4, the first parameter of define_Provider indicates
update_price, meaning that the function is removed from the old code of Fig. 1.
At the same time, D′ introduces the new price provider as a party to the contract
and defines a new update_price function that can be only accessed by the new
provider. Lastly, the body of the function in line 1 communicates the name of
the new provider to all parties and moves the contract to @Waiting_Order.

At this stage, the provisions regulating the parties’ relationship results from
the combination of the original agreement, plus the two following amendments.
This is represented by the code from Fig. 1, the code D from Fig. 3 and D′

from Fig. 4, which are all operational at the same time. Just like the previous
one, this amendment does not introduce a new set of states: old and new code
uptimes are preserved simultaneously. However, no overlaps occur. The old and
new update_price differ as to the party that is able to invoke it. For this
reason, the removal of the old function is necessary to prevent the old provider
form interacting with the contract. We call this type of amendment overriding
with removal.

5 Amendment Supplements: Agreements and Constraints

The purpose of the present work was to discuss how to technically define amend-
ments in higher-order Stipula. One basic condition for modifying a legal contract
was left out of the representation: the mutual consent of the parties. In fact,
excluding the cases where the legislator confers to one party the power to modify
the contract unilaterally, in all other cases, the manifestation of mutual agree-
ment is required7. In order to deal with this principle within the contract, it is
necessary to allow parties to express the consent to amendments at runtime.
7 Art. 2.1.1 UNIDROIT Principles.

30 C. Laneve et al.

Fig. 5. Static constraints on Amendments

The Stipula language already features an agreement clause which is triggered
at the deployment of the contract and that corresponds to the “meeting of the
minds”: every one must accept the terms of the contract in order for the legal
bound to arise. By following the same pattern, the higher-order Stipula proto-
type [7] already provides an agreement clause that occurs in correspondence of
every amendment that requires the consent of every party.

In addition, it is possible for parties to set specific boundaries to contract
amending. In fact, there may be several factors providing limitations to parties
freedom in amending an agreement. Beside the general limit represented by legal
systems’ mandatory rules (cf. the principle in Art. 1418 of the Italian Civil Code,
the Art. 1:103 of PECL – the European Principle of Contract Law – and the
Art. 1.4 of the international Unidroit Principles) legislators can also provide for
more domain specific boundaries such as limits to prices for basic commodities,
employees’ salary or loan interest rates. Moreover, parties themselves may want
to limit their behaviour.

In order to specify and implement such possibilities, in [15] we have studied
a technique for defining amendments that are mandatorily accepted by parties.
That is, the technique allow parties to agree on the type of amendments they
might accept in the future when a contract is stipulated. To this aim, we extend
higher-order Stipula with the syntactic clause in Fig. 5. This clause allows us to
define an amendment verifier that automatically checks whether amendments
comply or not with the restrictions in the clause.

Every constraint in the clause may be missing (when all the constraints
are empty then “constraints []” is omitted and we are back to the basic
syntax). The constraint “parties: fixed” specifies that amendments cannot
modify the set of parties. If this constraint was present in the gas supply con-
tract, then the amendment D′ of Fig. 4 would have been rejected. The constraint
“fields: z constant” disables updates of fields in z. The constraint “assets:
k not-decrease” protects private assets to be drained by unauthorised parties.
Finally, the constraint “reachable states: Q” guarantees that, whatever con-
tract update is performed, the states in Q can be reached from the ending state of
the amendment. This is because, for example, the corresponding functionalities
cannot be disallowed forever. The foregoing clause has not yet been integrated
in [7]: the prototyping work is ongoing.

Programming Contract Amending 31

Fig. 6. The Stipula editor - Heading and Agreement

6 The Stipula Prototype and its Graphical Interface

Stipula has been prototyped, therefore one can experiment enforcement of con-
tractual conditions, traceability, and outcome certainty. The prototype is a Java
application that is available on the github website of the project, together with
a number of sample contracts [7]. The development has taken three months and
∼3000 lines of Java code. In order to use it, it is necessary to clone the reposi-
tory and install the prototype following the instructions provided on the website.
Once installed, it is possible to write a brand new contract and run it to test its
execution.

The prototype is also provided with the higher-order Stipula extension, sup-
porting runtime amendments. At the implementation level, this functionality is
achieved by updating the contract instance with changes contained in the higher
order. Once the changes are overwritten, the new version is deployed. A technical
explanation of the prototype design is contained in [6].

Although Stipula features an intuitive syntax, the project is provided with a
user-friendly graphical interface to guide the drafting. This is clearly useful for
first-time users as well as for users that are already familiar with the language
in that avoids potential syntactic mistakes. Figure 6 shows how the interface is
presented. For the heading of the contract, the user has to fill in the contract
name, the parties, assets and fields in their corresponding windows. For the
agreement clause, it is necessary to choose among the already declared fields
and parties that are going to comply with the fields’ values. As the editor is
filled in, the corresponding Stipula code is automatically created and updated
real-time in the box on the bottom-right. Similarly, writing functions requires
declaring both the starting and ending states, the parties entitled to call it and
the input parameters needed. Afterwards, the user can choose from a list of

32 C. Laneve et al.

possible operations that can be executed by the function call (field update, asset
transfer, event, etc.). Once the code is ended, it can be copied in the prototype
and executed.

7 Related Works

The digital representation of legal contracts has long been explored, for the
main purpose of monitoring and automating contract-related procedures [11,17].
In this context, substantial work has been done in the wake of ‘Ricardian Con-
tracts’, originally introduced by Ian Grigg in 1996 [13]. This approach consists in
linking written contract documents with the related computer executable code
via parameters. Through the use of mark-up languages, the natural language
document is annotated to indicate which parts of the contract are the values
to be inputted to the code. Further works extended this approach by build-
ing a template model for contracts [4] and providing specifications to increase
contract’s intelligibility [19]. However, the capability of capturing the semantics
of an agreement by annotating natural language documents is limited to the
input that is provided by the tagged data. Moreover, operational code may still
remain opaque to legal professionals, thus preventing the validation of whether
it is faithful to the actual agreement [3].

A different approach to express contracts is represented by Domain-Specific
languages (DSL). A well-designed, relatively understandable DSL for legal con-
tracts has the advantage of keeping code and agreement (or a straightforward
representation of it), within a single artefact. With a single artefact to deal
with, it is simpler to check whether the meaning of the agreement and its code
implementation match [3]. Such a contract can still be coupled with natural lan-
guage explanations of the meaning of the code, but the code, rather than these
explanations would provide the binding formulation of the contract. Different for-
malism and approaches have been studied in the literature. For instance Flood
and Goodenough have described a loan agreement (in the financial domain) as
a particular kind of finite state machine [9]. These machines are mathematical
entities used to describe systems with finite set of states and transitions, where
transitions allow movements from a state to another in response to given inputs
(events). While this approach is interesting when the contract is simple enough,
it becomes cryptic when the contract is more complex. In particular, it becomes
hard to connect the machine to the standard formulation of the contract in
natural languages.

Another interesting technique is based on Controlled Natural languages
(CNL) [1,8]. A CNL resembles natural language in wording, but is based on
formally defined syntax that is automatically converted to a programming lan-
guage. As a consequence, the code is easily readable. However, due to the con-
strains imposed by the CNL, it may result harder to write the contract (with
respect to natural language) because the formalism may miss computational
constructs. It has also been argued that a CNL might represent a “false friend”
for the user [14], i.e., it might induce the user to assume that a CNL-expression

Programming Contract Amending 33

has the same meaning as natural language expression, which might not always
be the case.

Declarative specifications could provide advantages in formally representing
legal contracts and reasoning upon them. For example, they can be more com-
pact than other paradigms, therefore easier to draft and to verify, as well as
easier to understand by parties [12]. Stipula commits to an imperative paradigm
that allows one to represent in a more direct way the stages of contracts’ life-
cycle by means of a state-aware programming style. Additionally, the pretty
straightforward syntax should hopefully make Stipula as intuitive as the declara-
tive specifications for legal professionals. The formal semantics defined in [6,15]
should allow one to define automatic analyzers that verify legal contract correct-
ness.

Higher-order Stipula is a DSL that is based on state-oriented programming
with explicit management of assets and with higher-order to express runtime
modifications of the code. In our formalism, states are not finitely many because
the contracts have memories that store settings and assets. Rather, states are
used to express permissions and prohibition of invoking functionalities by con-
tract parties.

8 Conclusions

The present work showcased an extension of Stipula for amending legal contracts
at run-time. The extension relies on higher-order functions and allows one to
program situations were the old code is completely replaced by new one as well
as situations where old and new code are both operative and coexist. Overall,
we believe that the higher-order mechanism is a simple and intelligible feature
that may assist legal practitioners in programming contract amendments.

Up-to our knowledge, higher-order Stipula is the first legal contract language
natively integrating amendments in its syntax. From a legal perspective, we
believe this technique to reflect contractual practice, where contracts include
clauses that allow for future amendments. In our context this is done though the
higher-order predicate that enables the revision of the contract, i.e., the removal
of old clauses and the insertion of new ones. Simply terminating an instance
of the contract and deploying a new version of it would depart legal practice,
possibly resulting less intuitive for legal professionals. From the programming
perspective, the higher-order has the advantage that amendments may be anal-
ysed using the same techniques on which the first-order language is based. The
compliance assessment of the types of the amendments with respect to the types
of the original code is done by using the same original type inference system. By
exploiting this property, for example, one can design techniques for constrain-
ing amendments at the moment of the drafting, as shown in Sect. 5. Adding a
runtime extension to some existing tool that copes with amendments is not the
same as it would be unconstrained.

34 C. Laneve et al.

References

1. Lexon language (2022). http://lexon.org/. Accessed 13 Apr 2023
2. Caldarelli, G.: Unilateral modification of long term contracts: American change of

terms clauses and Italian Ius Variandi from a ‘relational’ point of view. Eur. Rev.
Contract Law 17(1), 37–53 (2021)

3. Clack, C.D.: Languages for smart and computable contracts. CoRR abs/2104.03764
(2021). https://arxiv.org/abs/2104.03764

4. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations,
design landscape and research directions. CoRR abs/1608.00771 (2016). http://
arxiv.org/abs/1608.00771

5. Crafa, S., Laneve, C.: Programming legal contracts – a beginners guide to Stipula.
In: Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B. (eds.) The Logic of Software.
A Tasting Menu of Formal Methods. LNCS, vol. 13360, pp. 129–146. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-08166-8_7

6. Crafa, S., Laneve, C., Sartor, G., Veschetti, A.: Pacta sunt servanda: legal contracts
in Stipula. Sci. Comput. Program. 225, 102911 (2023)

7. Crafa, S., Laneve, C., Veschetti, A.: The Stipula prototype. https://github.com/
stipula-language/stipula. Accessed 31 Mar 2023

8. Datoo, A., Kowalski, R.: Logical English meets legal English for swaps and deriva-
tives. Artif. Intell. Law 30(2), 163–197 (2022)

9. Flood, M.D., Goodenough, O.R.: Contract as automaton: representing a simple
financial agreement in computational form. Artif. Intell. Law 30(3), 391–416 (2022)

10. Fontaine, M., De Ly, F.: Drafting international contracts. BRILL (2006)
11. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.

Syst. 14(02n03), 181–216 (2005)
12. Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., Xu, X.: On

legal contracts, imperative and declarative smart contracts, and blockchain sys-
tems. Artif. Intell. Law 26, 377–409 (2018)

13. Grigg, I.: The Ricardian Contract (1996). https://iang.org/papers/ricardian_
contract.html. Accessed 13 Apr 2023

14. Idelberger, F.: The uncanny valley of computable contracts: analysis of computable
contract formalisms with a focus towards controlled natural languages. Ph.D. the-
sis, European University Institute (2022)

15. Laneve, C., Parenti, A., Sartor, G.: Legal contracts amending with Stipula. In:
Jongmans, S.S., Lopes, A. (eds.) COORDINATION 2023. LNCS, vol. 13908, pp.
253–270. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35361-1_14

16. Mik, E.: Smart contracts: terminology, technical limitations and real world com-
plexity. Law Innov. Technol. 9(2), 269–300 (2017)

17. Milosevic, Z., Gibson, S., Linington, P., Cole, J., Kulkarni, S.: On design and
implementation of a contract monitoring facility. In: Proceedings of the First IEEE
International Workshop on Electronic Contracting, pp. 62–70 (2004)

18. Palmer, V.V.: Excused performances: force majeure, impracticability, and frustra-
tion of contracts. Am. J. Comput. Law 70(Supplement_1), i70–i88 (2022)

19. Palmirani, M., Cervone, L., Vitali, F.: Intelligible contracts. In: 53rd Hawaii Inter-
national Conference on System Sciences, pp. 1780–1789 (2020)

20. Pfeiffer, H.K.: The Diffusion of Electronic Data Interchange. Springer, Cham
(2012). https://doi.org/10.1007/978-3-642-51559-0

21. Surden, H.: Computable contracts. UCDL Rev. 46, 629 (2012)
22. Zimmermann, R.: The Law of Obligations: Roman Foundations of the Civilian

Tradition. Juta and Company Ltd. (1990)

http://lexon.org/
https://arxiv.org/abs/2104.03764
http://arxiv.org/abs/1608.00771
http://arxiv.org/abs/1608.00771
https://doi.org/10.1007/978-3-031-08166-8_7
https://github.com/stipula-language/stipula
https://github.com/stipula-language/stipula
https://iang.org/papers/ricardian_contract.html
https://iang.org/papers/ricardian_contract.html
https://doi.org/10.1007/978-3-031-35361-1_14
https://doi.org/10.1007/978-3-642-51559-0

	Programming Contract Amending
	1 Introduction
	2 Background: Modelling Contracts with Stipula
	3 Amending Contracts
	4 Stipula with Amendments
	4.1 Additive Amendment
	4.2 Overriding Amendment

	5 Amendment Supplements: Agreements and Constraints
	6 The Stipula Prototype and its Graphical Interface
	7 Related Works
	8 Conclusions
	References

