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1 Introduction

The intent with this technical report is to provide a comprehensive documenta-
tion of our proposed Al-driven workflow for designing and engineering Ecosys-
tem Resilience Prediction Systems (ERPS). The workflow, modeled using the
Business Process Model and Notation (BPMN), offers a structured and repeat-
able process to guide stakeholders from high-level requirements to a complete,
validated system design, in an iterative and incremental manner. Our primary
objective is to address the challenge of integrating domain-specific ecological
knowledge, robust data engineering practices, and state-of-the-art AT models in
a coherent and systematic manner.

In the subsequent sections of this report, we will systematically detail the
main components of the BPMN workflow. We will describe each pool, lane,
and associated activities, explaining their purpose, their interactions, and the
artifacts they consume and produce.

1.1 Foundational Metamodels

The Al-driven workflow is built upon a formal, model-driven foundation com-
prising two primary metamodels that structure the problem and solution do-
mains.

The Ecosystem metamodel (EcoSys), shown in Figure (1} is inspired by
the DREF framework [1] and is used to formalize the ecological problem domain.
It defines an ecosystem’s structural components (entities), their measurable
indicators (properties), and the dimensions along which they change (evolution
azes), among other aspects. A model instantiated from EcoSys is referred to in
the workflow as an integrated DREF model.
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Figure 1: EcoSys metamodel.

The Prediction System metamodel (PredSys) defines the solution space
and is composed of two parts, shown in Figure [2}

1. The AT metamodel (PredSys-AI) provides the constructs to specify neural
network architectures, covering their structural components, functional
aspects, and training configuration.

2. The dataset metamodel (PredSys-Dataset) is used to define the structure
of the data for training, validation, and testing, including the specification
of data engineering and augmentation.
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Figure 2: The two parts of the PredSys metamodel.



2 The ERPS Workflow

The workflow is modeled as an adaptive, BPMN-based process designed to
manage the complexity of building an ERPS. It ensures the coherent integration
of ecosystem requirements, data engineering, and AI modeling. The workflow is
structured into distinct pools and processes that represent the logical separation
of concerns in the design process. Figure [3| presents a high-level view of the
complete workflow.
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Figure 3: Overview of the ERPS Workflow.



2.1 Pool: Assisted Intent Recognition

In the proposed workflow, the Assisted Intent Recognition pool serves as the
main entry point and coordinator of the entire ERPS design process. It contains
the sequence of activities that translate a user’s goal into a complete, generated
Ecosystem Resilience Prediction System.

The process begins with the ”intent definition” user task, where the user
provides their objective, which is captured in a User Intent data object. This
data object serves as the input to the subsequent ”classify intent” service task.
This automated task processes the user’s input and produces a formalized Intent
Classification data object. To ensure fidelity, this classification is then presented
back to the user for review and approval in the ”intent validation” user task.

Once the intent is validated, an exclusive gateway directs the process flow.
This gateway is the mechanism for the workflow’s adaptability, routing the
process based on the nature of the user’s intent by sending a message to trigger
one of the three main sub-processes:

1. Goal-Driven: Triggers the Observer Elicitation process to formalize
ecosystem requirements. For example, a conservation biologist might want
to predict the resilience of a coral reef ecosystem to climate change, requir-
ing formal specification of reef health indicators, environmental stressors,
and recovery metrics.

2. Data-Driven: Triggers the Acquire and Prepare Data process to analyze
an existing dataset. For example, a researcher with historical satellite
imagery and oceanographic data might want to build a prediction system
to forecast marine ecosystem changes based on this available data.

3. Model-Driven: Triggers the Select and Configure AI process to define an
application for an existing AI architecture. For example, an organization
with a pre-trained deep learning model for image classification might want
to adapt it to monitor forest canopy health from aerial photographs.

Following the execution of the appropriate sub-process, all workflow paths
converge on the SSC Resource Verification sub-process. The System State
Context (SSC) is a global data store that facilitates artifact sharing and state
management across all pools. The SSC serves as a centralized repository where
artifacts are created, read, and updated throughout the workflow execution.
This global state management ensures consistency and enables seamless com-
munication between different workflow components. As detailed in Figure [4]
this sub-process acts as a gatekeeper that sequentially validates the contents of
the SSC. It checks for the existence of three core artifacts: the formal ecosys-
tem specification (the integrated DREF model based on EcoSys), the dataset
model (PredSys-Dataset), and the AI model (PredSys-AI). If any artifact is
found to be missing, the workflow sends a message to trigger the corresponding
process (e.g., Start Observer Elicitation, Data acquisition triggered) to ensure
it is created.



Once this verification step confirms that all required artifacts are present and
compatible within the SSC, the pool initiates the final “generate product” service
task. This is intended to automatically assemble the final, executable ERPS by
combining three key components from the SSC: the validated DREF model
instance that formalizes the ecosystem requirements, the prepared dataset, and
the configured AI architecture adapted to the specific prediction tasks. The
complete package is stored in a Product data store, after which the workflow
concludes.
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Figure 4: Details of the SSC Resource Verification Sub-Process.

2.2 Pool: Observer Elicitation

The Observer Elicitation pool is triggered by a message from the Assisted Intent
Recognition pool when a user’s intent is classified as goal-driven. Its purpose
is to orchestrate the formalization of requirements from one or more domain
experts (Observers). The process flow is as follows:

1. The process starts with the ”"define observer” user task. Following this,
a Define Observer Context message is sent to trigger the process in the
DREF Observer Context pool (described in Section . The workflow
then waits until it receives an Observer Context Defined message, which
signals that a validated DREF Model artifact is available in the SSC.

2. Once the confirmation message is received, two sequential Service Tasks
use the newly created DREF Model as input:

e “generate dataset validation criteria”: This task produces a Dataset
Selection Criteria artifact, stored in the SSC, to provide formal con-
straints for the data engineering process. This criteria is used to
validate the dataset against the ecosystem requirements, and to se-
lect the most relevant data for the prediction task.

o "generate Al architecture selection criteria”: This task produces an
AT Selection Criteria artifact, also stored in the SSC, to provide
formal constraints for the AI model selection process. This criteria



is used to validate the AT model against the ecosystem requirements,
and to select the most relevant AT model for the prediction task.

3. A gateway then checks if more observers need to define their context. If
”yes”, the process loops back to the "define observer” task.

4. If ’no”, a signal indicates that the Observers Defined stage is complete,
allowing other pools to proceed. The ”integrated dref model generation”
service task is initiated and consumes all the individual DREF Model(s)
from the SSC and produces a single, consolidated Integrated DREF
Model artifact.

5. Finally, a message indicates that the integrated DREF Model has been
generated, ending the process and allowing the workflow to proceed to the
next pool.

2.3 Pool: DREF Observer Context

The DREF Observer Context pool becomes active upon receiving a Define Ob-
server Context message. It manages the detailed, iterative definition of a single
DREF model based on the FEcoSys metamodel.

The workflow consists of a series of sequential, iterative Service Tasks for
defining the components of the ecosystem model:

1. ”Define entity”: Defines a structural component of the ecosystem. The
process iterates until all entities are defined, producing Entity artifacts in
the SSC.

2. 7Define observable property”: Defines measurable characteristics for the
entities. The process iterates until all properties are defined, producing
Property artifacts in the SSC.

3. "Define evolution azis”: Defines the dimensions (e.g., time) along which
properties change. It iterates until all axes are defined, creating Evolution
axis artifacts in the SSC.

4. ”Define satisfaction function specification”: Defines the functions to eval-
uate the properties. It iterates until all are specified, creating Satisfaction
function specification artifacts.

Once these elements are defined, the ”define observer weight” task sets their
relative importance, creating an Observer weight artifact. These weights are
important when multiple observers are involved, as they allow the system to
account for each observer’s level of expertise, accountability, or responsibility
regarding specific entity properties in the final predictions. For example, an
observer with direct accountability for monitoring certain ecosystem properties
might be assigned a higher weight for those specific predictions.

The ”construct dref model” script task then consumes all these artifacts to
assemble a complete DREF model. This model is passed to the “review dref



model” user task, where the user can review it and validate it. If revisions are
required (based on the Review feedback produced), the process loops back to the
“define entity” task to allow for iterative refinement. Otherwise, the “wvalidate
dref model” service task finalizes the model in the SSC and sends the Observer
Context Defined message, signaling its completion.

2.4 Pool: Acquire and Prepare Data

The Acquire and Prepare Data pool becomes active when a user’s intent is
classified as data-driven or when a Data acquisition triggered message is received.
Its purpose is to manage the entire data lifecycle, from specifying an initial
dataset to performing the necessary engineering tasks to make it suitable for an
AT model. This pool can also be triggered by a message from the SSC Resource
Verification task if a valid dataset is found to be missing.

The pool contains three main sub-processes, presented more in detail in the
following sections, which are themselves defined in separate sub-processes and
triggered by message events:

1. Specify Data at Disposal: Guides the user in formalizing the charac-
teristics of an existing dataset.

2. Check Data Suitability: Validates the specified dataset against the
requirements defined in the Dataset Selection Criteria artifact in the SSC.

3. Data Engineering: Provides a structured workflow for performing trans-
formations, feature engineering, and data augmentation.

Once these steps are complete and a fully prepared and validated dataset
model is available in the SSC, a message is sent to signal that the data acquisition
and preparation phase is complete.

2.4.1 Specify Data at Disposal

The Specify Data at Disposal process, shown in Figure [5] becomes active upon
receiving a Specify dataset at disposal message or when a Data acquisition trig-
gered message is received and there exists a an internal dataset at the disposal
of the user. The purpose of this process is to guide the user through the sys-
tematic characterization and validation of an existing dataset. The process flow
is as follows:

1. The process begins with the ”define data type” user task, where the user
specifies the nature of their dataset (e.g., time-series, images, tabular
data).

2. The "dataset submission” task allows the user to provide the actual dataset,
which is stored as an Internal dataset(s) artifact in the SSC.

3. The "dataset identification” service task performs an automated analy-
sis of the submitted data, producing a Dataset analysis document that
characterizes the data’s structure and properties.



4. A gateway checks if the dataset is valid for prediction purposes. If the
dataset is found to be corrupted or unusable, a Dataset is invalid message
is sent, and the process terminates.

5. If the dataset is valid, the process continues with the ”define data classes”
user task, where the user specifies the different categories or classes present
in the data. This produces Internal dataset(s) classes artifacts stored in

the SSC.

6. Finally, the “characterize data elements” service task performs a detailed
analysis of the data elements and their features, producing an Internal
Dataset specification artifact stored in the SSC.

The process concludes when all dataset characteristics have been formally
specified and stored in the SSC, enabling subsequent data engineering and Al
configuration steps.
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Figure 5: The Specify Data at Disposal Process.

2.4.2 Check Data Suitability

The Check Data Suitability process, shown in Figure [6] validates whether the
dataset meets the requirements for the ecosystem prediction task. This process
ensures that the data can support the intended analysis before proceeding with
data engineering. The process flow is as follows:

1. The process begins with the “check existence of integrated dref model”
service task, which verifies that an integrated DREF model is available in
the SSC.

2. A gateway checks if the model already exists. If "no,” the process sends a
Start Observer Elicitation message to trigger the creation of the missing
ecosystem specification and waits for an Observers Defined signal.



3. If "yes,” or once the DREF model becomes available, the process pro-
ceeds to the ”check suitability” service task. This task consumes both
the Dataset Selection Criteria and the Prepared dataset artifacts from the
SSC to perform the validation.

4. The suitability check determines whether the dataset characteristics align
with the requirements derived from the ecosystem model, ensuring com-
patibility for the intended prediction tasks.

The process concludes when the dataset suitability has been verified, al-
lowing the workflow to proceed with confidence that the data can support the
specified ecosystem analysis requirements.
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Figure 6: The Check Data Suitability Process.

2.4.3 Data Engineering

The Data Engineering process, shown in Figure addresses the systematic
transformation and preparation of data to meet the requirements of the ecosys-
tem prediction system. This process becomes active when data suitability checks
indicate that additional data processing is required, or when no suitable dataset
exists in the current context.

The process flow encompasses several pathways depending on data availabil-
ity and requirements:

10



1. The process begins with the “search relevant data in cots registry” service
task, which interfaces with external Commercial Off-The-Shelf (COTS)
registries to identify potentially suitable data sources. This task enables
the system to leverage existing datasets from external repositories, using
the integrated DREF model as search criteria.

2. A gateway evaluates whether any matching datasets are found in the ex-
ternal registries.

e If "yes,” the process continues with the ”select usable data from cots”
service task, which extracts applicable data components and stores
them as Usable COTS data artifacts in the SSC.

e If no matching datasets are found, or if the selected COTS data is
incomplete, the process directs to the ”define data acquisition strat-
egy” user task, where the user specifies approaches for obtaining the
required data.

3. Following the acquisition strategy definition, a gateway determines whether
the user can collect or acquire the missing data. If "no,” an Observer re-
quirement refinement message is sent to revise the ecosystem requirements.
If 7yes,” the process proceeds to the "collect/acquire external data” man-
ual task, which produces Collected data artifacts.

4. For both COTS and externally collected data, the process includes data
completeness validation. If data is determined to be incomplete, the work-
flow evaluates whether data augmentation is possible through the ”perform
data augmentation” service task. This task supports both traditional geo-
metric transformations and advanced generative Al approaches, providing
flexibility in handling different types of ecological data. The augmented
data is stored as Augmented data artifacts in the SSC.

5. All data sources converge on the ”check compatibility with dref model” ser-
vice task, which validates that the processed data aligns with the ecosystem
specification requirements.

6. If compatibility issues are detected, the process loops back to data col-
lection activities. If the data is compatible but incomplete, the workflow
proceeds to the ”data integration” service task, which combines multiple
data sources into a coherent dataset.

7. The process concludes with the ”save data in ssc” service task, which
stores the final Prepared dataset artifact in the SSC. A boundary event sig-
nals that the dataset preparation is complete, enabling subsequent work-
flow steps.

The process includes multiple decision points and feedback loops to ensure
data quality and compatibility, with annotations indicating that data can be
partial or complete at various stages, providing flexibility in handling diverse
data engineering scenarios.

11
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2.5 Pool: Select and Configure Al

The Select and Configure Al pool is responsible for the complete lifecycle of
defining, selecting, and preparing an Al model for the ERPS. The process ac-
commodates two distinct initiation paths and includes synchronization with
other pools before executing its main logic. The process flow is as follows:

1. The workflow can be initiated via two entry points:

e A model-driven path begins with a ”specify ai architecture” mes-
sage, which triggers the sub-process of the same name (detailed in
Section . After the user provides an architecture, this path
concludes by sending a ”start observer elicitation” message, which
prompts the formalization of ecosystem requirements to match the
provided model.

e A goal or data-driven path is initiated by an "ai architecture specifi-
cation triggered” message. This path begins with the ”infer architec-
ture requirements” service task, which uses existing criteria and data
to define the requirements for the Al model.

2. Before the main selection process can begin, the workflow synchronizes
with other pools by waiting for two confirmation signals: Observers de-
fined and Dataset is prepared. These events act as gates, ensuring all
prerequisites are met.

3. Once synchronized, the ”search matching architectures in cots” service
task queries an AI COTS registry to find suitable off-the-shelf models.

4. A gateway assesses if any matching architectures are found. If ”yes,” the
"select usable architecture from cots” service task is performed, storing
the result as an Al Architecture COTS artifact in the SSC. A subsequent
gateway then checks if the selected architecture fully satisfies the re-
quirements. If it does, the model is sent for compatibility checking.

5. If no matching architecture is found, or if a COTS architecture is in-
complete, the workflow proceeds to the “define ai architecture acquisition
strategy” user task. A gateway then evaluates if the user can collect an
external AI architecture. If not, an Observer requirement refinement
message is sent. Otherwise, the "collect/acquire external ai architecture”
manual task is performed, producing a Collected Al architecture artifact.

6. All active paths converge on the “check compatibility with dref model” ser-
vice task, which validates the candidate architecture against the Integrated
DREF Model.

7. If the model is not compatible ("no”), a gateway checks if its parameters
can be adapted. If 7yes,” the "adapt architecture parameters” task is
executed to make structural adjustments (such as modifying input/output

13



2.5.1

dimensions or layer configurations) while maintaining the core functional-
ity of the architecture. This creates an Adapted architecture artifact, and
the result is sent for validation. If ”no,” the process loops back to the
acquisition strategy task.

If the model is compatible ("yes”), it is passed to the “wvalidate architec-
ture” script task, followed by the 7save architecture” service task, which
stores the final Prepared architecture in the SSC.

The pool’s workflow concludes by throwing a ”selected and configured ai
model” message event.

Specify AI Architecture

The Specify AI Architecture process, shown in Figure [8] provides a structured
workflow for a user to submit an existing AI model and have it formally regis-
tered and validated within the system.

The process flow is as follows:

1.

3

The process begins with the "upload existing architecture” user task, where
the user provides a model file (e.g., in JSON or ONNX format), which is
captured as an Architecture model data object.

The ”extract architecture metadata” service task automatically parses this
file to identify its structural and functional properties, such as input/output
shapes, layers, and operations. The results are stored in an Architecture
metadata analysis artifact.

The ”classify architecture type” script task then categorizes the model
based on its metadata.

. The "check architecture completeness” script task verifies if all required

metadata has been successfully extracted. If the specification is incom-
plete, the user is prompted to “complete architecture spec”. If the user
cannot provide the missing details, the process terminates.

Once the architecture specification is complete, the "validate architecture
model” script task confirms its integrity.

Finally, the ”save architecture model” service task stores the validated
model as an Architecture model in the SSC, and a message signals that
a User-defined architecture model has been prepared, concluding the sub-
process.

Conclusion

In this technical report, we have detailed a comprehensive, model-driven work-
flow for the design and engineering of Ecosystem Resilience Prediction Systems

14
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(ERPS). By leveraging BPMN, we have articulated a structured and adaptive
methodology that systematically bridges the gap between high-level ecological
requirements and deployable Al-driven solutions. The workflow’s modular de-
sign, organized into distinct pools for intent recognition, observer elicitation,
data acquisition, and Al configuration, ensures a clear separation of concerns
while facilitating seamless integration of domain expertise, data engineering,
and machine learning. Through detailed descriptions and diagrams of each pro-
cess, this document provides a foundational guide for researchers, engineers, and
domain experts seeking to develop ERPS.
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