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Abstract—This paper investigates a multi-user Holographic
Multiple-Input Single-Output (MISO) system, where a contin-
uous surface transmitter communicates with multiple dipole
receivers. The channel is diagonalized by selecting an optimal
basis for both the transmitter and receivers, with the complexity
scaling linearly with the number of users. The spectral efficiency
of the proposed eigen-based Holographic MISO (HMISO) system
is analyzed and compared to that of a Fourier-based HMISO and
a conventional fully-digital MISO system under additive white
Gaussian noise. Results indicate that the proposed eigen-based
HMISO outperforms both systems in terms of spectral efficiency.

Index Terms—Holographic communications, electromagnetic
channel, channel diagonalization, eigenvalue problem.

I. INTRODUCTION

OLOGRAPHIC Multiple-Input Multiple-Output

(MIMO) [1] emerges as the natural evolution of
classical MIMO technology. Indeed, holographic surfaces
employ a massive, nearly-continuous, number of antenna
elements confined in a finite area, to provide ultra-high
precise wavefront shaping and spatial resolution. The latter is
crucial in near-field regime where half-wavelength sampling
is generally no longer sufficient to fully capture the spatial
structure of the incoming field and hence fully exploit the
extra spatial modes. To achieve this, the densely packed
radiative elements modulate the amplitude of the signal
generated through the Radio Frequency (RF) chains to
convey information to user terminals [2]. Differently from
MIMO, these surfaces can be equipped with a single RF
chain per spatial mode, which collectively represent the
system Degrees of Freedom (DoF). The generated electric
current density at the transmitting surface produces an electric
field which couples with the receiver antenna. The design
of the source current density and receiver coupling basis
functions are the electromagnetic-continuous equivalent of the
classical discrete MIMO beamforming [2]. In this regard, the
scientific literature already investigated different approaches
to determine the shape of these bases [2]-[7].

The most common option is represented by Fourier modes
[3]-[5], which indeed generate sharp beams which can be
easily directed towards the desired target. However, in the
HMIMO framework, the channel impulse response corre-
sponds to the Green’s function and its support extends to
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spatial infinity. Consequently, the integration of the Green’s
function in a bounded spatial domain of the receiver surface
leads to crosstalk among spatial modes and hence interference
among users.

For this reason, the optimal choice of basis is represented
by the eigenfunction of the channel operator, which can be
exploited as orthogonal streams, thus maximizing the channel
capacity [6]. Similarly, when the electromagnetic field is mod-
eled as a continuous random field, a spectral decomposition
of the signal autocorrelation defines analogous orthogonal
streams [8]. However, finding these optimal eigenfunctions
analytically is generally intractable, especially in a continuous
framework [9]. In fact, the space is typically discretized
to transform the continuous eigenfunction problem into a
Singular Value Decomposition (SVD) problem with a finite
dimension. Exceptionally, by assuming (i) a parabolic approx-
imation of the wavefront and (ii) a paraxial setup, Prolate
Spheroidal Wave Functions (PSWFs) have been demonstrated
to be optimal for linear arrays [6]. This result has been recently
extended in [7] to the non-paraxial single-user scenario. How-
ever, the design of eigenfunctions, that can guarantee a good
tradeoff between computational efficiency and communication
performance, remains a challenge in a multi-user scenario.

Contribution: Starting from electromagnetic theory, a multi-
user holographic Multiple-Input Single-Output (HMISO)
channel model is formulated as a continuous-space eigenvalue
problem between input and output modes, inherently delocal-
ized across all terminals. To address the infinite-dimensional
nature of the problem, we first model the receiver as dipoles,
then we introduce an ansatz for the source modes which re-
duces the continuous eigenvalue problem to a discrete one. Its
size scales linearly with the number of users, thus significantly
lowering computational complexity.

A receiver basis set is then constructed by forming weighted
sums of the discrete eigenvectors, such that each result-
ing function is spatially localized to a specific receiver.
This construction enables the use of non-zero eigenvalues
as interference-free orthogonal streams, achieving channel
diagonalization.

Finally, the spectral efficiency of the proposed HMISO
system is evaluated against a HMISO which employs Fourier
modes and a conventional fully-digital MISO system under
white Gaussian noise. The max-min optimization of the spec-
tral efficiency demonstrates that the proposed eigen-based
HMISO outperforms both Fourier-based HMISO and tradi-
tional MISO systems, for any Signal-to-Noise-Ratio (SNR)
values or surface areas, while maintaining a constant number
of RF chains and an overall lower computational complexity.
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II. ELECTROMAGNETIC COMMUNICATION MODEL

The considered time-invariant narrowband communication
system, whose geometry is depicted in Fig. 1, involves a
holographic surface S transmitting to a set of K single-
antenna users through an infinite and homogeneous medium.
The former is equipped with N > K RF chains, which
determines the number of DoF at the source.

A. Propagation

In a waveguide-based architectures [2], a current is gener-
ated starting from a baseband signal, which carries the infor-
mation symbols q = [q1,...,qn,--.,qn]" € CV, measured
in [A]. The latter is upconverted through RF chains to a
high-frequency current which, by exciting a feed structure,
injects an electromagnetic wave into a leaky waveguide. The
reference wave is then conveyed to the radiative surface S,
which modulates its amplitude. The corresponding outgoing
field is a current density living on S and can assume an
arbitrary shape when the phase of the reference wave can
be also modulated. Therefore, any current density j(r) €
C3, which we assume hereafter to be monochromatic with
wavelength ), is decomposed through an orthonormal basis

® = {¢(r),...,0,(r),...,¢n(r)} with support in S as
N
i) =" anep,(v), (1)
n=1
[ @651 = 6 @

with r = [z,y, 2]T € R? being a generic point in the space,
and J,, the Kronecker delta. Then, if the basis is square-
integrable in S, one has

= H($)j(s)ds, 3
g /S M (s)j(s)ds 3)
/S li(s)]12ds < p. @

With this, the current density is guaranteed to have a maximum
power p, measured in [A/m?] and [AZ], respectively. The
current signal propagates in free space in the form of an
electric field e(r) € C3, measured in [V/m]:

e(r) = jnZ /S G(r, s)j(s)ds, )

where Kk = 2{ denotes the wavenumber, Z, represents the
characteristic impedance in the vacuum, and

\vA vl
G(r,s) = (Ig + 2 )

is the dyadic Green’s function.
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B. Received signal

The signal received is the sum of the electric field e(r)
generated by the source S and the electromagnetic noise n(r)
produced by other sources. This signal is received by single-
antenna users which are modeled as dipoles, as it is assumed
that their distance from the source is much smaller than the

q1¢1(r) o >am
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Fig. 1. Noiseless transmission scheme between an holographic surface S and
a set of point-like receivers { R }. The surface is centered in the z = O plane
and the dipoles are placed at positions ry. The source basis functions ¢,, are
chosen according to (15). The receiver-localized modes 1,, ;; are obtained by
rotating the set of electric fields 1, as in (17).

antenna size. At these receivers, the impinging signal induces
a current which is amplified, downconverted by the RF chains,
which introduce a thermal noise, and processed to recover the
transmitted data. In this work, the mathematical analysis of
Section III will focus on the noiseless case. Then, in Section
IV, we will analyze the impact of white Gaussian noise on
the performance of the communication system. The electric
field at the users is projected on a vector space defined by an
orthogonal basis ¥ = {1, (r),...,1,,(r),..., ¥, (r)}, with
support that is the collection R = |J, Ry for k = 1,..., K
point-wise domains centered in rj, each one associated with
a single receiver. As the electric field is decomposed by virtue
of (1), the scalar form of the channel coupling coefficients per
n-th input, m-th output mode and k-th receiver read

T / / 1 (1) G (r,8)p, (s)dsdr,  (7)
R 4S8

where h,, , 1 is a complex impendence measured in [{2]. In
the limit of a dipole, the characteristic function of each Ry
is a Dirac delta, i.e., §(r — ry). Therefore, the integral in (7)
simplifies to an evaluation for r = ry. In the next Section, we
will set the constant jkZ to unity for analytical convenience,
and reintroduce it for the numerical analysis of Section IV.

III. CHANNEL DIAGONALIZATION

The main objective of this work is to derive the sets of
orthogonal basis for both the source and the receivers which
maximize the channel capacity by diagonalizing the channel,
such that no cross-interference is observed among the users.
This will be achieved with minimal signalling and without
cooperation among users. To do so, we will first obtain an
optimal set @ which induces a definition for ¥. Since this set
is delocalized over all receivers, another set is defined through
a rotation of W. This new set diagonalizes the corresponding
channel with modes localized within single receivers.

Considering the whole receiving domain R, the coupling
coefficients between modes can be obtained by marginalizing
over the users as

Pom = b G(ry,s)o, (s)ds. 8
| ;wk)/S(ks)ms)s ®)

In order to maximize the transmitted power per mode [6], a
good candidate for the receiver basis is

n(r) = /8 G(r,5),(s)ds, ©)



which is proportional to free-space propagated electric field
by the mode ¢,, in (5). This function is not normalized even
if ¢,, is, and its substitution in (8) squares the dimension of
the coupling coefficients, leading to:

)ds’)

; </‘S¢Z(S)GH(rkvs)d5)</$G(rk,s')¢ (s’
:/sttbl:ln(s)K(s s' ), (s')ds'ds, (10)
where

K(s,s') = Z GH(ry,s)G(ry,s),

k

(1)

represents the channel operator, which describes the interac-
tion between source points s and s’ through the propagation
medium. It can verified that K(s,s’) is a hermitian operator
and hence admits a spectral decomposition. Then, the source
basis functions ¢,, in (10) can be chosen to be the eigenfunc-
tions of the channel operator, thus satisfying

/Kss (s')ds’,

with the eigenvalue equal to the power transmitted per mode.
Now, the channel couplings are guaranteed to be diagonal
when substituting (12) in (10):

\%IQ/ B (

A. The source basis

RO 12)

s)ds = [u|*0pm.  (13)

Now, we seek a way to solve the eigenvalue equation (12)
for ¢,,. Taking advantage of the shape of the kernel K(s,s’)
in (11), the eigenvalue equation reads

[l n(s))ds’. (14)

ZgH TS / Glrr.s
This suggest the following ansatz for the basis functions

= Z GH(rka S)Xn,ka
k

which is akin to a linear combination of electric fields pro-
duced by point-wise sources. Then, substituting (15) in (14):

5)
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= Xk = D KiiXni = Iml’x, =Kx,.  (16)

This new eigenvalue equation for the hermitian matrix K is
characterized by the same eigenvalues of K(s,s’) and by the
eigenvectors x,, = (X,)s. Note that the ansatz in (15),
together with (16), implies the norm [ [|¢,,( )12 ds = |2,
so that the norm of ), in (9) is >, ||, (@)? = Jvalh
assuming that x,, is normalized to unity.

B. The receiver basis

The electric field produced by the source modes obtained
above is indeed the function v,, in (9) (except for jKZj),
which also gives the basis set the receivers use to process
the signal. To recover the coupling coefficients hy, ,,, it is
needed to collect the signal from all receivers, which is not
doable in case of different users. Consequently, one may think
at the couplings ﬁn’k between input mode n and a receiver k
to be more significant. One first notices that when inserting
(15) into (9) we have that v, (rx) = YnX,,  based on the
eigenvalue equation (16) with ¢,, normalized to unity. The
channel ﬁnk can be obtained through a combiner C,, ,, 1 €
C3*3 which realizes a weighted sum of the signal projected on
all output modes fixed at the k-th receiver. It also rescales the
channel to be measured as a complex impedance, when jxZ
is reintroduced. This is equivalent to employ a new basis set

nk—zcnmkdj rk Z’Ym nmkxmk

Given the new basis, the desired coupling coefficients read

n kw Z¢ Cn m,k:’l»bn(rk)

m

H  H
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m
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Bn,k —
(18)

The expression above can be diagonalized with CE,mAk =
diag(Xm e + Xnk)/(3¥m), with the division intended as
pointwise in the spatial components. The index ¢ serves to
associate a single receiver up to three input modes.

Finally, in order retrieve the channel i)'n,k proper dimen-
sionality, one has to reintroduce the electric constants, so
that Bnk = jKkZoYnlek. In summary, the channel operator
modes are leveraged to convey information and obtained by
diagonalizing the matrix Kk,i in (16). The corresponding
eigenvectors x,, , are used to compute the source basis as
in (15). Then, they are transmitted to receivers to calculate
the optimal localized basis with equation (17).

C. Analysis

The channel operator diagonalization is initially stated as
continuous eigenvalue equation in (12) for ¢,,(s) and then sent
into a discrete one to be solved for x,,. This formulation of
the eigenvalue problem defines a number of modes N = 3K.
Notably, in the far-field limit there are zero eigenvalues arising
because of the dipole approximation. Indeed, in the same limit
but in the case of a single receiver with spatial extension, the
eigenfunctions of the channel correspond to PSWFs, which
are characterized by non-zero eigenvalues. In the proposed
setup, instead, the zero eigenvalue can be deduced in the case
of a single receiver K = 1 from the first order asymptotic
expansion of K. Its eigenvalues are equal to

~? =[0,1,1]|S|/(167%r?), (19)

where r = r; = ry, is the distance of the receiver and |S| is the
area of the source. Specifically, the direction of the receiver
is the eigenvector (z,y, z)/r which corresponds to the zero
mode, so one has a total of 2K non-zero modes for K. This
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Fig. 2. Eigenvalues of the channel operator for ¢1 = 7/4, 61 = 7/3, and
|S| = 4 m2. a) is the scaling with respect to the azimuthal angle which
separates the second receiver from the first for 62 = 7/4, 11 = ro = 50 m.
b) is the same with respect to the difference in the elevation angle, for ¢ =
3 /4. Clearly, the discrepancy of these values from 2 = 1.01321 10~°
given by (19) is negligible.

means that the projection of the source current along this di-
rection does not transmit power, and hence information, to the
receiver. Contrarily, the directions orthogonal to this transmit
the same power, which determines the available polarizations
of the electromagnetic wave. Although these eigenvalues are
truly zero only for asymptotically large distances, they are,
in practice, smaller then the others by orders of magnitude.
Therefore, they will not be considered for transmission pur-
poses hereafter. Note that the eigenvalue problem in (16) is
agnostic with respect of the Green’s function. For instance,
a propagator which accounts for complex fading models or
reflection from the ground can be adopted in place of (6).
As a final remark, when ||rg| > |r;||, one finds that
||K;“HF < HKkkHF < ||K”||F, that is, the product of
two Green’s functions pointed in different receivers averages
to zero. This brings the matrix K to acquire a block-diagonal
form for those receivers. If this applies Vk = 1,..., K, the
complexity of the diagonalization problem is reduced from
O((3K)?) to O(32K), and could further reduced if a far-field,
closed-form approximation of the channel matrix elements is
empolyed in place of numerical integration [3], [5]. In contrast,
computing the source eigenfunctions without the ansatz has a
complexity of O(N®), with N being the discretization points
in one spatial direction within S. If K is block-diagonal,
an exact correspondence between eigenvalues and receiver
is also established. Clearly, when more than one receiver is
at the same distance from the source, different associations
between eigenvalues and such receivers become available.
The magnitude of the eigenvalues is determined by the path
loss alone, and are numerically equal to (19). Instead, the
eigenvectors Y, account for the presence of correlation.

IV. NUMERICAL RESULTS

In this Section, the above derivations are employed to obtain
numerical results regarding the investigated HMISO commu-
nication system. The receivers are positioned, using spherical
coordinates, in r; = rg[sin 6y cos ¢y, sin O sin @, cos O).
The first considered scenario involves K = 2 receivers and
a holographic surface placed in the origin, which transmits
signals to the users with A = 0.01 m. Fig. 2 shows the

eigenvalues of the channel operator K computed via (16)

rr=5m,ry=10m,r3 =20 m 71 =50 m,ry = 100 m, rg = 200 m
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Fig. 3. Absolute value of the reconstructed channel }Nln’k for different radii
set and |S| = 4 m2. The first two receivers are placed along the same angular
directions as in Fig. 2a for w2 = 37 /4, while the third has p3 = 57/4 and
03 = /6.
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Fig. 4. Spectral efficiency of Eigen-HMISO (solid lines), Fourier-HMISO
(dash-dotted), and MISO (dashed) for different surface lengths and same
receiver configuration as in Fig. 3. Left: Spectral efficiency as a function
of SNR, with a fixed inter-antenna spacing of A/2 for MISO. Right: Scaling
of MISO spectral efficiency with antenna spacing, using both HMISO systems
as a reference, at a fixed SNR of 10 dB.

as functions of the azimuth and elevation angles difference
between receivers. As it can be seen, the spherical angle
variations produce only little changes in the eigenvalues, so
their magnitude is mostly determined by (19), i.e., proportional
to the inverse of the radius squared. Fig. 3 illustrates the
reconstructed channel ﬁmk in (18) for K = 3 receivers
and for different distances. Here, the input-output relation is
realized with £ = (n + mod(n,2))/2 because it establishes
the correct correspondence if the input modes are arranged
in descending order of the eigenvalues and the receivers in
increasing order of the distance. Clearly, the proposed bases
are able to diagonalize the channel as dy in both cases. Fig.
4 compares the spectral efficiency of the proposed HMISO
system against a classical, fully-digital MISO system and a
HMISO which employs all available Fourier modes for the
source basis. For the proposed HMISO system, one eigenvalue
per receiver is selected as symbol to be transmitted and
receiver through the eigenmodes (15) and (17), respectively.
The fully-digital MISO channel coupling coefficients have
been computed by assuming uniform current distributions for
both the source and receiving antennas. Specifically, the MISO
planar array is cross-polarized and each transmit antenna
source mode is modeled as ¢, = [1,1,0]T /+/2 around the



antenna centers s,, through a spatial extension of ()\/10)2.
The receivers are described with an isotropic polarization
¥y = [1,1,1]7/v/3 and modeled as dipoles through a delta-
like extension centered at r. Then, the MISO couplings are
computed with (8) for ¢,, = ¢, and 1/1?1 = 1/)5'. As the
Green’s function slowly varies within the single antenna, the
couplings read hnr ~ jA*kZ Zf’ Z? G.;/(100v/6), with
Gij = G;j(rk,s,) being the (i,7)-th entry of the Green’s
function (6). Also, the antenna elements at the source are
equally spaced to patch the size of the holographic surface
In this study, the effects of mutual couplings are neglected.
Indeed, while they could enhance MISO’s spectral efficiency if
properly leveraged, their presence otherwise degrades perfor-
mance beyond A/2 [10]. Finally, the couplings for the HMISO
source which employs Fourier modes are also computed with
®) for ¢, = (x + y)e™*/(v2a) and ¢}, = . In
the former, x and y define the directions in the plane, a is
the surface length, and k, = 2w[n,,n,]"/a is the spatial
wavenumber. Fig. 4 compares the minimum spectral efficiency
(SE) for the HMISO and MISO systems that can be achieved
through a max-min rate optimization. The proposed eigen-
based HMISO SE presents no interference due to the nature
of the proposed framework, so it can be expressed as:

SEyj, = log(1 + |har—1,k[*pr/p), (20)
where p denotes the inverse SNR, pj, are the power allocation
coefficients satisfying Y, pr < 1, and the indexing defines

the eigenvalue selection, given that h, , o dg . The corre-
sponding MISO and Fourier-HMISO SEs read

hHWk|2

SE, — log, [ 1+ — 1 Cen
: Iy 37, Wil + p

where W = [Wky.o oy Wr,...,WEK| i the

beamforming matrix satisfying [WJ|% < 1 and

hy = T[hik, - hnk,...,hnk]. Here, the degrees of

freedom are represented by the number of MISO array antenna
elements and the HMISO Fourier modes, respectively, both
indexed as n. The proposed HMISO system demonstrates
superior performance compared to both MISO and Fourier-
based HMISO configuration across the entire range of SNR
values, surface lengths, and MISO array antenna spacings A.
Indeed, the eigen-bases derived from the channel operator
(11) and (12) are known to be the optimal communication
modes when the noise is modeled as a spatially-uncorrelated
Gaussian random field [5]. Notably, HMISO requires a
number of RF chains equal to the number of transmitted
modes only, namely N = K. Instead, the number of RF
chains in the MISO and Fourier-HMISO systems increases
proportionally with the surface length a as |a/A + 1| and
|4a?/A? |, respectively. However, in the latter case, if one is
able to select the modes with maximal intensity towards the
receivers, the number of the needed RF chain can be reduced
[3]. To achieve performance comparable to the eigen-based
HMISO, the fully-digital MISO system must significantly
reduce the antenna spacing, while the Fourier-based HMISO
must operate at smaller wavelengths. In both cases, this leads
to an increase in the number of RF chains, hence in the
complexity of both manufacturing and power optimization.

Compared with these baselines, the proposed method in-
troduces a higher complexity to obtain the bases due to the
need of diagonalizing a rank-3/K matrix, as discussed in
Section III-C. Nevertheless, it achieves substantial computa-
tional saving during signal processing. In fact, the optimization
of the beamforming matrix in (21) involves NK complex
coefficients, with /N > K the total number of Fourier modes
or MISO array elements, while power optimization in (20)
requires only K real coefficients.

V. CONCLUSION AND FUTURE WORKS

This work proposes a low-complexity eigen-based model for
multi-user HMISO systems in continuous space. Using dipole-
modeled receivers and an ansatz of weighted point-source
fields, the channel is diagonalized with linear complexity
in user count. A localized and orthogonal receiver basis is
achieved via linear post-processing, and supports a 2:1 ratio
of transmitting modes to users. The proposed method out-
performs both Fourier-based HMISO and fully-digital MISO
in spectral efficiency with fewer RF chains. Future work
will extend the model to receivers with finite volumes by
introducing coarse grids to sample the channel operator over
each receiver. Further, discrete holographic architectures will
be investigated to fill the gap with continuous surface mod-
eling. Finally, more realistic wireless environments will be
explored by incorporating hardware impairments and adapting
the Green’s function to model fading and ground reflections.
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