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Recall | from earlier talk Physical units in UFL

We introduced

▶ class Quantity to represent physical quantities with units,
dolfiny.units.Quantity(mesh, scale, unit, symbol)

▶ transformation of expressions and forms,
dolfiny.units.transform(expr, mapping)

▶ factorization of expressions and forms (”check”or ”factorize”modes),
dolfiny.units.factorize(expr, quantities, mapping, mode)
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Motivation | why non-dimensionalisation?

� Inspect relative scales of terms in expressions/forms.
→ identify dominant and (potentially) negligible terms

� Improve numerical conditioning.
→ avoid issues with vastly different scales

� Derive dimensionless numbers.
→ discover fundamental parameters (Reynolds, Euler, Strouhal, …)

� Simplify parameter studies.
→ reduce number of independent variables

� Enable universal solutions.
→ results applicable across different physical scales
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Buckingham Pi theorem

▶ a general, abstract method for dimensional
analysis of a set of dimensional quantities,
▶ useful even without a specific PDE at hand,
▶ early detection of dimensional

inconsistencies and dependent phenomena.

Figure: Edgar Buckingham (����-����)
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Buckingham 𝜋 theorem | formal statement

If we have a physical system described by some

𝑓(𝑞1, 𝑞2,… , 𝑞𝑛) = 0,

where 𝑞𝑖 are 𝑛 dimensional quantities, then there exist 𝑝 dimensionless
quantities 𝜋𝑖 (so-called 𝜋-groups) such that

𝐹(𝜋1, 𝜋2,… , 𝜋𝑝) = 0.

Moreover,

𝑝 = dim kerM,

whereM ∈ ℚ𝑘×𝑛 is called the dimensional matrixwhere𝑀𝑖𝑗 represents the
exponent of the 𝑖-th dimension in parameter 𝑞𝑗.

Lay words: There are as many dimensionless numbers, as there are
independent ways of combining the dimensional quantities.
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Buckingham 𝜋 theorem | example

Flow around a sphere
Consider the drag force 𝐹𝐷 on a sphere of diameter 𝑑moving through a
fluid with velocity 𝑣, density 𝜌, and dynamic viscosity 𝜇. The relevant
parameters are {𝐹𝐷, 𝑑, 𝑣, 𝜌, 𝜇}with dimensions

[𝐹𝐷] = LMT−2, [𝑑] = L, [𝑣] = LT−1, [𝜌] = L−3M, [𝜇] = L−1MT−1.

The dimensional matrix is

M =
1 1 1 −3 −1
1 0 0 1 1
−2 0 −1 0 −1

nullspace(M) =
1 −2 −2 −1 0
0 1 1 1 −1

The kernel dimension is 𝑝 = 2 (two independent dimensionless groups)

Π1 =
𝐹𝐷
𝜌𝑣2𝑑2

(drag coefficient, 𝐶𝐷),

Π2 =
𝜌𝑣𝑑
𝜇

(Reynolds number, Re).
�



Contents

Motivation

Buckingham Pi analysis

Non-dimensionalisation procedure

Examples

�



Non-dimensionalisation | general considerations

▶ Forms (describing a multi-field PDE problem) can carry different units
▶ Adding forms should be done on their non-dimensional equivalents
▶ Approach non-dimensionalisation for each form separately
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Non-dimensionalisation | procedure (per form)

� Establish dimensional quantities (parameters and reference scales)
from dolfiny.units import Quantity
k = Quantity(mesh, 1, syu.kilo * syu.newton / syu.meter, "k")
f = Quantity(mesh, 1, syu.pascal, "f")
u_ref = Quantity(mesh, 1, syu.millimeter, "u_ref")
l_ref = Quantity(mesh, 1, syu.meter, "l_ref")
quantities = [k, f, u_ref, l_ref]

� Identify dimensionless 𝜋-groups
dolfiny.units.buckingham_pi_analysis(quantities)

� Establish dimensional mapping of mesh length scale and function scales
mapping = {mesh.ufl_domain(): l_ref, u: u_ref * u, δu: u_ref * δu}

� Split form into relevant named terms
terms = {"int": -ufl.inner(ufl.grad(δu), k * ufl.grad(u)) * dx,

"ext": δu * f * dx}

� Separate dimensional and non-dimensional factors in form terms
terms_fact = dolfiny.units.factorize(terms, quantities, mapping=mapping)

� Normalise factorised form terms with selected reference term
terms_norm = dolfiny.units.normalize(terms_fact, "int", quantities)

� Produce non-dimensional form
form_nondimensional = sum(terms_norm.values())
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Example | incompressible Navier-Stokes

Weak form

0 = ∫
Ω
𝛿v ⋅ 𝜌
𝜕v
𝜕𝑡

d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

unsteady

+ ∫
Ω
𝛿v ⋅ 𝜌 (v ⋅ ∇v) d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

convection

+ ∫
Ω
D(𝛿v) ∶ 2𝜌𝜈D(v) d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

viscous

− ∫
Ω
∇ ⋅ 𝛿v𝑝 d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

pressure

− ∫
Ω
𝛿v ⋅ 𝜌g d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

force

+ ∫
Ω
𝛿𝑝∇ ⋅ v d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
incompressibility

∀ (𝛿v, 𝛿𝑝)

Quantities

𝜈 = 1000mm2/s ℓref = 1m 𝑣ref = 1m/s 𝑔ref = 10m/s2

𝜌 = 5000 kg/m3 𝑡ref = 1 s 𝑝ref = 5000 Pa
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Example | incompressible Navier-Stokes �

Units implementation sketch
nu = Quantity(mesh, 1000, syu.millimeter**2 / syu.second, "nu")
rho = Quantity(mesh, 5000, syu.kilogram / syu.meter**3, "rho")
l_ref = Quantity(mesh, 1, syu.meter, "l_ref")
t_ref = Quantity(mesh, 1 / 60, syu.minute, "t_ref")
v_ref = Quantity(mesh, 1, syu.meter / syu.second, "v_ref")
p_ref = Quantity(mesh, 5000, syu.pascal, "p_ref")
g_ref = Quantity(mesh, 10, syu.meter / syu.second**2, "g_ref")
quantities = [nu, rho, l_ref, t_ref, v_ref, p_ref, g_ref]

dolfiny.units.buckingham_pi_analysis(quantities)

mapping = {mesh.ufl_domain(): l_ref, v: v_ref * v, p: p_ref * p, ...}

terms = {
"unsteady": ufl.inner(δv, rho * (v - v0) / (t_ref * n)) * ufl.dx,
"convection": ufl.inner(δv, rho * ufl.dot(v, ufl.grad(v))) * ufl.dx,
"viscous": ufl.inner(D(δv), 2 * rho * nu * D(v)) * ufl.dx,
"pressure": -ufl.inner(ufl.div(δv), p) * ufl.dx,
"force": -ufl.inner(δv, rho * g_ref * b) * ufl.dx,
"incompressibility": δp * ufl.div(v) * ufl.dx,

}

terms_fact = dolfiny.units.factorize(terms, quantities, mapping=mapping)

terms_norm = dolfiny.units.normalize(terms_fact, "convection", quantities)

form_nondimensional = sum(terms_norm.values())
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Example | incompressible Navier-Stokes �

Buckingham Pi analysis
==================================================
Buckingham Pi Analysis
==================================================
Symbol | Expression | Value (in base units)
-------+-----------------------------+----------------------------------
nu | 1000.0*millimeter**2/second | 0.001*meter**2/second
rho | 5000.0*kilogram/meter**3 | 5000.0*kilogram/meter**3
l_ref | meter | meter
t_ref | 0.01667*minute | 1.0*second
v_ref | meter/second | meter/second
p_ref | 5000.0*pascal | 5000.0*kilogram/(meter*second**2)
g_ref | 10.0*meter/second**2 | 10.0*meter/second**2

Dimension matrix (7 × 7):
Dimension | nu | rho | l_ref | t_ref | v_ref | p_ref | g_ref
--------------------+----+-----+-------+-------+-------+-------+------
amount_of_substance | 0 | 0 | 0 | 0 | 0 | 0 | 0
current | 0 | 0 | 0 | 0 | 0 | 0 | 0
length | 2 | -3 | 1 | 0 | 1 | -1 | 1
luminous_intensity | 0 | 0 | 0 | 0 | 0 | 0 | 0
mass | 0 | 1 | 0 | 0 | 0 | 1 | 0
temperature | 0 | 0 | 0 | 0 | 0 | 0 | 0
time | -1 | 0 | 0 | 1 | -1 | -2 | -2

Dimensionless groups (4):
Group | Expression | Value
------+----------------------------+------
Pi_1 | nu*t_ref/l_ref**2 | 0.001 Re = Π2 = 1000
Pi_2 | l_ref*v_ref/nu | 1e+03 Fr = Π2Π

−1/2
4 = 10

Pi_3 | l_ref**2*p_ref/(nu**2*rho) | 1e+06 Eu = Π22Π3 = 1
Pi_4 | g_ref*l_ref**3/nu**2 | 1e+07 St = Π1Π2 = 1
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Example | incompressible Navier-Stokes �

Form normalisation
==================================================
Terms after normalization with "convection"
==================================================
Reference factor from 'convection':
Term | Factor | Value (in base units)
-----------+--------------------+--------------------------------
convection | l_ref*rho*v_ref**3 | 5000.0*kilogram*meter/second**3

Term | Factor | Value (in base units)
------------------+----------------------+----------------------
unsteady | l_ref/(t_ref*v_ref) | 1.000
convection | 1 | 1.000
viscous | nu/(l_ref*v_ref) | 0.001000
pressure | p_ref/(rho*v_ref**2) | 1.000
force | g_ref*l_ref/v_ref**2 | 10.00
incompressibility | p_ref/(rho*v_ref**2) | 1.000
==================================================
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Example | neo-Hooke hyperelasticity

Weak form

0 = ∫
Ω
C(𝛿u) ∶

𝜕𝑊shear

𝜕C(u)
d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
shear

+ ∫
Ω
C(𝛿u) ∶

𝜕𝑊bulk

𝜕C(u)
d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bulk

− ∫
Γ
𝛿u ⋅ t d𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

external

∀ (𝛿u)

with 𝑊(C) = 𝑊shear +𝑊bulk =
𝜇
2
(𝐼1 − 3 − 2 ln 𝐽) +

𝜅
2
(𝐽 − 1)2

Quantities

𝜇 = 0.357MPa ℓref = 0.1m
𝜅 = 1.667MPa 𝑡ref = 1.0MPa
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Example | neo-Hooke hyperelasticity �

Units implementation sketch
μ = Quantity(mesh, 0.357, syu.mega * syu.pascal, "μ")
κ = Quantity(mesh, 1.667, syu.mega * syu.pascal, "κ")
l_ref = Quantity(mesh, 0.1, syu.meter, "l_ref")
t_ref = Quantity(mesh, 1.0, syu.mega * syu.pascal, "t_ref")
quantities = [μ, κ, l_ref, t_ref]

dolfiny.units.buckingham_pi_analysis(quantities)

mapping = {mesh.ufl_domain(): l_ref, u: l_ref * u, δu: l_ref * δu}

terms = {
"int_shear": ufl.inner(δC, ufl.diff(W_shear(C), C)) * dx,
"int_bulk": ufl.inner(δC, ufl.diff(W_bulk(C), C)) * dx,
"external": -ufl.inner(δu, t) * ds(surface_upper),

}

terms_fact = dolfiny.units.factorize(terms, quantities, mapping=mapping)

terms_norm = dolfiny.units.normalize(terms_fact, "int_bulk", quantities)

form_nondimensional = sum(terms_norm.values())
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Example | neo-Hooke hyperelasticity �

Buckingham Pi analysis
==================================================
Buckingham Pi Analysis
==================================================
Symbol | Expression | Value (in base units)
-------+-----------------+------------------------------------
μ | 3.571e+5*pascal | 3.571e+5*kilogram/(meter*second**2)
κ | 1.667e+6*pascal | 1.667e+6*kilogram/(meter*second**2)
l_ref | 0.1*meter | 0.1*meter
t_ref | 1.0e+6*pascal | 1.0e+6*kilogram/(meter*second**2)

Dimension matrix (7 × 4):
Dimension | μ | κ | l_ref | t_ref
--------------------+----+----+-------+------
amount_of_substance | 0 | 0 | 0 | 0
current | 0 | 0 | 0 | 0
length | -1 | -1 | 1 | -1
luminous_intensity | 0 | 0 | 0 | 0
mass | 1 | 1 | 0 | 1
temperature | 0 | 0 | 0 | 0
time | -2 | -2 | 0 | -2

Dimensionless groups (2):
Group | Expression | Value
------+------------+------
Pi_1 | κ/μ | 4.67 incompressibility ratio 𝑜𝑟bulk-to-shear ratio
Pi_2 | t_ref/μ | 2.8 relative magnitude of deformation
==================================================
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Example | neo-Hooke hyperelasticity �

Form normalisation
==================================================
Terms after normalization with "int_bulk"
==================================================
Reference factor from 'int_bulk':
Term | Factor | Value (in base units)
---------+------------+-----------------------------------
int_bulk | l_ref**3*κ | 1667.0*kilogram*meter**2/second**2

Term | Factor | Value (in base units)
----------+---------+----------------------
int_bulk | 1 | 1.000
int_shear | μ/κ | 0.2143
external | t_ref/κ | 0.6000
==================================================
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Example | electrodiffusion (Poisson-Nernst-Planck)

Weak forms

0 = ∫
Ω
∇𝛿𝜑 ⋅ 𝜀𝑟𝜀0∇𝜑 d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

potential

− ∫
Ω
𝛿𝜑𝐹(∑

𝑘
𝑧𝑘𝑐𝑘 + 𝑤) d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
electroneutrality

∀ (𝛿𝜑)

0 = ∫
Ω
∑
𝑘
∇𝛿𝑐𝑘 ⋅ 𝐷𝑘∇𝑐𝑘 d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
diffusion

+ ∫
Ω
∑
𝑘
∇𝛿𝑐𝑘 ⋅ 𝐷𝑘𝑐𝑘𝑧𝑘

𝐹
𝑅𝑇
∇𝜑 d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
convection

+ ∫
Ω
∑
𝑘
∇𝛿𝑐𝑘 ⋅ 𝐷𝑘𝑐𝑘∇𝑎 d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Debye expansion term �-th

+ ∫
Ω
∑
𝑘
∇𝛿𝑐𝑘 ⋅ 𝐷𝑘𝑐𝑘∇(𝑎𝑏) d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Debye expansion term �-st

∀ (𝛿𝑐𝑘)

Quantities

𝜀0 = 8.854 × 10−12 F/m 𝑒0 = 1.602 × 10−19 C 𝜑ref = 1V
𝐹 = 9.649 × 104 C/mol 𝑅 = 8.314 J/(Kmol) 𝑐ref = 50mol/m3

𝐷ref = 1.0 × 10−10m2/s 𝑇 = 300K 𝑙ref = 1Å
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Example | electrodiffusion (Poisson-Nernst-Planck) �

Units implementation sketch
ε_0 = Quantity(mesh, 8.854187819e-12, syu.farad / syu.meter, "ε_0")
e_0 = Quantity(mesh, 1.602176634e-19, syu.coulomb, "e_0")
F = Quantity(mesh, 9.648533212e04, syu.coulomb / syu.mol, "F")
R = Quantity(mesh, 8.314462618, syu.joule / syu.kelvin / syu.mol, "R")
T = Quantity(mesh, 300.0, syu.kelvin, "T")
c_ref = Quantity(mesh, 50.0, syu.mol / syu.meter**3, "c_ref")
φ_ref = Quantity(mesh, 1.0, syu.volt, "φ_ref")
l_ref = Quantity(mesh, 1, syu.angstrom, "l_ref")
D_ref = Quantity(mesh, 1.0e-10, syu.meter**2 / syu.second, "D_ref")
quantities = [c_ref, φ_ref, D_ref, ε_0, F, R, T, l_ref, e_0]

dolfiny.units.buckingham_pi_analysis(quantities)

mapping = {mesh.ufl_domain(): l_ref, c: c_ref * c, φ: φ_ref * φ, ...}

terms_φ = {
"potential": ..., "electroneutrality": ...,

}
terms_c = {

"diffusion": ..., "convection": ..., "debye_0th": ..., "debye_1st": ...,
}

terms_φ_fact = dolfiny.units.factorize(terms_φ, quantities, mapping=mapping)
terms_c_fact = dolfiny.units.factorize(terms_c, quantities, mapping=mapping)

terms_φ_norm = dolfiny.units.normalize(terms_φ_fact, "potential", quantities)
terms_c_norm = dolfiny.units.normalize(terms_φ_fact, "diffusion", quantities)

form_nondimensional = sum(terms_φ_norm.values()) + sum(terms_c_norm.values())��



Example | electrodiffusion (Poisson-Nernst-Planck) �

Buckingham Pi analysis
==================================================
Buckingham Pi Analysis
==================================================
Symbol | Expression | Value (in base units)
-------+---------------------------+--------------------------------------------------
c_ref | 50.0*mole/meter**3 | 50.0*mole/meter**3
φ_ref | 1.0*volt | 1.0*kilogram*meter**2/(ampere*second**3)
D_ref | 1.0e-10*meter**2/second | 1.0e-10*meter**2/second
ε_0 | 8.854e-12*farad/meter | 8.854e-12*ampere**2*second**4/(kilogram*meter**3)
F | 9.649e+4*coulomb/mole | 9.649e+4*ampere*second/mole
R | 8.314*joule/(kelvin*mole) | 8.314*kilogram*meter**2/(kelvin*mole*second**2)
T | 300.0*kelvin | 300.0*kelvin
l_ref | angstrom | 1.0e-10*meter
e_0 | 1.602e-19*coulomb | 1.602e-19*ampere*second

Dimension matrix (7 × 9):
Dimension | c_ref | φ_ref | D_ref | ε_0 | F | R | T | l_ref | e_0
--------------------+-------+-------+-------+-----+----+----+---+-------+----
amount_of_substance | 1 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0
current | 0 | -1 | 0 | 2 | 1 | 0 | 0 | 0 | 1
length | -3 | 2 | 2 | -3 | 0 | 2 | 0 | 1 | 0
luminous_intensity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
mass | 0 | 1 | 0 | -1 | 0 | 1 | 0 | 0 | 0
temperature | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0
time | 0 | -3 | -1 | 4 | 1 | -2 | 0 | 0 | 1

Dimensionless groups (3):
Group | Expression | Value
------+---------------------------------------------------+-------
Pi_1 | R*T/(F*φ_ref) | 0.0259 thermal voltage
Pi_2 | sqrt(F)*sqrt(c_ref)*l_ref/(sqrt(ε_0)*sqrt(φ_ref)) | 0.0738
Pi_3 | sqrt(F)*sqrt(c_ref)*e_0/(ε_0**(3/2)*φ_ref**(3/2)) | 13.4
==================================================
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Example | electrodiffusion (Poisson-Nernst-Planck) �

Form normalisation
==================================================
Terms after normalization with "potential"
==================================================
Reference factor from 'potential':
Term | Factor | Value (in base units)
----------+--------------------+---------------------------
potential | ε_0*φ_ref**2/l_ref | 0.08854*kilogram/second**2

Term | Factor | Value (in base units)
------------------+------------------------------+----------------------
potential | 1 | 1.000
electroneutrality | F*c_ref*l_ref**2/(ε_0*φ_ref) | 0.005449
==================================================

==================================================
Terms after normalization with "diffusion"
==================================================
Reference factor from 'diffusion':
Term | Factor | Value (in base units)
----------+----------------------+---------------------------------
diffusion | D_ref*c_ref**2/l_ref | 2500.0*mole**2/(meter**5*second)

Term | Factor | Value (in base units)
-----------+-----------------------------------------------------+----------------------
diffusion | 1 | 1.000
convection | F*φ_ref/(R*T) | 38.68
debye_0th | F**2*sqrt(c_ref)*e_0/(R**(3/2)*T**(3/2)*ε_0**(3/2)) | 3213.
debye_1st | F**3*c_ref*e_0*l_ref/(R**2*T**2*ε_0**2) | 1475.
==================================================

��



Summary

▶ Physical units in UFL (user experience, consistency checks)
▶ Dimensional analysis in UFL (model interpretation, detect sensitivities)
▶ Non-dimensionalisation of weak forms (improve numerical properties)

▶ Scaling forms is typically an iterative process

▶ Scaling is not always (directly)mathematically possible
→ expand terms before attempting factorisation
▶ Scaling is not always (directly) physically plausible
→ identification of reference scales
▶ Scaling is not always (directly) numerically beneficial
→ check conditioning, relative participation of terms
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dolfiny.uni.lu

fenics-dolfiny/dolfiny

pip install dolfiny

��

https://dolfiny.uni.lu
https://github.com/fenics-dolfiny/dolfiny
https://pypi.org/project/dolfiny/
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