Dimensional analysis in UFL
Part2/2

Andreas Zilian, Michal Habera

Department of Engineering | University of Luxembourg

20th June 2025 | FEniCS 2025

UNIVERSITE DU
LUXEMBOURG

Contents

Motivation

2 1]

Recall | from earlier talk Physical units in UFL

We introduced

> class quantity to represent physical quantities with units,
dolfiny.units.Quantity(mesh, scale, unit, symbol)

> transformation of expressions and forms,
dolfiny.units.transform(expr, mapping)

> factorization of expressions and forms (“check” or "factorize” modes),
dolfiny.units.factorize(expr, quantities, mapping, mode)

3 1]

Motivation | why non-dimensionalisation?

H Inspect relative scales of terms in expressions/forms.
— identify dominant and (potentially) negligible terms

Improve numerical conditioning.
— avoid issues with vastly different scales

Derive dimensionless numbers.
— discover fundamental parameters (Reynolds, Euler, Strouhal, ...)

Simplify parameter studies.
— reduce number of independent variables

Enable universal solutions.
— results applicable across different physical scales

4 1]
e

Contents

Buckingham Pi analysis

5 1]

Buckingham Pi theorem

> a general, abstract method for dimensional
analysis of a set of dimensional quantities,

> useful even without a specific PDE at hand,

> early detection of dimensional
inconsistencies and dependent phenomena.

Figure: Edgar Buckingham (1867-1940)

6 1]

Buckingham 7 theorem | formal statement

If we have a physical system described by some

419 --->9,) =0,

where g; are n dimensional quantities, then there exist p dimensionless
quantities 7; (so-called n-groups) such that

F(my, 1y, ...,m,) = 0.
Moreover,
p =dimker M,

where M € Q" is called the dimensional matrix where M;; represents the
exponent of the i-th dimension in parameter gj-

Lay words: There are as many dimensionless numbers, as there are
independent ways of combining the dimensional quantities.

7 1]

Buckingham 7 theorem

Flow around a sphere

Consider the drag force F, on a sphere of diameter d moving through a
fluid with velocity v, density p, and dynamic viscosity y. The relevant
parameters are {Fp, d, v, p, u} with dimensions

[Fpl =LMT2, [d]l=L, [v]=LT" [pl=L"M, [u]=L"'MT"

The dimensional matrix is

1|11 |-3-1
1 |-2|-2|-1{0
M=|1]|0|0|1|1 nullspace(M) =
O(1]1]1/(-1
=210 (-1|0|-1

The kernel dimension is p = 2 (two independent dimensionless groups)

F .
I, = pTDdZ (drag coefficient, Cp),

pvd (Reynolds number, Re).

0, = ,
T . uni

Contents

Non-dimensionalisation procedure

9 []1]]

Non-dimensionalisation | general considerations

» Forms (describing a multi-field PDE problem) can carry different units
> Adding forms should be done on their non-dimensional equivalents
> Approach non-dimensionalisation for each form separately

10 1]

Non-

dimensionalisation

Establish dimensional quantities (parameters and reference scales)
from dolfiny.units import Quantity

k = Quantity(mesh, 1, syu.kilo * syu.newton / syu.meter, "k")

f = Quantity(mesh, 1, syu.pascal, "f")

u_ref = Quantity(mesh, 1, syu.millimeter, "u_ref")

1_ref = Quantity(mesh, 1, syu.meter, "1_ref")

quantities = [k, f, u_ref, 1_ref]

Identify dimensionless z-groups
dolfiny.units.buckingham_pi_analysis(quantities)

Establish dimensional mapping of mesh length scale and function scales
mapping = {mesh.ufl_domain(): 1_ref, u: u_ref * u, 6u: u_ref * du}

Split form into relevant named terms
terms = {"int": -ufl.inner(ufl.grad(du), k * ufl.grad(u)) * dx,
"ext": du *x f * dx}
Separate dimensional and non-dimensional factors in form terms
terms_fact = dolfiny.units.factorize(terms, quantities, mapping=mapping)

B Normalise factorised form terms with selected reference term

terms_norm = dolfiny.units.normalize(terms_fact, "int", quantities)

Produce non-dimensional form
form_nondimensional = sum(terms_norm.values())

i []1]]

Contents

Examples

2 1]

Example | incompressible Navier-Stokes

Weak form

0= J 8v-pa—vdx+J ov-p(v-Vv) dx+J D(6v) : 2pvD(v) dx
Q ot Q Q

unsteady convection viscous
- I V-(Svpdx—J 8v-pgdx+J- SpV.vdx ¥ (6v,dp)
Q Q Q
pressure force incompressibility
Quantities
v=1000mm?/s L =1m Uef = 1M/ Gref = 10M/s?

p = 5000 kg/m? tef=1s Pref = 5000 Pa

Example | incompressible Navier-Stokes 2

Units implementation sketch

nu = Quantity(mesh, 1000, syu.millimeter**2 / syu.second, "nu")
rho = Quantity(mesh, 5000, syu.kilogram / syu.meter*x3, '"rho'")
1_ref = Quantity(mesh, 1, syu.meter, "1_ref'")

t_ref = Quantity(mesh, 1 / 60, syu.minute, "t_ref")

v_ref = Quantity(mesh, 1, syu.meter / syu.second, "v_ref")
p_ref = Quantity(mesh, 5000, syu.pascal, "p_ref")

g_ref = Quantity(mesh, 10, syu.meter / syu.second*x2, '"g_ref'")
quantities = [nu, rho, 1_ref, t_ref, v_ref, p_ref, g_ref]

dolfiny.units.buckingham_pi_analysis(quantities)
mapping = {mesh.ufl_domain(): 1_ref, v: v_ref * v, p: p_ref x p, ...}

terms = {
"unsteady": ufl.inner(dv, rho * (v - v0) / (t_ref *x n)) * ufl.dx,
"convection": ufl.inner(dv, rho * ufl.dot(v, ufl.grad(v))) * ufl.dx,
"viscous": ufl.inner(D(6v), 2 * rho * nu * D(v)) * ufl.dx,
"pressure'": -ufl.inner(ufl.div(dv), p) * ufl.dx,
"force": -ufl.inner(dv, rho * g_ref % b) * ufl.dx,
"{ncompressibility": &p * ufl.div(v) * ufl.dx,
¥
terms_fact = dolfiny.units.factorize(terms, quantities, mapping=mapping)
terms_norm = dolfiny.units.normalize(terms_fact, "convection", quantities)

form_nondimensional = sum(terms_norm.values())

" 1]

Example | incompressible Navier-Stokes 3

Buckingham Pi analysis

Buckingham Pi1 Analysis

Symbol | Expression | Value (in base units)

nu | 1000.0*millimeter**2/second | 0.001*meterx*2/second

rho | 5000.0xkilogram/meter**3 | 5000.0xkilogram/meter**3
l_ref | meter | meter

t_ref | 0.01667*minute | 1.0%second

v_ref | meter/second | meter/second

p_ref | 5000.0%pascal | 5000.0xkilogram/(meterxsecond**2)
g_ref | 10.0*meter/secondx*2 | 10.0*meter/second*k2
Dimension matrix (7 x 7):

Dimension | nu | rho | 1_ref | t_ref | v_ref | p_ref | g_ref
amount_of_substance | @ | @ | @ | 0 10 | 0 | @
current e 10 |8 () [(] |0
length |12 | -3 |1 () |1 | -1 |1
luminous_intensity | 0 | @ | @ | 0 | 0 | 0 | ©
mass e |1 |o@ |0 |0 |1 | 0
temperature |0 |0 | © | © | 0 | © | ©
time | -110 |0 |1 | -1 | -2 | =2
Dimensionless groups (4):

Group | Expression | Value

Pi_1 | nuxt_ref/1_ref**x2 | 0.001 Re =TI, = 1000

pi_2 | l_refxv_ref/nu | 1e+03 Fr=T,1; 2 = 10

Pi_3 | 1_ref**2%p_ref/(nu**2%rho) | le+06 Eu:l‘l%l‘l3

Pi_4 | g_ref¥1_ref*x3/nuxx2 | 1e+07 St=TIIjII) =1

= 1]

Example | incompressible Navier-Stokes 4

Form normalisation

Terms after normalization with '"convection"

Reference factor from 'convection':
Term | Factor | Value (in base units)

convection | 1_ref#rho%v_ref*%3 | 5000.0%kilogram*meter/second%*3

Term | Factor | Value (in base units)
unsteady | l_ref/(t_refkv_ref) | 1.000

convection (N | 1.000

viscous | nu/(l_ref*v_ref) | 0.001000

pressure | p_ref/(rho*v_ref**2) | 1.000

force | g_refxl_ref/v_ref*x2 | 10.00
incompressibility | p_ref/(rhoxv_ref*x2) | 1.000

Example | neo-Hooke hyperelasticity
Weak form

_ Wshear Wbulk .
0= LC(a W S dx+J Clow s Sk dx - J(Su tds

shear bulk external

with W(C) = Wpear + Weuik = (I -3-2InJ)+ - (] - 1)

Quantities

u = 0.357 MPa e =0.1M
x = 1.667 MPa tef = 1.0MPa

V (6u)

Example | neo-Hooke hyperelasticity 2

nits implementation sketch

Quantity(mesh, 0.357, syu.mega * syu.pascal, "u")

Quantity(mesh, 1.667, syu.mega * syu.pascal, "k")

_ref = Quantity(mesh, 0.1, syu.meter, "1_ref'")

ref = Quantity(mesh, 1.0, syu.mega * syu.pascal, "t_ref")

quantities = [, k, 1_ref, t_ref]

dolfiny.units.buckingham_pi_analysis(quantities)

mapping = {mesh.ufl_domain(): 1_ref, u: 1_ref % u, du: 1_ref * &u}

terms = {
"int_shear": ufl.inner(8C, ufl.diff(W_shear(C), C)) * dx,
"int_bulk": ufl.inner(8C, ufl.diff(W_bulk(C), C)) * dx,
"external"™: -ufl.inner(du, t) * ds(surface_upper),

}

terms_fact = dolfiny.units.factorize(terms, quantities, mapping=mapping)

terms_norm = dolfiny.units.normalize(terms_fact, "int_bulk", quantities)

form_nondimensional = sum(terms_norm.values())

18 1]

Example | neo-Hooke hyperelasticity 3

Buckingham Pi analysis

Buckingham Pi Analysis

Symbol | Expression |

Value (in base units)

n | 3.571e+5%pascal |
K | 1.667e+6%pascal |
1_ref | 0.lkmeter |
t_ref | 1.0e+6%pascal |

Dimension matrix (7 x 4):

3.571e+5%kilogram/(meterksecond**2)
1.667e+6%kilogram/(meter*second**2)
0.1xmeter
1.0e+6%kilogram/(meter*second**2)

Kk | l_ref | t_ref

Dimension | w |
amount_of_substance | 0 |
current | 0 |
length | =1 |
luminous_intensity | 0 |
mass |1 |
temperature | 0 |
time | -2 |

Dimensionless groups (2):
Group | Expression | Value

Pil | k/u | 4.67
pi2 | t_ref/u | 2.8

o |o)
o | o)
=N =
o | o)
1] |1
o |0)
2|0 | =2

incompressibility ratio or bulk-to-shear ratio
relative magnitude of deformation

Example | neo-Hooke hyperelasticity 4

Form normalisation

Terms after normalization with "int_bulk"

Reference factor from 'int_bulk':
Term | Factor | Value (in base units)

int_bulk | 1_ref*x3%k | 1667.0%kilogram¥meter**2/second**2

Term | Factor | Value (in base units)

int_bulk | 1 | 1.000
int_shear | p/x | 0.2143
external | t_ref/k | 0.6000

20

Example | electrodiffusion (Poisson-Nernst-Planck)

Weak forms
0= J Vo9 - &6,V dx - J S¢ F (Z e+ w> dx ¥ (59)
Q Q k
potential electroneutrality
F
0= . . -
L Z Véc, - D Ve dx + J Z Vécy - Dicrzy RT Vo dx
k Q k
diffusion convection

. J ZV6ck-chkVadx+J Y Voc, - Do Vb dx Y (0cy)
Q Q K

Debye expansion term 0-th Debye expansion term 1-st

Quantities
g =8854x1072F/m ¢, =1602x10°C ¢ =1V
F=9.649%x10*C/mol R =8.314J/(Kmol) Cref = 50 mol/m3
Dyes = 1.0x 10710 m?/s T = 300K et = 1A
x i

Example | electrodiffusion (Poisson-Nernst-Planck) 2

Units implementation sketch

€_0 = Quantity(mesh, 8.854187819e-12, syu.farad / syu.meter, "e_0")
e_0 = Quantity(mesh, 1.602176634e-19, syu.coulomb, "e_0")

F = Quantity(mesh, 9.648533212e04, syu.coulomb / syu.mol, "F")

R = Quantity(mesh, 8.314462618, syu.joule / syu.kelvin / syu.mol, "R")
T = Quantity(mesh, 300.0, syu.kelvin, "T'")

c_ref = Quantity(mesh, 50.0, syu.mol / syu.meterxx3, "c_ref")

p_ref = Quantity(mesh, 1.0, syu.volt, "o_ref')

Quantity(mesh, 1, syu.angstrom, "1_ref")

Quantity(mesh, 1.0e-10, syu.meter**2 / syu.second, "D_ref")
quantities = [c_ref, o¢_ref, D_ref, €0, F, R, T, 1l_ref, e_0]

dolfiny.units.buckingham_pi_analysis(quantities)

mapping = {mesh.ufl_domain(): 1_ref, c: c_ref * c, ¢o: o_ref x ¢, ...}
terms_p = {

"potential™: ..., "electroneutrality": ...,
¥
terms_c = {

"diffusion": ..., "convection": ..., "debye_0th": ..., "debye_1lst": o
}

terms_¢p_fact
terms_c_fact

= dolfiny.units.factorize(terms_op, quantities, mapping=mapping)
= dolfiny.units.factorize(terms_c, quantities, mapping=mapping)
terms_p_norm
terms_c_norm

dolfiny.units.normalize(terms_op_fact, "potential", quantities)
dolfiny.units.normalize(terms_g¢_fact, "diffusion'", quantities)

form_nondimensional = sum(terms_¢p_normzvalues()) + sum(terms_c_norm.values(jﬂ"

Example | electrodiffusion (Poisson-Nernst-Planck) 2

Buckingham Pi analysis

Buckingham Pi1 Analysis

Symbol | Expression

Value (in base units)

c_ref | 50.0%mole/meter**3
g_ref | 1.0%volt

D_ref | 1.0e-10*meter**2/seco
e_0 | 8.854e-12%farad/meter
F | 9.649e+4xcoulomb/mole
R | 8.314%joule/(kelvin*m
T | 300.0%kelvin

1_ref | angstrom

e_0 | 1.602e-19%coulomb

Dimension matrix (7 x 9):

nd

ole)

50.0%mole/meter*x3

1.0%kilogramxmetersx2/(amperexsecond##3)

1.0e-10*meter**2/second

8.854e-12%ampere**2*second**4/ (kilogram*meter**3)
9.649e+4*ampere*xsecond/mole
8.314xkilogram*meter**2/(kelvinkmolexsecond**2)

300.0%kelvin
1.0e-10*meter
1.602e-19%amperexsecond

Dimension | c_ref | o_ref | D_ref | .0 | F | R | T | l_ref | e_0
amount_of_substance | 1 | © | © | © | -1 -1]10]©0 | 0
current | © | -1 | © | 2 |1 |0 | 0|6 | 1
length | -3 | 2 | 2 |3 10 |2 |61 ()
luminous_intensity | 0 | 0 | © | © | |6 |66 | ©
mass |0 |1 | 0 | -1 106 |1 |06 |0
temperature | © | © | © | © |® | -1] 1] 6 | 0
time |0 | -3 | -1 14 |1 | -2]0]60 |1
Dimensionless groups (3):

Group | Expression | Value

Pi_1
pi_2
Pi_3

RXT/(F*p_ref)

23

sqrt(F)*sqrt(c_ref)*1_ref/(sqrt(e_0)*sqrt(yp_ref))
sqrt(F)*sqrt(c_ref)xe_0/(e_0%x(3/2)*p_ref**(3/2))

0.0259 thermal voltage
0.0738
13.4

Example | electrodiffusion (Poisson-Nernst-Planck) 4

Form normalisation

Terms after normalization with "potential™

Reference factor from 'potential':
Term | Factor | Value (in base units)

potential | e_0xp_ref**x2/1_ref | 0.08854xkilogram/second**2

Term | Factor | Value (in base units)

potential | 1 | 1.000
electroneutrality | Fkc_refx1_ref**2/(e_0*p_ref) | 0.005449

Terms after normalization with "diffusion"

Reference factor from 'diffusion':
Term | Factor | Value (in base units)

diffusion | D_ref*c_refx*2/1_ref | 2500.0%mole**2/(meterx*S*second)

Term | Factor | Value (in base units)
diffusion | 1 | 1.000
convection | Fx¢_ref/(R*T) | 38.68
debye_0th | F¥x2xsqrt(c_ref)*e_0/(R¥*x(3/2)*T*x*(3/2)*e_0%*(3/2)) | 3213.
debye_1st | F**3%c_refkxe_0%1_ref/(R¥*2%T**2%e_0%%2) | 1475.

% 1]

Summary

v

Physical units in UFL (user experience, consistency checks)
Dimensional analysis in UFL (model interpretation, detect sensitivities)
Non-dimensionalisation of weak forms (improve numerical properties)

Scaling forms is typically an iterative process

Scaling is not always (directly) mathematically possible
— expand terms before attempting factorisation
Scaling is not always (directly) physically plausible

— identification of reference scales

Scaling is not always (directly) numerically beneficial
— check conditioning, relative participation of terms

71 dolfiny.uni.lu

0 fenics-dolfiny/dolfiny

pip install dolfiny

2 1]

https://dolfiny.uni.lu
https://github.com/fenics-dolfiny/dolfiny
https://pypi.org/project/dolfiny/

	Motivation
	Buckingham Pi analysis
	Non-dimensionalisation procedure
	Examples
	Summary

