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Groundwater flow in fractured aquifers

e Water flow in many aquifers is highly influenced by anisotropy, often caused by
features like fractures and faults.

e Most existing Bayesian inference methods assume isotropic prior models, which
may oversimplify real subsurface conditions.

Fractured aquifer



Using INSAR to Reveal Aquifer Secrets
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e What is InSAR?

e Recent work (Alghamdi et al., 2024; ’
Salehian Ghamsari et al., 2025) has \
proposed INSAR (Interferometric
Synthetic Aperture Radar) data to

improve aquifer property estimation.

from (Salehian Ghamsari, van Dam, &
Hale, 2025) 3



Leveraging INSAR to uncover subsurface anisotropy
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InSAR surface displacement of Nevada aquifer pumping test (Burbey, Warner, Blewitt,
Bell, & Hill, 2006) 4



Research objective

e Goal: Develop a mathematical framework to assimilate INSAR-derived surface
displacement data into a groundwater model for estimating anisotropic hydraulic
conductivity (AHC).

e Forward Modeling: Use a poroelastic finite element model
that incorporates AHC to simulate line-of-sight (LOS) surface
displacements detectable by INSAR (Salehian Ghamsari et al.,
2025).

e Prior Modeling: We develop a probabilistic model for describing anisotropy in
aquifer systems that can incorporate prior information from complex, potentially
multi-modal, structural geological data.



Forward model



Three-field Biot equations with AHC

Find the fluid-pore pressure p : 2 x (0,7] — R, deformation v : Q x (0,7] — R? and
fluid flux ¢ : 2 x (0,7] — R? such that:

(Sep+aV-u)y+V-qg= f, on Qx(0,7T],
_V6(uap) - fu on {2 x (07T]7
q+kVp=0onQx(0,7T],

k is the anisotropic hydraulic conductivity (AHC) tensor
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Simplified conceptual model of the Anderson Junction aquifer system

Upper confining
~40m layer (alluvial and
colluvial deposits)

Aquifer layer
(Navajo sandstone-
Jn)

~180 m

Lower confining
~200m layer (Kayenta
formation- Jk)
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from (Salehian Ghamsari et al., 2025)




Generated 3D mesh of the aquifer system

I Upper confining layer
[ Aquifer layer
I Lower confining layer
e  Pumping well
Observation wells
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Magnified visualization of aquifer displacement




Stochastic extension



AHC Magnitude and Direction

e The poroelastic PDE model requires the anisotropic hydraulic conductivity (AHC)
tensor to be symmetric positive definite (SPD) to ensure mathematical
well-posedness (Aris, 2012).

e (Shivanand, Rosi¢, & Matthies, 2024) recently proposed a Lie group approach for
constructing symmetric positive definite matrices.

e Building on this, we develop a stochastic prior model for the AHC tensor that
allows independent control of both:

e Magnitude
e Direction
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Methodology
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Methodology

e It is well known that any k can be decomposed into a tensor of eigenvalues A and
a tensor of eigenvectors ()

k= QAQT.
e We can further rotate the eigenvectors () by applying a rotation tensor R

k= (RQ)A(RQ)T,

e Using the rotation angle ¢ about the z-axis, we construct a rotation tensor W as
0 -1
W = .
R = exp(W).
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Prior information

Source of uncertainty in anisotropic
hydraulic conductivity (AHC) tensor
e Magnitude (A): the reported =

uncertainty of hydraulic conductivity

Observation
A Well A (117 meters)

magnitude in regional study

e Direction (R): fracture outcrop data

Observation

Well B (115 meters) |
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Rotation angle model

i ~ VonMises
r; ~ Gamma,

6 @ ¢; ~ VonMises
w ~ Dirichlet
m ~ Categorical
¢ ~ Mixture

(bObS

,m
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Eigenvalue

Probability density (kgs~'m~3)

Az ~ lognorm(fiz, 52)
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Anisotropic hydraulic conductivity model

e AHC tensors with randomness in both scaling and rotation
k(w) = R(9)QA(e, 1) QT R(9)T.
e AHC tensors with randomness only in scaling (¢ is known)
ks(w) = QA0 A)Q".
e AHC tensors with randomness only in rotation (both A, and A, are known)

kr(w) = R(6)QA(As, M) QT R()7 .
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Forward uncertainty propagation

The mean of the LOS displacement is then computed as

p(uros(z,t)) ZuLos x,t, ki)

and the unbiased estimation of standard deviation is calculated as
L & 1/2
Sy e ) — g 2
Std(uros(z,t)) = | =3 ; [uros(z,t, ki) — pluros(z,1))]
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First scenario




Prior information (first scenario)

Source of uncertainty in anisotropic
hydraulic conductivity (AHC) tensor with
(Heilweil & Hsieh, 2006) results
e Magnitude (A): ~ 20% uncertainty  *]
in magnitude of principal directions.
e Direction (R): Multimodal
uncertainty in fracture outcrop data.

(uncertainty only in x direction)

Observation
A Well A (117 meters)

Observation
Well B (115 meters) |
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Random

Density (rad~!)

rotation angle: model

selection
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Random rotation angle: model selection

Model elpd loo p-loo elpd diff SE

3VM  276.80 23.41 0.00 20.63
2VM  260.81 4.95 15.99 21.52
1IVM 4448 1.41 232.32 13.98

Table 1: Model selection results.

elpd_loo: Expected log pointwise predictive density.

p_loo: Estimated effective number of parameters.

elpd diff: The difference in ELPD between models, computed relative to the
top-ranked model.
SE: Standard error of the ELPD estimate.
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Forward uncertainty analysis

e Calculating random hydraulic
conductivity tensors

e Using FEniCSx on ULHPC to run the
poroelastic finite element model

e Running in parallel with thousands of
random tensors

e Statistical analysis of the outputs

UNI‘.’ERS ITE DU
LUXEMBOURG
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Forward

uncertainty analysis:

random scaling and rotation AHC

-=== xdirection

North

East

Elliptical representation of
random AHC tensors.

Mean of LOS
displacement.

Standard deviation of LOS

displacement.
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Second scenario




Prior information (second scenario)

Source of uncertainty in anisotropic
hydraulic conductivity (AHC) tensor
without (Heilweil & Hsieh, 2006) results

e Magnitude (A): no information

available Observation
A _ Well A (117 meters)

e Direction (R): Multimodal
uncertainty in fracture outcrop data.
Observation

(uncertainity in both x and y Well B (115 meters)
directions)
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Random

rotation angle and random AHC

201 Posterior predictive (4VM)
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: East
predictive distribution of mixture  Elliptical representation of random AHC
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tensors.
principal direction.
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Forward uncertainty analysis
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Conclusion

e By calibrating the model against fracture outcrop and optionally pump test data
from Anderson Junction, we were able to express two conceptual states of belief

about the site.

e The proposed methodology provides a flexible tool for modeling the effect of
random anisotropy on InSAR-measurable surface displacements.

e The proposed stochastic model could work as a prior in a Bayesian inference
setting where InSAR-derived line-of-sight data contains information about AHC.

Future work:

=¥ We will solve an inverse problem using InSAR data to estimate AHC
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The von-Mises disrtibution

0 n/2 n 3n/2 2n

T T ]

From (Lang et al., 2020)

_ exp(reos($(wr) — )
21 ly(K)

F(o(wr)lp, k)

where I is the modified Bessel function of order 0.
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Leave-one-out cross-validation

- : Training Set - : Test Set
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From (Cha et al., 2020)

o FNLPD,,: expected log pointwise predictive density.
Higher ELPD indicates higher out-of-sample predictive fit (“better” model).

e P,,. Estimated effective number of parameters.
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