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Annealing dynamics of regular rotor networks: Universality and its breakdown
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The spin-vector Monte Carlo model is widely used as a benchmark for the classicality of quantum annealers
but severely restricts the time evolution. The spin-vector Langevin (SVL) model has been proposed and tested
as an alternative, closely reproducing the real-time dynamics of physical quantum annealers such as D-Wave
machines in the dissipative regime. We investigate the SVL annealing dynamics of classical O(2) rotors on
regular graphs, identifying universal features in the nonequilibrium dynamics when changing the range of
interactions and the topology of the graph. Regular graphs with low connectance or edge density exhibit universal
scaling dynamics consistent with the Kibble-Zurek mechanism, which leads to a power-law dependence of
the density of defects and the residual energy as a function of the annealing time. As the interaction range is
increased, the power-law scaling is suppressed, and an exponential scaling with the annealing time sets in. Our
results establish a universal breakdown of the Kibble-Zurek mechanism in classical systems characterized by
long-range interactions, in sharp contrast with previous findings in the quantum domain.
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I. INTRODUCTION

Quantum annealing (QA) is a heuristic algorithm that ex-
ploits quantum effects to solve optimization problems [1–3].
QA relies on the gradual transformation of a quantum sys-
tem from an initial and easily preparable state to a target
state representing the solution of the optimization problem.
Specifically, the solution is encoded as the ground state of
the problem Hamiltonian. Due to the presence of noise and
decoherence, current quantum annealing devices are best de-
scribed as programmable many-body open quantum systems
[4–7]. A unitary time evolution provides an accurate de-
scription for short annealing times [8,9] and shallow circuits
in a digital implementation. These devices offer an exciting
platform to explore nonequilibrium physics [9]. One central
paradigm in this context is the Kibble-Zurek (KZ) mecha-
nism, describing the dynamics of classical continuous and
quantum phase transitions. It predicts that when a system is
driven across a critical point in a timescale τQ, adiabaticity
breaks down, leading to the formation of topological defects
at a density which varies as a universal power law with the
quench time [10–12]. In many-body spin systems of relevance
to QA, defects generally represent errors in the optimization
process that limit the preparation of low-energy states. The
KZ mechanism has been used as a benchmark in quantum
simulators [13–17] and annealing devices [7–9,18–20]. In this
context, efforts to identify and establish quantum signatures
of the dynamics have focused on ruling out the behavior of
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classical models embedded in a thermal bath [1,20–28]. In ad-
dition, the KZ mechanism holds in classical spin systems with
time-continuous simulated annealing and Glauber dynamics
[29–32], as well as with Monte Carlo updates [7,33].

The conventional derivation of the KZ scaling, applicable
to classical systems, relies on spatial locality [12,14,34,35],
and yet, the KZ mechanism has been shown to hold in
quantum systems with long-range interactions decaying as a
power law. This is the case for nonintegrable systems, such as
the transverse-field Ising model with power-law interactions
[36–38] and related systems realizable with Rydberg atom
quantum simulators [16,39], as well as in systems with a
free-fermionic structure, such as the long-range Kitaev model
[40]. By contrast, fully connected systems exhibit a power-law
scaling with the quench time, which is generally incompatible
with KZ mechanism and better explained in terms of Landau-
Zener crossings and quasiadiabatic approximations [41–44].

The coupling of a quantum critical system to a bath need
not destroy the KZ behavior and can preserve it by simply
renormalizing the equilibrium critical exponents [7,45]. How-
ever, environmental effects can give rise to anti-Kibble-Zurek
behavior, whereby the density of kinks increases with the
annealing time, as first predicted in short-range systems [46]
and observed in several D-Wave annealing devices [8,18,19].
The anti-Kibble-Zurek scaling has been further established
in the long-range Kitaev model [47–49] and fully connected
systems [50].

In the classical domain, early studies in ion trap systems
showed that power-law Coulomb interactions preserve the
KZ scaling expected in short-range systems [51–53], with
deviations reported in experiments in small samples [54,55].
Likewise, the critical dynamics of the dipolar spin ice ex-
hibits KZ scaling [32,56]. Recent experiments in systems with
dipolar interactions reported the universal KZ scaling when

2643-1564/2025/7(1)/013123(20) 013123-1 Published by the American Physical Society

https://orcid.org/0000-0002-0633-7195
https://orcid.org/0000-0002-2681-9132
https://orcid.org/0000-0003-2219-2851
https://ror.org/036x5ad56
https://ror.org/02e24yw40
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.7.013123&domain=pdf&date_stamp=2025-02-03
https://doi.org/10.1103/PhysRevResearch.7.013123
https://creativecommons.org/licenses/by/4.0/


GRABARITS, SAMMARTINO, AND DEL CAMPO PHYSICAL REVIEW RESEARCH 7, 013123 (2025)

excitations are topological defects and found an enhanced
suppression with the driving time in the case of nontopo-
logical excitations [57]. Deviations from the KZ scaling are
expected in the presence of coarsening dynamics [58,59],
as has been described in systems with power-law interac-
tions when crossing equilibrium [60,61] and nonequilibrium
[62,63] phase transitions.

Power-law interactions decaying with the distance are nat-
ural in physical systems and can be studied in a variety of
simulators using ultracold gases and Rydberg atoms [64,65].
Complex couplings involving nonlocal interactions arise in
computational problems, statistical physics, and the study of
networks. Recent experimental progress has demonstrated the
realization of programmable interactions, giving rise to a syn-
thetic emergent geometry different from the physical one [66].

In spite of this progress, the validity of the KZ mechanism
as a function of the interaction range in classical systems
remains to be studied and is the focus of our work. We con-
sider the annealing dynamics of a regular rotor network as
a function of the connectance or edge density, i.e., the ratio
between the number of edges and the maximal possible value
associated with a fully connected graph. While a universal
KZ scaling is observed in networks with small edge density,
our results establish the breakdown of the KZ scaling as the
connectance is increased, giving rise to the onset of an ex-
ponential suppression of the density of excitations with the
annealing time.

The theoretical framework for the classical Langevin an-
nealing dynamics of O(2) rotor networks is introduced in
Sec. II, which also discusses the equilibrium relaxation time
and magnetization. This sets the ground for the study of KZ
scaling in graphs with low connectance in Sec. III A and its
breakdown at high edge density in Sec. IV. Universal signa-
tures beyond the KZ mechanism characterizing fluctuations
of the defect and energy densities are discussed in Sec. V.
Section VI closes with a summary and outlook.

II. TIME-EVOLUTION AND EQUILIBIRUM PROPERTIES

This section summarizes the details of the classical
stochastic dynamics of rotor networks and the associated equi-
librium statistical properties.

A. Spin-vector Langevin model

The QA algorithm relies on the dynamics of a system
generated by a Hamiltonian of the form

H (t ) = A(t )H0 + B(t )HP, (1)

where A(t ) and B(t ) define the annealing protocol interpo-
lating between a trivial Hamiltonian H0 and the problem
Hamiltonian HP. These functions are chosen to satisfy the
boundary conditions A(0) = B(τQ) = 1 and B(0) = A(τQ) =
0, where τQ is the duration of the process. Here, H0 and HP

are usually Ising-type Hamiltonians of the form

H0 = −
∑
i∈V

σ x
i , (2)

HP = −
∑

(i, j)∈E

Ji jσ
z
i σ z

j −
∑
i∈V

hiσ
z
i , (3)

with σ z
i and σ x

i denoting the z and x Pauli matrices on the
ith site. The QA algorithm aims to find the solution to com-
binatorial optimization problems, which are encoded in the
ground state of HP. The classical hardness of these problems is
characterized by both the underlying graph topology G(V, E )
and the spin-spin interactions Ji j [67]. Here, V is the set of
vertices, and E denotes the set of edges accounting for the
presence of interactions among the vertices. In the course of
the QA algorithm, the system starts from the easy-to-prepare
ground state of H0, and under slow adiabatic dynamics, it ends
up in the final ground state. However, in quantum systems,
the classical hardness of the given optimization problem leads
to small energy gaps at quantum critical points. As a result,
this leads to timescales similar to those required by classical
algorithms for successful QA processes.

Even though the understanding of the crossing of such crit-
ical points in finite-range models is still in its infancy, valuable
insights are offered by the stochastic Langevin dynamics of
classical systems [7,8,18,20,51,52]. To this end, we explore
the finite-range extension of the ring topology of classical ro-
tors, where the interactions are described by circulant graphs.
The corresponding spins are represented by classical spin vec-
tors with trigonometric functions replacing the Pauli operators
as σ z

i → sin θi and σ x
i → cos θi. The angles θi describe clas-

sical planar O(2) rotors characterized by the N-dimensional
vector θ = (θ1, θ2, . . . , θN ). Note that this mapping has been
justified to reproduce most of the low-energy physics in the
corresponding quantum spin systems with tunable power-law
interactions, and common benchmarks of classicality rely on
it [7,20–24,26–28]. The corresponding finite-range interacting
Hamiltonian is given by

H (θ, t ) = −J (t )

2

N∑
i, j=1

Ai j sin θi sin θ j − h(t )
N∑

i=1

cos θi. (4)

The annealing schedule specifies the time dependence of the
Hamiltonian (4), and in real QA machines, it is determined
by the balance of engineering optimization and the physical
limitations of the hardware. We choose a linear protocol

J (t ) = J0
t

τQ
and h(t ) = h0

(
1 − t

τQ

)
, t ∈ [0, τQ]

(5)
where J0 and h0 are arbitrary constants fixing the energy
scale of HP and H0, respectively. Here Ai j denotes the ele-
ments of the adjacency matrix describing the circulant graphs
G(V, E ) = CiN (r). Here, N denotes the number of vertices of
the graph, i.e., the number of rotors,

∑
i< j Ai j = |V | = N .

The integer r sets the interaction range between spins,

Ai j =
{

1 if |i − j| � r,

0 otherwise.
(6)

In Eq. (4), the first term takes the role of the HP problem
Hamiltonian, while the second is that of the H0 transverse-
field Hamiltonian. Circulant graphs provide the simplest
generalization of the ring topology by extending the interac-
tion range to the r nearest neighbors. From the point of view of
graph theory, the distance between two vertices corresponds
to the number of connecting edges in the shortest path linking
them. This shrinks the distances between vertices, leading to a
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FIG. 1. Schematic representation of O(2) networks associated
with circulant graphs of order N = 10 and increasing connectance
from left to right, interpolating between the cycle graph CN and the
complete graph KN .

nontrivial geometrical structure. However, a one-dimensional
interpretation provides an accurate description of the nonequi-
librium dynamics near the critical point.

Due to the homogeneity of the system, these graphs are
2r regular. For simplicity, we will refer to r as the regularity
in the following. To characterize these graphs independently
of the system size, the graph density, or connectance, is in-
troduced: c = 2r

N−1 . The connectance interpolates between the
empty graph (c = 0) and the complete graph KN with c = 1
[68], as depicted in Fig. 1.

The corresponding dynamics can be implemented in dif-
ferent ways. The spin-vector Monte Carlo (SVMC) model is
a convenient method to implement classical stochastic dy-
namics, capturing time evolution via discrete Monte Carlo
steps [22,23]. While it remains a common benchmark for
annealing devices [7,24,26–28], it is not suited to describe
the real-time dynamics unambiguously. Its evolution is highly
restricted, being parametrized solely by temperature and lack-
ing the notion of dissipation. The spin-vector Langevin (SVL)
model replaces the Monte Carlo steps with continuous-time
Langevin dynamics that is flexible enough to account for
dissipative effects by including a friction coefficient subject
to the fluctuation-dissipation theorem [20]. It also provides
a remarkable improvement over the SVMC method giving
access to the real-time evolution of the system.

The SVL evolution is encoded in the set of stochastic
coupled differential equations

miθ̈i + γiθ̇i + ∂H (θ, t )

∂θi
+ ξi(t ) = 0, i = 1, 2, . . . , N

∂H (θ, t )

∂θi
= −J (t )

N∑
j=1

Ai j cos θi sin θ j + h(t ) sin θi, (7)

where ξi(t ) represents independent and identical Wiener pro-
cesses with zero mean, describing white noise on the ith
vertex. This noise generates classical fluctuations modeling
how the external thermal bath affects the dynamics [7,21,22].
The effective mass of the rotors mi weights the inertia term,
and γi denotes the local damping constant. In the following, a
homogeneous mass and damping are chosen, setting mi = m
and γi = γ . Then, the noise autocorrelation is 〈ξi(t )ξ j (t ′)〉 =
2mγ kBT δi jδ(t − t ′), as required by the fluctuation-dissipation
theorem [69] for a thermal bath at temperature T . In this work,
natural units are adopted for simplicity, setting kB = 1, m =
1, and for the temperature T = 0.001J0. As for the numer-
ical implementation, the Langevin equations are integrated
with the help of the multidimensional explicit order 2.0 weak
scheme of Refs. [20,70].

B. Equilibrium critical exponents and order parameter

As in the ring topology with r = 1, regular rotor networks
undergo a paramagnetic-ferromagnetic–like phase transition
at values of J (t ) and h(t ) for which the two compet-
ing terms in the Hamiltonian are of the same order of
magnitude for arbitrary N and r. The system starts from
the paramagnetic phase, where the angles are approxi-
mately paramagnetically aligned θi � 1. Similarly, in the
regular network, the Hamiltonian can be approximated by
the quadratic form H (θ) ≈ − J (t )

2

∑N
i, j=1 Ai jθiθ j − h(t )N +

h(t )
2

∑N
i=1 θ2

i . The corresponding Langevin equations read as

mθ̈i + γ θ̇i + h(t )θi − J (t )
r∑

j=−r
j 	=0

θi+ j + ξi(t ) = 0, ∀ i. (8)

From Eq. (8), both the critical point and the critical exponent
of the relaxation time can be determined in the different damp-
ing regimes [20,51,52,71]. In the overdamped regime, using
the approximation γ θ̇ � θ̈ , one finds

τ ∼ |θ/θ̇ | ∼ γ

h(t ) − 2rJ (t )
, (9)

setting the critical point at h(t ) = 2rJ (t ). To make the cor-
responding critical time independent of the connectance,
J0 = 1 and h0 = 2r are chosen, yielding tc = τQ/2. In the
underdamped case, the inertial term θ̈ dominates and the equi-
librium relaxation time reads as

τ 
 |θ/θ̈ |1/2 

∣∣∣∣ m

h(t ) − 2rJ (t )

∣∣∣∣
1/2

. (10)

These equations imply that the regularity does not affect the
relaxation time beyond shifting the critical point. The corre-
sponding critical exponents obey zν = 1 in the overdamped
regime and zν = 1

2 in the underdamped regime. In both cases,
the natural choice for the control parameter is ε(t ) = h(t ) −
2rJ (t ), so that the transition takes place at ε(tc) = 0. Shift-
ing the beginning of the annealing schedule by τQ/2 leads
to tc ≡ 0, convenient for further analysis. This way, the an-
nealing schedule extends over the interval of [−τQ/2, τQ/2],
with the linearized control parameter given by ε(t ) = 2r t/τQ

around the critical point. Consistently, near tc, HP and H0 vary
over the same energy scale, independently of N and r. The
quadratic part scales as

∑
i, j Ai j sin θi sin θ j ∼ Nr, while H0

acquires the same order of magnitude thanks to the additional
scaling of h0 in r, h0

∑
i cos θi ∼ Nr. Next, the equilibrium

correlation length is investigated via the angle-angle correla-
tion function defined as

G(d ) = 〈sin θi sin θi+d〉traj ≈ 〈θiθi+d〉traj, (11)

where the last approximation is valid near the critical point.
Here, the expressions 〈. . . 〉traj and . . . stand for the average
over the stochastic trajectories and the spatial coordinates, re-
spectively. As shown in Appendix A, this allows for a compact
analytical treatment in terms of a Hamiltonian quadratic in the
angle variables θi, yielding for the correlator

G(d ) ∼ r−2e−d/ξeq , ξeq(r) ∼ r3/2ε−1/2. (12)
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This result also implies the universal scaling of the correlation
function as

r2G(d ) ∼ e−d/ξeq . (13)

In contrast to the SMVC model, the SVL method provides
access to the numerical investigation of equilibrium prop-
erties. This is achieved through an adiabatically slow time
evolution, allowing the system to reach thermal equilibrium
at temperature T at all time instances via noise-induced fluc-
tuations. To this end, the correlation function is computed by
averaging over 3 × 104 trajectories for τQ = 2560. This value
was validated by numerically checking the convergence of the
equilibrium quantities against increasing further the annealing
time for r = 1 and N = 401, for which the strongest nonadi-
abatic effects are expected. Additionally, as it will be shown
in Sec. III, the final excess-energy density reaches the onset
of adiabaticity for smaller values of τQ for the investigated
parameters, while its time evolution matches precisely the
analytical result in Eq. (27). For both damping regimes, the
rescaled correlators exhibit an accurate scaling collapse as
a function of d/ξeq, while the correlation length grows ap-
proximately as ξeq ∼ |ε|−1/2 near the critical point, indicating
ν = 1

2 . The results of this numerical analysis are displayed in
Fig. 2.

Finally, the effect of the finite-range interaction on the
order parameter is put to the test. In analogy with the r = 1
case, the classical version of the magnetization is introduced
as the order parameter. This measure accurately quantifies the
distance of the final rotor configuration from the ferromag-
netic ground state,

Mz(t ) = 1

N

N∑
i=1

〈| sin θi(t )|〉. (14)

The magnetization is determined for the same value of τQ =
2560 and number of trajectories. Remarkably, the sudden in-
crease of Mz around tc = 0 follows the same shape regardless
of r and N . The results are displayed in Fig. 3 for the under-
damped case in the regimes of small, intermediate, and large
values of c.

In short, the SVL model captures the equilibrium proper-
ties of classical ferromagnetic O(2) rotor network, indicating
a continuous phase transition in which the critical properties
are robust against variations of the interaction range, as long
as the fundamental symmetries are not altered compared to
the chain case.

III. UNIVERSAL KIBBLE-ZUREK SCALING
REGIME AND ITS BREAKDOWN

This section investigates how the excess-energy density
and the number of near-ferromagnetic domains are related to
the quench time τQ and the connectance c.

A. Kibble-Zurek mechanism

The KZ mechanism predicts a universal power-law scaling
of the density of excitations or topological defects generated
while crossing a phase transition point [10–12]. The criti-
cal slowing down prevents the system from adjusting to the
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2
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FIG. 2. Equilibrium correlation length for the overdamped and
underdamped regimes, captured by the spatial and ensemble averages
of the correlators of the sin θi values for N = 401. Panels show
the scaling collapse for (a) the overdamped and (b) underdamped
regimes via rescaling the distance by the regularity r, as motivated
by the universal KZ limit. The inset displays the divergence of the
correlation length as a function of the proximity to the critical point,
quantified by ε. The corresponding critical exponent is independent
of r, up to numerical precision. The results were obtained by aver-
aging over 104 trajectories and with quench time set to τQ = 2560 to
ensure adiabatic time evolution.

driving-induced changes, leading to the formation of topolog-
ical defects in the final state. To estimate the defect density,
the KZ mechanism utilizes equilibrium scaling theory, char-
acterizing the power-law divergence of the correlation length
ξ and the relaxation time τ ,

ξ = ξ0|ε|−ν and τ = τ0|ε|−zν, (15)

in the proximity of the transition. Here, ν and z denote,
respectively, the correlation-length critical exponent and the
dynamic critical exponent, with τ0 and ξ0 fixing the model-
dependent time and length scales. Matching the driving rate
and the relaxation time provides the freeze-out timescale
t̂ . Inside the corresponding freeze-out regime, t ∈ [−t̂, t̂]
dynamics ceases to be adiabatic. This sets the associated
freeze-out length scale ξ̂ , determining the typical length scale
of the domains

ε(t̂ )/ε̇(t̂ ) = τ0|ε(t̂ )|−zν ⇒ t̂ = τ
1

zν+1
0 τ

zν
zν+1

Q ,

ξ̂ = ξ0|ε(t̂ )|−ν . (16)

Correspondingly, defect-free domains will extend over re-
gions of size ξ̂ d−D leading to the average number of defects
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FIG. 3. Evolution of the average magnetization Mz as the order parameter for different values of c in the (a) small, (b) intermediate,
and (c) fully connected limits for various system sizes. The first two pairs of c values in the legends correspond to N = 401 and 201 sizes,
respectively, while the last one is for N = 101. The equilibrium dependence on the control parameter was extracted from time evolutions in
the adiabatic limit, with τQ = 2560 and averaged over 104 trajectories. The critical properties observed in the chain topology are invariant with
respect to c, maintaining the behavior around the critical point.

〈n〉 scaling as

〈n〉 ∝ ξ̂−(d−D) ∝ ξ
−(d−D)
0

(
τ0

τQ

) (d−D)ν
zν+1

, (17)

valid for defects extending along D dimensions, when the
spatial dimension of the system is d > D [14].

B. Connectance dependence of the Kibble-Zurek scaling

As in long-range quantum Ising models [36], defects aris-
ing in circulant rotor networks preserve their pointlike or
zero-dimensional character and are thus Z2 kinks with D = 0.
Within the domains, the rotors are approximately aligned
ferromagnetically with θi ≈ ±π and suddenly change their
orientation at the location of a kink. This allows for a one-
dimensional representation of the defects, the density of which
can be estimated via the projected rotor values as

n1 = N1

N
= 1

2N

N−1∑
i=1

[1 − sgn(sin θi )sgn(sin θi+1)]. (18)

According to the numerical results, this “one-dimensional”
defect density follows precisely the same power law as in the
chain topology, sufficiently below the fully connected limit
c � 0.15:

n1 ∼ τ
−1/4
Q , overdamped, (19)

n1 ∼ τ
−1/3
Q , underdamped. (20)

Even though the circulant graph topology does not modify the
power law, it plays a crucial role in the universal properties of
the defect density beyond rescaling the driving rate as ∼r/τQ.

Motivated by these results we apply the framework of
the KZ mechanism as an ansatz to provide an approxi-
mate analytical understanding of further dynamical quantities.

Substituting the control parameter ε(t ) = 2r t/τQ in the KZ
rate equations (16) yields the following freeze-out scales and
the density of defects:

t̂ = τ
1

zν+1
0

(τQ

r

) zν
zν+1

,

ξ̂ = ξ0|ε(t̂ )|−ν = ξ0

(
τQ

τ0r

) ν
zν+1

,

n1 ∝ ξ̂−(d−D) ∝ ξ
−(d−D)
0

(
τ0r

τQ

) (d−D)ν
zν+1

. (21)

The identification of defects as kinks and the one-dimensional
topology of the resulting ferromagnetic domains imply that
d = 1 and D = 0. The critical exponents ν, z and the micro-
scopic constants τ0, ξ0 may generally depend on the regularity
in the KZ power-law regime. As shown in Eqs. (9) and (10)
and in Appendix A both zν and ν are independent of r. In
particular, z = 1, 2 for the overdamped and underdamped
regimes, respectively, while ν = 1

2 , 1
2 . As for the model-

dependent constants, the regularity only enters via ξ0 ∼ r3/2,
while the relaxation time is independent of the graph topology,
τ0(r) ∼ r0 [see also Eqs. (9) and (10)].

Thus, the KZ exponents preserve their one-dimensional
values αKZ = 1

4 and αKZ = 1
3 for the overdamped and under-

damped regimes, respectively. The KZ scalings, however, will
not follow a universal function of c due to the explicit r de-
pendence of the correlation length and the control parameter
near the critical point. This leads to the results

ξ̂ ∝ (r5τQ)1/4 ⇒ n1 ∝ (r5τQ)−1/4, overdamped, (22)

ξ̂ ∝ N (r7/2τQ)1/3 ⇒ n1 ∝ (r7/2τQ)−1/3, underdamped.

(23)

As presented in Fig. 4(a) for the overdamped case and in
Fig. 9(b) in Appendix D for the underdamped regime, the
curves of n1 follow the analytical approximations within nu-
merical precision and exhibiting a precise scaling collapse for
system sizes N = 100, 200, 400.
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FIG. 4. Averages of the defect and excess-energy densities as functions of τQ in the overdamped regime with the connectance varying
from the chain topology towards the fully connected limit. The first two pair of c values in the legends correspond to N = 401 and 201 sizes,
respectively, while the last to N = 101. (a)–(c) One-dimensional defect density. For values c � 0.15, the same power law of the chain topology
is observed with a universal regularity rescaling. For intermediate and densely connected graphs, a crossover is displayed towards the adiabatic
regime, exhibiting a universal exponential shape. (d)–(f) The graph defect density n2 behaves similarly, exhibiting power laws of r different
from the KZ regime but identical exponential behavior in the adiabatic regimes. (g)–(i) The excess-energy density closely matches the behavior
of graph defect density with high precision, including additional features in the absence of defects that stem from the dynamics of small-angle
deviations around the ferromagnetic direction. In all regimes, the curves were averaged over 103 trajectories.

In addition, the scaling of the freeze-out timescale also
acquires a regularity dependence,

t̂ ∝
⎧⎨
⎩

( τQ

r

)1/2
, overdamped,( τQ

r

)1/3
, underdamped.

(24)

C. Universal energy density beyond nearest neighbors

To demonstrate the applicability of the KZ mechanism,
we investigate the relationship between n1 and excess-energy
production. The circulant graph topology disrupts the simple
one-to-one correspondence between the number of near-
ferromagnetic domains and the excess energy. All rotor
configurations within the interaction range contribute to the
latter, which is defined as follows:

ρE (t ) = H (θ, t ) − Emin(θ, t )

Nr
,

ρE ≡ ρE (τQ) = 1 − 1

4

N∑
i, j=1

Ai j sin θi sin θ j . (25)

Here, the first term denotes the time evolution of the excess-
energy density, while the second one is for its final value,

which also takes a simple form in terms of the quadratic part
of the Hamiltonian. Here, the first equation accounts for the
excess energy during the evolution, while the second is for its
density at the end of the schedule. The normalization in the
second row makes the density scale invariant with respect to
both N and r. Here, the minimum of the instantaneous ground
state energy Emin(θ, t ) = min{θi}i∈V H (θ, t ) is defined as the
global minimum of the Hamiltonian at time t . By translational
invariance, all angles are identical, and the search for the
instantaneous energy minimum simplifies to the minimization
of a single-variable function. For convenience, the schedule is
considered in the interval [0, τQ] with the critical time given
by tc = τQ/2,

∂θH (θ, t ) = rN∂θ

[
− t

τQ
sin2 θ − 2

(
1 − t

τQ

)
cos θ

]
= 0

⇒ t

τQ
sin θ cos θ =

(
1 − t

τQ

)
sin θ. (26)

For t � τQ/2 this equation has the trivial solution θ = 0 and
with minimum energy Emin(θ, t ) = −2rN (1 − t/τQ), while
for t > τQ/2 the solution is given by cos θ = τQ−t

t . Thus, the
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minimum energy yields

Emin(θ, t ) = −rN

{
t

τQ

[
1 −

(
τQ − t

t

)2]
+ 2

τQ

t

(
1 − t

τQ

)2}
.

(27)

This expression provides a convenient way for the numerical
computation of Eq. (25). The excess energy is set by the actual
rotor configuration with contributions attributed to the kinks
as well as angle deviations within the domains. However,
these angle fluctuations provide negligibly small contributions
compared to the energy scale of the kinks, and ρE to leading
order can be expressed in terms of n1. For values of τQ where
the freeze-out length sufficiently exceeds the interaction range
(ξ̂ > r), every defect carries an energy contribution of ∼r2.
This originates from the antiparallel rotors on opposite sides
of the defect. To this end, n1 is also generalized by counting
all rotor-rotor fluctuations within the interaction range, intro-
ducing the graph defect density

n2 = N2

Nr
= 1

4Nr

N∑
i, j=1

Ai j[1 − sgn(sin θi )sgn(sin θ j )]. (28)

Within the domain of the KZ scaling, the graph defect density
agrees well with the numerically exact excess-energy density.
Due to the normalization with the connectivity, 2rN , both ρE

and n2 are also proportional to n1 by a factor of r. Remarkably,
ρE and n2 follow the same universal function of τQ/t̂ (r) inde-
pendently of both r, N and the respective damping regimes up
to the leading order,

n2 ∝ rn1 ∝
(

τQ

t̂ (r)

)−1/2

,

ρE = �E

Nr
∝ n2 ∝

{
(r τQ)−1/4, overdamped,

(
√

r τQ)−1/3, underdamped,
(29)

as displayed in Figs. 4(d) and 4(g) for the overdamped case
for different values of N and c [see also Figs. 9(d) and 9(g) in
Appendix D for the underdamped case].

IV. BREAKDOWN OF KIBBLE-ZUREK MECHANISM
AND THE FULLY CONNECTED LIMIT

In this section, the breakdown of the universal KZ scaling
regime is investigated in terms of the regularity r, connectance
c, and quench time τQ. Subsequently, the universal signatures
of annealing dynamics near the fully connected limit are ex-
plored. Finally, universal properties of ρE (t ) are analyzed at
intermediate times t ∈ [−τQ/2, τQ/2] in both the KZ and the
adiabatic regimes.

A. Fast quenches

As in the transverse-field Ising model (TFIM) and the φ4

classical stochastic model [72,73], the universal power-law
scaling of both n1 and ρE breaks down for rapid annealing
processes. For small τQ, the condition ξ̂ < r coincides with
the fast quench breakdown of the KZ scaling. In particular,
the τQ/r rescaling in the control parameter allows the system
to stay inside the freeze-out regime for the whole process.

The fast quench breakdown can be captured by matching the
freeze-out time with the equilibrium relaxation time t̂ = τ (τQ)
[72] at the end of the process. It sets the condition for τQ and
the lower threshold of the freeze-out length scale(τQ

r

) zν
zν+1 = τ0r−zν ⇒ τ fast

Q ∝ r−zν

⇒ ξ̂ ∝ r3/2
(τQ

r

) ν
zν+1 ∝ r3/2−ν = r, (30)

using ν(r) = 1
2 in the last step. Thus, the fast quench analysis

via matching the relaxation and freeze-out timescales provides
the same result as using the condition of ξ̂ = r,

τ fast
Q ∼ r−zν ∼

{
r−1, overdamped,

r−1/2, underdamped.
(31)

Furthermore, this approach is validated by the fact that by
increasing either r or τQ, the freeze-out timescale remains
inside the domain of validity of the linear approximation
t̂/τQ � 1. Thus, increasing the regularity decreases the crit-
ical annealing time below which the defect and excess-energy
densities exhibit a fast quench plateau, as demonstrated in
Figs. 4(a), 4(d), and 4(g) for n1, n2, and ρE , respectively.
As r is increased, these measures terminate earlier at con-
stant plateaus attributed to the fast quench regime (see also
Appendix D for the underdamped case). However, for larger
values of c, these plateaus disappear in the limit N → ∞.

B. Fully connected limit and adiabatic regime

As discussed in Sec. III C, considering the similarities be-
tween the one-dimensional rotor chain and the TFIM model
in both damping regimes, one could expect the complete
rotor network with graph KN to parallel the behavior of the
Lipkin-Meshkov-Glick (LMG) model [41]. However, the re-
sults clearly show that this is not the case.

Increasing τQ naturally leads to adiabatic dynamics; how-
ever, for rotor networks, the approach to the adiabatic limit
also strongly depends on the regularity of the graph. The KZ
regime only persists until the onset of adiabaticity identified
by the condition n1 = 1

N . This sets the upper threshold of of
τQ in terms of r and N :

r−3/2
(τQ

r

)− ν
zν+1 ∝ 1

N
(32)

⇒ τ ad
Q ∝ N4r−5 and ∝ N3r−7/2, (33)

for the overdamped and the underdamped regimes, respec-
tively. Note that this condition is equivalent to matching the
freeze-out length scale with the system size ξ̂ = N .

Thus, the universal KZ power-law regime completely dis-
appears around the threshold value of the connectance for
which the fast quench timescale (30) and the adiabatic one
in (32) become of the same order in the limit N, r → ∞. This
leads to the universal breakdown scale of

τ fast
Q = τ ad

Q ⇒ r ∼ N → c ∼ O(1), (34)

for both the underdamped and overdamped regimes. The
breakdown scales also suggest that the larger r is, the ear-
lier the KZ regime sets in. However, as N increases, the
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adiabatic regime takes over the dynamics even faster, even-
tually washing out the power-law KZ scaling. Remarkably,
the corresponding threshold connectance remains finite in
the thermodynamic limit, with c ≈ 0.15 for both damp-
ing regimes. When the connectance c ∈ [0.15, 0.5], the KZ
regime disappears, and the defect densities exhibit finite
fast quench plateaus followed by an intermediate nonuniver-
sal sharply decaying regime. The corresponding shrinking
and vanishing of the universal KZ regime are displayed in
Figs. 4(b) and 4(c) for n1 and Figs. 4(e), 4(f), 4(h), and 4(i)
for n2 and ρE in the overdmaped regime (see also Fig. 9 in
Appendix D for the underdamped regimes).

Beyond this scale, c � 0.5, the defect and energy densities
turn into a sharp, exponential decay. This regime exhibits new
distinct universal behavior taking over the dynamics, with the
fast quench plateaus disappearing with increasing N . In both
cases, the universal regime also becomes independent of N .

The exponential decay of n1 and n2 is shown in Figs. 4(c),
4(f), and 4(i) [see also Figs. 9(c), 9(f), and 9(i) in Appendix D]
for quench times, where the last effect pair can still be detected
numerically for the used number of stochastic trajectories.
These curves become universal as a function of the rescaled
annealing time r

zν
zν+1 τQ:

log n1 ∼ log n2 ∼ −0.25 r1/2τQ, overdamped,

log n1 ∼ log n2 ∼ −0.7 r1/3τQ, underdamped.
(35)

Although the decaying part exhibits nonuniversal behavior
in the intermediate regime c ∈ [0.15, 0.5], the best scaling
collapse for moderate values of τQ � 10 is obtained by the
same rescaling as in Eq. (35). This is shown in Figs. 4(b) and
4(d) in the overdamped regime for n1 and n2, respectively (see
also Appendix D for the underdamped case).

By contrast, the excess energy can take finite values also
for much larger values of τQ due to small-angle deviations
compared to the θ = π/2 ferromagnetic direction. Within
this defect-free regime, ρE is governed by these small-angle
fluctuations. Its behavior thus differs from that of n1 and
n2. As shown in Fig. 4(i) for the overdamped regime (see
also Appendix D for the underdamped case), the exponential
decay of the excess energy becomes independent of r up to
exponential accuracy and follows the curve given by the best
numerical fit:

log ρE ∼ 0.8τQ, overdamped,

log ρE ∼ 0.06τQ, underdamped.
(36)

As for the intermediate regime c ∈ [0.15, 0.5], the best scal-
ing collapse for moderate values of τQ is achieved by a
slightly different rescaling of τQ → √

r τQ, as observed in
Fig. 4(h) for the overdamped regime. Quite remarkably, in the
underdamped regime, a perfect scaling collapse is observed
independently of r, as shown in Appendix D.

C. Universal breakdown: General case

Next, we show that the finite-range extensions of arbitrary
one-dimensional systems critical exponents z and ν exhibit
the same universal breakdown of the KZ power-law scaling
regime as in the case of O(2) rotors. Consider a general

Hamiltonian,

H (t ) = −J (t )

2
HP − h(t )H0, (37)

HP =
∑
i, j

Ai jOiO j, (38)

H0 =
∑

i

εi, (39)

where Ai j denotes the adjacency matrix of a circulant graph
with interaction range r, as defined in Eq. (6). Here, Oi are
either quantum mechanical operators or classical variables
accounting for the generalized interaction Hamiltonian. The
operators or classical variables εi stand for the generalized
transverse fields. We assume that these operators are such
that in the one-dimensional chain topology, i.e., for r = 1,
the system governed by H (t ) exhibits either a quantum or a
classical phase transition at h(tc) = J (tc) with critical expo-
nents z and ν. Prominent examples of such Hamiltonians are
both classical and quantum Ising models with spins of arbi-
trary length, interacting bosons, or the fermionic and bosonic
Fermi-Hubbard model [74].

As in the case of O(2) rotors, for the universal KZ scaling
to hold and for its breakdown to be universal, we consider
that the equilibrium correlation length and relaxation time pre-
serve a power-law scaling over a range of connectance values.
This preserves the notion of locality, the dimensionality of
the system, and the defects, i.e., d = 1, D = 0. The relaxation
timescale coefficient τ0 is also considered to be independent
of r; see Appendix C. In the classical case, one can repeat
the derivation in Eqs. (9) and (10), where the interaction
range only enters in the additional r scale of the generalized
transverse-field strength, associated with the terms εi. More
generally, when interactions still act locally, r only varies the
energy scale of HP linearly in the proximity of the critical
point. Thus, only the critical point will be shifted, leaving the
power-law divergence of relaxation time intact, τ0 ∼ r0. The
same rescaling of h(t ) applies, h(t ) = r(1 − t

τQ
), J (t ) = t

τQ

as in the case of rotors. As a result, the effective control
parameter acquires the same linear scaling with respect to r
near the critical point ε(t ) ∼ rt

τQ
and τ ∼ |ε|−zν . As far as the

correlation length is concerned, a general argument can be
applied similar to that of the rotors. In the same domain of
validity of locality the correlation length scales linearly with
r near the phase transition, with the same critical exponent ν.
Thus, with the rescaled control parameter, one arrives at the
general critical behavior of ξ ∼ r1+ν |ε|−ν .

With these considerations, applying the KZ rate equa-
tion with the rescaled control parameter, one arrives at

t̂ = τ
1

zν+1
0

(τQ

r

) zν
zν+1

,

ξ̂ = ξ0|ε(t̂ )|−ν = ξ0

(
τQ

τ0r

) ν
zν+1

,

n1 ∝ ξ̂−1 ∝ ξ−1
0

(
τ0r

τQ

) ν
zν+1

∼ τ
− ν

zν+1
Q r− zν(ν+1)+1

zν+1 . (40)

013123-8



ANNEALING DYNAMICS OF REGULAR ROTOR … PHYSICAL REVIEW RESEARCH 7, 013123 (2025)

The fast quench breakdown is identified by the same relation
as in Eq. (30). The condition of t̂ = τQ leads to the same
relation τ fast

Q ∼ r−zν . However, it is instructive to validate the
dependence of ξ0 and τ0 on r by showing that the fast quench
threshold can also be obtained by matching the freeze-out
scale with the interaction range ξ̂ = r, as in Eq. (30). In
particular,

ξ̂ ∼ rν+1
(τQ

r

) ν
zν+1 ∝ r

⇒ τ fast
Q ∼ r

zν+1
ν

+1− ν+1
ν

(zν+1) ∼ r−zν, (41)

matching the expected scale for arbitrary z and ν.
The onset of adiabaticity is again identified by n1 ∼ N−1,

leading to the adiabatic timescale

n1 ∼ τ
− ν

zν+1
Q r− zν(ν+1)+1

zν+1 ∼ N−1

⇒ τ ad
Q ∼ N

zν+1
ν r− zν(ν+1)+1

ν . (42)

Finally, matching the fast and adiabatic timescales one obtains
for the breakdown of the KZ power-law regime

τ fast
Q = τ ad

Q ⇒ r−zν ∼ N
zν+1

ν r− zν(ν+1)+1
ν

⇒ N ∼ r,
(43)

implying that the KZ regime survives for a finite ratio of
the interaction range and the system size, i.e., for finite
connectance values, extending the universality of the KZ
breakdown to arbitrary one-dimensional critical systems un-
der the given assumptions.

D. Universal dynamics and scaling collapse

So far, the defect and excess-energy densities have been
investigated at the end of the time evolution as a function of r
and τQ. To provide a more complete picture of the emerging
universal properties, dynamical characteristics at intermediate
times during the quench are also put to the test. The time
evolution of ρE (t ) near the critical point is in good agreement
with the predictions of the KZ mechanism. The growth of
ρE (t ) becomes independent of r, τQ, and N for connectances
inside the KZ regime following a single universal curve as a
function of t/t̂ up to numerical precision. This is demonstrated
in Figs. 5(a) and 5(b) for the overdamped and underdamped
regimes, respectively.

Moreover, additional universal signatures emerge in both
the KZ and adiabatic regimes with r-independent time evo-
lution along the whole process. As shown in Figs. 6(a) and
6(b), the curves of ρE (t ) exhibit precise scaling collapse for
different values of N . This universality only holds inside the
KZ and adiabatic regimes, as also shown by the deviations
of the curves with N = 200, r = 12 reaching the boundary
of the KZ regime and N = 400, r = 25 near the onset of
adiabaticity. However, for fixed τQ, the time evolution exhibits
nonuniversal behavior with respect to r even when plotted for
the rescaled time t/τQ. As displayed in Figs. 6(a) and 6(b) by
decreasing either r or τQ, ρE (t ) exhibits stronger nonadiabatic
effects with larger final values and more pronounced peaks
around the critical point. In this case, the final values follow
either KZ power laws or decay exponentially in the adiabatic
regime, depending on r and τQ.

-15 10 30 50

0

0.025

0.05

0.075

0

0.025

0.05

0.075

0.1 (a)

(b)

FIG. 5. Time evolution of the excess-energy density near the crit-
ical point. The universal character of the dynamics is demonstrated
for different values of r, τQ, and N by displaying ρE (t ) as a function
of t/t̂ in the KZ regime both for (a) the overdamped and (b) the
underdamped regime. Blue symbols were obtained with N = 201
while the red curves with N = 401. In both cases, 104 trajectories
were employed.

We note that varying the annealing time while keeping
fixed the ratio τQ/t̂ (r) in the KZ regime, or the product
of r

zν
1+zν τQ in the adiabatic regime, unveils a precise scaling

collapse of the date for different values of N and r. This is
demonstrated in Fig. 6(c) in the KZ regime and in Fig. 6(d)
in the adiabatic case. As with the dependence of n1 and ρE

on τQ, the nonequilibrium universal dynamics is brought out

-0.4 -0.2 0 0.2 0.4

0.025

0.075

0.125

-0.4 -0.2 0 0.2 0.4

0.05

(a)

(c) (d)

0.1

0.15

0.2 (c)

FIG. 6. Time evolution of the energy density ρE (t ) as a function
of t/τQ for the overdamped regime for different values of N, τQ,
and r. (a), (b) Fixed quench times for pairs of r and N exhibiting
size-independent behavior but becoming nonuniversal with respect
to r both in (a) the KZ (τQ = 40) and (b) the adiabatic regimes (τQ =
160). (c) Varying τQ with fixed rτQ = 5120. Good scaling collapse
is found in the KZ regime for different values of N . (d) Adiabatic
regime of c � 0.5 and τQ � t̂ featuring similar scaling collapse in
the adiabatic regime. In all panels, averages involve 104 trajectories,
with blue symbols for N = 201, and red lines for N = 401.
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FIG. 7. Cumulant ratios as a function of c for n1, n2, and ρE , for fixed values of τQ and for system sizes N = 401, 201, 101. (a)–(c) The
ratio κ2/κ1 behaves similarly and exhibits the predicted universal linear growth for ρE and n2, while it remains constant for n1. For relatively
small values of c, a crossover is observed between the sub- and super-Poissonian behavior within the KZ regime, while the same happens
for larger values of c in the case of the n1 around the breakdown of the power-law regime. These cumulant ratios are estimated from 5 × 104

trajectories. (d)–(f) The ratio κ3/κ1 exhibits a universal quadratic growth with c inside the KZ regime for ρE and n2, while it follows the
predicted constant value for n1. Cumulants are extracted from 104 trajectories.

upon separate rescaling by N and r, rather than by only c. The
proper rescaling can take different forms depending on the
investigated quantities, the damping regimes, and the power-
law or the exponential behavior.

V. BEYOND THE KIBBLE-ZUREK MECHANISM:
FLUCTUATIONS IN THE DEFECT

AND ENERGY DENSITIES

In this section, we investigate the second and third cu-
mulants of the defect densities and excess energy. Beyond
the KZ scaling of the average defect densities, higher-order
cumulants are of utmost importance regarding the full en-
ergy distribution. In the quantum case, it was shown for the
TFIM that the probability distribution to find n kinks in the
system at the end of the quench, P(n) = E[δ(N − n)], fol-
lows a Poisson binomial distribution [17,75], as demonstrated
in annealing devices [7,8,27]. In fully connected quantum
systems, a negative binomial distribution of fractional index
was found instead [44]. In the classical domain, a binomial
distribution was predicted for pointlike defects [20,31,75–78],
with a Poisson binomial distribution occurring in the more
general setting [76,79]. Fourier transforming P(n) yields the
characteristic function P̂(φ) = E[eiφn], whose logarithm gives
the cumulant generating function lnE[eiφn] = ∑∞

p=1
κp

p! (iφ)p,
where κp is the pth-order cumulant. It has been argued that
all cumulants share the same power-law scaling exhibited by
the mean κq ∝ κ1 for every q. As a result, the ratio κq/κ1

is constant and independent of τQ [75,76]. For instance, for
the TFIM κ2/κ1 = 2 − √

2 ≈ 0.578 [17,75], as verified in
D-Wave devices [7]. As for classical systems, the same bi-
nomial relation of the first three cumulants has been shown
for the chain topology [20]. In what follows, we focus on the
second and third cumulants, κ2 and κ3, beyond the average
density (κ1).

Their numerical estimate is performed with the same num-
ber of 5 × 104 trajectories. As shown in Figs. 7(c) and 7(f)
the κ3/κ1 and κ2/κ1 cumulant ratios of the one-dimensional
defects follow precisely the same value as that of the r = 1
case and of the TFIM. This agreement breaks down at slightly
smaller values of the connectance, c ≈ 0.1, than the boundary
of the universal KZ scaling of the averages. Correspondingly,
κ2(n1) and κ3(n1) also become universal functions of the rτQ

and
√

rτQ for the overdamped and underdamped regime, re-
spectively (for further details see Appendixes E and F).

Remarkably, in the fast quench regime, the proportionality
is maintained with the same constant value as in the power-law
regime, as proposed in Ref. [79]. This indicates that the shape
of the distribution is the same under fast quenches and in the
KZ regime. However, this is not true at intermediate quenches
as signaled by the nonuniversal peaks in a small interval of τQ

before entering the KZ regime (see Appendixes E and F). As
demonstrated in Appendixes E and F, in the adiabatic regime,
the cumulants of n1 and n2 follow the same exponential law,
given by the best numerical fit:

log κ2(n1) ∼ −0.25r1/2τQ, log κ3(n1) ∼ −0.75r1/2τQ,

log κ2(n1) ∼ 1.4r1/3τQ, log κ3(n1) ∼ 2.1r1/3τQ. (44)

This implies that up to numerical precision, the proportional
nature of the cumulants turns into a power-law relation up to
exponential accuracy,

κ2(n1) ∼ n2
1, κ3(n1) ∼ n3

1. (45)

This is in good agreement with the discussion of Sec. IV B
on the universal signatures in the intermediate regime. The
exponential fits in Eq. (44) further demonstrate the universal
rescaling r

zν
1+zν τQ in the adiabatic limit.

In the case of ρE , the cumulant ratios behave similarly to
those of n1, as observed in Fig. 8(a) and in Appendix F. In
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FIG. 8. Second cumulants of the excess-energy density as a function of τQ for various system sizes and connectances, c ∈ [0, 1]. (a)–
(c) Cumulant ratio κ2(ρE )/ρE in the overdamped and underdamped cases for N = 401 and for different values of c in the KZ, intermediate,
and adiabatic regimes, respectively. In the KZ regime, the cumulant ratio is independent of τQ and increases universally with c2. In the adiabatic
regime, the ratio becomes proportional to the average decaying exponentially, as also highlighted with the additional fittings. (d)–(f) Second
cumulant in the underdamped regime as a function of τQ in the same three regimes of c. Inside the KZ regime, the same power law is displayed
as for the averages, but with a different universal rescaling with r. In the intermediate regime c ∈ [0.15, 0.5], a perfect scaling collapse is found
as a function of τQ. The adiabatic limit exhibits an exponential decay, matching approximately the square of the average. The structure of the
legends is similar to that of Fig. 4. (g)–(i) Similar features with the corresponding power laws in the overdamped regime with a reasonably
faster adiabatic decay and less universal behavior for intermediate connectance values. An ensemble of 104 trajectories is used.

the KZ regime, the ratio κ2(ρE )/κ1(ρE ) approximately fol-
lows constant plateaus, which get shifted as r is increased.
This happens because, as for the averages, the excess energy
depends on the actual rotor configuration and includes con-
tributions from all rotors, including those at the sides of each
kink. Due to the graph theoretical normalization 1/Nr, this
effect boosts κ2(ρE ) and κ3(ρE ) with r2 and r3, respectively.
This yields the following universal power laws:

κ2(ρE ) ∼ (r−3τQ)−1/4, κ3(ρE ) ∼ (r−7τQ)−1/4, (46)

κ2(ρE ) ∼ (r−5/2τQ)−1/3, κ3(ρE ) ∼ (r−11/2τQ)−1/3. (47)

As shown in Figs. 7(a), 7(b), 7(d), and 7(e), the correspond-
ing κ3/κ1 and κ2/κ1 cumulant ratios acquire scales ∼r and
∼r2, respectively leading to

κ2(n2)

n2
∼ κ2(ρE )

ρE
∼

n1
Nr2 r4

rn1
∝ c, (48)

κ3(n2)

n2
∼ κ3(ρE )

ρE
∼

n1
N2r3 r6

rn1
∝ c2, (49)

where the proportionality of the n1 cumulants was explic-
itly written out. Note that the ratios exhibit precise scaling
collapse as a function of c in contrast to the universal r
dependence of the averages. Thus, energy cumulants natu-
rally exhibit a crossover from the sub- to the super-Poissonan

regime as c is increased. This also implies that the corre-
sponding distributions are no longer concentrated around the
average and fluctuate asymmetrically.

In contrast to n1, for fast quenches, the proportionality
breaks down for the cumulant ratios of both n2 and ρE , as
displayed for κ2(ρE ) in Figs. 8(a)–8(c) for the small c �
0.15, intermediate c ∈ [0.15, 0.5], and large c � 0.5 con-
nectance regimes, respectively. In the adiabatic regimes, the
same exponential dependence is found as for the averages,
as demonstrated in Figs. 8(b) and 8(c) for κ2(ρE ), also high-
lighted by additional exponential fittings [see also Appendix F
for κ3(ρE )]. However, the best numerical fits yield the follow-
ing r-independent, universal exponential behavior:

log κ2(ρE ) ∼ 1.6τQ, log κ3(ρE ) ∼ 2.4τQ, (50)

log κ2(ρE ) ∼ 0.12τQ, log κ3(ρE ) ∼ 0.18τQ, (51)

up to exponential accuracy in the overdamped and under-
damped regime, respectively. Note that the r-independent
behavior of the decay is dominated by small-angle fluctua-
tions rather than by the occurrence probability of the last pair
of defects.

By contrast, the cumulants of n2 exhibit the same charac-
teristics as those of n1 up to exponential accuracy, as in this
regime, defect densities are dominated by the vanishing oc-
currence probability of a single pair of defects. Accordingly,
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the proportionality between the cumulants of ρE and n2 follow
similar power-law relations as in the case of n1:

κ2(ρE ) ∼ ρ2
E , κ3(ρE ) ∼ ρ3

E ,

κ2(n2) ∼ n2
2, κ3(n2) ∼ n3

2.
(52)

Notably, keeping r ∼ N, c � 0.1 enforces the same power-
law relations as in Eq. (52).

Finally, let us also provide details about the surviving
universal features in the intermediate regime. As shown in
Fig. 8(a), a perfect scaling collapse is found as a function of
τQ in the underdamped regime. In the overdamped regime,
universal signatures only survive up to not too large anneal-
ing times τQ � 10, with the rescaling of

√
r τQ, as shown in

Fig. 8(e).

VI. CONCLUSIONS

We have investigated the annealing dynamics of finite-
range interacting O(2) rotor networks on circulant regular
graphs using numerical simulations and approximate ana-
lytical methods. This model provides an ideal test bed to
benchmark quantum annealing devices and test the Kibble-
Zurek mechanism in finite-range Ising models interacting
with a thermal bath. Using the SVL model, both the full-
time evolution and equilibrium properties can be accessed.
The latter is achieved by performing adiabatically slow time
evolutions. In particular, we showed that for regular networks,
the critical exponents and the average magnetization near the
critical point remained invariant with respect to variations of
the connectance. The only dependence was involved in the
correlation length, which varied by a multiplicative factor.

Numerical results revealed that the KZ mechanism ac-
curately described the universal power-law scaling of the
density of pointlike defects separating one-dimensional near-
ferromagnetic domains. However, this measure could not
account for the excess energy generated during the process.
Therefore, the generalized graph defect density was intro-
duced, which matched the excess-energy density with high
precision. For these quantities, the KZ power laws provided
an accurate description in terms of the equilibrium critical
exponents, however, with different regularity dependencies
compared to the one-dimensional defects.

The robustness of the universal KZ regime was explored
as a function of the annealing time and the connectance.
The defect and excess-energy densities exhibited a transition
to the universal fast quench regime below the correspond-
ing regularity-dependent timescale. At the other extreme,
adiabatic evolution dominated the dynamics above a sys-
tem size- and regularity-dependent timescale. These threshold
timescales identify a finite connectance for the universal
breakdown of the KZ regime. Above the adiabatic con-
nectance scale, the defect and excess-energy densities decayed
exponentially. For both the one-dimensional and graph de-
fects, similar universal properties were observed, albeit with
regularity dependencies distinct from those in the KZ regime.
In the case of the excess energy, the adiabatic regime was
dominated by small-angle deviations around the ground state.
This resulted in a regularity-independent universal exponen-
tial decay in defect-free regimes of τQ.

Finally, we analyzed the statistical distribution of the kink
and energy densities by exploring the second and third cu-
mulants. For the one-dimensional defect density, constant
cumulant ratios were found in the KZ regime, with the same
ratios as in the TFIM. Remarkably, this behavior persisted in
the fast quench regime as well. In the adiabatic regime, the
ratios followed a power-law relation, which matched that of
the graph defect density up to exponential accuracy. In the
case of the graph defect and excess-energy densities, the pro-
portionality between the cumulants acquired additional linear
and quadratic regularity dependencies for the second and third
cumulants, respectively. In contrast to the one-dimensional
defects, this behavior broke down for fast quenches, while in
the adiabatic regime, the cumulants followed the same power-
law relation. Specifically, in this regime, the graph defect
cumulants matched those of the one-dimensional defects up to
exponential accuracy. However, in the case of the excess en-
ergy, different regularity-independent universal behavior was
found. Similar to the averages, this behavior arose from the
dynamics of small-angle deviations around the ferromagnetic
directions in defect-free regimes of τQ.

In short, we have established the interplay of universality
and its breakdown in the annealing dynamics of classical rotor
networks with finite-range interactions. Our findings not only
contribute to the understanding of nonequilibrium statistical
mechanics of complex networks, but also offer a benchmark
for the performance of quantum simulators and annealing
devices.

Note added. As a step in this direction, recently, the
preprint [80] reported the use of SVL on cyclic and random
graphs as a benchmark in complex optimization by the vector
Ising spin annealer.
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APPENDIX A: CONNECTANCE DEPENDENCE
OF THE CORRELATION LENGTH

AND TIME NEAR THE CRITICAL POINT

In this Appendix, we present an approximate analytical
derivation of the spatial correlation function, unveiling its
dependence on the connectance. Near the critical point, in the
small-angle limit, the Hamiltonian in Eq. (4) can be expanded
as

H (t ) ≈ −J (t )

2

N∑
i, j=1

Ai jθiθ j + h(t )
N∑

i=1

θ2
i . (A1)

The correlation function is captured by directly considering
the angle-angle equal-time two-point function, which is also
expanded to leading order as

G(d, t ) = 〈sin θn(t ) sin θn+d (t )〉traj

≈ 〈θn(t )θn+d (t )〉traj

= 1

N

N∑
n=1

〈θn(t )θn+d (t )〉traj, (A2)
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with . . . denoting the spatial average over the rotors exploiting
the spatial translational invariance of the system. The average
over the random stochastic trajectories is replaced by the
equilibrium canonical averaging with the Boltzmann weight
e−βH (t ) as dictated by the fluctuation-dissipation theorem.
Here, the inverse temperature β = 1/T = 1000/J is given by
the applied value of T = 0.001 and where kB = 1 was set for

convenience. To extract the equilibrium correlation length, the
angles are expanded in the Fourier series as

θn = 1√
N

∑
k

e−2π iknθk, k = 0,
1

N
, . . . , 1 − 1

N
. (A3)

This leads to the following Hamiltonian:

H (t ) = − 1

2N
J (t )

∑
k,k′

θkθk′

N∑
n=1

e2iπ (k+k′ )n
r∑

m=−r, m 	=0

e−2iπkm + h(t )
1

N

N∑
n=1

e−2iπ (k+k′ )n
∑
k,k′

θkθk′

= −J (t )
∑

k

θkθ−k

r∑
m=1

cos (2πkn) + h(t )
∑

k

θkθ−k =
∑

k

Ak|θk|2, (A4)

where the identity 1
N

∑N
n=1 e−2iπkn = δk,−k′ was used. Fur-

thermore, as the angles are real variables, the products
were rewritten as θkθ−k = |θk|2. Finally, we also introduced
the overall constant of the quadratic Hamiltonian as Ak =
[−2J

∑r
m=1 cos(2πkm) + h]. Here, for the sake of conve-

nience, the time arguments were dropped everywhere.
Next, the Fourier decomposition is also applied to the cor-

relation function

G(d ) ≈
〈

1

N

N∑
n=1

θnθn+d

〉
= 1

N

∑
k

e−2iπdk〈|θk|2〉, (A5)

where the same steps were performed as above in Eq. (A4) and
the time dependence has been omitted for brevity. The single

k averages are simply evaluated by Gaussian integrations with
variance βAk :

〈|θk|2〉 = 1

βAk
= 2T N

h − 2J
∑r

m=1 cos (2πkm)
. (A6)

For large enough values of d capturing the long-distance
falloff of the correlations, the sum can be approximated by an
integral with the new variable of y = k,

G(d ) ≈ T

π

∫ ∞

0
dy

eiy d

h − 2J
∑r

m=1 cos (2πym)
. (A7)

Expanding to the leading order, the denominator of the inte-
grand determines the decay of the correlations:

G(d ) ≈ T

π

∫ ∞

0
dy

eiy d

h − 2rJ + 1
12 r(r + 1)(2r + 1)y2

≈ T

2π

∫ ∞

0
dy

eiy d

h − 2rJ + r3

6 y2

∼ r−3
∫ ∞

0
dy

eiy d

6 h−2rJ
r3 + y2

∝ r−3ξ e−d/ξ ∝ r−2e−d/ξ ,

(A8)

with the correlation length given by the pole of the denomina-
tor close to the critical point, where the order parameter can
be linearized, ε = h − 2rJ ∼ 2r t

τQ
,

ξeq(r) ∝ r3/2ε−1/2. (A9)

Note that the r−2 constant factor emerged as the product of r−3

in Eq. (A8) and the overall r dependence of the correlation
length stemming from the regular part of the denominator
ξ ∼ r.

As demonstrated in Fig. 2 in the main text, near the critical
point tc ≈ τ/100, the fitted exponential decay of the correlator
increases linearly with the connectance, up to high precision,
as observed in the insets for both the overdamped and under-
damped regimes, verifying the above result. Intuitively, the
above picture can also be understood as the correlation length
being linearly scaled with the interaction range compared to
the one-dimensional case. Thus, near the critical point ξeq ∼
r(t/τQ)−1/2 ∼ r3/2ε−1/2. Here, the 3

2 power balances for the
additional connectance dependence of the order parameter.

APPENDIX B: HIGHER-ORDER
CORRECTIONS TO CRITICALITY

In this Appendix, we analytically show that the higher-
order expansion of the Hamiltonian in Eq. (A1) close to
the critical point does not affect the dynamical z and cor-
relation length critical exponents ν. First, we show that the
next-to-leading-order correction does not modify the power-
law divergence of the relaxation timescale extracted from the
Langevin equation (9). For brevity, we restrict the exposition
to the overdamped case, as all the steps can also be extended
to the underdamped regime. The Langevin equation expanded
up third order in the overdamped regime is given by

γ θ̇i+h(t )θi−J (t )
r∑

j=−r
j 	=0

(
θi+ j − θi+ j

θ2
i

2
− θ3

i+ j

6

)
+ξi(t ) = 0.

(B1)
Adapting the approximation of identical angles near the crit-
ical point, one obtains the equation for the scale of the
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FIG. 9. Averages of defect and excess-energy densities as a function of τQ in the overdamped regime with the connectance varying from
the chain topology towards the fully connected limit for various system sizes. (a)–(c) One-dimensional defect density for values c � 0.15.
The same power law is observed as in the chain topology with a universal regularity rescaling. For the intermediate and large connectances,
a crossover is displayed towards the adiabatic regime, exhibiting a universal exponential shape. (d)–(f) Similar observations for n2 exhibiting
the predicted universal KZ power laws of r for c � 0.15. Different universal rescaling emerges in the intermediate and adiabatic regimes. In
the former, universal behavior breaks down for τQ � 10. The structure of the legends is similar to that of Fig. 4. (g)–(i) Excess-energy density,
matching up to high precision the behavior of the finite-range defect densities. In contrast to n2, for c � 0.15, a perfect scaling collapse is
observed as a function of τQ. In all regimes, curves involve averages over 103 trajectories.

relaxation time,

γ θ̇ + [h(t ) − 2rJ (t )]θ − 2
3 rJ (t )θ3 = 0. (B2)

Starting from the leading-order relation for the relaxation
time τ0 = [2rJ (t ) − h(t )]−1, Eq. (9), and with the notation
τ = θ/θ̇ for the new relaxation time stemming for the third-
order expansion, the correction is given by their difference
τ = τ0 + �τ . Writing back the τ0 to Eq. (B2), one obtains

θ
[
(τ0 + �τ )−1 − τ−1

0

] − 2

3
rJ (t )θ3 = 0

⇒ θ2 ∼ �τ

τ 2
0

. (B3)

This correction decays faster than 1/τ0, as �τ � τ0 and
�τ τ−2

0 � τ−1
0 , thus not affecting in any way the critical

properties of the relaxation time.
Next, the corrections to the correlation function are put to

the test. The Hamiltonian in Eq. (A1) is expanded up to the
fourth order as

H (t ) ≈ −J (t )

2

N∑
i, j=1

Ai j

(
θiθ j − 1

3
θ3

i θ j

)
+ h(t )

N∑
i=1

θ2
i − θ4

i

12
.

(B4)

Note that the smallness of the angles is ensured by the low-
temperature limit T � 1, as also obvious by the typical size
of the angles set by its Fourier components in Eq. (A6),
〈|θk|2〉 ∼ T .

In the correlator, the quartic corrections can only originate
from the cubic expansion of the sin θi’s. However, the quartic
expansion of the Hamiltonian will also enter the picture in
terms of the normalization of the corresponding Boltzmann
weights in the thermal average. Starting with the latter, the
normalization, i.e., the partition function in the quartic expan-
sion is given by

Z ≈
∫ ∏

k

dθk e−β
∑

k Ak |θk |2

×
⎛
⎝1 + J

6

N∑
i, j=1

Ai, jθ
3
i θ j − h

12

N∑
i=1

θ4
i

⎞
⎠

=
∏

k

A−1
k (1 + δZ ), (B5)

where δZ originates from the quartic correction. Here Ak

denotes the same function of Ak = [−2J
∑r

m=1 cos(2πkm) +
h]. By decomposing the angle variable into Fourier series one
can compute the δZ with the same rules of Gaussian integrals
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FIG. 10. Second cumulant of n1 in the overdamped and underdamped regimes for the KZ, intermediate, and adiabatic connectance regimes,
and for various system sizes. (a)–(c) Ratios of the first and second cumulants for the overdamped and underdamped regimes for the three
connectance regimes, respectively, and for N = 401. The ratio remains constant in the KZ and fast quench regimes. In the intermediate and
adiabatic regimes, the proportionality breaks down, and an approximate power-law relation is observed. (d)–(f) Second cumulants of n1 as
a function of τQ in the underdamped regime (d) showing the same power-law and crossover behavior in the KZ regime while exhibiting
universal exponential decay in (e) the intermediate and (f) adiabatic ones. The universal behavior is governed by a different r dependence and
only survives up to τQ � 10 in the intermediate regime. (g)–(i) Similar findings in the overdamped regime. Simulations involve an ensemble
of 104 trajectories.

as in Eq. (A6),

δZ ≈
N∑

n=1

∑
k,q

[
J

6

1 − e−d/ξ

e1/ξ − 1
〈|θk|2〉〈|θq|2〉 − h

12
〈|θk|2|θq|2〉

]
,

(B6)
which leads to

δZ ∼ r−4T 2, (B7)

where the factor 1−e−d/ξ

e1/ξ −1 originates from the summation∑N
i, j=1 Ai j that translates to the summation of the expo-

nentials inside the Fourier decomposition as
∑d

r=1, e−r/ξ =
1−e−d/ξ

e1/ξ −1 . In the last step, we wrote only the parametric depen-
dence also highlighting the temperature acting as the small
parameter. The quartic correction of the sin θi terms of the
correlator takes the form of

G(d ) ≈ 1

N

[
N∑

n=1

〈θnθn+d〉 − 1

6

〈
θ3

n θn+d
〉]

(1 − δZ ), (B8)

where the averaging is understood with the quadratic Hamil-
tonian, and the correction to the partition function has been
involved in the leading order. Finally, we also compute the
quartic term

∑
n〈θ3

n θn+d〉. For this, we employ again the

Fourier decomposition of the angles to arrive at

∑
n

〈
θ3

n θn+d
〉 ∼ 1

N

∑
k,q

e2π ikd
〈
θ2

k

〉〈
θ2

q

〉 ∼ T 2r−4e−d/ξ , (B9)

where in the last step we just used the result in Eq. (A8). The
exponential decay is of the same order as in the quadratic
approximation, but this term is also suppressed by the same
factor ∼r−4T 2 as the correction to the partition function.
Thus, both corrections only provide a subleading correction
linear in the temperature as the quadratic is already propor-
tional to T . Additionally, in the interesting r ∼ N regime
the interaction range leads to a stronger suppression of the
correction scaling as ∼Tr−2 ∼ T N−2:

G(d ) ∼ r−2e−d/ξ [1 + O(Tr−2)]. (B10)

APPENDIX C: RELAXATION TIME IN THE
GENERALIZED LANGEVIN EQUATION

In this Appendix, we show that the coefficient of the relax-
ation time remains r independent in a generalized Langevin
dynamics, τ0 ∼ r0. Following the strategy of the overdamped
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FIG. 11. Third cumulants of the excess-energy density as a function of τQ for various system sizes and connectances c ∈ [0, 1].
(a)–(c) Cumulant ratios of κ3(ρE )/ρE both for the overdamped and underdamped cases, for different values of c in the KZ, intermediate,
and adiabatic regimes, respectively and for N = 401. In the KZ regime, the cumulant ratios are independent of τQ and increase universally
with c2. In the adiabatic regime, the ratio becomes proportional to the square of the average decaying exponentially, as also highlighted with
the additional fittings. (d)–(f) Third cumulants in the underdamped regime as a function of τQ in the three connectance regimes. Inside the KZ
regime, the same power law is displayed as for the averages, but with a different universal rescaling of r. Remarkably, in the c ∈ [0.15, 0.5]
intermediate regime, perfect scaling collapse is found as a function of τQ. The adiabatic limit exhibits an exponential decay, matching
approximately the square of the average. (g)–(i) Similar features with the corresponding power laws in the overdamped regime, exhibiting
a faster adiabatic decay and less universal behavior for intermediate connectances. The reported data are extracted from an ensemble of
5 × 104 trajectories.

Langevin equation in Eq. (9) we employ the leading-order
expansion and we assume that the zν exponent originates from
the generalized damping term

m∂2
t θi + γ ∂

q
t θi + h(t )θi + J (t )

r∑
j=−r
j 	=0

θi+ j + ξi(t ) = 0. (C1)

Here, we assume that the derivative, q = 1, 2, . . . models
the damping originating from the interaction with the envi-
ronment. Assuming that the typical angle values around the
critical points are small and close to each other, one can write
a relation similar to Eq. (9):

τ 
 ∣∣θ/∂
q
t θ

∣∣1/q 

∣∣∣∣ γ

h(t ) − 2rJ (t )

∣∣∣∣
1/q

. (C2)

This leads to the relation zν = 1/q. As a result, the finite-
range extension of the interactions appears as a linear scaling
factor only in the transverse field strength, and the relaxation
time does not acquire any further explicit dependence on r,
τ0 ∼ r0.

APPENDIX D: AVERAGE DEFECT AND EXCESS-ENERGY
DENSITY IN THE UNDERDAMPED REGIME

In this Appendix, we show the numerical results for the
average defect density in the underdamped regime. As shown
in Figs. 9(a), 9(d), and 9(g), n1, n2, and ρE follow precisely
the predicted power laws as a function of τQ and r, Eq. (22) in
the KZ regime with c � 0.15,

n1 ∝ (r7/2τQ)−1/3, (D1)

ρE ∼ n2 ∝ (r1/2τQ)−1/3. (D2)

In the intermediate c ∈ [0.15, 0.5] regime, universal signa-
tures only survive up to τQ � 10 as a function of r1/3τQ, as
shown in Figs. 9(e) and 9((h), respectively, for n1 and n2. In
the case of the excess energy, however, a remarkable scaling
collapse is observed independently of r, as shown in Fig. 9(h).
In the adiabatic limit c � 0.5, n1 and n2 follow the same
universal curve up to exponential accuracy as a function of
r1/3τQ, while ρE becomes independent of r as governed by
the dynamics of small-angle deviations in defect-free regimes
of τQ,

n1 ∼ n2 ∼ e−0.7r1/2τQ , (D3)

ρE ∼ e−0.06r1/4τQ . (D4)
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FIG. 12. Third cumulant of n1 in the overdamped and underdamped cases for the KZ, intermediate, and adiabatic connectance regimes.
(a)–(c) Ratios of κ3(n1)/n1 for the overdamped and underdamped regimes, for N = 401 and the three connectance regimes, respectively. The
ratio remains constant in the KZ and fast quench regimes. In the intermediate and adiabatic regimes, the proportionality breaks down, and an
approximate power-law relation is observed. (d)–(f) Third cumulants of n1 as a function of τQ in the underdamped regime showing the same
power-law and crossover behavior in the KZ regime, (d) while exhibiting universal exponential decay in the intermediate (e) and adiabatic
ones (f). The universal behavior is governed by a different r dependence and only survives up to τQ � 10 in the intermediate regime. (g)–(i)
Similar findings in the overdamped regime. The numerical results were obtained by averaging over 5 × 104 trajectories.

APPENDIX E: SECOND CUMULANT OF THE
ONE-DIMENSIONAL DEFECTS

In this Appendix, a further numerical demonstration is
provided for the τQ and r dependence of the second cumu-
lants of the one-dimensional defect density κ2(n1), and the
corresponding ratio κ2(n1)/n1.

As demonstrated in Fig. 10(a) in the KZ regime, the
proportionality is preserved independently of r with the
same value as in the TFIM, κ2(n1)/n1 ≈ 0.578. Remark-
ably, this universal behavior survives for fast quenches as
well. Additionally, between the KZ and fast quench regimes,
r-dependent nonuniversal peaks appear. In the intermediate
(c ∈ [0.15, 0.5]) and adiabatic (c � 0.5) regimes, a sharp de-
crease is displayed after similar nonuniversal peaks, as shown
in Figs. 10(b) and 10(c). This is in good agreement with the
power-law relation between κ2(n1) and n1.

The dependence on τQ in the KZ regime is exhibited in
Figs. 10(d) and 10(g) for the overdamped and underdamped
regimes, respectively, following the universal power laws pre-
dicted by the KZ mechanism in Eq. (22). In the intermediate
regime, universal scaling collapse can only be achieved for
τQ � 10 by the same regularity rescalings as in the adiabatic
regime τQ → r

zν
zν+1 τQ. In the latter case, curves with different

values of N and r follow the same universal exponential decay.
These characteristics are displayed in Figs. 10(e) and 10(f)
for the overdamped case and in Figs. 10(h) and 10(i) for the
underdamped case.

APPENDIX F: THIRD CUMULANTS

In this Appendix, the third cumulants are investigated as a
function of r, c, and τQ. As demonstrated in Fig. 11(a), the ex-
cess energy exhibits the same features in the KZ regime as for
κ2(ρE ) in Sec. V. The cumulant ratios follow approximately
constant lines that get shifted with r beyond the fast quench
regime. In this latter limit, κ3(ρE )/ρE converges to zero. As
demonstrated in Figs. 11(b) and 11(c), in the intermediate
and adiabatic regimes of the connectance, the ratios exhibit an
exponential decay, as also indicated by the additional fittings.
This is in agreement with the power-law relation between
κ3(ρE ) and ρE .

Furthermore, Figs. 11(d) and 11(g) show the dependence
on τQ following precisely the universal power laws in the
KZ regime in Eq. (50) for the overdamped and underdamped
regimes, respectively. In the intermediate regime with c ∈
[0.15, .5], universality breaks down around τQ ≈ 10, while it
survives in the underdamped regime, as shown in Figs. 11(e)
and 11(h), respectively. In the adiabatic regime with c � 0.5,
a universal, regularity-independent exponential decay is ob-
served in agreement with the results on κ2(ρE ) reported in
Sec. IV B.

In the case of n1, similar features are found as in the case
of κ2(n1) in Appendix E. In the domain of the KZ power-
law scaling, the κ3(n1)/n1 ratio follows precisely the same
constant value as in the TFIM independently of r. Similar to
the κ2(n1)/n1 ratios, the proportionality also survives in the
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fast quench regime. A small interval of nonuniversal peaks
also appears before the KZ regime, as shown in Fig. 12(a).
In the intermediate and adiabatic regimes, the ratios exhibit
exponential decay in agreement with the power-law relation,
as shown in Figs. 12(b) and 12(c).

As for the τQ dependence of κ3(n1), the numerical results
follow the same universal regularity and power-law dependen-
cies in the KZ regime as for the average given in Eq. (22).

These features are demonstrated in Figs. 12(d) and 12(g).
In the intermediate and adiabatic regimes, the universal ex-
ponential decay is displayed in agreement with Eq. (35), as
demonstrated in Figs. 12(e) and 12(f) and 12(h) and 12(i) for
the overdamped and underdamped regimes, respectively. As
in the case of n1 and κ2(n1), the universal scaling collapse in
the intermediate regime as a function of r

zν
zν+1 τQ only survives

up to τQ � 10.
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