
ON THE VANISHING OF THE DENSITY IN

ARTIN’S CONJECTURE ON PRIMITIVE ROOTS

GIACOMO CHERUBINI AND ANTONELLA PERUCCA

Abstract. Let K be a number field, and let α P Kˆ be not a root of unity. Consider the set
consisting of the primes p of K such that pα mod pq is well-defined and generates the multi-

plicative group of the residue field at p. According to Artin’s conjecture on primitive roots, this

set admits a natural density. We investigate the reasons for which this density must be zero,
making more explicit a famous result by Lenstra from 1977.

1. Introduction

This paper concerns Artin’s conjecture on primitive roots, and we refer the reader to Moree’s
survey [8] for an introduction to this topic. Our starting point is a result by Cooke and Weinberger
[4] from 1975 (that generalizes a result by Hooley [5]), which proves Artin’s conjecture for all
number fields conditionally under GRH.

Let K be a number field (and work within a fixed algebraic closure K of K). We let α P Kˆ

be not a root of unity. For all results concerning Artin’s conjecture mentioned in this paper, we
assume GRH for the cyclotomic-Kummer extensions KpζN , n

?
αq of K, where n,N are positive

integers such that n | N . We build on the following result, where µ is the Möbius function:

Theorem 1 (Cooke and Weinberger). Assume GRH, and call S the set consisting of the primes
p of K such that pα mod pq is well-defined and generates the multiplicative group of the residue
field at p. The set S admits a natural density, which we call denspαq, and we have

denspαq “
ÿ

ně1

µpnq

rKpζn, n
?
αq : Ks

.

Moreover, denspαq is also the natural density of the set of primes p of K such that p does not split
completely in Kpζℓ, ℓ

?
αq for any prime number ℓ.

For any prime number ℓ, we call Sℓ the set of primes p such that pα mod pq is well-defined
and non-zero, and its index (namely, the index of xpα mod pqy in the multiplicative group at p) is
coprime to ℓ. Remark that S “

Ş

ℓ Sℓ.
We call h the largest positive squarefree integer such that α P Kˆh. One condition that forces

denspαq “ 0 is the existence of a prime number ℓ such that Kpζℓ, ℓ
?
αq “ K, namely such that

ζℓ P K and ℓ | h. Remark that this condition even implies denspSℓq “ 0. Over K “ Q, this is
(conditionally under GRH) the only reason to have denspαq “ 0 because, as Hooley proved in [5],
denspαq is non-zero for all rational numbers different from 0,˘1 that are not squares.

The aim of this work is understanding the vanishing of the density in Artin’s conjecture. Clearly,
all works that describe the density (for example, [7]) improve, in particular, such understanding.
Most notably, in [6, Theorem (4.6)] Lenstra provides a very general characterization of the van-
ishing of the density:

Theorem 2 (Lenstra). We have denspαq ‰ 0 if and only if the following holds: there is an
automorphism in GalpKpζhq{Kq that (by varying ℓ among the prime numbers) is not the identity
on any of the fields Kpζℓ, ℓ

?
αq that are contained in Kpζhq.

We aim at making this result more explicit. The first assertion of the following result is also
shown in [6, Corollary (4.8)]:
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Theorem 3. If h “ 1, then we have denspαq ‰ 0. If h is a prime number, then we have
denspαq “ 0 if and only if ζh P K.

Roskam in [10, Theorem 3] made an example over a quadratic field where denspαq “ 0 and
there is no prime divisor q of h such that ζq P K:

Example 4. Let K “ Qp
?
5q and α “ β15 where β “ p´3qp´ 5`

?
5

2 q, so that h “ 15. Then
denspαq “ 0 because Kp

?
αq, Kpζ3q, and Kpζ5q are the three quadratic subextensions of the bi-

quadratic extension Qpζ15q{K. Indeed, there is no Galois automorphism of K{K that is not the
identity on all the three fields Kp

?
αq, Kpζ3q, and Kpζ5q (which are the fields Kpζℓ, ℓ

?
αq for

ℓ “ 2, 3, 5).

Since denspαq “ 0 if α is a square, we may suppose that h is odd. The following result shows
that the previous example is, in a certain sense, the only possible example:

Theorem 5. If h is the product of two odd prime numbers h1 and h2, then we have denspαq “ 0
if and only if at least one of the two following conditions holds: the field K contains ζh1

or ζh2
;

the extension Kpζhq{K is biquadratic and its three quadratic subextensions are Kp
?
αq, Kpζh1q,

and Kpζh2q (which are the fields Kpζℓ, ℓ
?
αq for ℓ “ 2, h1, h2).

Call Cn the cyclic group of order n, and call an abelian extension bicubic if its Galois group is
isomorphic to C3 ˆ C3.

Theorem 6. Suppose that h is the product of three odd prime numbers h1, h2, and h3. Then we
have denspαq “ 0 if and only if at least one of the following conditions holds:

(i) the field K contains ζhi
for some i P t1, 2, 3u; or, for two distinct i, j P t1, 2, 3u the

extension Kpζhihj
q{K is biquadratic and its three quadratic subfields are Kp

?
αq, Kpζhi

q,
Kpζhj q or Kpζh1q, Kpζh2q, Kpζh3q;

(ii) we have ζ3 P K and Kpζhq{K is bicubic and its four intermediate extensions are Kp 3
?
αq,

Kpζh1
q, Kpζh2

q, Kpζh3
q;

(iii) the Galois group of Kpζhq{K is isomorphic to C4 ˆC2 such that, under this isomorphism,
the field Kp

?
αq corresponds to the subgroup xp1, 0qy and the subgroups Kpζh1q, Kpζh2q,

Kpζh3
q correspond up to reordering to the subgroups xp1, 1qy, xp0, 1qy, xp2, 1qy.

A detailed analysis for the case where h has a small number of prime factors would be in
principle possible, see Remark 13. In general, we can prove:

Theorem 7. For every positive integer n there exists a constant cKpnq (independent from α) such
that the following holds: if h is the product of prime numbers h1 to hn that are all greater than
cKpnq and ζhi R K for i P t1, . . . , nu, then denspαq ą 0.

For a finite abelian group G and for a prime number p we call p-part of G the subgroup of
G that consists of all elements of order a power of p (this is also a quotient of G). For brevity,
we call groups H1, . . . ,Hn of vanishing type in a group G if the following holds: H1, . . . ,Hn are
non-trivial proper subgroups of G; their union is G and their intersection is t0u.

Theorem 8. Suppose that denspαq “ 0 and that for no prime number q we have ζq P K and q | h.
Then there exist a prime number p and prime numbers ℓi (for i “ 1, . . . , n) such that one of the
following holds:

‚ We have ℓi | h for every i. Calling L the compositum of the fields Kpζℓiq, the p-parts of
the groups GalpL{Kpζℓiqq are of vanishing type in the p-part of GalpL{Kq.

‚ We have ℓ1 “ p and ζp P K and ℓi | h for every i ą 1. Calling L the compositum of
Kp p

?
αq and the fields Kpζℓiq for i ‰ 1, the p-parts of the groups GalpL{Kp p

?
αqq and

GalpL{Kpζℓiqq for i ‰ 1 are of vanishing type in the p-part of GalpL{Kq.

Fixing the number of prime divisors of h, the above groups of vanishing type and their union belong
(up to isomorphism) to a finite list that is independent of K and α.



THE VANISHING OF THE DENSITY IN ARTIN’S CONJECTURE 3

Some of our observations straight-forwardly extend if we replace α by a finitely generated
subgroup Γ of Kˆ: in this case the group GalpKp

p
?
Γq{Kq may not be cyclic.

The overview of the paper is as follows: the results on Artin’s conjecture are proven in Section
2; explicit examples of K and α for which denspαq “ 0 because of the different reasons considered
in our results are presented in Section 3; the results about (and the explicit computations with)
finite abelian groups are collected in Sections 4 and 5 and they are of independent interest.

2. The density in Artin’s conjecture

We keep the notation from the introduction and write Kℓ :“ Kpζℓ, ℓ
?
αq. We call Jh the set

consisting of the prime divisors of h and JK the set consisting of the primes q such that ζq P K.

Remark 9. We require h to be squarefree because, if H is the largest positive integer such that
α P KˆH , it’s only the prime divisors of H that matter for our problem. Indeed, if β P Kˆ is not
a perfect power, then α :“ βh and α :“ βH give rise to the same fields Kℓ.

Recall that if there is a prime number q such that ζq P K and α P Kˆq (namely, q | h), then
we have denspαq “ 0. If we exclude this case, then the sets Jh and JK are disjoint.

Theorem 10. Suppose that for every prime q such that ζq P K we have q ∤ h. There exists a
finite abelian extension L{K and finitely many subextensions Li{K such that we have denspαq ‰ 0
if and only if there is an automorphism in GalpL{Kq that is not the identity on any of the Li’s.
We may take as Li’s the fields Kℓ for ℓ P Jh Y JK and let L be their compositum.

Proof. By Theorem 1, denspαq is the density of the primes p that do not split completely in any
of the fields Kℓ, where ℓ is a prime number. To study the vanishing of the density we only need to
study a finite set of prime numbers. Indeed, we can define the complement as the set of all primes
ℓ such that Kℓ is not contained in the compositum of the fields Kℓ1 for all ℓ ‰ ℓ1 (by [9, Proposition
4.3] the constructed set is finite).

By our assumption on α, for every prime ℓ the extension Kℓ{K is non-trivial (namely, there
is no prime ℓ such that ζℓ P K and ℓ | h). The primes ℓ such that ζℓ R K and ℓ ∤ h are in
the complement of the set that we constructed. Indeed, equivalently Kℓ is not contained in the
compositum of the fields Kpζℓ1 q for all ℓ ‰ ℓ1 (and this holds because the extension Kℓ{K is not
abelian by Schinzel’s theorem [11, Theorem 2]). For ℓ P Jh Y JK , the extension Kℓ{K is abelian:
we may take for L their compositum and conclude. □

Thus we have the following criterion:

Remark 11. Suppose that for all primes q such that ζq P K we have q ∤ h. Let M be a positive
squarefree integer such that, with the notation of Theorem 10, we have L “ KpζM , M

?
αq{K.

Then we have denspαq “ 0 if and only if GalpKpζM , M
?
αq{Kq is the union of its subgroups

GalpKpζM , M
?
αq{Kpζℓ, ℓ

?
αqq, where ℓ varies over the prime divisors of M .

Proof of Theorem 3. Suppose that h “ 1. By Theorem 10, the field L is the compositum of the
fields Kℓ “ Kp ℓ

?
αq for ℓ P JK . These fields are non-trivial and have pairwise coprime degrees over

K, so the automorphism as in Theorem 10 can be found, implying that denspαq ‰ 0.
Now suppose that h is prime. Clearly, if ζh P K we have denspαq “ 0 so suppose that Kh is

non-trivial. With respect to the previous case, we have the additional field Kh “ Kpζhq. We may
replace Kh by a subextension that has degree ℓh where ℓh is prime. We have field extensions with
pairwise disjoint degrees, possibly with the exceptions of two fields of degree ℓh. These two fields
are either equal or linearly disjoint over K, and in both cases we can find an automorphism that
is not the identity on neither of the fields and we may easily conclude. □

Remark 12. If L is a finite non-trivial Galois extension of K, then there exists an automorphism
of K{K that is not the identity over L. If L1 and L2 are two finite non-trivial Galois extensions
of K, then there exists an automorphism of K{K that is neither the identity on L1 nor on L2.
Indeed, this is clear if the two fields are linearly disjoint over K, else it suffices to extend an
automorphism that is not the identity on the non-trivial extension L1 X L2. Alternatively, see
Remark 20 applied to the Galois group of L1L2{K with the subgroups GalpL1L2{Liq for i “ 1, 2).
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Proof of Theorem 5. Suppose that ζh1
and ζh2

are both not contained in K. With the notation
of Theorem 10 we have to consider some non-trivial extensions of K, namely L1 :“ Kpζh1q,
L2 :“ Kpζh2q and the fields Kℓ “ Kp ℓ

?
αq for ℓ such that ζℓ P K. Since the fields Kℓ have pairwise

coprime degrees, by decomposing the problem w.r.t. the prime parts of the corresponding Galois
groups we reduce to the situation where we have L1, L2, and where L3 is one of the fields Kℓ’s.
Call L “ L1L2L3 and define G :“ GalpL{Kq and Hi :“ GalpL{Liq.

We may assume that none of the fields L1, L2, and L3 is contained in another one, else we
may reduce to handling at most two extensions (see Remark 12). Thus the subgroups Hi’s are
non-trivial and proper, and G is not cyclic. We may then conclude by Theorem 21, in particular
we must have L3 “ Kp

?
αq. □

Proof of Theorem 6. We imitate the proof of Theorem 5. Consider the fields Li :“ Kpζhi
q for

i “ 1, 2, 3. Suppose that, for some q P JK , the field L4 :“ Kp q
?
αq is such that GalpL{Kq is the

union of its subgroups GalpL{Liq for i “ 1, 2, 3, 4, where L “ L1L2L3L4. If GalpL{Kq is the union
of three of these subgroups, we are reduced to the situation of Theorem 5. Else, we may apply
Theorem 25 to conclude. □

Notice that in Theorem 6 we don’t make apparent use of the case in Theorem 25 where the
group is isomorphic to C2 ˆC2 ˆC2: this is because we need all subgroups to have order 4 (as the
corresponding subextensions need to be cyclic for our application) and then we are left with just
one case where three of the corresponding subextensions are the three quadratic subextensions of
a biquadratic extension.

Remark 13. In the same spirit of Theorem 6, it would be possible to analyze the vanishing of the
density in case h has a small number of prime factors. The group-theoretical reason is that we can
rely on Remark 24.

Proof of Theorem 7. Suppose that for all hi P Jh we have ζhi
R K. By Theorem 10 and by reducing

to p-groups (considering the p-parts of the given groups) we have to consider the Galois group of
Kp p

?
αq{K in case ζp P K (thus, p ∤ h) and at most n p-groups that are the p-part of the Galois

group of Kpζℓq{K for ℓ P Jh (we only need to consider those groups that are non-trivial). So we
have at most n`1 fields to consider, requiring that there is an automorphism of their compositum
that is not the identity on any of them. Considering the corresponding group-theoretical problem,
we have a p-group that should not be the union of at most n ` 1 proper subgroups. There are
only finitely many primes ℓ, depending only on K, □

We call P the set of the prime numbers. We define the p-part of a finite abelian extension of
K as its subextension whose Galois group is the p-part of the original Galois group.

Lemma 14. Suppose that for every prime divisor q of h we have ζq R K. Let

F : Jh Y JK Ñ P

be a function satisfying the following: for q P JK , we have F pqq “ q; for ℓ P Jh the prime F pℓq
divides rKpζℓq : Ks. We have denspαq ‰ 0 if and only if we can find a function F as above, such
that for all p in the image of F the set of preimages F´1ppq has the following property: there is
an automorphism of K{K that, for all ℓ P F´1ppq, is not the identity on the p-part of Kpζℓ, ℓ

?
αq.

Proof. The statement is the formal way of expressing a very natural idea. If we have a finite
abelian extension L{K the following holds: a Galois automorphism is not the identity on L if and
only if there exists a prime number p that divides rL : Ks such that said automorphism is not the
identity on the p-part of L{K. □

Remark 15. Thanks to Lemma 14, we are reduced to analyze for finitely many prime numbers p a
family of finite and non-trivial abelian extensions whose Galois group is a p-group. The requested
automorphism always exists if the cardinality of F´1ppq does not exceed p, see Remark 23.

Proof of Theorem 8. The last assertion is because the number of groups of vanishing type is at
most the number of prime divisors of h plus 1, so we may invoke Remark 23.
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With the notation of Lemma 14, fix a function F and some prime p such that the property
in Lemma 14 does not hold for F´1ppq. (Aside: We may choose for practicality F and p such
that n :“ #F´1ppq is as small as possible, or p is as small as possible.) Let ℓ1, . . . , ℓn be the
elements of F´1ppq, setting ℓ1 “ p if p P F´1ppq. Write Kℓi :“ Kpζℓi ,

ℓi
?
αq and L for their

compositum. It follows from the definition of F that the p-parts of the extensions GalpKℓi{Kq

are non-trivial. Thus GalpL{Kℓiq is a proper subgroup of GalpL{Kq for every i. By the definition
of L the intersection of the groups GalpL{Kℓiq is the identity. Moreover, the missing property
for F´1ppq implies that the union of GalpL{Kℓiq is GalpL{Kq. Finally, the missing property for
F´1ppq implies that GalpL{Kq is not cyclic. Considering that GalpKℓi{Kq is cyclic, the group
GalpL{Kℓiq cannot be t0u. □

3. Examples

We present some examples to illustrate the cases in Theorem 6 that stem from Theorem 25.

Example 16. Suppose that Kpζ7¨13q is a bicubic extension whose four intermediate subextensions
of degree 3 are Kpζ7q, Kpζ13q, Kpζ19q, and Kpζ31q. Then denspαq “ 0 if h “ 7 ¨ 13 ¨ 19 ¨ 31.
Moreover, in case ζ3 P K, we have denspαq “ 0 if h “ pqr and Kp 3

?
αq “ Kpζsq, where tp, q, r, su “

t7, 13, 19, 31u. We may take as K the number field generated by the following elements:

?
´7;

b

´2p13 ` 3
?
13q; ζ5,

?
´31, θ31; ζ9,

?
´19, η319; η7η13η19, η

2
7η13η31

where we consider Gauss sums with the following powers:

θ531 :“ 3286ζ5 ` 2046ζ25 ` 6231ζ35 ` 1116ζ45 P Qpζ5q

η37 :“ ´14ζ3 ` 7ζ23 P Qpζ3q

η313 :“ 13ζ3 ` 52ζ23 P Qpζ3q

η331 :“ 31ζ3 ´ 155ζ23 P Qpζ3q

η919 :“ ´156978ζ29 ` 7087ζ39 ´ 178866ζ49 ´ 99180ζ59 ´ 137522ζ69 ´ 599184ζ79 P Qpζ9q .

Indeed, the first eight generators (which generate a subfield K 1) belong to the linearly disjoint
extensions Qpζ7q, Qpζ13q, Qpζ5¨31q, Qpζ9¨19q and they ensure that the extensions Kpζmq{K with

m “ 7, 13, 19, 31 are cubic. Notice that
b

´2p13 ` 3
?
13q generates the quartic cyclic subextension

of Qpζ13q{Q because ´2p13`3
?
13q is the square of the trace from Qpζ4¨13q to Qpζ13q of the quartic

Gauss sum.
The Galois group of K 1pζ7¨13¨19¨31q{K 1 is isomorphic to pZ{3Zq4. Since ζ3 P K 1, by Kummer

theory the corresponding group of radicals is generated by η7, η13, η19, η31. The last generators in
the list then ensure that the Galois group of Kpζ7¨13¨19¨31q{K is isomorphic to pZ{3Zq2 and that
the extensions Kpζmq{K with m “ 7, 13, 19, 31 are distinct but contained in Kpζ7¨13q. In the latter
example, we may take α “ pη3sqpqr.

Example 17. Let F be the compositum of Qpiq and the cubic subextension of Qpζ13q{Q. Let
η45 “ ´15 ` 20ζ4 and η413 “ 65 ´ 156ζ4 in Qpiq be the fourth powers of the quartic Gauss sums
corresponding to the fields Qpζ20q and Qpζ52q respectively.

The Galois group of F pζ15q{F is isomorphic to C4 ˆ C2. The subgroup corresponding to F pζ3q

is xp1, 0qy, and the one corresponding to F pζ5q is xp0, 1qy. The subfield corresponding to xp1, 1qy

is the quadratic extension F p
?

´15q. Finally, the subfield corresponding to xp2, 1qy is the quartic
cyclic field generated by η5

?
´3. Extending the field F by η13η5

?
´3 has the effect that the subfield

corresponding to the last subgroup is F pζ13q thus, if K “ F and α “ p´15q3¨5¨13 (so that h “

3¨5¨13), we have denspαq “ 0. We can vary this example by enlarging F with the cubic subextension

of Qpζ7q{Q and by
a

p´7qp´15q, so that F p
?

´15q “ F pζ7q. Then h “ 3 ¨ 5 ¨ 7 ¨ 13 implies
denspαq “ 0.

Example 18. We may generalize Example 16 to any odd prime number p. Namely, there exists
a number field K and prime numbers q1, . . . , qp`1 such that GalpKpζq1q2q{Kq is isomorphic to
pZ{pZq2 and the subextensions of Kpζq1q2q{K of degree p are the fields Kpζqiq with i “ 1, . . . , p`1.
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In this case, the following holds: if h “ q1 ¨ ¨ ¨ qp`1, then denspαq “ 0. Moreover, supposing that
ζp P K, we also have denspαq “ 0 if Kp p

?
αq “ Kpζqj q for some j P t1, . . . , p`1u and h “

ś

i‰j qi.
To prove the existence of K, q1, . . . , qp`1, as done in Example 16, we may first construct a

number field K 1 containing ζp such that the extensions K 1pζqiq{K 1 are linearly independent and of
degree p and then apply Kummer theory to enlarge K 1 and conclude. For the former step we may
use appropriate Gauss sums as generators, assuming that suitable roots of unity are contained in
the field K 1. For the latter step, calling γi the radical such that γp

i P K 1 and K 1pγiq “ K 1pζqiq, we

may add the generators γj
1γ2γj`2 for every j “ 1, . . . , p ´ 1.

Remark 19. We outline a general procedure to exhibit new and substantially different examples
of K,α such that denspαq “ 0. Fix a prime number p and abelian p-groups H1, . . . ,Hn that are of
vanishing type in an abelian p-group G: for small values of p and n, such groups — if they exist —
may be found with a computer search testing various possibilities for G (whose size divides n! by
Remark 24). We have to restrict to the case where G{Hi is cyclic for every i by Theorem 8 because
Kp p

?
αq{K and the cyclotomic extensions Kpζℓiq{K are cyclic. Let E be the exponent of G and

work over the number field K “ QpζpE q. Up to extending this field, we may choose primes ℓ1, . . . , ℓn
such that the extensions Kpζℓiq{K are cyclic of degree #Hi and they are linearly independent over
K. In case that w.l.o.g. the group H1 has size p, we may replace Kpζℓ1q by Kp p

?
αq for some

α P Kˆ such that h is odd, ℓi | h for all i ‰ 1 and such that Kp p
?
αq X Kpζℓ2 , . . . , ζℓnq “ K. By

Lemma 26, up to extending K, the considered cyclotomic extensions (possibly, replacing the first
by the Kummer extension Kp p

?
αq{K) are as in Theorem 8, the groups of vanishing type being

isomorphic to the groups H1 to Hn, and their union being isomorphic to G.

4. Finite non-cyclic abelian groups as union of proper subgroups

Let G be a non-cyclic group: the cyclic subgroups generated by the elements of G that are
different from the identity are non-trivial and proper and their set-theoretical union is G. On the
other hand, it is impossible to cover a cyclic group with proper subgroups.

Remark 20. No group G is the union of two proper subgroups H1 and H2. This is well-known, and
a cardinality argument suffices (because the index of a proper subgroup is at least 2 and subgroups
are not disjoint sets):

#pH1 Y H2q “ #H1 ` #H2 ´ #pH1 X H2q ď
1

2
#G `

1

2
#G ´ 1 ă #G .

Recall our notation: we call groups H1, . . . ,Hn of vanishing type in a group G if the following
holds: H1, . . . ,Hn are non-trivial subgroups of G; their union is G and their intersection is t0u.
Moreover, we call them irredundant if there is no index i “ 1, . . . , n such that, removing Hi, the
union of the subgroups is still G.

Theorem 21 (G. Scorza). Let H1, H2, H3 be finite abelian groups that are of vanishing type in an
abelian group G. Then G is isomorphic to C2 ˆ C2 and H1, H2, and H3 are the three subgroups
of G of order 2.

Proof. This is a special case of [1, Theorem 2], noticing that in the proof G{pH1 X H2 X H3q is
isomorphic to C2 ˆ C2 and hence the same holds for G. □

Example 22. Let p be a prime number, and suppose that the group Cp ˆCp is the union of non-
trivial subgroups. Then one must take all p ` 1 subgroups of order p. Indeed, beyond the identity,
each subgroup contributes with p ´ 1 elements, and we have p2 “ 1 ` pp ` 1qpp ´ 1q.

Remark 23. (This remark relates to [12, Theorem 3.6] and [2, Theorem 4].) Let G be a finite
abelian group, and let p0 be the smallest prime divisor of the order of G. Then, if G is the union
of n proper subgroups, we must have n ě p0 ` 1. This is clear by cardinality reasons because each
proper subgroup has index at least p0, and the subgroups are not disjoint.

Notice that, if G has two cyclic components that have order a power of one same prime number
p, then it is possible to cover G with p ` 1 groups (we may take the preimages of the proper
non-trivial subgroups of Cp ˆ Cp under a surjective group homomorphism).
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Remark 24. Suppose that a finite abelian group G is the union of n proper subgroups whose
intersection is the identity. Then, up to isomorphism, there are only finitely many possibilities
for G and hence also for the subgroups. This is a consequence of [1, Theorem 6] (see also [13]).
Indeed, the order of G cannot exceed n!.

4.1. The union of four subgroups intersecting at the identity.

Theorem 25. Let H1, . . . ,H4 be groups of vanishing type in a finite abelian group G that are
irredundant. Then one of the following holds:

(i) G is isomorphic to C3 ˆ C3 and H1 to H4 are the four subgroups of G of order 3;
(ii) G is isomorphic to C2 ˆC2 ˆC2 and, up to isomorphism, two subgroups are t0uˆC2 ˆC2,

and C2 ˆ t0u ˆ C2 and the remaining two subgroups are either xp1, 1, 1qy and xp1, 1, 0qy or
C2 ˆ C2 ˆ t0u and xp1, 1, 1qy;

(iii) G is isomorphic to C4 ˆ C2 and the four subgroups are xp1, 0qy, xp1, 1qy, xp0, 1qy, and
xp2, 1qy.

Proof. As G is the union of proper subgroups, it is not cyclic. Since G is not the union of three
of these subgroups, the four subgroups are irredundant in the sense of [1] (namely, no group is
contained in the union of the others). By Remark 24 the order of G does not exceed 24. Since
G is non-cyclic we must have at least two cyclic components whose order is a power of one same
prime number. Thus G has as quotient C2 ˆ C2 or C3 ˆ C3.

In the latter case G is isomorphic to either C3 ˆ C3 or C3 ˆ C3 ˆ C2. If G is isomorphic to
C3 ˆ C3, we easily conclude. If G is isomorphic to C3 ˆ C3 ˆ C2: The 8 elements of order 6
only belong to proper subgroups that have index 3; to take all of them we need to take the four
subgroups of index 3 that, however, all contain p0, 0, 1q hence this case cannot occur.

Now consider the former case. We cannot have C2 ˆ C2 as this group has no four irredun-
dant subgroups. The order of G (which is a multiple of 4) then belongs to the following list:
8, 12, 16, 20, 24.

‚ If G is H ˆ Cp with p “ 3, 5 and where H has order a power of 2: If a subgroup contains an
element of order multiple of p, then it contains also the element p0, 1q. Since the four subgroups
have trivial intersection, the elements of order multiple of p are contained in three of the subgroups.
The three subgroups are then such that their projections on H cover this quotient and we deduce
that the three subgroups already cover the group, so this case cannot occur.

‚ If G is C8 ˆ C2: To take the elements of order 8 we need to take the two cyclic subgroups
of index 2, namely xp1, 0qy and xp1, 1qy. The remaining four elements cannot belong to one same
subgroup, because three subgroups cannot cover the group. So w.l.o.g. the third group contains
p2, 1q and its multiples p4, 0q and p6, 1q but neither p0, 1q nor p4, 1q, which must then belong to the
fourth subgroup. However, the four subgroups all contain p4, 0q and hence this case cannot occur.

‚ If G is C2 ˆ C2 ˆ C2 ˆ C2: This case does not occur because no four proper subgroups cover
the group. Indeed, take four distinct subgroups of index 2 that, up to isomorphism, consist of the
elements whose i-th projection is zero. Then p1, 1, 1, 1q is not contained in any of the groups.

‚ If G is C2 ˆ C2 ˆ C2: having at most one subgroup of order 4 does not allow to cover the
group, so up to isomorphism, two subgroups are H1 “ t0u ˆ C2 ˆ C2 and H2 “ C2 ˆ t0u ˆ C2. If
one third subgroup has order 4, up to isomorphism it is C2 ˆ C2 ˆ t0u: the only element left, to
be contained in the last subgroup, is then p1, 1, 1q (and the last subgroup must have order 2 as we
want irredundant groups). Else, the last two subgroups have order 2 and they must be generated
respectively by the missing element p1, 1, 1q and p1, 1, 0q.

‚ If G is C4 ˆ C2: to take the four elements of order 4 we need the two subgroups xp1, 0qy and
xp1, 1qy. Since the subgroups must be irredundant, the two remaining elements p0, 1q and p2, 1q

must be contained in the two remaining subgroups (and not both in the same group). The last
two groups must have exponent 2 and to avoid that they coincide they must have order 2.

‚ If G is C4 ˆ C4: To take the 12 elements of order 4, we can either take the three distinct
subgroups of order 8 or we take two subgroups of order 8 and two groups of order and exponent 4
(in such a way that the elements of order 4 in the subgroups are all distinct). In the former case,
the three subgroups already cover the group, so we must be in the latter case. The two subgroups
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of order 4 are, up to isomorphism, xp1, 0qy and xp0, 1qy. The remaining elements of order 4 are, up
to multiples, p1, 1q, p1, 2q, p1, 3q, and p2, 1q. One of the two subgroups of order 8 should contain
p2, 1q and one of the other three elements: this is impossible because p2, 1q and any of the other
three elements generates the group. So this case cannot occur.

‚ If G is C4 ˆ C2 ˆ C2: We concluded with a computer check (with [3]) that this case cannot
occur. □

4.2. The union of five subgroups intersecting at the identity. Let G be a finite abelian
group and suppose that H1, . . . ,H5 are of vanishing type in G. By Remark 24, the order of G
cannot exceed 120. Moreover, G cannot be cyclic so there is a prime p such that Cp ˆ Cp is a
quotient of G (clearly, p ă 11). For our applications, we may suppose that G is an abelian p-group.

A computer search confirmed that there are abelian p-groups G with #G ď 120 and subgroups
H1, . . . ,H5 of vanishing type in G and irredundant. For instance, we have the following examples
(for which it is immediate to verify the requested properties):

‚ Let G “ C8 ˆ C2 and consider the subgroups

H1 “ xp4, 1qy, H2 “ xp0, 1qy, H3 “ xp2, 1qy,

H4 “ xp1, 1qy, H5 “ xp1, 0qy.

The groups H1, . . . ,H5 are of vanishing type in G and they are irredundant. Additionally,
G{Hi is cyclic for each i “ 1, . . . , 5. This is the only choice of subgroups H1, . . . ,H5 that
are of vanishing type in C8 ˆ C2.

‚ Let G “ C4 ˆ C4 and take

H1 “ xp1, 1qy, H2 “ xp1, 2qy, H3 “ xp1, 3qy,

H4 “ xp1, 0qy, H5 “ xp0, 1q, p2, 0qy.

The groups H1, . . . ,H5 are of vanishing type in G and they are irredundant. Additionally,
G{Hi is cyclic for each i “ 1, . . . , 5.

We remark that we must have p “ 2, 3. Indeed, for p ě 5 the only non-cyclic p-group G of order
at most 120 is C5 ˆ C5 and we cannot have five subgroups of vanishing type in it by Remark 23.

5. One technical result on abelian p-groups

We are going to prove, for the convenience of the reader, a general result on abelian p-groups.
Notice that, in the following statement, the assumption

ř

i Hi “ G holds if we have
Ť

i Hi “ G.
Moreover, if the Xj ’s are groups (where j “ 1, . . . , r), then we write

ś

j‰i Xj to mean the following

subgroup of
ś

j Xj :
´

ź

jăi

Xj ˆ t0u ˆ
ź

jąi

Xj

¯

.

Lemma 26. Let p be a prime number, let G be a finite abelian p-group, and let Hi (where
i “ 1, . . . , r) be non-trivial subgroups of G such that

č

i

Hi “ t0u
ÿ

i

Hi “ G and G{Hi is cyclic for all i .

There exist positive integers nj (where j “ 1, . . . , r) and an injection G ãÑ
ś

j Z{pnjZ such that
for every i we have

Hi “ G X
ź

j‰i

Z{pnjZ .

For every j the number pnj divides the exponent of G.

Proof. Let pG be the Pontryagin dual of G and let HK
i – {G{Hi be the kernel of the projection

pG ↠ pHi. We then have
ÿ

i

HK
i “ pG

č

i

HK
i “ 0 and HK

i is cyclic for all i.



THE VANISHING OF THE DENSITY IN ARTIN’S CONJECTURE 9

Fix isomorphisms HK
i – Z{pniZ for appropriate positive integers ni (the last assertion is then

evident). Then the embeddings HK
i ãÑ Ĝ lead to an obvious homomorphism

f :
ź

j

Z{pnjZ ↠ pG

such that HK
i “ fpZ{pniZq holds for all i and which is surjective because

ř

i H
K
i “ pG. This yields

a diagram with exact columns:

HK
i� _

��

oo „ Z{pniZ� _

��
pG oooo f

����

ś

j Z{pnjZ

����
pG{HK

i
oooo ś

j ­“i Z{pnjZ

Its dual is the diagram (choosing implicitly some isomorphism {Z{pnjZ – Z{pnjZ):

G{Hi
OOOO

„ // Z{pniZ
OOOO

G
� � f̂ //
OO

� ?

ś

j Z{pnjZ
OO

� ?
Hi
� � //ś

j ­“i Z{pnjZ

and we may conclude because the lower diagram is a pull-back (because the top horizontal map
is an isomorphism). □
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