ON THE VANISHING OF THE DENSITY IN
ARTIN’S CONJECTURE ON PRIMITIVE ROOTS

GIACOMO CHERUBINI AND ANTONELLA PERUCCA

ABSTRACT. Let K be a number field, and let « € K* be not a root of unity. Consider the set
consisting of the primes p of K such that (o mod p) is well-defined and generates the multi-
plicative group of the residue field at p. According to Artin’s conjecture on primitive roots, this
set admits a natural density. We investigate the reasons for which this density must be zero,
making more explicit a famous result by Lenstra from 1977.

1. INTRODUCTION

This paper concerns Artin’s conjecture on primitive roots, and we refer the reader to Moree’s
survey [8] for an introduction to this topic. Our starting point is a result by Cooke and Weinberger
[4] from 1975 (that generalizes a result by Hooley [5]), which proves Artin’s conjecture for all
number fields conditionally under GRH.

Let K be a number field (and work within a fixed algebraic closure K of K). We let a € K*
be not a root of unity. For all results concerning Artin’s conjecture mentioned in this paper, we
assume GRH for the cyclotomic-Kummer extensions K ((y, {/«a) of K, where n, N are positive
integers such that n | N. We build on the following result, where p is the Mébius function:

Theorem 1 (Cooke and Weinberger). Assume GRH, and call S the set consisting of the primes
p of K such that (o mod p) is well-defined and generates the multiplicative group of the residue
field at p. The set S admits a natural density, which we call dens(«), and we have

p(n)
dens(@) = ), c ) K]

Moreover, dens(a) is also the natural density of the set of primes p of K such that p does not split
completely in K (g, /o) for any prime number (.

For any prime number ¢, we call Sy the set of primes p such that (a mod p) is well-defined
and non-zero, and its index (namely, the index of {(a mod p)) in the multiplicative group at p) is
coprime to ¢. Remark that S = (1), S,.

We call h the largest positive squarefree integer such that o € K*". One condition that forces
dens(a)) = 0 is the existence of a prime number ¢ such that K({y, /o) = K, namely such that
¢¢r € K and ¢ | h. Remark that this condition even implies dens(S;) = 0. Over K = Q, this is
(conditionally under GRH) the only reason to have dens(a) = 0 because, as Hooley proved in [5],
dens(«) is non-zero for all rational numbers different from 0, +1 that are not squares.

The aim of this work is understanding the vanishing of the density in Artin’s conjecture. Clearly,
all works that describe the density (for example, [7]) improve, in particular, such understanding.
Most notably, in [6, Theorem (4.6)] Lenstra provides a very general characterization of the van-
ishing of the density:

Theorem 2 (Lenstra). We have dens(a) # 0 if and only if the following holds: there is an
automorphism in Gal(K((,)/K) that (by varying £ among the prime numbers) is not the identity
on any of the fields K((p, /) that are contained in K((p).

We aim at making this result more explicit. The first assertion of the following result is also
shown in [6, Corollary (4.8)]:
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Theorem 3. If h = 1, then we have dens(a) # 0. If h is a prime number, then we have
dens(a) = 0 if and only if ( € K.

Roskam in [10, Theorem 3] made an example over a quadratic field where dens(«) = 0 and
there is no prime divisor ¢ of h such that ¢, € K:

Example 4. Let K = Q(\/5) and a = B where f = (73)(7%), so that h = 15. Then
dens(a) = 0 because K(y/a), K((3), and K((5) are the three quadratic subeztensions of the bi-
quadratic extension Q((15)/K. Indeed, there is no Galois automorphism of K/K that is not the
identity on all the three fields K(y/a), K((3), and K((s5) (which are the fields K (¢, /) for
0=2,3,5).

Since dens(a) = 0 if « is a square, we may suppose that h is odd. The following result shows
that the previous example is, in a certain sense, the only possible example:

Theorem 5. If h is the product of two odd prime numbers hy and ho, then we have dens(a) = 0
if and only if at least one of the two following conditions holds: the field K contains Cp, or Cp,;
the extension K((n)/K is biquadratic and its three quadratic subextensions are K(y/a), K(Cp,),
and K (Cp,) (which are the fields K((¢, /) for £ =2 hy, hs).

Call C,, the cyclic group of order n, and call an abelian extension bicubic if its Galois group is
isomorphic to C3 x Cjs.

Theorem 6. Suppose that h is the product of three odd prime numbers hyi, ha, and hs. Then we
have dens(a) = 0 if and only if at least one of the following conditions holds:
(i) the field K contains Cpn, for some i € {1,2,3}; or, for two distinct i,j € {1,2,3} the
extension K (Cu,n,)/K is biquadratic and its three quadratic subfields are K(y/a), K(Cp,),
K(Chj) or K(Ch1)7 K(Ch2)7 K(Chs);
(i) we have (3 € K and K(Cn)/K is bicubic and its four intermediate extensions are K(/a),
K(Ch1)7 K(Ch’z); K(Chs);
(111) the Galois group of K((r)/K is isomorphic to Cy x Co such that, under this isomorphism,
the field K (\/a) corresponds to the subgroup {(1,0)) and the subgroups K(Cp,), K(Cn,),
K (Cpy) correspond up to reordering to the subgroups {(1,1)), {(0,1)), {(2,1)).

A detailed analysis for the case where h has a small number of prime factors would be in
principle possible, see Remark 13. In general, we can prove:

Theorem 7. For every positive integer n there exists a constant cx (n) (independent from «) such
that the following holds: if h is the product of prime numbers hy to hy, that are all greater than
cx(n) and ¢, ¢ K forie{l,...,n}, then dens(a) > 0.

For a finite abelian group G and for a prime number p we call p-part of G the subgroup of
G that consists of all elements of order a power of p (this is also a quotient of G). For brevity,
we call groups Hy, ..., H, of vanishing type in a group G if the following holds: Hy,..., H, are
non-trivial proper subgroups of G; their union is G' and their intersection is {0}.

Theorem 8. Suppose that dens(«) = 0 and that for no prime number ¢ we have (; € K and q | h.
Then there exist a prime number p and prime numbers £; (for i = 1,...,n) such that one of the
following holds:

o We have ¢; | h for every i. Calling L the compositum of the fields K((,), the p-parts of
the groups Gal(L/K ((;,)) are of vanishing type in the p-part of Gal(L/K).

o We have {1 = p and (, € K and ¢; | h for every i > 1. Calling L the compositum of
K(@/a) and the fields K(Cp,) for i # 1, the p-parts of the groups Gal(L/K(/«)) and
Gal(L/K (Ce,)) fori # 1 are of vanishing type in the p-part of Gal(L/K).

Fizing the number of prime divisors of h, the above groups of vanishing type and their union belong
(up to isomorphism) to a finite list that is independent of K and «.
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Some of our observations straight-forwardly extend if we replace a by a finitely generated
subgroup T of K *: in this case the group Gal(K ({/T)/K) may not be cyclic.

The overview of the paper is as follows: the results on Artin’s conjecture are proven in Section
2; explicit examples of K and « for which dens(a) = 0 because of the different reasons considered
in our results are presented in Section 3; the results about (and the explicit computations with)
finite abelian groups are collected in Sections 4 and 5 and they are of independent interest.

2. THE DENSITY IN ARTIN’S CONJECTURE

We keep the notation from the introduction and write Ky := K({p, /o). We call J;, the set
consisting of the prime divisors of h and Jx the set consisting of the primes g such that (, € K.

Remark 9. We require h to be squarefree because, if H is the largest positive integer such that
ae K*H it’s only the prime divisors of H that matter for our problem. Indeed, if f € K* is not
a perfect power, then a := 8" and a := BH give rise to the same fields K,.

Recall that if there is a prime number ¢ such that ¢, € K and o € K*? (namely, g | h), then
we have dens(a) = 0. If we exclude this case, then the sets .Jj, and Jg are disjoint.

Theorem 10. Suppose that for every prime q such that {; € K we have g { h. There exists a
finite abelian extension L/K and finitely many subextensions L;/K such that we have dens(a) # 0
if and only if there is an automorphism in Gal(L/K) that is not the identity on any of the L;’s.
We may take as L;’s the fields Ky for £ € J, v Jx and let L be their compositum.

Proof. By Theorem 1, dens(«) is the density of the primes p that do not split completely in any
of the fields Ky, where { is a prime number. To study the vanishing of the density we only need to
study a finite set of prime numbers. Indeed, we can define the complement as the set of all primes
¢ such that K, is not contained in the compositum of the fields Ky for all £ # ¢’ (by [9, Proposition
4.3] the constructed set is finite).

By our assumption on «, for every prime ¢ the extension K,;/K is non-trivial (namely, there
is no prime ¢ such that ¢, € K and ¢ | h). The primes ¢ such that ¢, ¢ K and ¢ { h are in
the complement of the set that we constructed. Indeed, equivalently K, is not contained in the
compositum of the fields K ({p) for all ¢ # ¢ (and this holds because the extension K,;/K is not
abelian by Schinzel’s theorem [11, Theorem 2]). For £ € J}, U Jk, the extension K,/K is abelian:
we may take for L their compositum and conclude. O

Thus we have the following criterion:

Remark 11. Suppose that for all primes q such that {; € K we have gt h. Let M be a positive
squarefree integer such that, with the notation of Theorem 10, we have L = K((y, ¥a)/K.
Then we have dens(a) = 0 if and only if Gal(K(Cy, ¥/@)/K) is the union of its subgroups
Gal(K (Cyr, ¥/a)/K (¢, ), where £ varies over the prime divisors of M.

Proof of Theorem 3. Suppose that h = 1. By Theorem 10, the field L is the compositum of the
fields Ky = K (/«) for £ € Jg. These fields are non-trivial and have pairwise coprime degrees over
K, so the automorphism as in Theorem 10 can be found, implying that dens(«) # 0.

Now suppose that h is prime. Clearly, if {;, € K we have dens(a) = 0 so suppose that K}, is
non-trivial. With respect to the previous case, we have the additional field K}, = K (). We may
replace K} by a subextension that has degree ¢}, where ¢} is prime. We have field extensions with
pairwise disjoint degrees, possibly with the exceptions of two fields of degree ¢;. These two fields
are either equal or linearly disjoint over K, and in both cases we can find an automorphism that
is not the identity on neither of the fields and we may easily conclude. O

Remark 12. If L is a finite non-trivial Galois extension of K, then there exists an automorphism
of K/K that is not the identity over L. If L1 and Lo are two finite non-trivial Galois extensions
of K, then there erists an automorphism of K/K that is neither the identity on Ly nor on Ls.
Indeed, this is clear if the two fields are linearly disjoint over K, else it suffices to extend an
automorphism that is not the identity on the non-trivial extension Ly n Lo. Alternatively, see
Remark 20 applied to the Galois group of L1 La/K with the subgroups Gal(LiLo/L;) fori=1,2).
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Proof of Theorem 5. Suppose that (p, and (p, are both not contained in K. With the notation
of Theorem 10 we have to consider some non-trivial extensions of K, namely L; := K((p,),
Ly := K((p,) and the fields Ky = K (/) for £ such that {, € K. Since the fields K, have pairwise
coprime degrees, by decomposing the problem w.r.t. the prime parts of the corresponding Galois
groups we reduce to the situation where we have Ly, Lo, and where L3 is one of the fields K,'s.
Call L = L1 LyL3 and define G := Gal(L/K) and H; := Gal(L/L;).

We may assume that none of the fields L1, Lo, and L3 is contained in another one, else we
may reduce to handling at most two extensions (see Remark 12). Thus the subgroups H;’s are
non-trivial and proper, and G is not cyclic. We may then conclude by Theorem 21, in particular
we must have Lz = K(y/«). O

Proof of Theorem 6. We imitate the proof of Theorem 5. Consider the fields L; := K((p,) for
i = 1,2,3. Suppose that, for some q € Jg, the field Ly := K(¥/a) is such that Gal(L/K) is the
union of its subgroups Gal(L/L;) for i = 1,2,3,4, where L = LyLsL3L4. If Gal(L/K) is the union
of three of these subgroups, we are reduced to the situation of Theorem 5. Else, we may apply
Theorem 25 to conclude. O

Notice that in Theorem 6 we don’t make apparent use of the case in Theorem 25 where the
group is isomorphic to Cy x Cy x Cy: this is because we need all subgroups to have order 4 (as the
corresponding subextensions need to be cyclic for our application) and then we are left with just
one case where three of the corresponding subextensions are the three quadratic subextensions of
a biquadratic extension.

Remark 13. In the same spirit of Theorem 6, it would be possible to analyze the vanishing of the
density in case h has a small number of prime factors. The group-theoretical reason is that we can
rely on Remark 24.

Proof of Theorem 7. Suppose that for all h; € Jj, we have (j, ¢ K. By Theorem 10 and by reducing
to p-groups (considering the p-parts of the given groups) we have to consider the Galois group of
K(%/a)/K in case (, € K (thus, p{ h) and at most n p-groups that are the p-part of the Galois
group of K ({y)/K for £ € Jy (we only need to consider those groups that are non-trivial). So we
have at most n+ 1 fields to consider, requiring that there is an automorphism of their compositum
that is not the identity on any of them. Considering the corresponding group-theoretical problem,
we have a p-group that should not be the union of at most n + 1 proper subgroups. There are
only finitely many primes ¢, depending only on K, O

We call P the set of the prime numbers. We define the p-part of a finite abelian extension of
K as its subextension whose Galois group is the p-part of the original Galois group.

Lemma 14. Suppose that for every prime divisor q of h we have (4 ¢ K. Let
F Jh ) JK g ’P

be a function satisfying the following: for q € Jik, we have F(q) = q; for £ € J}, the prime F({)
divides [K(¢g) : K]. We have dens(«) # 0 if and only if we can find a function F as above, such
that for all p in the image of F the set of preimages F~1(p) has the following property: there is
an automorphism of K/K that, for all £ € F~1(p), is not the identity on the p-part of K (s, /a).

Proof. The statement is the formal way of expressing a very natural idea. If we have a finite
abelian extension L/K the following holds: a Galois automorphism is not the identity on L if and
only if there exists a prime number p that divides [L : K] such that said automorphism is not the
identity on the p-part of L/K. O

Remark 15. Thanks to Lemma 14, we are reduced to analyze for finitely many prime numbers p a
family of finite and non-trivial abelian extensions whose Galois group is a p-group. The requested
automorphism always exists if the cardinality of F~1(p) does not exceed p, see Remark 23.

Proof of Theorem 8. The last assertion is because the number of groups of vanishing type is at
most the number of prime divisors of h plus 1, so we may invoke Remark 23.
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With the notation of Lemma 14, fix a function F' and some prime p such that the property
in Lemma 14 does not hold for F~!(p). (Aside: We may choose for practicality F' and p such
that n := #F~!(p) is as small as possible, or p is as small as possible.) Let f1,...,¢, be the
elements of F~1(p), setting ¢; = p if p € F~(p). Write K;, := K({,, %/a) and L for their
compositum. It follows from the definition of F' that the p-parts of the extensions Gal(Ky,/K)
are non-trivial. Thus Gal(L/Ky,) is a proper subgroup of Gal(L/K) for every i. By the definition
of L the intersection of the groups Gal(L/Kp,) is the identity. Moreover, the missing property
for F~1(p) implies that the union of Gal(L/Ky,) is Gal(L/K). Finally, the missing property for
F~1(p) implies that Gal(L/K) is not cyclic. Considering that Gal(Ky,/K) is cyclic, the group
Gal(L/Ky,) cannot be {0}. O

3. EXAMPLES
We present some examples to illustrate the cases in Theorem 6 that stem from Theorem 25.

Example 16. Suppose that K((7.13) is a bicubic extension whose four intermediate subextensions
of degree 3 are K((7), K(C13), K(C19), and K({31). Then dens(a) = 0 i4f h = 7-13-19 - 31.
Moreover, in case (3 € K, we have dens(a) = 0 if h = pgr and K(¥/a) = K((s), where {p,q,r,s} =
{7,13,19,31}. We may take as K the number field generated by the following elements:

V=T; A/ —2(13 + 3V13); 5,V —31,031; Co. V=19, 035 mrmiami0, N2M13M31

where we consider Gauss sums with the following powers:

03, := 3286(5 + 2046¢2 + 6231¢3 + 11165 € Q((5)

m i= —14Gs + 7¢3 € Q(Ca)
35 1= 13¢5 + 52¢5 € Q((3)
n5, i= 31¢3 — 155¢3 € Q((3)
Nl := —156978C3 4 T087¢s — 178866¢4 — 99180¢5 — 137522¢S — 599184¢7 € Q((o) .

Indeed, the first eight generators (which generate a subfield K') belong to the linearly disjoint
extensions Q((7), Q(¢13), Q(¢s.31), Q(lo.19) and they ensure that the extensions K((p)/K with

m = 7,13,19,31 are cubic. Notice that 1/ —2(13 4+ 34/13) generates the quartic cyclic subextension

of Q(C13)/Q because —2(13+3+/13) is the square of the trace from Q((4.13) to Q(C13) of the quartic
Gauss sum.

The Galois group of K'(Cr.13.19.31)/K’ is isomorphic to (Z/3Z)*. Since (3 € K', by Kummer
theory the corresponding group of radicals is generated by n7,ms, N9, n31- The last generators in
the list then ensure that the Galois group of K((7.13.19.31)/K is isomorphic to (Z/3Z)? and that
the extensions K (Cp)/K with m = 7,13,19, 31 are distinct but contained in K (Cz7.13). In the latter
example, we may take o = (n2)P9.

Example 17. Let F' be the compositum of Q(i) and the cubic subextension of Q((13)/Q. Let
ns = —15 + 20y and ni; = 65 — 156¢4 in Q(i) be the fourth powers of the quartic Gauss sums
corresponding to the fields Q(Ca0) and Q((Cs2) respectively.

The Galois group of F(15)/F is isomorphic to Cy x Cy. The subgroup corresponding to F((3)
is {(1,0)), and the one corresponding to F((s) is {(0,1)). The subfield corresponding to {(1,1))
is the quadratic extension F(v/—15). Finally, the subfield corresponding to {(2,1)) is the quartic
cyclic field generated by ns+/—3. Extending the field F by 1n13ns+/—3 has the effect that the subfield
corresponding to the last subgroup is F((13) thus, if K = F and a = (—=15)3%1 (so that h =
3:5:13), we have dens(a) = 0 We can vary this e:vample by enlarging F' with the cubic subextension

of Q((7)/Q and by +/(—7)(—15), so that F(v/—15) = F((7). Then h = 3-5-7-13 implies
dens(a) = 0.

Example 18. We may generalize Example 16 to any odd prime number p. Namely, there exists
a number field K and prime numbers qi,...,qp+1 such that Gal(K (g, q,)/K) is isomorphic to
(Z/pZ)? and the subextensions of K ((4,4,)/ K of degree p are the fields K ((,,) withi=1,...,p+1.
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In this case, the following holds: if h = q1---qpy1, then dens(a) = 0. Moreover, supposing that
(p € K, we also have dens(a) = 0 if K(J/a) = K((g;) for some je{1,....p+1} and h =[], ¢-

To prove the existence of K,qi,...,qp+1, as done in Ezample 16, we may first construct a
number field K' containing ¢, such that the extensions K'(,,)/K' are linearly independent and of
degree p and then apply Kummer theory to enlarge K' and conclude. For the former step we may
use appropriate Gauss sums as generators, assuming that suitable roots of unity are contained in
the field K'. For the latter step, calling ~y; the radical such that ¥ € K' and K'(v;) = K'(¢,,), we

may add the generators ¥iy27y;+2 for every j =1,....p— 1.

Remark 19. We outline a general procedure to exhibit new and substantially different examples
of K,« such that dens(«) = 0. Fiz a prime number p and abelian p-groups Hy, ..., H, that are of
vanishing type in an abelian p-group G: for small values of p and n, such groups — if they exist —
may be found with a computer search testing various possibilities for G (whose size divides n! by
Remark 24). We have to restrict to the case where G/H; is cyclic for every i by Theorem 8 because
K(®/a)/K and the cyclotomic extensions K((p,)/K are cyclic. Let E be the exponent of G and
work over the number field K = Q((,e). Up to extending this field, we may choose primes ly, ... 0y
such that the extensions K ((p,)/K are cyclic of degree # H; and they are linearly independent over
K. In case that w.l.o.g. the group Hy has size p, we may replace K((p,) by K(/a) for some
a € K* such that h is odd, £; | h for all i # 1 and such that K({/a) n K(g,,...,Ce,) = K. By
Lemma 26, up to extending K, the considered cyclotomic extensions (possibly, replacing the first
by the Kummer extension K(#/a)/K) are as in Theorem 8, the groups of vanishing type being
isomorphic to the groups Hy to H,, and their union being isomorphic to G.

4. FINITE NON-CYCLIC ABELIAN GROUPS AS UNION OF PROPER SUBGROUPS

Let G be a non-cyclic group: the cyclic subgroups generated by the elements of G that are
different from the identity are non-trivial and proper and their set-theoretical union is G. On the
other hand, it is impossible to cover a cyclic group with proper subgroups.

Remark 20. No group G is the union of two proper subgroups Hy and Hy. This is well-known, and
a cardinality argument suffices (because the index of a proper subgroup is at least 2 and subgroups
are not disjoint sets):

H(H) O Hy) = #Hy + #Hy — #(Hy 0 Ho) < s#G + S#G — 1< #G.

Recall our notation: we call groups Hi, ..., H, of vanishing type in a group G if the following
holds: Hy, ..., H, are non-trivial subgroups of G; their union is G and their intersection is {0}.
Moreover, we call them irredundant if there is no index ¢ = 1,...,n such that, removing H;, the
union of the subgroups is still G.

Theorem 21 (G. Scorza). Let Hy, Ho, H3 be finite abelian groups that are of vanishing type in an
abelian group G. Then G is isomorphic to Cy x Co and Hy, Ho, and Hs are the three subgroups
of G of order 2.

Proof. This is a special case of [1, Theorem 2], noticing that in the proof G/(H; n Hy n H3) is
isomorphic to Cy x C5 and hence the same holds for G. O

Example 22. Let p be a prime number, and suppose that the group C, x C), is the union of non-
trivial subgroups. Then one must take all p + 1 subgroups of order p. Indeed, beyond the identity,
each subgroup contributes with p — 1 elements, and we have p*> =1+ (p+ 1)(p — 1).

Remark 23. (This remark relates to [12, Theorem 3.6] and [2, Theorem 4].) Let G be a finite
abelian group, and let pg be the smallest prime divisor of the order of G. Then, if G is the union
of n proper subgroups, we must have n = pg + 1. This is clear by cardinality reasons because each
proper subgroup has index at least pg, and the subgroups are not disjoint.

Notice that, if G has two cyclic components that have order a power of one same prime number
p, then it is possible to cover G with p + 1 groups (we may take the preimages of the proper
non-trivial subgroups of Cp, x C), under a surjective group homomorphism,).
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Remark 24. Suppose that a finite abelian group G is the union of n proper subgroups whose
intersection is the identity. Then, up to isomorphism, there are only finitely many possibilities
for G and hence also for the subgroups. This is a consequence of [1, Theorem 6] (see also [13]).
Indeed, the order of G cannot exceed n!.

4.1. The union of four subgroups intersecting at the identity.

Theorem 25. Let Hy,...,Hy be groups of vanishing type in a finite abelian group G that are
irredundant. Then one of the following holds:

(i) G is isomorphic to Cs x C3 and Hy to Hy are the four subgroups of G of order 3;
(ii) G is isomorphic to Co x Cy x Co and, up to isomorphism, two subgroups are {0} x Cy x Ca,
and Cy x {0} x C and the remaining two subgroups are either {(1,1,1)) and {(1,1,0)) or
Co x Co x {0} and {(1,1,1));
(i1i) G is isomorphic to Cy x Ca and the four subgroups are {(1,0)y, {(1,1)), {(0,1)), and
((2,1)).

Proof. As G is the union of proper subgroups, it is not cyclic. Since G is not the union of three
of these subgroups, the four subgroups are irredundant in the sense of [1] (namely, no group is
contained in the union of the others). By Remark 24 the order of G' does not exceed 24. Since
G is non-cyclic we must have at least two cyclic components whose order is a power of one same
prime number. Thus G has as quotient Cy x Cy or C3 x Cs.

In the latter case GG is isomorphic to either C5 x C3 or C3 x C3 x Cy. If G is isomorphic to
C3 x C3, we easily conclude. If G is isomorphic to C3 x C3 x Cy: The 8 elements of order 6
only belong to proper subgroups that have index 3; to take all of them we need to take the four
subgroups of index 3 that, however, all contain (0,0, 1) hence this case cannot occur.

Now consider the former case. We cannot have Cs x C5 as this group has no four irredun-
dant subgroups. The order of G (which is a multiple of 4) then belongs to the following list:
8,12,16, 20, 24.

o If Gis H x C, with p = 3,5 and where H has order a power of 2: If a subgroup contains an
element of order multiple of p, then it contains also the element (0,1). Since the four subgroups
have trivial intersection, the elements of order multiple of p are contained in three of the subgroups.
The three subgroups are then such that their projections on H cover this quotient and we deduce
that the three subgroups already cover the group, so this case cannot occur.

o If G is Cg x Cy: To take the elements of order 8 we need to take the two cyclic subgroups
of index 2, namely ((1,0)) and {(1,1)). The remaining four elements cannot belong to one same
subgroup, because three subgroups cannot cover the group. So w.l.o.g. the third group contains
(2,1) and its multiples (4,0) and (6, 1) but neither (0,1) nor (4,1), which must then belong to the
fourth subgroup. However, the four subgroups all contain (4,0) and hence this case cannot occur.

o If G is (5 x Uy x Cy x Cy: This case does not occur because no four proper subgroups cover
the group. Indeed, take four distinct subgroups of index 2 that, up to isomorphism, consist of the
elements whose i-th projection is zero. Then (1,1,1,1) is not contained in any of the groups.

e If G is Cy x Cy x C5y: having at most one subgroup of order 4 does not allow to cover the
group, so up to isomorphism, two subgroups are H; = {0} x Co x Cy and Hs = Cy x {0} x Cy. If
one third subgroup has order 4, up to isomorphism it is Co x Cy x {0}: the only element left, to
be contained in the last subgroup, is then (1,1,1) (and the last subgroup must have order 2 as we
want irredundant groups). Else, the last two subgroups have order 2 and they must be generated
respectively by the missing element (1,1,1) and (1, 1,0).

o If G is Cy x C5: to take the four elements of order 4 we need the two subgroups {(1,0)) and
{(1,1)). Since the subgroups must be irredundant, the two remaining elements (0,1) and (2,1)
must be contained in the two remaining subgroups (and not both in the same group). The last
two groups must have exponent 2 and to avoid that they coincide they must have order 2.

o If G is Cy x C4: To take the 12 elements of order 4, we can either take the three distinct
subgroups of order 8 or we take two subgroups of order 8 and two groups of order and exponent 4
(in such a way that the elements of order 4 in the subgroups are all distinct). In the former case,
the three subgroups already cover the group, so we must be in the latter case. The two subgroups
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of order 4 are, up to isomorphism, {(1,0)) and {(0,1)). The remaining elements of order 4 are, up
to multiples, (1,1), (1,2), (1,3), and (2,1). One of the two subgroups of order 8 should contain
(2,1) and one of the other three elements: this is impossible because (2,1) and any of the other
three elements generates the group. So this case cannot occur.

o If G is C4 x Oy x C3: We concluded with a computer check (with [3]) that this case cannot
occur. O

4.2. The union of five subgroups intersecting at the identity. Let G be a finite abelian
group and suppose that Hy,..., Hs are of vanishing type in G. By Remark 24, the order of G
cannot exceed 120. Moreover, G' cannot be cyclic so there is a prime p such that Cp x C} is a
quotient of G (clearly, p < 11). For our applications, we may suppose that G is an abelian p-group.

A computer search confirmed that there are abelian p-groups G with #G < 120 and subgroups
Hy, ..., H5 of vanishing type in G and irredundant. For instance, we have the following examples
(for which it is immediate to verify the requested properties):

e Let G = Cg x C5 and consider the subgroups
Hy ={(4,1)), Hy={(0,1)), Hs={(2,1)),
Hy =<(1,1)), Hs=<(1,0)).
The groups Hi, ..., Hs are of vanishing type in G and they are irredundant. Additionally,
G/H; is cyclic for each i = 1,...,5. This is the only choice of subgroups Hy, ..., Hs that

are of vanishing type in Cs x Cs.
e Let G = C4 x C4 and take

Hy = <(1> 1)>a Hy = <<1’ 2)>7 Hs = <(17 3)>7
Hy = <(17 0)>? Hs = <(Oa 1)7 (27 O)>
The groups Hi, ..., Hs are of vanishing type in G and they are irredundant. Additionally,
G/H; is cyclic for each i = 1,...,5.
We remark that we must have p = 2,3. Indeed, for p > 5 the only non-cyclic p-group G of order
at most 120 is C5 x C5 and we cannot have five subgroups of vanishing type in it by Remark 23.

5. ONE TECHNICAL RESULT ON ABELIAN p-GROUPS

We are going to prove, for the convenience of the reader, a general result on abelian p-groups.
Notice that, in the following statement, the assumption ), H; = G holds if we have | J, H; = G.

Moreover, if the X;’s are groups (where j = 1,...,7), then we write Hj# X to mean the following
subgroup of [ [; X;:
(HX] X {0} X HX]) .
Jj<i 7>

Lemma 26. Let p be a prime number, let G be a finite abelian p-group, and let H; (where
it =1,...,7) be non-trivial subgroups of G such that

ﬂHi = {0} ZHl =G and G/H; is cyclic for all i.

There exist positive integers n; (where j = 1,...,7) and an injection G — Hj Z/p"™Z such that
for every i we have
H=Gn|]z/"z.
J#i
For every j the number p™i divides the exponent of G.
Proof. Let G be the Pontryagin dual of G and let HZJ- >~ CT/E be the kernel of the projection
G - fAIz We then have

Z:HZL -G (-}HZl =0 and HZL is cyclic for all 1.
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Fix isomorphisms HiJ- ~ Z/p™Z for appropriate positive integers n; (the last assertion is then
evident). Then the embeddings H;- < G lead to an obvious homomorphism

I HZ/p”fZ—» G
J

such that H;* = f(Z/p"Z) holds for all i and which is surjective because >, Hi* = G. This yields
a diagram with exact columns:

Hf <> 7/p 7.

|

A~

! .
G<——]1,Z/pZ

|

CATV/HZL ~— [ Z/p™Z

Its dual is the diagram (choosing implicitly some isomorphism ZWZ ~ 7Z/p"7):

G/H; Z/p" T

L, ]

a—L~T1,2/0m2

H—— 11,4, Z/p"Z

and we may conclude because the lower diagram is a pull-back (because the top horizontal map
is an isomorphism). O
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