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Abstract—Accurate cropland classification is important for
sustainable land management and agricultural planning. Re-
mote sensing data, such as Normalized Difference Vegetation
Index (NDV I) and Enhanced Vegetation Index (EV I), have
proven instrumental in vegetation monitoring. Traditional ma-
chine learning and deep learning have shown remarkable results
in land classification using remote sensing data. However, when
facing an immense volume of data or high-dimensional features,
deep learning requires large models, extensive parameters, and
substantial training resources. To address the above issues, this
paper proposes Cropland Quantum Learning (CQL), a quantum-
classical hybrid method that utilizes quantum machine learning
to extract features from geospatial information, and integrates it
with a single-layer fully connected classifier to locate cultivation
regions of a given target crop. Experiments show that the
proposed CQL can achieve results comparable to traditional
deep learning while significantly reducing the number of model
parameters.

We present experimental results demonstrating the effective-
ness of our proposed method on NDV I and EV I datasets. The
implementation achieved comparable results to traditional deep
learning using a network with a lower number of parameters,
and in some datasets, even achieved better results in multiple
metrics. The CQL network presents an innovative solution for
cropland classification, achieving promising results with fewer
parameters and reduced resource requirements. As the research
continues deeper, the potential of quantum-enhanced approaches
in geospatial analysis becomes increasingly evident.

Index Terms—Quantum Machine Learning, Remote Sensing
Data, Cropland Classification.

I. INTRODUCTION

Recently, machine learning and deep learning has been
widely used to analyze remote sensing data and solve cropland
classification tasks. In parallel, the quantum algorithm has wit-
nessed remarkable integration with machine learning, leading
to the emergence of hybrid models that harness the power
of both quantum computing paradigms and machine learning.
Hence in this paper, we propose a hybrid neural network
architecture which is based on the variational shadow quantum
learnig [1] , that utilizes the quantum circuits for feature
embedding and neural network as a classifier on cropland
classification.

A. Cropland Classification

Introduction to Cropland Classification with Machine
Learning and Deep Learning:

Cropland classification, a crucial task in remote sensing
and agriculture, involves identifying and categorizing different
types of agricultural land based on the crops being cultivated.
Accurate cropland classification is essential for various pur-
poses, including land management, resource allocation, yield
prediction, and environmental monitoring. In recent years, the
integration of machine learning and deep learning techniques
has revolutionized the field of cropland classification, enabling
more efficient and accurate analysis of agricultural landscapes.

Machine learning, a subset of artificial intelligence, involves
the development of algorithms that enable computers to learn
from data and make predictions or decisions without being
explicitly programmed. Deep learning, a specialized form of
machine learning, utilizes neural networks with multiple layers
to automatically learn and extract complex patterns from data.
Both machine learning and deep learning have been widely
adopted to enhance cropland classification methodologies.

Cropland classification with machine learning [2], [3] and
deep learning [4]–[9] has demonstrated remarkable accuracy
improvements compared to traditional methods. These ad-
vanced techniques leverage the ability of models to capture
intricate relationships within the data, leading to more detailed
and reliable classification outcomes. As technology continues
to evolve, the integration of machine learning and deep learn-
ing in cropland classification promises to contribute signifi-
cantly to precision agriculture, sustainable land management,
and informed decision-making in the agricultural sector.

B. Quantum Machine Learning

Quantum machine learning (QML) [10], [11] represents a
revolutionary paradigm that merges principles from quantum
mechanics and machine learning to enable the development
of more powerful and efficient computational models. Tra-
ditional machine learning techniques have shown remarkable
success in various domains, but as the scale and complexity of
data continue to grow, the limitations of classical computing



become increasingly apparent. Quantum machine learning
offers a promising solution to tackle complex computational
challenges by harnessing the unique properties of quantum
systems.

At its core, quantum machine learning leverages the princi-
ples of superposition and entanglement, which are fundamental
to quantum mechanics. These principles enable quantum com-
puters to process and manipulate information in ways that are
fundamentally different from classical computers. Quantum
bits, or qubits, can exist in a superposition of states, allowing
them to represent and process multiple possibilities simulta-
neously. Additionally, qubits can become entangled, leading
to correlations between qubits that enable novel methods of
information processing.

In the realm of machine learning, quantum computing holds
the potential to accelerate tasks such as optimization, matrix
inversion, and sampling, which are often time-consuming for
classical computers. Quantum algorithms, such as the Quan-
tum Support Vector Machine (QSVM) [12], Quantum Neural
Networks (QNN) [13], and Quantum Principal Component
Analysis (QPCA) [14], are being explored to enhance the
efficiency and capabilities of various machine learning tasks.
However, it’s important to note that quantum computing and
quantum machine information application [15] is still in its
early stages, and building practical and scalable quantum
computers remains a significant challenge. Quantum bits are
delicate and prone to errors due to environmental interactions,
requiring sophisticated error correction techniques to ensure
the reliability of computations. As a result, quantum ma-
chine learning is primarily simulated on classical computers.
Platforms such as PennyLane [16], IBM Qiskit [17], and
Baidu Paddle Quantum [18] are among the leading tools
for implementing hybrid quantum-classical [19] models and
quantum machine learning at this stage.

II. RELATED WORK

The study of cropland classification has witnessed signifi-
cant advancements through the application of machine learning
and deep learning techniques. Numerous researchers have
explored the integration of these methodologies to accurately
discern and classify cropland regions. On the contrary, quan-
tum machine learning and quantum neural networks represent
a highly emerging research direction that serves as a crucial
bridge between quantum computation and real-world classical
problems. They also constitute a significant endeavor to apply
quantum algorithms to classical issues. In this chapter, we
will delve into the existing deep learning-based approaches
for cropland research and explore some of the achievements
in the quantum neural networks.

The application of deep learning techniques in remote
sensing-based cropland classification has gained significant
traction due to its ability to automatically extract complex fea-
tures from high-dimensional and heterogeneous remote sens-
ing data. Deep learning methods, particularly Convolutional
Neural Networks (CNNs) [20] and Recurrent Neural Networks
(RNN) [21], have demonstrated remarkable success in various

land cover and land use classification tasks. Researchers have
increasingly explored the potential of these techniques to
accurately classify cropland areas using multispectral imagery,
including indices such as the Normalized Difference Vege-
tation Index (NDV I) [22] and Enhanced Vegetation Index
(EV I) [23].

CNNs have emerged as a powerful tool for feature extraction
from remote sensing images. They excel at capturing spatial
patterns and hierarchies of features that are essential for
accurate classification. In cropland classification, CNNs have
been employed to analyze multispectral imagery, effectively
distinguishing different land cover types, including cropland.
For instance, Ao et al. [24] utilized CNNs to classify agricul-
tural land use from sentinel-2 images.

Another approach gaining momentum in cropland classi-
fication is the utilization of Recurrent Neural Networks to
incorporate temporal information. RNNs are well-suited for
sequences of data, making them suitable for analyzing the
time-series nature of remote sensing data.To illustrate, an
LSTM network is employed to learn and classify long-term
land cover in China spanning from 1982 to 2015 [25].

Despite the successes of pure deep learning models, chal-
lenges persist, including the need for substantial amounts of
labeled data and their susceptibility to overfitting. To address
these limitations, researchers have explored transfer learning
and data augmentation strategies [26]. Transfer learning [27],
where pre-trained models are fine-tuned on specific tasks, has
been shown to improve the classification accuracy for cropland
areas.

While deep learning models have shown significant promise
in cropland classification, there is growing interest in lever-
aging quantum computing to further enhance classification
accuracy. Our proposed Quantum-Classical Hybrid Neural
Network (QCHNN) builds upon the foundations laid by deep
learning methods while exploiting the quantum computing
paradigm to accelerate feature extraction and enhance clas-
sification performance. By integrating quantum and classical
resources, we aim to create a synergistic approach that over-
comes the limitations of pure classical methods and advances
the state-of-the-art in cropland classification accuracy.

III. METHODOLOGY

In this section, we will provide a comprehensive exposition
of the methodology employed in this paper. Our elucida-
tion will encompass various facets, including data collection,
data encoding, network architecture, and algorithmic specifics.
Each of these elements will be thoroughly expounded upon
to ensure a comprehensive understanding of our research
approach. we will embark on a case analysis centered on
Jackson County, situated in the western region of Missouri,
within the United States, serving as our designated study
area. Elaborate elucidations regarding the data and the devised
encoded representations thereof will ensue forthwith. Further-
more, we propose a quantum-classical hybrid model to handle
these data effectively, addressing the binary classification task



of determining whether corn cultivation is present in the
planting regions.

A. Data Collection

In this context, the bands corresponding to corn crops within
the CDL dataset were selected for the years 2020, 2021, and
2022 within the specified county. Within each unit area, data
pertaining to both EV I and NDV I during the growth stages
of corn were extracted. Furthermore, the areas where corn
was cultivated were labeled as ”1”, while regions without
corn cultivation were designated as ”0.” A cumulative total
of 9228, 9353, and 9119 data instances were acquired within
this region.
NDV I: The Normalized Difference Vegetation Index

(NDV I) dataset is a widely used remote sensing measurement
that provides valuable information about the health and vigor
of vegetation cover. NDV I is derived from satellite imagery
and is commonly used to monitor and assess vegetation
growth, land cover changes, and environmental conditions.
It is instrumental in agriculture, ecology, and environmental
studies. The NDV I is calculated using the following formula:

NDV I =
NIR−Red

NIR+Red
(1)

Where
• NIR is the Near-Infrared band reflectance from the

satellite image.
• Red is the Red band reflectance from the same image.
EV I: The Enhanced Vegetation Index dataset is another

remote sensing measurement used to assess the health and
density of vegetation cover, similar to the NDV I . The EV I
was developed to address some of the limitations of NDV I ,
particularly in areas with dense vegetation or high levels of soil
background reflectance. EV I takes into account atmospheric
influences and enhances sensitivity to variations in vegetation
cover. The EV I is calculated using the following formula:

EV I = 2.5× NIR−Red

NIR+ 6×Red− 7.5×Blue+ 1
(2)

Where
• NIR is the Near-Infrared band reflectance from the

satellite image.
• Red is the Red band reflectance from the same image.
• Blue is the Blue band reflectance from the same image.

Labels: The labels are extracted from the Cropland Data
Layer(CDL). The CDL constitutes a yearly generated crop-
specific land cover dataset encompassing the entire continental
United States. This compilation is crafted utilizing moderate-
resolution satellite imagery in conjunction with comprehensive
agricultural ground truth information. This dataset furnishes
the ground truth essential for our binary cropland classification
task, wherein ”0” signifies cultivated areas, while ”1” corre-
sponds to non-cultivated regions.

Throughout the growth cycle of corn, a total of nine data
points, along with a corresponding label, can be extracted
for both NDV I and EV I . Summing up, the ultimate raw

dataset is composed of individual one-dimensional vectors,
each representing a {[Xj

i ], yi ∈ {0, 1}}, j ∈ 0, 1, ...17.

B. Data Encoding

Both the original EV I and NDV I data are regarded
as foundational datasets, necessitating their conversion into
quantum-encoded representations. Quantum encoding methods
encompass a spectrum of techniques, encompassing basis
encoding, amplitude encoding, and angle encoding, among
others. Given the nature of the task, intrinsic data attributes,
and the optimization of computational inference, the present
study adopts an amplitude encoding approach.

Amplitude encoding encodes a vector x of length N into
amplitudes of an n-qubit quantum state with n = [log2(N)]:

|x⟩ =
N∑
j

xj |j⟩ (3)

Where {|j⟩} is the computational basis for the Hibert Space.
As the amplitudes of a quantum state are constructed from
classical information, it is imperative for the input to adhere
to the requirement of normalization: |X|2 = 1.

In our instance, a sampled case Xj could be encoded as:

|X⟩ =x0 |00000⟩+ x1 |00001⟩+ x2 |00010⟩
+ ...x16 |10001⟩+ x17 |10010⟩
+ ...0 |11110⟩+ 0 |11111⟩

(4)

In this manner, our feature points have been encoded into
quantum states and subsequently subjected to padding. The
original NDV I and EV I signals can now be fed into the
quantum network component for inference.

C. Model Structure

In this section, we present the underlying architecture of the
network, which is composed of three main components. The
first component involves a quantum neural network section
that takes pre-encoded quantum states as inputs. We draw
inspiration from the feature extraction technique employed in
VSQL, utilizing a low-parameter variational quantum circuit
U for feature extraction. This enables the extraction of all
features with minimized parameter degrees. These features
are then transmitted as inputs to the second component of the
network, which is a concatenation of a fully connected network
and a softmax layer. This configuration ultimately generates a
probability distribution for classification outcomes. The entire
architecture is optimized through a backpropagation process,
aiming to minimize binary entropy. The optimization pertains
to the parameters θ in the quantum part and parameters ω
in the classical part. The holistic framework of the network,
illustrated in Figure 1, packages these components in a struc-
ture. The feature engineering module U(θ) of the network
consists of a series of variational quantum circuits. Its purpose
is to conduct feature extraction and dimensionality reduction
on the pre-encoded raw data D to derive the feature set V .
The detailed architecture of U(θ) is depicted in Figure 2.
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Fig. 2: Details presentation of U(θ).

The approach employed here involves a U
′
(θ) sub-network

that operates within the subspace formed by two single qubits.
Subsequently, a similar sliding mechanism is applied to the
following two signal qubits subspace, and this process iterates
progressively until the ith to i+1th quantum state’s subspace
is reached the last two single qubits. Within each subspace,
the U

′
(θ) quantum circuit is executed, followed by a Pauli-

X measurement to observe and compute the corresponding
feature v.

Functioning as a sub-quantum circuit, U
′
(θ) constitutes an

integral component of the core U(θ). Its specific structure is
illustrated in Figure 3. It encompasses a sequence of Rz −
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Fig. 3: Details presentation of U(θ).

Ry −Rz rotations applied successively to the two individual
qubit states within the subspace, followed by a controlled-NOT
CNOT operation between the two qubit states. In the final
step of the U

′
(θ) quantum circuit, there is a single qubit gate

rotation, specifically a Ry rotation gate. The matrices for the
rotations R and the CNOT operation are provided as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (5)

Ry(θ) =

cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

 (6)

Rz(θ) =

[
e−i θ

2 0

0 ei
θ
2

]
(7)



Ry and Rx are fundamental single-qubit rotation gates in
quantum computing used to introduce specific rotation op-
erations on quantum bits (qubits). Meanwhile, CNOT is a
type of gate operation in quantum computing that enables
controlled flipping between quantum bits. In a CNOT gate
operation, one quantum bit serves as the control bit, while
another quantum bit serves as the target bit. When the control
bit is 1, the target bit undergoes a flip (0 becomes 1 and 1
becomes 0); when the control bit is 0, the target bit remains
unchanged.

By utilizing the aforementioned structured quantum circuit
block, we are enabled to extract the feature set v during
the forward propagation of the network. Subsequently, this
feature vector is fed into the subsequent classical network
module, which comprises a fully connected network inter-
linked with a softmax layer. The fully connected layer can
capture the complex relationship between the features obtained
before, combine these features linearly and input them into
the activation function to generate the probability distribution
required by the binary classification problem, so as to realize
the cropland classification task.

The overall structure of the proposed network is a hybrid
model that employs a Quantum encoder to encode the raw data
and use it as input. It incorporates a parameterized quantum
circuit as the feature engineering module, followed by a
classical neural network’s fully connected layer and softmax
activation function as the prediction module.

D. Algorithm

The training and convergence methods of the entire network
are similar to traditional deep learning training methods, as
illustrated in Algorithm 1.

Algorithm 1 Hybrid Quantum-Classical Circuit for Cropland
Classification: training process

Input: Data set D := {[x0−j
i ], yi ∈ {0, 1}}, Epoch

Output: Loss, Quantum Circuit Parameters θ, Classical Pa-
rameters ω

1: Initialize the parameters θ of quantum circuit
2: Initialize the parameters ω of classical block
3: Quantum Encoding on [xi], |Xi⟩ = AmEN([xi]) ▷
AmEN() is an Amplitude Encoder.

4: for epoch = (1,Epoch) do
5: Feed Encoded Data ψ(i) to the varitional quantum

circuit.
6: Measure the quantum part and receive the quantum

part features vi
7: Feed vi into the classical network and obtain ŷi
8: Caculate the the Binary Crossentropy (ŷi − yi)

2 and
update the parameters θ and ω

9: end for

Firstly, Initialize the parameters θ for the quantum block
and ω for the classical block separately. Given the dataset
D := {[X0−(N−1)

i ]}, yi ∈ {0, 1}, where i represents the
sample index in the dataset and N refers to the feature length

of each sample. Apply amplitude quantum encoding AmEN
to the data, the feature dimensions are reduced from N to
[log2(N)].

|Xi⟩ = AmEN([xi]) (8)

Then feed the encoded data into the quantum for feature
extraction to obtain the feature set vi. Continuing, the obtained
features are input to the classical network for classification.
The corresponding loss function is calculated, and the param-
eters of both modules are updated accordingly.

LBCE(y, ŷ) = −(y · log(ŷ) + (1− y) · log(1− ŷ)) (9)

where ŷ is the predictive classification of the entire network
on the training data.

ŷ = σ[Fc(Fq(|X⟩ , θ), ω)] (10)

For more detail, Fc serves as an abstract representation of the
classical network component, which essentially comprises a
fully connected layer.

Fc = v · ω + b (11)

where v is extracted by Fq which is the denotation of the
quantum network section.

Fq = U
′†
(θ)U

′
(θ) (12)

With this approach, the overarching logical objective of the
algorithm is to iteratively update the parameters θ of the quan-
tum circuit and the parameters ω of the classical network. By
utilizing the Adam optimizer, the algorithm aims to minimize
the value of the loss function, thereby achieving the training
of the hybrid network for classification.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: The overview of the datasets split in our
experiments is given in the Table I.The data includes pre-
processed NDVI and EVI concatenated collection from 2020
to 2022 in County Jackson, USA. The split processing ran-
domly select 80% of the datasets of each year as the training
dataset and the rest 20% is reserved for testing the trained
models. Within the training set, a further 20% is set aside
as a validation set. From the table, the 2022 dataset contains
significantly lower number of positive samples (e.g., around
22%). Therefore, after splitting the data for 2022, the Synthetic
Minority Oversampling Technique (SMOTE) is applied to
oversample the 2022 training set in order to ensure a balanced
class distribution. The resultant dataset is denoted as 2022a in
the rest of the paper. On the other hand, both the validation
and test sets retain their original, unchanged distribution.

It can be observed from Table I that the datasets from 2020
and 2021 have a fairly even distribution of positive and neg-
ative samples, representing a well-balanced data distribution.
However,



Data Train Set Test Set Validation Set

2020 5905(47.1%) 1846(46.9%) 1477(45.6%)

2021 5986(43.5%) 1871(45.0%) 1497(45.3%)

2022 5836(22.3%) 1824(22.9%) 1459(22.7%)

2022a 9038(50%) 1824(22.4%) 1459(22.3%)

TABLE I: Dataset Split Detail (The number of samples in the
train, test, and validation sets for each dataset, with the per-
centage of positive samples in each set given in parentheses.)

2) Baselines: To compare with traditional deep learning
methods, we employed both LSTM and CNN models. For
CNN models, we conducted both 1-Dimensional CNN and
2-Dimensional CNN.

3) Implementation: For the proposed Cropland Quantum
Learning hybrid network, we devised two distinct network ar-
chitectures and corresponding experiments. The first approach
treats NDVI and EVI data within a single sample, keep them
as a unified entity, termed as the One-Head Cropland Quantum
Learning(1H CQL). The alternative, the Two-Head Cropland
Quantum Learning(2H CQL), treats NDVI and EVI as sep-
arate features, encoding them individually and subsequently
feeding them into two distinct quantum circuits. To realize
the quantum-related feature engineering, our experimental en-
vironment primary use Paddle-Quantum(2.4.0). Additionally,
the baselines utilize the PaddlePaddle(2.3.0). Both of them are
open-source packages from Baidu.

4) Hyper-Parameters: To facilitate a more effective anal-
ysis of the results, we fix certain hyperparameters across
different networks. These include a batch size of 32 and a
learning rate of 0.001. For each model on different dataset,
we conducted training for 10 epochs. Furthermore, we use
Adam as the optimizer. Consequently, the results obtained are
more conducive to a controlled variable analysis.
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Fig. 4: ROC curves of models on dataset 2020

Methods Parameters Layers FCNN

1D CNN 154 1× CNN ✓

2D CNN 170 1 ×CNN ✓

LSTM 138 1× LSTM ✓

1H CQL 13 1 × CQL ✓

2H CQL 23 1× CQL ✓

TABLE II: Comparision of Model Complexity

B. Performance and Evaluation

Throughout the experiment, our aim was to compare the
performance of different networks across various datasets. By
analyzing the experiment results, we gained insights into the
strengths and weaknesses of each network for the given task.

1) Model Complexity: Before delving into the analysis of
the results, we first consider the complexity of the network.
To assess model complexity, we utilized the model’s training
parameters and network depth, with specific network config-
urations detailed in Table II.

The table illustrates that all models consist of a single
layer, excluding pooling layers, activations, and other non-
parametric components. Moreover, before get the final outputs,
each network terminates with a fully connected layer. Despite
their shallow architecture, the Cropland Quantum Learning
approach possesses fewer training parameters. what’s more,
when dealing with more intricate data and transitioning to
deeper, more complex networks, the parameter count for
quantum networks could exponentially decrease due to their
unique encoding mechanism.

2) Metrics: In our study, a variety of metrics were em-
ployed to evaluate and compare the performance of hybrid
networks with that of traditional neural networks. These met-
rics encompassed the Area Under the Curve (AUC), the F1
Score, and accuracy.

Among them, AUC represents the area under the ROC
curve. It primarily quantifies the classifier’s ability to rank
a randomly chosen positive sample higher than a randomly
chosen negative one. The AUC value ranges between 0.5 and
1.0, with values closer to 1.0 indicating superior performance.
The F1 score is a crucial performance metric for finding a
balance between precision and recall. For a balanced dataset,
accuracy serves as an effective performance metric.

3) Evaluation: Our experimental results are summarized in
Table III. Within the original 2020 dataset, the 1Head CQL
model outperformed others in terms of F1 score, AUC, and
accuracy, surpassing both CNN and LSTM by two percentage
points or more in each metric. We have specifically illustrated
the AUC performance, considering its significance in binary
classification tasks. As shown in Figure 4, it is evident that
the 1Head CQL model exhibited the best performance on the
2020 dataset. Although the CQL model performance on the
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Fig. 5: Validation accuracy and loss history of CQL Hybrid Model on dataset 2020 and 2020a

2021 dataset dose not achieve the best results, it also shows a
results comparabel to traditional CNN and LSTM models.

As observed in the table, traditional networks did not
yield results on the original 2022 dataset. In fact, under this
experimental setup, traditional models tended to overfit on the
relatively imbalanced 2022 data, failing to produce accurate
test results. However, the CQL model demonstrated good
convergence during the training process, as shown in Figure 5.
Furthermore, the 1Head CQL model outperformed the 2Head
version. For the oversampled 2022a data, the 1Head CQL
model also achieved the best performance in terms of F1 score
and accuracy.

In summary, the hybrid models based on quantum machine
learning, when applied to binary classification of agricultural
land use, are able to match and often surpass traditional
CNN and LSTM networks in most cases. A more significant
finding is that, in this task, the CQL model performs better
on imbalanced datasets compared to traditional networks.
This indicates that quantum-based feature engineering can be
more effective than conventional methods in certain specific
datasets.

V. DISCUSSION

Utilizing a hybrid neural network for cropland classification
has proven to be a promising and effective approach. The
quantum-classical hybrid neural approach allows us to extract
complex features from remote sensing data, capturing patterns
and relationships between different features like traditional
neural networks. Simultaneously, we conducted training and
testing on multiple datasets, and the proposed method yielded
consistent performance. On certain datasets, it even exhibited
a slightly superior performance compared to results obtained
from traditional deep learning feature mappings. However,
the feature embedding approach using quantum-inspired tech-
niques capitalizes on the distinctive properties of quantum
bits, achieving comparable effectiveness within a network
configuration that utilizes fewer parameters. This quantum-
inspired approach opens new avenues and solutions for future
applications involving larger-scale remote sensing data and
more complex tasks. Importantly, while the current implemen-
tation involved quantum simulation on conventional hardware,
the prospect of utilizing authentic quantum computers offers
the potential to leverage quantum algorithms for accelerating
classical algorithms when processing traditional data. As we

Methods Test Year F1 Score AUC Acc(%)

1D CNN
2020 0.869 0.913 0.878
2021 0.921 0.969 0.931
2022 – – –
2022a 0.762 0.938 0.878

2D CNN
2020 0.882 0.927 0.889
2021 0.920 0.965 0.930
2022 – – –
2022a 0.756 0.925 0.872

LSTM
2020 0.886 0.934 0.894
2021 0.917 0.971 0.928
2022 – – –
2022a 0.740 0.917 0.870

1Head CQL
2020 0.911 0.959 0.920
2021 0.900 0.948 0.919
2022 0.780 0.920 0.903
2022a 0.880 0.935 0.885

2Head CQL
2020 0.890 0.910 0.885
2021 0.915 0.966 0.924
2022 0.748 0.917 0.890
2022a 0.739 0.912 0.868

TABLE III: Corpland Classification on 3 different years(10
epochs training)

move forward, the incorporation of genuine quantum com-
putation could lead to substantial advancements, ultimately
bridging the gap between quantum-inspired methodologies and
the untapped power of quantum computing. This promises
to provide novel solutions for tackling intricate challenges
posed by expansive remote sensing datasets and intricate tasks,
transcending the capabilities of conventional deep learning
approaches.
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