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A B S T R A C T   

Developing full-dimensional machine-learned potentials with the current “gold-standard” coupled-cluster (CC) 
level is challenging for medium-sized molecules due to the high computational cost. Consequently, researchers 
are often bound to use lower-level electronic structure methods such as density functional theory or second-order 
Møller–Plesset perturbation theory (MP2). Here, we demonstrate on a representative example that gold-standard 
potentials can now be effectively constructed for molecules of 15 atoms using off-the-shelf hardware. This is 
achieved by accelerating the CCSD(T) computations via the accurate and cost-effective frozen natural orbital 
(FNO) approach. The Δ-machine learning (Δ-ML) approach is employed with the use of permutationally 
invariant polynomials to fit a full-dimensional potential energy surface of the acetylacetone molecule, but any 
other effective descriptor and ML approach can similarly benefit from the accelerated data generation proposed 
here. Our benchmarks for the global minima, H-transfer TS, and many high-lying configurations show the 
excellent agreement of FNO-CCSD(T) results with conventional CCSD(T) while achieving a significant time 
advantage of about a factor of 30–40. The obtained Δ-ML PES shows high fidelity from multiple perspectives 
including energetic, structural, and vibrational properties. We obtain the symmetric double well H-transfer 
barrier of 3.15 kcal/mol in excellent agreement with the direct FNO-CCSD(T) barrier of 3.11 kcal/mol as well as 
with the benchmark CCSD(F12*)(T+)/CBS value of 3.21 kcal/mol. Furthermore, the tunneling splitting due to H- 
atom transfer is calculated using a 1D double-well potential, providing improved estimates over previous ones 
obtained using an MP2-based PES. The methodology introduced here represents a significant advancement in the 
efficient and precise construction of potentials at the CCSD(T) level for molecules above the current limit of 15 
atoms.   

1. Introduction 

The potential energy surface (PES) originating from the 
Born–Oppenheimer approximation, that is the electronic energy of a 
molecule or material expressed as a function of its nuclear coordinates, 
plays a central role in theoretical and computational modeling. At least 
for relatively small systems and/or cost-efficient approximate models, it 

is possible to obtain (a required portion of) the PES in real time by 
repeatedly extracting the energies and gradients (or forces) from elec
tronic structure models for the relevant nuclear configurations. How
ever, the computational expense becomes prohibitive as the complexity 
of the electronic structure theory and the size of the system increases. An 
alternative approach constructs a precise analytical representation of 
the PES fitted to datasets of electronic energies (and/or gradients) that 
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cover the required dimensions of the configuration space. Since the PES 
establishes a connection between the configuration of atomic nuclei and 
the forces acting upon them, it is key in numerous fields including re
action dynamics, kinetics, and thermodynamics, vibrational analysis 
incorporating both harmonic and anharmonic aspects, spectroscopic 
properties connected to nuclear motion, and structure optimization. 

In the past 15 years, significant progress has been made in the 
enhancement of nonparametric machine learning (ML) approaches used 
to fit large datasets of electronic energies (and/or gradients) for mole
cules and molecular clusters. Three commonly utilized techniques for 
this purpose include permutationally invariant polynomials (PIPs), a 
linear regression method, as well as neural networks (NN), and Gaussian 
process regression (GPR), which are both non-linear regression methods 
[1–11]. Extending these methods to larger molecules of interest in the 
fields of chemistry, physics and biology presents a significant challenge. 

Another major obstacle in the PES development for molecules of 
increasing size is to retain models of sufficiently high predictive power. 
Both the number of data points needed for PESs with increasing degrees 
of freedom and the computational cost of the quantum chemistry models 
scales steeply with the systems size. In particular, coupled-cluster (CC) 
models, with well converged wave-function and basis set expansions 
have proven their accuracy for a wide range of molecular and material 
properties [12–14]. Especially, the CC method with single and double 
excitations (CCSD) augmented with perturbative triples correction 
[CCSD(T)] [15] is generally considered as the “gold standard” of 
quantum chemistry. However, the steep O (N 4)- and O (N 7)-scaling 
data storage and operation count complexity with system size N hinders 
the routine application of conventional CCSD(T) for PESs of systems 
above ca. 10–12 atoms. 

Regarding the acceleration of CCSD(T), shared-memory intra-node 
(Open Multi-Processing, OpenMP) and/or multinode (Message Passing 
Interface, MPI) parallelization ideas were extensively explored [16–26]. 
For example, the hybrid MPI/OpenMP CCSD(T) from one of us utilizes 
all permutational symmetries of the CCSD(T) equations while exhibiting 
the highest peak-performance utilization reported so far [26]. Still, our 
record-sized single-point CCSD(T)/quadruple-ζ computation for a 
31-atom molecule took almost 3 days on 224 cores, which illustrates 
that the routine generation of extensive databases, training sets, or PESs 
remains a bottleneck with conventional CCSD(T), at least for molecules 
of a few dozen atoms. 

Explicitly correlated (F12) CC approaches can also be effective to 
reduce the basis set requirement of CCSD(T) [27–29], out of which our 
recent (T+) approach in combination with the CCSD(F12*) model [30] 
was shown to be particularly effective [31,32]. Alternatively, 
reduced-cost CCSD(T) approaches, such as the here employed frozen 
natural orbital (FNO) method (see Sect. 2.1) can be utilized to compress 
the space spanned by the virtual molecular orbitals (MOs) [33–37]. The 
combination of the FNO approach with our MPI/OpenMP CCSD(T) 
implementations was especially beneficial to enable basis set limit 
FNO-CCSD(T) computations for up to 50 atoms [32,36]. 

In addition to the high cost of single-point CCSD(T) computations, 
the number of configurations required for high-dimensional PES con
struction also steeply increases with the number of atoms. Therefore, to 
compute PESs of larger molecules, lower-level electronic structure 
methods like density functional theory (DFT) and second-order 
Møller–Plesset perturbation theory (MP2) are employed, while CCSD 
(T)-level PESs of molecules above 10 atoms have been reported in 
only a handful of recent studies [38–48]. As an illustration, the sym
metric gradient domain machine learning model have been proposed to 
construct the global force field of flexible molecules up to with 15 atoms 
at the CCSD(T) level by Tkatchenko and co-workers in 2018 [38]. In 
2019, Roitberg and co-workers introduced a transfer learning (TL) 
technique to develop neural network potentials for several organic and 
drug like molecules approaching CCSD(T) quality correcting a DFT 
dataset [40]. Meuwly and co-workers employed TL using thousands of 
local CCSD(T) energies to improve their MP2-based neural network PESs 

for malonaldehyde, acetoacetaldehyde, and acetylacetone [41]. 
Recently, Daru, Behler, and Marx reported a high dimensional 
coupled-cluster level neural network potential for liquid water for 
condensed phase simulations including nuclear quantum effects via path 
integral dynamics [46]. 

Instances of PESs for chemical reactions involving 6–10 atoms have 
been documented, which were constructed by fitting tens or even hun
dreds of thousands of CCSD(T) energy data points [49–52]. In 2016, 
Bowman and co-workers reported the PES for 10-atom formic acid dimer 
(HCOOH)2, using 13475 energies at CCSD(T)-F12 and triple-ζ level of 
theory [53]. This PES was subsequently applied for zero-point energy 
computation using the diffusion Monte-Carlo (DMC) method and 
ground-state tunneling splitting for the H-transfer process. The 
cost-reduction capabilities of local approximations to CCSD(T) [54–57] 
has also motivated their use in PES development for medium-sized 
systems [41,43,44,46]. In 2021, a 15-atom acetylacetone PES was 
developed by Bowman and co-workers using 2151 local approximated 
CCSD(T)-F12 computations [43]. More recently, Nandi et al. utilized an 
efficient fragment-based molecular tailoring approach to construct 
full-dimensional CCSD(T) PESs for 15-atom acetylacetone and tropolone 
molecules [44,58]. The latter tropolone PES is extensively used for 
ring-polymer instanton calculations to compute tunneling splittings in 
agreement with the experimental values [58]. 

To advance high-throughput reference data generation required, e. 
g., for the PES generation protocols of systems of up to about 15–20 
atoms, like in the present study, we recommend and employ here the 
FNO-CCSD(T) model for the first time. We combine the uniquely effi
cient FNO-CCSD(T) implementation [36,37] of the MRCC program suite 
[59,60] (see Sect. 2.1) and advanced ML approaches (see Sect. 2.2) to 
enable routine PES generation at the 15-atom scale on the example of 
acetylacetone. For that, we first extend the previous FNO benchmarks 
on, e.g., atomization and reaction energies, as well as molecular in
teractions [32,36,37,61] to configuration energies required for the PES 
fitting by assessing the accuracy of FNO-CCSD(T) against approximation 
free CCSD(T) reference. Then, we recommend accurate and routinely 
applicable settings suitable for high-throughput FNO-CCSD(T) compu
tations, which we also employ for several hundreds of acetylacetone 
configurations to develop its CCSD(T)-level PES. Here we use the PIP 
method to fit the coupled-cluster level PES. The PIP approach is 
well-established and has been successfully applied for small to 
medium-sized molecules with numerous applications. Next, this PES is 
utilized for conducting overall fidelity assessments such as geometry 
optimization, calculating normal mode frequencies, and determining 
the tunneling splitting for the H-transfer process. 

The paper is organized as follows. In the next section, we provide a 
brief overview of the FNO-CCSD(T) technique utilized for data genera
tion, as well as the PIP approach to fitting the PES employing the Δ-ML 
method. Then, we present benchmark results for the accuracy of the 
FNO-CCSD(T) method as well as the newly fitted PES. Finally, the 
“Conclusions and Outlook” section ends the paper. 

2. Methods 

2.1. Accelerated coupled cluster methods 

The main computational difficulties with CCSD(T) originate from the 
equations determining the CCSD and (T) amplitudes, which exhibit 
O (N 6)- and O (N 7)-scaling operation count complexity, respectively, 
and O (N 4)-scaling data complexity (for both terms). For the targeted 
15-atom system, even with some of the well-optimized implementations 
and 10–20-core processors, the steep scaling of CCSD(T) already re
quires hours to days of wall-clock time and tens to hundreds of GBs of 
data with sufficiently large, triple- or quadruple-ζ basis sets. 

Recent developments, such as the use of density-fitting (DF) [24–26, 
62,63], help to reduce the latter storage challenges. For example, our 

A. Nandi and P.R. Nagy                                                                                                                                                                                                                      



Artificial Intelligence Chemistry 2 (2024) 100036

3

recent integral-direct DF-CCSD(T) implementation eliminated prob
lematic disk I/O and network traffic bottlenecks as well as also enabled 
us to develop the most data- and memory-economic algorithms for both 
the CCSD [26] and the (T) [63] parts reported so far. 

Considering the generation of extensive benchmark data sets, such as 
with the large number of configuration energies for the PES fitting here, 
the overall task already consists of many independent CCSD(T) com
putations. Thus, parallelization within a single CCSD(T) computation is 
only useful up to a certain number of cores, where the available pro
cessor performance can be effectively utilized (given other limitations, 
such as memory or data transfer bottlenecks). For instance, it is not 
efficient to run 128 different single-thread CCSD(T) jobs on the 128-core 
nodes employed here due to data bandwidth bottlenecks, while 
providing multiple (ca. 16–32-core) jobs per node with separate memory 
channels appear to be highly effective. 

Therefore, it is worthwhile to reduce the computational cost via the 
frozen natural orbital (FNO) approach [33–37]. The natural orbitals 
(NOs) of FNO method are usually obtained as the eigenvectors of a 
one-particle density matrix, built mostly using a model wavefunction, 
such as MP1 [33–37]. Then, the NOs with occupation numbers below a 
threshold are kept frozen, that is, only the most important, nv number of 
frozen NOs are taken into account in the remainder of the CCSD(T) 
computation. The benefit is that the rate-determining steps of both CCSD 
and (T) scale with the fourth power of the number of virtual orbitals, nv. 
Consequently, a theoretical speedup of (nv∕nv)

4 can be anticipated for 
the most demanding steps of both the CCSD and the (T) parts. Addi
tionally, the memory requirement for the DF integrals and the doubles 
amplitudes also decreases by a factor of (nv∕nv)

2, while a factor of 
(nv∕nv)

3 data compression is realized for intermediates required for the 
(T) algorithm [64,63,26]. Such data compression has an additional 
benefit for our integral-direct DF-CCSD(T) algorithm [36], eliminating 
the need for repeated four-center ERI assembly in the FNO-CCSD(T) 
computations presented here. Moreover, both in our conventional 
[26] and FNO-based [36] CCSD(T) codes of the MRCC program suite [59, 
60] the operation count and the memory requirement are fully opti
mized by exploiting all permutational symmetries with an unparalleled 
50–70% peak performance utilization up to hundreds of cores. In 
addition, all terms of our DF-CCSD(T) code are hand-optimized [26,63], 
which is particularly important for maintaining the high efficiency with 
compressed FNO-basis sets [36]. Moreover, the negligible disk I/O and 
network use allow for the execution of a large number of medium-sized 
CCSD(T) computations simultaneously on the same cluster/node and 
network file system. 

Due to the properties of the MP one-particle density matrix, the FNO 
approach can be interpreted as the singular value decomposition (SVD) 
of the MP doubles amplitude tensor, and thus the FNO approximation 
provides an optimized model basis for the truncated representation of 
the wavefunction. Analogous to the FNO method, the natural auxiliary 
function (NAF) approach was introduced to compress the three-center 
ERIs appearing in DF methods via SVD [36,65]. To that end, the NAFs 
can be considered as the optimal linear combination of the DF auxiliary 
functions. Similarly to the case of the FNOs, the compression rate of the 
NAF basis can be controlled via a single truncation parameter by 
dropping singular vectors with a singular values below the NAF 
threshold. The NAF approximation is very robust and its accuracy can be 
set to approach that of the DF approximation [36,65]. The combination 
of the FNO and NAF approaches is beneficial, since after the introduc
tion of the molecule-specific and compressed FNO virtual basis, the 
number of remaining FNO product densities decreases by a factor of 
(nv∕nv)

2. Consequently, a significant DF auxiliary basis compression can 
be achieved by generating a molecule specifically optimized NAF basis 
corresponding to only the retained FNO basis. 

The error of the FNO and NAF basis compressions can be corrected 
via an MP2 level energy correction [36,37]: 

EFNO-CCSD(T) = ECCSD(T)
FNO + EMP2

MO − EMP2
FNO, (1)  

where the subscripts indicate that the corresponding CCSD(T) or MP2 
energies are evaluated using the compressed FNO (and NAF) basis or the 
complete molecular orbital (MO) (and DF auxiliary) basis. 

2.2. Δ-Machine Learning for PES construction 

Δ-Machine learning [66–68] is a general method to bring a property, 
such a PES, trained on an efficient lower-level method close to the ac
curacy of a higher-level method. Here, we correct an MP2-level PES to 
the gold standard CCSD(T) level, for which Δ-ML approach was already 
employed and tested extensively also by some of us [43,69,70]. The 
underlying theory of the Δ-ML approach can be succinctly summarized 
by the following equation: 

VLL→CC = VLL + ΔVCC− LL (2)  

In this equation, VLL→CC represents the corrected potential energy sur
face, VLL denotes a PES fitted to low-level electronic energies, such as 
from DFT or MP2, and ΔVCC− LL corresponds to the correction PES which 
is a fit to the difference in high-level and low-level energies only (i.e. 
here without gradients). It is worth noting that the variation of ΔVCC− LL, 
which represents the difference between CCSD(T) and DFT/MP2 en
ergies, is not as pronounced as that of VLL in relation to nuclear con
figurations (see below in Fig. 5). Consequently, only a smaller number of 
high-level electronic energies are sufficient for fitting the correction 
PES. In our current application to acetylacetone, a total of 430 FNO- 
CCSD(T) electronic energies were computed to accomplish this cor
rected potential fitting. 

Here, we employ the PIP approach to fit both the VLL and ΔVCC− LL 
PESs. The theory of permutationally invariant polynomials is well- 
established and has been presented in several review articles [1,2, 
71–73]. In terms of a PIP basis, the potential energy, V, can be written in 
a compact form as 

V(x) =
∑np

i=1
cipi(x), (3)  

where ci are linear coefficients, pi are PIPs, np is the total number of 
polynomials for a given maximum polynomial order and x are Morse 
variables. For example, xαβ is given by exp( − rαβ∕λ), where rαβ is the 
internuclear distance between atoms α and β. The range (hyper) 
parameter, λ, was chosen to be 2 bohr. The linear coefficients are ob
tained using standard least squares methods for a large data sets of 
electronic energies (and when available gradients as well) at scattered 
geometries. 

In order to develop a corrected PES, we need to generate a dataset of 
high- and low-level energies. In this study, we used MP2/aug-cc-pVTZ 
energies and gradients as low-level data. The low-level PES, VLL is 
taken from previously reported data by Chen Qu and co-workers [74] 
which was a fit using a data size of 5454 energies and their corre
sponding gradients spanning the energy range of 0–40 000 cm− 1. More 
details of this VLL PES can be found in Ref. [74]. We briefly note that the 
model and basis set employed for the FNO and NAF corrections in Eq. (1) 
is MP2 with the same basis set used for the CCSD(T) computation, which 
are in general independent from the low-level model and basis set 
choices. 

To develop the correction PES, we train ΔVCC− LL on the difference 
between the FNO-CCSD(T) and MP2 absolute energies (with aug-cc- 
pVTZ basis) for 430 geometries (provided in the Supplementary Mate
rial). The dataset of 430 geometries were sparsely selected from the MP2 
dataset of 5454 geometries, which was taken from recently reported 
data by Nandi et al. [44]. A low-order PIP fit was employed because the 
difference ΔVCC− LL is not as strongly varying as VLL with respect to the 
nuclear configuration. We used maximum polynomial order of 2 with 
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permutational symmetry {1,2,5,7} (this symmetry indicates that the 
transferring “H” atom is treated as distinguishable, remaining seven “H” 
atoms are permutable with each other, as the two “O” atoms and five “C” 
atoms) to fit the training data set. This leads to a total of 86 PIP bases 
such as unknown coefficients. The PIP basis to fit these VLL and ΔVCC− LL 
PESs were generated using the latest MSA software [75,76]. These co
efficients are determined by a standard linear least-square regression 
method. 

3. Computational details 

All conventional [26] and reduced-cost [32,36,37] CCSD(T) com
putations were performed with the 2022 release of the MRCC quantum 
chemistry program suite, available open-source for academic use [59, 
60]. Closed-shell references and the frozen core approximation were 
applied in all correlation calculations. All valence occupied orbitals 
were kept in the FNO-CCSD(T) computations, only the virtual orbital 
space was compressed via the FNO approach, which was governed by 
the lnoepsv keyword. For all reduced-cost FNO-CCSD(T) computations 
the default threshold of the NAF approach was employed irrespective of 
the FNO threshold, that is 0.05 a.u., set automatically via the naf_cor 
keyword of MRCC. 

For the AO basis set, the correlation consistent X-tuple-ζ (aug-)cc- 
pVXZ (X = D, T, and Q) sets [77,78] were employed with the corre
sponding DF auxiliary bases, (aug-)cc-pVXZ-RI-JK [79] and (aug-) 
cc-pVXZ-RI [80]. For the CCSD(F12*)(T+) explicitly correlated calcu
lations the correlation consistent X-tuple-ζ cc-pVXZ-F12 (X = T, Q) AO 
basis sets [81] and the corresponding cc-pVXZ-F12-OPTRI CABS bases 
were employed [82,83]. The extrapolations of the HF [84] and the 
correlation energies [85] towards the complete basis set (CBS) limit 
were performed separately, according to standard expressions. The 
extrapolated results will be denoted as CBS(X, X+1). 

The wall-clock time measurements were carried out using 16 cores 
per job of 64-core AMD Epyc 7H12 CPUs. The employed two-socket 
nodes were in a national level computer cluster under production use, 
executing competing tasks of multiple users. The nodes contain about 

220 GB accessible memory (allowing 27 GB memory/job) and do not 
have local disks, only network storage access. 

4. Results and discussions 

In this Section we benchmark the computational settings used for the 
FNO-CCSD(T) PES generation. A few important configurations (see  
Fig. 1) are considered including the global minima (GM), a low-laying 
saddle point (TS-I), H-transfer transition state [TS(H)], a high energy 
structure denoted as A2, as well as 20 additional configurations exhib
iting some of the highest uncertainty in comparison to previous results 
[43]. Then, after obtaining the FNO-CCSD(T) for training 430 configu
rations and fitting the PES, the high quality of the PES will be illustrated 
on various structural and vibrational properties of acetylacetone. 

4.1. Accuracy of the FNO-CCSD(T) configuration energies 

The FNO approach (including also the NAF approximations) has 
been extensively benchmarked on, e.g,. atomization, reaction, and non- 
covalent interaction energies [32,36,37]. These properties are expected 
to be somewhat more challenging than the present case, as better 
compensation of FNO errors can be expected for energy differences 
between configurations of the same molecule. However, since such 
configuration energy tests are not yet available, we explore the accuracy 
of the FNO-CCSD(T) approach against the approximation free refer
ences. The FNO truncation errors of FNO-CCSD(T) with respect to the 
FNO approximation free reference are collected in Fig. 2 for the TS(H) 
and A2 configuration energies. 

The previously established [36,37] default (5 ⋅ 10− 5 or 3 ⋅ 10− 5) and 
tighter (10− 5) FNO thresholds are found to be highly reliable here too. 
Thus, we also explore more cost-efficient FNO settings of 3 ⋅ 10− 4 and 
10− 4, out of which 10− 4 performs very well. First, the aug-cc-pVDZ 
(green circles) FNO errors in Fig. 2 are only moderately higher than 
those obtained with the practically more relevant aug-cc-pVTZ (red 
crosses) and aug-cc-pVQZ (blue squares) ones. Moreover, systematic 
convergence of the (absolute) FNO errors is found with tightening the 

Fig. 1. Geometry of global minimum (GM), low-laying saddle point (TS-I), H-transfer saddle point [TS(H)], and a high-energy structure (A2) of acetylacetone and 
their corresponding electronic energies (cm− 1) relative to the global minimum from Δ-ML PES. (Atomic numbering scheme was used to generate PIP bases to fit 
VLL PES.) 
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FNO thresholds. Regarding the aug-cc-pVTZ and aug-cc-pVQZ basis sets, 
the FNO errors are within the [− 0.11, 0.07] kcal/mol or [− 39, 24] 
cm− 1 range already with the 10− 4 threshold for both the barrier height 
and the A2 configuration energy. It is also satisfactory, that the corre
sponding (absolute) FNO errors are below 0.03 kcal/mol or 10 cm− 1 

with the one step tighter, 3 ⋅ 10− 5 FNO settings. 
While the accuracy of the FNO approach is the most important up to 

the region of TS(H), we also estimate the magnitude of the largest 
inaccuracies along the entire investigated interval of the PES. To that 
end, we selected 10 additional configurations where the largest dis
agreements occurred with the previously obtained local approximated 
CCSD(T) dataset [43]. All of these 10 configurations turned out to be of 
very high energy in the range of [33.6, 87.9] kcal/mol or ca. [11 750, 30 
750] cm− 1 above the GM. Therefore, we extended this list with 10 
configurations selected randomly from the interval between the TS(H) 
and the configuration at the lower end of the above interval 
(33.6 kcal/mol). 

In Fig. 3 we plot the resulting FNO errors corresponding to the 10− 4 

settings compared to the DF-CCSD(T) reference for these 10 + 10 con
figurations [as well as TS(H) and A2]. As expected, the FNO errors 
somewhat increase with the increasing configuration energy, which 
appears to be quite systematic for the randomly selected 10 configura
tions. In this region, the previously found FNO error of ca. 0.1 kcal/mol 
(35 cm− 1) roughly doubles by reaching the 30 kcal/mol (10 500 cm− 1) 
configuration energy range. The average error up to this point is 
0.15 kcal/mol (52 cm− 1), which is excellent considering the low prob
ability of such high-energy configurations. The largest expected un
certainties can be estimated for the other 10 structures in the [33.6, 
87.9] kcal/mol or [11 750, 30 750] cm− 1 region. Indeed, here the 
average error grows to 0.3 kcal/mol (105 cm− 1), which is again 
acceptable considering the very low population of these high-energy 

configurations. All in all, the steepness of the FNO error increase is 
much lower than the corresponding increase in the configuration en
ergies, and more importantly, very small compared to the exponential 
decrease in the populations of these configurations. 

We also study the FNO-CCSD(T) wall times as a function of the basis 
set and FNO threshold choice (Fig. 4). Considering the 3–4-fold increase 
of the wall times stepping from 10− 4 to 3 ⋅ 10− 5 FNO settings and the 
satisfactory performance of both, FNO-CCSD(T)/aug-cc-pVTZ with 10− 4 

FNO threshold offers the best accuracy/cost performance for large-scale 
data generation in PES fitting. 

As collected in Table 1, this choice corresponds to a speed up factor 
of 38 compared to the FNO approximation free CCSD(T)/aug-cc-pVTZ 
computations. In absolute terms, the FNO-CCSD(T)/aug-cc-pVTZ cor
relation energy computations with 10− 4 settings take about 3–4 min 
with an additional 1–2 min for the SCF and integral transformation 
steps. These FNO-CCSD(T)/aug-cc-pVTZ computations require a mini
mum of 0.8 GB or, without any repeated integral evaluations, only a few 
GBs of memory. These hardware requirements and the comparable 
amount of disk and network use make these FNO-CCSD(T) computations 
especially suitable for high-throughput reference data generation, e.g., 
for PES fitting or ML training tasks. For example, the 430 FNO-CCSD(T) 
computation performed here for the acetylacetone PES would take less 
than 2 days on a 16 core machine. This total time could go further down 
to about 6 h when using all 128 cores of the here employed dual-socket 
AMD node. Running 8 FNO-CCSD(T) jobs on such nodes is feasible due 
to the moderate, few GB memory requirement (Table 1) and limited I/O 
and network use of the FNO-CCSD(T) implementation [26,36] in the 
MRCC program suite [59,60]. 

4.2. Fitting and benchmarking the PES 

We develop a new full-dimensional PES of acetylacetone at the FNO- 
CCSD(T)/aug-cc-pVTZ level of theory using the Δ-machine-learning 

Fig. 2. FNO truncation error for the TS(H) barrier height (left) and A2 configuration energy (right) with respect to the FNO threshold with aug-cc-pVXZ basis sets. 
The results are arranged to show increasing accuracy corresponding to decreasing FNO truncation threshold values on the x axis. 

Fig. 3. FNO-CCSD(T) configuration energy errors compared to the DF-CCSD 
(T)/aug-cc-pVTZ reference for all investigated configurations including TS(H), 
A2, 10 configurations with the highest uncertainty from the [33.6, 87.9] kcal/ 
mol or [11 750, 30 750] cm− 1 interval, and 10 randomly selected configura
tions from the [3.1, 33.6] kcal/mol or [1084, 11 750] cm− 1 interval. 

Fig. 4. FNO-CCSD(T) correlation energy computation time measurements (in 
minutes) on 16 cores for the various FNO settings and basis sets. 
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(Δ-ML) approach. To obtain this CCSD(T) PES we add the correction 
ΔVCC-LL to the low-level MP2 PES, VLL. So, the development of this PES 
can be divided into two parts: low-level PES (VLL) and a correction PES 
(ΔVCC-LL). Here we use a previously reported VLL PES which is fit to 5454 
energies and their corresponding gradients computed at the MP2/aug- 
cc-pVTZ level of theory [74]. For this fit, a maximum polynomial 
order of three was used which led to a total of 6207 PIP basis functions. 
The symmetry designation for this fit was {1,2,2,2,6,1,1}, meaning that 
the two oxygens (atoms 2 and 3) are treated as equivalent, as are the two 
carbons (atoms 4 and 5), the two terminal carbons (atoms 6 and 7), and 
the six hydrogens (atoms 8–13) on the terminal carbons are treated 
equivalent too (as labeled in Fig. 1). The remaining ’H’ atoms and the 
central carbon are treated as unique. The weighted average fitting RMS 
errors for energies and gradients were 49 cm− 1 and 29 cm− 1 bohr− 1, 
respectively. More details of this PES can be found in Ref. [74]. 

To develop a new correction PES, we train ΔVCC-LL on the difference 
between the FNO-CCSD(T) and MP2 absolute energies of 430 geome
tries. A plot of ΔVCC-LL versus the MP2 energies is shown in Fig. 5. Note 
that we reference ΔVCC-LL to the minimum of the difference between the 
FNO-CCSD(T) and MP2 energies (roughly − 23 436 cm− 1). The energy 
range of ΔVCC-LL is about 1800 cm− 1 in Fig. 5, which is much smaller 
than the MP2 energy range relative to the minimum value (roughly 35 
000 cm− 1) [74]. 

Thus, the difference ΔVCC-LL is not as strongly varying as VLL with 
respect to the nuclear configuration, and a low-ordered polynomial can 
be employed to fit this. We use a maximum polynomial order of 2 with 

permutational symmetry {1,2,5,7} to fit the dataset which leads to a 
much smaller number (86) of unknown linear coefficients. We perform 
both weighted average and unweighted fitting for ΔVCC-LL. In the pro
cess of weighted average fitting, a weight is assigned to each data point 
based on its energy. The weight is given by wt = E0∕(E0 + dE), where dE 
is the energy relative to the minimum in a.u., and E0 is the parameter 
that we could modify. For the unweighted fitting, E0 is typically set as a 
large number, such as 1010 a.u., resulting in all weights essentially being 
1. In this case, we chose E0 to be 0.02 a.u. to achieve the desired 
weighted average fitting matching Ref. [74]. The RMSEs for the 
weighted and unweighted fitting are 11 cm− 1 and 52 cm− 1, respec
tively. To examine the performance of the PES, we use weighted aver
aged ΔVCC-LL fitting only. 

We add this correction ΔVCC-LL to the low level MP2 PES, VLL to 
obtain the total CCSD(T) energies. We perform geometry optimization 
and normal-mode frequency calculations for global minimum (GM) 
geometry, and two TS geometries to examine the fidelity of this PES. 
These two TSs are TS-I in which the torsional angle of one methyl rotor is 
shifted by 60∘ compared to GM, and the H-transfer saddle point is 
denoted as TS(H). The structure of these geometries is shown in Fig. 1. 
We obtain the symmetric double well H-transfer barrier as 1103 cm− 1 or 
3.15 kcal/mol, whereas the CCSD(F12*)(T+)/CBS(T,Q) value is 
1124 cm− 1 or 3.2 kcal/mol, which is an excellent agreement. Note that 
it is a significant improvement over the MP2-based PES [74], which 
leads to a barrier height of 745 cm− 1 or 2.13 kcal/mol. Additionally, we 
observe that the TS-I is only 162 cm− 1 or 0.46 kcal/mol higher in energy 
compared to the global minimum. 

Next, to examine the vibrational frequency predictions of the PES, 
we perform normal-mode analyses for the global minimum and H- 
transfer saddle point geometries. A comparison of harmonic mode fre
quencies for these two structures is shown in Table 2 along with the 
previously reported results from MP2 PES (VLL) and local CCSD(T)-F12 
calculations [43]. For most of the modes in Table 2, the differences 
between VLL and VLL→CC frequencies are small. Nevertheless, for 
high-frequency modes, this difference is more significant, especially for 
mode 32 of the global minimum and the imaginary-frequency mode of 
the TS(H). It is a major improvement over the MP2-based PES. 

Another important aspect of this PES is the symmetric double well 
potential associated with the H-transfer process, which is essential for 
calculating the ground state tunneling splitting. In this context, we 
applied an approximate 1D approach to obtain the tunneling splittings 
following Ref. [86] (see Fig. 6). 

In short, we derived a 1D potential, denoted V(Qim), which represents 
the minimum energy pathway as a function of the imaginary-frequency 
mode (Qim) corresponding to the hydrogen transfer saddle point geom
etry. This was achieved by optimizing all other coordinates while 
keeping Qim values fixed on the VLL→CC PES except the methyl rotors, 
which cannot be described using rectilinear normal coordinates. These 
are held fixed at the saddle point values all the way along the path. 
Mostly due to the fixed methyl orientation and partly due to the fitting 
error, the barrier height of this 1D Qim path is 940 cm− 1 or 2.69 kcal/mol 
and it is 147 cm− 1 lower than the direct FNO-CCSD(T) value or 
163 cm− 1 lower than the barrier on the VLL→CC surface. This mass-scaled 
1D potential is shown in Fig. 6. This approach is sufficient to test the 
fidelity of the fitting, while we note that a more-than-1D representation 
would be required for more accurate barriers and tunneling splitting 
values. 

The splittings are obtained through straightforward 1D-DVR calcu
lations [87], which involve computing the energies of the ground and 
first excited vibrational states along the V(Qim) pathway. It is worth 
noting that the same method was employed to calculate tunneling 
splittings for H-atom and D-atom transfer in malonaldehyde [86]. 
Remarkably, the 1D-DVR outcomes consistently demonstrated a close 
correspondence with the rigorous full-dimensional diffusion Monte 
Carlo splittings, typically falling within a 10% margin of agreement (as 
that 1D potential could represent the barrier from the global minima due 

Table 1 
Wall times, speedups as well as minimal memory requirements (in GB units) 
without and with the FNO approach using the 10− 4 threshold and aug-cc-pVXZ 
basis sets. The maximum utilized memory (in GB units) columns show the 
memory consumption of the jobs, while the minimal requirement would be 
sufficient for execution (with some repeated integral evaluation steps). The last 
column holds the corresponding FNO error in the TS(H) barrier height.  

X Wall time [min] Speedup CCSD (T) 
memory 

FNO-CCSD 
(T) memory 

FNO 
error  

CCSD 
(T) 

FNO- 
CCSD 
(T)  

min max 
used 

min max 
used 

[cm− 1] 

D  3.7  0.9  3.9  1.0  7.4  0.27  1.3 − 4.7 
T  119.4  3.1  38.3  10.4  51.2  0.80  6.3 3.5 
Q  995.2  4.1  240.9  64.7  107.5  0.99  8.3 6.2  

Fig. 5. Plot of ΔVCC− LL (relative to the reference value i.e. − 23 436 cm− 1) vs 
MP2 energy relative to the global minimum value. 
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to the simpler structure of malonaldehyde). Employing the 1D approach 
here, we obtain the ground state tunneling splitting of the H-transfer 
process as 71 cm− 1 for this barrier height of 940 cm− 1, which is a sig
nificant improvement compared to the MP2 PES result [74]. In contrast, 
a previously reported tunneling splitting value of 32 cm− 1 was obtained 
with the associate barrier height of 1234 cm− 1 through rigorous DMC 
calculation using the local CCSD(T)-F12/cc-pVTZ-F12 PES by Chen et al. 
[43]. Given the well-established fact on the sensitivity of tunneling 
splitting to the barrier height, we aim to directly compare 1D-DVR 
tunneling splittings across different acetylacetone PESs, each associ
ated with distinct 1D V(Qim) barrier heights (see Table 3). 

For instance, employing the full-dimensional PES at the MP2 level, 
the 1D-DVR splitting for H-transfer was found to be 141 cm− 1 with a 
barrier height of 586 cm− 1, which transforms to 104 cm− 1 after 
morphing [74] the 1D V(Qim) potential with a barrier height of 
745 cm− 1. Similarly, the tunneling splitting is estimated as 48 cm− 1 

with a barrier height of 1055 cm− 1 from the local CCSD(T)-F12 PES 
[43], and after morphing the 1D potential, it becomes 38 cm− 1 with a 
corresponding barrier height of 1234 cm− 1 [43]. 

This analysis highlights the sensitivity of the tunneling splitting 
value to the barrier height and other PES parameters. While higher- 
dimensional computations will be the subject of a forthcoming study, 
our primary objective here was to present a full-dimensional acetyla
cetone PES using the cost-effective and highly accurate FNO-CCSD(T) 

data and benchmark its fidelity on various structural and dynamic 
properties, including the symmetric double well H-transfer motion. 

5. Conclusions and outlook 

Here, we present the first study with the highly promising combi
nation of accelerated CCSD(T) and advanced Δ-machine learning to 
extend the reach of gold standard-level global PES generation for 
medium-sized molecules. We show that around a factor of 40 cost- 
reduction can be achieved by compressing the orbital space used for 
the CCSD(T) computations via the first application of the frozen natural 
orbital (FNO) approach in this context. Detailed benchmarks for the 15- 
atom acetylacetone molecule show that for lower-energy configurations, 
such as the first transition state, the FNO errors are negligible being in 
the 0.01 kcal/mol or ca. 5 cm− 1 range. These uncertainties stay around 
0.15 (0.3) kcal/mol or ca. 50 (100) cm− 1 on the average (at the worst 
cases) even for the very high energy configurations up to ca. 100 kcal/ 
mol or 35 000 cm− 1, which are required for quantum nuclear compu
tations. This is achieved via a cautious relaxation of usually highly- 
conservative FNO settings, which can be systematically improved to 
the conventional CCSD(T) result. 

The Δ-ML approach brings significant additional cost-reduction, as it 
enables the correction of a low-level, cost-effective PES to the CCSD(T) 
level via an order of magnitude less CCSD(T)-level data points. By also 
utilizing the permutationally invariant polynomial (PIP) approach 
tailor-made for PES representation, several hundreds (instead of tens of 
thousands) of CCSD(T) computations were sufficient here for the 15- 

Table 2 
Harmonic frequencies (in cm− 1) of the global minimum and H-transfer saddle 
point of acetylacetone obtained from the local CCSD(T)-F12, VLL→CC, and VLL 
PESs.   

GM TS (H) 

mode local CCSD (T)a VLL→CC VLL
a local CCSD (T)a VLL→CC VLL

a  

1  113  97  97 1278i 1044i 921i  
2  133  119  119 100 56 53  
3  169  155  153 121 61 57  
4  197  188  189 165 158 156  
5  236  223  229 198 196 198  
6  372  360  364 289 281 285  
7  392  383  390 412 410 417  
8  505  498  507 537 527 531  
9  554  564  567 540 535 539  
10  643  652  650 578 581 580  
11  654  652  656 661 646 645  
12  793  795  803 767 739 740  
13  919  880  921 781 744 756  
14  942  907  936 949 932 953  
15  951  926  942 992 977 979  
16  1010  1002  1014 1035 1026 1039  
17  1040  1037  1048 1037 1032 1043  
18  1050  1048  1058 1054 1054 1060  
19  1072  1064  1071 1067 1055 1062  
20  1192  1187  1200 1195 1175 1189  
21  1276  1264  1290 1308 1229 1223  
22  1393  1371  1384 1341 1332 1347  
23  1405  1391  1399 1406 1397 1409  
24  1424  1423  1433 1413 1410 1422  
25  1462  1442  1470 1481 1483 1496  
26  1480  1481  1494 1487 1483 1496  
27  1483  1483  1497 1488 1485 1500  
28  1488  1493  1505 1491 1487 1502  
29  1502  1500  1512 1569 1543 1567  
30  1670  1647  1655 1613 1609 1629  
31  1709  1695  1704 1624 1634 1670  
32  3047  3019  2855 1904 1709 1685  
33  3052  3060  3095 3054 3019 3098  
34  3118  3069  3099 3057 3061 3099  
35  3122  3156  3178 3130 3163 3190  
36  3157  3162  3187 3132 3163 3190  
37  3165  3185  3208 3154 3181 3207  
38  3220  3193  3218 3156 3182 3208  
39  3257  3235  3258 3241 3255 3282 

a From Ref. [43] 

Fig. 6. One-dimensional V(Qim) path for H transfer in AcAc.  

Table 3 
Ground-state tunneling splittings of acetylacetone obtained from 1D V(Qim) 
(with and without morphing) potential with indicative barrier height.  

PES Barrier (cm− 1) Splitting (cm− 1) 

MP2 (without morphing)a  586  141 
MP2 (morphing)a  745  104 
local CCSD(T) (without morphing)b  1055  48 
local CCSD(T) (morphing)c  1234  38 
VLL→CC (without morphing)  940  71 

a From Ref. [74]. b From private communication. c From Ref. [43]. 
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atom acetylacetone. The combination of FNO method with MRCC’s 
highly-optimized CCSD(T) implementation, which is developed specif
ically for such reduced-cost applications, enables FNO-CCSD(T)/aug-cc- 
pVTZ computations for such 15-atom molecules within ca. 5 min on 16 
cores. All in all, the FNO-CCSD(T) Δ-ML PES construction exhibited an 
unprecedented efficiency, enabling the required 430 FNO-CCSD(T)- 
level computations on a single, relatively accessible 128-core AMD 
node in around 6 h. Since the FNO-CCSD(T)-based data set generation is 
independent from the parameters of the PES representation, any other 
efficient descriptor and/or ML method combination can similarly 
benefit from this advancement. The obtained Δ-ML PES is representative 
of the expectable accuracy also with other ML methods. It shows high 
fidelity from multiple perspectives, including energetic, structural, and 
(an)harmonic vibrational properties, such as the tunneling splitting 
corresponding to the symmetric double well H-transfer barrier of ace
tylacetone. In a forthcoming work, this study will be extended to addi
tional CCSD(T) cost-reduction approaches also at the basis set limit, as 
well as to a broader set of molecules and quantum nuclear properties. 
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