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ABSTRACT

Developing full-dimensional machine-learned potentials with the current “gold-standard” coupled-cluster (CC)
level is challenging for medium-sized molecules due to the high computational cost. Consequently, researchers
are often bound to use lower-level electronic structure methods such as density functional theory or second-order
Mgller-Plesset perturbation theory (MP2). Here, we demonstrate on a representative example that gold-standard
potentials can now be effectively constructed for molecules of 15 atoms using off-the-shelf hardware. This is
achieved by accelerating the CCSD(T) computations via the accurate and cost-effective frozen natural orbital
(FNO) approach. The A-machine learning (A-ML) approach is employed with the use of permutationally
invariant polynomials to fit a full-dimensional potential energy surface of the acetylacetone molecule, but any
other effective descriptor and ML approach can similarly benefit from the accelerated data generation proposed
here. Our benchmarks for the global minima, H-transfer TS, and many high-lying configurations show the
excellent agreement of FNO-CCSD(T) results with conventional CCSD(T) while achieving a significant time
advantage of about a factor of 30-40. The obtained A-ML PES shows high fidelity from multiple perspectives
including energetic, structural, and vibrational properties. We obtain the symmetric double well H-transfer
barrier of 3.15 kcal/mol in excellent agreement with the direct FNO-CCSD(T) barrier of 3.11 kcal/mol as well as
with the benchmark CCSD(F12*)(T-+)/CBS value of 3.21 kcal/mol. Furthermore, the tunneling splitting due to H-
atom transfer is calculated using a 1D double-well potential, providing improved estimates over previous ones
obtained using an MP2-based PES. The methodology introduced here represents a significant advancement in the
efficient and precise construction of potentials at the CCSD(T) level for molecules above the current limit of 15
atoms.

1. Introduction

The potential energy

surface

(PES) originating from the

is possible to obtain (a required portion of) the PES in real time by
repeatedly extracting the energies and gradients (or forces) from elec-
tronic structure models for the relevant nuclear configurations. How-

Born-Oppenheimer approximation, that is the electronic energy of a
molecule or material expressed as a function of its nuclear coordinates,
plays a central role in theoretical and computational modeling. At least
for relatively small systems and/or cost-efficient approximate models, it

ever, the computational expense becomes prohibitive as the complexity
of the electronic structure theory and the size of the system increases. An
alternative approach constructs a precise analytical representation of
the PES fitted to datasets of electronic energies (and/or gradients) that
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cover the required dimensions of the configuration space. Since the PES
establishes a connection between the configuration of atomic nuclei and
the forces acting upon them, it is key in numerous fields including re-
action dynamics, kinetics, and thermodynamics, vibrational analysis
incorporating both harmonic and anharmonic aspects, spectroscopic
properties connected to nuclear motion, and structure optimization.

In the past 15 years, significant progress has been made in the
enhancement of nonparametric machine learning (ML) approaches used
to fit large datasets of electronic energies (and/or gradients) for mole-
cules and molecular clusters. Three commonly utilized techniques for
this purpose include permutationally invariant polynomials (PIPs), a
linear regression method, as well as neural networks (NN), and Gaussian
process regression (GPR), which are both non-linear regression methods
[1-11]. Extending these methods to larger molecules of interest in the
fields of chemistry, physics and biology presents a significant challenge.

Another major obstacle in the PES development for molecules of
increasing size is to retain models of sufficiently high predictive power.
Both the number of data points needed for PESs with increasing degrees
of freedom and the computational cost of the quantum chemistry models
scales steeply with the systems size. In particular, coupled-cluster (CC)
models, with well converged wave-function and basis set expansions
have proven their accuracy for a wide range of molecular and material
properties [12-14]. Especially, the CC method with single and double
excitations (CCSD) augmented with perturbative triples correction
[CCSD(T)] [15] is generally considered as the “gold standard” of
quantum chemistry. However, the steep @(./**)- and @(.#7)-scaling
data storage and operation count complexity with system size ./ hinders
the routine application of conventional CCSD(T) for PESs of systems
above ca. 10-12 atoms.

Regarding the acceleration of CCSD(T), shared-memory intra-node
(Open Multi-Processing, OpenMP) and/or multinode (Message Passing
Interface, MPI) parallelization ideas were extensively explored [16-26].
For example, the hybrid MPI/OpenMP CCSD(T) from one of us utilizes
all permutational symmetries of the CCSD(T) equations while exhibiting
the highest peak-performance utilization reported so far [26]. Still, our
record-sized single-point CCSD(T)/quadruple-{ computation for a
31-atom molecule took almost 3 days on 224 cores, which illustrates
that the routine generation of extensive databases, training sets, or PESs
remains a bottleneck with conventional CCSD(T), at least for molecules
of a few dozen atoms.

Explicitly correlated (F12) CC approaches can also be effective to
reduce the basis set requirement of CCSD(T) [27-29], out of which our
recent (T+) approach in combination with the CCSD(F12*) model [30]
was shown to be particularly effective [31,32]. Alternatively,
reduced-cost CCSD(T) approaches, such as the here employed frozen
natural orbital (FNO) method (see Sect. 2.1) can be utilized to compress
the space spanned by the virtual molecular orbitals (MOs) [33-37]. The
combination of the FNO approach with our MPI/OpenMP CCSD(T)
implementations was especially beneficial to enable basis set limit
FNO-CCSD(T) computations for up to 50 atoms [32,36].

In addition to the high cost of single-point CCSD(T) computations,
the number of configurations required for high-dimensional PES con-
struction also steeply increases with the number of atoms. Therefore, to
compute PESs of larger molecules, lower-level electronic structure
methods like density functional theory (DFT) and second-order
Mgller-Plesset perturbation theory (MP2) are employed, while CCSD
(T)-level PESs of molecules above 10 atoms have been reported in
only a handful of recent studies [38-48]. As an illustration, the sym-
metric gradient domain machine learning model have been proposed to
construct the global force field of flexible molecules up to with 15 atoms
at the CCSD(T) level by Tkatchenko and co-workers in 2018 [38]. In
2019, Roitberg and co-workers introduced a transfer learning (TL)
technique to develop neural network potentials for several organic and
drug like molecules approaching CCSD(T) quality correcting a DFT
dataset [40]. Meuwly and co-workers employed TL using thousands of
local CCSD(T) energies to improve their MP2-based neural network PESs
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for malonaldehyde, acetoacetaldehyde, and acetylacetone [41].
Recently, Daru, Behler, and Marx reported a high dimensional
coupled-cluster level neural network potential for liquid water for
condensed phase simulations including nuclear quantum effects via path
integral dynamics [46].

Instances of PESs for chemical reactions involving 6-10 atoms have
been documented, which were constructed by fitting tens or even hun-
dreds of thousands of CCSD(T) energy data points [49-52]. In 2016,
Bowman and co-workers reported the PES for 10-atom formic acid dimer
(HCOOH),, using 13475 energies at CCSD(T)-F12 and triple-¢ level of
theory [53]. This PES was subsequently applied for zero-point energy
computation using the diffusion Monte-Carlo (DMC) method and
ground-state tunneling splitting for the H-transfer process. The
cost-reduction capabilities of local approximations to CCSD(T) [54-57]
has also motivated their use in PES development for medium-sized
systems [41,43,44,46]. In 2021, a 15-atom acetylacetone PES was
developed by Bowman and co-workers using 2151 local approximated
CCSD(T)-F12 computations [43]. More recently, Nandi et al. utilized an
efficient fragment-based molecular tailoring approach to construct
full-dimensional CCSD(T) PESs for 15-atom acetylacetone and tropolone
molecules [44,58]. The latter tropolone PES is extensively used for
ring-polymer instanton calculations to compute tunneling splittings in
agreement with the experimental values [58].

To advance high-throughput reference data generation required, e.
g., for the PES generation protocols of systems of up to about 15-20
atoms, like in the present study, we recommend and employ here the
FNO-CCSD(T) model for the first time. We combine the uniquely effi-
cient FNO-CCSD(T) implementation [36,37] of the Mrcc program suite
[59,60] (see Sect. 2.1) and advanced ML approaches (see Sect. 2.2) to
enable routine PES generation at the 15-atom scale on the example of
acetylacetone. For that, we first extend the previous FNO benchmarks
on, e.g., atomization and reaction energies, as well as molecular in-
teractions [32,36,37,61] to configuration energies required for the PES
fitting by assessing the accuracy of FNO-CCSD(T) against approximation
free CCSD(T) reference. Then, we recommend accurate and routinely
applicable settings suitable for high-throughput FNO-CCSD(T) compu-
tations, which we also employ for several hundreds of acetylacetone
configurations to develop its CCSD(T)-level PES. Here we use the PIP
method to fit the coupled-cluster level PES. The PIP approach is
well-established and has been successfully applied for small to
medium-sized molecules with numerous applications. Next, this PES is
utilized for conducting overall fidelity assessments such as geometry
optimization, calculating normal mode frequencies, and determining
the tunneling splitting for the H-transfer process.

The paper is organized as follows. In the next section, we provide a
brief overview of the FNO-CCSD(T) technique utilized for data genera-
tion, as well as the PIP approach to fitting the PES employing the A-ML
method. Then, we present benchmark results for the accuracy of the
FNO-CCSD(T) method as well as the newly fitted PES. Finally, the
“Conclusions and Outlook” section ends the paper.

2. Methods
2.1. Accelerated coupled cluster methods

The main computational difficulties with CCSD(T) originate from the
equations determining the CCSD and (T) amplitudes, which exhibit
@(4®)- and @(.+"7)-scaling operation count complexity, respectively,
and (./*)-scaling data complexity (for both terms). For the targeted
15-atom system, even with some of the well-optimized implementations
and 10-20-core processors, the steep scaling of CCSD(T) already re-
quires hours to days of wall-clock time and tens to hundreds of GBs of
data with sufficiently large, triple- or quadruple-{ basis sets.

Recent developments, such as the use of density-fitting (DF) [24-26,
62,63], help to reduce the latter storage challenges. For example, our
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recent integral-direct DF-CCSD(T) implementation eliminated prob-
lematic disk I/0 and network traffic bottlenecks as well as also enabled
us to develop the most data- and memory-economic algorithms for both
the CCSD [26] and the (T) [63] parts reported so far.

Considering the generation of extensive benchmark data sets, such as
with the large number of configuration energies for the PES fitting here,
the overall task already consists of many independent CCSD(T) com-
putations. Thus, parallelization within a single CCSD(T) computation is
only useful up to a certain number of cores, where the available pro-
cessor performance can be effectively utilized (given other limitations,
such as memory or data transfer bottlenecks). For instance, it is not
efficient to run 128 different single-thread CCSD(T) jobs on the 128-core
nodes employed here due to data bandwidth bottlenecks, while
providing multiple (ca. 16-32-core) jobs per node with separate memory
channels appear to be highly effective.

Therefore, it is worthwhile to reduce the computational cost via the
frozen natural orbital (FNO) approach [33-37]. The natural orbitals
(NOs) of FNO method are usually obtained as the eigenvectors of a
one-particle density matrix, built mostly using a model wavefunction,
such as MP1 [33-37]. Then, the NOs with occupation numbers below a
threshold are kept frozen, that is, only the most important, n, number of
frozen NOs are taken into account in the remainder of the CCSD(T)
computation. The benefit is that the rate-determining steps of both CCSD
and (T) scale with the fourth power of the number of virtual orbitals, n,.

Consequently, a theoretical speedup of (n,/7i,)* can be anticipated for
the most demanding steps of both the CCSD and the (T) parts. Addi-
tionally, the memory requirement for the DF integrals and the doubles

amplitudes also decreases by a factor of (n,/fi,)?, while a factor of

(n,/7,)? data compression is realized for intermediates required for the
(T) algorithm [64,63,26]. Such data compression has an additional
benefit for our integral-direct DF-CCSD(T) algorithm [36], eliminating
the need for repeated four-center ERI assembly in the FNO-CCSD(T)
computations presented here. Moreover, both in our conventional
[26] and FNO-based [36] CCSD(T) codes of the Mrcc program suite [59,
60] the operation count and the memory requirement are fully opti-
mized by exploiting all permutational symmetries with an unparalleled
50-70% peak performance utilization up to hundreds of cores. In
addition, all terms of our DF-CCSD(T) code are hand-optimized [26,63],
which is particularly important for maintaining the high efficiency with
compressed FNO-basis sets [36]. Moreover, the negligible disk I/0 and
network use allow for the execution of a large number of medium-sized
CCSD(T) computations simultaneously on the same cluster/node and
network file system.

Due to the properties of the MP one-particle density matrix, the FNO
approach can be interpreted as the singular value decomposition (SVD)
of the MP doubles amplitude tensor, and thus the FNO approximation
provides an optimized model basis for the truncated representation of
the wavefunction. Analogous to the FNO method, the natural auxiliary
function (NAF) approach was introduced to compress the three-center
ERIs appearing in DF methods via SVD [36,65]. To that end, the NAFs
can be considered as the optimal linear combination of the DF auxiliary
functions. Similarly to the case of the FNOs, the compression rate of the
NAF basis can be controlled via a single truncation parameter by
dropping singular vectors with a singular values below the NAF
threshold. The NAF approximation is very robust and its accuracy can be
set to approach that of the DF approximation [36,65]. The combination
of the FNO and NAF approaches is beneficial, since after the introduc-
tion of the molecule-specific and compressed FNO virtual basis, the
number of remaining FNO product densities decreases by a factor of
(n,/7,)%. Consequently, a significant DF auxiliary basis compression can
be achieved by generating a molecule specifically optimized NAF basis
corresponding to only the retained FNO basis.

The error of the FNO and NAF basis compressions can be corrected
via an MP2 level energy correction [36,37]:

Artificial Intelligence Chemistry 2 (2024) 100036

- CCSD(T
[EFNO-CCSD(T) _ ESC) (T) + Eﬁgz _ Eé’ﬂ’é i 6))
where the subscripts indicate that the corresponding CCSD(T) or MP2
energies are evaluated using the compressed FNO (and NAF) basis or the
complete molecular orbital (MO) (and DF auxiliary) basis.

2.2. A-Machine Learning for PES construction

A-Machine learning [66-68] is a general method to bring a property,
such a PES, trained on an efficient lower-level method close to the ac-
curacy of a higher-level method. Here, we correct an MP2-level PES to
the gold standard CCSD(T) level, for which A-ML approach was already
employed and tested extensively also by some of us [43,69,70]. The
underlying theory of the A-ML approach can be succinctly summarized
by the following equation:

Vitwcc = Ve +AVee 1 (2

In this equation, Vi;_cc represents the corrected potential energy sur-
face, Vi denotes a PES fitted to low-level electronic energies, such as
from DFT or MP2, and AV¢_ corresponds to the correction PES which
is a fit to the difference in high-level and low-level energies only (i.e.
here without gradients). It is worth noting that the variation of AV¢c_pz,
which represents the difference between CCSD(T) and DFT/MP2 en-
ergies, is not as pronounced as that of Vy; in relation to nuclear con-
figurations (see below in Fig. 5). Consequently, only a smaller number of
high-level electronic energies are sufficient for fitting the correction
PES. In our current application to acetylacetone, a total of 430 FNO-
CCSD(T) electronic energies were computed to accomplish this cor-
rected potential fitting.

Here, we employ the PIP approach to fit both the V;; and AV¢e_ 11
PESs. The theory of permutationally invariant polynomials is well-
established and has been presented in several review articles [1,2,
71-73]. In terms of a PIP basis, the potential energy, V, can be written in
a compact form as

np

V(x) = Z cipi(x), 3)

i=1

where ¢; are linear coefficients, p; are PIPs, n, is the total number of
polynomials for a given maximum polynomial order and x are Morse
variables. For example, X, is given by exp( — r43/1), where ry; is the
internuclear distance between atoms a and p. The range (hyper)
parameter, 4, was chosen to be 2 bohr. The linear coefficients are ob-
tained using standard least squares methods for a large data sets of
electronic energies (and when available gradients as well) at scattered
geometries.

In order to develop a corrected PES, we need to generate a dataset of
high- and low-level energies. In this study, we used MP2/aug-cc-pVTZ
energies and gradients as low-level data. The low-level PES, Vi, is
taken from previously reported data by Chen Qu and co-workers [74]
which was a fit using a data size of 5454 energies and their corre-
sponding gradients spanning the energy range of 0-40 000 cm ™ '. More
details of this Vi, PES can be found in Ref. [74]. We briefly note that the
model and basis set employed for the FNO and NAF corrections in Eq. (1)
is MP2 with the same basis set used for the CCSD(T) computation, which
are in general independent from the low-level model and basis set
choices.

To develop the correction PES, we train AV _p; on the difference
between the FNO-CCSD(T) and MP2 absolute energies (with aug-cc-
pVTZ basis) for 430 geometries (provided in the Supplementary Mate-
rial). The dataset of 430 geometries were sparsely selected from the MP2
dataset of 5454 geometries, which was taken from recently reported
data by Nandi et al. [44]. A low-order PIP fit was employed because the
difference AV¢c_yy is not as strongly varying as Vi with respect to the
nuclear configuration. We used maximum polynomial order of 2 with
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permutational symmetry {1,2,5,7} (this symmetry indicates that the
transferring “H” atom is treated as distinguishable, remaining seven “H”
atoms are permutable with each other, as the two “O” atoms and five “C”
atoms) to fit the training data set. This leads to a total of 86 PIP bases
such as unknown coefficients. The PIP basis to fit these V;; and AVec_11
PESs were generated using the latest MSA software [75,76]. These co-
efficients are determined by a standard linear least-square regression
method.

3. Computational details

All conventional [26] and reduced-cost [32,36,37] CCSD(T) com-
putations were performed with the 2022 release of the Mrcc quantum
chemistry program suite, available open-source for academic use [59,
60]. Closed-shell references and the frozen core approximation were
applied in all correlation calculations. All valence occupied orbitals
were kept in the FNO-CCSD(T) computations, only the virtual orbital
space was compressed via the FNO approach, which was governed by
the 1noepsv keyword. For all reduced-cost FNO-CCSD(T) computations
the default threshold of the NAF approach was employed irrespective of
the FNO threshold, that is 0.05 a.u., set automatically via the naf_cor
keyword of Mrcc.

For the AO basis set, the correlation consistent X-tuple-{ (aug-)cc-
pVXZ (X =D, T, and Q) sets [77,78] were employed with the corre-
sponding DF auxiliary bases, (aug-)cc-pVXZ-RI-JK [79] and (aug-)
cc-pVXZ-RI [80]. For the CCSD(F12*)(T+) explicitly correlated calcu-
lations the correlation consistent X-tuple-¢ cc-pVXZ-F12 (X =T, Q) AO
basis sets [81] and the corresponding cc-pVXZ-F12-OPTRI CABS bases
were employed [82,83]. The extrapolations of the HF [84] and the
correlation energies [85] towards the complete basis set (CBS) limit
were performed separately, according to standard expressions. The
extrapolated results will be denoted as CBS(X, X+1).

The wall-clock time measurements were carried out using 16 cores
per job of 64-core AMD Epyc 7H12 CPUs. The employed two-socket
nodes were in a national level computer cluster under production use,
executing competing tasks of multiple users. The nodes contain about
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220 GB accessible memory (allowing 27 GB memory/job) and do not
have local disks, only network storage access.

4. Results and discussions

In this Section we benchmark the computational settings used for the
FNO-CCSD(T) PES generation. A few important configurations (see
Fig. 1) are considered including the global minima (GM), a low-laying
saddle point (TS-I), H-transfer transition state [TS(H)], a high energy
structure denoted as A2, as well as 20 additional configurations exhib-
iting some of the highest uncertainty in comparison to previous results
[43]. Then, after obtaining the FNO-CCSD(T) for training 430 configu-
rations and fitting the PES, the high quality of the PES will be illustrated
on various structural and vibrational properties of acetylacetone.

4.1. Accuracy of the FNO-CCSD(T) configuration energies

The FNO approach (including also the NAF approximations) has
been extensively benchmarked on, e.g,. atomization, reaction, and non-
covalent interaction energies [32,36,37]. These properties are expected
to be somewhat more challenging than the present case, as better
compensation of FNO errors can be expected for energy differences
between configurations of the same molecule. However, since such
configuration energy tests are not yet available, we explore the accuracy
of the FNO-CCSD(T) approach against the approximation free refer-
ences. The FNO truncation errors of FNO-CCSD(T) with respect to the
FNO approximation free reference are collected in Fig. 2 for the TS(H)
and A2 configuration energies.

The previously established [36,37] default (5 - 103 0r3-107°) and
tighter (10~>) FNO thresholds are found to be highly reliable here too.
Thus, we also explore more cost-efficient FNO settings of 3 - 10~* and
10*, out of which 10~* performs very well. First, the aug-cc-pVDZ
(green circles) FNO errors in Fig. 2 are only moderately higher than
those obtained with the practically more relevant aug-cc-pVTZ (red
crosses) and aug-cc-pVQZ (blue squares) ones. Moreover, systematic
convergence of the (absolute) FNO errors is found with tightening the

J J
TS(H) (1,102)

TS-1(164)

o )
A2 (19,352)

Fig. 1. Geometry of global minimum (GM), low-laying saddle point (TS-I), H-transfer saddle point [TS(H)], and a high-energy structure (A2) of acetylacetone and
their corresponding electronic energies (cm™") relative to the global minimum from A-ML PES. (Atomic numbering scheme was used to generate PIP bases to fit

Vi PES.)
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Fig. 2. FNO truncation error for the TS(H) barrier height (left) and A2 configuration energy (right) with respect to the FNO threshold with aug-cc-pVXZ basis sets.
The results are arranged to show increasing accuracy corresponding to decreasing FNO truncation threshold values on the x axis.

FNO thresholds. Regarding the aug-cc-pVTZ and aug-cc-pVQZ basis sets,
the FNO errors are within the [— 0.11, 0.07] kcal/mol or [— 39, 24]
cm™! range already with the 10~* threshold for both the barrier height
and the A2 configuration energy. It is also satisfactory, that the corre-
sponding (absolute) FNO errors are below 0.03 kcal/mol or 10 cm !
with the one step tighter, 3 - 10> FNO settings.

While the accuracy of the FNO approach is the most important up to
the region of TS(H), we also estimate the magnitude of the largest
inaccuracies along the entire investigated interval of the PES. To that
end, we selected 10 additional configurations where the largest dis-
agreements occurred with the previously obtained local approximated
CCSD(T) dataset [43]. All of these 10 configurations turned out to be of
very high energy in the range of [33.6, 87.9] kcal/mol or ca. [11 750, 30
750] cm~! above the GM. Therefore, we extended this list with 10
configurations selected randomly from the interval between the TS(H)
and the configuration at the lower end of the above interval
(33.6 kcal/mol).

In Fig. 3 we plot the resulting FNO errors corresponding to the 10~
settings compared to the DF-CCSD(T) reference for these 10 + 10 con-
figurations [as well as TS(H) and A2]. As expected, the FNO errors
somewhat increase with the increasing configuration energy, which
appears to be quite systematic for the randomly selected 10 configura-
tions. In this region, the previously found FNO error of ca. 0.1 kcal/mol
(35 cm™ 1) roughly doubles by reaching the 30 keal/mol (10 500 cm ™)
configuration energy range. The average error up to this point is
0.15 kecal/mol (52 cm’l), which is excellent considering the low prob-
ability of such high-energy configurations. The largest expected un-
certainties can be estimated for the other 10 structures in the [33.6,
87.9] kcal/mol or [11 750, 30 750] cm ! region. Indeed, here the
average error grows to 0.3 kcal/mol (105 cm™'), which is again
acceptable considering the very low population of these high-energy

— 0 TS(H), A2 & 10 random —x%—
'TE largest uncertainty --Et--
2 A
5 -50 | 'P
c -
] v A B
£-100 . o] - |
g ]
o-150 B iy
£ uf

0 5000 10000 15000 20000 25000 30000
Configuration energy wrt. GM [cm"]

Fig. 3. FNO-CCSD(T) configuration energy errors compared to the DF-CCSD
(T)/aug-cc-pVTZ reference for all investigated configurations including TS(H),
A2, 10 configurations with the highest uncertainty from the [33.6, 87.9] kcal/
mol or [11 750, 30 750] cm ™! interval, and 10 randomly selected configura-
tions from the [3.1, 33.6] kcal/mol or [1084, 11 750] cm ™! interval.

configurations. All in all, the steepness of the FNO error increase is
much lower than the corresponding increase in the configuration en-
ergies, and more importantly, very small compared to the exponential
decrease in the populations of these configurations.

We also study the FNO-CCSD(T) wall times as a function of the basis
set and FNO threshold choice (Fig. 4). Considering the 3-4-fold increase
of the wall times stepping from 10~ to 3 - 107 FNO settings and the
satisfactory performance of both, FNO-CCSD(T)/aug-cc-pVTZ with 10~
FNO threshold offers the best accuracy/cost performance for large-scale
data generation in PES fitting.

As collected in Table 1, this choice corresponds to a speed up factor
of 38 compared to the FNO approximation free CCSD(T)/aug-cc-pVTZ
computations. In absolute terms, the FNO-CCSD(T)/aug-cc-pVTZ cor-
relation energy computations with 10~* settings take about 3-4 min
with an additional 1-2 min for the SCF and integral transformation
steps. These FNO-CCSD(T)/aug-cc-pVTZ computations require a mini-
mum of 0.8 GB or, without any repeated integral evaluations, only a few
GBs of memory. These hardware requirements and the comparable
amount of disk and network use make these FNO-CCSD(T) computations
especially suitable for high-throughput reference data generation, e.g.,
for PES fitting or ML training tasks. For example, the 430 FNO-CCSD(T)
computation performed here for the acetylacetone PES would take less
than 2 days on a 16 core machine. This total time could go further down
to about 6 h when using all 128 cores of the here employed dual-socket
AMD node. Running 8 FNO-CCSD(T) jobs on such nodes is feasible due
to the moderate, few GB memory requirement (Table 1) and limited I/O
and network use of the FNO-CCSD(T) implementation [26,36] in the
MRcc program suite [59,60].

4.2. Fitting and benchmarking the PES

We develop a new full-dimensional PES of acetylacetone at the FNO-
CCSD(T)/aug-cc-pVTZ level of theory using the A-machine-learning

100 |
aug-cc-pvVDZ —o— =
aug-cc-pVTZ --x--
aug-cc-pVQZ -
£ a7 x
E 10} x--
()]
E
3
H
1 L
3x107 1074 3x107° 1075
FNO threshold

Fig. 4. FNO-CCSD(T) correlation energy computation time measurements (in
minutes) on 16 cores for the various FNO settings and basis sets.
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Table 1

Wall times, speedups as well as minimal memory requirements (in GB units)
without and with the FNO approach using the 10~* threshold and aug-cc-pVXZ
basis sets. The maximum utilized memory (in GB units) columns show the
memory consumption of the jobs, while the minimal requirement would be
sufficient for execution (with some repeated integral evaluation steps). The last
column holds the corresponding FNO error in the TS(H) barrier height.

X  Wall time [min] Speedup  CCSD (T) FNO-CCSD FNO
memory (T) memory error
CCSD FNO- min max min max [cm’l]
(V] CCSD used used
(¢}
D 3.7 0.9 3.9 1.0 7.4 027 1.3 —4.7
T 119.4 3.1 38.3 10.4 51.2 0.80 6.3 3.5
Q 9952 4.1 240.9 64.7 107.5 099 83 6.2

(A-ML) approach. To obtain this CCSD(T) PES we add the correction
AV¢cy to the low-level MP2 PES, Vi;. So, the development of this PES
can be divided into two parts: low-level PES (Vi) and a correction PES
(AVcc.1L). Here we use a previously reported Vi, PES which is fit to 5454
energies and their corresponding gradients computed at the MP2/aug-
cc-pVTZ level of theory [74]. For this fit, a maximum polynomial
order of three was used which led to a total of 6207 PIP basis functions.
The symmetry designation for this fit was {1,2,2,2,6,1,1}, meaning that
the two oxygens (atoms 2 and 3) are treated as equivalent, as are the two
carbons (atoms 4 and 5), the two terminal carbons (atoms 6 and 7), and
the six hydrogens (atoms 8-13) on the terminal carbons are treated
equivalent too (as labeled in Fig. 1). The remaining "H’ atoms and the
central carbon are treated as unique. The weighted average fitting RMS
errors for energies and gradients were 49 cm ™! and 29 cm ™! bohr 2,
respectively. More details of this PES can be found in Ref. [74].

To develop a new correction PES, we train AV¢c.p, on the difference
between the FNO-CCSD(T) and MP2 absolute energies of 430 geome-
tries. A plot of AV¢cyy, versus the MP2 energies is shown in Fig. 5. Note
that we reference AV¢cy, to the minimum of the difference between the
FNO-CCSD(T) and MP2 energies (roughly —23 436 cm™1). The energy
range of AV is about 1800 em™! in Fig. 5, which is much smaller
than the MP2 energy range relative to the minimum value (roughly 35
000 em™) [74].

Thus, the difference AV¢cyy is not as strongly varying as Vi with
respect to the nuclear configuration, and a low-ordered polynomial can
be employed to fit this. We use a maximum polynomial order of 2 with
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Fig. 5. Plot of AV¢c 1y (relative to the reference value i.e. — 23 436 em ™) vs
MP2 energy relative to the global minimum value.
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permutational symmetry {1,2,5,7} to fit the dataset which leads to a
much smaller number (86) of unknown linear coefficients. We perform
both weighted average and unweighted fitting for AV¢c.yr. In the pro-
cess of weighted average fitting, a weight is assigned to each data point
based on its energy. The weight is given by wt = Ey/(Ey + dE), where dE
is the energy relative to the minimum in a.u., and Ej is the parameter
that we could modify. For the unweighted fitting, Ey is typically set as a
large number, such as 10'° a.u., resulting in all weights essentially being
1. In this case, we chose Ej to be 0.02 a.u. to achieve the desired
weighted average fitting matching Ref. [74]. The RMSEs for the
weighted and unweighted fitting are 11 cm™! and 52 cm™, respec-
tively. To examine the performance of the PES, we use weighted aver-
aged AVc¢c.yy fitting only.

We add this correction AV¢c.r to the low level MP2 PES, Vi to
obtain the total CCSD(T) energies. We perform geometry optimization
and normal-mode frequency calculations for global minimum (GM)
geometry, and two TS geometries to examine the fidelity of this PES.
These two TSs are TS-I in which the torsional angle of one methyl rotor is
shifted by 60° compared to GM, and the H-transfer saddle point is
denoted as TS(H). The structure of these geometries is shown in Fig. 1.
We obtain the symmetric double well H-transfer barrier as 1103 cm ™! or
3.15 kcal/mol, whereas the CCSD(F12*)(T+)/CBS(T,Q) value is
1124 cm ™! or 3.2 kcal/mol, which is an excellent agreement. Note that
it is a significant improvement over the MP2-based PES [74], which
leads to a barrier height of 745 cm ™! or 2.13 keal/mol. Additionally, we
observe that the TS-Iis only 162 cm ™" or 0.46 kcal/mol higher in energy
compared to the global minimum.

Next, to examine the vibrational frequency predictions of the PES,
we perform normal-mode analyses for the global minimum and H-
transfer saddle point geometries. A comparison of harmonic mode fre-
quencies for these two structures is shown in Table 2 along with the
previously reported results from MP2 PES (V1) and local CCSD(T)-F12
calculations [43]. For most of the modes in Table 2, the differences
between Vy; and Vi;_.cc frequencies are small. Nevertheless, for
high-frequency modes, this difference is more significant, especially for
mode 32 of the global minimum and the imaginary-frequency mode of
the TS(H). It is a major improvement over the MP2-based PES.

Another important aspect of this PES is the symmetric double well
potential associated with the H-transfer process, which is essential for
calculating the ground state tunneling splitting. In this context, we
applied an approximate 1D approach to obtain the tunneling splittings
following Ref. [86] (see Fig. 6).

In short, we derived a 1D potential, denoted V(Q;), which represents
the minimum energy pathway as a function of the imaginary-frequency
mode (Qjn) corresponding to the hydrogen transfer saddle point geom-
etry. This was achieved by optimizing all other coordinates while
keeping Qjn,, values fixed on the Vi;_ cc PES except the methyl rotors,
which cannot be described using rectilinear normal coordinates. These
are held fixed at the saddle point values all the way along the path.
Mostly due to the fixed methyl orientation and partly due to the fitting
error, the barrier height of this 1D Q;, path is 940 cm ™! or 2.69 kecal/mol
and it is 147 cm~! lower than the direct FNO-CCSD(T) value or
163 cm ™! lower than the barrier on the Vy;_.¢c surface. This mass-scaled
1D potential is shown in Fig. 6. This approach is sufficient to test the
fidelity of the fitting, while we note that a more-than-1D representation
would be required for more accurate barriers and tunneling splitting
values.

The splittings are obtained through straightforward 1D-DVR calcu-
lations [87], which involve computing the energies of the ground and
first excited vibrational states along the V(Qj,) pathway. It is worth
noting that the same method was employed to calculate tunneling
splittings for H-atom and D-atom transfer in malonaldehyde [86].
Remarkably, the 1D-DVR outcomes consistently demonstrated a close
correspondence with the rigorous full-dimensional diffusion Monte
Carlo splittings, typically falling within a 10% margin of agreement (as
that 1D potential could represent the barrier from the global minima due
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Table 2

Harmonic frequencies (in cm ™) of the global minimum and H-transfer saddle
point of acetylacetone obtained from the local CCSD(T)-F12, Vy;_.cc, and Vp;
PESs.

GM TS (H)

mode  local CCSD (T)*  Vii.cc Vit local CCSD (T)*  Vii.cc Vir

1 113 97 97  1278i 1044i 921i
2 133 119 119 100 56 53

3 169 155 153 121 61 57

4 197 188 189 165 158 156
5 236 223 229 198 196 198
6 372 360 364 289 281 285
7 392 383 390 412 410 417
8 505 498 507 537 527 531
9 554 564 567 540 535 539
10 643 652 650 578 581 580
11 654 652 656 661 646 645
12 793 795 803 767 739 740
13 919 880 921 781 744 756
14 942 907 936 949 932 953
15 951 926 942 992 977 979
16 1010 1002 1014 1035 1026 1039
17 1040 1037 1048 1037 1032 1043
18 1050 1048 1058 1054 1054 1060
19 1072 1064 1071 1067 1055 1062
20 1192 1187 1200 1195 1175 1189
21 1276 1264 1290 1308 1229 1223
22 1393 1371 1384 1341 1332 1347
23 1405 1391 1399 1406 1397 1409
24 1424 1423 1433 1413 1410 1422
25 1462 1442 1470 1481 1483 1496
26 1480 1481 1494 1487 1483 1496
27 1483 1483 1497 1488 1485 1500
28 1488 1493 1505 1491 1487 1502
29 1502 1500 1512 1569 1543 1567
30 1670 1647 1655 1613 1609 1629
31 1709 1695 1704 1624 1634 1670
32 3047 3019 2855 1904 1709 1685
33 3052 3060 3095 3054 3019 3098
34 3118 3069 3099 3057 3061 3099
35 3122 3156 3178 3130 3163 3190
36 3157 3162 3187 3132 3163 3190
37 3165 3185 3208 3154 3181 3207
38 3220 3193 3218 3156 3182 3208
39 3257 3235 3258 3241 3255 3282

2 From Ref. [43]

to the simpler structure of malonaldehyde). Employing the 1D approach
here, we obtain the ground state tunneling splitting of the H-transfer
process as 71 cm ™! for this barrier height of 940 cm ™}, which is a sig-
nificant improvement compared to the MP2 PES result [74]. In contrast,
a previously reported tunneling splitting value of 32 cm ™~ was obtained
with the associate barrier height of 1234 cm™! through rigorous DMC
calculation using the local CCSD(T)-F12/cc-pVTZ-F12 PES by Chen et al.
[43]. Given the well-established fact on the sensitivity of tunneling
splitting to the barrier height, we aim to directly compare 1D-DVR
tunneling splittings across different acetylacetone PESs, each associ-
ated with distinct 1D V(Qyy,) barrier heights (see Table 3).

For instance, employing the full-dimensional PES at the MP2 level,
the 1D-DVR splitting for H-transfer was found to be 141 cm™! with a
barrier height of 586 cm™!, which transforms to 104 cm™! after
morphing [74] the 1D V(Q;,) potential with a barrier height of
745 cm™!. Similarly, the tunneling splitting is estimated as 48 cm™!
with a barrier height of 1055 em ! from the local CCSD(T)-F12 PES
[43], and after morphing the 1D potential, it becomes 38 cm ™! with a
corresponding barrier height of 1234 cm! [43].

This analysis highlights the sensitivity of the tunneling splitting
value to the barrier height and other PES parameters. While higher-
dimensional computations will be the subject of a forthcoming study,
our primary objective here was to present a full-dimensional acetyla-
cetone PES using the cost-effective and highly accurate FNO-CCSD(T)
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Fig. 6. One-dimensional V(Q;») path for H transfer in AcAc.

Table 3
Ground-state tunneling splittings of acetylacetone obtained from 1D V(Qiy)
(with and without morphing) potential with indicative barrier height.

PES Barrier (cm™ 1) Splitting (em™)
MP2 (without morphing)® 586 141
MP2 (morphing)? 745 104
local CCSD(T) (without morphing)® 1055 48
local CCSD(T) (morphing)© 1234 38
Vir—cc (without morphing) 940 71

2 From Ref. [74]. ® From private communication. ¢ From Ref. [43].

data and benchmark its fidelity on various structural and dynamic
properties, including the symmetric double well H-transfer motion.

5. Conclusions and outlook

Here, we present the first study with the highly promising combi-
nation of accelerated CCSD(T) and advanced A-machine learning to
extend the reach of gold standard-level global PES generation for
medium-sized molecules. We show that around a factor of 40 cost-
reduction can be achieved by compressing the orbital space used for
the CCSD(T) computations via the first application of the frozen natural
orbital (FNO) approach in this context. Detailed benchmarks for the 15-
atom acetylacetone molecule show that for lower-energy configurations,
such as the first transition state, the FNO errors are negligible being in
the 0.01 keal/mol or ca. 5 cm™! range. These uncertainties stay around
0.15 (0.3) kcal/mol or ca. 50 (100) cm ! on the average (at the worst
cases) even for the very high energy configurations up to ca. 100 kcal/
mol or 35 000 cm !, which are required for quantum nuclear compu-
tations. This is achieved via a cautious relaxation of usually highly-
conservative FNO settings, which can be systematically improved to
the conventional CCSD(T) result.

The A-ML approach brings significant additional cost-reduction, as it
enables the correction of a low-level, cost-effective PES to the CCSD(T)
level via an order of magnitude less CCSD(T)-level data points. By also
utilizing the permutationally invariant polynomial (PIP) approach
tailor-made for PES representation, several hundreds (instead of tens of
thousands) of CCSD(T) computations were sufficient here for the 15-
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atom acetylacetone. The combination of FNO method with Mrcc’s
highly-optimized CCSD(T) implementation, which is developed specif-
ically for such reduced-cost applications, enables FNO-CCSD(T)/aug-cc-
pVTZ computations for such 15-atom molecules within ca. 5 min on 16
cores. All in all, the FNO-CCSD(T) A-ML PES construction exhibited an
unprecedented efficiency, enabling the required 430 FNO-CCSD(T)-
level computations on a single, relatively accessible 128-core AMD
node in around 6 h. Since the FNO-CCSD(T)-based data set generation is
independent from the parameters of the PES representation, any other
efficient descriptor and/or ML method combination can similarly
benefit from this advancement. The obtained A-ML PES is representative
of the expectable accuracy also with other ML methods. It shows high
fidelity from multiple perspectives, including energetic, structural, and
(an)harmonic vibrational properties, such as the tunneling splitting
corresponding to the symmetric double well H-transfer barrier of ace-
tylacetone. In a forthcoming work, this study will be extended to addi-
tional CCSD(T) cost-reduction approaches also at the basis set limit, as
well as to a broader set of molecules and quantum nuclear properties.
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