
PhD-FSTM-2025-049
Faculty of Science, Technology and Medicine

DISSERTATION

Presented on the 08/04/2025 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN
INFORMATIQUE

by

Xueqi Dang
Born on 19th April 1998 in Shandong, China

Learning-based Test Input Prioritization for
Machine Learning Systems

Dissertation Defense Committee

Dr. Yves Le Traon, Dissertation Supervisor
Professor, University of Luxembourg, Luxembourg
Director of the Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg

Dr. Mike Papadakis, Chairman
Professor, University of Luxembourg, Luxembourg

Dr. Maxime Cordy, Vice Chairman
Research Scientist, University of Luxembourg, Luxembourg

Dr. Gilles Perrouin, Member
Professor, University of Namur, Belgium

Dr. Gunel Jahangirova, Member
Professor, Kings College London, UK

Abstract

Machine learning (ML) has achieved significant success across various fields.
Ensuring the reliability of ML systems through testing is essential. However, ML
testing faces a major challenge: it is expensive to label each test input to assess
the model’s accuracy on the testing set. This is mainly due to three reasons: 1)
reliance on manual labeling, 2) the large scale of test datasets, and 3) the need for
domain expertise during the labeling process. Test input prioritization has become a
promising strategy to mitigate the labeling cost issues, which focuses on prioritizing
test inputs that are more likely to be misclassified. Enabling the earlier labelling of
such bug-revealing inputs can accelerate the debugging process, therefore enhancing
the efficiency of ML testing. In the existing literature, various test prioritization
methods have been introduced, which can generally be classified into coverage-
based, confidence-based, and mutation-based approaches. While these methods have
demonstrated effectiveness in certain scenarios, they exhibit notable limitations when
applied to more specialized contexts. This dissertation focuses on three specific
scenarios: classical machine learning classification, long text classification, and graph
neural network (GNN) classification. Specifically, for each scenario, we introduce a
novel test prioritization method, as detailed in Chapters 3 to Chapter 5. Beyond
proposing these new methods, we also conduct an empirical study focusing on GNN
classification to explore the limitations of existing test selection approaches when
applied to GNNs (cf. Chapter 6).
• MLPrior: A New Test Prioritization Approach for Classical Machine

Learning Models To tackle the challenges in traditional ML testing, we propose a
novel test prioritization method named MLPrior. MLPrior is specifically designed
to leverage the unique characteristics of classical ML models (i.e., compared
to DNNs, traditional ML models are generally more interpretable, and their
datasets often consist of carefully engineered feature attributes) for effective
test prioritization. MLPrior is built on two key principles: 1) tests that are
more sensitive to mutations are more likely to be misclassified, and 2) tests that
are closer to the model’s decision boundary are more likely to be misclassified.
Experimental results reveal that MLPrior surpasses other prioritization methods,
achieving an average improvement ranging from 14.74% to 67.73%.

• GraphPrior: A New Test Prioritization Approach for Graph Neural
Networks To enhance the efficiency of GNN testing, we propose GraphPrior, a
novel test prioritization method specifically designed for GNNs. In particular, we
introduce new mutation rules tailored to GNNs to generate mutated models and
leverage the mutation results for effective test prioritization. The core principle is
that test inputs that "kill" more mutated models are considered more likely to
be misclassified. Experimental results demonstrate that GraphPrior outperforms
all baseline methods, achieving an average performance improvement of 4.76% to

49.60% on natural datasets.
• LongTest: A New Test Prioritization Approach for Long Text Files

Long texts, such as legal documents and scientific papers, present unique chal-
lenges for test prioritization due to their substantial length, complex hierarchical
structures, and diverse semantic content. To address these issues, we propose
LongTest, a novel approach specifically tailored for long text data. LongTest
is built based on two key components: 1) a specialized embedding generation
mechanism designed to extract crucial information from entire long documents,
and 2) a contrastive learning framework that enhances prioritization by effectively
distinguishing misclassified samples from correctly classified ones. Experimen-
tal evaluations demonstrate that LongTest outperforms baseline methods, with
average improvements ranging from 14.28% to 70.86%.

• An Empirical Study investigating the limitations of test selection ap-
proaches on GNNs To investigate the limitations of existing DNN-oriented
test selection methods in the context of GNNs, we carried out an empirical study
involving 22 test selection techniques evaluated across seven graph datasets and
eight GNN models. This study concentrated on three key objectives: 1) Misclas-
sification Detection: identifying test inputs with a higher probability of being
misclassified; 2) Accuracy Estimation: selecting a representative subset of tests
to accurately estimate the overall accuracy of the full test set; 3) Performance
Improvement: selecting retraining samples to enhance the accuracy of GNN
models. Our findings indicate that the effectiveness of test selection methods for
GNNs falls short when compared to their performance in the context of DNNs.
In summary, this dissertation introduces three novel test prioritization methods

designed for some specific machine learning scenarios and presents an empirical study
to explore the limitations of existing test selection approaches when applied to GNNs.

i

ii

Always do your best. What you plant now, you will harvest later.

Og Mandino

iii

iv

Acknowledgements

I would like to extend my sincere appreciation to all those who have contributed
to my academic journey, offering their expertise, advice, and motivation.

Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Yves
Le Traon, for his continuous support, trust, and encouragement throughout my
PhD studies. His insightful feedback, patience, and academic rigor have profoundly
influenced my research and personal growth. His dedication to excellence has been a
source of inspiration, motivating me to pursue my work with determination.

I also deeply appreciate my daily supervisor, Prof. Michail Papadakis, for his
invaluable guidance. His expertise and willingness to engage in detailed technical
discussions significantly enhanced my research contributions. Additionally, I extend
my heartfelt thanks to my co-supervisor, Dr. Maxime Cordy, for his mentorship and
encouragement.

I would like to express my appreciation to Dr. Yinghua Li, whose collaboration,
discussions, and assistance were instrumental throughout my PhD. Furthermore, I am
grateful to all my co-authors for their contributions, collaboration, and constructive
feedback. Their expertise and dedication have significantly enriched my research
experience.

I would also like to extend my heartfelt thanks to the members of my PhD
defense committee, including Prof. Yves Le Traon, Prof. Michail Papadakis, Dr.
Maxime Cordy, Prof. Gilles Perrouin, and Prof. Gunel Jahangirova. It is a great
honor to have them evaluate my dissertation, and I deeply appreciate their time and
thoughtful reviews, which have helped refine my work.

I am also grateful to my colleagues and friends from the Serval (SnT) research
group for their insightful discussions and valuable suggestions and for fostering a
collaborative research environment. Their companionship and shared experiences
made my PhD journey more fulfilling.

Finally, my deepest appreciation goes to my parents for their unconditional
support, encouragement, and belief in me. Their unwavering confidence in my
abilities has been a constant source of strength, enabling me to pursue my academic
aspirations with determination.

Xueqi Dang
University of Luxembourg

April 2025

v

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Limitations of Existing Methods . 2

1.2.1 Classical Machine Learning classification 2
1.2.2 GNN classification . 3
1.2.3 Long Text Classification . 4

1.3 Contributions . 4
1.4 Roadmap . 5

2 Background 7
2.1 Machine Learning . 8

2.1.1 Classical Machine Learning 8
2.1.2 Deep Neural Networks . 8
2.1.3 Graph Neural Networks . 9

2.2 Test Optimization in DNN Testing 9
2.3 Mutation Testing . 10
2.4 Contrastive Learning . 10

3 Related Work 11
3.1 Test Selection for DNNs . 12
3.2 Deep Neural Network Testing . 12

4 Test input prioritization for Machine Learning Classifiers 15
4.1 Introduction . 17
4.2 Background . 21

4.2.1 Machine Learning and ML testing 21
4.2.2 Test Case Prioritization . 23
4.2.3 Mutation Testing . 24
4.2.4 Automated Labeling Approaches for Machine Learning 25

4.3 Approach . 26
4.3.1 Overview . 26
4.3.2 Mutation Rule Specification 28

4.3.2.1 Model mutation rules 29
4.3.2.2 Input mutation rules 31

4.3.3 Mutation Feature generation 32
4.3.4 Feature Concatenation . 32
4.3.5 Learning-to-rank . 33
4.3.6 Variants of MLPrior . 33

4.4 Study Design . 34

vii

4.4.1 Research Questions . 34
4.4.2 Subjects . 35

4.4.2.1 Datasets . 35
4.4.2.2 Classical ML models 36

4.4.3 Compared Approaches . 38
4.4.4 Measurements . 39
4.4.5 Implementation and Configuration 39

4.5 Study Results . 40
4.5.1 RQ1: Effectiveness and Efficiency of MLPrior 40
4.5.2 RQ2: Effectiveness of MLPrior on different types of test inputs 43
4.5.3 RQ3: Impact of ranking models on the effectiveness of MLPrior 47
4.5.4 RQ4: Feature contribution Analysis 51
4.5.5 RQ5: Impact of Main Parameters in MLPrior 53

4.6 Discussion . 55
4.6.1 Generality of MLPrior . 55
4.6.2 Threats to Validity . 56

4.7 Related Work . 56
4.7.1 Test Prioritization Techniques 56
4.7.2 DNN Testing . 57
4.7.3 Mutation-based Test Prioritization for Traditional Software . . 58
4.7.4 Mutation Testing and Mutation-based Test prioritisation for

Deep Learning . 58
4.8 Conclusion . 59

5 GraphPrior: Mutation-based Test Input Prioritization for Graph Neural
Networks 61
5.1 Introduction . 63
5.2 Background . 66

5.2.1 Graph Neural Networks . 66
5.2.2 Test Input Prioritization for DNNs 67

5.3 Approach . 68
5.3.1 Overview . 68
5.3.2 Mutation Rules . 69
5.3.3 Killing-based GraphPrior . 70
5.3.4 Feature-based GraphPrior . 71
5.3.5 Usage of GraphPrior . 72

5.4 Study design . 73
5.4.1 Research Questions . 73
5.4.2 GNN models and Datasets . 74

5.4.2.1 GNN Models . 75
5.4.2.2 Datasets . 75

5.4.3 Compared Approaches . 76
5.4.4 Graph Adversarial Attacks . 77
5.4.5 Evaluation of mutation rules (RQ5) 77
5.4.6 Implementation and Configuration 78
5.4.7 Measurements . 79

5.5 Results and analysis . 79

viii

5.5.1 RQ1: Effectiveness of the killing-based GraphPrior approach
(KMGP) . 79

5.5.2 RQ2: Effectiveness of the feature-based GraphPrior approaches 81
5.5.3 RQ3: Effectiveness of GraphPrior on adversarial test inputs . 85
5.5.4 RQ4: Effectiveness of GraphPrior against adversarial attacks

at varying attack levels . 86
5.5.5 RQ5: Contribution analysis of different mutation rules 89
5.5.6 RQ6: Enhancing GNNs with GraphPrior 92

5.6 Discussion . 95
5.6.1 Generality of GraphPrior . 95
5.6.2 Limitations of GraphPrior . 95
5.6.3 Threats to Validity . 96

5.7 Related Work . 97
5.7.1 Test prioritization Techniques 97
5.7.2 Deep Neural Network Testing 98
5.7.3 Mutation Testing for DNNs 99
5.7.4 Mutation-based Test Prioritization for Traditional Software . . 99

5.8 Conclusion . 100

6 LongTest: Test Prioritization for Long Text Files 101
6.1 Introduction . 103
6.2 Background . 106

6.2.1 Deep Neural Networks . 106
6.2.2 Contrastive Learning . 106
6.2.3 Test Input Prioritization for DNNs 106

6.3 Approach . 107
6.3.1 Overview . 107
6.3.2 Step 1: Text Preprocessing and Dimensionality Reduction . . 109

6.3.2.1 Chunk-based Text Splitting 109
6.3.2.2 Transforming Text into Embeddings 109
6.3.2.3 Dimensionality Reduction with PCA 110

6.3.3 Step 2: Constructing Positive and Negative Pairs 110
6.3.4 Step 3: Training Contrastive Learning Model 111
6.3.5 Step 4: Training Classification Model for Prioritization 112
6.3.6 Usage of LongTest . 112

6.4 Study design . 113
6.4.1 Research Questions . 113
6.4.2 Models and Datasets . 114

6.4.2.1 Datasets . 114
6.4.2.2 Models . 114

6.4.3 Measurements . 116
6.4.3.1 Average Percentage of Fault-Detection (APFD) . . . 116
6.4.3.2 Percentage of Fault Detected (PFD) 116

6.4.4 Compared Approaches . 117
6.4.5 Implementation and Configuration 118

6.5 Results and analysis . 118
6.5.1 RQ1: Performance of LongTest 118
6.5.2 RQ2: Impact of Number of Chunks on LongTest 121

ix

6.5.3 RQ3: Impact of Different Embedding Models on LongTest . . 122
6.5.4 RQ4: Impact of Dimension Reduction on LongTest 124
6.5.5 RQ5: Impact of Main Parameters on LongTest 125
6.5.6 RQ6: Contributions of Core Components to LongTest 126

6.6 Discussion . 127
6.6.1 Generality of LongTest . 127
6.6.2 Threats to Validity . 128

6.7 Related Work . 128
6.7.1 Test Prioritization for Traditional Software 128
6.7.2 Testing Deep Learning Systems 129

6.8 Conclusion . 129

7 Towards Exploring the Limitations of Test Selection Techniques on
Graph Neural Networks: An Empirical Study 131
7.1 Introduction . 133
7.2 Background . 135

7.2.1 Graph Neural Networks . 135
7.2.2 Test Selection in DNN Testing 137
7.2.3 Active Learning . 138

7.3 Approach . 138
7.3.1 Misclssification Detection Approaches 138
7.3.2 Accuracy Estimation Approaches 140
7.3.3 Node Importance metrics . 141

7.4 Study design . 142
7.4.1 Overview . 142
7.4.2 Research Questions . 143
7.4.3 GNN models and Datasets . 144

7.4.3.1 Graph datasets . 144
7.4.3.2 GNN models . 145

7.4.4 Measurements . 147
7.4.4.1 Percentage of Fault Detected (PFD) 147
7.4.4.2 Root Mean Square Error 147

7.4.5 Implementation and Configuration 147
7.5 Results and analysis . 147

7.5.1 RQ1: Test selection for GNN misclassification detection 147
7.5.2 RQ2: Test selection for GNN accuracy estimation 152
7.5.3 RQ3: Confidence-based test selection for GNN performance

enhancement . 155
7.5.4 RQ4: Node importance-based test selection for GNN perfor-

mance enhancement . 158
7.6 Threats to Validity . 159
7.7 Related Work . 159

7.7.1 DNN Test Selection . 160
7.7.2 Deep Neural Network Testing 161
7.7.3 Empirical study on Active Learning 161

7.8 Conclusion . 161

8 Conclusion and Future Work 163
8.1 Conclusion . 164

x

8.2 Future Work . 164

xi

xii

List of Figures

1.1 Roadmap of this dissertation . 6

4.1 Overview of MLPrior . 26
4.2 A concrete example of feature generation in MLPrior 27
4.3 Test prioritization effectiveness among MLPrior and the compared

approaches (dataset Bank with model GaussianNB). X-Axis: the
percentage of prioritized tests; Y-Axis: the percentage of detected
miscalssified tests . 41

4.4 Impact of main parameters in MLPrior 54

5.1 Overview of GraphPrior . 69
5.2 Test prioritization effectiveness among KMGP and the compared

approaches for CiteSeer with GraphSAGE and LastFM with GAT.
X-Axis: the percentage of prioritized tests; Y-Axis: the percentage of
detected miscalssified tests. 81

5.3 Test prioritization effectiveness of the six GraphPrior approaches
for Cora with TAGCN and LastFM with GraphSAGE. X-Axis: the
percentage of prioritized tests; Y-Axis: the percentage of detected
miscalssified tests . 85

5.4 Enhancing the accuracy of the GNN with prioritized tests (Cora with
GCN) . 94

6.1 Overview of LongTest . 108
6.2 The APFD and PFD values of LongTest with different numbers of

chunks . 123
6.3 Impact of main parameters in LongTest 125

7.1 The general pipeline for GNN models 136
7.2 Overview of our empirical study . 142
7.3 Percentage of Fault Detected (y-axis) with different test selection

approaches given the ratio of tests executed (x-axis) 149
7.4 Root Mean Squared Errors(y-axis) of different test selection approaches

given the number of tests selected (x-axis) 154
7.5 Test accuracy (y-axis) achieved by different data selection approaches

given the percentage of retrain data selected (x-axis) 156

xiii

xiv

List of Tables

4.1 Classical ML models and datasets . 36
4.2 Effectiveness comparison among MLPrior and DNN test prioritization

approaches in terms of APFD on natural datasets (Binary Classification) 40
4.3 Effectiveness comparison among MLPrior and DNN test prioritiza-

tion approaches in terms of APFD on natural datasets (Multiclass
classification) . 41

4.4 Time cost of MLPrior and the compared test prioritization approaches 41
4.5 Effectiveness improvement of MLPrior over the compared approaches

in terms APFD on natural datasets 41
4.6 Effectiveness comparison among MLPrior and DNN test prioritizati-

ion approaches in terms of APFD on mixed noisy datasets (Binary
Classification) . 44

4.7 Effectiveness comparison among MLPrior and DNN test prioritizatiion
approaches in terms of APFD on mixed noisy datasets (Multiclass
classification) . 44

4.8 Effectiveness improvement of MLPrior over the compared approaches
in terms of APFD on mixed noisy datasets 45

4.9 Effectiveness comparison among MLPrior and DNN test prioritization
approaches in terms of APFD on fairness datasets (Binary Classification) 45

4.10 Effectiveness comparison among MLPrior and DNN test prioritiza-
tion approaches in terms of APFD on fairness datasets (Multiclass
classification) . 45

4.11 Effectiveness improvement of MLPrior over the compared approaches
in terms of APFD on fairness datasets 46

4.12 Effectiveness comparison among MLPrior, MLPrior Variants and DNN
test prioritization approaches in terms of APFD on natural datasets
(Binary Classification) . 48

4.13 Effectiveness comparison among MLPrior, MLPrior Variants and DNN
test prioritization approaches in terms of APFD on natural datasets
(Multiclass classification) . 48

4.14 Effectiveness comparison among MLPrior, MLPrior Variants, and
DNN test prioritization approaches in terms of APFD on mixed noisy
datasets (Binary Classification) . 48

4.15 Effectiveness comparison among MLPrior, MLPrior Variants and
DNN test prioritization approaches in terms of APFD on mixed noisy
datasets (Multiclass classification) . 49

4.16 Effectiveness comparison among MLPrior, MLPrior Variants and DNN
test prioritization approaches in terms of APFD on fairness datasets
(Binary Classification & Multiclass classification) 49

xv

4.17 Effectiveness improvement of MLPrior over MLPrior Variants, and
DNN test prioritization approaches 49

4.18 Top-10 most contributing features for each subject 52

5.1 GNN models and datasets . 76
5.2 Effectiveness comparison among KMGP and the compared approaches

in terms of APFD . 81
5.3 Effectiveness comparison among KMGP and the compared approaches

in terms of PFD . 82
5.4 Average comparison results among KMGP and the compared ap-

proaches in terms of PFD . 82
5.5 Effectiveness comparison among KMGP and the feature-based Graph-

Prior approaches in terms of APFD 84
5.6 Effectiveness comparison among KMGP and the feature-based Graph-

Prior approaches in terms of PFD . 84
5.7 Average effectiveness comparison among KMGP and the feature-based

GraphPrior approaches in terms of PFD 85
5.8 Time comparison between GraphPrior and compared approaches . . . 85
5.9 Effectiveness comparison among GraphPrior and the compared ap-

proaches in terms of APFD . 86
5.10 Effectiveness comparison of GraphPrior and the compared approaches

on adversarial test inputs in terms of PFD 87
5.11 Average effectiveness comparision among GraphPrior and the com-

pared approaches on adversarial test inputs in terms of PFD 87
5.12 Comparison results of GraphPrior and the compared approaches

against different levels of the attacks DICE, MMA, RAA and RAR in
terms of PFD . 90

5.13 Overall comparison results among GraphPrior and the compared
approaches on adversarial tests with different attack levels 91

5.14 The contributions of different mutation rules (GCN) 92
5.15 The contributions of different mutation rules (GAT) 92
5.16 The contributions of different mutation rules (GraphSAGE) 92
5.17 The contributions of different mutation rules to the (TAGCN) 92
5.18 The GNNs’ average accuracy value after retraining with 10%~100%

prioritized tests. 94

6.1 Datasets and Models . 115
6.2 Effectiveness comparison among LongTest, DeepGini, VanillaSM, PCS,

Entropy and random selection in terms of the APFD values 120
6.3 Effectiveness improvement of LongTest over the compared approaches

in terms of the APFD values . 121
6.4 Statistical analysis on test inputs (in terms of p-value and effect size) 121
6.5 Average comparison results among LongTest and the compared ap-

proaches in terms of PFD . 121
6.6 Time cost of LongTest and the compared test prioritization approaches122
6.7 The PFD values of LongTest with different numbers of chunks 122
6.8 The APFD values of LongTest with different embedding models . . . 123
6.9 The PFD values of LongTest with different embedding models 124
6.10 The APFD values of LongTest with different dimensions 124

xvi

6.11 The PFD values of LongTest with different dimensions 125
6.12 Ablation study results . 127

7.1 Effectiveness of misclassification detection approaches with respect to
random selection (baseline) in terms of PFD 148

7.2 Comparative effectiveness of misclassification detection approaches
relative to baseline (normalization analysis) 149

7.3 Effectiveness comparison of misclassification detection approaches on
node and graph classification tasks, respectively 150

7.4 Effectiveness of accuracy estimation approaches with respect to ran-
dom selection (baseline) in terms of RMSE 152

7.5 Average Effectiveness of accuracy estimation approaches with respect
to random selection (baseline) in terms of RMSE 153

7.6 Effectiveness comparison among accuracy estimation approaches on
node, graph, and edge classification, respectively 154

7.7 Effectiveness of test selection approaches with respect to random
selection (baseline) in selecting retraining inputs to improve GNN
accuracy . 156

7.8 Effectiveness of node importance-based test selection approaches with
respect to random selection (baseline) in selecting retraining inputs
to improve GNN accuracy . 158

xvii

xviii

1 Introduction

In this chapter, we begin by introducing the motivation for Learning-based Test Input
Prioritization in Machine Learning Systems. We then discuss the limitations of
existing machine learning test prioritization methods within the specific contexts of
our focus. Finally, we outline the contributions of this dissertation and provide a
roadmap for the chapters that follow.

Contents
1.1 Motivation . 2
1.2 Limitations of Existing Methods 2

1.2.1 Classical Machine Learning classification 2
1.2.2 GNN classification . 3
1.2.3 Long Text Classification 4

1.3 Contributions . 4
1.4 Roadmap . 5

Chapter 1. Introduction

1.1 Motivation
Machine learning (ML) has revolutionized numerous fields, such as image recogni-

tion, natural language processing, and recommendation systems. However, ensuring
the reliability and accuracy of ML models remains a significant challenge. Test-
ing is one of the most widely used methods to ensure the quality of ML systems.
Nevertheless, a major challenge in ML testing lies in the high cost of labeling test
data. This issue arises primarily from three factors: 1) manual labeling remains the
mainstream approach, typically requiring multiple annotators to maintain accuracy
and consistency; 2) test datasets can be large-scale; and 3) labeling can demand
domain-specific expertise from professionals in the relevant field, further increasing
the cost. For example, when using the traditional ML model XGBoost to detect
chronic kidney disease (CKD) [1], labeling the CKD dataset for model training and
testing requires specialized medical knowledge to accurately determine whether a
patient has CKD.

To address the high labeling cost issue, test input prioritization has emerged as a
promising solution. This approach focuses on identifying and prioritizing test inputs
that are more likely to be misclassified by the ML model. These inputs are also
referred to as bug-revealing inputs. Early identification and labeling of these bug-
revealing inputs can accelerate the debugging process, thereby enhancing the overall
efficiency of ML testing. In the literature, numerous test prioritization methods [2, 3]
have been proposed. These methods are broadly categorized into three main types:
1) Coverage-based approaches [4, 5, 6]; 2) Confidence-based approaches [3, 7], and
3) Mutation-based approaches [2]. Coverage-based approaches prioritize test inputs
by analyzing the neuron coverage achieved by the DNN model. Confidence-based
methods, on the other hand, focus on identifying potentially misclassified test inputs
by measuring the model’s output confidence. A notable confidence-based method is
DeepGini [3], which utilizes the Gini score to quantify the model’s confidence for
each test. Tests where the model shows lower confidence are considered more likely
to be misclassified and thus will be prioritized higher. Mutation-based approaches
focus on designing new mutation operations and analyzing the mutation results for
each test input to guide test prioritization.

However, although existing prioritization approaches demonstrate effectiveness
in certain cases, they still face limitations in specific scenarios. In the following,
we provide a detailed explanation of the limitations of the existing prioritization
methods in the contexts of classical machine learning classification, Graph Neural
Networks (GNNs) classification, and long-text classification, respectively. These
limitations serve as the core motivations for proposing new methods in these areas.

1.2 Limitations of Existing Methods
1.2.1 Classical Machine Learning classification

Machine learning can be generally divided into two main categories: classical
machine learning and deep learning. Classical machine learning algorithms, including
methods like XGBoost [8] and decision trees [9], typically demonstrate better inter-
pretability when compared to deep neural networks (DNNs). Interpretability in this
context refers to the degree to which the internal mechanisms and decision-making
processes of a model are comprehensible and explainable to humans.

2

1.2. Limitations of Existing Methods

When applying existing test prioritization approaches to the context of traditional
machine learning fields, the following limitations arise:
• Single Dimension on Binary Classification Models A Binary classification

model categorizes a given test input into two classes. If the model predicts
that the test input has a probability p of belonging to the first class, then it
believes that there is a probability of 1˘p that the test belongs to the second
class. In this case, the closer p is to 0.5, the more uncertain the model is about
this prediction. Therefore, tests with p values closer to 0.5 will be consistently
prioritized higher regardless of the specific confidence-based test prioritization
method used. Therefore, all confidence-based methods will yield the same test
prioritization results.

• Absence of Model-specific Insights: Confidence-based prioritization methods
treat the model as a black box, relying solely on the prediction probability vector
generated by the model for each test to perform test prioritization. However,
classical machine learning models are often white-box models, meaning that their
internal information can also be utilized for test prioritization. Confidence-based
methods fail to leverage this interpretability and transparency characteristic of
classical machine learning models, ignoring the valuable internal information these
models provide for test prioritization.

• Ignorance of Attribute-level Features Traditional ML models typically use
tabular data as inputs, which differs from the input format used by DNN models.
The attribute features of test inputs provide a direct representation of tests within
the feature space and reveal their proximity to the model’s decision boundary,
thereby contributing to test prioritization. However, confidence-based approaches
fail to leverage this critical feature information for test prioritization.

1.2.2 GNN classification
Unlike traditional neural networks that operate on fixed-sized vectors, GNNs

are specifically designed to process graph-structured data. In this context, a graph
typically refers to a data structure comprising two components: nodes (vertices) and
edges. Directly applying existing DNN-oriented test prioritization approaches to
GNNs presents the following limitations:
• Confidence-based techniques fail to account for the interdependencies between

test inputs in GNNs, which are critical for GNN inference. These prioritization
approaches typically treat test sets as collections of independent samples with no
connections. However, GNN test inputs are represented as graph-structured data,
where nodes are interconnected by edges.

• The effectiveness of uncertainty-based test prioritization approaches can be affected
when facing some specific adversarial attacks. For instance, if an attack is
designed to generate test inputs that increase the model’s predicted probability for
incorrect classification, the effectiveness of uncertainty metrics can be impacted.
This is because uncertainty-based methods assume that test samples where the
model exhibits high uncertainty are more likely to be misclassified and, therefore,
prioritize these samples. However, in such cases, many test samples that the model
is confident about can actually be misclassified, which reduces the effectiveness of
confidence-based prioritization approaches.

• Existing research [3] has shown that coverage-based methods are both less effective
and less efficient than confidence-based test prioritization approaches.

3

Chapter 1. Introduction

1.2.3 Long Text Classification
Text classification focuses on categorizing text documents into predefined labels.

Compared to short texts, such as social media posts, emails, or product reviews,
long text classification (e.g., legal documents, academic papers, and technical re-
ports) poses unique challenges. These challenges arise from their extended length,
complex structures, and richer semantic content. When applying existing DNN test
prioritization approaches to long text classification, the following limitations arise:
• Confidence-based test prioritization approaches rely solely on the probability

prediction vector of each test input from the model’s final layer and use these
vectors to measure the model’s prediction confidence for each test. These methods
ignore the rich semantic and hierarchical information inherent in the test inputs
(long text), which limits their ability to effectively prioritize tests.

• Mutation-based test prioritization methods are generally designed for short texts,
where the proposed mutation operators typically introduce small changes (e.g.,
modifying a few characters within a word). However, long texts contain extensive
content and a larger number of words, making these minor mutations less effective.
Consequently, mutation-based methods are not well-suited for test prioritization
in long-text classification scenarios.

• From the existing work [3], the coverage-based test prioritization methods have
been shown to be less effective and more computationally expensive than confidence-
based prioritization approaches.

1.3 Contributions
Due to the limitations of existing test prioritization methods when applied to

the aforementioned special scenarios, we propose a novel test prioritization method
tailored specifically to each scenario. Moreover, specifically for the GNN classification
scenario, we conduct an empirical study to thoroughly examine the limitations of
existing test prioritization methods in this context. Therefore, the main contributions
of this thesis are as follows:
• We propose MLPrior, a novel test prioritization approach for classical

machine learning (ML) models. MLPrior leverages the unique characteristics
of classical ML models to perform test prioritization. Compared to deep neural
networks (DNNs), classical ML models are generally more interpretable, and their
datasets typically consist of carefully engineered feature attributes. Based on
these characteristics, the working mechanism of MLPrior relies on two core ideas:
1) prioritizing tests that are sensitive to mutations, and 2) prioritizing tests that
are near the decision boundary. Experimental results demonstrate that MLPrior
outperforms the compared existing methods, achieving improvements ranging
from 14.74% to 67.73%.

This work has been accepted by the IEEE Transactions on Software Engineering
(TSE) in 2024.

• We propose GraphPrior: a novel test prioritization approach for graph
neural networks (GNNs). GraphPrior leverages the unique characteristics
of GNNs and graph-structured datasets for test prioritization. Unlike DNNs,
where test inputs are independent of one another, GNN test inputs are typically

4

1.4. Roadmap

represented as graphs with complex interdependencies. Building on this, Graph-
Prior introduces newly proposed mutation rules specific to GNNs to prioritize
test inputs, based on the principle that tests that "kill" many mutated models
are more likely to be misclassified. GraphPrior outperforms all the compared test
prioritization approaches.

This work has been accepted by the ACM Transactions on Software Engineering
and Methodology (TOSEM) in 2023.

• We propose LongTest, a novel test prioritization approach for long
text classification. Compared to short texts such as social media posts, long
texts (e.g., scientific papers and legal documents) pose unique challenges for test
prioritization due to their substantial length and diverse semantic content. To
address these challenges, our proposed LongTest incorporates two core components
specifically designed for long texts: a specialized embedding generation mechanism
for extracting text representations from lengthy files, and a contrastive learning
framework to effectively differentiate between misclassified and correctly classified
inputs. LongTest outperforms all the compared test prioritization approaches,
achieving average improvements ranging from 14.28% to 70.86%.

This work is currently under review in ACM Transactions on Software Engineering
and Methodology(TOSEM) in 2025.

• We conducted an empirical Study to explore the limitations of current
test selection approaches on GNNs. In the empirical study, we investigate
the limitations of existing test selection methods when applied to GNNs. Our
investigation focuses on three critical aspects: test selection for misclassification
detection, test selection for accuracy estimation, and test selection for GNN
model retraining. The study evaluates 22 test selection approaches across 7 graph
datasets and 8 GNN models. The results demonstrate that DNN test prioritization
methods do not achieve the same level of effectiveness when applied to GNNs as
they do in the context of DNNs.

This work has been accepted by Empirical Software Engineering (EMSE) in 2024.

1.4 Roadmap
The roadmap of the dissertation is illustrated in Figure 1.1. Chapter 2 provides

the Background for the thesis, covering topics including test optimization in
DNN Testing, mutation testing, and contrastive learning. Chapter 3 introduces our
proposed test prioritization approach, MLPrior, specifically designed for classical
machine learning models. Chapter 4 details our proposed test prioritization approach,
GraphPrior, tailored for Graph Neural Networks. Chapter 5 describes our proposed
test prioritization approach, LongTest, designed for long text files. Chapter 6
presents our empirical study, investigating the limitations of current DNN test
prioritization approaches when applied in the context of Graph Neural Networks.
Chapter 7 reviews related work, including deep neural network testing, test selection

5

Chapter 1. Introduction

for DNNs, and test optimization for traditional software. Finally, Chapter 8 concludes
the dissertation and discusses directions for future research.

Chapter 2: Background

Machine Learning

Test Optimization in DNN Testing

Mutation Testing

Contrastive Learning

Chapter 4

MLPrior

Chapter 3: Related Work

Test Selection for DNNs Deep Neural Network Testing

Chapter 5

GraphPrior

Chapter 6

LongTest

Chapter 7

GNN Empirical

Chapter 8: Conclusion and Future Work

Figure 1.1: Roadmap of this dissertation

6

2 Background

This chapter introduces the essential background to establish a foundation for
understanding this dissertation. It first provides a description of machine learning,
with a particular focus on the areas where we propose new test prioritization
approaches or conduct empirical studies on existing prioritization approaches. Then,
it presents the relevant background on Test Optimization in DNN Testing, Mutation
Testing, and Contrastive Learning.

Contents
2.1 Machine Learning . 8

2.1.1 Classical Machine Learning 8
2.1.2 Deep Neural Networks 8
2.1.3 Graph Neural Networks 9

2.2 Test Optimization in DNN Testing 9
2.3 Mutation Testing . 10
2.4 Contrastive Learning . 10

Chapter 2. Background

2.1 Machine Learning
Machine Learning (ML), a branch of artificial intelligence, enables systems to

make decisions or predictions based on data. Its widespread adoption in various
fields demonstrates its significant utility, especially in safety-critical areas such as
finance [10], insurance [11], and healthcare [12]. In our work, we focus on proposing
new test prioritization approaches and conducting empirical studies in three specific
machine learning contexts: classical machine learning, deep neural networks, and
graph neural networks, as existing DNN-oriented test prioritization approaches
exhibit certain limitations. In the following, we provide some basic background
knowledge for these fields.

2.1.1 Classical Machine Learning
Broadly, ML techniques can be categorized into classical machine learning and

deep learning [13]. Classical machine learning includes methods such as decision
trees [9], logistic regression [14], and naive bayes [15], which typically rely on
structured data and predefined algorithms to make predictions. In contrast, deep
learning utilizes multiple layers of nonlinear processing units to extract and trans-
form features [16]. Deep learning techniques include convolutional neural networks
(CNNs) [17] for image analysis, recurrent neural networks (RNNs) [18] for sequential
data, and transformers for natural language processing.

In contrast to deep learning, classical machine learning algorithms provide better
interpretability. Interpretability refers to the degree to which the decision-making
processes of a model can be understood by humans. This attribute is particularly
crucial in fields such as healthcare [19] and finance [20], where understanding the
rationale behind predictions is as important as the predictions themselves, due to
the potential ethical, legal, and safety implications in these domains. As a result,
classical machine learning models retain unique advantages in certain application
areas.

2.1.2 Deep Neural Networks
Deep Neural Networks (DNNs) consist of several hierarchical layers, each contain-

ing interconnected processing units referred to as neurons [21, 22]. These neurons
are linked by weighted connections. During training, these weights are iteratively
refined through optimization algorithms, such as gradient descent [23], to minimize a
predefined loss function that quantifies the difference between the model’s predictions
and the actual target values. The training process relies heavily on the input data,
which guides the adjustment of these weights.

One typical application of DNNs is text classification [24], which focuses on
assigning textual data to specific categories based on its content. For example, in
sentiment analysis [25], DNNs can be used to identify the emotional tone of texts,
such as determining whether a review expresses a positive, negative, or neutral
sentiment. In spam filtering [26, 27], DNNs can help distinguish malicious messages
from legitimate communications, enhancing email security. Specifically, in the field
of text classification, the target text can be either short or long. Short texts, such
as social media posts or product reviews, are typically brief and straightforward.
Conversely, long texts, such as legal documents or scientific articles, present unique
challenges due to their extended length and complex hierarchical structures [28].

In one of our works (cf. Chapter 5), we focused on proposing new test prioritization

8

2.2. Test Optimization in DNN Testing

approaches, specifically in the field of long text classification. By leveraging the
unique characteristics of long texts, we designed an embedding generation mechanism
tailored for long text files and employed contrastive learning to better distinguish
correctly classified and misclassified test inputs. These two components facilitated
more effective test prioritization. Experimental evaluations demonstrated that our
test prioritization method consistently outperformed all baseline approaches.

2.1.3 Graph Neural Networks
Unlike traditional deep neural networks (DNNs) that operate on fixed-sized

vectors, Graph Neural Networks (GNNs) are specifically designed to process graph-
structured data, which can vary in size and structure. Graph-structured data typically
refers to data that is represented as nodes (entities) and edges (relationships) within
a graph. Examples include social networks, where individuals are nodes connected
by edges representing relationships; molecular structures, where atoms are nodes
and bonds are edges; or traffic networks, where intersections are nodes and roads
are edges. Compared to DNNs, GNNs are more effective at modeling the complex
dependencies and relationships inherent in such data.

The classification tasks of GNNs mainly include three types: node classification,
edge classification, and graph classification. Node classification [29] focuses on
assigning labels to individual nodes within a graph. For example, in citation networks,
node classification can be used to predict the research field of a specific paper based
on its connections with other papers, as shown in the widely studied Cora and
PubMed datasets [30]. Edge classification focuses on classifying the edges within a
graph, where edges represent relationships between nodes. For instance, in the field
of biological networks, GNNs can be employed to predict the binding affinity between
a protein and a small molecule, with the binding affinity being modeled as an edge
in the graph. Graph classification, on the other hand, focuses on classifying entire
graphs, such as predicting molecular properties based on chemical structures [31].

2.2 Test Optimization in DNN Testing
To improve the efficiency of DNN testing, test optimization [3, 32, 33, 7, 2, 34]

has emerged as a crucial area of focus. There are mainly two categories of approaches
to optimize the DNN testing process, which are test selection [35, 36] and test
prioritization [3, 7, 2]. Test selection aims to select a subset of test cases from the
entire test set to estimate the accuracy of the original set. Li et al.[36] proposed a
test selection method called Cross Entropy-based Sampling (CES), which works by
minimizing the cross-entropy between the selected and original test sets, thereby
ensuring that the selected subset maintains a similar distribution to the complete test
set. Chen et al. [35] proposed a clustering-based test selection approach, called PACE,
which first clusters all test cases and then employs the MMD-critic algorithm [37]
to select prototypes from each cluster. For test inputs not assigned to any cluster,
PACE applies adaptive random testing to perform selection.

Test prioritization, on the other hand, aims to change the order of test execution
so that tests that are more likely to be misclassified are prioritized higher. Unlike
test selection, in the process of test prioritization, no test inputs are discarded. By
prioritizing potentially misclassified test inputs, it ensures that developers focus their
limited labeling resources on bug-revealing test cases, thereby enhancing debugging
efficiency. Feng et al. proposed DeepGini [3], a well-known test prioritization method

9

Chapter 2. Background

leveraging model confidence. This approach calculates a Gini score for each test case
to estimate the model’s confidence and ranks the test cases based on these scores.
Weiss et al. [7] carried out a comprehensive evaluation of various test prioritization
techniques, demonstrating that some relatively simple uncertainty-based methods,
such as Vanilla Softmax, Prediction-Confidence Score (PCS), and Entropy, perform
effectively. Wang et al. [2] proposed a mutation-based test prioritization approach
called PRIMA. PRIMA utilized newly introduced mutation operators to generate
mutation results for each test input, thereby achieving test prioritization.

2.3 Mutation Testing
Mutation testing [38, 39] involves introducing minor, deliberate modifications to

program code, referred to as mutations, to assess the effectiveness of test cases. These
mutations simulate potential faults that may occur during software development.
A high-quality test suite is expected to detect the introduced mutants [40]. In this
context, the term "kill" is commonly used to describe whether a test case successfully
detects a mutation in the code. A mutant is considered "killed" if executing a test
case reveals a behavioral difference between the original program and its mutated
version, indicating that the test case has identified the mutation. Conversely, if
the test case cannot distinguish between the behavior of the original program and
the mutated version, the mutant is considered "survived", suggesting that the test
case fails to capture certain defects. The proportion of mutants killed by test cases
serves as a metric to evaluate the effectiveness and coverage of the test cases. A
higher kill rate generally indicates that the test cases can effectively detect faults.
Mutation testing has gained significant attention in both academic research and
industry [41, 42, 43, 44].

2.4 Contrastive Learning
Contrastive Learning [45] is a self-supervised learning method that learns effective

data representations by pulling similar samples closer together in the representation
space and pushing dissimilar samples further apart. The core idea of contrastive
learning is to leverage the relative relationships between samples without requiring
explicit labels, typically through the construction of positive and negative sample
pairs. In this context, positive sample pairs refer to pairs of samples from the same
category whose representation vectors in the embedding space are supposed to be
close. Negative sample pairs, on the other hand, are pairs of samples from different
categories whose representation vectors in the embedding space are supposed to be
as far apart. The objective of contrastive learning is to optimize a contrastive loss
function (e.g., InfoNCE [45]), therefore maximizing the similarity of positive sample
pairs while minimizing the similarity of negative sample pairs.

10

3 Related Work

This chapter introduces the related work of this dissertation, including Test Selection
for DNNs and Deep Neural Network Testing.

Contents
3.1 Test Selection for DNNs . 12
3.2 Deep Neural Network Testing . 12

Chapter 3. Related Work

3.1 Test Selection for DNNs
Evaluating deep learning models presents significant challenges due to the high

labelling cost for annotating test cases. Test selection methods aim to address this
issue by selecting and labeling a subset of test data, thereby reducing the overall
effort required for labeling. Recent studies have concentrated on two main areas:
misclassification detection and accuracy estimation.

Misclassification detection techniques focus on prioritizing test inputs that are
more likely to be misclassified. These inputs are valuable for quickly debugging DNN
systems and retraining DNN models to enhance their performance. In the literature,
Feng et al. introduced DeepGini, which utilizes confidence-based metrics to rank
tests, with tests exhibiting higher uncertainty (measured by Gini scores prioritized
higher. Weiss et al. [7] evaluated a large set of test input prioritization strategies
for DNNs, particularly emphasizing uncertainty-based metrics like Vanilla Softmax,
Prediction-Confidence Score (PCS), and Entropy. These metrics have proven effective
in identifying potentially misclassified test inputs. Ma et al. [46] proposed selecting
test inputs based on uncertainty metrics, such as the maximum probability score
and variance score, demonstrating that uncertainty can guide the identification of
informative inputs. Additionally, Hu et al. [47] investigated the limitations of existing
test selection methods for active learning, which uses selected tests to retrain DNNs.
Their findings revealed that different test selection approaches lead to models of
varying quality.

Accuracy estimation approaches, on the other hand, aim to identify representative
test cases that can approximate the accuracy of the entire dataset. Li et al. [36]
introduced CES, which minimizes the cross-entropy between the selected and full
test sets, ensuring that the selected subset of tests maintains the original distribution.
Chen et al. [35] developed PACE, a technique that selects representative test inputs
through clustering, prototype selection, and adaptive random testing. PACE first
groups test inputs based on their testing capabilities, then applies the MMD-critic
algorithm [37] to identify prototypes within each cluster.

3.2 Deep Neural Network Testing
Beyond test selection, other areas, such as evaluating the adequacy of deep neural

networks [4, 5, 48, 49, 50], have also attracted significant attention. Pei et al. [4]
proposed the concept of neuron coverage as a measure to evaluate how thoroughly
a test set explores the decision logic of a DNN model. Ma et al. [5] introduced
DeepGauge, a framework that incorporates multiple coverage metrics to assess the
adequacy of test sets for DNNs. DeepGauge tracks neuron activation patterns to
evaluate how inputs traverse the decision-making logic of a DNN to evaluate the
quality of test cases. Kim et al. [49] proposed surprise adequacy as a novel technique
for evaluating the quality of test inputs in datasets. This method measures the degree
of "surprise" in test inputs compared to the training data, with surprise defined based
on variations in neuron activation patterns triggered by the inputs.

Dola et al. [51] proposed the IDC framework aimed at evaluating the adequacy
of tests for DNNs in a black-box context. This framework leverages a Variational
Autoencoder (VAE) to transform test inputs into feature vectors, creating a de-
fined coverage space. Coverage in this space is then measured using metrics from
Combinatorial Interaction Testing (CIT). Riccio et al. [52] introduced the notion

12

3.2. Deep Neural Network Testing

of "mutation adequacy" to measure the quality of test sets in identifying mutations
in DNN models. To achieve this, they developed DEEPMETIS, a tool specifically
designed to enhance the mutation adequacy of test sets, thereby improving their
fault detection performance.

This thesis includes four main contributions. The first three projects focus on
proposing new test prioritization methods to enhance the efficiency of DNN testing.
We focused on three special scenarios: classical machine learning model classification,
graph neural network classification, and long-text classification. The final project
conducts an empirical study to explore the limitations of existing test selection
methods in the context of graph neural networks.

13

Chapter 3. Related Work

14

4 Test input prioritization for Machine
Learning Classifiers

In this chapter, we propose a novel test prioritization approach called MLPrior,
which focuses on prioritizing test inputs that are more likely to be misclassified by
classical machine learning (ML) classifiers. MLPrior addresses the limitations of
existing test prioritization approaches: 1) Coverage-based methods are inefficient and
time-consuming; 2) Mutation-based methods cannot be adapted to classical ML models
due to incompatible model mutation operators; and 3) Confidence-based methods are
restricted to a single dimension when applied to binary ML classifiers, relying solely on
the model’s prediction probability for one class. MLPrior leverages two key premises
for test prioritization: 1) test inputs that are more sensitive to mutations are more
likely to be misclassified, and 2) test inputs closer to the model’s decision boundary
are more likely to be misclassified. By prioritizing potentially misclassified test inputs,
testers can allocate labeling resources more effectively, enhancing debugging efficiency.

This chapter is based on the work published in the following research paper:
• Xueqi Dang, Yinghua Li, Mike Papadakis, Jacques Klein, Tegawendé F.

Bissyandé, Yves Le Traon. Test input prioritization for Machine Learning
Classifiers. IEEE Transactions on Software Engineering (TSE). Accepted for
publication on Dec. 25, 2023.

Contents
4.1 Introduction . 17
4.2 Background . 21

4.2.1 Machine Learning and ML testing 21
4.2.2 Test Case Prioritization 23
4.2.3 Mutation Testing . 24
4.2.4 Automated Labeling Approaches for Machine Learning . 25

4.3 Approach . 26
4.3.1 Overview . 26
4.3.2 Mutation Rule Specification 28
4.3.3 Mutation Feature generation 32
4.3.4 Feature Concatenation 32
4.3.5 Learning-to-rank . 33
4.3.6 Variants of MLPrior . 33

Chapter 4. Test input prioritization for Machine Learning Classifiers

4.4 Study Design . 34
4.4.1 Research Questions . 34
4.4.2 Subjects . 35
4.4.3 Compared Approaches 38
4.4.4 Measurements . 39
4.4.5 Implementation and Configuration 39

4.5 Study Results . 40
4.5.1 RQ1: Effectiveness and Efficiency of MLPrior 40
4.5.2 RQ2: Effectiveness of MLPrior on different types of test

inputs . 43
4.5.3 RQ3: Impact of ranking models on the effectiveness of

MLPrior . 47
4.5.4 RQ4: Feature contribution Analysis 51
4.5.5 RQ5: Impact of Main Parameters in MLPrior 53

4.6 Discussion . 55
4.6.1 Generality of MLPrior 55
4.6.2 Threats to Validity . 56

4.7 Related Work . 56
4.7.1 Test Prioritization Techniques 56
4.7.2 DNN Testing . 57
4.7.3 Mutation-based Test Prioritization for Traditional Software 58
4.7.4 Mutation Testing and Mutation-based Test prioritisation

for Deep Learning . 58
4.8 Conclusion . 59

16

4.1. Introduction

4.1 Introduction
Machine learning classifiers have seen remarkable success in various domains [53],

including image recognition [54], natural language processing [55, 56], and recommen-
dation systems [57, 58]. However, the prevalence of black-box models, especially in
deep learning, has raised concerns about their lack of interpretability, which refers to
the extent to which a model’s internal mechanism and decision-making processes can
be comprehended and explained transparently to humans. Interpretability becomes
particularly vital in safety-critical domains like healthcare and finance [59], where
model decisions can profoundly impact individuals’ lives and societal well-being.

Compared to black-box models, classical machine learning (ML) algorithms (e.g.,
XGBoost [8], decision tree [9] and logistic regression [14]) offer more interpretable
solutions, making them an appealing choice for domains that prioritize transparency
and comprehensibility.

While classical ML classifiers are inherently interpretable, ensuring their accuracy
and reliability remains a challenge. Testing is a fundamental practice for ensuring the
quality of ML systems. However, a significant challenge in ML testing is the labeling
cost issue [13] (i.e., labeling test inputs to verify the correctness of predictions can
be costly). This challenge arises due to several factors: 1) manual annotation is
still the mainstream for labeling; 2) test sets can be large-scale, which increases
labeling efforts; 3) domain-specific knowledge can be required in certain domains for
labeling tabular data, such as the medical domain [1, 60, 61]. For instance, when
applying XGBoost for chronic kidney disease (CKD) detection [1], labelling the CKD
dataset for model training/testing requires specialized medical expertise to determine
whether a patient has CKD.

To deal with the labelling cost problem, one intuitive solution is to prioritize tests
that can cause the ML model to behave incorrectly (i.e., inputs that are more likely to
be misclassified by the model). Early identification and labelling of such tests can save
the manual labelling effort and enhance the overall efficiency of the testing process.
In the literature, various test prioritization approaches [2, 3] have been proposed
in the field of DNN testing. These techniques can be broadly classified into three
categories: coverage-based [4, 5, 6], confidence-based [3, 7] and mutation-based [2]
approaches.

Coverage-based approaches prioritize test inputs based on the neuron coverage
of DNNs. Confidence-based methods identify possibly-misclassified test inputs by
quantifying the classifier’s output confidence for each test. One notable confidence-
based approach is DeepGini [3], which leverages the Gini score as a metric to quantify
confidence levels for effective test prioritization. Recently, Weiss et al. [7] conducted
a comprehensive study to assess existing test prioritization methods, containing
the evaluation of a series of confidence-based metrics, including Vanilla Softmax,
Prediction-Confidence Score (PCS), and Entropy. Mutation-based techniques propose
a set of mutation operations and utilize the mutated results for test prioritization.
While these approaches have made considerable progress in prioritizing potentially-
misclassified test inputs, they still face certain challenges and limitations.

First, prior studies [3] have demonstrated that coverage-based methods are
ineffective and time-costly compared to confidence-based approaches. Second, the
mutation-based test prioritization approach, PRIMA [2], is not applicable to classical
ML models due to the lack of adapted model mutation operators. Third, while

17

Chapter 4. Test input prioritization for Machine Learning Classifiers

confidence-based test prioritization approaches can be adapted for classical ML
models, there are several limitations associated with their application in this context.
We outline the main limitations as follows. Specific details can be found in the
background section (cf. Section 7.2).
• Single dimension on binary classification models Binary classification

models categorize test inputs into two classes, and in confidence-based approaches,
the likelihood of a test being misclassified primarily relies on the model’s prediction
probability p. Tests with p values closer to 0.5 will be consistently prioritized
regardless of the specific method used, as demonstrated through experimental
results.

• Lack of model-specific insights Confidence-based approaches, viewing the
model as a black box and relying solely on its prediction probabilities, do not
take into account the transparency and interpretability provided by classical ML
models, leading to suboptimal prioritization.

• Ignoring attribute features Confidence-based methods neglect the attribute
features of classical ML test datasets, which can directly map tests into space and
indirectly reflect the distance between samples and the model’s decision boundary.
However, confidence-based approaches ignore this crucial feature information in
the process of test prioritization.
In this paper, we propose MLPrior (Classical ML-oriented Test Prioritization),

a test prioritization approach specifically tailored for classical machine learning
(ML) models. MLPrior addresses the aforementioned limitations, leveraging the
characteristics of classical ML classifiers (i.e., interpretable models and carefully
engineered attribute features) to prioritize test inputs. The core ideas behind
MLPrior are twofold: 1) tests more sensitive to the injected mutations are more
likely to reveal bugs, and 2) test inputs closer to the decision boundary of the model
are more likely to be predicted incorrectly. Both premises have been validated
by existing studies [62, 63, 64, 48], with a detailed explanation provided in the
Background section. Building upon the aforementioned premise, MLPrior utilizes
the characteristics of classical ML classifiers to prioritize test inputs, addressing the
limitations of confidence-based methods in the following way.
• Premise 1 - tests more sensitive to the injected mutations are more

likely to reveal bugs Based on this premise, we design mutation rules specifically
based on the characteristics of classical ML models and their datasets.
1) Model mutations. Leveraging the white-box nature of most classical ML
models, we design mutation rules specifically tailored for classical ML models.
These rules involve modifying the model’s architecture parameters or weight
parameters to perform model mutations.
2) Input mutations. Considering the tabular format of classical ML datasets,
which is different from the complex data structures of DNN datasets (r.g., text
and images), we design input mutation rules specifically tailored for classical ML
datasets.

• Premise 2 - test inputs closer to the decision boundary of the model
are more likely to be predicted incorrectly. To effectively capture the
spatial relationship between a test input and the decision boundary, we aim to
transform the attribute features of each test into a vector to indirectly reveal the
underlying proximity between the input and the decision boundary. Recognizing
the carefully-selected features of the classical ML test set, we design transformation

18

4.1. Introduction

rules to convert the original attributes of each test into a feature vector for test
prioritization.
Using model mutation rules and input mutation rules, we create a feature vector

for each test. More specifically, we generate mutants based on the mutation rules.
These mutants are then executed to generate mutation features for the purpose of
assessing the sensitivity to the injected mutations. As a result, we obtain three types
of features for each test: model mutation features (MMF), input mutation features
(IMF), and original attribute features (OAF).
• Model mutation features (MMF) MMF can capture the impact of model

mutations on a test input. Here, if an input can kill many mutated models (i.e.,
the predictions for this input via the mutated models and the original model are
different), indicating that this input is sensitive to model mutations, MLPrior
considers this input more likely to be misclassified.

• Input mutation features (IMF) IMF can capture the impact of mutations
on test inputs. If the prediction result for a given test input is different from
that of many of its mutated inputs, indicating that the predictions for the input
are sensitive to the mutations, MLPrior considers this input more likely to be
misclassified.

• Original attribute features (OAF) OAF can capture the spatial relationship
between a test input and the decision boundary. It directly reflects the original
attribute information of each test.

MLPrior combines three types of features for each test input in the target test
set to generate a final feature vector. This vector is then used by a pre-trained
ranking model to effectively predict the probability of misclassification for that input.
MLPrior offers several advantages:
• Generality: MLPrior can be adapted to a wide range of classical ML models by

making simple adjustments to the model mutation rules (i.e., enabling them to
target the architecture parameters or weight parameters of the evaluated model).

• Efficient: The total duration for test prioritization using MLPrior is around
20 seconds, involving model/input mutation, feature generation, ranking model
training, and test prioritization. One crucial factor is that MLPrior does not
require any retraining operations in the model mutation process. Mutations are
generated by directly modifying the architecture parameters or weight parameters
of the evaluated models.

• Model-specific insights Compared to confidence-based test prioritization ap-
proaches, MLPrior leverages the interpretability characteristic of classical ML
models and introduces mutations through modification of the model’s architecture
parameters or weight parameters, thus achieving effective test prioritization.

• Attribute feature inclusion In contrast to DNN test data, classical ML datasets
typically possess lower-dimensional features, rendering them more cost-effective
and time-efficient for test prioritization. Moreover, these features are typically
carefully selected by domain experts, providing a direct reflection of attribute
information for each test input. Our proposed approach MLPrior is designed to
leverage the attribute features of ML test sets for test prioritization.
MLPrior demonstrates broad applicability across various contexts. One specific

application pertains to banking loan operations, where classical ML models are
employed to determine whether a loan can be granted to a user. In this particular
scenario, classical ML models utilize a set of user attributes (e.g., gender, age, and

19

Chapter 4. Test input prioritization for Machine Learning Classifiers

transaction history) to predict the viability of granting a loan to a user. Incorrect
predictions can lead to significant losses for the bank. For instance, if the bank
mistakenly grants a loan to a user without the ability to repay, these users can
fail to meet their repayment obligations, increasing the risk of default and causing
damage to the bank’s assets. In this context, MLPrior can identify and prioritize
users who are more likely to be misclassified by the model. Consequently, two main
advantages arise: Firstly, these potentially misclassified users can be prioritized for
manual inspection, resulting in a decrease in losses caused by inaccurate predictions
generated by the model. Secondly, developers can manually inspect the attributes of
misclassified users and analyze which attributes led to prediction errors, using this
information to optimize the model.

We conducted an extensive study to evaluate MLPrior’s performance utilizing 185
subjects (i.e., paired datasets and ML models). The evaluation encompassed different
types of test inputs, including natural data, mixed noisy data, and fairness data.
Ensuring fairness in machine learning is essential to prevent bias and discrimination
against specific groups during predictions. Fairness has become a critical ethical
consideration in diverse machine learning domains, including recruitment, loan
approvals, and medical diagnosis [65]. In these domains, the absence of fairness
can lead to unjust treatment of particular groups, affecting individuals’ lives and
rights. Therefore, the evaluation of MLPrior’s effectiveness on fairness datasets
assumes crucial importance. To generate the fairness datasets, we followed the
approach of prior research [66, 67]. Specifically, we selected a group of test inputs
and modified their gender and age attribute values while retaining their original
labels. Moreover, we carefully selected a group of test prioritization approaches
that can be adapted to prioritize test inputs in the context of classical ML models
as the comparative methods, which have been demonstrated effective in existing
studies [7, 3]. Additionally, we utilize random selection as the baseline approach.

The experimental results demonstrate the superior performance of MLPrior
compared to existing methods, with an average improvement of 14.74%∼66.93% on
natural datasets, 18.55%∼67.73% on mixed noisy datasets, and 15.34%∼62.72% on
fairness datasets. We publish our dataset, results, and tools to the community on
Zenodo 1.

To sum up, our work has the following major contributions:

• Approach. We propose MLPrior, a novel test prioritization approach specifically
designed for classical ML models.

• Study. We conduct an extensive study based on 185 subjects involving natural,
mixed noisy, and fairness test inputs. We compare MLPrior with existing DNN test
prioritization approaches. Our experimental results demonstrate the effectiveness
of MLPrior.

• Performance Analysis. We assess the influence of various ranking models on
MLPrior’s effectiveness. Furthermore, we evaluate the contributions of different
types of features to MLPrior’s effectiveness. Additionally, we explore the impact
of parameter settings on MLPrior’s effectiveness.

1https://zenodo.org/records/10150392

20

https://zenodo.org/records/10150392

4.2. Background

4.2 Background
4.2.1 Machine Learning and ML testing

Machine Learning (ML) has gained widespread adoption in various domains,
demonstrating significant utility in safety-critical sectors like autonomous vehicle
systems [68] and medical intervention protocols [12]. Existing literature [13] pointed
out that ML can be broadly classified into two primary branches: classical Machine
Learning [69, 8] and Deep Learning [70, 71]. Classical Machine Learning encompasses
a range of approaches, including decision trees [9] and logistic regression [14]. These
classical algorithms remain widely employed in various industrial applications [72, 37].
DNNs consist of interconnected nodes (neurons) organized in layers, with each layer
responsible for learning and abstracting different levels of features from input data.
In contrast to DNNs, classical ML models are generally more interpretable [73].
Interpretability in machine learning refers to the degree to which a model’s internal
mechanisms and decision-making processes can be understood and transparently
explained to humans. Interpretability is crucial in domains where transparency and
interpretability are essential, such as healthcare [19] and finance [20]. Therefore,
classical machine learning models retain distinct advantages in certain application
domains.

In order to emphasize the importance of interpretability in safety-critical domains,
we present several typical harms caused by black-box ML systems in the financial
and healthcare industries:
1) Risk Management Challenges in Finance Weber et al. [74] highlighted that,
in the financial field, a high degree of transparency and interpretability is required
for effective risk management. The lack of interpretability in black-box models can
make it challenging for financial institutions to understand how decisions are made,
thereby increasing the difficulty of risk management.
2) Legal and Ethical Issues in Finance Chen et al. [75] pointed out that,
according to legal and ethical principles, financial companies are required to provide
clear explanations for the reasons behind specific loan application rejections. However,
with black-box models, loan applicants are unaware of how their scores are calculated.
Even if model explanations are provided, there can be a disconnect between the
explanations for loan rejection and the actual model calculations, as the explanations
could be created after the fact.
3) Trust Issues in Healthcare Adadi et al. [76] discussed the constrained ac-
ceptance of black-box models in clinical settings due to trust and transparency
issues. Moreover, Verdicchio et al. [77] raised a vital question: "If doctors cannot
understand why a black-box model diagnoses, why should patients trust the treat-
ment recommendations?". This implies that black-box models lack interpretability,
making it difficult to explain the fundamental reasons behind their diagnostic or
treatment recommendations. Therefore, patients and doctors can be skeptical of the
system’s suggestions and even refuse to follow its recommendations because they
cannot be certain if these recommendations are based on sound medical reasoning.
This lack of trust and understanding can significantly affect patients’ confidence in
the proposed treatments, potentially hindering their willingness to undergo specific
medical procedures.
4) Responsibility Issues in Healthcare Smith et al. [78] pointed out that if
patients are harmed due to recommendations from an opaque AI system (AIS)

21

Chapter 4. Test input prioritization for Machine Learning Classifiers

adopted by clinicians, questions arise about how responsibility will be assigned.
Specifically, in the healthcare field, doctors are expected to take responsibility for
their decisions. If a black-box system provides incorrect recommendations, doctors
will find it challenging to explain why they followed the system’s advice, potentially
raising legal and ethical liability concerns.

Based on the existing studies [79, 80, 81], in the following, we provide the
quantification of the loss resulting from the lack of interpretability in black-box
models. Specifically, we employ descriptive terms to quantify the degree of loss in
two specific scenarios: medical and financial.
• Medical Scenario Amann et al. [79] pointed out that, in the medical domain,

the lack of interpretability in black-box models can lead to serious legal and ethical
uncertainty. Without adequate consideration of interpretability, these technologies
can neglect regulatory issues and result in significant harm. Moreover, Grote et
al. [80] pointed out that in the face of a black-box model lacking interpretability, its
clinical decision support can constrain the capabilities of physicians. Specifically,
physicians can rigidly adhere to the output of the black-box model to avoid
being held accountable. This situation poses a serious threat to the autonomy of
physicians.

• Financial Scenario Yan et al. [81] pointed out that, in the financial domain,
the lack of interpretability in the decision mechanisms of black-box models poses
a challenge for financial practitioners and regulatory authorities in understanding
the factors influencing the model’s decisions. This can significantly impact the
fairness of loan decisions, potentially resulting in substantial financial losses.
Although interpretability is a valuable trait, it is not the sole factor taken into

account when deploying models, especially in the healthcare industry [82, 83]. Deep
learning has also demonstrated remarkable success in healthcare applications [84].
However, there are compelling reasons that test prioritization for classical models
remains highly necessary.
• Applicability to Structured Medical Data: Deep learning finds extensive use

in the field of medical imaging [83], aiding in the automatic detection of diseases
and tumors. However, a substantial portion of data in the healthcare sector
exists in structured tabular formats. Classical machine learning models have
demonstrated superior performance when dealing with structured medical data,
outperforming deep learning methods [85, 86]. For instance, Shwartz et al. [85]
pointed out that when handling tabular datasets, the classical ML technique
XGBoost outperforms the evaluated DL models.

• Need for Interpretability: In healthcare [77], when clinicians need to justify
their decisions to patients, having an understanding of the reasoning behind model
predictions is essential. Classical machine learning models can provide this crucial
information [87].

• Regulatory Approvals: Regulatory bodies can require models to elucidate the
decision-making processes of a model to facilitate comprehensive treatment risk
assessment [59]. The interpretability that classical ML models can provide is
crucial for obtaining regulatory approvals.
Machine learning testing involves systematically evaluating and validating machine

learning models to ensure their accuracy, reliability, and effectiveness in prediction
or decision-making [88, 89, 59, 90]. The primary goal is to reveal disparities between
intended and actual behaviors exhibited by ML systems [13]. Compared to traditional

22

4.2. Background

software systems, machine learning testing presents distinct challenges. One pivotal
challenge is the Oracle Problem [91], which pertains to the difficulty in acquiring
accurate labels or ground truth for training and testing data. In the context of testing
ML-based systems, automated testing oracles are typically unavailable. Therefore,
manual labeling remains the mainstream method, which can lead to substantial
labeling costs. In the literature, numerous fields are dedicated to addressing labeling
cost concerns, such as test selection [35, 36] and test prioritization [3, 2]. In our
study, we concentrate on test prioritization, which will be further elaborated in the
subsequent section.

4.2.2 Test Case Prioritization
In the field of traditional software testing, test case prioritization aims to determine

the sequence in which test cases are executed to uncover defects more effectively.
In the literature, numerous techniques for test prioritization have been proposed.
The majority of these approaches are rooted in code coverage analysis. Notably,
two primary coverage-based techniques are: Coverage-Total Method (CTM) and
Coverage-Additional Method (CAM) [92]. CTM operates by sequentially selecting
tests with the highest coverage rates, followed by those with progressively lower
rates. In cases where tests share the same coverage rate, the method introduces
randomness to determine the prioritization. In contrast, CAM distinguishes itself
from CTM by its approach. It strategically utilizes feedback from previous selections,
iteratively opting for tests that target previously uncovered code structures, thereby
incrementally expanding the coverage.

Test input prioritization in the field of Deep Neural Networks (DNNs) [2, 7, 3, 32]
aims to enhance the efficiency of testing by focusing on test inputs that are more
likely to expose model misclassifications, thereby revealing potential bugs earlier.
This approach ensures that crucial test inputs are identified and labeled promptly
within the constraints of limited time. Previous research [3] has indicated that
confidence-based approaches outperform the aforementioned coverage-based methods.
These confidence-based approaches prioritize tests based on the model’s confidence.
One notable approach is DeepGini [3], which surpasses all existing coverage-based
prioritization methods in terms of both effectiveness and efficiency. A recent com-
prehensive investigation conducted by Weiss et al. delved into the capabilities of
various confidence-based DNN test input prioritization techniques, such as Vanilla
Softmax, Prediction-Confidence Score (PCS), and Entropy. They demonstrated the
effectiveness of these approaches in identifying potentially misclassified test inputs.

However, while confidence-based test prioritization methods have been proven
effective [3] and can be adapted for classical ML models, their application in the
context of test prioritization for classical ML models is hindered by several limitations.
We discuss these limitations as follows.
• Single dimension on binary classification models Binary classification

models [93, 94] categorize test inputs into two distinct classes, which limits the
application of confidence-based test prioritization approaches to a single dimension.
Specifically, when applying confidence-based approaches to these models, the first
step is calculating the probabilities for each classification, denoted as (p, 1 − p).
If the model’s prediction probability for a test is (0.5, 0.5), it means the model
is most uncertain about this test [3], indicating this test is more likely to be
misclassified. The closer a test’s p value is to 0.5, the more uncertain the model

23

Chapter 4. Test input prioritization for Machine Learning Classifiers

is about that particular test. Consequently, uncertainty is solely determined by p.
Regardless of the specific confidence-based test prioritization method employed,
tests with p values closer to 0.5 will be prioritized over others. To illustrate
this point, consider a hypothetical test set with three tests, and the model’s
probability vectors for these tests are as follows: t1 (0.9, 0.1), t2 (0.7, 0.3), t3
(0.8, 0.2). Irrespective of the chosen confidence-based test prioritization method,
the resulting ranking will be t2 → t3 → t1 because t2 has the p value (0.7) closest
to 0.5, followed by t3 (p = 0.8), while t1 has the farthest p value from 0.5 (p =
0.9).
The above conclusions have been confirmed through our experimental results. For
each subject, all confidence-based methods yield identical effectiveness, indicating
they produce the same ranking for a given test set.

• Lack of model-specific insights Confidence-based approaches for test prioriti-
zation consider the model a black box and rely solely on its prediction probability
vectors. This neglects the transparency and interpretability of classical ML models,
which are mostly white-box and have an understandable decision-making process.
As a result, confidence-based approaches fail to incorporate crucial model-specific
insights from classical ML models, leading to suboptimal test prioritization.

• Ignoring attribute features Furthermore, confidence-based approaches ignore
a crucial aspect of the test datasets for classical ML models, namely, the at-
tribute features. These features are carefully engineered by domain experts to
effectively capture and represent crucial aspects of the underlying data. They can
directly reflect the attribute information of each test input. However, confidence-
based approaches ignore this crucial feature information in the process of test
prioritization.
To overcome the aforementioned limitations, we propose MLPrior, a test priori-

tization approach specifically tailored for classical ML models. MLPrior leverages
the characteristics of classical ML classifiers (i.e., interpretable models and carefully
engineered attribute features) to prioritize test inputs. The core premises behind
MLPrior are twofold: 1) tests more sensitive to the injected mutations are more
likely to reveal bugs, and 2) test inputs closer to the decision boundary of the model
are more likely to be predicted incorrectly.

The first premise is grounded in the well-established practice of traditional
mutation testing [62, 63, 64, 95, 96], which considers that test cases sensitive to
mutations (able to capture mutants) have a higher capability to detect bugs in
software. The second premise has been identified and demonstrated in prior work [48].

4.2.3 Mutation Testing
Mutation testing [38, 39] is a systematic software testing technique that has gained

significant attention in both academic and industrial research communities [97, 98].
The fundamental principle is to introduce small and intentional modifications, called
mutants, into the source code of a software system [99]. These mutations simulate
potential faults that may occur during the execution of the program. A well-designed
test suite should be able to detect the presence of these mutants, indicating its
capability to detect real faults in the code [40]. In the context of mutation testing,
the term "kill" refers to the ability of a test case to detect a specific mutant [100].
When a test case "kills" a mutant, it means that the test case is able to reveal a
difference in behavior between the original program and the mutated version of the

24

4.2. Background

program. A test suite with a high "mutation kill" rate is considered more effective and
reliable, as it demonstrates a greater ability to detect potential faults or deviations
from the expected behavior.

4.2.4 Automated Labeling Approaches for Machine Learning
Data labeling is a labor-intensive task that is indispensable in the development of

supervised machine learning systems [101]. Conventional data labeling methods typi-
cally rely on manual effort, which is a time-consuming and costly process. Moreover,
in specialized fields like medicine and finance, manual labeling necessitates domain-
specific expertise, further increasing its cost. In recent years, various automated or
semi-automated data labeling methods [102, 103] have emerged, aimed at reducing
the burden of manual labeling and improving the overall labeling efficiency.

Desmond et al. [103] introduced a semi-automated data labeling system that
views the labeling task as a collaborative effort between human annotators and
machine annotators, which are implemented as predictive models. The core of this
approach involves a human-machine coactive process facilitated by a semi-supervised
predictive model and an active learning selector. In each iteration, the active learning
selector prioritizes the most uncertain examples for annotation by human annotators
based on the model’s predictions. The consistency between human decisions and
machine predictions is continuously monitored and presented at various checkpoints,
allowing annotators to assess the machine’s performance in the labeling task. Once
annotators are satisfied with the machine’s performance, they can delegate the
remaining labeling tasks to the machine (automatic labeling).

Wu et al. [104] proposed a semi-automated labeling method based on active
learning and label informativeness. Specifically, the SLMAL algorithm selects the
most informative example-label pairs for annotation by combining the uncertainty
of examples and the informativeness of labels. During this process, the algorithm
initially identifies and prioritizes the example-label pairs in need of labeling the most
and subsequently employs the nearest neighbors of these highly uncertain pairs to
predict their partial labels.

However, semi-automatic labeling comes with several limitations:
• Human Involvement: In the semi-automatic labeling process, human interven-

tion is still required, especially in complex decision-making processes. This can
result in an increase in overall labeling time and costs, particularly in situations
requiring domain expertise.

• Scalability: Semi-automatic labeling methods can face challenges when dealing
with large-scale datasets, primarily regarding processing speed and resource
utilization.

• Sensitivity to Labeling Quality: The performance of the model is largely
dependent on the quality of the initial labeled data used for training. Low-quality
or biased labeling data may lead to a decrease in model performance.
However, despite the presence of semi-supervised learning, in order to labeling

tests more accurate and of higher quality, manual labeling is still the mainstream in
the industry [102].

Automated labeling methods offer a potential solution to the aforementioned
limitations. Nevertheless, due to the constraints outlined below, fewer automated
labeling methods are specifically designed for classical machine learning. To our
best knowledge, the known method applicable to labeling for classical machine

25

Chapter 4. Test input prioritization for Machine Learning Classifiers

learning models is Programmatic Labeling [105]. Programmatic labeling automates
the labeling process through scripts and programming algorithms, significantly
improving the efficiency of data preparation. However, Programmatic Labeling
typically requires specialized programming skills to create labeling rules, which may
pose a barrier for researchers without a technical background.

In the following, we outline the challenges that make it difficult to develop
automated labeling methods specifically designed for classical machine learning,
resulting in the current scarcity of such methods.
• Diversity of Domain Knowledge Automated labeling methods face challenges

in accommodating diverse types of datasets, each requiring expertise from different
domains. For example, a social network dataset can involve knowledge from
linguistics, psychology, and sociology, while a medical dataset, such as cancer data,
requires expertise in medicine and biology. The intricate and extensive nature of
knowledge across different fields presents a challenge in developing a universally
applicable automated labeling technique.

• Domain Adaptation Challenges Even within the same domain, different tasks
may necessitate varying areas of expertise. For instance, in cancer research,
labeling data for different types of cancers (such as lung cancer, breast cancer,
etc.) can require specialized medical knowledge and skills.

• Difficulty in Quantifying Domain Knowledge Encoding domain expertise
into an automated labeling system can be a complex task.

4.3 Approach
4.3.1 Overview

Data set

ML model

Feature
mutation

Feature
extraction

Model
mutation

Input mutation features

Feature
extraction

Model mutation features

Feature
extraction

Ranking
modelData set

Data
processing

Feature combination

Training data
with label

Test data
to be labeled

Input data features

Learning to rank

Ranking

Prioritized
test data

Labeling

Developers

Figure 4.1: Overview of MLPrior
In this paper, we propose MLPrior, a test prioritization approach specifically

designed for classical ML models. Figure 4.1 illustrates the workflow of MLPrior.
Given a test set T and an ML model M , MLPrior produces a sorted test set T ′,
where test cases that are more likely to be mispredicted by the model are placed at
the front. We outline the steps of MLPrior as follows.
❶ Attribute feature generation: In the initial stage, MLPrior converts the

attribute values of each test t ∈ T into a feature vector, denoted as V D
t . This

involves transforming non-numeric attributes into a numeric format. To accomplish
this, we create a mapping dictionary that includes all non-numeric attributes
paired with their corresponding numeric values. For instance, in the context of
the attribute "gender," the values "male" and "female" are mapped to 0 and 1,
respectively.

❷ Mutation feature generation (model): Based on the model mutation rules

26

4.3. Approach

described in Section 4.3.2, MLPrior generates a set of mutated models for the
original ML model M . For each test t ∈ T , MLPrior identifies whether t "kills"
each of the mutated models (i.e., whether the predictions made by the mutated
model and the original ML model for t are different). This process allows MLPrior
to construct a model mutation feature vector, denoted as V M

t . Each element of
V M

t corresponds to a specific mutated model. More specifically, MLPrior sets
the ith element of t’s model mutation vector to 1 if t kills the ith mutated model.
Otherwise, the element is set to 0.

❸ Mutation feature generation (inputs): Based on the input mutation rules
outlined in Section 4.3.2, MLPrior generates mutated inputs for each test instance
t ∈ T . By comparing the predictions of model M on the ith mutated input with
its predictions on the original test input t, MLPrior constructs an input mutation
vector denoted as V I

t . If the prediction of model M for the ith mutated input is
different from that of the original test input t, the ith element of V I

t is set to 1.
Otherwise, it is set to 0.

❹ Feature Concatenation: For each test t ∈ T , MLPrior concatenates the three
types of feature vectors constructed in the previous steps (i.e., V D

t , V M
t and V I

t)
and obtain a final feature vector, denoted as Vt.

❺ Learning-to-Rank: For each test instance t ∈ T , MLPrior feeds its final feature
vector (Vt) into the pre-trained XGBoost ranking model [8], which will produce the
probability of this input being misclassified. Finally, MLPrior ranks all the tests
in T based on their probability scores in descending order, thereby prioritizing
the possibly-misclassified tests.

t = (s1, s2, . . . , sn)

Original Attribute Feature

Feature Generation

(i1, i2, . . . , in)

Input Mutation Feature

(0, 1, . . . , 0)

Model Mutation Feature

(1, 0, . . . , 1)

A test case
Feature combination

Final Feature

(i1, i2, . . . , in, 0, 1, . . . , 0, 1, 0, . . . , 1)

Figure 4.2: A concrete example of feature generation in MLPrior
In MLPrior, the concept of feature is crucial. To demonstrate the processes of

feature extraction, combination, and concatenation more intuitively, we provide a
typical example. In this example, we delve into the specifics of how MLPrior generates
features for a given test t, illustrating each step of the process in detail. Furthermore,
we visually illustrated this example in Figure 4.2 to enhance the presentation of
MLPrior’s feature generation process.
• Feeding Attributes of t to MLPrior Given a classical ML model M and its

corresponding test set T , let t be a test instance from the test set T . Given that
the dataset for the classical ML model is in a tabular format, we assume the
attribute features of t as t = (s1, s2, . . . , sn). Here, sn includes both numeric and
non-numeric formats (such as strings). In this step, we input the attributes of the
test t into MLPrior.

• Generation of Original Attribute Features We input the attribute vector
of test t, which is (s1, s2, . . . , sn), into MLPrior. MLPrior then converts all non-
numeric attributes into numeric format to construct the original attribute vector
of t, represented as (i1, i2, . . . , in).

• Generation of Input Mutation Features Subsequently, MLPrior generates N

27

Chapter 4. Test input prioritization for Machine Learning Classifiers

mutated inputs of the test t, denoted as (t1, t2, . . . , tN). MLPrior then feeds these
mutated inputs into the original ML model to make predictions. If the model
output for ti differs from the result of the original sample t, the ith element of the
input mutation feature vector will be set to 1; otherwise, it will be set to 0. In
this manner, we obtain the input mutation feature vector for t, represented as
(0, 1, . . . , 0). This vector indicates that for the first mutant of t, denoted as t1, the
model’s prediction is the same as for t. For the second mutant of t, denoted as t2,
the model’s prediction differs from that for t.

• Generation of Model Mutation Features For the original model M , MLPrior
generates K mutated models, denoted as (m1, m2, . . . , mK), and inputs the original
sample t into these mutated models for prediction. If the prediction of the ith

mutated model for t differs from the prediction of the original model M for t,
then the ith element of the model mutation feature vector is set to 1; otherwise, it
is set to 0. Through this method, we obtain the model mutation feature vector for
t, represented as (1, 0, . . . , 1). This vector indicates that the first mutated model
of M , denoted as m1, predicts differently for the test t compared to the original
model M . Conversely, the second mutated model of M , denoted as m2, predicts
the same for the test t as the original model M .

• Feature Combination: MLPrior concatenates the three types of features ob-
tained from the previous steps (i.e., Original Attribute Features, Input Mutation
Features, and Model Mutation Features) to form the final feature vector for t. This
final feature vector is represented as (Original Attribute Features, Input Mutation
Features, Model Mutation Features) = (i1, i2, . . . , in, 0, 1, . . . , 0, 1, 0, . . . , 1).
The primary purpose of this step is to encapsulate the attribute information

of each test instance t ∈ T into a feature vector, which will then be utilized as
input to the ranking models for test prioritization. Since the ranking models require
numeric inputs, MLPrior converts all the non-numeric attribute values of t into a
numeric format. To this end, we construct a mapping dictionary that specifies the
numeric value corresponding to each non-numeric attribute value. For instance, for
the attribute "gender," the attribute value "male" is transformed into 1, while "female"
is transformed into 0. The motivation behind extracting these original features is
explained as follows.

Prior research [48, 106] pointed out that test inputs situated closer to the decision
boundary of a model are more likely to be misclassified. In order to effectively capture
the spatial relationship between a test input and the decision boundary and to
preserve the carefully-selected and low-dimensional features of the classical ML test
set, we directly generate feature vectors of each input from its original attribute
values.

4.3.2 Mutation Rule Specification
In this stage, we propose two types of mutation rules designed specifically for

classical ML models and their corresponding datasets. The principle underlying
our utilization of mutation testing in test prioritization is: If a test input exhibits
high sensitivity to the injected mutations, this input is more likely to detect faults in
the system. This principle is derived from previous research in traditional mutation
testing [64, 95, 96]. We extend this principle to encompass ML systems, correspond-
ingly designing model mutation rules and input mutation rules. The key insights of
MLPrior are that: 1) if an input can kill many mutated models (i.e., the predictions

28

4.3. Approach

for the input made by the mutated models and the original model are different),
indicating that this input is sensitive to model mutations, MLPrior considers this
input more likely to be misclassified. 2) If the prediction result for a given test input
is different from that of many of its mutated inputs, indicating that the predictions
for the input are sensitive to the mutations, MLPrior considers this input more likely
to be misclassified. In the following sections, we provide a detailed explanation of
our mutation approaches.

4.3.2.1 Model mutation rules

The model mutation rules are designed to make slight changes to the architecture
parameters or weight parameters of the pre-trained ML models to generate mutated
models. We ensure that the new parameter values are close to their original values in
order to achieve slight mutations. It is important to note that this process does not
involve any retraining operations. Therefore, the total execution time of generating
model mutants is short, with an average duration of 3 seconds, as shown in Table 4.4.

In our study, we evaluated the effectiveness of MLPrior using five classical
ML models, namely Decision Tree [9], K-Nearest Neighbors (KNN) [107], Logistic
Regression (LR) [14], XGBoost [8], and Gaussian Naive Bayes (GaussianNB) [8]. The
rationale behind selecting these models is twofold: 1) They have gained widespread
adoption in various industries due to their interpretability and proven performance [72,
108]; 2) These models have been extensively utilized in recent ML testing studies [66].
It is important to note that MLPrior’s applicability extends beyond the evaluated
models. By making simple adjustments to the model mutation rules (i.e., enabling
them to target the architecture parameters or weight parameters of the evaluated
model), it can be adapted to a diverse range of interpretable ML models. We
elaborate on the specific details of conducting model mutation as follows.
❶ Decision Tree [9] Decision tree is a machine learning method that predicts data

step-by-step based on features. During prediction, attribute values are utilized
to make decisions at internal nodes of the tree, determining which branch node
to enter based on the decision outcome until a leaf node is reached to obtain the
classification result.
Input to Decision Tree: The input to a Decision Tree consists of a dataset
containing instances with associated features. The Decision Tree algorithm utilizes
these input features to create a hierarchical structure that facilitates effective
classification.
Process of Classification: Decision tree operates by sequentially making
decisions at each split node of the tree. For a given input, it begins at the root
node and evaluates the features of the input to determine the appropriate branch
to follow at each split node. This process iterates until a leaf node is reached,
signifying a classification outcome.
Mutating Decision Tree: To induce mutation in the Decision Tree model, we
randomly select a set of split nodes and introduce random deviations to their
threshold values, thereby influencing the predictive outcomes of the Decision Tree
model. We explain below why changing the thresholds can alter the predictive
results of a decision tree: Consider a situation where a given test sample t passes
through nodes in the original tree. Based on decisions made at split nodes, it
arrives at leaf node A, and thus will be classified as A category. After making

29

Chapter 4. Test input prioritization for Machine Learning Classifiers

slight adjustments to the thresholds of a group of decision nodes, when sample t
traverses the mutated tree, the modified decision thresholds at split nodes can
lead it to reach leaf node B.

❷ K-Nearest Neighbors (KNN) [107] KNN (K-Nearest Neighbors) is a widely
adopted classical machine learning model. It classifies an input into a class based
on the majority class of its K nearest neighbors in the feature space.
The parameter K: The parameter K represents the number of neighbors
considered. For example, when the value of K is 8, it means that when predicting
the label or value of a new data point, the algorithm will find the eight closest
samples from the training data and then determine the classification of the sample
based on the classification of these neighboring samples. The choice of the value
of K affects the complexity and performance of the model.
Mutating KNN: To induce mutations in the KNN model, we introduce a random
slight alteration to the value of K, thereby influencing the prediction outcomes.
For instance, consider an initial K value of 8 for a KNN algorithm. Given a sample
t, the KNN model’s prediction for t is determined based on the categories of its
nearest 8 neighbors. Assuming among these 8 neighbors, 5 belong to category
A and 3 belong to category B, the final classification for t would be A. If K is
slightly perturbed, changing it to 12, and the newly added neighbors all belong
to category B, then in this scenario, among the 12 nearest neighbors, 7 belong to
category B and 5 belong to category A, resulting in the final classification for t
being B. Thus, variations in the value of K can introduce disturbances in model
prediction results.

❸ Logistic Regression (LR) [14] Logistic regression establishes a linear functional
relationship to construct a connection between input features and probability
outputs. It employs a Sigmoid function (as displayed in Formula 4.1) to map the
results onto the [0, 1] interval, representing the probability of belonging to class 1.
This enables the classification of input samples.
Weight Coefficient: In the Sigmoid function of logistic regression, weight
coefficients determine the impact of different features on predicting the output.
Each feature is assigned a corresponding weight coefficient. For example, in
Formula 4.1, the weight coefficient for the feature x0 is w0.
Mutating Logistic Regression: To introduce mutation to the Logistic Re-
gression, we randomly select a feature from the Sigmoid function and modify its
weight coefficient, thus affecting the model’s predictions. For example, consider
Formula 4.1, which represents a trained Logistic Regression model taking four
input features: x0, x1, x2, and x3. In this formula, w0, w1, w2, and w3 denote
the weight coefficients for each feature, and f(x) represents the prediction score.
We mutate the model by randomly selecting one of the four weight coefficients
and making a slight adjustment to its weight coefficient. This mutation pro-
cess directly influences the output value of f(x), consequently impacting the
classification results of the model.

f(x) = 1
1 + e−(w0x0+w1x1+w2x2+w3x3+b) (4.1)

❹ XGBoost [8] XGBoost is a widely used gradient boosting algorithm designed
for enhanced predictive modeling. XGBoost is a variant of the boosting algo-
rithm [109], which aims to integrate multiple weak classifiers into a robust classifier.

30

4.3. Approach

As a boosting tree model, XGBoost aggregates multiple tree models to form a
powerful classifier. In binary classification tasks, XGBoost defaults to output 0
or 1, representing two different classes. Internally, XGBoost calculates an initial
probability value p, subsequently comparing it to a threshold (with a default value
of 0.5) prior to determining the final class output: values exceeding 0.5 yields an
output of 1, whereas values below 0.5 yield an output of 0.
Mutating XGBoost: To mutate XGBoost, we apply a random slight offset to
the internal threshold of the XGBoost model, thereby generating model mutants.
For instance, consider the original XGBoost threshold of 0.5; upon introducing a
minor offset, the threshold becomes 0.4 for the mutated XGBoost model. Under
this mutation, the following scenarios arise: 1) Given a test input t1 with a
predicted p value of 0.45, the original XGBoost predicts an outcome of 0 (p
<0.5), whereas the mutated XGBoost predicts an outcome of 1 (p >0.4); 2) Given
another test input t2 with a p value of 0.3, both the original XGBoost and the
mutated XGBoost models predict an outcome of 1 (p >0.4; p >0.5).
It can be observed that t1 is more sensitive to the injected mutation than t2, and
we consider that t1 is more likely to be misclassified by the model. This mutation
rule can be reasonably interpreted from an uncertainty perspective: when a slight
adjustment in the model’s classification threshold can alter the test’s classification
result, it indicates that the model’s prediction probability for that test is close
to 0.5. According to prior work [3], the closer a prediction probability is to 0.5,
the greater the model’s uncertainty regarding that test, making it more prone to
misclassification.

❺ Gaussian Naive Bayes (GaussianNB) [8] Gaussian Naive Bayes (GNB)
is a probabilistic machine learning classification technique based on Gaussian
distribution. It assumes that each parameter (a feature) possesses independent
predictive power for the output variable. The combination of predictions from all
parameters yields the final prediction.
Mutating GaussianNB: To induce mutations in GaussianNB, we introduce
a random slight adjustment to the internal threshold of the GaussianNB model,
resulting in the generation of model mutants.

4.3.2.2 Input mutation rules

The prior work [48] introduced a mutation operator, noise perturbation, for
mutating inputs in image format, which adds noise to data for mutation. A common
type of image noise is occlusion noise [110], achieved by overlaying a black block on
the part of the image. This black block typically consists of a matrix filled with 0.
The method involves replacing the matrix of pixel values at the original location
in the image with this zero-filled matrix (black block). Inspired by this technique,
MLPrior’s input mutation rule involves randomly selecting a specific feature from
the feature vector of t and changing its value to 0. Before this, MLPrior initially
converts all attributes of t into a corresponding numerical feature vector. The
objective is to alter the attribute value of this particular feature, thus affecting the
model’s predictions. To gain a deeper insight into the impact of input mutation rules
on model predictions, we provide explanations using the five classical ML models
evaluated in our study as examples. It is important to note that our input mutation
rules are applicable to a wide range of datasets for classical ML models.

31

Chapter 4. Test input prioritization for Machine Learning Classifiers

❶ Decision Tree Given a test input, if a specific feature value of this input is
changed to 0, it could lead to a change in the decision path that the input takes
down the tree. This mutation can cause the input to be categorized differently
than it would have been without the mutation.

❷ K-Nearest Neighbors (KNN) For KNN, changing the value of a feature to 0
can alter the distance calculation between this input and other instances. This
shift in distances can lead to a different set of k nearest neighbors being considered,
thereby potentially affecting the classification result of the input.

❸ Logistic Regression In logistic regression, modifying a feature’s value to 0 will
impact the coefficients associated with that feature. This can lead to a different
logistic function, causing the instance’s predicted probability to shift, ultimately
affecting the classification outcome.

❹ XGBoost For a given sample, setting a feature of it to 0 can influence the
way that features contribute to the ensemble of decision trees. This can lead to
different tree structures being emphasized during prediction, thereby affecting the
final prediction of the sample.

❺ Gaussian Naive Bayes (GaussianNB) For a given sample, setting a feature’s
value to 0 can impact the calculation of probabilities for the various classes based
on the Gaussian distribution assumption. This can influence the final classification
result.

4.3.3 Mutation Feature generation
For each test t ∈ T , based on the aforementioned mutation rules, we generate

mutants and subsequently build mutation feature vectors. The detailed procedures
are elaborated below.
• Input Mutation Features (IMF) Based on the input mutation rules presented

in Section 4.3.2.2, MLPrior generates a set of input mutants for each test t ∈ T .
Subsequently, MLPrior proceeds to compare the predictions of model M for each
input mutant with that of the original input t to construct the input mutation
vector. During this process, if the prediction for the i-th mutated input differs
from that of the original test input t, the corresponding i-th element of the feature
vector is assigned a value of 1; otherwise, it is assigned a value of 0. An example
of the resulting feature vector is (0, 1, ..., 0).

• Model Mutation Features (MMF) Based on the model mutation rules de-
scribed in Section 4.3.2, MLPrior generates a set of mutated models for the original
ML model M . For each test t ∈ T , MLPrior identifies whether t "kills" each of
the mutated models (i.e., whether the predictions made by the mutated model
and the original ML model for t are different) to construct the model mutation
vector. More specifically, if t kills the i-th mutated model, the i-th element of t’s
model mutation vector will be set to 1. Otherwise, the i-th element will be set to
0. An example of the resulting feature vector is (1, 0, ..., 0).

4.3.4 Feature Concatenation
Based on the aforementioned steps, for each test sample t ∈ T , MLPrior generates

three types of feature vectors: the attribute feature vector, the input mutation vector,
and the model mutation vector. Subsequently, for t ∈ T , MLPrior concatenates these
three types of features to obtain the final feature vector, which is then used as input
to the ranking model.

32

4.3. Approach

4.3.5 Learning-to-rank
Once obtaining the feature vector for each t ∈ T , MLPrior aims to train a ranking

model to automatically learn the probability of a test input t being misclassified by
the ML model M based on its feature vector. In the following section, we describe
the process of constructing the ranking model and explain how to utilize the ranking
model for test prioritization.
Ranking model building MLPrior leverages the XGBoost ranking algorithm [8], an
optimized distributed gradient boosting learning algorithm, to construct the ranking
model. Given the classical ML model M with dataset D, we first split the dataset
D into two partitions: the training set R and the test set T , in a 7:3 ratio [111].
The test set remains untouched for the purpose of evaluating MLPrior. Based on
the training set R, our objective is to construct a training set R′ for training the
ranking models. To achieve this, we generate the final feature vector for each r ∈ R,
following the steps described in Section 4.3.2 to Section 4.3.4. These features are
used as the training features for the dataset R′. Next, we utilize the original ML
model M to classify each instance r ∈ R and then compare the model’s predictions
with the corresponding ground truth of r. By doing so, we can identify whether r is
misclassified by the model M . If r is misclassified, we label it as 1; otherwise, we
label it as 0. As a result, we obtain the labels for the training set R′. Based on the
constructed training set and corresponding training labels obtained above, we can
proceed to train the ranking model of MLPrior.
Test prioritization via ranking model It is essential to emphasize that the
XGBoost ranking algorithm, upon completion of its training process, is a binary
classification algorithm. It classifies a test into two categories instead of providing an
estimation of misclassification probability. Therefore, we made specific adjustments
to the original XGBoost algorithm. Specifically, we extract the intermediate value
from the model’s output, which was originally used to determine whether a test
instance would be predicted incorrectly or not. Typically, if the intermediate value
surpasses the threshold, the input is classified as "misclassified"; otherwise, it is
classified as "not misclassified". Instead of proceeding with the final classification, we
directly employ this intermediate value as the misclassification probability score. A
high value denotes that a test instance has a high probability of being misclassified.
Finally, we sort all the tests in the test set T in descending order based on their
misclassification probability scores, resulting in the prioritized test set T ′.

4.3.6 Variants of MLPrior
In order to explore the influence of different ranking models on the effectiveness

of MLPrior, we propose four variants, denoted as MLPriorT , MLPriorK , MLPriorL,
and MLPriorN . These variants utilize different ranking models for test prioritization,
namely, decision tree [112], K-nearest neighbors (KNN)[69], logistic regression[14],
and Gaussian Naive Bayes (GaussianNB) [113], respectively. They solely differ in
the selection of the ranking models, while the remaining workflow is kept identical.
• MLPriorT This variant incorporates the decision tree ranking model. The

principle of the Decision Tree algorithm is to partition the dataset into subsets at
split nodes, iteratively branching until reaching leaf nodes that provide the final
classification.

• MLPriorK integrates the KNN algorithm. KNN is a well-established machine
learning technique. It operates on the fundamental principle of proximity, where

33

Chapter 4. Test input prioritization for Machine Learning Classifiers

the classification of a sample is determined by considering the majority labels of
its K nearest neighbors in the feature space.

• MLPriorL integrates the Logistic Regression algorithm [14]. Logistic Regression
employs the logistic function to transform the linear combination of the indepen-
dent variables into a range between 0 and 1. Consequently, this probability value
is employed to perform classification.

• MLPriorN integrates the Gaussian naive Bayes (GaussianNB) ranking model.
GaussianNB is a probabilistic machine learning classification technique based on
the Gaussian distribution. It assumes that each feature possesses independent
predictive power for the output variable. The final prediction is obtained by
combining the predictions derived from all features.

4.4 Study Design

4.4.1 Research Questions

Our experimental evaluation answers the research questions below.

• RQ1: How does MLPrior perform in terms of effectiveness and effi-
ciency?
To solve the labelling cost problem, we propose MLPrior, a test input prioritization
approach specifically designed for classical ML models. In this research question,
we evaluate the effectiveness and efficiency of MLPrior by comparing it with
several existing test prioritization approaches [3, 7].

• RQ2: How does MLPrior perform on different types of test inputs?
In order to evaluate the effectiveness of MLPrior in various scenarios, we con-
structed mixed noisy datasets and fairness datasets. We compare the effectiveness
of MLPrior against various test prioritization approaches on the generated datasets.

• RQ3: How do different ranking algorithms impact the effectiveness of
MLPrior?
In MLPrior, we employ XGBoost [8] as the ranking model for test prioritization.
In this research question, we investigate the impact of different ranking models on
the effectiveness of MLPrior. To this end, we construct four variants employing
different ranking models: decision tree [112], K-nearest neighbors (KNN)[69], logis-
tic regression[14], and Gaussian Naive Bayes (GaussianNB) [113]. By evaluating
the effectiveness of these variants, we explore the influence of ranking models.

• RQ4: To what extent does each type of features contribute to the
effectiveness of MLPrior?
To construct the feature vector for a given test input, MLPrior generates three
types of features: model mutation features, dataset mutation features, and at-
tribute features. In this research question, our objective is to investigate the
extent to which each type of features contributes to the effectiveness of MLPrior.

• RQ5: How does the selection of main parameters of MLPrior impact
its effectiveness?
We investigate the influence of the main parameters in MLPrior. Our objective
is to evaluate whether MLPrior can consistently outperform the compared test
prioritization approaches when these main parameters fluctuate.

34

4.4. Study Design

4.4.2 Subjects
In our research, we utilized 305 subjects to assess the effectiveness of MLPrior. A

subject in this context refers to a combination of a classical ML model and a dataset.
The description of these subjects can be found in Table 4.1. Out of the 305 subjects,
25 subjects (5 datasets × 5 ML models) were generated using natural datasets, while
250 subjects were generated using mixed noisy datasets. Additionally, 30 subjects
were generated using fairness datasets. Below, we explain the construction method
for mixed noisy datasets and fairness datasets.
• Mixed noisy datasets blend natural data with noisy data, with the natural data

accounting fo r 70% and the noisy data accounting for 30%. The reason we chose
30% is that: A high noise ratio, such as 90%, would lead to a substantial proportion
of noisy test inputs. In this scenario, a significant number of misclassified tests
would be chosen by any prioritization method, making it difficult to demonstrate
the effectiveness of MLPrior. Therefore, to ensure an effective evaluation of
MLPrior and the compared approaches, we choose a reasonable noise generation
ratio (i.e., 30%). For each of the five natural datasets, we generated 10 mixed
noisy datasets, resulting in a total of 50 (5 × 10) mixed datasets. Each mixed
dataset was paired with five classical ML models, leading to 250 subjects (50
datasets × 5 models).

• Fairness datasets refer to datasets carefully constructed with a specific focus
on avoiding the introduction of biases related to individual attributes, such as
gender, age, etc. In our study, we generated a fairness dataset from a natural
dataset following the approach utilized in prior work [66]: we randomly selected
a subset of instances and modified their gender and age attribute values while
keeping their original labels untouched. Employing this approach, we generated 6
fairness datasets. We pair each dataset with five classical ML models, leading to
30 subjects (6 datasets × 5 models).

4.4.2.1 Datasets

In our study, we evaluate MLPrior using five datasets: Adult [114], Bank [115],
Stroke [116], Diabetes [117] and Heartbeat [118]. The reason for selecting these five
datasets lies in their widespread utilization in the field of machine learning. Moreover,
these datasets have been extensively employed in multiple recent research on classical
machine learning testing, including FSE 2022 [66] and ICSE 2022 [119, 120, 121].
• Adult [114, 122, 123]: The adult dataset is designed to predict whether an

individual’s annual income exceeds 50K based on various demographic and financial
attributes. It consists of 48,842 instances, with each instance representing a single
individual. All the instances are divided into two classes: >50K and <=50K.
Each individual is described by 14 different attributes, such as age, occupation,
education level, workclass, etc.

• Bank [115, 122]: The bank dataset is utilized to forecast whether a client will
subscribe to a term deposit, utilizing their demographic, financial, and social
information. It consists of 49,732 instances, classified into two classes: subscribing
to the term deposit or not subscribing. Each instance encompasses 16 attributes,
such as age, education, loan, and balance.

• Stroke [116]: The stroke dataset is employed for predicting the occurrence of a
stroke in patients. It comprises 40,907 instances, classified into two classes: having

35

Chapter 4. Test input prioritization for Machine Learning Classifiers

Table 4.1: Classical ML models and datasets
ID Datasets # Size Models Type

1 Adult 48,842 Tree Original, Noisy, Fairness
2 Adult 48,842 KNN Original, Noisy, Fairness
3 Adult 48,842 LR Original, Noisy, Fairness
4 Adult 48,842 NB Original, Noisy, Fairness
5 Adult 48,842 XGB Original, Noisy, Fairness
6 Bank 49,732 Tree Original, Noisy, Fairness
7 Bank 49,732 KNN Original, Noisy, Fairness
8 Bank 49,732 LR Original, Noisy, Fairness
9 Bank 49,732 NB Original, Noisy, Fairness
10 Bank 49,732 XGB Original, Noisy, Fairness
11 Stroke 40,907 Tree Original, Noisy, Fairness
12 Stroke 40,907 KNN Original, Noisy, Fairness
13 Stroke 40,907 LR Original, Noisy, Fairness
14 Stroke 40,907 NB Original, Noisy, Fairness
15 Stroke 40,907 XGB Original, Noisy, Fairness
16 Diabetes 253,680 Tree Original, Noisy, Fairness
17 Diabetes 253,680 KNN Original, Noisy, Fairness
18 Diabetes 253,680 LR Original, Noisy, Fairness
19 Diabetes 253,680 NB Original, Noisy, Fairness
20 Diabetes 253,680 XGB Original, Noisy, Fairness
21 Heartbeat 30,000 Tree Original, Noisy, Fairness
22 Heartbeat 30,000 KNN Original, Noisy, Fairness
23 Heartbeat 30,000 LR Original, Noisy, Fairness
24 Heartbeat 30,000 NB Original, Noisy, Fairness
25 Heartbeat 30,000 XGB Original, Noisy, Fairness

a stroke or not having a stroke. Each instance is described using 10 attributes,
such as age, heart disease, hypertension, work type, residence type, and smoking
status.

• Diabetes [117]: The diabetes dataset is utilized for predicting diabetes occurrence
in patients. It comprises 253,680 survey responses related to diabetes. This
dataset is categorized into three classes: 0 for no diabetes or diabetes only during
pregnancy, 1 for prediabetes, and 2 for diabetes.

• Heartbeat [118]: The Heartbeat dataset is used for classifying heartbeat signals.
In our experiments, we used 30,000 heartbeat signal sequence data. Each sample
in the dataset has a consistent sampling frequency and equal length in its signal
sequence. The Heartbeat dataset is divided into 4 classes, which are categorized
as heartbeat signal types (0, 1, 2, 3).

4.4.2.2 Classical ML models

We evaluate the effectiveness of MLPrior using five well-established classical ML
models: Decision Tree [9], K-Nearest Neighbors (KNN) [107], Logistic Regression
(LR) [14], XGBoost [8], and Gaussian Naive Bayes (GaussianNB) [8]. These models
were chosen based on two primary reasons: First, their widespread adoption in
various industries owing to their interpretability and demonstrated performance [1,
72, 108, 124].

In the industry, the five classical ML models we evaluated are broadly implemented,
and their accuracy is crucial, as their prediction errors could have serious consequences.
Therefore, thorough testing and test prioritization of these classical ML models are
essential.

36

4.4. Study Design

• Hospitality industry [108] The logistic regression model can utilize financial
data to predict whether a hotel business is at risk of bankruptcy. Investors
in the hotel industry will rely on these models to make crucial financial and
operational decisions. If the predictions are inaccurate, Investors can make
erroneous investment decisions, such as investing in businesses that are at risk of
bankruptcy.

• Service industry [72] The decision tree model can be employed to analyze the
impact of information and communication technology (ICT) on service industry
performance using global service industry data from the World Bank. Service
industry companies will depend on such analyses to formulate strategies, such as
investing in ICTs. Incorrect predictions could result in misallocation of resources,
affecting the company’s long-term performance and competitiveness.

• Financial industry [125, 126] The XGBoost algorithm can be utilized for
personal credit risk assessment. Rao et al. [125] employed XGBoost to predict
an individual’s credit risk for determining loan approval decisions. Moreover,
KNN can be used for credit scoring(i.e., assessing the credit risk of loan applica-
tions) [126].

• Healthcare industry [127] The Gaussian Naive Bayes model can be leveraged
for diagnosing cancer based on the patient’s medical information [127].
To better illustrate the utility of MLPrior, we provided a specific example. For

instance, in the above scenario where XGBoost is used for personal credit risk
assessment, MLPrior can be utilized to identify misjudged loan approvals (where the
XGBoost model incorrectly classifies some applicants who should not receive loans as
qualified borrowers, thus approving their loan applications). This enables financial
institutions to detect and focus on potential high-risk cases earlier, thereby not only
reducing losses but also enhancing their overall efficiency in risk management.

Second, their extensive use in recent ML testing studies [66, 128, 129, 130, 131].
Importantly, it should be noted that MLPrior’s applicability is not limited to the
evaluated models. With minor adjustments to the model mutation rules (i.e., making
them target the architecture parameters or weight parameters of the assessed ML
model), MLPrior can be adapted to various interpretable ML models.
• XGBoost [8] XGBoost, an ensemble method that belongs to the family of boosting

algorithms, functions by integrating the forecasts of multiple Classification and
Regression Trees (CART) [132] to create a robust classification mechanism. This
algorithm amalgamates weak learners to engineer a powerful model with superior
predictive capacity.

• Gaussian Naive Bayes (GaussianNB) [127] Gaussian Naive Bayes, a proba-
bilistic classifier based on Bayes’ theorem with an assumption of independence
among predictors, is known for its efficacy in multiclass classification problems
and its robustness against irrelevant features.

• Logistic Regression (LR) [14] Logistic Regression is a widely-adopted statistical
model employed in scenarios of binary classification tasks. This model is founded
on the principles of probability and logistic function, offering an interpretable
mathematical framework.

• Decision Tree [9] Decision tree constructs a tree-like structure, where internal
nodes represent decision points based on feature values, and leaves represent the
predicted outcomes.

• K-nearest neighbors (KNN) [107] KNN is a widely-adopted classification

37

Chapter 4. Test input prioritization for Machine Learning Classifiers

algorithm that assigns labels to instances based on the majority vote of their K
neighboring data points. The KNN algorithm is known for its simplicity and
flexibility in handling classification tasks.

4.4.3 Compared Approaches
To demonstrate the effectiveness of MLPrior, we compared it with multiple

test prioritization approaches. The considered methods include DeepGini (ISSTA
2020) [3], VanillaSM (ISSTA 2022) [7], Prediction-Confidence Score (ISSTA 2022) [7],
and Entropy (ISSTA 2022) [7]. We select these comparative methods because 1) they
can be adapted to classical ML models for test prioritization; 2) their effectiveness
on DNNs has been demonstrated [7, 3].
• DeepGini [3] DeepGini operates by assessing the model’s uncertainty in its

predictions for tests. The fundamental premise of DeepGini is that tests for
which the model exhibits greater uncertainty in its predictions are deemed to
have a higher likelihood of being incorrectly predicted. Consequently, these tests
will be prioritized higher. The mechanism for calculating this uncertainty in
DeepGini is encapsulated in a specific formula, referred to as Formula 5.1. In this
formula, the symbol ξ(t) denotes the model’s uncertainty regarding its prediction
for a particular test t. The higher the value of ξ(t), the greater the uncertainty
associated with the model’s prediction for the test t, and t will be prioritized
higher. By prioritizing tests with higher values of ξ(t), DeepGini can identify and
prioritize test inputs that are potentially misclassified.

ξ(t) = 1 − ΣN
i=1p

2
t,i (4.2)

where N is the number of classes, and pt,i denotes the probability of the model
predicting t belonging to class i.

• VanillaSM [7] The VanillaSM algorithm ranks all the tests by computing the
difference between the highest activation probability within the output softmax
layer for each test and 1. The calculation is defined by Formula 5.4. A lower value
of V (t) indicates that the test is more likely to be misclassified by the model.

V (t) = 1 − Nmax
i=1

li(t) (4.3)

where N is the number of classes. maxN
i=1 li(t) represents the model’s prediction

probability for the most confident classification of test t among all N classes.
• Prediction-Confidence Score (PCS) PCS [7] prioritizes test inputs by calcu-

lating the difference between the probabilities of the model’s most confident class
and the second most confident class for each test. The formula is given as Formula
5.2. A smaller PCS(t) indicates that a test is more likely to be mispredicted by
the model.

PCS(t) = p1(t) − p2(t) (4.4)

where p1(t) is the predicted probability of the model for the most confident class
of test t, and p2(t) is the predicted probability of the model for the second most
confident class of test t.

• Entropy Entropy [7] ranks all tests by calculating the entropy value of the
model’s predicted probability vector for each test. A higher entropy value for a
test indicates that it is more likely to be mispredicted by the model.

38

4.4. Study Design

• Random selection [133] In random selection, the order of test input execution
is determined randomly.

4.4.4 Measurements
Following the existing work [3], we employed two metrics to evaluate the effective-

ness of MLPrior, the compared approaches, and the variants of MLPrior: Average
Percentage of Fault Detection (APFD) [92] and Percentage of Faults Detected
(PFD) [3].
• Average Percentage of Fault-Detection (APFD) APFD is a well-established

metric utilized for evaluating the effectiveness of test prioritization. A higher
APFD value indicates greater effectiveness. The APFD values are computed using
Formula 5.5.

APFD = 1 −
∑k

i=1 oi

kn
+ 1

2n
(4.5)

where n denotes the number of test inputs in the test set, and k represents the
number of misclassified inputs. oi is the index of the ith misclassified test within
the prioritized test set. Below, we explain from a formula perspective why larger
APFD values indicate high test prioritization effectiveness.
Firstly, in the formula, since n is a constant, a larger APFD value means that
the value of ∑k

i=1 oi (i.e., the total index sum of misclassified tests within the
prioritized list) is smaller. A smaller ∑k

i=1 oi implies that the misclassified tests
are relatively positioned toward the front of the prioritized test set. This indicates
that the misclassified tests are indeed prioritized at the beginning of the test set
through the test prioritization approach, thus demonstrating that its effectiveness
is high. Following prior work [3], we normalize the APFD values to [0,1]. A
prioritization approach is considered better when the APFD value is closer to 1.

• Percentage of Fault Detected (PFD) PFD quantifies the ratio of detected
misclassified test inputs to the total number of misclassified tests. A higher PFD
value suggests that a test prioritization approach is more effective. The calculation
of PFD follows Formula 7.6.

PFD = #F d

#F
(4.6)

where #F d is the number of detected misclassified test inputs. #F is the total
number of misclassified test inputs. In our study, we measured the PFD values
of MLPrior and compared test prioritization approaches using varying ratios of
prioritized tests.

4.4.5 Implementation and Configuration
In terms of the compared approaches, we employed the available implementations

provided by their respective authors [7, 3]. Concerning the XGBoost ranking model,
we utilized XGBoost version 1.4.2 [8]. For the ranking models Decision Tree, KNN,
Logistic Regression, and GaussianNB, we utilized the package provided by scikit-
learn 0.24.2 [134]. Regarding the parameters of the ranking models, we set the
n_estimators parameter of XGBoost to 100. We set the max_iter parameter of
Logistic Regression to 100. For the Decision Tree ranking algorithm, we set the
min_samples_split parameter to 2. The var_smoothing parameter of GaussianNB
was set to 1e-9. Additionally, we set the n_neighbors parameter of KNN to 5.

39

Chapter 4. Test input prioritization for Machine Learning Classifiers

Table 4.2: Effectiveness comparison among MLPrior and DNN test prioritization
approaches in terms of APFD on natural datasets (Binary Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.508 0.506 0.493 0.505 0.500 0.502 0.494 0.504 0.490 0.494 0.519 0.505 0.502 0.497 0.499
DeepGini 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
Entropy 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
PCS 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
VanillaSM 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
MLPrior 0.810 0.811 0.829 0.830 0.813 0.863 0.872 0.878 0.877 0.868 0.990 0.787 0.845 0.839 0.900

Furthermore, concerning model mutation, we generated 100 mutant models for
each original classical ML model. For dataset mutation, we generated 20 mutant
datasets for each natural dataset. In other words, MLPrior generates 20 mutated
inputs for each test. Moreover, we conducted a statistical analysis to mitigate the
impact of randomness. For each subject (i.e., a dataset with a model), we repeated the
experiments 5 times and reported the average results. We conducted the experiments
on a high-performance cluster, and each cluster node runs a 2.6 GHz Intel Xeon
Gold 6132 CPU with an NVIDIA Tesla V100 16G SXM2 GPU. In terms of data
processing, we conducted corresponding experiments on a MacBook Pro laptop with
Mac OS Big Sur 11.6, Intel Core i9 CPU, and 64 GB RAM.

4.5 Study Results
4.5.1 RQ1: Effectiveness and Efficiency of MLPrior
Objectives: We evaluate the effectiveness and efficiency of MLPrior in prioritizing
test inputs for classical ML models.
Experimental design: We conducted experiments to evaluate the performance of
MLPrior from three perspectives:
• Effectiveness To assess the effectiveness of MLPrior, we carefully designed 15

subjects consisting of three prevalent datasets, each paired with five classical ML
models. Detailed information regarding the subjects can be found in Table 4.1.
Moreover, we compared MLPrior against a range of DNN prioritization approaches,
namely DeepGini [3], Vanilla Softmax [7], Prediction-Confidence Score (PCS) [7],
Entropy [7], and Random Selection. To measure the effectiveness, we used the
APFD metric [92] and the PFD metric [3], which are widely-adopted measures
for evaluating test prioritization techniques.

• Efficiency We evaluate the efficiency of MLPrior by quantifying the time required
for each step of MLPrior, as well as the time cost of each compared approach.

• Statistical analysis Considering the randomness associated with the training
process of the ML models and the MLPrior approach, we conduct a statistical
analysis to ensure the stability of our research. More specifically, we replicated
all the experiments a total of five times, calculating average results to report in
this section. Furthermore, we calculated the p-values to evaluate the statistical
significance of our findings.

Results: The experimental results pertaining to RQ1 are presented in Table 4.2,
Table 4.3, Figure 4.3, Table 4.4 and Table 4.5. We highlight the approach with the
highest effectiveness in grey to facilitate quick and easy interpretation of the results.

When applied to natural inputs, MLPrior outperforms all the com-
pared methods in terms of APFD across all subjects, with an average
improvement of 14.74%∼66.93% over the compared approaches. Table 4.2
exhibits the effectiveness of MLPrior in comparison to the compared test prioriti-

40

4.5. Study Results

Table 4.3: Effectiveness comparison among MLPrior and DNN test prioritization
approaches in terms of APFD on natural datasets (Multiclass classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.499 0.501 0.498 0.501 0.501 0.497 0.509 0.505 0.501 0.475
DeepGini 0.701 0.678 0.760 0.685 0.760 0.781 0.851 0.772 0.486 0.839
Entropy 0.697 0.677 0.759 0.685 0.760 0.780 0.851 0.761 0.530 0.837
PCS 0.702 0.679 0.760 0.686 0.760 0.779 0.851 0.779 0.485 0.839
VanillaSM 0.702 0.679 0.760 0.685 0.761 0.781 0.852 0.776 0.486 0.840
MLPrior 0.769 0.772 0.767 0.802 0.765 0.897 0.883 0.915 0.639 0.914

Table 4.4: Time cost of MLPrior and the compared test prioritization approaches
Time cost Approach

MLPrior Random DeepGini VanillaSM PCS Entropy
Feature generation 3 s - - - - -

Ranking model training 15 s - - - - -
Prediction 55.133 ms 12.566 ms 1.323 ms 1.020 ms 1.355 ms 114.483 ms

Table 4.5: Effectiveness improvement of MLPrior over the compared approaches in
terms APFD on natural datasets

Data Type Approach # Best cases Average APFD Improvement(%)

Binary
Classification

Random 0 0.501 70.46
DeepGini 0 0.719 18.78
Entropy 0 0.719 18.78
PCS 0 0.719 18.78
VanillaSM 0 0.719 18.78
MLPrior 15 0.854 -

Multiclass
Classification

Random 0 0.498 63.05
DeepGini 0 0.731 11.08
Entropy 0 0.734 10.63
PCS 0 0.732 10.93
VanillaSM 0 0.732 10.93
MLPrior 10 0.812 -

ALL

Random 0 0.499 66.93
DeepGini 0 0.725 14.89
Entropy 0 0.726 14.74
PCS 0 0.725 14.89
VanillaSM 0 0.725 14.89
MLPrior 25 0.833 -

��� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

�
�
�

�������

����������

������

Figure 4.3: Test prioritization effectiveness among MLPrior and the compared
approaches (dataset Bank with model GaussianNB). X-Axis: the percentage of
prioritized tests; Y-Axis: the percentage of detected miscalssified tests

41

Chapter 4. Test input prioritization for Machine Learning Classifiers

zation approaches across different subjects. From the table, we see that MLPrior
outperforms all the compared methods across all subjects. Specifically, the APFD
values of MLPrior range from 0.787 to 0.990, while that of the compared approaches
span from 0.494 to 0.837. Table 4.3 demonstrates the effectiveness of MLPrior and
the comparative test prioritization methods on multiclass classification datasets. We
see that in all cases, the effectiveness of MLPrior is higher than all the comparative
methods. Specifically, the APFD range of MLPrior is from 0.639 to 0.915, while the
APFD range for the comparative methods is from 0.475 to 0.852. The experimental
results demonstrate that MLPrior’s effectiveness surpasses all comparative methods
on multiclass datasets.

Table 4.5 shows the comparison of effectiveness between MLPrior and other test
prioritization methods on all subjects in both binary and multi-class datasets. The
evaluation metrics include the number of cases where each method performs the
best (denoted as #Best cases), the average APFD value of each test prioritization
approach (denoted as Average APFD), and the improvement of MLPrior relative to
each comparison method (denoted as Improvement(%)). From Table 4.5, we can
see that MLPrior performs the best across all cases, whether in binary or multi-class
datasets. In binary datasets, the average APFD of MLPrior is 0.854. In multi-class
datasets, it is 0.812, and across all subjects (including both binary and multi-class),
it is 0.833. The average APFD of comparison methods across all subjects ranges
from 0.499 to 0.726.

Moreover, under all subjects, the average improvement of MLPrior relative
to all the compared test prioritization methods ranges from 14.74% to 66.93%.
More specifically, in binary datasets, the improvement range of MLPrior relative
to all comparison methods is from 18.78% to 70.46%. In multi-class datasets, the
improvement range is from 10.93% to 63.05%. These experimental results demonstrate
that MLPrior’s effectiveness surpasses all other test prioritization methods on natural
test inputs.

Figure 4.3 provides a visual comparison between MLPrior and other test prioriti-
zation approaches in terms of PFD on the Bank dataset with the GaussianNB model.
In this figure, the effectiveness of MLPrior is represented by the red curve, while the
blue curve represents the effectiveness of confidence-based test prioritization methods.
Additionally, the black curve depicts the baseline effectiveness. It is noteworthy to
mention that all confidence-based approaches are consolidated into a single line due
to their identical effectiveness across all cases, as evidenced in Table 4.2.

The reason why all confidence-based methods yield the same experimental results
on binary classification ML models is as follows: Given a binary classification model,
suppose the probability of a test t belonging to category 1 is p, then the probability of
it belonging to the other category is 1−p. Regardless of the confidence-based method
used, tests with p values close to 0.5 are deemed more uncertain [3] and thus are
prioritized to the front. Therefore, the experimental results of all test prioritization
methods are the same. We explain this in detail below.

Feng et al. [3] demonstrated that in a binary classification model, if the model’s
prediction probability for a test is (0.5, 0.5), it means the model is most uncertain
about this test, indicating this test is more likely to be misclassified. The closer
a test’s p value is to 0.5, the more uncertain the model is about that particular
test. Consequently, uncertainty is solely determined by p. Regardless of the specific
confidence-based test prioritization method employed, tests with p values closer to

42

4.5. Study Results

0.5 will be prioritized over others.
To illustrate this point, consider a test set with three tests, and the model’s

probability vectors for these tests are as follows: t1 (0.9, 0.1), t2 (0.7, 0.3), t3 (0.8, 0.2).
Irrespective of the chosen confidence-based test prioritization method, the resulting
ranking will be t2 → t3 → t1 because t2 has the p value (0.7) closest to 0.5, followed
by t3 (p = 0.8), while t1 has the farthest p value from 0.5 (p = 0.9).

From Figure 4.3, we see that MLPrior consistently outperforms all the compared
methods across different prioritization ratios. These experimental results strongly
suggest that MLPrior exhibits higher effectiveness than other test prioritization
approaches in classical ML test prioritization. As stated in the experimental design,
due to the inherent randomness associated with the training process, we conducted
a statistical analysis. This analysis involved repeating all experiments a total of five
times. The p-value of the experimental results was found to be significantly less
than 10−06, which suggests that MLPrior can stably outperform the compared test
prioritization approaches.

MLPrior showcases acceptable efficiency, with an average execution
time of less than 20 seconds. In addition to evaluating its effectiveness, we
also compared the efficiency of MLPrior with other test prioritization approaches,
and the experimental results are presented in Table 4.4. The findings indicate that
the average total running time of MLPrior on each subject is under 20 seconds,
which can be broken down into three main components: feature generation (3
seconds), ranking model training (15 seconds), and prediction (55.133 ms). Here,
’ms’ refers to milliseconds. The prediction times for the confidence-based test
prioritization methods are as follows: DeepGini: 1.323 ms; VanillasM: 1.020 ms;
PCS: 1.355 ms; Entropy: 114.483 ms. While confidence-based test prioritization
techniques exhibit higher efficiency with a running time of less than 1 second, the
computational cost of MLPrior remains reasonable in practical scenarios, especially
considering the laborious and costly nature of manual labeling. Despite being
slightly less efficient than confidence-based methods, the considerable improvement
in effectiveness demonstrated by MLPrior, ranging from 18.78% to 70.46% compared
to those techniques, underscores its overall performance.

Answer to RQ1: When applied to natural inputs, MLPrior outperforms all
the compared methods in terms of APFD across all subjects, with an average im-
provement of 14.74%∼66.93% over the compared approaches. Moreover, MLPrior
showcases acceptable efficiency, with an average execution time of less than 20
seconds.

4.5.2 RQ2: Effectiveness of MLPrior on different types of test
inputs

Objectives: In addition to assessing MLPrior’s performance on natural test sets,
we also evaluate its effectiveness on different types of test inputs, encompassing
mixed noisy data and fairness data. Mixed noisy datasets are composed of 70%
natural data and 30% of noisy data. Fairness datasets are constructed with the
aim of avoiding biases associated with individual attributes, such as gender and age.
Ensuring fairness in machine learning is crucial to prevent bias and discrimination
against specific groups during predictions. Fairness has emerged as a critical ethical
consideration across diverse machine learning domains, such as recruitment, loan

43

Chapter 4. Test input prioritization for Machine Learning Classifiers

Table 4.6: Effectiveness comparison among MLPrior and DNN test prioritizatiion
approaches in terms of APFD on mixed noisy datasets (Binary Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.499 0.499 0.500 0.500 0.501 0.498 0.502 0.497 0.502 0.500 0.509 0.500 0.499 0.501 0.501
DeepGini 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
Entropy 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
PCS 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
VanillaSM 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
MLPrior 0.830 0.810 0.825 0.827 0.829 0.867 0.872 0.875 0.875 0.868 0.982 0.825 0.845 0.838 0.898

Table 4.7: Effectiveness comparison among MLPrior and DNN test prioritizatiion
approaches in terms of APFD on mixed noisy datasets (Multiclass classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.501 0.499 0.501 0.501 0.501 0.502 0.500 0.499 0.500 0.493
DeepGini 0.670 0.658 0.751 0.707 0.725 0.773 0.851 0.772 0.486 0.839
Entropy 0.671 0.658 0.749 0.705 0.725 0.771 0.851 0.761 0.530 0.837
PCS 0.671 0.661 0.751 0.710 0.726 0.771 0.851 0.779 0.485 0.839
VanillaSM 0.670 0.659 0.751 0.707 0.725 0.772 0.851 0.776 0.486 0.841
MLPrior 0.789 0.776 0.772 0.801 0.773 0.901 0.878 0.916 0.639 0.908

approvals, and medical diagnosis [65]. In these domains, the absence of fairness can
result in unjust treatment of certain groups, significantly impacting individuals’ lives
and rights.

Our investigation revolves around two primary sub-questions:
• RQ-2.1 How does MLPrior perform on mixed noisy data?
• RQ-2.2 How does MLPrior perform on fairness data?
Experimental design: We conduct the following experiments to answer the afore-
mentioned sub-questions.
[Experiment ❶] In the first step, we generate noisy data from the three natural
datasets used in RQ1 (i.e., Adult, Bank, and Stroke). To this end, we mix 30%
noisy data with 70% natural data to create mixed noisy data. The reason we
chose a noise generation ratio of 30% is as follows: A high noise ratio, such as
90%, would result in a significant proportion of noisy test inputs, and a substantial
number of misclassified tests would be selected by any prioritization method, thereby
complicating the demonstration of MLPrior’s effectiveness. Therefore, in order to
ensure an efficacious evaluation of both MLPrior and the comparative approaches,
we opted for a reasonable noise generation ratio (i.e., 30%). For each of the three
natural datasets, we generate ten mixed noisy datasets, resulting in 30 (3 × 10) mixed
datasets. Each mixed dataset is paired with five classical ML models, leading to a
total of 150 subjects (30 datasets × 5 models). Based on these generated subjects,
we compare the effectiveness of MLPrior with other test prioritization methods.
[Experiment ❷] To generate fairness data for evaluation, we adopt the approach
used in previous research [66]. Specifically, for each natural dataset utilized in RQ1
(i.e., Adult, Bank, and Stroke), we randomly selected a subset of instances from the
original test set and modified their gender and age attribute values while keeping
the original labels untouched. The reason for ensuring the labels untouched is as
follows: In the context of ensuring fairness, the model should maintain consistent
classification results when the protected attributes (such as genders and ages) are
changed, while all other attributes remain unaltered.

Concretely, for the attribute "gender", we changed half of the "male" to "females"
and half of the "females" to "males". Regarding the attribute "age", following the
prior work [119], we modified the "middle age" (30∼59) instances in the test set to

44

4.5. Study Results

Table 4.8: Effectiveness improvement of MLPrior over the compared approaches in
terms of APFD on mixed noisy datasets

Data Type Approach # Best cases Average APFD Improvement(%)

Binary
Classification

Random 0 0.499 63.32
DeepGini 0 0.685 25.26
Entropy 0 0.685 25.26
PCS 0 0.685 25.26
VanillaSM 0 0.685 25.26
MLPrior 150 0.858 -

Multiclass
Classification

Random 0 0.499 63.32
DeepGini 0 0.723 12.72
Entropy 0 0.726 12.25
PCS 0 0.724 12.57
VanillaSM 0 0.723 12.72
MLPrior 100 0.815 -

ALL

Random 0 0.499 67.73
DeepGini 0 0.704 18.89
Entropy 0 0.706 18.55
PCS 0 0.705 18.72
VanillaSM 0 0.704 18.89
MLPrior 250 0.837 -

Table 4.9: Effectiveness comparison among MLPrior and DNN test prioritization
approaches in terms of APFD on fairness datasets (Binary Classification)

Age Change Gender Change
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.504 0.493 0.500 0.499 0.503 0.484 0.499 0.496 0.503 0.499
DeepGini 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
Entropy 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
PCS 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
VanillaSM 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
MLPrior 0.847 0.843 0.852 0.852 0.842 0.897 0.813 0.834 0.834 0.856

"young age" (18∼29) while converting the "young age" test instances to "middle age."
Using the generated fairness test sets, we compare the effectiveness of MLPrior with
other test prioritization methods.
Results: The experimental findings pertaining to RQ2.1 are presented in Table 4.6,
Table 4.7, Table 4.8. Table 4.6 showcases the effectiveness difference between MLPrior
and the compared test prioritization methods when applied to mixed noisy inputs.
The evaluation metric employed is the Average Percentage of Faults Detected (APFD).
We highlight the approach with the highest effectiveness in grey to facilitate easy
interpretation of the results.

On mixed noisy inputs, MLPrior consistently performs better than all
the compared approaches, with an average improvement of 18.55%∼67.73%.
From Table 4.6, we see that MLPrior consistently outperforms all the compared
methods across each case. Remarkably, the APFD values achieved by MLPrior range
from 0.810 to 0.982, while that of the compared methods range from 0.497 to 0.766.
Table 4.10: Effectiveness comparison among MLPrior and DNN test prioritization
approaches in terms of APFD on fairness datasets (Multiclass classification)

Age Change Gender Change
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.496 0.499 0.495 0.496 0.498 0.502 0.498 0.503 0.501 0.497
DeepGini 0.652 0.660 0.730 0.691 0.717 0.697 0.669 0.757 0.684 0.759
Entropy 0.649 0.660 0.729 0.690 0.717 0.694 0.669 0.757 0.683 0.759
PCS 0.653 0.662 0.730 0.692 0.717 0.697 0.671 0.758 0.684 0.759
VanillaSM 0.652 0.661 0.730 0.691 0.717 0.698 0.670 0.758 0.683 0.759
MLPrior 0.776 0.771 0.767 0.798 0.765 0.773 0.773 0.767 0.801 0.765

45

Chapter 4. Test input prioritization for Machine Learning Classifiers

Table 4.11: Effectiveness improvement of MLPrior over the compared approaches
in terms of APFD on fairness datasets

Data Type Approach # Best cases Average APFD Improvement(%)

Binary
Classification

Random 0 0.498 70.08
DeepGini 0 0.705 20.14
Entropy 0 0.705 20.14
PCS 0 0.705 20.14
VanillaSM 0 0.705 20.14
MLPrior 20 0.847 -

Multiclass
Classification

Random 0 0.499 61.69
DeepGini 0 0.702 10.54
Entropy 0 0.701 10.70
PCS 0 0.702 10.54
VanillaSM 0 0.702 10.54
MLPrior 10 0.776 -

ALL

Random 0 0.499 62.72
DeepGini 0 0.704 15.34
Entropy 0 0.703 15.50
PCS 0 0.704 15.34
VanillaSM 0 0.704 15.34
MLPrior 30 0.812 -

Table 4.7 presents the effectiveness of MLPrior compared to other test prioritization
methods on noisy datasets for multiclassification. We see that MLPrior outperforms
all other test prioritization methods across all multiclassification subjects. The
range of APFD values for MLPrior is from 0.639 to 0.916, whereas the range for the
compared test prioritization methods is from 0.485 to 0.851. We conclude that on
noisy datasets for multiclassification, the effectiveness of MLPrior surpasses that of
the compared test prioritization methods.

Table 4.8 provides an overall comparison of the effectiveness of MLPrior and other
test prioritization methods on binary classification datasets, multiclass classification
datasets, and all subjects (both binary and multiclass). The evaluation metrics include
the number of cases where each method performs the best (denoted as #Best cases),
the average APFD value of each test prioritization approach (denoted as Average
APFD), and the improvement of MLPrior relative to each comparison method
(denoted as Improvement(%)).

In Table 4.8, we observe that MLPrior performs the best across all subjects,
regardless of whether they are binary or multiclass. The average APFD of MLPrior on
all subjects (including both binary and multiclass) is 0.837. Specifically, the average
APFD of MLPrior in binary classification is 0.858, while in multiclass classification,
it is 0.815. In contrast, the range of the average APFD for the comparison methods
across all subjects is from 0.499 to 0.706. Moreover, across all subjects, the average
improvement of MLPrior relative to the comparison test prioritization methods
ranges from 18.55% to 67.73%.

Answer to RQ2.1: On mixed noisy inputs, MLPrior consistently performs better
than all the compared approaches, with an average improvement of 18.55%∼67.73%.

The experimental results of RQ2.2 are presented in Table 4.9, Table 4.10, Ta-
ble 4.11. Table 4.9 displays the effectiveness differences between MLPrior and all the
comparative methods on the fairness dataset in terms of APFD. The gray shading
indicates the best-performing method for each case.

On fairness data, MLPrior consistently performs better than all the
compared approaches, with an average improvement of 15.34%∼62.72%.

46

4.5. Study Results

We see that MLPrior achieves the highest effectiveness across all cases, with an
APFD range of 0.813 to 0.897. In contrast, the comparative methods have an APFD
range of 0.484 to 0.788.

Table 4.10 showcases the effectiveness of MLPrior compared to other test pri-
oritization methods on fairness datasets for multiclassification. We can see that
MLPrior exceeds the performance of all other test prioritization methods in all
multiclassification subjects. The APFD values for MLPrior range from 0.765 to
0.801, while the compared test prioritization methods range between 0.495 and 0.759.
The experimental results demonstrate that, in the context of fairness datasets for
multiclassification, MLPrior’s effectiveness is superior to that of the other compared
test prioritization methods.

Table 4.11 presents a comparative analysis of the effectiveness between MLPrior
and other test prioritization methods across all fairness subjects within binary and
multi-class datasets. The evaluation metrics encompass the number of instances where
each method is most effective (denoted as #Best cases), the average APFD value
for each test prioritization approach (denoted as Average APFD), and the relative
improvement of MLPrior compared to each method (denoted as Improvement(%)).
According to Table 4.11, MLPrior consistently outperforms other methods in all
scenarios, whether in binary or multi-class datasets. Specifically, in binary datasets,
MLPrior’s average APFD is 0.847. In multi-class datasets, it is 0.776, and the overall
average across all subjects (encompassing both binary and multi-class) stands at
0.812. The average APFD for the comparison methods across all subjects varies
from 0.499 to 0.704.

Furthermore, across all fairness subjects, the average improvement of MLPrior
compared to all other test prioritization methods ranges from 15.34% to 62.72%. More
specifically, within binary datasets, MLPrior’s improvement over the comparison
methods varies from 20.14% to 70.08%. In multi-class datasets, this improvement
range is between 10.54% and 61.69%. These experimental results indicate that
MLPrior’s effectiveness is superior to all other test prioritization methods when
dealing with fairness test inputs.

Answer to RQ2.2: On fairness data, MLPrior consistently performs better than
all the compared approaches, with an average improvement of 15.34%∼62.72%

4.5.3 RQ3: Impact of ranking models on the effectiveness of
MLPrior

Objectives: We investigate the impact of different ranking models on the effective-
ness of MLPrior.
Experimental design: In order to investigate the impact of different ranking
models, we propose four variants of MLPrior denoted as MLPriorT , MLPriorK ,
MLPriorL, and MLPriorN . These variants employ the ranking models decision
tree [112], K-nearest neighbors (KNN)[69], logistic regression[14], and Gaussian
Naive Bayes (GaussianNB) [113], respectively. The only difference between them
and the original MLPrior lies in the selection of the ranking models, while the
rest of the workflow remains unchanged. We utilize the APFD metric to evaluate
the effectiveness differences of MLPrior, these variants, and the comparative test
prioritization methods on natural and mixed noisy datasets.
Results: The experimental results for RQ3 are presented in Table 4.12, Table 4.13,

47

Chapter 4. Test input prioritization for Machine Learning Classifiers

Table 4.12: Effectiveness comparison among MLPrior, MLPrior Variants and
DNN test prioritization approaches in terms of APFD on natural datasets (Binary
Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.508 0.506 0.493 0.505 0.500 0.502 0.494 0.504 0.490 0.494 0.519 0.505 0.502 0.497 0.499
DeepGini 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
Entropy 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
PCS 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
VanillaSM 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
MLPriorT 0.706 0.715 0.786 0.787 0.742 0.747 0.790 0.801 0.817 0.779 0.839 0.753 0.837 0.832 0.889
MLPriorK 0.796 0.784 0.746 0.749 0.738 0.833 0.786 0.795 0.796 0.803 0.774 0.635 0.604 0.617 0.679
MLPriorL 0.740 0.743 0.722 0.672 0.688 0.786 0.769 0.757 0.771 0.751 0.898 0.621 0.608 0.608 0.703
MLPriorN 0.787 0.775 0.737 0.739 0.729 0.823 0.775 0.784 0.782 0.792 0.765 0.626 0.589 0.604 0.669
MLPrior 0.810 0.811 0.829 0.830 0.813 0.863 0.872 0.878 0.877 0.868 0.990 0.787 0.845 0.839 0.900

Table 4.13: Effectiveness comparison among MLPrior, MLPrior Variants and DNN
test prioritization approaches in terms of APFD on natural datasets (Multiclass
classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.499 0.501 0.498 0.501 0.501 0.497 0.509 0.505 0.501 0.475
DeepGini 0.701 0.678 0.760 0.685 0.760 0.781 0.851 0.772 0.486 0.839
Entropy 0.697 0.677 0.759 0.685 0.760 0.780 0.851 0.761 0.530 0.837
PCS 0.702 0.679 0.760 0.686 0.760 0.779 0.851 0.779 0.485 0.839
VanillaSM 0.702 0.679 0.760 0.685 0.761 0.781 0.851 0.776 0.486 0.840
MLPriorT 0.667 0.686 0.695 0.765 0.691 0.732 0.699 0.847 0.634 0.737
MLPriorK 0.649 0.654 0.666 0.756 0.654 0.799 0.727 0.890 0.638 0.815
MLPriorL 0.766 0.769 0.762 0.787 0.759 0.792 0.750 0.804 0.625 0.743
MLPriorN 0.752 0.756 0.741 0.774 0.730 0.746 0.689 0.707 0.580 0.673
MLPrior 0.769 0.772 0.767 0.802 0.765 0.897 0.883 0.915 0.639 0.914

Table 4.14: Effectiveness comparison among MLPrior, MLPrior Variants, and DNN
test prioritization approaches in terms of APFD on mixed noisy datasets (Binary
Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.499 0.499 0.500 0.500 0.501 0.498 0.502 0.497 0.502 0.500 0.509 0.500 0.499 0.501 0.501
DeepGini 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
Entropy 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
PCS 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
VanillaSM 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
MLPriorT 0.771 0.740 0.776 0.781 0.773 0.812 0.791 0.801 0.815 0.780 0.848 0.784 0.836 0.831 0.887
MLPriorK 0.751 0.753 0.728 0.736 0.745 0.821 0.793 0.787 0.792 0.795 0.736 0.633 0.602 0.603 0.673
MLPriorL 0.680 0.714 0.678 0.677 0.688 0.813 0.745 0.760 0.766 0.759 0.830 0.626 0.607 0.605 0.690
MLPriorN 0.741 0.746 0.718 0.727 0.736 0.813 0.783 0.778 0.783 0.790 0.727 0.623 0.592 0.593 0.662
MLPrior 0.830 0.810 0.825 0.827 0.829 0.867 0.872 0.875 0.875 0.868 0.982 0.825 0.845 0.838 0.898

48

4.5. Study Results

Table 4.15: Effectiveness comparison among MLPrior, MLPrior Variants and DNN
test prioritization approaches in terms of APFD on mixed noisy datasets (Multiclass
classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB
Random 0.501 0.499 0.501 0.501 0.501 0.502 0.500 0.499 0.500 0.493
DeepGini 0.670 0.658 0.751 0.707 0.725 0.773 0.851 0.772 0.486 0.839
Entropy 0.671 0.658 0.749 0.705 0.725 0.771 0.851 0.761 0.53 0.837
PCS 0.671 0.661 0.751 0.710 0.726 0.771 0.851 0.779 0.485 0.839
VanillaSM 0.671 0.659 0.751 0.707 0.725 0.772 0.851 0.776 0.486 0.841
MLPriorT 0.730 0.698 0.699 0.761 0.701 0.733 0.681 0.853 0.634 0.744
MLPriorK 0.762 0.751 0.745 0.769 0.735 0.755 0.683 0.709 0.582 0.660
MLPriorL 0.776 0.764 0.76 0.783 0.760 0.794 0.742 0.808 0.625 0.736
MLPriorN 0.762 0.751 0.745 0.769 0.735 0.755 0.683 0.709 0.582 0.660
MLPrior 0.789 0.776 0.772 0.801 0.773 0.901 0.878 0.916 0.639 0.908

Table 4.16: Effectiveness comparison among MLPrior, MLPrior Variants and
DNN test prioritization approaches in terms of APFD on fairness datasets (Binary
Classification & Multiclass classification)

Age Change Gender Change
Data Type Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.504 0.493 0.500 0.499 0.503 0.484 0.499 0.496 0.503 0.499
DeepGini 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
Entropy 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
PCS 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
VanillaSM 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
MLPriorT 0.782 0.761 0.790 0.805 0.761 0.766 0.748 0.806 0.809 0.813
MLPriorK 0.722 0.727 0.735 0.737 0.763 0.655 0.655 0.711 0.712 0.705
MLPriorL 0.773 0.737 0.733 0.729 0.718 0.821 0.682 0.659 0.648 0.687
MLPriorN 0.786 0.775 0.752 0.765 0.763 0.782 0.699 0.657 0.670 0.705

Binary Classification

MLPrior 0.847 0.843 0.852 0.852 0.842 0.897 0.813 0.834 0.834 0.856
Random 0.496 0.499 0.495 0.496 0.498 0.502 0.498 0.503 0.501 0.497
DeepGini 0.652 0.660 0.730 0.691 0.717 0.697 0.669 0.757 0.684 0.759
Entropy 0.649 0.660 0.729 0.690 0.717 0.694 0.669 0.757 0.683 0.759
PCS 0.653 0.662 0.730 0.692 0.717 0.697 0.671 0.758 0.684 0.759
VanillaSM 0.652 0.661 0.730 0.691 0.717 0.698 0.670 0.758 0.683 0.759
MLPriorT 0.705 0.687 0.694 0.757 0.689 0.685 0.695 0.690 0.765 0.689
MLPriorK 0.735 0.750 0.735 0.767 0.727 0.754 0.754 0.742 0.776 0.730
MLPriorL 0.765 0.763 0.759 0.783 0.757 0.770 0.769 0.760 0.789 0.758
MLPriorN 0.735 0.750 0.735 0.767 0.727 0.754 0.754 0.742 0.776 0.730

Multiclass
Classification

MLPrior 0.776 0.771 0.767 0.798 0.765 0.773 0.773 0.767 0.801 0.765

Table 4.17: Effectiveness improvement of MLPrior over MLPrior Variants, and
DNN test prioritization approaches

Approach # Best cases Average APFD Improvement(%)

Random 0 0.499 65.73
DeepGini 0 0.711 16.32
Entropy 0 0.712 16.15
PCS 0 0.711 16.32
VanillaSM 0 0.711 16.32
MLPriorT 0 0.770 7.40
MLPriorK 0 0.697 18.65
MLPriorL 0 0.719 15.02
MLPriorN 0 0.683 21.08
MLPrior 305 0.827 -

49

Chapter 4. Test input prioritization for Machine Learning Classifiers

Table 4.14, Table 4.15, Table 4.16 and Table 4.17. Tables 4.12 and Table 4.13 display
the effectiveness of MLPrior, its variants, and the compared test prioritization
methods on natural datasets. Tables 4.14 and Table 4.15 show their effectiveness on
noisy datasets. Table 4.16 presents their effectiveness on fairness datasets. Table 4.17
illustrates their average performance across all datasets (including natural, noisy, and
fairness datasets), as well as the improvements of MLPrior relative to its variants
and the compared test prioritization methods.

MLPrior outperforms all its variants in test prioritization, indicating
that among all ranking models, the XGBoost model (utilized by the
original MLPrior) can better utilize the generated features of test inputs
for test prioritization. Table 4.12 and Table 4.13 demonstrate the effectiveness of
MLPrior on natural datasets, including binary classification datasets (Table 4.12)
and multiclass classification datasets (Table 4.13). We see that, whether on binary or
multiclass datasets, the effectiveness of MLPrior (measured by APFD) consistently
surpasses all its variants. On binary natural datasets (Table 4.12), the APFD range
for MLPrior is from 0.8110 to 0.990, while the range for its variants is from 0.589 to
0.898. On multiclass natural datasets (Table 4.13), the APFD range for MLPrior
is from 0.639 to 0.915, while the range for its variants is from 0.580 to 0.890. We
conclude that on natural datasets, the effectiveness of MLPrior exceeds all its
variants. Moreover, on noisy datasets, encompassing both binary classification
datasets (Table 4.14) and multiclass classification datasets (Table 4.15), MLPrior
also consistently outperforms all its variants across all cases.

Table 4.16 demonstrates the effectiveness of MLPrior, its variants, and the
compared test prioritization methods on fairness datasets. We see that, whether
on fairness datasets constructed based on age or those constructed based on gender,
the effectiveness of MLPrior outperforms both its variants and all test prioritization
methods. Specifically, the APFD range for MLPrior is from 0.765 to 0.897, while the
range for its variants is from 0.648 to 0.821. We conclude that, on fairness datasets,
the effectiveness of MLPrior exceeds all its variants.

Table 4.17 displays the effectiveness of MLPrior, its variants, and the compared
test prioritization methods across all datasets (i.e., natural, noisy, and fairness
datasets). We see that MLPrior performs the best across all 305 cases. Specifically,
these 305 cases represent 25 natural subjects + 250 noisy data subjects + 30 fairness
data subjects, totaling 305 cases. The detailed origins of these numbers can be
referred to in Section 4.4.2. Additionally, across all subjects, the average effectiveness
of MLPrior is 0.827, while the average effectiveness of its variants ranges from 0.683
to 0.770. Furthermore, the improvement of MLPrior over its variants in terms of
APFD lies between 7.40% and 21.08%.

The experimental results above demonstrate that MLPrior performs better than
its variants, indicating that, among all the ranking models evaluated, the XGBoost
model used in the original MLPrior demonstrates a better capability in utilizing the
generated features of test inputs for test prioritization.

Answer to RQ3: MLPrior outperforms all its variants in test prioritization,
indicating that among all ranking models, the XGBoost model (utilized by the
original MLPrior) can better utilize the generated features of test inputs for test
prioritization.

50

4.5. Study Results

4.5.4 RQ4: Feature contribution Analysis

Objectives: We investigate the contributions of three types of features (i.e., model
mutation features, input mutation features, and original attribute features) on the
effectiveness of MLPrior.
Experimental design: To assess the impact of different feature types on the
effectiveness of MLPrior, we adopt the cover metric from the XGBoost algorithm [8]
as the measurement tool. Firstly, within the context of each subject, we compute
the importance scores for each generated feature. Subsequently, we identify the top
N most contributing features. Based on it, we investigate the extent to which each
type of feature contributes to the effectiveness of MLPrior. Below, we explain the
working principle of the XGBoost cover metric.

The Working Principle of XGBoost Cover Metric: The cover metric
in XGBoost quantifies feature importance by evaluating the average coverage of
each instance across the leaf nodes in a decision tree. Specifically, the cover metric
calculates the frequency at which a specific feature is utilized to partition the data in
all trees of the ensemble. The coverage values associated with each feature across all
trees are then summed. Subsequently, the resulting coverage value is normalized by
the total number of instances, providing the average coverage of each instance by the
leaf nodes. The significance of a particular feature is determined based on its derived
coverage value, with features exhibiting higher coverage values being assigned greater
importance.
Results: Table 4.18 presents the contributions of different feature types to the
effectiveness of MLPrior. In this table, we utilize the abbreviations MMF, IMF, and
OAF to represent model mutation features, input mutation features, and original
attribute features, respectively. The numbers after the feature abbreviations denote
the indices of the corresponding features. For instance, IMF-123 denotes the input
mutation feature with index 123. We conducted the feature contribution analysis
on both binary classification datasets (Adult, Bank, and Stroke) and multiclass
classification datasets (Diabetes and Heartbeat).

All three types of features (i.e., model mutation features, input mu-
tation features, and original attribute features) visibly contribute to the
effectiveness of MLPrior. In Table 4.18, we find that in binary classification
datasets, for the majority of cases (14 out of 15), all three types of features are present
among the top-N most contributing features. For instance, in the dataset Adult
with the LR model, IMF features account for 40% of the top 10 critical features,
MMF features account for 50%, and OAF features account for 10%. In the case
of dataset Bank with the Tree model, IMF features contribute to 20% of the top
10 critical features, MMF features account for 70%, and OAF features account for
10%. Moreover, regarding the multiclass classification datasets, we find that in all
cases (10 out of 10), all three types of features are present among the top-N most
contributing features. These experimental findings demonstrate that each type of
feature makes a visible contribution to the effectiveness of MLPrior.

Answer to RQ4: All three types of features (i.e., model mutation features,
input mutation features, and original attribute features) visibly contribute to the
effectiveness of MLPrior.

51

Chapter 4. Test input prioritization for Machine Learning Classifiers

Table 4.18: Top-10 most contributing features for each subject
Data Rank Tree KNN LR NB XGB

Feature Value Feature Value Feature Value Feature Value Feature Value

Adult

1 IMF-123 1653 IMF-21 1544 IMF-44 2786 IMF-127 3140 IMF-118 2976
2 MMF-29 1605 OAF-10 1358 IMF-45 2658 IMF-129 2550 IMF-120 2674
3 IMF-127 1369 OAF-11 1342 MMF-19 2127 IMF-131 1970 OAF-5 1660
4 OAF-5 1362 OAF-5 1096 MMF-26 1536 OAF-5 1175 IMF-131 1586
5 OAF-10 1339 OAF-2 630 IMF-49 1429 IMF-126 1093 IMF-126 1460
6 MMF-67 1217 OAF-9 585 OAF-5 1252 OAF-10 961 OAF-10 1429
7 MMF-82 1172 IMF-23 576 MMF-31 1124 OAF-11 793 OAF-11 1140
8 OAF-11 1016 MMF-17 544 IMF-53 1122 MMF-114 773 IMF-128 809
9 MMF-43 1005 OAF-13 538 MMF-10 1083 IMF-117 759 OAF-13 778
10 IMF-129 976 MMF-15 498 MMF-16 1061 IMF-115 692 OAF-2 594

Bank

1 IMF-122 2313 IMF-25 1410 IMF-49 1851 IMF-131 1447 IMF-126 1566
2 MMF-31 1499 OAF-4 1053 MMF-17 1427 MMF-117 1417 OAF-8 1061
3 MMF-72 1380 IMF-22 1040 MMF-35 1262 IMF-120 1199 IMF-123 1042
4 MMF-27 1096 OAF-7 710 IMF-46 1096 OAF-4 1148 OAF-4 964
5 IMF-127 1080 OAF-8 696 OAF-8 971 OAF-7 1094 IMF-134 953
6 MMF-58 1001 MMF-18 527 MMF-31 933 IMF-135 794 IMF-129 874
7 MMF-60 989 OAF-13 508 MMF-27 929 IMF-122 730 OAF-7 753
8 OAF-4 798 OAF-11 495 IMF-42 923 OAF-8 721 IMF-128 718
9 MMF-86 785 OAF-5 369 IMF-41 828 OAF-11 584 IMF-122 610
10 MMF-108 784 OAF-6 363 IMF-55 807 OAF-13 556 OAF-6 521

Stroke

1 IMF-110 1526 OAF-4 1006 MMF-28 1534 IMF-124 844 OAF-4 1523
2 MMF-83 736 OAF-5 758 MMF-18 1080 IMF-115 783 MMF-111 1322
3 OAF-2 465 OAF-7 706 IMF-38 985 OAF-7 718 IMF-122 807
4 MMF-35 430 OAF-8 625 MMF-29 952 OAF-4 648 OAF-2 729
5 MMF-55 424 OAF-1 530 OAF-4 827 OAF-8 645 OAF-3 706
6 MMF-28 320 IMF-16 507 IMF-42 801 MMF-113 541 OAF-8 482
7 OAF-5 251 IMF-18 415 OAF-7 728 IMF-127 530 OAF-7 455
8 IMF-112 241 MMF-12 401 IMF-40 696 OAF-5 472 IMF-123 393
9 MMF-45 165 OAF-9 394 OAF-5 589 IMF-122 426 OAF-5 363
10 OAF-8 129 OAF-3 390 OAF-8 579 IMF-114 352 OAF-1 267

Diabetes

1 ORF-2 9302 ORF-2 6300 IMF-51 12816 ORF-2 10771 IMF-124 18667
2 ORF-0 8395 ORF-10 4102 IMF-46 11041 IMF-134 8308 IMF-133 18659
3 MMF-41 7238 ORF-0 3372 MMF-40 7758 IMF-126 6392 IMF-138 17907
4 MMF-106 6264 ORF-13 3211 IMF-47 7049 ORF-10 5044 MMF-120 16122
5 MMF-54 6124 ORF-3 3147 IMF-48 6358 IMF-139 4788 IMF-128 13657
6 ORF-10 5533 ORF-14 2329 MMF-28 6334 IMF-135 3858 IMF-102 11819
7 MMF-71 5349 MMF-21 2257 ORF-0 5680 IMF-132 3677 ORF-2 10277
8 MMF-22 5333 ORF-18 2118 ORF-2 5679 MMF-121 3668 ORF-10 3819
9 MMF-44 5157 ORF-11 2100 IMF-44 5375 IMF-125 3413 IMF-140 3684
10 IMF-125 4837 IMF-28 1991 MMF-27 5206 IMF-140 3309 ORF-0 3600

Heartbeat

1 MMF-211 3488 IMF-210 3627 ORF-155 3345 ORF-121 1127 IMF-310 2589
2 MMF-277 3007 ORF-171 1923 IMF-236 2690 ORF-124 788 IMF-317 1718
3 MMF-266 2084 ORF-77 1689 IMF-232 1888 IMF-315 420 IMF-308 1296
4 IMF-307 1943 MMF-207 1561 IMF-238 1292 ORF-77 377 ORF-53 506
5 MMF-214 1732 IMF-211 1459 MMF-213 1191 IMF-316 376 ORF-72 358
6 MMF-234 1731 IMF-213 1412 ORF-154 831 ORF-126 371 ORF-178 350
7 MMF-254 1405 MMF-208 1402 IMF-243 822 ORF-3 344 ORF-3 348
8 ORF-203 1286 IMF-212 1354 ORF-77 758 ORF-120 307 MMF-209 340
9 MMF-284 1215 ORF-50 987 ORF-166 758 MMF-303 305 IMF-319 325
10 MMF-299 1086 ORF-164 986 ORF-143 640 ORF-127 285 MMF-212 322

52

4.5. Study Results

4.5.5 RQ5: Impact of Main Parameters in MLPrior
Objectives: We delve into the impact of main parameters on the effectiveness of
MLPrior.
Experimental design: Building upon the existing research by Wang et al. [2], We
delve into an exploration of the impact of three main parameters within the MLPrior’s
ranking model. These parameters include max_depth, which denotes the maximum
tree depth for each XGBoost model, colsample_bytree, representing the sampling
ratio of feature columns during the tree construction process, and learning_rate,
indicating the boosting learning rate utilized in the XGBoost ranking model. To
achieve the research objectives, we conducted a series of experiments using natural
datasets. We carefully modified the aforementioned three main parameters and
observed the variations in the effectiveness of MLPrior (measured by APFD).
Results: The experimental results of RQ5 are presented in Figure 4.4, illustrating
the fluctuations in MLPrior’s effectiveness when the main parameters’ values are
altered. The X-axis represents the parameter values, while the Y-axis represents
MLPrior’s effectiveness (measured by APFD). The solid red line corresponds to
MLPrior, while the dashed lines represent the confidence-based test prioritization
approaches. We investigated the influence of the main parameter on MLPrior’s
effectiveness across both binary classification datasets (Adult, Bank, and Stroke) and
multiclass classification datasets (Diabetes and Heartbeat).

MLPrior consistently outperforms the confidence-based test prioritiza-
tion approaches, even when the values of the main parameters are altered.
Notably, we see that MLPrior consistently outperforms the confidence-based test
prioritization methods across all subjects, as evidenced by the red line persistently
positioned above the blue dashed lines. For example, in Figure 4.4e), we observe that
when the parameter colsample_bytree varies, MLPrior’s APFD ranges from 0.86 to
0.88, whereas the confidence-based methods’ APFD effectiveness is approximately
0.75. Moreover, under the multiclass dataset Heartbeat, when the parameter colsam-
ple_bytree changes, MLPrior’s APFD ranges from around 0.84 to 0.85, whereas the
APFD effectiveness of confidence-based methods ranges from around 0.745 to 0.750.
Under the multiclass dataset Diabetes, when the parameter learning_rate changes,
MLPrior’s APFD ranges from around 0.77 to 0.78, whereas the APFD effectiveness
of confidence-based methods is around 0.71.

The parameter colsample_bytree has a relatively small impact on
the effectiveness of MLPrior, while the parameters max_depth and
learning_rate have relatively high effects. Furthermore, we observe that
the parameter colsample_bytree, which determines the sampling ratio of feature
columns during the construction of each tree, has a relatively modest impact on
the effectiveness of MLPrior. In other words, the effectiveness of MLPrior remains
relatively stable even when the parameter colsample_bytree is altered. In contrast,
the parameters max_depth (the maximum tree depth) and learning_rate (the
boosting learning rate) exert a relatively high impact on the performance of MLPrior.

Answer to RQ5: MLPrior consistently outperforms the confidence-based test
prioritization approaches, even when the values of the main parameters are altered.
The parameter colsample_bytree has a relatively small impact on the effectiveness
of MLPrior, while the parameters max_depth and learning_rate have relatively
high effects.

53

Chapter 4. Test input prioritization for Machine Learning Classifiers

� � � � �

����

����

����

����

����

�������

����������

a) Adult, max_depth

��� ��� ��� ��� ���

����

����

����

����

����

�������

����������

b) Adult, colsample_bytree

����� ���� ���� ��� ���

����

����

����

����

����

�������

����������

c) Adult, learning_rate

� � � � �

����

����

����

����

����

����

�������

����������

d) Bank, max_depth

��� ��� ��� ��� ���

����

����

����

����

����

����

�������

����������

e) Bank, colsample_bytree

����� ���� ���� ��� ���

����

����

����

����

����

����

�������

����������

f) Bank, learning_rate

� � � � �

����

����

����

����

�������

����������

g) Stroke, max_depth

��� ��� ��� ��� ���

����

����

����

����

�������

����������

h) Stroke, colsample_bytree

����� ���� ���� ��� ���

����

����

����

����

�������

����������

i) Stroke, learning_rate

1 3 5 7 9

0.72
0.73
0.74
0.75
0.76
0.77
0.78

A
P

FD

MLPrior
DeepGini
Entropy
PCS
VanillaSM

j) Diabetes, max_depth

0.1 0.3 0.5 0.7 0.9

0.72
0.73
0.74
0.75
0.76
0.77

A
P

FD

MLPrior
DeepGini
Entropy
PCS
VanillaSM

k) Diabetes, colsample_bytree

0.001 0.01 0.05 0.7 0.9

0.72
0.73
0.74
0.75
0.76
0.77
0.78

A
P

FD

MLPrior
DeepGini
Entropy
PCS
VanillaSM

l) Diabetes, learning_rate

1 3 5 7 9

0.76

0.78

0.80

0.82

0.84

0.86

A
P

FD

MLPrior
DeepGini
Entropy
PCS
VanillaSM

m) Heartbeat, max_depth

0.1 0.3 0.5 0.7 0.9

0.76

0.78

0.80

0.82

0.84

A
P

FD

MLPrior
DeepGini
Entropy
PCS
VanillaSM

n) Heartbeat,colsample_bytree

0.001 0.01 0.05 0.7 0.9

0.76

0.78

0.80

0.82

0.84

A
P

FD

MLPrior
DeepGini
Entropy
PCS
VanillaSM

o) Heartbeat, learning_rate
Figure 4.4: Impact of main parameters in MLPrior

54

4.6. Discussion

4.6 Discussion
4.6.1 Generality of MLPrior

While we employed five ML models in our study, MLPrior can actually be adapted
for a broad range of classical ML models through simple modifications to the model
mutation rules, specifically by enabling them to target the architecture parameters or
weight parameters of the evaluated model. We explain below why MLPrior exhibits
generality. First, the core element of MLPrior is feature generation, which involves
generating three essential types of features from the target tests: Model mutation
features, Input mutation features, and Attribute features. Once the features are
generated, MLPrior can utilize the ranking model to learn from these features for
the purpose of test prioritization. Concerning model mutation features, making the
aforementioned simple adjustments (i.e., enabling model mutation rules to target the
architecture parameters or weight parameters of the evaluated model) can allow for
the generation of model mutation features. For input mutation features and attribute
features, MLPrior is capable of directly generating these features. Consequently,
MLPrior can be applied to a diverse range of classical ML models.

Moreover, to better demonstrate the generality of MLPrior, we provide a detailed
explanation of how to apply MLPrior to a new type of ML model.
• Skills needed to apply MLPrior to new ML models When an ML testing

practitioner aims to apply MLPrior to a new type of ML model, they need to
possess the following skills: 1) An understanding of the internal parameters and
mechanisms of the new machine learning model, to effectively carry out model
mutation operations in accordance with MLPrior’s methodology; 2) Basic Python
knowledge to replace the functions for model mutation of the new type model
with those for the original model; 3) Since input mutation and attribute feature
generation are already designed as automatic pipelines, the testing practitioner
can directly execute them without needing additional skills.

• Characteristics for models to utilize MLPrior When a model exhibits the
following characteristics, it can be added to the set of models that can use MLPrior:
1) The dataset of the model is in the tabular format, as our input mutation and
attribute feature generation operations are specifically crafted for classical ML
models that utilize tabular datasets; 2) The model is a white-box model, which
allows for modifications to its internal structure or parameters, facilitating the
implementation of MLPrior’s model mutation operations.
Furthermore, we offer the following protocol to guide an ML testing practitioner

in adapting MLPrior to new model classes. It details the systematic process for gen-
erating the model mutation features, original attribute features, and input mutation
features.
• Model Mutation Feature (MMF) Generation To generate the model mu-

tation feature for a test input, the following process should be executed: 1)
Parameter Selection Following the methodology of MLPrior’s model mutation
rules (i.e., modifying the architectural parameters or weight parameters of the
model), the ML testing practitioner needs to select appropriate model parameters
for the purpose of mutation and replace the previous model mutation function
with the new model mutation function. 2) Automatic Pipeline Once the
replacement is complete, all other parts are automated pipelines, and MLPrior
can automatically generate model mutation features.

55

Chapter 4. Test input prioritization for Machine Learning Classifiers

• Original Attribute Feature (OAF) Generation The ML testing practitioner
can directly obtain the OAF by implementing MLPrior, as we have designed
an automated pipeline for the original feature transformation. This pipeline is
capable of supporting new datasets in tabular format.

• Input Mutation Feature (IMF) Generation The ML testing practitioner can
directly acquire the IMF by implementing MLPrior. MLPrior can automatically
perform input mutations to obtain mutation features. This pipeline is capable of
supporting new datasets in tabular format.

4.6.2 Threats to Validity
Threats to Internal Validity. The primary internal threats to the validity
primarily pertain to the implementation of the compared approaches. To mitigate
the threat, we implemented the compared approaches based on the implementations
published by their respective authors. Another internal threat arises from the inherent
randomness inherent in the training process of the ML models. To mitigate this
potential issue, we conducted a statistical analysis. Specifically, we repeated all the
experiments five times and reported the average experimental results. Furthermore,
we calculated the p-value of the experimental results to demonstrate the stability of
our findings.
Threats to External Validity. The external threats to validity arise from the
ML models and test datasets employed in our study. To mitigate these threats, we
carefully selected a variety of ML models and datasets that are utilized by several top-
level conferences [66, 121, 135] in the field of ML testing. Moreover, our evaluation
of MLPrior extended beyond natural datasets to encompass a spectrum of scenarios,
encompassing mixed noisy datasets (comprising both natural and noisy data) as well
as fairness-oriented datasets. This approach allowed us to substantiate the efficacy
of MLPrior across various contexts.

4.7 Related Work
4.7.1 Test Prioritization Techniques

Test prioritization aims to establish an optimized sequencing of tests with the
objective of early detection of system bugs. In the field of traditional software
testing, numerous test prioritization approaches have been proposed [136, 137, 138,
139, 140]. Lou et al. [141] introduced an innovative approach to prioritize test
cases, focusing on the inherent ability of individual test cases to detect faults.
Their approach consists of two distinct models: a statistics-based model and a
probability-based model, both of which quantify the fault detection capability of
each test case. Through empirical evaluations, they demonstrated that the statistics-
based model outperformed alternative methods, underscoring the significance of
incorporating fault detection capability within the realm of test case prioritization.
Henard et al. [142] conducted a thorough comparative study to analyze existing test
prioritization techniques, finding that the difference between white-box strategies [143]
and black-box strategies [144] are small. Chen et al. [145], in pursuit of enhancing
the velocity of compiler testing, introduced the LET (Learning and Scheduling-
based Test prioritization) framework. This pioneering framework is underpinned by
two salient processes: the learning process, designed to discern program features
and prognosticate the potential of a novel test program in revealing bugs, and

56

4.7. Related Work

the scheduling process, which strategically prioritizes test programs based on their
propensity to unveil bugs.

In addition to the traditional field of software engineering, multiple test input pri-
oritization strategies have been proposed in the literature for Deep Neural Networks
(DNNs) [146, 2, 3, 7] to tackle the labeling-cost issue. Feng et al. [3] introduced Deep-
Gini, which prioritizes tests by utilizing the Gini score to measure model confidence
for each test input. Byun et al. [147] assessed various white-box metrics for ranking
bug-revealing inputs, encompassing widely-used measures like softmax confidence,
Bayesian uncertainty, and input surprise. Furthermore, Weiss et al. [7] extensively in-
vestigated diverse test input prioritization techniques for DNNs, particularly focusing
on uncertainty-based metrics such as Vanilla Softmax, Prediction-Confidence Score
(PCS), and Entropy. These metrics have demonstrated effectiveness in identifying
potentially misclassified test inputs and have played a crucial role in facilitating test
prioritization endeavors. Furthermore, Wang et al. [2] proposed a mutation-based
test prioritization approach for DNNs, which will be described in the subsequent
Section 4.7.4.

4.7.2 DNN Testing
In addition to test prioritization, the domain of DNN testing encompasses several

other pivotal areas, such as test selection [35, 36], test input generation [4, 148],
and test adequacy. Test selection aims to select a representative subset from the
original test set to estimate the accuracy of the entire test set. Various test selection
approaches have been proposed in the literature. Li et al. [36] proposed CES
(Cross Entropy-based Sampling), which performs test selection by minimizing the
cross-entropy between the selected test set and the entire test set, ensuring that
the distribution of the selected test set closely matches the original set. Chen et
al. [35] proposed PACE, which selected representative test inputs based on clustering,
prototype selection, and adaptive random testing. First, Pace divides all test inputs
into clusters based on their testing capabilities. Then, PACE utilizes the MMD-critic
algorithm [37] to select prototypes from each group. For tests not belonging to
any groups, PACE leverages adaptive random testing [149] to select test inputs by
considering diversity.

Within the domain of test input generation, researchers have proposed a multitude
of techniques aimed at generating diverse and effective inputs for DNN systems. Pei
et al. [4] proposed DeepXplore, a white-box differential technique that focuses on
generating test inputs capable of effectively evaluating the robustness of real-world
DL systems. By leveraging the notion of neuron coverage, DeepXplore generates
inputs that cover distinct regions of the neural network. Tian et al. [148] presented
DeepTest, a method specifically tailored for generating test inputs to assess the
performance of autonomous driving systems. DeepTest employs a greedy search
strategy in conjunction with nine realistic image transformations to produce a diverse
set of challenging input data. By systematically exploring the input space, DeepTest
aims to uncover potential failures or limitations in autonomous driving systems,
thereby enhancing their safety and reliability.

Regarding test adequacy, Ma et al. [5] proposed a set of multi-granularity testing
criteria, including k-multisection neuron coverage, neuron boundary coverage, and
strong neuron activation coverage. These criteria have been developed to identify
corner behaviors and uncover potential vulnerabilities in DNN systems by compre-

57

Chapter 4. Test input prioritization for Machine Learning Classifiers

hensively examining the coverage of various aspects of the neural network’s behavior.
Kim et al. [49] introduced surprise adequacy as a novel test adequacy criterion for
testing DL systems. The surprise adequacy criterion emphasizes the importance of a
test input being both challenging and informative while still adhering reasonably
to the underlying training data distribution. This criterion emphasizes that a good
test input should be sufficiently challenging and informative but should not deviate
excessively from the training data distribution.

4.7.3 Mutation-based Test Prioritization for Traditional Software
Mutation testing [38] entails generating intentional defects, referred to as mutants,

within the software code to assess the test suite’s quality. In the field of traditional
software testing [141, 150, 64], mutation testing can be employed to assess the fault-
detection capabilities of individual test cases, thereby achieving test prioritization.
Lou et al. [141] introduced a novel test-case prioritization approach that determines
the order of test cases by considering their fault detection ability. This ability
is defined based on the analysis of mutation faults simulated from real software
faults. By strategically ordering the test cases, this approach aims to maximize
the efficiency of the testing process by prioritizing the detection of critical faults.
Papadakis et al. [64] conducted a mutation analysis as an alternative technique to
Combinatorial Interaction Testing (CIT). Their research suggests that the mutants
generated using their approach demonstrate a stronger correlation with code-level
faults than the input interactions targeted by the CIT approach. This underscores the
potential of mutation analysis to offer valuable insights into underlying faults within
software systems and guide test case prioritization. Furthermore, Shin et al. [150]
proposed a novel test case prioritization method that combines mutation-based and
diversity-based approaches. They demonstrate that mutation-based prioritization
is as effective as, or more effective than, random prioritization and coverage-based
prioritization.

4.7.4 Mutation Testing and Mutation-based Test prioritisation
for Deep Learning

Mutation Testing for DNNs The field of mutation testing for DNNs has seen
significant exploration, with numerous studies contributing to the evolution of various
mutation operators and frameworks [48, 151, 146]. A notable contribution in this do-
main is from Ma et al. [48], who introduced DeepMutation. This innovative approach
is designed to assess the quality of test data for DL systems through comprehensive
mutation testing. DeepMutation encompasses a diverse array of mutation operators
at both the source and model levels. These operators are meticulously crafted
to inject faults into different components of DL systems, including training data,
programming code, and the models themselves. Building upon this foundation, Hu
et al. further expanded their work with the development of DeepMutation++ [151],
an advanced mutation testing tool specifically tailored for DL systems. DeepMuta-
tion++ introduced a set of new mutation operators that are particularly suited for
feed-forward neural networks (FNNs) and Recurrent Neural Networks (RNNs). A
key feature of this tool is its capability to dynamically mutate the runtime states
of RNNs, a critical aspect for evaluating the resilience of these networks under
various operational conditions. Humbatova et al. [146] made a significant stride in
the field by developing DeepCrime, the first mutation testing tool that implements

58

4.8. Conclusion

DL mutation operators grounded in actual DL faults. DeepCrime is characterized
by its comprehensive set of 24 newly defined mutation operators. These operators
are not just theoretical constructs but are based on real-world faults observed in DL
systems, making DeepCrime a highly practical tool for testing and improving the
reliability of these systems.
Mutation-based test prioritization for DNNs Wang et al. [2] introduced
PRIMA, an innovative test input prioritization technique founded on intelligent
mutation analysis. PRIMA is applicable to both classification and regression models
and possesses the capability to handle test inputs generated through adversarial
input generation techniques, thereby enhancing the probability of misclassification.
However, PRIMA’s model mutation rules cannot be adapted to classical ML models.

In this study, we proposed MLPrior, a mutation-based test input prioritization
approach specifically designed for classical ML models. The significant differences
between MLPrior and PRIMA are as follows:
• Different Approaches for Model Mutation MLPrior and PRIMA leverage

different model mutation approaches. In MLPrior, model mutations are specifi-
cally designed for white-box classical machine learning models. These mutations
are based on the interpretable nature of these models and involve modifying the
architecture parameters or weight parameters of the evaluated model. PRIMA,
on the other hand, is primarily focused on DNNs, which are non-interpretable
black-box models. Examples of model mutations in PRIMA include adding noise
to the weights of neurons and altering the structure of DNN layers.

• Attribute Feature Inclusion Another significant difference is that MLPrior
employs the inherent attribute features of classical ML model datasets for test
prioritization. In contrast, PRIMA does not incorporate this information into
its test prioritization procedure. The motivation behind MLPrior’s utilization
of attribute features for test prioritization is that classical ML datasets typically
exhibit lower-dimensional features compared to DNN test data. Additionally,
these features are carefully selected by domain experts, directly reflecting the
attribute information associated with each test input.

• Feature Generation Strategy In terms of model and input mutation, compared
to PRIMA, MLPrior emphasizes generating mutation features directly from
mutation results. For example, in model mutation, the ith element in the vector
indicates whether the ith mutated model is ’killed’ by this input. This method is
intuitive and reproducible.

• Use of Multiple Ranking Models MLPrior employs five different ranking
models and assesses their effectiveness in utilizing mutation features for test
prioritization. In contrast, PRIMA utilizes only a single ranking model. By
comparing multiple ranking models, MLPrior can identify the most effective
model for learning mutation features in the context of test prioritization.

4.8 Conclusion
In order to solve the labeling cost problem for classical ML models, we propose

MLPrior, which prioritizes tests that are more likely to be misclassified. MLPrior
leverages the unique characteristics of classical ML classifiers, including their inter-
pretability and carefully engineered dataset features, to effectively prioritize test
inputs. The foundational principles of MLPrior are twofold: Firstly, tests exhibiting
higher sensitivity to mutations are more likely to be misclassified. Secondly, tests

59

Chapter 4. Test input prioritization for Machine Learning Classifiers

situated closer to the decision boundary of the model are more susceptible to mis-
classification. Capitalizing on these principles, we design mutation rules specifically
for classical ML models and their datasets. For each test, we generate mutation
features while simultaneously transforming its attribute into a feature vector that
can indirectly quantify the proximity between it and the decision boundary. Con-
catenating these features, MLPrior constructs a final vector for each test, which
will be inputted into a pre-trained ranking model for the purpose of predicting its
misclassification probability. Finally, MLPrior ranks all the tests according to their
misclassification scores in descending order. We conducted an extensive study to
evaluate MLPrior, utilizing 185 different types of subjects that encompass natural,
noisy, and fairness datasets. The experimental results demonstrate that MLPrior
exhibits higher effectiveness compared to existing test prioritization methods, yielding
an average improvement of 14.74%∼66.93% on natural datasets, 18.55%∼67.73% on
mixed noisy datasets, and 15.34%∼62.72% on fairness datasets.

Availability
Our replication package is available at

https://github.com/yinghuali/MLPrior.

60

https://github.com/yinghuali/MLPrior

5 GraphPrior: Mutation-based Test
Input Prioritization for Graph Neu-
ral Networks

In this chapter, we propose a novel test prioritization approach called GraphPrior,
which is specifically designed to prioritize test inputs that are more likely to be mis-
classified by Graph Neural Networks (GNNs). GraphPrior addresses a fundamental
challenge in GNN testing: existing test prioritization methods developed for Deep
Neural Networks (DNNs) fail to consider the dependencies among test inputs (nodes)
in graph-structured datasets. Inspired by mutation testing, GraphPrior generates
mutated GNN models and prioritizes test inputs that "kill" many mutations, as they
are more likely to be misclassified. It employs two ranking methods: a killing-based
approach, treating all mutations equally, and a feature-based approach, which learns
the importance of different mutations via ranking models. By effectively prioritizing
potentially misclassified test inputs, GraphPrior enhances fault detection and debug-
ging efficiency for GNNs.

This chapter is based on the work published in the following research paper:
• Xueqi Dang, Yinghua Li, Mike Papadakis, Jacques Klein, Tegawendé F. Bis-

syandé, Yves Le Traon. GraphPrior: Mutation-based Test Input Prioritization
for Graph Neural Networks. ACM Transactions on Software Engineering and
Methodology (TOSEM). Accepted for publication on Jun. 13, 2023

Contents
5.1 Introduction . 63
5.2 Background . 66

5.2.1 Graph Neural Networks 66
5.2.2 Test Input Prioritization for DNNs 67

5.3 Approach . 68
5.3.1 Overview . 68
5.3.2 Mutation Rules . 69
5.3.3 Killing-based GraphPrior 70
5.3.4 Feature-based GraphPrior 71
5.3.5 Usage of GraphPrior . 72

5.4 Study design . 73

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

5.4.1 Research Questions . 73
5.4.2 GNN models and Datasets 74
5.4.3 Compared Approaches 76
5.4.4 Graph Adversarial Attacks 77
5.4.5 Evaluation of mutation rules (RQ5) 77
5.4.6 Implementation and Configuration 78
5.4.7 Measurements . 79

5.5 Results and analysis . 79
5.5.1 RQ1: Effectiveness of the killing-based GraphPrior ap-

proach (KMGP) . 79
5.5.2 RQ2: Effectiveness of the feature-based GraphPrior ap-

proaches . 81
5.5.3 RQ3: Effectiveness of GraphPrior on adversarial test inputs 85
5.5.4 RQ4: Effectiveness of GraphPrior against adversarial

attacks at varying attack levels 86
5.5.5 RQ5: Contribution analysis of different mutation rules . 89
5.5.6 RQ6: Enhancing GNNs with GraphPrior 92

5.6 Discussion . 95
5.6.1 Generality of GraphPrior 95
5.6.2 Limitations of GraphPrior 95
5.6.3 Threats to Validity . 96

5.7 Related Work . 97
5.7.1 Test prioritization Techniques 97
5.7.2 Deep Neural Network Testing 98
5.7.3 Mutation Testing for DNNs 99
5.7.4 Mutation-based Test Prioritization for Traditional Software 99

5.8 Conclusion . 100

62

5.1. Introduction

5.1 Introduction
In recent years, graph machine learning [152, 153] has been widely adopted

for modeling graph-structured data. In this realm, the emergence of graph neural
networks (GNNs) [154] has offered promising results in diverse domains, such as
recommendation systems [155, 156, 157], social network analysis [158, 159, 160],
and drug discovery [161, 162]. GNNs, like typical neural networks [163] [164],
are abstractions of the underlying data. Thus, their inference can suffer from
faults [165] [166] [167], which can lead to severe prediction failures, especially in
security-critical use cases. Testing is considered to be a fundamental practice that
is widely adopted to ensure the performance of neural networks, including GNNs.
However, like traditional deep neural networks (DNNs), GNN testing also suffers
from the lack of automated testing oracles, which necessitates the manual labeling
of test inputs. However, this labeling process can require significant human effort,
especially for large and complex graphs. Moreover, in certain specialized domains,
such as the protein interface prediction [168] of drug discovery, labeling intensively
relies on domain-specific knowledge, further increasing its costs.

Prior works [147, 3, 2, 49] have focused on test prioritization to relieve the
labeling-cost problem for DNNs. Test prioritization approaches aim to prioritize test
inputs that are more likely to be misclassified (i.e., fault-revealing test inputs) so
that such inputs can be identified earlier to reveal system bugs. Existing approaches
are mainly divided into two categories: coverage-based and confidence-based test
prioritization approaches. Coverage-based approaches prioritize test inputs based
on neuron coverage through adapting coverage-based prioritization methods from
traditional software testing [92, 169]. Confidence-based approaches assume that
test inputs for which the model is less confident are more likely to be misclassified
and thus should be prioritized higher. Feng et al. [3] proposed the state-of-the-art
confidence-based approach DeepGini, which considers that a test input is more
likely to be misclassified by a DNN model if the model outputs similar prediction
probabilities for each class. More recently, Wang et al. [2] proposed PRIMA, which
leveraged mutation analysis and learning-to-rank methods to prioritize test inputs
for DNNs. However, despite its effectiveness in DNN test prioritization, PRIMA
cannot be directly applied to GNNs since their mutation operators are not adapted
to graph-structured data and GNN models.

Furthermore, existing studies [47] have focused on metrics for data selection (e.g.,
margin and least confidence), which can also be used to detect possibly-misclassified
test data. Although the aforementioned approaches have been demonstrated to be
effective for DNN models in some cases, they have the following limitations when
applied to GNN models:
• First, to the best of our knowledge, current coverage-based approaches do not

provide interfaces for GNN models and thus cannot be directly applied. Moreover,
existing research [3] has demonstrated that coverage-based approaches are not
effective compared to confidence-based approaches.

• Second, despite the effectiveness of confidence-based approaches on traditional
DNNs, they do not take into account the interdependencies between test inputs
of GNNs, which are particularly crucial for GNN inference. In other words, GNN
test inputs are typically represented as graph-structured data consisting of nodes
and edges, while confidence-based prioritization approaches usually deal with test

63

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

sets in which each test is independent and has no connections with others.
• Third, the effectiveness of uncertainty-based metrics can be limited when facing

some specific adversarial attacks. If the aim of an attack is to generate test
inputs that maximize the probability of incorrect classification, then the utility of
uncertainty metrics can be limited. This is because the underlying assumption of
uncertainty-based metrics is that: if a model is more uncertain about classifying a
test, this test is more likely to be misclassified. However, in such scenarios, even if
a model is confident on a test, this test can still have a high probability of being
misclassified.
To overcome the aforementioned problems, in this paper, we propose GraphPrior

(GNN-oriented Test Prioritization), a set of test prioritization approaches specifically
for GNNs. GraphPrior identifies and prioritizes possibly-misclassified test inputs via
mutation analysis. Given a test set for a GNN model, GraphPrior regards a test
input that kills more mutated models (i.e., variants of the original GNN model that
is slightly changed) of the original GNN model as more likely to be misclassified.
Here, killing means the prediction result to the test input via the GNN model and
the mutated model is different. To this end, we design a set of mutation rules to
generate mutated models specifically for GNNs by slightly changing the training
parameters of the original model. After obtaining the mutation results of each test
input, GraphPrior introduces several ranking models (ML/DL models) [14, 112, 69]
to rank the test set. The working principle of GraphPrior is inspired by mutation
testing research as this has been realized for both model-based [62, 63, 64] and
code-based [96, 170, 95] testing. The key underlying principle in all cases is that test
cases that distinguish the behavior of mutants from that of the original artifact are
useful and more likely to detect other underlying faults [171, 64, 62].

While both the GraphPrior and PRIMA (i.e., the state-of-the-art DNN test
prioritization approach) use mutation analysis, GraphPrior differs from PRIMA in
terms of its mutation rules, feature generation, and ranking models: 1) GraphPrior’s
mutation rules can directly or indirectly affect the message passing between nodes in
graph data. In contrast, the mutation rules of PRIMA are designed for traditional
DNNs, where the test inputs are independent, and therefore, the mutation rules do
not affect the relationships between tests; 2) GraphPrior generates a mutation feature
vector for each test input based on its mutation results, where the ith element in the
vector denotes whether the ith mutated model is killed by this input. This feature
generation strategy is intuitive and reproducible. In addition to this, the generation
method exhibits several other advantages. First, by using binary indicators (1 or 0) as
elements of the mutation feature vector, the information is transformed into a concise
vector representation. Second, the fine-grained nature of the mutation feature vector
allows for a detailed analysis of the effects of individual mutations. In particular,
further analysis can be conducted to assess the contributions of each mutated model
to GraphPrior. By tracing back to the corresponding mutation rules for the top
critical mutated models, we can gain insights into which mutation rules made higher
contributions to GraphPrior. The experimental results demonstrate its effectiveness;
3) GraphPrior employs five ranking models and compares their effectiveness in
utilizing mutation features for test prioritization, while PRIMA only uses a single
ranking model. By comparing multiple ranking models, GraphPrior can identify the
optimal ranking model for learning mutation features in test prioritization.

GraphPrior has broad applicability across a wide range of contexts, including

64

5.1. Introduction

software development, scientific research, and financial systems. For instance, Graph-
Prior can be employed to gain insights into the vulnerabilities of GNN models used in
financial transaction fraud detection. In this specific context, where nodes represent
accounts and edges represent transaction transfers, the first step is to utilize the
GNN model under test to identify a group of potentially fraudulent accounts. Subse-
quently, these identified accounts serve as test inputs for GraphPrior. By prioritizing
accounts that are more likely to be misclassified by the model (i.e., accounts falsely
classified as fraudulent), GraphPrior places them at the top of the recommendation
list. Consequently, by labelling and analyzing these bug-revealing tests earlier, the
fraud analysis team can unveil the bugs and vulnerabilities of the GNN model more
efficiently.

It is important to note that, GraphPrior is specifically designed for GNNs, and its
impact on DNNs has not been evaluated. This is because in graph datasets, nodes
are interconnected, and the mutation rules of GraphPrior can directly or indirectly
affect the message passing between nodes in the prediction process. In contrast, in
traditional DNNs, each sample in a dataset is typically independent, and as a result,
such mutation rules are unlikely to affect the transmission of information between
tests. Therefore, the effectiveness of GraphPrior’s mutation rules for DNNs remains
uncertain, as no related experiments have been conducted to evaluate it.

We conducted an extensive study to evaluate the performance of GraphPrior
based on 604 subjects. Here, a subject refers to a pair of graph dataset and GNN
model. We compare GraphPrior with 6 uncertainty-based metrics [7] [3] [172] that
can be used to prioritize possibly-misclassified test inputs and adopt random selection
as the baseline method. Our experimental results demonstrate that GraphPrior
performs well across all subjects and outperforms the compared approaches on
average.

As mentioned before, one essential problem of confidence-based approaches is
that adversarial attacks may lead to a model being more confident in the incorrect
prediction, resulting in the failure of the approach. Therefore, we also evaluate
GraphPrior on test inputs generated from graph adversarial attacks of existing
studies [173, 174, 175, 176]. Furthermore, since the effectiveness of test prioritiza-
tion methods may vary depending on the degree of the adversarial attack, we set
different attack levels to generate adversarial data and compared GraphPrior with
the compared approaches. In addition to the evaluation of GraphPrior, we compare
the effectiveness of different mutation rules in generating top contributing mutated
models, aiming to identify which mutated rules contribute more to each GNN model.
In the last step, we investigate whether GraphPrior and the uncertainty-based metrics
can select informative retraining tests to improve a GNN model. Our experimental
results demonstrate that GraphPrior achieved better effectiveness compared with
the uncertainty-based test prioritization methods. We publish our dataset, results,
and tools to the community on Github1.

Our work has the following major contributions:
• Approach. We propose GraphPrior, a set of mutation-based test prioritization

approaches for GNNs. To this end, we design a set of mutation rules that mutate
GNN models by slightly changing their training parameters. We carefully select
ranking models to analyze the mutation results for effective test prioritization.

• Study We conduct an extensive study based on 604 GNN subjects involving
1https://github.com/yinghuali/GraphPrior

65

https://github.com/yinghuali/GraphPrior

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

natural and adversarial test sets. We compare GraphPrior with existing DNN
approaches that could detect possibly misclassified test inputs. Our experimental
results demonstrate the effectiveness of GraphPrior.

• Mutation rule analysis We compare the effectiveness of the GNN mutation
rules in generating top contributing mutated models, observing that the mutation
rule HC (i.e., mutating Hidden Channels) makes top contributions to most GNN
models in test input prioritization.

5.2 Background
In this section, we introduce the key domain concepts for our work, including

Graph Neural Networks and Test Input Prioritization for DNNs.

5.2.1 Graph Neural Networks
Graph neural networks (GNNs) have achieved great success in handling machine

learning problems on graph-structured data [177] [157] [178]. Unlike traditional
neural networks running on fixed-sized vectors, GNNs deal with graphs of varying
sizes and structures. Therefore, GNNs can capture complex relationships between
data points and make more accurate predictions. GNNs have been used in a wide
range of tasks, including recommendation system [157, 156, 179], protein-protein
interaction (PPI) prediction [180, 181, 168] and traffic forecasting [182, 183, 184].
Graphs A graph is a data structure consisting of two components: nodes (vertices)
and edges. A graph H can be defined as H = (V, E), where V is the set of nodes,
and E are the edges between them. In a graph, nodes can represent entities (e.g.,
persons, places, or things), while the edges define the relationships between nodes.
The edges can be either directed or undirected based on the directional dependencies
that exist between nodes. Graphs can be utilized to model complex systems such as
social media networks, molecular structures, and citation networks. For example, in
the context of citation networks, publications can be represented as nodes, and the
citations between them can be represented as edges. Graph datasets are collections
of graph data that can be used to train and evaluate GNNs. Some benchmark graph
datasets [185] include Cora, CiteSeer, and PubMed. In this paper, we evaluated
GraphPrior and the compared approaches on several graph datasets obtained from
existing studies [186] [187].
Graph Embeddings Graph embedding [188] is an approach used to transform
nodes, edges, and their associated features into lower dimensional representation
while maximally preserving the graph structural information and graph properties.
Graph analytics methods usually suffer from high computational and storage costs,
limiting their applicability in real-world scenarios. The use of graph embedding
has shown promising results as an efficient and effective way to address the graph
analytics problem.
Message Passing Scheme In GNNs, the message-passing scheme is commonly
employed [189], whereby nodes aggregate and transform the information from their
neighbors in each layer. Through stacking multiple GNN layers, this mechanism
facilitates the propagation of information across the entire graph structure, allowing
for the effective embedding of nodes into low-dimensional representations. These
node representations may subsequently be leveraged by a differentiable prediction
layer, thereby enabling end-to-end training of the complete model.
GNN models A graph neural network (GNN) model is a type of neural network

66

5.2. Background

designed to operate on graph data structures. Typically, a GNN model contains two
crucial parts: a graph convolution layer [163] to capture the relationship between
nodes in the graph and a classifier [190] to make predictions based on the captured
relationship. In general, a GNN model takes graph-structured data as inputs and
produces outputs based on its corresponding task. For example, the output for a
GNN model that deals with node-level tasks (i.e., GNN tasks that are concerned
with predicting the identity or role of each node within a graph) is typically a
prediction for nodes in the input graph. In this paper, we evaluated our proposed
test prioritization approach, GraphPrior, and the compared approaches on various
GNN models [163, 185, 191, 192] that deal with node classification tasks.
Graph Adversarial Attacks Graph adversarial attacks [175] [193] [194] [195]
involve the manipulation of graph structure or node features to generate graph
adversarial perturbations that can fool GNN models. This vulnerability of GNNs has
raised serious concerns regarding their reliability and safety, particularly in safety-
critical applications such as financial systems and risk management. For instance, in
a credit scoring system, attackers can exploit the vulnerability of GNNs to create fake
connections with high-credit customers to evade fraud detection models. In this paper,
we applied eight graph adversarial attacks from existing studies [173, 174, 175, 176]
to generate adversarial inputs for the evaluation of GraphPrior.

5.2.2 Test Input Prioritization for DNNs
In DNN testing, test input prioritization aims to prioritize tests that are more

likely to be misclassified (i.e., bug-revealing test inputs) by the DNN model. In
this way, more important test inputs can be labeled earlier in a limited time, which
can improve the efficiency of DNN testing. In the literature, several prioritization
approaches have been proposed to deal with the labeling-cost issues [3, 2, 147, 196].

The majority of approaches for prioritizing tests in Deep Neural Networks
(DNNs) can be classified into two categories, coverage-based and confidence-based [2].
Confidence-based approaches, such as DeepGini [3], prioritize test inputs based on
the model’s confidence. Specifically, these methods identify inputs that are likely to
be incorrectly predicted by the DNN model, given that the model outputs similar
probabilities for each class. In contrast, coverage-based approaches, such as CTM [92],
simply extend traditional software system testing methods to DNN testing, and have
been shown to underperform compared to confidence-based approaches [3]. Weiss et
al. [7] conducted a comprehensive investigation of the capabilities of various DNN test
input prioritization techniques, including some notable uncertainty-based metrics
such as Vanilla Softmax, Prediction-Confidence Score (PCS), and Entropy. The
Vanilla Softmax metric is calculated as the highest activation in the output softmax
layer for a classification problem, subtracted from 1. PCS, on the other hand, is
defined as the difference in softmax likelihood between the predicted class and the
second runner-up class. Additionally, Entropy is considered as an alternative metric
in the softmax layer proposed by the authors of DeepGini. These metrics have been
demonstrated to be effective in identifying possibly-misclassified test inputs, and can
aid in guiding test prioritization efforts.

The aforementioned uncertainty-based test prioritization can be adapted for
test input prioritization for GNNs. GraphPrior differs from these approaches in
that GraphPrior leverages mutation analysis to perform test prioritization. The
mutation analysis of GraphPrior exploits the specific properties of GNNs. Specifically,

67

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

GraphPrior’s mutation rules can directly or indirectly affect the message passing
between nodes in a graph. In contrast, uncertainty-based approaches rely on the
prediction uncertainty of the DNN model to prioritize test inputs without accounting
for the interdependence between nodes.

Currently, the state-of-the-art technique for DNN test prioritization is PRIMA,
which prioritizes fault-revealing test inputs based on mutation analysis. However,
PRIMA is not suitable for GNN test prioritization because: 1) its input mutation rules
are specifically designed for DNN testing datasets where each sample is independent
of each other. In contrast, graph datasets have complex interdependence between
nodes, making PRIMA unsuitable for test prioritization in this context; 2) GNNs
employ graph operations and message passing mechanisms to aggregate and update
information from neighboring nodes, thereby facilitating improved representation
and learning within graph structures. The model mutation rules employed in PRIMA
are not suitable for accommodating the graph operation mechanisms intrinsic to
GNNs.

In addition to the aforementioned test prioritization techniques, several active
learning [172] methods can also be adapted to prioritize DNN tests, such as Least
Confidence and Margin. Active learning aim to selects the most informative samples
to be labeled by a human expert. When applied to test prioritization, active learning
can be used to identify the most critical and informative test cases that can reveal
bugs in the system.

5.3 Approach
5.3.1 Overview

In this paper, we propose GraphPrior, a set of test prioritization approaches
for GNNs to prioritize test inputs. GraphPrior consists of six mutation-based test
prioritization approaches: KMGP, LRGP, RFGP, LGGP, DNGP and XGGP. These
approaches are discussed later in this Section. We present the overview of GraphPrior
in Figure 5.1, in which the input of GraphPrior is a GNN test set, and the output is
the test set that has been prioritized. Given a test set T for a GNN model G, the
implementation process of GraphPrior is presented as follows.
Generating mutants for the GNN model First, GraphPrior generates mutated
models (i.e., mutants) for the GNN model G based on carefully designed mutation
rules (cf. Section 5.3.2).
Obtaining mutation results through killing mutants For each test input,
GraphPrior identifies which mutated models it kills. Here, a mutated model is killed
by a test input if the prediction results of this input via the mutated model and the
original model G are different. In this way, GraphPrior obtains the mutation result
of each test input.
Generating feature vectors from the mutation results For each test input,
GraphPrior generates a mutation feature vector for it based on its mutation results.
The ith element of this feature vector denotes whether this input kills the ith mutated
model. More specifically, given a test input t ∈ T , if t kills a mutated model Mi,
then the ith element of t’s mutation feature vector is set to 1. Otherwise, the ith

element is set to 0.
Ranking test input based on mutation feature vectors via ranking models
GraphPrior utilizes ranking models [14, 112, 69] to calculate a misclassification score

68

5.3. Approach

for each test input based on its feature vector. This score can indicate how likely a
test input will be misclassified by the GNN model. Finally, GraphPrior ranks them
based on their misclassification scores in descending order and outputs the prioritized
test set T ′.

A

B

C

D
D A B C

Original GNN model

Original GNN model

Graph test set
to be labeled

Mutation rules

Mutated GNN models

FeaturesFeature
extraction

Ranking models

Prioritized
graph test set

labeling

Developers

Figure 5.1: Overview of GraphPrior

5.3.2 Mutation Rules
In GraphPrior, mutation rules are employed to generate mutated models of a

GNN model by making slight changes to its training parameters. We select the
following parameters because they can impact the message passing in the GNN
prediction process. More specifically, in the mutated GNN model, the manner in
which nodes acquire information from their neighboring nodes is slightly different
from that of the original GNN model. Although variations of GNNs can be obtained
even without changing training parameters, the resulting model mutants cannot
produce meaningful differences in the GNN model’s behavior. By changing the
selected training parameters to generate mutants, we can intentionally introduce
meaningful modifications to the model’s behavior in terms of the interdependencies
between nodes during the prediction process. We present all the mutation rules of
GraphPrior as follows.
• Self Loops (SL) [163, 185] SL is a Boolean parameter, which controls whether to

add self-loops to the input graph. When the SL parameter is set to True, self-loops
are introduced to each node in the graph. By incorporating self-loops, the inherent
information of nodes can be effectively aggregated into their representation vectors,
leading to a change in the weighting of their neighboring nodes, and thus affecting
the interdependence of nodes in the prediction process.

• Bias (BIA) [163, 185, 191] BIA is a Boolean parameter, which determines
whether to introduce a predetermined offset to the representation vectors of nodes.
When the BIA parameter is enabled (set to True), each node will be assigned
a corresponding bias parameter to its representation vector, allowing the GNN
model to better capture the inherent properties of the graph and improve the
interdependence between nodes in the prediction process.

• Cached (CA) [163] CA is a Boolean parameter that controls whether to cache
the computation of node embeddings during the forward pass. When the CA
parameter is set to True, the node embeddings are cached and reused during
the backward pass to save computation time. Caching the computation of node
embeddings can affect the interdependence between nodes by altering the order
and efficiency of message passing.

• Improved (IMP) [163] IMP is a Boolean parameter that controls whether to
use the improved message passing strategy, thus affecting the interdependence
between nodes in the prediction process.

• Normalize (NOR) [191, 192] NOR is a Boolean parameter, which determines

69

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

whether to normalize the messages passed between nodes in the prediction process.
When this parameter is set to "True," the messages are normalized by the number of
neighbors that a node has before being passed to the next layer. This normalization
can impact the contribution of each neighbor to the node’s final representation,
thus affecting the message passing between nodes in the prediction process.

• Concat (CON) [185] CON is a Boolean parameter, which controls how the
representations of neighboring nodes are combined during message passing. When
it is set to True, the representations of neighboring nodes are concatenated before
being passed, resulting in a more expressive representation of the nodes, enabling
the GNN to capture more nuanced interdependencies between them.

• Heads (HDS) [185] HDS is an integer parameter that determines the number
of attention heads used in multi-head attention. Increasing the number of heads
allows the model to capture more complex interdependence among nodes in
the graph. Each attention head can focus on a different aspect of the node
neighborhood, enabling the model to learn different representations of the graph.

• Epoch (EP) [185, 191, 192] EP is an integer parameter that controls the number
of times a GNN model iterates over the training dataset. By increasing the number
of epochs, a GNN model can better capture the interdependence between nodes
for model inference.

• Hidden Channel (HC) [163, 185, 191, 192] HC is an integer parameter, which
controls the dimensionality of the hidden representation in each layer of the GNN.
Therefore, changing this parameter can impact the interdependence between nodes
in a graph by enabling the GNN to learn more expressive node embeddings.

• Negative Slope (NS) [185] NP is a float parameter, which controls the slope of
the negative part of the activation function used in the Gated Linear Unit (GLU)
operation. GLU is a common non-linear function used in GNNs for message
passing. Specifically, the GLU operation is used to combine the node features
with the weighted sum of their neighboring nodes’ features, which is the message
passed between nodes in the graph. The negative slope parameter determines the
slope of the activation function for negative input values in the GLU operation,
thus impacting the message passing between nodes.

Based on the above mutation rules, for a given test set and a GNN model, GraphPrior
generates N mutated models of the original model. We consider that a test input
kills a mutated model if the predictions for this input via the mutated models and
the original GNN model are different. Based on it, GraphPrior obtains the mutation
results of all the test inputs.

Considering that the primary objective of generating mutated models is to obtain
informative features for test prioritization, a statistical analysis is employed to validate
their effectiveness. To achieve this, a series of repeated experiments are conducted,
as outlined in Section 6.5. The results of these experiments demonstrate that
GraphPrior’s effectiveness is statistically significant, thereby confirming the statistical
validity of the generated mutated models for the purpose of test prioritization.

5.3.3 Killing-based GraphPrior
This section presents the workflow of KMGP, the Killing Mutants-based GNN

Test Prioritization approach. Notably, KMGP operates on a "killing-based" principle,
where test inputs that can kill more mutated models are considered as more likely
to be misclassified and will be prioritized higher. It is worth noting that KMGP

70

5.3. Approach

assigns equal importance to each mutated model in the process of test prioritization,
a distinct feature that distinguishes it from feature-based approaches, which will be
elaborated upon in subsequent sections. Given a GNN model G, and a test input set
T = {t1, t2, . . . , tn}, the detailed execution of KMGP can be divided into three key
stages: mutation generation, killing-based mutation analysis, and test prioritization.
Mutation generation In the mutation generation stage, a group of mutated models
{G′

1, G′
2, . . . , G′

N} are generated for the original GNN model G.
Killing-based mutation analysis This stage involves obtaining the mutation results
of each test input t ∈ T using the process outlined in Section 5.3.2. Subsequently,
KMGP counts the number of mutants killed by each test input based on their
mutation results.
Test prioritization In the third stage, KMGP prioritizes all the test inputs in
T based on the number of mutated models they killed, with those that kill more
mutants being prioritized higher in the test sequence.

5.3.4 Feature-based GraphPrior
In comparison to the killing-based GraphPrior approach, the feature-based ap-

proaches are characterized by automatic mutation feature analysis. This process
involves the generation of mutated feature vectors based on the execution of mu-
tated models, followed by the use of ranking models (ML/DL models), which assign
different importance to each mutated model for test prioritization.

Overall, the feature-based approaches’ workflow entails three key stages: mutated
model generation, mutation feature generation, and learning-to-rank.
❶ Mutated model generation Given a GNN model G and a test set T , during

the first stage, the feature-based approaches generate a group of mutated models
(denoted as {G′

1, G′
2, . . . , G′

N}) of the GNN model G based on the mutation rules
specified in Section 5.3.2.

❷ Mutation feature generation Subsequently, the feature-based approaches
associate a feature vector Vt of size N with each test input t, where N represents
the number of mutated models, and vk(= Vt[k]) maps to the execution output
for the mutated model G′

k. If t kills the mutated model G′
k (i.e., the prediction

results for t via the mutated models G′
k and the original model G are different),

vk is set to 1. Otherwise, it is set to 0.
❸ Learning-to-rank In the final stage, the feature-based approaches input the muta-

tion features of each test input to the ranking model (ML/DL models) [112] [8] [69] [197] [14].
The ranking models can automatically learn different importance for each mu-
tation feature to output misclassification scores. Here, each mutation feature
corresponds to the execution result of a mutated model so that we can consider
that the ranking models learn the importance of each mutated model for test
prioritization. Finally, the feature-based approaches rank all the test inputs based
on their misclassification scores in descending order.
In our study, we propose five feature-based GraphPrior approaches, which follow

the similar workflow described above, but leverage different ranking models. These
five approaches are XGGP (XGBoost-based GNN Test Prioritization), LRGP
(Logistic Regression-based GNN Test Prioritization), LGGP (LightGBM-based
GNN Test Prioritization), RFGP (Random Forest-based GNN Test Prioritization)
and DNGP (DNN-based GNN Test Prioritization). We briefly introduce the basic
principle of the ranking models of these approaches as follows.

71

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

1) XGGP leverages the XGBoost algorithm [8] as the ranking model. XGBoost is a
highly effective gradient boosting algorithm that combines decision trees to enhance
the accuracy of predictions. XGGP utilizes the XGBoost algorithm to predict the
misclassification score for a given test input based on its mutation features. This
score reflects the likelihood that the input will be misclassified by a GNN model.
2) LRGP leverages the Logistic Regression algorithm [14] as the ranking model.
Logistic regression leverages a logistic function to model the association between a
categorical dependent variable and one or more independent variables.
3) LGGP leverages the LightGBM algorithm [69] as the ranking model. LightGBM
is a gradient boosting framework that employs tree-based learning algorithms. The
fundamental principle of LightGBM is similar to XGBoost, which employs decision
trees based on learning algorithms. However, LightGBM introduces a novel opti-
mization in the framework, with a primary focus on enhancing the speed of model
training.
4) RFGP leverages the random forest algorithm [112] as the ranking model. Random
Forest is an ensemble learning algorithm that constructs multiple decision trees using
random subsets of the training data and input features. The predictions from
individual trees are combined to produce the final prediction using averaging or
voting.
5) DNGP leverages a DNN model [197] as the ranking model. The DNN model can
learn to rank test inputs based on their mutation features. After training, the DNN
model can generate a score that reflects their misclassification probability. This score
can then be used to rank test inputs in a test set.

Compared to the mutation features of PRIMA, the distinctive aspect of Graph-
Prior’s mutation features lies in their utilized mutation rules, which are specifically
designed for GNNs. These mutation rules have the potential to directly or indi-
rectly impact the message passing mechanism between nodes in graph data. Our
experiment results in Section 6.5 demonstrate the effectiveness of the feature-based
GraphPrior approaches. The observed effectiveness can be attributed, in part, to the
selection of mutation rules and ranking models. Specifically, our mutation rules have
been designed to generate informative mutation features by changing the massage
passing between nodes in the GNN prediction process. Furthermore, our ranking
models are able to utilize these mutation features for test prioritization effectively.
After sufficient training, ranking models can output a misclassification score that
indicates how likely a sample would be misclassified based on its mutation features.
A score closer to 1 indicates a higher probability of misclassification. By sorting
the misclassification scores of test inputs in descending order, the feature-based
GraphPrior approaches can effectively prioritize tests that are more likely to be
misclassified.

5.3.5 Usage of GraphPrior
By utilizing ranking models, GraphPrior predicts a misclassification score for

each test input within a given test set. These predicted scores are then utilized
for test prioritization, whereby test inputs with higher scores are prioritized higher.
Particularly, the ranking models are pre-trained before the execution of GraphPrior.
The training process is standardized across all the different ranking models and
follows a consistent set of procedures, which are presented in detail below.
❶ Splitting datasets Given a GNN model G with dataset T . First, we split

72

5.4. Study design

the dataset T into two partitions: the training set R and the test set, in a
7:3 ratio [111]. The test set remains untouched for the purpose of evaluating
GraphPrior.

❷ Constructing the training set for ranking models Based on the training
set R, we aim to build a training set R′ for training the ranking models. First,
we generate a group of mutated models for each input ri ∈ R. Then, we obtain
the mutation feature vector Vi of ri (i.e., a one-dimensional vector in which the
ith element denotes whether the ith mutated model is killed by this input). The
mutation feature vector of ri is used to build the training set R′ (i.e., the training
set of the ranking models). Second, we let the original GNN model G classify
each input ri ∈ R and compare it with the ground truth of ri. In this way, we
can identify whether ri is misclassified by the GNN model G. If ri is misclassified
by G, we label it as 1. Otherwise, we label it as 0. In this way, we have built the
ranking model training set R′.

❸ Training ranking models Based on R′, we train the ranking models. Upon the
completion of the training process, the ranking model is capable of receiving the
mutation feature vector of a test input as an input and producing a misclassification
score as an output. This score serves as an indicator of the probability of the test
input being incorrectly classified by the GNN model.
It is worth noting that the original labels of the training set R′ are binary (i.e.,
1 or 0), but the ranking models that are well trained can output values (i.e.,
the misclassification scores). To achieve this, we make some adaptations to
implement the adopted ranking algorithms (e.g., random forest and XGBoost).
First, although the ranking algorithms we adopted initially deal with classification
tasks, an intermediate value is calculated for the classifications. For example, if
the intermediate value exceeds 0.5 (default value which can be adjusted), input
will be classified into the first category; otherwise, the other category. Here, after
training, we let the ranking models directly output the intermediate value, as this
value can indicate the likelihood of a test input being misclassified by the GNN
model, where a higher value implies a greater likelihood of misclassification. We
call this intermediate value "misclassification scores" and leverage the scores of
test inputs to rank them.

5.4 Study design
5.4.1 Research Questions

Our experimental evaluation answers the research questions below.
• RQ1: How does the killing-based GraphPrior approach perform in

prioritizing test inputs for GNNs?
In terms of test prioritization for GNNs, existing prioritization approaches usually
do not take into account the interdependencies between nodes (tests) in a graph
(test set). To fill the gap, we propose GraphPrior, which contains six GNN-
oriented test prioritization approaches. Among them, KMGP is a killing-based
approach, which regards a test input that kills more mutants as more likely to
be misclassified. In this research question, we evaluate the effectiveness of the
killing-based KMGP by comparing it with existing approaches that have been
demonstrated as effective in detecting possibly-misclassified test inputs.

• RQ2: How do the feature-based GraphPrior approaches perform in

73

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

GNN test prioritization?
In addition to the killing-based KMGP, GraphPrior involves five feature-based
approaches. The core difference is that, the killing-based approach regards the
importance of each mutated model as equal, while the feature-based approaches
learn different importance for each mutated model for test prioritization. More
specifically, feature-based approaches extract features from mutation results and
adopt ranking models [14, 112, 69] to utilize the mutation features for test
prioritization. In this research question, we compare the effectiveness of killing-
based and feature-based approaches to investigate the effect of ranking models in
leveraging mutation results.

• RQ3: How does GraphPrior perform on test inputs generated from
graph adversarial attacks?
When faced with graph adversarial attacks, confidence-based test prioritization
approaches may be fooled, thus becoming more confident in incorrect predictions.
Therefore, we evaluate to what extent the effectiveness of GraphPrior is affected
by graph adversarial attacks. We compare GraphPrior and confidence-based
approaches [3, 47] on test inputs generated from graph adversarial attacks of
existing studies [173, 174, 175, 176] to demonstrate its effectiveness.

• RQ4: How does GraphPrior perform against different levels of graph
adversarial attacks?
In this research question, we investigate the effectiveness of GraphPrior against
different levels of graph adversarial attacks. To answer this research question, we
set different levels of attacks to generate test inputs and compare GraphPrior
with existing approaches to demonstrate its effectiveness.

• RQ5: Which mutation rules generate more top contributing GNN
mutants?
We investigate the contributions of each mutation rule in generating effective
mutants of GNNs. For each GNN model, we select the top contributing mutation
features to it through the XGBoost ranking algorithm [8], which is an optimized
ML algorithm for ranking tasks based on the implementation of gradient boosting.
We match each selected feature with the corresponding GNN mutant and identify
the mutation rule that generates it. In this way, we obtain which mutation rules
generate more top contributing mutants for test prioritization.

• RQ6: Can GraphPrior and the uncertainty-based metrics be used in
active learning scenarios to improve a GNN model by retraining?
In the face of a large number of unlabeled inputs and a limited time budget, it
is not feasible to manually label all the inputs and use them to retrain a GNN.
One established solution to reduce data labeling costs is active learning [198],
which involves selecting informative subsets of training samples to improve the
model performance. In this research question, we investigate the effectiveness of
GraphPrior and the uncertainty-based metrics in selecting informative retraining
inputs to improve the quality of a GNN model.

5.4.2 GNN models and Datasets
In our study, we totally adopt 604 subjects to evaluate the effectiveness of

GraphPrior and the compared approaches [3, 47]. Table 5.1 exhibits their basic
information. Among the 604 subjects considered in this study, 16 subjects were
utilized in the experiments of RQ1, 16 subjects in RQ2, 108 subjects in RQ3, 432

74

5.4. Study design

subjects in RQ4, 16 subjects in RQ5 and 16 subjects in RQ6. It is worth noting that,
among these subjects, a total of 64 subjects (which were utilized in RQ1, RQ5, and
RQ6) were associated with clean datasets, while the remaining 540 subjects (which
were utilized in RQ3 and RQ4) were associated with adversarial datasets.

Our study involves four GNN models: GCN (Graph Convolutional Networks) [163],
GAT (Graph Attention Networks) [185], GraphSAGE (Graph SAmple and aggre-
GatE) [191] and TAGCN (Topology Adaptive Graph Convolutional Network) [192],
tested by four datasets, namely the Cora [186], CiteSeer [186], PubMed [186] and
LastFM [187]. We present their descriptions as follows.
5.4.2.1 GNN Models

• GCN [163] GCN is a class of convolutional neural networks that can work directly
on the graph. It solves the problem of classifying nodes (such as documents)
in graphs (such as citation networks), of which only a small number of nodes
are labeled. The core idea of GCN is to use the edge information of a graph to
aggregate node information to generate new node representations. GCN has been
used in several existing studies [199, 200, 201].

• GAT [185] GAT introduces a self-attention mechanism in the propagation process.
Compared to GCN, which regards all neighbors of a node equally, the attention
mechanism assigns different attention scores to each neighbor, thereby identifying
more important neighbors.

• GraphSAGE [191] GraphSAGE is a generalized inductive framework that gener-
ates node embeddings by sampling and aggregating features of neighbor nodes.

• TAGCN [192] TAGCN introduces a systematic approach to design a set of
fixed-size learnable filters to perform convolutions on graphs. These filters are
topology-fit to the topology of the graph as they scan the graph for convolution.

5.4.2.2 Datasets

• Cora [186] The Cora dataset is a citation graph composed of 2,708 scientific
publications (nodes) and 5,429 links (edges) between them. Nodes represent ML
papers, and edges represent citations between pairs of papers. Each paper is
classified into one of seven classes, such as reinforcement learning and neural
networks.

• CiteSeer [186] The CiteSeer dataset consists of 3,327 scientific publications
(nodes) and 4,732 links (edges). Each paper belongs to one of six categories such
as AI and ML.

• PubMed [186] The PubMed dataset contains 19,717 diabetes-related scientific
publications (nodes) and 44,338 links (edges). Publications are classified into three
classes such as Cancer and AIDS (i.e., Acquired Immune Deficiency Syndrome).

• LastFM Asia Social Network [187] The dataset LastFM Asia Social Network
was collected from the social network of users on the Last.fm music platform in
Asia. Nodes are LastFM users, and edges are mutual follower relationships between
them. LastFM contains 7,624 nodes and 27,806 edges. The classification task of
the LastFM dataset is to predict the home country of a user (e.g., Philippines,
Malaysia, Singapore).
Notably, we evaluate GraphPrior on different types of test inputs (i.e., both

natural test inputs and adversarial test inputs. We adopted eight graph adversarial

75

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

Table 5.1: GNN models and datasets
ID Dataset #Nodes #Edges Model Type

1 CiteSeer 3327 4732 GCN Original, DICE, MMA, PGD, RAA, RAF, RAR
2 CiteSeer 3327 4732 GAT Original, DICE, MMA, PGD, RAA, RAF, RAR
3 CiteSeer 3327 4732 TAGCN Original, DICE, MMA, PGD, RAA, RAF, RAR
4 CiteSeer 3327 4732 GraphSAGE Original, DICE, MMA, PGD, RAA, RAF, RAR
5 Cora 2708 5429 GCN Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA
6 Cora 2708 5429 GAT Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA
7 Cora 2708 5429 TAGCN Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA
8 Cora 2708 5429 GraphSAGE Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA
9 LastFM 7624 27806 GCN Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA
10 LastFM 7624 27806 GAT Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA
11 LastFM 7624 27806 TAGCN Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA
12 LastFM 7624 27806 GraphSAGE Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA
13 PubMed 19717 44338 GCN Original, DICE, RAA, RAF, RAR, NEAR, NEAA
14 PubMed 19717 44338 GAT Original, DICE, RAA, RAF, RAR, NEAR, NEAA
15 PubMed 19717 44338 TAGCN Original, DICE, RAA, RAF, RAR, NEAR, NEAA
16 PubMed 19717 44338 GraphSAGE Original, DICE, RAA, RAF, RAR, NEAR, NEAA

attacks, presented in Section 5.4.4.

5.4.3 Compared Approaches
In our study, we considered 7 compared approaches in total, including one

baseline (i.e., random selection), four DNN test prioritization approaches and two
active learning approaches. We select these approaches due to the following reasons:
1) These approaches can be adapted for GNN test prioritization; 2) The selected
approaches have been demonstrated as effective for DNNs in existing studies [3] [47] [7];
3) The implementations of these approaches have been released by the authors.
• DeepGini DeepGini [3] prioritizes test inputs based on model confidence. Deep-

Gini leverages the Gini coefficient to measure the likelihood of a test input being
misclassified. DeepGini leverages Formula 5.1 to calculate the ranking scores.

ξ(x) = 1 −
N∑

i=1
(pi(x))2 (5.1)

where ξ(x) refers to the likelihood of the test input x being misclassified. pi(x)
refers to the probability that the test input x is predicted to be label i. N refers
to the number of labels.

• Margin Margin [172] regards a test input with less difference between the top
two most confidence predictions as more likely to be misclassified. Margin score
is calculated by Formula 5.2.

M(x) = pk(x) − pj(x) (5.2)

where M(x) refers to the margin score. pk(x) refers to the most confident prediction
probability. pj(x) refers to the second most confident prediction probability.

• Least Confidence Least Confidence [172] regards test inputs for which the model
has the least confidence as more likely to be misclassified. Least confidence is
calculated by Formula 5.3.

L(x) = max
i=1:n

pi(x) (5.3)

where L(x) refers to the confidence score. pi(x) refers to the probability that the
test input x is predicted to be label i via a model M .

• Vanilla Softmax Vanilla Softmax [7] is computed by subtracting the highest
activation probability in the output softmax layer from 1, resulting in a metric
that is positively correlated with the misclassification probability. Formula 5.4

76

5.4. Study design

presents the calculation of the Vanilla Softmax metric.

V(x) = 1 − Cmax
c=1

lc(x) (5.4)

where lc(x) belongs to a valid softmax array in which all values are between 0 and
1, and their sum is 1.

• Prediction-Confidence Score (PCS) PCS [7] calculates the difference between
the predicted class and the second most confident class in softmax likelihood.

• Entropy Entropy [7] calculates the entropy of the softmax likelihood.
• Random selection [133] In random selection, the execution order of the test

inputs is determined randomly.

5.4.4 Graph Adversarial Attacks
In RQ3 and RQ4, we evaluate the effectiveness of GraphPrior on test inputs

generated through diverse graph adversarial attacks, in which attackers aim to
generate graph adversarial perturbations by manipulating the graph structure or
node features to fool the GNN models. We introduce all the attacks we applied in
our experiments as follows.
• Disconnect Internally, Connect Externally (DICE) [173] The DICE attack

is a type of white-box attack whereby the adversary has access to all information
about the targeted GNN model, including its parameters, training data, labels,
and predictions. Specifically, the DICE attack randomly adds edges between
nodes with different labels or removes edges between nodes sharing the same label.
Through this, the attack can generate adversarial perturbations that can fool the
targeted GNN model.

• PGD attack [174] The PGD attack leverages the Projected Gradient Descent
(PGD) algorithm to search for optimal structural perturbations to attack GNNs.

• Min-max attack (MMA) [174] The min-max attack is a type of untargeted
white-box GNN attack. The attack problem is formulated as a min-max problem,
where the inner maximization is designed to update the model’s parameters (θ)
by maximizing the attack loss, and it can be solved using gradient ascent. On the
other hand, the outer minimization can be achieved by using Projected Gradient
Descent (PGD) [202].

• Node Embedding Attack-Add (NEAA) [175] In node embedding attack-add,
the attackers are capable of modifying the original graph structure by adding new
edges while adhering to a predefined budget constraint.

• Node Embedding Attack-Remove (NEAR) [175] In node embedding attack-
remove, the attackers modify the original graph structure by removing edges.

• Random Attack-Add (RAA) [176] The Random Attack-Add approach ran-
domly adds edges to the input graph to fool the targeted GNN model.

• Random Attack-Flip (RAF) [176] The Random Attack-Flip approach ran-
domly flips edges to the input graph to fool the targeted GNN model.

• Random Attack-Remove (RAR) [176] The Random Attack-Add approach
randomly removes edges to the input graph to fool the targeted GNN model.

5.4.5 Evaluation of mutation rules (RQ5)
In RQ5, we investigated the contribution of different mutation rules in generating

top contributing mutated models. First, for each GNN model, we utilize the cover
metric in XGBoost [8] to evaluate the importance of its mutation features and rank

77

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

them according to the descending order of the importance scores. The cover metric
can evaluate the importance of mutation features by quantifying the average coverage
of each instance by the leaf nodes in a decision tree. Specifically, it calculates the
number of times a particular feature is used to split the data across all trees in the
ensemble and then sums up the coverage values for each feature over all trees. This
coverage value is then normalized by the total number of instances to obtain the
average coverage of each instance by the leaf nodes. The importance of a feature is
then calculated based on its coverage value, and features with higher coverage values
are considered more important.

Upon obtaining the importance of each mutation feature, which corresponds to
a specific mutated model, we proceed to match and determine the importance of
the respective mutated models. Subsequently, we select the top N critical mutated
models and identify the specific mutated rules employed in their generation. This
enables a comparative analysis of the contributions of various mutation rules.

5.4.6 Implementation and Configuration
We implemented GraphPrior in Python based on the PyTorch 1.11.0 frame-

work [203]. We also integrate the available implementations of the compared
approaches [7, 3, 46, 172] into our experimental pipeline to adapt to the GNN
prioritization problem. Regarding our mutation rules, we set the number of mutated
models as 80~240 across different subjects. Balancing the trade-off between execution
time and the effectiveness of GraphPrior is a critical consideration in determining the
number of mutants. Building on relevant literature [2], we identified a suitable range
of mutants. Our preliminary investigations on multiple subjects demonstrate that
these settings effectively maintain the effectiveness of GraphPrior while controlling
the runtime within a reasonable range. In the case of subjects associated with longer
mutant generation times, we choose to generate a comparatively smaller number of
mutants compared to other subjects. Additionally, the range was achieved through
the full execution of all pre-defined mutation rules. It is worth noting that the total
number of mutation rules was predetermined and fixed. Thus, even with the addi-
tion of new mutants, the impact on the performancethe trade-off between excessive
computational time and the preservation of method effectiveness of GraphPrior is
minor, as the new mutants are created based on the existing mutation rules.

With regard to the specific mutation rules that change the integer/float training
parameters, we define a parameter range close to the original parameter values, in
order to achieve slight mutations. We conducted a preliminary study using multiple
subjects, demonstrating the effectiveness of such settings. Moreover, to obtain
parameter values from the specified range, we adopt uniform sampling [48] as the
sampling methodology. This technique ensures an equitable probability of selecting
each value within the parameter range and has been widely adopted across the ML
testing field [48, 204, 205].

More specifically, we set the hidden channel parameter in the range of [15-20),
epochs parameter as <= 50, heads parameter as <= 5, and negative slope parameter
as <= 0.2. For the mutation rules that change the Boolean type parameters, if the
parameter value of the original model is true, we set it to false. If the original value
is false, we set it to true. The parameter ranges for our mutation rules are carefully
selected to ensure the change to the original GNN model is slight.

With respect to the configuration of the ranking models utilized in GraphPrior, we

78

5.5. Results and analysis

made several parameter selections: for the random forest, XGBoost, and LightGBM
ranking algorithms, we set the n_estimators parameter to 100. For the DNN ranking
model, we set the learning_rate parameter to 0.01. Finally, for the logistic regression
ranking algorithm, we set the max_iter parameter to 100.

We conducted the following experiments on a high-performance computer cluster,
and each cluster node runs a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA
Tesla V100 16G SXM2 GPU. For the data process, we conducted corresponding
experiments on a MacBook Pro laptop with Mac OS Big Sur 11.6, Intel Core i9
CPU, and 64 GB RAM.

5.4.7 Measurements
Following the existing study [3], we leverage Average Percentage of Fault-Detection

(APFD) [92] to evaluate the prioritization effectiveness of GraphPrior and the
compared approaches. APFD is a standard metric for prioritization evaluation.
Typically, higher APFD values indicate faster misclassification detection rates. We
calculate the APFD values by Formula 5.5

APFD = 1 −
∑k

i=1 oi

kn
+ 1

2n
(5.5)

where n is the number of test inputs in the test set T . k is the number of test
inputs in T that will be misclassified by the GNN model G. oi is the index of the
ith misclassified tests in the prioritized test set. More specifically, oi is an integer
that represents the position of the ith misclassified tests in the test set that has been
prioritized. When ∑k

i=1 oi is small (i.e., the total index sum of the misclassified tests
within the prioritized list is small), indicating that that the misclassified tests are
prioritized higher, the APFD will be large according to Formula 5.5. Therefore, large
APFD indicates better prioritization effectiveness. Following the existing study [3],
we normalize the APFD values to [0,1]. We consider a prioritization approach better
when the APFD value is closer to 1. We present the comparison results in tables.

For more detailed analysis, we utilize PFD (Percentage of Fault Detected) [3] to
evaluate the fault detection rate of each approach on different ratios of prioritized
test inputs. High PFD values refer to high effectiveness in detecting misclassified
test inputs.

PFD = Fc

Ft

(5.6)

where Fc is the number of faults (i.e., misclassified test inputs) correctly detected.
Ft is the total number of faults. More specifically, we evaluate the fault detection
rate of GraphPrior against different ratios of prioritized tests. We use PFD-n to
represent the first n% prioritized test inputs.

5.5 Results and analysis
5.5.1 RQ1: Effectiveness of the killing-based GraphPrior ap-

proach (KMGP)
Objectives: We investigate the effectiveness of the killing-based GraphPrior ap-
proach, KMGP (cf. Section 5.3.3), comparing it with existing approaches that can
be used to identify possibly-misclassified test inputs.

79

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

Experimental design: We used 16 pairs of datasets and GNN models as subjects
to evaluate the effectiveness of GraphPrior. Table 5.1 exhibits their basic information.
We carefully selected 7 compared approaches (i.e., DeepGini, least confidence, margin,
Vanilla SM, PCS, entropy, and random selection), which can be adapted for GNN
test prioritization. Random selection is considered the baseline. We adopt two
metrics to measure the effectiveness of GraphPrior and the compared approaches:
Average Percentage of Fault-Detection (APFD) and Percentage of Fault Detected
(PFD), which are explained in Section 5.4.7.

Due to the randomness of the training process of a GNN model, we conduct a
statistical analysis by repeating all the experiments 10 times. More specifically, for
each subject (a dataset with a GNN model), 10 different GNN models are generated
through separate training processes.
Results: The GraphPrior approach KMGP outperforms all the compared
approaches (i.e., DeepGini, Least Confidence, Margin, Vanilla SM, PCS,
Entropy, and Random) in GNN test prioritization. Table 5.2 presents the
comparison results of the killing-based GraphPrior approach (KMGP) and a set of
compared approaches using the APFD metric. We highlight the approach with the
highest effectiveness for each case in grey. The results demonstrate that KMGP
outperforms the other approaches in the majority of cases, specifically in 87.5% (14
out of 16) subjects. Vanilla SM, on the other hand, performs the best in only 12.5%
of cases. Additionally, the average APFD value achieved by KMGP was 0.748, which
is higher than that of the compared techniques, with improvements of 4.76%~49.6%.
These results suggest that KMGP offers a promising solution for prioritizing GNN
test inputs.

Table 5.3 exhibits the comparison results among the test prioritization techniques
with respect to PFD. We highlight the approach with the highest effectiveness for
each case in grey. The findings indicate that, for 68.75% (11 out of 16) of the subjects,
KMGP performs best when prioritizing less than 50% of tests. Furthermore, for a
majority of the subjects, specifically 87.5% (14 out of 16), KMGP exhibits the best
performance when prioritizing less than 30% of tests. Furthermore, Table 5.4 exhibits
the overall comparison results in terms of PFD. We can see that when prioritizing
10%~30% test inputs, the average effectiveness of KMGP outperforms that of the
compared approaches in 100% cases. When prioritizing 10%~50% test inputs, the
average effectiveness of KMGP outperforms that of the compared approaches in 90%
cases. Figure 5.2 plots the ratio of detected misclassified tests against the prioritized
tests. We see that GraphPrior achieves a higher APFD value in comparison to
DeepGini, entropy, least confidence, margin, Vanilla SM, PCS, and random. These
results confirm the effectiveness of KMGP in GNN test input prioritization.

To demonstrate the stability of our findings, a statistical analysis is performed.
Specifically, all the experiments are repeated ten times for each subject, resulting in
10 distinct GNN model instances obtained through separate training processes for a
given original GNN model. Based on the statistical analysis of the resulting data,
the p-value was found to be lower than 10−05, indicating that the KMGP approach
can consistently outperform the compared approaches in terms of test prioritization.

Answer to RQ1: The GraphPrior approach KMGP outperforms all the compared
approaches (i.e., DeepGini, Least Confidence, Margin, Vanilla SM, PCS, Entropy
and Random) in GNN test prioritization.

80

5.5. Results and analysis

Table 5.2: Effectiveness comparison among KMGP and the compared approaches
in terms of APFD

ApproachesData Model KMGP DeepGini Least Confidence Margin Vanilla SM PCS Entropy Random
GAT 0.708 0.671 0.691 0.694 0.691 0.694 0.646 0.508
GCN 0.701 0.641 0.677 0.682 0.677 0.682 0.638 0.502
GraphSAGE 0.739 0.663 0.684 0.684 0.684 0.684 0.659 0.497CiteSeer

TAGCN 0.712 0.658 0.691 0.694 0.691 0.694 0.620 0.499
GAT 0.841 0.742 0.770 0.763 0.770 0.763 0.733 0.487
GCN 0.812 0.690 0.736 0.739 0.736 0.739 0.684 0.495
GraphSAGE 0.792 0.727 0.781 0.784 0.781 0.784 0.704 0.515Cora

TAGCN 0.782 0.701 0.739 0.738 0.739 0.738 0.690 0.498
GAT 0.801 0.633 0.695 0.713 0.695 0.713 0.534 0.498
GCN 0.761 0.713 0.758 0.746 0.758 0.746 0.603 0.497
GraphSAGE 0.702 0.734 0.761 0.754 0.761 0.754 0.626 0.502LastFM

TAGCN 0.673 0.719 0.741 0.730 0.741 0.730 0.657 0.498
GAT 0.735 0.642 0.670 0.661 0.670 0.661 0.645 0.502
GCN 0.748 0.645 0.680 0.670 0.680 0.670 0.647 0.501
GraphSAGE 0.747 0.631 0.685 0.675 0.685 0.675 0.634 0.498PubMed

TAGCN 0.720 0.613 0.663 0.672 0.663 0.672 0.615 0.497
Average 0.748 0.677 0.714 0.712 0.714 0.712 0.646 0.500

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

���

���

�
�
�

����

��������

�������

����������������

������

���������

���

������

a) CiteSeer, GraphSAGE
��� ��� ��� ��� ��� ��� ���

���

���

���

���
�
�
�

����

��������

�������

����������������

������

���������

���

������

b) LastFM, GAT]
Figure 5.2: Test prioritization effectiveness among KMGP and the compared
approaches for CiteSeer with GraphSAGE and LastFM with GAT. X-Axis: the
percentage of prioritized tests; Y-Axis: the percentage of detected miscalssified tests.

5.5.2 RQ2: Effectiveness of the feature-based GraphPrior ap-
proaches

Objectives: We investigate the effectiveness of feature-based approaches in Graph-
Prior, including XGGP, LRGP, RFGP, LGGP, and DNGP, compared with the
killing-based approach KMGP.
Experimental design: We evaluated the effectiveness of feature-based GraphPrior
approaches with the killing-based approach KMGP on 16 subjects (four graph
datasets × four GNN models). Due to the randomness of the training process of
a GNN model, we repeat all the experiments ten times and calculate the average
results. For each subject (a dataset with a GNN model), 10 different GNN models
are generated through separate training processes. For evaluation, we calculated the
APFD (Average Percentage of Fault-Detection) values of all the approaches on each
subject, which can reflect the misclassification detection rate. Moreover, we calculated
the PFD (Percentage of Fault Detected) values of all the approaches on different
ratios of prioritized tests to further investigate the effectiveness of feature-based
approaches.
Results: The experimental results of this research question are exhibited in Table 5.5,
Table 5.6 and Table 5.7. Table 5.5 presents the comparison results in terms of APFD,
while Table 5.6 and Table 5.7 present the comparison results in terms of PFD.

81

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

Table 5.3: Effectiveness comparison among KMGP and the compared approaches
in terms of PFD

Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70 Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

KMGP 0.264 0.464 0.629 0.750 0.812 0.841 0.875 KMGP 0.389 0.683 0.810 0.869 0.902 0.927 0.945
DeepGini 0.211 0.382 0.521 0.646 0.748 0.828 0.895 DeepGini 0.201 0.363 0.495 0.603 0.695 0.770 0.839
Entropy 0.203 0.373 0.506 0.621 0.716 0.788 0.844 Entropy 0.191 0.323 0.422 0.494 0.553 0.607 0.675
Least Confidence 0.231 0.409 0.550 0.680 0.777 0.861 0.913 Least Confidence 0.237 0.429 0.585 0.706 0.791 0.856 0.908
Margin 0.228 0.401 0.547 0.688 0.794 0.864 0.914 Margin 0.262 0.466 0.623 0.734 0.814 0.868 0.916
Vanilla SM 0.231 0.409 0.550 0.680 0.777 0.861 0.913 Vanilla SM 0.237 0.429 0.585 0.706 0.791 0.856 0.908
PCS 0.228 0.401 0.547 0.688 0.794 0.864 0.914 PCS 0.262 0.466 0.623 0.734 0.814 0.868 0.916

GAT

Random 0.099 0.192 0.296 0.391 0.493 0.591 0.689

GAT

Random 0.101 0.201 0.300 0.401 0.495 0.589 0.695
KMGP 0.278 0.492 0.652 0.723 0.771 0.811 0.865 KMGP 0.403 0.648 0.728 0.770 0.830 0.868 0.915
DeepGini 0.200 0.355 0.490 0.600 0.697 0.783 0.858 DeepGini 0.267 0.467 0.600 0.715 0.799 0.875 0.928
Entropy 0.201 0.354 0.487 0.595 0.692 0.779 0.856 Entropy 0.254 0.411 0.501 0.570 0.627 0.685 0.755
Least Confidence 0.229 0.406 0.544 0.661 0.748 0.827 0.889 Least Confidence 0.298 0.530 0.691 0.799 0.880 0.927 0.956
Margin 0.214 0.399 0.556 0.674 0.776 0.844 0.895 Margin 0.278 0.499 0.661 0.783 0.865 0.920 0.951
Vanilla SM 0.229 0.406 0.544 0.661 0.748 0.827 0.889 Vanilla SM 0.298 0.530 0.691 0.799 0.880 0.927 0.956
PCS 0.214 0.399 0.556 0.674 0.776 0.844 0.895 PCS 0.278 0.499 0.661 0.783 0.865 0.920 0.951

GCN

Random 0.098 0.197 0.292 0.388 0.488 0.587 0.690

GCN

Random 0.098 0.199 0.302 0.397 0.503 0.600 0.704
KMGP 0.306 0.525 0.679 0.774 0.835 0.879 0.910 KMGP 0.302 0.482 0.580 0.668 0.800 0.842 0.902
DeepGini 0.208 0.374 0.513 0.626 0.738 0.823 0.885 DeepGini 0.285 0.501 0.655 0.765 0.836 0.893 0.929
Entropy 0.207 0.371 0.510 0.622 0.727 0.816 0.877 Entropy 0.283 0.443 0.520 0.587 0.649 0.708 0.775
Least Confidence 0.223 0.405 0.545 0.670 0.769 0.850 0.904 Least Confidence 0.294 0.527 0.709 0.825 0.892 0.922 0.946
Margin 0.214 0.398 0.549 0.672 0.769 0.851 0.908 Margin 0.276 0.525 0.700 0.819 0.883 0.913 0.944
Vanilla SM 0.223 0.405 0.545 0.670 0.769 0.850 0.904 Vanilla SM 0.294 0.527 0.709 0.825 0.892 0.922 0.946
PCS 0.214 0.398 0.549 0.672 0.769 0.851 0.908 PCS 0.276 0.525 0.700 0.819 0.883 0.913 0.944

GraphSAGE

Random 0.101 0.206 0.311 0.417 0.515 0.609 0.693

GraphSAGE

Random 0.095 0.194 0.298 0.398 0.498 0.596 0.697
KMGP 0.295 0.490 0.617 0.723 0.795 0.845 0.888 KMGP 0.250 0.431 0.544 0.644 0.706 0.819 0.892
DeepGini 0.216 0.375 0.512 0.622 0.719 0.808 0.877 DeepGini 0.260 0.461 0.615 0.731 0.821 0.885 0.934
Entropy 0.214 0.366 0.492 0.592 0.693 0.749 0.801 Entropy 0.258 0.451 0.577 0.653 0.720 0.769 0.816
Least Confidence 0.246 0.427 0.570 0.678 0.772 0.845 0.905 Least Confidence 0.260 0.475 0.642 0.769 0.865 0.928 0.966
Margin 0.234 0.430 0.578 0.688 0.776 0.850 0.907 Margin 0.238 0.450 0.616 0.755 0.856 0.922 0.962
Vanilla SM 0.246 0.427 0.570 0.678 0.772 0.845 0.905 Vanilla SM 0.260 0.475 0.642 0.769 0.865 0.928 0.966
PCS 0.234 0.430 0.578 0.688 0.776 0.850 0.907 PCS 0.238 0.450 0.616 0.755 0.856 0.922 0.962

CiteSeer

TAGCN

Random 0.101 0.196 0.297 0.383 0.482 0.586 0.684

LastFM

TAGCN

Random 0.100 0.203 0.299 0.401 0.497 0.596 0.697
KMGP 0.454 0.759 0.884 0.919 0.939 0.954 0.975 KMGP 0.336 0.588 0.697 0.754 0.813 0.859 0.893
DeepGini 0.295 0.509 0.669 0.781 0.852 0.892 0.928 DeepGini 0.205 0.359 0.495 0.607 0.702 0.782 0.856
Entropy 0.293 0.503 0.658 0.766 0.842 0.886 0.918 Entropy 0.205 0.360 0.496 0.609 0.707 0.788 0.864
Least Confidence 0.296 0.539 0.724 0.830 0.899 0.932 0.962 Least Confidence 0.213 0.384 0.532 0.657 0.758 0.841 0.895
Margin 0.282 0.525 0.708 0.815 0.879 0.934 0.970 Margin 0.215 0.388 0.532 0.656 0.750 0.817 0.871
Vanilla SM 0.296 0.539 0.724 0.830 0.899 0.932 0.962 Vanilla SM 0.213 0.384 0.532 0.657 0.758 0.841 0.895
PCS 0.282 0.525 0.708 0.815 0.879 0.934 0.970 PCS 0.215 0.388 0.532 0.656 0.750 0.817 0.871

GAT

Random 0.099 0.192 0.294 0.392 0.478 0.578 0.679

GAT

Random 0.101 0.201 0.298 0.396 0.497 0.595 0.696
KMGP 0.384 0.704 0.854 0.884 0.909 0.933 0.952 KMGP 0.347 0.607 0.743 0.788 0.826 0.860 0.894
DeepGini 0.249 0.418 0.569 0.682 0.776 0.853 0.908 DeepGini 0.215 0.395 0.534 0.624 0.698 0.771 0.838
Entropy 0.245 0.411 0.559 0.676 0.763 0.840 0.897 Entropy 0.216 0.395 0.535 0.626 0.701 0.774 0.842
Least Confidence 0.265 0.480 0.643 0.770 0.848 0.906 0.954 Least Confidence 0.223 0.407 0.560 0.686 0.782 0.844 0.890
Margin 0.254 0.469 0.653 0.781 0.860 0.912 0.956 Margin 0.211 0.397 0.550 0.679 0.768 0.832 0.876
Vanilla SM 0.265 0.480 0.643 0.770 0.848 0.906 0.954 Vanilla SM 0.223 0.407 0.560 0.686 0.782 0.844 0.890
PCS 0.254 0.469 0.653 0.781 0.860 0.912 0.956 PCS 0.211 0.397 0.550 0.679 0.768 0.832 0.876

GCN

Random 0.097 0.197 0.291 0.398 0.505 0.596 0.695

GCN

Random 0.098 0.202 0.302 0.403 0.503 0.602 0.704
KMGP 0.489 0.705 0.777 0.820 0.848 0.886 0.919 KMGP 0.396 0.635 0.713 0.757 0.808 0.850 0.889
DeepGini 0.323 0.498 0.623 0.736 0.829 0.878 0.922 DeepGini 0.214 0.364 0.488 0.589 0.676 0.756 0.829
Entropy 0.318 0.482 0.604 0.710 0.792 0.846 0.885 Entropy 0.215 0.365 0.490 0.591 0.680 0.761 0.834
Least Confidence 0.356 0.584 0.723 0.833 0.903 0.940 0.962 Least Confidence 0.229 0.407 0.561 0.682 0.774 0.846 0.901
Margin 0.363 0.604 0.735 0.830 0.897 0.939 0.964 Margin 0.229 0.412 0.555 0.668 0.756 0.832 0.884
Vanilla SM 0.356 0.584 0.723 0.833 0.903 0.940 0.962 Vanilla SM 0.229 0.407 0.561 0.682 0.774 0.846 0.901
PCS 0.363 0.604 0.735 0.830 0.897 0.939 0.964 PCS 0.229 0.412 0.555 0.668 0.756 0.832 0.884

GraphSAGE

Random 0.107 0.205 0.306 0.403 0.500 0.596 0.691

GraphSAGE

Random 0.096 0.200 0.303 0.400 0.505 0.606 0.704
KMGP 0.372 0.668 0.788 0.841 0.863 0.888 0.914 KMGP 0.379 0.545 0.610 0.722 0.791 0.844 0.885
DeepGini 0.249 0.450 0.586 0.696 0.783 0.857 0.914 DeepGini 0.210 0.352 0.468 0.553 0.644 0.732 0.811
Entropy 0.246 0.442 0.578 0.689 0.771 0.838 0.895 Entropy 0.211 0.354 0.470 0.557 0.650 0.736 0.814
Least Confidence 0.273 0.481 0.638 0.762 0.850 0.913 0.954 Least Confidence 0.223 0.397 0.541 0.658 0.744 0.815 0.867
Margin 0.255 0.466 0.638 0.764 0.861 0.922 0.964 Margin 0.232 0.414 0.566 0.675 0.761 0.822 0.868
Vanilla SM 0.273 0.481 0.638 0.762 0.850 0.913 0.954 Vanilla SM 0.223 0.397 0.541 0.658 0.744 0.815 0.867
PCS 0.255 0.466 0.638 0.764 0.861 0.922 0.964 PCS 0.232 0.414 0.566 0.675 0.761 0.822 0.868

Cora

TAGCN

Random 0.102 0.204 0.309 0.403 0.507 0.592 0.699

PubMed

TAGCN

Random 0.099 0.196 0.297 0.398 0.499 0.601 0.700

Table 5.4: Average comparison results among KMGP and the compared approaches
in terms of PFD

#Best case in PFD Average PFDData Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70 PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70
KMGP 4 4 4 4 3 1 1 0.285 0.492 0.644 0.742 0.803 0.844 0.884
DeepGini 0 0 0 0 0 0 0 0.208 0.371 0.509 0.623 0.725 0.810 0.878
Entropy 0 0 0 0 0 0 0 0.206 0.366 0.498 0.607 0.707 0.783 0.844
Least Confidence 0 0 0 0 0 0 0 0.232 0.411 0.552 0.672 0.766 0.845 0.902
Margin 0 0 0 0 0 0 0 0.222 0.407 0.557 0.680 0.778 0.852 0.906
Vanilla SM 0 0 0 0 0 0 0 0.232 0.411 0.552 0.672 0.766 0.845 0.902
PCS 0 0 0 0 1 3 3 0.222 0.407 0.557 0.680 0.778 0.852 0.906

CiteSeer

Random 0 0 0 0 0 0 0 0.099 0.197 0.299 0.394 0.494 0.593 0.689
KMGP 4 4 4 3 3 2 1 0.424 0.709 0.825 0.866 0.889 0.915 0.940
DeepGini 0 0 0 0 0 0 0 0.279 0.468 0.611 0.723 0.810 0.870 0.918
Entropy 0 0 0 0 0 0 0 0.275 0.459 0.599 0.710 0.792 0.852 0.898
Least Confidence 0 0 0 0 0 0 0 0.297 0.521 0.681 0.798 0.875 0.922 0.958
Margin 0 0 0 0 0 0 0 0.288 0.516 0.683 0.797 0.874 0.926 0.963
Vanilla SM 0 0 0 1 1 1 0 0.297 0.521 0.681 0.798 0.875 0.922 0.958
PCS 0 0 0 0 1 3 0.288 0.516 0.683 0.797 0.874 0.926 0.963

Cora

Random 0 0 0 0 0 0 0 0.101 0.199 0.300 0.399 0.497 0.590 0.691
KMGP 3 2 2 1 1 1 1 0.336 0.561 0.665 0.737 0.809 0.864 0.913
DeepGini 0 0 0 0 0 0 0 0.253 0.448 0.591 0.703 0.787 0.855 0.907
Entropy 0 0 0 0 0 0 0 0.246 0.407 0.505 0.576 0.637 0.692 0.755
Least Confidence 0 0 0 0 0 0 0 0.272 0.490 0.656 0.774 0.857 0.908 0.944
Margin 0 0 0 0 0 0 0 0.263 0.485 0.650 0.772 0.854 0.905 0.943
Vanilla SM 1 2 2 3 3 3 3 0.272 0.490 0.656 0.774 0.857 0.908 0.944
PCS 0 0 0 0 0 0 0 0.263 0.485 0.65 0.772 0.854 0.905 0.943

LastFM

Random 0 0 0 0 0 0 0 0.098 0.199 0.299 0.399 0.498 0.595 0.698
KMGP 4 4 4 4 4 4 2 0.364 0.593 0.690 0.755 0.809 0.853 0.890
DeepGini 0 0 0 0 0 0 0 0.211 0.367 0.496 0.593 0.679 0.760 0.833
Entropy 0 0 0 0 0 0 0 0.211 0.368 0.497 0.595 0.684 0.764 0.838
Least Confidence 0 0 0 0 0 0 0 0.222 0.398 0.548 0.670 0.764 0.836 0.888
Margin 0 0 0 0 0 0 2 0.221 0.402 0.550 0.669 0.758 0.825 0.874
Vanilla SM 0 0 0 0 0 0 0 0.222 0.398 0.548 0.670 0.764 0.836 0.888
PCS 0 0 0 0 0 0 0 0.221 0.402 0.550 0.669 0.758 0.825 0.874

PubMed

Random 0 0 0 0 0 0 0 0.098 0.199 0.300 0.399 0.501 0.601 0.701

82

5.5. Results and analysis

Among all the GraphPrior approaches, RFGP demonstrates the high-
est level of effectiveness in most cases. Table 5.5 exhibits the comparison
results among KMGP (i.e., the killing-based GraphPrior approach) and the feature-
based GraphPrior approaches in terms of APFD. The results demonstrate RFGP
outperforms other GraphPrior approaches on average. Moreover, the average APFD
values of RFGP exceed that of KMGP by around 0.02. Additionally, across different
subjects, RFGP outperforms other GraphPrior approaches in the majority of cases.
To provide a more detailed analysis, Table 5.6 and Table 5.7 exhibit the comparison
results of all GraphPrior approaches in terms of PFD. The findings also confirm that
RFGP is the most effective GraphPrior approach. Furthermore, Table 5.7 indicates
that, on average, RFGP is consistently more effective than other GraphPrior ap-
proaches across different test prioritization ratios. Figure 5.3 presents some examples
aimed at providing a more visually intuitive understanding of the performance of
the various GraphPrior approaches. Collectively, these results suggest that RFGP is
the most effective GraphPrior approach for the evaluated datasets.

Additionally, although the killing-based GraphPrior approach, KMGP, shows
good effectiveness in some specific datasets, its average effectiveness is lower than
several feature-based GraphPrior approaches, such as RFGP, LGGP, and XGGP.
This result suggests that KMGP is less stable compared to some feature-based
approaches. For example, in Figure 5.3b), we can see that KMGP (represented by
the red line) is less effective than other GraphPrior approaches. In fact, the main
difference between KMGP and feature-based GraphPrior approaches lies in their
strategy for utilizing mutation results. Specifically, KMGP treats all mutated models
as having equal importance, whereas feature-based GraphPrior approaches, such
as RFGP, employ ranking models to assign higher weights to the more important
mutated models, thereby better utilizing mutation results for test prioritization. The
superior performance of RFGP indicates that the random forest algorithm it utilizes
can effectively identify important mutated models and assign them high weights.

The efficiency of GraphPrior (all the six approaches) is acceptable.
Table 5.8 illustrates the efficiency of GraphPrior in comparison with other approaches.
The time cost of GraphPrior can be decomposed into three phases, namely mutant
generation, training, and execution. Mutant generation involves the production
of mutated models based on retraining the original GNN model. The training
time represents the average duration needed for training a ranking model. Finally,
execution time denotes the average duration expended on test prioritization. By
decomposing the time cost into these distinct phases, we provide a more detailed
understanding of the efficiency of GraphPrior in contrast to other approaches. As
evident from Table 5.8, the average execution time of GraphPrior for test prioritization
is 40 seconds, with the most time-consuming phase being mutant generation, which
takes around 35 minutes. In contrast, the average execution time of the compared
approaches is less than one second. Although GraphPrior is not as efficient as the
compared approaches, it provides a viable alternative to costly and time-consuming
manual labeling, and its total time cost remains acceptable in real-world scenarios.

Answer to RQ2: Among all the GraphPrior approaches, RFGP demonstrates
the highest level of effectiveness in most cases. The efficiency of GraphPrior (all
the six approaches) is acceptable.

83

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

Table 5.5: Effectiveness comparison among KMGP and the feature-based Graph-
Prior approaches in terms of APFD

ApproachesData Model DGGP LGGP XGGP LRGP RFGP KMGP

GAT 0.633 0.678 0.669 0.651 0.675 0.708
GCN 0.682 0.695 0.690 0.678 0.694 0.701
GraphSAGE 0.656 0.694 0.699 0.682 0.710 0.739CiteSeer

TAGCN 0.652 0.681 0.694 0.660 0.696 0.712
GAT 0.749 0.785 0.795 0.767 0.811 0.841
GCN 0.778 0.791 0.791 0.784 0.806 0.812
GraphSAGE 0.764 0.791 0.793 0.784 0.794 0.792Cora

TAGCN 0.777 0.785 0.785 0.778 0.800 0.782
GAT 0.799 0.814 0.812 0.802 0.826 0.801
GCN 0.796 0.811 0.809 0.802 0.816 0.761
GraphSAGE 0.771 0.785 0.780 0.778 0.789 0.702LastFM

TAGCN 0.763 0.781 0.776 0.770 0.779 0.673
GAT 0.740 0.774 0.768 0.763 0.773 0.735
GCN 0.743 0.749 0.745 0.746 0.750 0.748
GraphSAGE 0.743 0.776 0.767 0.768 0.774 0.747PubMed

TAGCN 0.701 0.780 0.773 0.765 0.768 0.720
Average 0.734 0.761 0.759 0.749 0.766 0.748

Table 5.6: Effectiveness comparison among KMGP and the feature-based Graph-
Prior approaches in terms of PFD

Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70 Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

KMGP 0.264 0.464 0.629 0.750 0.812 0.841 0.875 KMGP 0.389 0.683 0.810 0.869 0.902 0.927 0.945
DNGP 0.252 0.460 0.596 0.647 0.693 0.722 0.753 DNGP 0.382 0.728 0.848 0.863 0.883 0.905 0.926
LGGP 0.251 0.465 0.621 0.715 0.759 0.791 0.833 LGGP 0.397 0.740 0.861 0.889 0.904 0.924 0.942
LRGP 0.244 0.467 0.611 0.683 0.721 0.750 0.788 LRGP 0.389 0.729 0.848 0.876 0.892 0.910 0.929
RFGP 0.257 0.470 0.619 0.697 0.743 0.781 0.827 RFGP 0.404 0.746 0.874 0.906 0.927 0.944 0.960

GAT

XGGP 0.256 0.464 0.618 0.702 0.740 0.771 0.817

GAT

XGGP 0.393 0.737 0.856 0.886 0.901 0.921 0.942
KMGP 0.278 0.492 0.652 0.723 0.771 0.811 0.865 KMGP 0.403 0.648 0.728 0.770 0.830 0.868 0.915
DNGP 0.248 0.479 0.643 0.699 0.748 0.794 0.843 DNGP 0.412 0.717 0.814 0.849 0.877 0.906 0.93
LGGP 0.273 0.483 0.651 0.717 0.764 0.803 0.856 LGGP 0.428 0.730 0.830 0.873 0.898 0.921 0.945
LRGP 0.251 0.484 0.643 0.698 0.745 0.787 0.832 LRGP 0.424 0.717 0.817 0.859 0.886 0.912 0.937
RFGP 0.272 0.486 0.653 0.716 0.762 0.807 0.852 RFGP 0.431 0.735 0.842 0.881 0.906 0.927 0.949

GCN

XGGP 0.265 0.481 0.650 0.711 0.760 0.804 0.848

GCN

XGGP 0.424 0.724 0.826 0.869 0.895 0.918 0.942
KMGP 0.306 0.525 0.679 0.774 0.835 0.879 0.910 KMGP 0.302 0.482 0.580 0.668 0.800 0.842 0.902
DNGP 0.271 0.511 0.635 0.670 0.695 0.729 0.771 DNGP 0.335 0.622 0.766 0.837 0.871 0.899 0.924
LGGP 0.287 0.515 0.680 0.733 0.767 0.797 0.831 LGGP 0.344 0.634 0.784 0.858 0.890 0.918 0.946
LRGP 0.273 0.512 0.671 0.708 0.737 0.767 0.806 LRGP 0.342 0.626 0.773 0.848 0.881 0.907 0.936
RFGP 0.287 0.515 0.684 0.730 0.775 0.816 0.865 RFGP 0.348 0.636 0.787 0.865 0.898 0.925 0.947

GraphSAGE

XGGP 0.283 0.516 0.661 0.703 0.753 0.800 0.851

GraphSAGE

XGGP 0.343 0.630 0.774 0.848 0.881 0.910 0.941
KMGP 0.295 0.490 0.617 0.723 0.795 0.845 0.888 KMGP 0.250 0.431 0.544 0.644 0.706 0.819 0.892
DNGP 0.285 0.504 0.578 0.628 0.682 0.740 0.784 DNGP 0.294 0.552 0.742 0.840 0.884 0.915 0.936
LGGP 0.298 0.513 0.651 0.700 0.737 0.773 0.811 LGGP 0.299 0.562 0.758 0.865 0.914 0.944 0.964
LRGP 0.292 0.507 0.587 0.640 0.692 0.749 0.799 LRGP 0.295 0.555 0.747 0.846 0.896 0.927 0.950
RFGP 0.294 0.511 0.662 0.694 0.747 0.793 0.845 RFGP 0.300 0.561 0.756 0.867 0.915 0.942 0.961

CiteSeer

TAGCN

XGGP 0.297 0.510 0.636 0.695 0.748 0.801 0.849

LastFM

TAGCN

XGGP 0.297 0.558 0.751 0.860 0.911 0.936 0.960
KMGP 0.454 0.759 0.884 0.919 0.939 0.954 0.975 KMGP 0.336 0.588 0.697 0.754 0.813 0.859 0.893
DNGP 0.383 0.722 0.791 0.800 0.814 0.827 0.848 DNGP 0.334 0.631 0.730 0.767 0.803 0.843 0.883
LGGP 0.427 0.724 0.823 0.836 0.848 0.867 0.894 LGGP 0.363 0.643 0.763 0.816 0.853 0.893 0.932
LRGP 0.361 0.725 0.826 0.834 0.845 0.858 0.871 LRGP 0.354 0.632 0.746 0.803 0.841 0.881 0.919
RFGP 0.428 0.730 0.869 0.882 0.894 0.909 0.928 RFGP 0.362 0.639 0.763 0.815 0.853 0.894 0.929

GAT

XGGP 0.375 0.729 0.849 0.870 0.885 0.902 0.916

GAT

XGGP 0.360 0.640 0.756 0.806 0.844 0.886 0.921
KMGP 0.384 0.704 0.854 0.884 0.909 0.933 0.952 KMGP 0.347 0.607 0.743 0.788 0.826 0.860 0.894
DNGP 0.359 0.691 0.814 0.844 0.870 0.893 0.914 DNGP 0.347 0.629 0.739 0.779 0.816 0.851 0.885
LGGP 0.357 0.678 0.831 0.862 0.889 0.913 0.932 LGGP 0.355 0.634 0.746 0.785 0.823 0.857 0.891
LRGP 0.359 0.687 0.823 0.853 0.880 0.902 0.920 LRGP 0.353 0.629 0.741 0.782 0.818 0.854 0.888
RFGP 0.379 0.691 0.848 0.876 0.900 0.928 0.947 RFGP 0.354 0.629 0.745 0.787 0.824 0.858 0.892

GCN

XGGP 0.365 0.682 0.830 0.861 0.885 0.911 0.930

GCN

XGGP 0.348 0.629 0.740 0.780 0.818 0.853 0.886
KMGP 0.489 0.705 0.777 0.820 0.848 0.886 0.919 KMGP 0.396 0.635 0.713 0.757 0.808 0.850 0.889
DNGP 0.480 0.705 0.736 0.776 0.805 0.845 0.879 DNGP 0.396 0.670 0.717 0.753 0.791 0.833 0.872
LGGP 0.475 0.721 0.772 0.818 0.857 0.895 0.924 LGGP 0.409 0.684 0.758 0.803 0.843 0.882 0.917
LRGP 0.474 0.728 0.776 0.802 0.832 0.863 0.906 LRGP 0.406 0.677 0.744 0.791 0.833 0.874 0.909
RFGP 0.487 0.736 0.771 0.803 0.848 0.896 0.923 RFGP 0.408 0.684 0.758 0.802 0.843 0.881 0.914

GraphSAGE

XGGP 0.479 0.718 0.760 0.803 0.854 0.894 0.939

GraphSAGE

XGGP 0.404 0.678 0.748 0.793 0.832 0.871 0.907
KMGP 0.372 0.668 0.788 0.841 0.863 0.888 0.914 KMGP 0.379 0.545 0.610 0.722 0.791 0.844 0.885
DNGP 0.347 0.671 0.797 0.844 0.870 0.891 0.912 DNGP 0.402 0.593 0.644 0.692 0.734 0.777 0.828
LGGP 0.357 0.668 0.804 0.863 0.889 0.914 0.930 LGGP 0.415 0.631 0.731 0.804 0.865 0.910 0.946
LRGP 0.347 0.669 0.799 0.848 0.871 0.891 0.914 LRGP 0.409 0.618 0.707 0.784 0.840 0.889 0.927
RFGP 0.376 0.678 0.820 0.872 0.895 0.924 0.943 RFGP 0.409 0.621 0.722 0.795 0.847 0.889 0.923

Cora

TAGCN

XGGP 0.361 0.670 0.796 0.852 0.880 0.904 0.926

PubMed

TAGCN

XGGP 0.410 0.627 0.722 0.796 0.852 0.899 0.934

84

5.5. Results and analysis

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

�
�
�

����

����

����

����

����

����

a) Cora, TAGCN
��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

�
�
�

����

����

����

����

����

����

b) LastFM, GraphSAGE
Figure 5.3: Test prioritization effectiveness of the six GraphPrior approaches
for Cora with TAGCN and LastFM with GraphSAGE. X-Axis: the percentage of
prioritized tests; Y-Axis: the percentage of detected miscalssified tests
Table 5.7: Average effectiveness comparison among KMGP and the feature-based
GraphPrior approaches in terms of PFD

Average PFDApproaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70
KMGP 0.353 0.589 0.707 0.775 0.828 0.869 0.907
DNGP 0.346 0.618 0.724 0.768 0.802 0.836 0.868
LGGP 0.358 0.627 0.754 0.809 0.844 0.875 0.906
LRGP 0.348 0.623 0.741 0.791 0.826 0.858 0.890
RFGP 0.362 0.629 0.761 0.812 0.849 0.882 0.913
XGGP 0.354 0.624 0.748 0.802 0.840 0.874 0.907

5.5.3 RQ3: Effectiveness of GraphPrior on adversarial test inputs
Objectives: We further investigate the effectiveness of GraphPrior on adversarial
test data. Here, we adopt eight graph adversarial attacks (cf. Section 5.4.4) from the
existing studies [173, 174, 175, 176]. The results can answer whether GraphPrior can
perform well on adversarial test sets for GNNs, compared with existing approaches
that can be used to identify possibly-misclassified test inputs.
Experimental design: We evaluate GraphPrior on adversarial datasets generated
by 8 graph attack techniques [173] [174] [175] [176]. In this research question, we set
the attack level as 0.3, which means that 30% of the test inputs in the test set are
adversarial tests. It is important to note that a high attack level, such as 90%, would
result in a significant ratio of adversarial test inputs. Under such circumstances, a
larger number of bug cases could be selected by any of the prioritization methods,
making it difficult to demonstrate the effectiveness of GraphPrior. Thus, in order
to ensure an effective evaluation of GraphPrior and the compared approaches, we
selected a reasonable attack level (i.e., 0.3), which can limit the proportion of
adversarial test inputs. Totally, in this research question, we evaluate GraphPrior on
108 subjects (4 GNN models, 4 datasets and 8 graph adversarial attacks). We then
ran all six GraphPrior approaches and the compared approaches on the subjects, and
calculated the APFD values of each approach with each graph adversarial attack.
Moreover, we calculated the PFD values of each approach in terms of different ratios
of prioritized values.

Table 5.8: Time comparison between GraphPrior and compared approaches
Time cost parts Approaches

GraphPrior DeepGini Least Confidence Margin Vanilla SM PCS Entropy Rndom
Mutant Generation 35 min - - - - - - -

Training 3 min - - - - - - -
Execution 40 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s

85

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks
Table 5.9: Effectiveness comparison among GraphPrior and the compared ap-
proaches in terms of APFD

ApproachesAttack DNGP KMGP LGGP XGGP LRGP RFGP DeepGini Least Confidence Margin Random Vanilla SM PCS Entropy
DICE 0.672 0.710 0.707 0.706 0.695 0.713 0.667 0.698 0.693 0.500 0.698 0.693 0.642
MMA 0.691 0.725 0.721 0.724 0.705 0.731 0.684 0.717 0.718 0.499 0.717 0.718 0.672
NEAA 0.698 0.723 0.733 0.732 0.721 0.738 0.676 0.711 0.703 0.499 0.711 0.703 0.646
NEAR 0.737 0.735 0.767 0.764 0.757 0.774 0.678 0.719 0.717 0.499 0.719 0.717 0.644
PGD 0.718 0.730 0.743 0.743 0.729 0.753 0.693 0.728 0.727 0.498 0.728 0.727 0.656
RAA 0.659 0.701 0.697 0.696 0.684 0.703 0.671 0.702 0.695 0.499 0.702 0.695 0.648
RAF 0.657 0.702 0.696 0.696 0.683 0.703 0.670 0.701 0.694 0.500 0.701 0.694 0.646
RAR 0.703 0.724 0.735 0.734 0.723 0.742 0.673 0.708 0.707 0.498 0.708 0.707 0.645
Average 0.692 0.718 0.725 0.724 0.712 0.732 0.677 0.711 0.707 0.499 0.711 0.707 0.650

Results: GraphPrior approaches outperform the compared approaches
(i.e., DeepGini, Least Confidence, Margin, Vanilla SM, PCS, Entropy and
Random) in the context of graph adversarial attacks. Table 5.9 shows the
test prioritization effectiveness (measured by APFD) of GraphPrior and the compared
approaches across a variety of adversarial attacks. The experimental results indicate
that the GraphPrior approaches exhibit superior performance, with the average
APFD values ranging from 0.692 to 0.732, while the compared approaches range from
0.499 to 0.711. Notably, five GraphPrior approaches, namely RFGP, XGGP, LRGP,
LGGP, and KMGP, outperform all the compared approaches on average across all
the adversarial attacks. Table 5.10 presents the comparison results of GraphPrior
and the compared approaches in terms of PFD, confirming the superior performance
of GraphPrior from both the perspective of average effectiveness and the number of
best cases. Furthermore, Table 5.11 presents the overall comparison results in terms
of PFD, which further support the above conclusions by demonstrating that the
largest average effectiveness of each case is achieved by the GraphPrior approaches,
along with the largest number of best cases.

Among all the GraphPrior approaches proposed, the effectiveness
of RFGP stands out as the most notable. From Table 5.9, in which the
effectiveness is measured by the APFD values, we see that RFGP performs the best
across different adversarial attacks, with the average improvement of 2.95%~46.69%
compared with uncertainty-based test prioritization approaches. Table 5.10 presents
the test prioritization effectiveness in terms of PFD. The column #Best case in
PFD denotes the number of best cases a test prioritization approach achieved across
all cases (i.e., all subjects of a graph adversarial attack). The results demonstrate
that, against a majority of adversarial attacks, RFGP consistently outperforms all
other GraphPrior approaches in terms of average effectiveness. Moreover, Table 5.11
presents the overall comparison results in terms of PFD, further indicating that
RFGP outperforms all other approaches in terms of average effectiveness. Notably,
when prioritizing 20% to 40% of the test inputs, RFGP consistently exhibits the
highest number of best cases across a variety of subjects.

Answer to RQ3: GraphPrior approaches outperform the compared approaches
(i.e., DeepGini, Least Confidence, Margin, Vanilla SM, PCS, Entropy and Random)
in the context of graph adversarial attacks. Among all the GraphPrior approaches
proposed, the effectiveness of RFGP stands out as the most notable.

5.5.4 RQ4: Effectiveness of GraphPrior against adversarial at-
tacks at varying attack levels

Objectives: We investigate the effectiveness of GraphPrior on adversarial test inputs
with different attack levels.

86

5.5. Results and analysis

Table 5.10: Effectiveness comparison of GraphPrior and the compared approaches
on adversarial test inputs in terms of PFD

#Best cases in PFD Average PFD #Best cases in PFD Average PFDAttack Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40 Attack Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40
DNGP 0 2 0 0 0.289 0.553 0.705 0.769 DNGP 0 1 1 0 0.309 0.572 0.701 0.752
KMGP 7 1 2 2 0.300 0.520 0.665 0.754 KMGP 7 4 3 3 0.336 0.573 0.714 0.789
LGGP 1 0 0 0 0.301 0.557 0.719 0.801 LGGP 0 0 0 0 0.307 0.563 0.707 0.781
LRGP 0 0 0 0 0.291 0.555 0.711 0.788 LRGP 0 2 0 0 0.305 0.570 0.697 0.762
RFGP 4 9 10 10 0.304 0.561 0.729 0.818 RFGP 1 1 4 5 0.326 0.571 0.727 0.806
XGGP 0 0 0 0 0.293 0.556 0.716 0.799 XGGP 0 0 0 0 0.300 0.558 0.703 0.774
DeepGini 0 0 0 0 0.215 0.394 0.535 0.655 DeepGini 0 0 0 0 0.238 0.413 0.556 0.672
Entropy 0 0 0 0 0.212 0.381 0.507 0.611 Entropy 0 0 0 0 0.236 0.409 0.547 0.660
Least Confidence 0 0 0 0 0.233 0.428 0.590 0.713 Least Confidence 0 0 0 0 0.255 0.451 0.604 0.727
Margin 0 0 0 0 0.225 0.423 0.584 0.711 Margin 0 0 0 0 0.242 0.449 0.606 0.730
PCS 0 0 0 0 0.225 0.423 0.584 0.711 PCS 0 0 0 0 0.242 0.449 0.606 0.730

DICE

Vanilla SM 0 0 0 0 0.233 0.428 0.590 0.713

PGD

Vanilla SM 0 0 0 0 0.255 0.451 0.604 0.727
Random 0 0 0 0 0.100 0.200 0.299 0.398 Random 0 0 0 0 0.098 0.199 0.299 0.397
DNGP 0 2 0 0 0.320 0.598 0.729 0.785 DNGP 0 1 0 0 0.303 0.573 0.719 0.781
KMGP 7 5 5 4 0.340 0.578 0.701 0.773 KMGP 5 3 2 4 0.308 0.544 0.675 0.755
LGGP 1 1 0 0 0.327 0.597 0.739 0.809 LGGP 6 4 4 3 0.314 0.578 0.734 0.812
LRGP 0 0 0 0 0.320 0.595 0.729 0.793 LRGP 0 1 0 0 0.307 0.574 0.727 0.800
RFGP 4 4 7 8 0.341 0.598 0.754 0.829 RFGP 5 7 10 9 0.315 0.579 0.737 0.821
XGGP 0 0 0 0 0.319 0.592 0.736 0.804 XGGP 0 0 0 0 0.307 0.574 0.730 0.808
DeepGini 0 0 0 0 0.243 0.426 0.568 0.682 DeepGini 0 0 0 0 0.221 0.395 0.538 0.652
Entropy 0 0 0 0 0.240 0.412 0.538 0.635 Entropy 0 0 0 0 0.219 0.387 0.518 0.623
Least Confidence 0 0 0 0 0.263 0.469 0.622 0.741 Least Confidence 0 0 0 0 0.234 0.425 0.582 0.705
Margin 0 0 0 0 0.253 0.463 0.622 0.743 Margin 0 0 0 0 0.220 0.411 0.570 0.698
PCS 0 0 0 0 0.253 0.463 0.622 0.743 PCS 0 0 0 0 0.220 0.411 0.570 0.698

MMA

Vanilla SM 0 0 0 0 0.263 0.469 0.622 0.741

RAA

Vanilla SM 0 0 0 0 0.234 0.425 0.582 0.705
Random 0 0 0 0 0.102 0.202 0.303 0.402 Random 0 0 0 0 0.101 0.201 0.301 0.399
DNGP 0 0 0 0 0.332 0.627 0.783 0.840 DNGP 0 1 0 0 0.295 0.565 0.715 0.780
KMGP 3 2 2 1 0.335 0.589 0.733 0.805 KMGP 7 3 1 3 0.301 0.533 0.673 0.760
LGGP 0 2 0 1 0.343 0.636 0.803 0.877 LGGP 4 5 5 4 0.307 0.568 0.731 0.812
LRGP 1 0 0 0 0.334 0.630 0.795 0.860 LRGP 0 0 0 0 0.298 0.565 0.723 0.798
RFGP 4 4 6 6 0.345 0.640 0.814 0.884 RFGP 5 7 10 9 0.308 0.570 0.736 0.821
XGGP 0 0 0 0 0.336 0.631 0.800 0.869 XGGP 0 0 0 0 0.299 0.565 0.727 0.807
DeepGini 0 0 0 0 0.245 0.433 0.579 0.694 DeepGini 0 0 0 0 0.218 0.394 0.536 0.650
Entropy 0 0 0 0 0.240 0.414 0.538 0.632 Entropy 0 0 0 0 0.216 0.385 0.516 0.620
Least Confidence 0 0 0 0 0.261 0.472 0.638 0.763 Least Confidence 0 0 0 0 0.230 0.422 0.580 0.706
Margin 0 0 0 0 0.245 0.457 0.625 0.757 Margin 0 0 0 0 0.217 0.409 0.567 0.698
PCS 0 0 0 0 0.245 0.457 0.625 0.757 PCS 0 0 0 0 0.217 0.409 0.567 0.698

NEAA

Vanilla SM 0 0 0 0 0.261 0.472 0.638 0.763

RAF

Vanilla SM 0 0 0 0 0.230 0.422 0.580 0.706
Random 0 0 0 0 0.100 0.200 0.301 0.399 Random 0 0 0 0 0.100 0.202 0.301 0.402
DNGP 0 0 0 0 0.322 0.618 0.787 0.848 DNGP 0 2 0 0 0.334 0.606 0.720 0.766
KMGP 1 2 2 1 0.335 0.618 0.780 0.856 KMGP 6 1 1 4 0.341 0.568 0.697 0.772
LGGP 1 0 0 0 0.336 0.620 0.793 0.871 LGGP 2 4 4 4 0.347 0.616 0.752 0.814
LRGP 0 0 0 0 0.326 0.621 0.798 0.866 LRGP 1 0 0 0 0.338 0.611 0.740 0.799
RFGP 2 2 2 3 0.339 0.627 0.810 0.893 RFGP 7 8 11 7 0.348 0.617 0.761 0.823
XGGP 0 0 0 0 0.327 0.620 0.796 0.872 XGGP 0 1 0 1 0.339 0.613 0.749 0.810
DeepGini 0 0 0 0 0.247 0.432 0.576 0.687 DeepGini 0 0 0 0 0.231 0.410 0.551 0.662
Entropy 0 0 0 0 0.244 0.427 0.569 0.675 Entropy 0 0 0 0 0.229 0.400 0.528 0.627
Least Confidence 0 0 0 0 0.256 0.458 0.621 0.747 Least Confidence 0 0 0 0 0.247 0.445 0.603 0.723
Margin 0 0 0 0 0.233 0.431 0.600 0.737 Margin 0 0 0 0 0.243 0.444 0.605 0.727
PCS 0 0 0 0 0.233 0.431 0.600 0.737 PCS 0 0 0 0 0.243 0.444 0.605 0.727

NEAR

Vanilla SM 0 0 0 0 0.256 0.458 0.621 0.747

RAR

Vanilla SM 0 0 0 0 0.247 0.445 0.603 0.723
Random 0 0 0 0 0.101 0.198 0.294 0.391 Random 0 0 0 0 0.099 0.200 0.300 0.401

Table 5.11: Average effectiveness comparision among GraphPrior and the compared
approaches on adversarial test inputs in terms of PFD

#Best case in PFD Average PFDApproaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40
DNGP 0 9 1 0 0.313 0.589 0.732 0.790
KMGP 43 21 18 22 0.325 0.565 0.705 0.783
LGGP 15 16 13 12 0.323 0.592 0.747 0.822
LRGP 2 3 0 0 0.315 0.590 0.740 0.808
RFGP 32 42 60 57 0.328 0.595 0.758 0.837
XGGP 0 1 0 1 0.315 0.589 0.745 0.818
DeepGini 0 0 0 0 0.232 0.412 0.555 0.669
Entropy 0 0 0 0 0.23 0.402 0.533 0.635
Least Confidence 0 0 0 0 0.247 0.446 0.605 0.728
Margin 0 0 0 0 0.235 0.436 0.597 0.725
PCS 0 0 0 0 0.235 0.436 0.597 0.725
Vanilla SM 0 0 0 0 0.247 0.446 0.605 0.728
Random 0 0 0 0 0.101 0.202 0.301 0.399

87

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

Experimental design: To investigate the effectiveness of GraphPrior on test inputs
generated via different levels of graph adversarial attacks, we set different attack
levels (i.e., 0.1, 0.2, 0.3 and 0.4) on 8 graph adversarial techniques (i.e., DICE,
Min-max attack, NEAA, NEAR, PGD attack, RAA, RAF, and RAR). As mentioned
in RQ3, the attack level indicates the ratio of adversarial inputs in the dataset.
For example, 0.4 means that 40% tests in the dataset are adversarial tests. We
select these attack levels because a high attack level (e.g., 80%) would engender a
substantial proportion of adversarial test inputs. Consequently, such circumstances
could yield a greater number of bug cases selected by any prioritization method,
thereby affecting the evaluation of GraphPrior. Therefore, we carefully selected a
range of attack levels that are not unduly high for the evaluation of GraphPrior. In
this research question, we totally evaluate GraphPrior and the compared approaches
on 432 subjects.
Results: GraphPrior outperforms all the compared approaches on the ad-
versarial test inputs generated from different attack levels. More specifically,
Table 5.12 presents the effectiveness of GraphPrior and the compared approaches
under the attacks DICE, MMA, RAA and RAR, with the attack level ranging from
0.1 to 0.4. In this research question, we totally apply 8 adversarial attacks. The
remaining experimental results (i.e., results of the other four adversarial attacks) are
presented on our Github2.

The experimental results presented in Table 5.12 demonstrate that GraphPrior,
consisting of DNGP, KMGP, LGGP, LRGP, RFGP and XGGP, outperforms all the
compared approaches across different levels of the adversarial attacks.

Table 5.13 demonstrates the overall comparison results among GraphPrior and
the compared approaches across 8 adversarial attacks with differnet attack levels.
Specifically, we evaluate the effectiveness of each test prioritization approach in terms
of the number of cases where it performed the best, as well as its average PFD
values across different attack levels. For example, the "All-0.1" refers to the overall
results of each approach under all the adversarial attacks with an attack level of
0.1. Table 5.13 demonstrates that GraphPrior outperforms all compared approaches,
achieving the best effectiveness in 99.94% of the tested cases. Only one best case is
achieved by the compared approach margin. Furthermore, GraphPrior approaches
such as RFGP and KMGP consistently exhibit the largest average PFD values across
different attack levels.

Among all the GraphPrior approaches, RFGP and KMGP exhibit
superior performance across different attack levels in comparison to other
GraphPrior approaches. In Table 5.12, we see that, across the attack levels from
0.1 to 0.4, RFGP performs the best in the largest number of best cases, followed
by KMGP. For example, when the attack level is 0.1, RFGP performs the best in
46.47% cases. KMGP performs the best in 35.33% cases. Notably, when prioritizing
10% test inputs, KMGP takes the largest number of best cases. When the attack
level is 0.2~0.4, RFGP takes the largest number of best cases.

Additionally, our experimental results, as illustrated in Table 5.13, reveal that
the RFGP technique exhibits the largest average PFD values when compared to the
other evaluated approaches across varying attack levels. Specifically, when 40% of
the test inputs are prioritized, RFGP achieves a PFD value ranging from 0.832 to
0.836, which indicates the ability to detect more than 80% of misclassified tests.

2https://github.com/yinghuali/GraphPrior/tree/main/mutation/adv_res

88

https://github.com/yinghuali/GraphPrior/tree/main/mutation/adv_res

5.5. Results and analysis

Answer to RQ4: GraphPrior outperforms all the compared approaches on the
adversarial test inputs generated from different attack levels. Among all the
GraphPrior approaches, RFGP and KMGP exhibit superior performance across
different attack levels in comparison to other GraphPrior approaches.

5.5.5 RQ5: Contribution analysis of different mutation rules

Objectives: For each evaluated GNN model, we investigate which mutated rules
generate more top contributing mutated models for test prioritization.

Experimental design: In our study, we employed one or more mutation rules
to generate a mutated model. Each mutated model corresponds to one mutation
feature. Thus, to evaluate the importance of different mutation rules, we initially
evaluate the importance of various mutation features. We adopted the cover metric
of the XGBoost algorithm to identify the importance of each mutation feature for
ranking models. A detailed account of this approach is presented in Section 4.5.
After computing the importance scores of all the mutated features, we selected the
top-N important features for each subject and subsequently identified the top-N
mutated models. We then identified the mutation rules utilized to generate each
mutated model and compared the contributions of the mutation rules accordingly.
Additionally, for different subjects in this research question, we generate 80~240
mutated models.

Results: The mutation rule HC made high contributions to the effective-
ness of GraphPrior on all the four types of GNN models. Table 5.14 to
Table 5.17 illustrate the contributions of different mutation rules to the effective-
ness of GraphPrior on different GNN models (i.e., GCN, GAT, GraphSAGE and
TAGCN). For each GNN model, we identify the top-N mutated models that made
top contributions to the effectiveness of GraphPrior. The corresponding mutation
rules applied to generate each mutated model are highlighted in grey. Table 5.14
presents the contributions of Top-N mutated models to the effectiveness of Graph-
Prior for the case of GCN model. Notably, the mutation rules BIA and HC made
contributions to 100% of the top contributing mutated models, while SL, NOR,
CA, and IMP contributed to a lower percentage of the top contributing mutated
models. We conclude that, for the GCN model, the mutation rules SL and HC were
the most effective in generating the top important mutated models. Moving to GAT,
GraphSAGE, and TAGCN, whose results are presented in Table 5.15, Table 5.16, and
Table 5.17, the mutation rule HC also generates a large ratio (i.e., 100%, 90%, and
90% respectively) of top contributing mutated models. We can conclude that, across
the four different types of GNN models, HC can continuously make top contributions
to the effectiveness of GraphPrior.

Some mutated rules, such as NOR and BIA, made high contributions
to the effectiveness of GraphPrior on some specific GNN models. Moreover,
some mutation rules, such as BIA and NOR, also generate a considerable ratio (i.e.,
from 50% to 100%) of top-critical mutated models. For example, on GCN and
GraphSAGE, BIA made contributions to 100% top-N mutated models. On TAGCN,
NOR made contributions to 100% top-N mutated models.

89

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

Table 5.12: Comparison results of GraphPrior and the compared approaches against
different levels of the attacks DICE, MMA, RAA and RAR in terms of PFD

#Best cases in PFD Average PFD #Best cases in PFD Average PFDAttack Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40 Attack Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40
DNGP 0 1 0 0 0.322 0.595 0.724 0.775 DNGP 0 0 0 0 0.333 0.604 0.725 0.774
KMGP 7 3 2 5 0.335 0.568 0.700 0.776 KMGP 4 3 5 5 0.336 0.574 0.696 0.770
LGGP 1 0 1 0 0.335 0.600 0.745 0.811 LGGP 3 6 4 4 0.343 0.611 0.751 0.814
LRGP 0 0 0 0 0.323 0.597 0.736 0.797 LRGP 1 0 0 0 0.337 0.607 0.743 0.803
RFGP 4 7 9 7 0.338 0.605 0.757 0.828 RFGP 8 7 7 7 0.345 0.613 0.757 0.822
XGGP 0 1 0 0 0.325 0.599 0.743 0.810 XGGP 0 0 0 0 0.338 0.608 0.749 0.813
DeepGini 0 0 0 0 0.237 0.419 0.559 0.674 DeepGini 0 0 0 0 0.232 0.410 0.549 0.660
Entropy 0 0 0 0 0.233 0.405 0.528 0.627 Entropy 0 0 0 0 0.230 0.399 0.527 0.626
Least Confidence 0 0 0 0 0.256 0.459 0.616 0.736 Least Confidence 0 0 0 0 0.248 0.445 0.602 0.722
Margin 0 0 0 0 0.245 0.451 0.613 0.737 Margin 0 0 0 0 0.236 0.438 0.597 0.720
PCS 0 0 0 0 0.245 0.451 0.613 0.737 PCS 0 0 0 0 0.236 0.438 0.597 0.720

DICE-0.1

Vanilla SM 0 0 0 0 0.256 0.459 0.616 0.736

RAA-0.1

Vanilla SM 0 0 0 0 0.248 0.445 0.602 0.722
Random 0 0 0 0 0.098 0.198 0.296 0.397 Random 0 0 0 0 0.100 0.200 0.301 0.401
DNGP 0 0 0 0 0.305 0.573 0.713 0.772 DNGP 0 0 0 0 0.311 0.584 0.717 0.773
KMGP 6 3 2 3 0.314 0.545 0.678 0.762 KMGP 6 5 4 5 0.318 0.553 0.683 0.762
LGGP 1 2 0 1 0.314 0.576 0.732 0.807 LGGP 4 5 3 3 0.323 0.587 0.736 0.807
LRGP 0 0 0 0 0.304 0.575 0.724 0.795 LRGP 1 1 0 0 0.314 0.586 0.729 0.796
RFGP 5 6 10 8 0.316 0.579 0.741 0.820 RFGP 5 5 9 8 0.324 0.590 0.744 0.818
XGGP 0 1 0 0 0.305 0.574 0.729 0.804 XGGP 0 0 0 0 0.314 0.586 0.734 0.805
DeepGini 0 0 0 0 0.228 0.409 0.552 0.667 DeepGini 0 0 0 0 0.223 0.397 0.540 0.653
Entropy 0 0 0 0 0.225 0.395 0.522 0.624 Entropy 0 0 0 0 0.221 0.388 0.519 0.620
Least Confidence 0 0 0 0 0.244 0.443 0.602 0.724 Least Confidence 0 0 0 0 0.237 0.431 0.588 0.713
Margin 0 0 0 0 0.235 0.435 0.596 0.723 Margin 0 0 0 0 0.226 0.422 0.582 0.709
PCS 0 0 0 0 0.235 0.435 0.596 0.723 PCS 0 0 0 0 0.226 0.422 0.582 0.709

DICE-0.2

Vanilla SM 0 0 0 0 0.244 0.443 0.602 0.724

RAA-0.2

Vanilla SM 0 0 0 0 0.237 0.431 0.588 0.713
Random 0 0 0 0 0.101 0.202 0.302 0.401 Random 0 0 0 0 0.099 0.199 0.298 0.398
DNGP 0 2 0 0 0.289 0.553 0.705 0.769 DNGP 0 1 0 0 0.303 0.573 0.719 0.781
KMGP 7 1 2 2 0.300 0.520 0.665 0.754 KMGP 5 3 2 4 0.308 0.544 0.675 0.755
LGGP 1 0 0 0 0.301 0.557 0.719 0.801 LGGP 6 4 4 3 0.314 0.578 0.734 0.812
LRGP 0 0 0 0 0.291 0.555 0.711 0.788 LRGP 0 1 0 0 0.307 0.574 0.727 0.800
RFGP 4 9 10 10 0.304 0.561 0.729 0.818 RFGP 5 7 10 9 0.315 0.579 0.737 0.821
XGGP 0 0 0 0 0.293 0.556 0.716 0.799 XGGP 0 0 0 0 0.307 0.574 0.730 0.808
DeepGini 0 0 0 0 0.215 0.394 0.535 0.655 DeepGini 0 0 0 0 0.221 0.395 0.538 0.652
Entropy 0 0 0 0 0.212 0.381 0.507 0.611 Entropy 0 0 0 0 0.219 0.387 0.518 0.623
Least Confidence 0 0 0 0 0.233 0.428 0.590 0.713 Least Confidence 0 0 0 0 0.234 0.425 0.582 0.705
Margin 0 0 0 0 0.225 0.423 0.584 0.711 Margin 0 0 0 0 0.220 0.411 0.570 0.698
PCS 0 0 0 0 0.225 0.423 0.584 0.711 PCS 0 0 0 0 0.220 0.411 0.570 0.698

DICE-0.3

Vanilla SM 0 0 0 0 0.233 0.428 0.590 0.713

RAA-0.3

Vanilla SM 0 0 0 0 0.234 0.425 0.582 0.705
Random 0 0 0 0 0.100 0.200 0.299 0.398 Random 0 0 0 0 0.101 0.201 0.301 0.399
DNGP 0 1 2 0 0.276 0.532 0.694 0.770 DNGP 0 1 0 0 0.290 0.554 0.713 0.783
KMGP 7 2 1 1 0.288 0.510 0.647 0.740 KMGP 6 3 1 4 0.294 0.525 0.671 0.761
LGGP 0 1 1 1 0.286 0.535 0.702 0.799 LGGP 4 5 3 3 0.300 0.559 0.726 0.812
LRGP 0 0 1 0 0.277 0.533 0.699 0.785 LRGP 0 1 0 0 0.293 0.556 0.720 0.800
RFGP 5 8 7 10 0.291 0.538 0.708 0.812 RFGP 6 6 12 9 0.302 0.560 0.731 0.823
XGGP 0 0 0 0 0.280 0.532 0.700 0.795 XGGP 0 0 0 0 0.294 0.556 0.724 0.809
DeepGini 0 0 0 0 0.211 0.388 0.533 0.654 DeepGini 0 0 0 0 0.215 0.392 0.535 0.650
Entropy 0 0 0 0 0.209 0.376 0.508 0.613 Entropy 0 0 0 0 0.213 0.384 0.517 0.621
Least Confidence 0 0 0 0 0.226 0.419 0.579 0.708 Least Confidence 0 0 0 0 0.226 0.418 0.576 0.702
Margin 0 0 0 0 0.215 0.406 0.568 0.701 Margin 0 0 0 0 0.210 0.399 0.559 0.689
PCS 0 0 0 0 0.215 0.406 0.568 0.701 PCS 0 0 0 0 0.210 0.399 0.559 0.689

DICE-0.4

Vanilla SM 0 0 0 0 0.226 0.419 0.579 0.708

RAA-0.4

Vanilla SM 0 0 0 0 0.226 0.418 0.576 0.702
Random 0 0 0 0 0.098 0.200 0.300 0.400 Random 0 0 0 0 0.098 0.200 0.300 0.400
DNGP 0 1 0 0 0.329 0.611 0.733 0.781 DNGP 0 0 0 0 0.342 0.613 0.721 0.767
KMGP 7 5 4 4 0.346 0.583 0.708 0.776 KMGP 6 3 3 7 0.348 0.583 0.704 0.774
LGGP 0 1 2 1 0.336 0.609 0.748 0.810 LGGP 4 4 4 1 0.352 0.621 0.753 0.809
LRGP 0 0 0 0 0.330 0.608 0.738 0.800 LRGP 1 0 0 0 0.342 0.616 0.740 0.792
RFGP 5 5 6 7 0.349 0.614 0.763 0.833 RFGP 5 9 8 8 0.357 0.624 0.760 0.817
XGGP 0 0 0 0 0.329 0.607 0.746 0.808 XGGP 0 0 1 0 0.345 0.620 0.748 0.806
DeepGini 0 0 0 0 0.246 0.428 0.568 0.682 DeepGini 0 0 0 0 0.240 0.416 0.552 0.662
Entropy 0 0 0 0 0.241 0.413 0.536 0.634 Entropy 0 0 0 0 0.238 0.404 0.527 0.626
Least Confidence 0 0 0 0 0.269 0.472 0.627 0.745 Least Confidence 0 0 0 0 0.257 0.455 0.609 0.726
Margin 0 0 0 0 0.257 0.467 0.627 0.749 Margin 0 0 0 0 0.248 0.451 0.609 0.729
PCS 0 0 0 0 0.257 0.467 0.627 0.749 PCS 0 0 0 0 0.249 0.451 0.609 0.729

MMA-0.1

Vanilla SM 0 0 0 0 0.269 0.472 0.627 0.745

RAR-0.1

Vanilla SM 0 0 0 0 0.257 0.455 0.609 0.726
Random 0 0 0 0 0.099 0.198 0.296 0.396 Random 0 0 0 0 0.100 0.200 0.301 0.401
DNGP 0 0 0 0 0.328 0.605 0.725 0.775 DNGP 0 1 0 0 0.341 0.614 0.723 0.771
KMGP 6 5 5 4 0.344 0.581 0.705 0.774 KMGP 7 3 0 6 0.346 0.579 0.701 0.775
LGGP 1 2 1 0 0.336 0.605 0.741 0.805 LGGP 4 3 3 3 0.353 0.619 0.751 0.812
LRGP 0 0 0 0 0.331 0.603 0.734 0.794 LRGP 1 1 0 0 0.342 0.615 0.740 0.795
RFGP 5 5 6 7 0.349 0.610 0.758 0.829 RFGP 4 7 13 7 0.356 0.623 0.762 0.822
XGGP 0 0 0 0 0.330 0.601 0.738 0.802 XGGP 0 1 0 0 0.343 0.618 0.748 0.805
DeepGini 0 0 0 0 0.248 0.431 0.573 0.686 DeepGini 0 0 0 0 0.237 0.411 0.550 0.659
Entropy 0 0 0 0 0.245 0.417 0.541 0.639 Entropy 0 0 0 0 0.234 0.401 0.526 0.624
Least Confidence 0 0 0 0 0.267 0.473 0.629 0.746 Least Confidence 0 0 0 0 0.250 0.449 0.604 0.725
Margin 0 0 0 1 0.255 0.466 0.626 0.746 Margin 0 0 0 0 0.244 0.447 0.605 0.728
PCS 0 0 0 0 0.255 0.466 0.626 0.746 PCS 0 0 0 0 0.244 0.447 0.605 0.728

MMA-0.2

Vanilla SM 0 0 0 0 0.267 0.473 0.629 0.746

RAR-0.2

Vanilla SM 0 0 0 0 0.250 0.449 0.604 0.725
Random 0 0 0 0 0.099 0.199 0.297 0.401 Random 0 0 0 0 0.098 0.199 0.297 0.397
DNGP 0 2 0 0 0.320 0.598 0.729 0.785 DNGP 0 2 0 0 0.334 0.606 0.720 0.766
KMGP 7 5 5 4 0.340 0.578 0.701 0.773 KMGP 6 1 1 4 0.341 0.568 0.697 0.772
LGGP 1 1 0 0 0.327 0.597 0.739 0.809 LGGP 2 4 4 4 0.347 0.616 0.752 0.814
LRGP 0 0 0 0 0.320 0.595 0.729 0.793 LRGP 1 0 0 0 0.338 0.611 0.740 0.799
RFGP 4 4 7 8 0.341 0.598 0.754 0.829 RFGP 7 8 11 7 0.348 0.617 0.761 0.823
XGGP 0 0 0 0 0.319 0.592 0.736 0.804 XGGP 0 1 0 1 0.339 0.613 0.749 0.810
DeepGini 0 0 0 0 0.243 0.426 0.568 0.682 DeepGini 0 0 0 0 0.231 0.410 0.551 0.662
Entropy 0 0 0 0 0.240 0.412 0.538 0.635 Entropy 0 0 0 0 0.229 0.400 0.528 0.627
Least Confidence 0 0 0 0 0.263 0.469 0.622 0.741 Least Confidence 0 0 0 0 0.247 0.445 0.603 0.723
Margin 0 0 0 0 0.253 0.463 0.622 0.743 Margin 0 0 0 0 0.243 0.444 0.605 0.727
PCS 0 0 0 0 0.253 0.463 0.622 0.743 PCS 0 0 0 0 0.243 0.444 0.605 0.727

MMA-0.3

Vanilla SM 0 0 0 0 0.263 0.469 0.622 0.741

RAR-0.3

Vanilla SM 0 0 0 0 0.247 0.445 0.603 0.723
Random 0 0 0 0 0.102 0.202 0.303 0.402 Random 0 0 0 0 0.099 0.200 0.300 0.401
DNGP 0 2 0 0 0.322 0.601 0.732 0.787 DNGP 0 1 0 0 0.333 0.607 0.723 0.770
KMGP 7 6 5 5 0.345 0.582 0.711 0.778 KMGP 7 1 1 3 0.337 0.564 0.692 0.771
LGGP 1 3 2 0 0.331 0.598 0.739 0.807 LGGP 3 5 4 3 0.341 0.611 0.749 0.815
LRGP 0 0 0 0 0.324 0.597 0.728 0.790 LRGP 0 2 0 0 0.335 0.609 0.738 0.799
RFGP 4 1 5 7 0.345 0.598 0.754 0.827 RFGP 6 7 10 10 0.345 0.613 0.758 0.824
XGGP 0 0 0 0 0.323 0.592 0.731 0.797 XGGP 0 0 1 0 0.335 0.609 0.745 0.809
DeepGini 0 0 0 0 0.245 0.427 0.568 0.681 DeepGini 0 0 0 0 0.233 0.406 0.547 0.658
Entropy 0 0 0 0 0.242 0.413 0.539 0.636 Entropy 0 0 0 0 0.231 0.398 0.524 0.623
Least Confidence 0 0 0 0 0.265 0.469 0.624 0.741 Least Confidence 0 0 0 0 0.248 0.439 0.596 0.719
Margin 0 0 0 0 0.253 0.464 0.625 0.744 Margin 0 0 0 0 0.243 0.443 0.600 0.723
PCS 0 0 0 0 0.253 0.464 0.625 0.744 PCS 0 0 0 0 0.243 0.443 0.600 0.723

MMA-0.4

Vanilla SM 0 0 0 0 0.265 0.469 0.624 0.741

RAR-0.4

Vanilla SM 0 0 0 0 0.248 0.439 0.596 0.719
Random 0 0 0 0 0.098 0.201 0.300 0.399 Random 0 0 0 0 0.097 0.199 0.299 0.398

90

5.5. Results and analysis

Table 5.13: Overall comparison results among GraphPrior and the compared
approaches on adversarial tests with different attack levels

#Best case in PFD Average PFDAttack Level Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40
DNGP 0 3 0 0 0.334 0.615 0.738 0.784
KMGP 42 27 28 33 0.349 0.594 0.723 0.791
LGGP 13 18 14 11 0.346 0.619 0.760 0.820
LRGP 3 0 0 0 0.336 0.617 0.752 0.808
RFGP 34 43 48 46 0.352 0.624 0.772 0.836
XGGP 0 1 2 1 0.336 0.617 0.758 0.819
DeepGini 0 0 0 0 0.243 0.425 0.566 0.679
Entropy 0 0 0 0 0.241 0.413 0.541 0.642
Least Confidence 0 0 0 0 0.261 0.465 0.623 0.742
Margin 0 0 0 1 0.249 0.457 0.619 0.742
PCS 0 0 0 0 0.249 0.457 0.619 0.742

All-0.1

Vanilla SM 0 0 0 0 0.261 0.465 0.623 0.742
Random 0 0 0 0 0.099 0.200 0.301 0.402
DNGP 0 2 0 0 0.323 0.602 0.734 0.786
KMGP 44 29 20 29 0.335 0.580 0.713 0.786
LGGP 13 19 10 10 0.332 0.604 0.753 0.820
LRGP 2 3 0 0 0.323 0.602 0.745 0.806
RFGP 33 37 62 52 0.339 0.608 0.765 0.836
XGGP 0 2 0 0 0.323 0.602 0.750 0.816
DeepGini 0 0 0 0 0.238 0.419 0.561 0.675
Entropy 0 0 0 0 0.235 0.408 0.538 0.640
Least Confidence 0 0 0 0 0.254 0.456 0.614 0.736
Margin 0 0 0 1 0.241 0.446 0.609 0.734
PCS 0 0 0 0 0.241 0.446 0.609 0.734

All-0.2

Vanilla SM 0 0 0 0 0.254 0.456 0.614 0.736
Random 0 0 0 0 0.099 0.199 0.299 0.399
DNGP 0 9 1 0 0.313 0.589 0.732 0.790
KMGP 43 21 18 22 0.324 0.565 0.704 0.783
LGGP 15 16 13 12 0.322 0.591 0.747 0.822
LRGP 2 3 0 0 0.314 0.590 0.740 0.808
RFGP 32 42 60 57 0.328 0.595 0.758 0.836
XGGP 0 1 0 1 0.315 0.588 0.744 0.817
DeepGini 0 0 0 0 0.232 0.412 0.554 0.669
Entropy 0 0 0 0 0.229 0.401 0.532 0.635
Least Confidence 0 0 0 0 0.247 0.446 0.605 0.728
Margin 0 0 0 0 0.234 0.435 0.597 0.725
PCS 0 0 0 0 0.234 0.435 0.597 0.725

All-0.3

Vanilla SM 0 0 0 0 0.247 0.446 0.605 0.728
Random 0 0 0 0 0.100 0.200 0.299 0.398
DNGP 0 8 3 0 0.306 0.578 0.727 0.790
KMGP 43 23 15 23 0.316 0.554 0.694 0.776
LGGP 13 20 13 11 0.314 0.580 0.739 0.819
LRGP 2 3 1 0 0.307 0.577 0.732 0.805
RFGP 34 38 58 58 0.320 0.581 0.748 0.832
XGGP 0 0 2 0 0.307 0.576 0.735 0.813
DeepGini 0 0 0 0 0.228 0.408 0.552 0.669
Entropy 0 0 0 0 0.226 0.399 0.532 0.636
Least Confidence 0 0 0 0 0.242 0.439 0.599 0.724
Margin 0 0 0 0 0.227 0.426 0.588 0.717
PCS 0 0 0 0 0.227 0.426 0.588 0.717

All-0.4

Vanilla SM 0 0 0 0 0.242 0.439 0.599 0.724
Random 0 0 0 0 0.097 0.199 0.299 0.398

91

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

Answer to RQ5: The mutation rule HC made high contributions to the effec-
tiveness of GraphPrior on all the four types of GNN models. Some mutated rules,
such as NOR and BIA made high contributions to the effectiveness of GraphPrior
on some specific GNN models.

Table 5.14: The contributions of
different mutation rules (GCN)

Top-N SL BIA CA IMP NOR HC

0 ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓
3 ✓ ✓
4 ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ ✓ ✓
8 ✓ ✓ ✓ ✓
9 ✓ ✓ ✓ ✓

Table 5.15: The contributions of
different mutation rules (GAT)

Top-N SL BIA CON HDS EP NS HC

0 ✓ ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ ✓
8 ✓ ✓ ✓ ✓ ✓
9 ✓ ✓ ✓ ✓ ✓

Table 5.16: The contributions of
different mutation rules (Graph-
SAGE)

Top-N BIA NOR HC EP

0 ✓ ✓ ✓ ✓
1 ✓ ✓ ✓
2 ✓ ✓ ✓ ✓
3 ✓ ✓ ✓
4 ✓ ✓ ✓
5 ✓ ✓ ✓
6 ✓ ✓ ✓
7 ✓ ✓ ✓
8 ✓ ✓ ✓ ✓
9 ✓ ✓ ✓

Table 5.17: The contributions of
different mutation rules to the
(TAGCN)

Top-N NOR HC EP

0 ✓
1 ✓ ✓ ✓
2 ✓ ✓ ✓
3 ✓ ✓
4 ✓ ✓ ✓
5 ✓ ✓
6 ✓ ✓ ✓
7 ✓ ✓ ✓
8 ✓ ✓
9 ✓ ✓ ✓

5.5.6 RQ6: Enhancing GNNs with GraphPrior
Objectives: We investigate whether GraphPrior and the uncertainty-based metrics
can select informative retraining subsets to improve the performance of a GNN
model.
Experimental design: Following the prior research by Ma et al. [46], our retraining
experiments are structured as follows. Firstly, we randomly partitioned the dataset
into three sets: an initial training set, a candidate set, and a test set, with a ratio
of 4:4:2. The candidate set was reserved exclusively for retraining purposes, while
the test set was kept untouched for the purpose of evaluation. In the first round, we
trained a GNN model using only the initial training set and computed its accuracy
on the test set. We employed the best model obtained over the training epochs for
the subsequent retraining process. In the second round, we incorporate an additional
10% of new inputs from the candidate set into the existing training set without
replacement. The inputs selected for inclusion are those that are prioritized in the
first 10% by the test prioritization approaches, namely GraphPrior and the compared
techniques. Following Ma et al. [46], we retrain the GNN models by utilizing the
complete augmented training set. This approach ensures that the old and new
training data are treated equally. We repeat the retraining process for multiple
rounds until the candidate set is empty. We kept the test data untouched during
the retraining process. Moreover, we account for the randomness involved in the
model training process and repeat all the experiments ten times to report the average

92

5.5. Results and analysis

results (averaged over ten repetitions).

Results: Table 5.18 illustrates the average accuracy of GNN models after retraining
with 10% to 100% prioritized test inputs. For each case, we highlight the approach
with the highest effectiveness in grey to facilitate quick and easy interpretation
of the results. GraphPrior and the uncertainty-based test prioritization
approaches outperform the random selection approach. However, the
observed improvement is relatively small, indicating that GNN test prior-
itization approaches can guide the retraining of GNN models but with
limited effect. In Table 5.18, we observe that test prioritization methods, including
GraphPrior and compared approaches, consistently demonstrate better performance
across varying ratios of added data compared with the random selection. Further-
more, when incorporating prioritized tests exceeding 10% of the total, a significant
majority of the test prioritization methods - specifically, 83.4% (10 out of 12) -
outperform random selection in each case. However, the improvements achieved by
these test prioritization methods compared to random selection are relatively small,
with the highest increase being only 0.014. Additionally, Figure 5.4 visually depicts
an example outcome of the retraining experiments conducted on the Cora dataset
using the GCN model, showcasing a comparative evaluation of the performance of
test prioritization approaches against random selection (indicated by the black line).
As observed from the results, the test prioritization approaches demonstrate a better
performance compared to random selection, but the improvement is visually slight.

One reason that leads to the effectiveness of GraphPrior and uncertainty-based
test prioritization approaches being limited lies in their inadequate consideration of
node importance (i.e., impact on other nodes in the dataset). In a GNN dataset, the
complex interdependence among test inputs and their neighbors can lead to them
having different importance. For example, nodes with greater connectivity can affect
more of other nodes, making them relatively more critical. However, the current test
prioritization approaches only focus on the ability of test inputs to reveal system
bugs without regard to the importance of nodes. Although the selected test input by
them can have a higher likelihood of misclassification, their importance within the
dataset can be minor if they have a very small number of neighbors. Retraining such
inputs would have less effect. Consequently, it is crucial to consider node importance
in the selection of retraining data to achieve more effective outcomes.

GraphPrior achieved better effectiveness than the uncertainty-based
test prioritization methods. In Table 5.18, we see that, when adding more than
20% (including 20%) test cases for retraining, the GraphPrior approaches perform the
best in 100% cases. Figure 5.4 visually demonstrates that the GraphPrior approaches
(solid line) perform better than the compared approaches (dotted line) in most cases.

Answer to RQ6: GraphPrior and the uncertainty-based test prioritization ap-
proaches outperform the random selection approach. However, the observed im-
provement is relatively small, indicating that GNN test prioritization approaches
can guide the retraining of GNN models but with limited effect. GraphPrior
achieved better effectiveness than the uncertainty-based test prioritization methods.

93

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

����

����

����

����

����

�
�
�
�
��
�
�

����

����

����

����

����

����

��������

�������

����������������

������

���������

���

������

Figure 5.4: Enhancing the accuracy of the GNN with prioritized tests (Cora with
GCN)

Table 5.18: The GNNs’ average accuracy value after retraining with 10%~100%
prioritized tests.

Accuracy of percentage of datasetsApproaches 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average

KMGP 0.787 0.810 0.825 0.834 0.844 0.854 0.861 0.867 0.874 0.878 0.844
DNGP 0.787 0.811 0.827 0.836 0.844 0.853 0.859 0.867 0.873 0.877 0.843
LGGP 0.787 0.812 0.825 0.835 0.845 0.852 0.861 0.868 0.873 0.877 0.844
LRGP 0.787 0.811 0.825 0.835 0.845 0.854 0.864 0.869 0.873 0.877 0.844
XGGP 0.788 0.811 0.824 0.834 0.845 0.853 0.861 0.867 0.873 0.877 0.843
RFGP 0.787 0.813 0.825 0.835 0.845 0.853 0.860 0.869 0.874 0.877 0.844
DeepGini 0.788 0.801 0.814 0.826 0.836 0.844 0.851 0.858 0.866 0.870 0.835
Entropy 0.789 0.801 0.816 0.829 0.836 0.845 0.852 0.858 0.866 0.872 0.837
LeastConfidence 0.789 0.802 0.816 0.828 0.836 0.846 0.853 0.860 0.866 0.872 0.837
Margin 0.788 0.801 0.818 0.827 0.837 0.845 0.853 0.861 0.867 0.872 0.837
VanillaSM 0.788 0.804 0.819 0.829 0.837 0.846 0.853 0.861 0.867 0.873 0.838
PCS 0.787 0.802 0.817 0.827 0.837 0.845 0.854 0.860 0.866 0.872 0.837
Random 0.789 0.799 0.814 0.825 0.834 0.843 0.853 0.860 0.866 0.872 0.836

94

5.6. Discussion

5.6 Discussion
5.6.1 Generality of GraphPrior

Although the confidence-based test prioritization approaches demonstrate excel-
lent effectiveness in traditional DNNs, they do not consider the interdependencies
between test inputs, which are particularly crucial in GNN test prioritization. Our
proposed GraphPrior leverages the mutation analysis of GNN models to perform
GNN test input prioritization, which has been demonstrated effective on graph
classification tasks through 604 carefully designed subjects. In fact, the scheme of
GraphPrior, (i.e., modifying training parameters to mutate the GNN model for test
prioritization) can also be generalized to other dimensions of GNN tasks, including
graph-level and edge-level tasks. In the future, we will further verify the extension
of GraphPrior from this perspective.

[The applicability of GraphPrior on regression tasks] In this section, we will also
discuss the potential applicability of GraphPrior to regression tasks. Currently,
the mutation rules and ranking models of GraphPrior are specifically designed for
classification tasks. To extend GraphPrior to regression tasks, modifications to the
mutation rules and ranking models would be required. If appropriate mutation rules
can be identified for regression tasks and suitable ranking models can be designed,
GraphPrior could also be applied to regression tasks.

5.6.2 Limitations of GraphPrior
[Diversity of the prioritized data] One limitation of GraphPrior lies in guaranteeing

the diversity of selected bug data. This limitation is also noted in prior work on
the uncertainty-based test prioritization approaches [3], which did not consider the
diversity of bugs when prioritizing test inputs. Similarly, GraphPrior also does not
aim for diversity in the prioritized tests. However, GraphPrior has demonstrated
the ability to identify a significant majority of misclassified test inputs using a small
ratio of prioritized test cases. Specifically, RFGP (i.e., the most effective GraphPrior
approach) has been shown to detect over 80% misclassified tests by prioritizing only
40% of the test inputs. This highlights GraphPrior’s ability to efficiently identify a
large proportion of bugs using a small set of prioritized tests, even without explicitly
ensuring bug diversity. While prioritizing diverse bugs can improve the overall quality
of testing, prioritizing a significant majority of bugs can still be a practical strategy
in situations where time and resources are limited. Therefore, GraphPrior’s ability
to efficiently identify a large proportion of bugs using a small set of prioritized tests
can be particularly useful in scenarios where time and resources are constrained.

[GraphPrior in active learning scenarios.] Active learning [206] operates under
the assumption that samples within a dataset have varying contributions to the
improvement of the current model and aims to select the most informative samples
for inclusion in the training set. Our investigation in RQ6 has demonstrated that
GraphPrior and uncertainty-based metrics can be utilized to select informative
retraining tests. However, the effectiveness of these approaches is limited. Specifically,
despite the demonstrated success of uncertainty-based metrics such as DeepGini and
margin in previous studies [3] [47] on DNNs, their effectiveness in the context of
GNNs is slight. We explore potential reasons for this phenomenon.

One crucial reason for their limited effectiveness lies in their inadequate con-
sideration of node importance, i.e., the impact that a node has on other nodes in

95

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

the graph dataset. In a GNN dataset, the complex interdependence among test
inputs and their neighbors can result in differing levels of importance for different
nodes. For instance, nodes with higher connectivity can be more influential and
hence more critical. However, current test prioritization approaches only focus on
the ability of test inputs to expose system bugs without taking into account the node
importance. Although these approaches may identify inputs with a higher likelihood
of misclassification, their importance within the dataset may be negligible if they
have only a few neighbors. Retraining such inputs is, therefore, less effective.

Furthermore, we elaborate on the difference between GraphPrior and the existing
active learning methods evaluated in our study. The active learning methods used for
comparison in our paper are primarily uncertainty-based, aimed at datasets where
each sample is independent of others. However, for graph datasets, these methods
select retraining data without considering the interdependencies between nodes and
also neglect the importance of nodes, merely selecting possibly-misclassifed nodes.
In contrast, GraphPrior employs mutation analysis to identify test inputs that are
more likely to be misclassified while considering the interdependencies between nodes
during the mutation process. Despite this added consideration, GraphPrior’s goal
remains to select misclassified test inputs and does not explicitly consider node
importance, leading to slight effectiveness as the uncertainty-based methods.

[Generating mutants for large-scale GNN models] In our experiments, which are
based on our current model and datasets, the time cost of our retraining method
(for generating mutants) is within an acceptable range. When dealing with large-
scale GNN models, GraphPrior can require large computational resources, but it
can remain feasible in situations where the cost of manual labeling outweighs the
computational cost.

5.6.3 Threats to Validity
Threats to Internal Validity. The internal threats to validity mainly lie in
the implementation of our proposed GraphPrior and the compared approaches. To
reduce the threat, we implemented GraphPrior based on the widely used library
PyTorch and adopted the implementations of the compared approaches published
by their authors. Another internal threat lies in the randomness of the model
training. To mitigate this threat and ensure the stability of our experimental results,
we conducted a statistical analysis. Specifically, we repeated the training process
ten times for both the original model and the mutated model and calculated the
statistical significance of the experiments.

The selection of mutation rules in our study presents another internal threat to
validity. Despite our best efforts to collect a comprehensive set of mutation rules, it is
possible that other training parameters beyond our current knowledge could serve as
mutation rules. To mitigate this threat, we selected mutation rules that can directly
or indirectly affect node interdependence in the prediction process. The selection of
parameter ranges for mutation rules is another internal threat that could affect the
effectiveness of the rules. To mitigate this threat, we adopted a strategy in which we
inverted the values of Boolean parameters, setting true to false and false to true. For
integer and float parameters, we selected a range that introduces only slight changes
to the original GNN model. Our experimental results demonstrated the effectiveness
of GraphPrior, indicating that the mutation rules and selected parameter range are
suitable for GNN test prioritization.

96

5.7. Related Work

Threats to External Validity. The external threats to validity mainly lie
in the GNN models under test and the testing datasets we used in our study. To
mitigate this threat, we adopted a large number of subjects (pairs of model and
dataset) in our study and leveraged different types of test inputs. We applied 8
graph adversarial attacks from public studies to generate adversarial test inputs and
varied the attack level for more detailed evaluation. In the future, we will apply
GraphPrior to more GNN models and test datasets with diversity.

5.7 Related Work
We present the related work in three aspects, which are test prioritization

techniques, deep neural network testing, and mutation-based test prioritization for
traditional software.

5.7.1 Test prioritization Techniques
In traditional software testing, test prioritization [92, 207, 142, 208, 145, 209, 210,

136] aims to find the ideal order of test cases to reveal system bugs earlier. Prioritizing
test cases contributes to two critical constraints, time and budget for software testing,
in order to detect more fault-revealing test cases in a limited time. Di Nardo et
al. [210] conducted a case study of coverage-based prioritization strategies on real-
world regression faults, evaluating the effectiveness of several test case prioritization
techniques in bug detection. Rothermel et al. [136] presented and compared three
types of test case prioritization techniques for regression testing that are based on
test execution information. They demonstrated that each of the studied prioritization
techniques increased the fault detection rate of the test suite. Henard et al. [142]
conducted a comprehensive study to compare existing test prioritization approaches,
finding that the difference between white-box [143, 211, 212, 92] and black-box
strategies [144, 213, 214] are little. Chen et al. [145] proposed LET to prioritize
test programs for compiler testing acceleration and demonstrated its effectiveness.
LET works through two processes, the learning process to identify program features
and predict the bug-revealing probability of a new test program and the scheduling
process to prioritize test programs based on bug-revealing probabilities. Chen et
al. [209] proposed to prioritize test programs based on the prediction information of
the test coverage for compilers.

In terms of test prioritization for DNNs, Feng et al. [3] proposed the state-of-
the-art approach, DeepGini, which identifies possibly-misclassified tests based on
model uncertainty. DeepGini assumes a test is more likely to be mispredicted if the
DNN outputs similar probabilities for each class. Byun et al. [147] evaluated several
metrics that prioritize bug-revealing inputs based on the white-box measures of
DNN’s sentiment, including softmax confidence (i.e., predicted probability for output
categories in DNNs that use softmax output layers), Bayesian uncertainty (i.e., the
uncertainty of the prediction probability distributions for Bayesian Neural Networks),
and input surprise (i.e., the distance of the neuron activation pattern between a
test input and the training data). Wang et al. [2] proposed PRIMA to prioritize
test inputs for DNNs via intelligent mutation analysis. PRIMA further improves
DNN test prioritization in two main aspects. First, PRIMA can be applied not
only to classification modes but also to regression models. Second, PRIMA can deal
with the case in which test inputs are generated from adversarial input generation
approaches [215] that can make the probability of the wrong class larger. Furthermore,

97

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

some data selection approaches [172] are also proposed to detect possibly-misclassified
tests for DNNs. Despite its effectiveness in DNN test prioritization, the PRIMA
approach cannot be directly applied to GNNs. This is because PRIMA’s mutation
operators are not adapted to graph-structured data and GNN models.

More specifically, GNN models operate on graph-structured data, where nodes and
edges represent entities and their relationships. Conversely, the input mutation rules
of PRIMA were designed for independent test samples, rendering them unsuitable
for GNNs. Moreover, GNNs incorporate unique graph operations and aggregation
mechanisms, including graph convolution operations and message passing mechanisms.
PRIMA’s model mutation rules are not applicable to the graph-level mechanisms
employed by GNNs. As such, GNNs require specialized test prioritization techniques,
such as GraphPrior, which leverages the properties of GNN models in its mutation
analysis for test prioritization. More specifically, to address the limitations of
PRIMA, GraphPrior introduces mutation rules that are designed based on the
graph operations and aggregation mechanisms of GNNs. These rules can directly or
indirectly impact message passing. Consequently, GraphPrior enables prioritizing
tests for graph-structured data.

5.7.2 Deep Neural Network Testing
Besides test input prioritization, some test selection approaches have also been

proposed to improve the efficiency of DNN testing. Test selection aims to precisely
estimate the accuracy of the whole set by only labeling the set of selected test inputs.
In this way, the labeling cost for DNN testing is reduced. Li et al. [36] proposed CES
(Cross Entropy-based Sampling) and CSS (Confidence-based Stratified Sampling)
to select a small group of representative test inputs to estimate the accuracy of the
whole testing set. CES minimizes the cross-entropy between the selected set and the
entire test set to ensure that the distribution of the selected test set is similar to the
original test set. CSS leverages the confidence features of test inputs to guarantee
the similarity between the selected test set and the entire test set. Chen et al. [35]
proposed PACE (Practical Accuracy Estimation), which selects test inputs practically
based on clustering, prototype selection, and adaptive random testing. Pace first
clusters all the test inputs into different groups based on their testing capabilities.
Then, Pace utilizes the MMD-critic algorithm [37] to select prototypes from each
group. For test inputs not in any group, Pace leverages adaptive random testing to
select tests from them. Compared to the aforementioned research, our work focus on
test prioritization, which ranks all the test inputs without discarding any test input.
In this way, testers or developers can find the test inputs that reveal bugs earlier.

In addition to improving the efficiency of DNN testing, several existing studies [4,
5, 48, 49, 151, 50] have focused on measuring the adequacy of DNNs. Pei et al. [4]
proposed a metric of neuron coverage to evaluate how adequate a test set covers the
logic of a DNN model. Based on this metric, they proposed a white-box framework
for testing DNNs. In the following study, Ma et al. [5] proposed DeepGauge, a set of
DNN testing coverage criteria to measure the test adequacy of DNNs. DeepGauge
also considers neuron coverage to be a good indicator of the effectiveness of a test
input. Based on the basic neuron coverage metric, they proposed new metrics with
different granularities to differentiate adversarial attacks from legit test data. Kim
et al. [49] proposed the surprise adequacy for testing of DL models, which identify
how effective a test input by measuring its surprise with respect to the training set.

98

5.7. Related Work

More specifically, the surprise of a test input refers to the difference in the activation
value of neurons in the face of this new test.

5.7.3 Mutation Testing for DNNs
Several existing studies have explored the use of mutation testing for DNNs

and developed different mutation operators and frameworks. Ma et al. [48] propose
DeepMutation to measure the quality of test data for DL systems based on mutation
testing. To this end, they design a set of source-level and model-level mutation
operators to inject faults into the training data, training programs, and DL models.
The quality of test data is evaluated by analyzing the extent to which the injected
faults can be detected. The work by Ma et al. was later extended into a mutation
testing tool for DL systems named DeepMutation++ [151], which proposed a set
of new mutation operators for feed-forward neural networks (FNNs) and Recurrent
Neural Networks (RNNs) and can dynamically mutate run-time states of an RNN.
Humbatova et al. [146] proposed DeepCrime, which is the first mutation testing tool
that implements a set of DL mutation operators based on real DL faults. Shen et
al. [216] proposed MuNN, a mutation analysis method for neural networks. MuNN
defined five mutation operators based on the characteristics of neural networks. The
results reveal that mutation analysis has strong domain characteristics, indicating the
need for domain mutation operators to enhance the analysis, and that new mutation
mechanisms are required for deep neural networks.

The above studies in mutation testing have focused on traditional DNNs, which
are typically evaluated on datasets with independent samples. However, the mutation
rules employed in these studies do not account for the interdependence among test
inputs, which is a crucial factor to consider in the context of GNN testing. In
contrast, the mutation rules of GraphPrior are designed to impact the message
passing mechanism in the GNN prediction process. In the mutated GNN model, the
way nodes acquire information from their neighboring nodes differs slightly from
that of the original GNN model. The mutation features generated based on these
mutation rules are fed into ranking models to predict the likelihood of a test input
being misclassified by the GNN model.

5.7.4 Mutation-based Test Prioritization for Traditional Software
In traditional software testing, mutation testing is a well-established technique

to evaluate the quality of test sets. Mutation-based test prioritization focuses on
prioritizing test cases based on their ability to detect mutants. The key idea is that
test cases that can detect mutants are likely to be more effective at finding real faults
in the code and, therefore, should be given higher priority. Several mutation-based
approaches [141, 150] have been proposed. Lou et al. [141] proposed a test-case
prioritization approach based on the fault detection capability of test cases. They
introduced two models to calculate the fault detection capability: the statistics-based
model and the probability-based model. Based on the experimental study, they found
that the statistics-based model outperforms all the approaches. Shin et al. [150]
proposed a test case prioritization technique guided by the diversity-aware mutation
adequacy criterion and empirically evaluated the effectiveness of mutation-based
prioritization techniques with large-scale developer-written test cases. Papadakis et
al. [64] proposed mutating Combinatorial Interaction Testing models and using them
to prioritize tests based on their ability to kill mutants and showed that the number

99

Chapter 5. GraphPrior: Mutation-based Test Input Prioritization for
Graph Neural Networks

of model-based mutants that are killed yields a strong correlation to code-level faults
revealed by the test cases. The aforementioned DNN-oriented approaches consider
each test input independent of each other, while in a graph dataset, there are usually
complex connections between test inputs. Our proposed GraphPrior specifically
targets GNNs and utilizes several mutation rules to generate GNN mutants for test
prioritization. Moreover, to better leverage the mutation results, we adopt several
ranking models [14, 112, 69] that can learn to predict the probability of a test input
to be misclassified.

5.8 Conclusion
To improve the efficiency of GNN testing, we aim to prioritize possibly-misclassified

test inputs to reveal GNN bugs earlier. However, a crucial limitation of existing
test prioritization approaches is that, when applying to GNNs, they do not take
into account the interdependence between test inputs (nodes). In this paper, we
propose GraphPrior, a set of test prioritization approaches specifically for GNN
testing. GraphPrior assumed that a test input is more likely to be misclassified if it
can kill many mutated models. Based on it, GraphPrior leveraged carefully designed
mutation rules to generate mutated models for GNNs. Subsequently, GraphPrior
obtained the mutation results of test inputs based on the execution of the mutated
models. GraphPrior utilized the mutation results in two ways, namely, killing-based
and feature-based methods. In the process of scoring a test, killing-based methods
considered each mutated model equally important, while feature-based methods
learned different importance for each mutated model through ranking models. Finally,
GraphPrior ranked all the test inputs based on their scores. We conducted an exten-
sive study to evaluate the effectiveness of GraphPrior approaches on 604 subjects,
comparing them with existing approaches that could detect possibly-misclassified
test inputs. The experimental results demonstrate the effectiveness of GraphPrior.
In terms of APFD, the killing-based GraphPrior approach, KMGP, exceeds the
compared approaches (i.e., DeepGini, margin, Vanilla Softmax, PCS, Entropy, least
confidence and random selection) by 0.034~0.248 on average. Furthermore, RFGP
(i.e., the feature-based GraphPrior approach) exhibited better performance compared
to other GraphPrior approaches. Specifically, RFGP outperforms the uncertainty-
based test prioritization approaches against different adversarial attacks, with the
average improvement of 2.95%~46.69%.

100

6 LongTest: Test Prioritization for
Long Text Files

In this chapter, we propose LongTest, a novel test prioritization approach specifically
designed for long text files. LongTest addresses critical gaps in the literature: 1)
Confidence-based methods fail to leverage the rich semantic content of the test inputs
(long text files) for test prioritization; 2) mutation-based techniques are specifically
designed for short texts, introducing small mutations that have negligible impacts
on long text files; and 3) coverage-based methods are computationally expensive and
less effective. To this end, LongTest introduces 1) an embedding generation
mechanism specifically designed to enhance the capture of information from the
entire long text file, and 2) contrastive learning that enables more effective differ-
entiation between misclassified and correctly classified samples, which optimizes the
test prioritization process. The experimental results demonstrate the effectiveness of
LongTest, outperforming all the compared test prioritization approaches.

This chapter is based on the work in the following research paper:
• Xueqi Dang, Yinghua Li, Wendkuuni C. Ouédraogo, Maxime Cordy, Mike

Papadakis, Jacques Klein, Tegawendé F. Bissyandé, Yves Le Traon. LongTest:
Test Prioritization for Long Text Files. Under Review in ACM Transactions
on Software Engineering and Methodology (TOSEM), 2024.

Contents
6.1 Introduction . 103
6.2 Background . 106

6.2.1 Deep Neural Networks 106
6.2.2 Contrastive Learning . 106
6.2.3 Test Input Prioritization for DNNs 106

6.3 Approach . 107
6.3.1 Overview . 107
6.3.2 Step 1: Text Preprocessing and Dimensionality Reduction 109
6.3.3 Step 2: Constructing Positive and Negative Pairs 110
6.3.4 Step 3: Training Contrastive Learning Model 111
6.3.5 Step 4: Training Classification Model for Prioritization . 112
6.3.6 Usage of LongTest . 112

Chapter 6. LongTest: Test Prioritization for Long Text Files

6.4 Study design . 113
6.4.1 Research Questions . 113
6.4.2 Models and Datasets . 114
6.4.3 Measurements . 116
6.4.4 Compared Approaches 117
6.4.5 Implementation and Configuration 118

6.5 Results and analysis . 118
6.5.1 RQ1: Performance of LongTest 118
6.5.2 RQ2: Impact of Number of Chunks on LongTest 121
6.5.3 RQ3: Impact of Different Embedding Models on LongTest122
6.5.4 RQ4: Impact of Dimension Reduction on LongTest . . . 124
6.5.5 RQ5: Impact of Main Parameters on LongTest 125
6.5.6 RQ6: Contributions of Core Components to LongTest . 126

6.6 Discussion . 127
6.6.1 Generality of LongTest 127
6.6.2 Threats to Validity . 128

6.7 Related Work . 128
6.7.1 Test Prioritization for Traditional Software 128
6.7.2 Testing Deep Learning Systems 129

6.8 Conclusion . 129

102

6.1. Introduction

6.1 Introduction
Text classification is a foundational problem in natural language processing

(NLP) [217], which focuses on assigning pre-defined labels to text files. While tradi-
tional research [217, 218] has primarily targeted short texts (e.g., social media posts,
emails, and product reviews), the increasing complexity of real-world applications
demands more advanced methods capable of analyzing long text files, such as legal
documents, scientific literature, and technical reports.

Long texts present unique challenges due to their extended length, complex
hierarchical structures, and diverse semantic content, distinguishing them significantly
from short texts [28]. The classification of long texts holds critical importance
across various domains, such as medical report classification [219], legal document
categorization [220], and research topic classification [221, 222]. For example, in the
medical domain [223], classification models can be utilized to categorize patients’
medical history records (which are long text files) into different disease types, thereby
facilitating accurate diagnoses and improving treatment planning.

However, in such critical scenarios, misclassifications can lead to severe con-
sequences. For example, if a patient’s record is misclassified, it could result in
misdiagnosis or inappropriate treatment, delaying the correct medical process and
potentially worsening the patient’s condition. Therefore, ensuring the accuracy
and reliability of such long-text classification systems is essential. Testing is a
fundamental practice for ensuring the quality of DNN-based systems [3]. However,
labeling test inputs to verify the correctness of classification results can be costly [35].
This challenge has also extended to the field of long text classification due to three
main reasons: 1) Manual annotation remains a mainstream method for labeling,
making the process labor-intensive and time-consuming. 2) Test sets for long text
classification can be large-scale, increasing the labeling workload. 3) Domain-specific
knowledge is frequently required in certain fields to accurately label long text files.
For example, annotating medical history records can require expertise from medical
professionals, further increasing the labelling cost.

To alleviate the labelling cost problem, one intuitive and effective approach is
test input prioritization [3, 7, 2], which focuses on identifying and prioritizing test
inputs that are more likely to be misclassified by the DNN model, as these inputs
are more likely to expose faults in the model. This approach enables the detection of
more fault-revealing test inputs within a limited timeframe. Labeling these inputs
earlier accelerates the debugging process and thus improves the efficiency of DNN
testing.

In the literature, several test prioritization methods have been proposed to en-
hance the efficiency of DNN testing. These approaches can be broadly categorized
into three classes: coverage-based [4, 5], confidence-based [3, 7], and mutation-based
approaches [2]. Coverage-based methods adapt traditional software testing tech-
niques to DNN testing by leveraging neuron coverage metrics for test prioritization.
Confidence-based methods focus on prioritizing test inputs where the model exhibits
lower confidence in its predictions. For example, DeepGini [3] uses the Gini score
to quantify the model’s prediction confidence and prioritizes inputs with higher
uncertainty. Mutation-based methods [2] introduce novel mutation operators and
utilize mutation results to guide test prioritization.

However, although these approaches have demonstrated effectiveness in certain

103

Chapter 6. LongTest: Test Prioritization for Long Text Files

cases, they suffer from the following limitations when applied to the context of long
text files:
• Confidence-based approaches rely solely on the output probabilities generated by

the final layer of the model, which represent a compressed summary of the model’s
confidence in its predictions. They do not utilize the information contained within
the original input data, especially the rich semantic and hierarchical structure of
long text files, which, as a result, limits their effectiveness in prioritizing long text
files.

• Mutation-based approaches are typically designed for short text. Their proposed
mutation operators usually introduce small-scale mutations, such as altering a few
characters within a word. However, long text typically consists of extended content
and numerous words, making the impact of such slight mutations negligible, which
makes mutation-based methods unsuitable for test prioritization in this context.

• Coverage-based test prioritization methods have been demonstrated to be less
effective and more computationally expensive compared to confidence-based
methods [3].
In this paper, we propose LongTest (Long text file-oriented Test Input Priori-

tization), a learning-based test input prioritization approach specifically designed
for prioritizing long text files. The core idea is that we utilize contrastive learning
to bring misclassified tests closer together in the space while pushing misclassified
and correctly classified tests farther apart. This enables better differentiation be-
tween misclassified and correctly classified tests, thereby achieving more effective
test prioritization.

Specifically, LongTest performs test prioritization based on four steps: 1) Text
Splitting and Transforming. For each test input (a long text file) in the test
set, LongTest divides it into smaller chunks, converts each chunk into an embed-
ding, and concatenates all chunk embeddings to generate a final comprehensive
embedding vector. This process aims to enhance the capture of information from
the entire long text, particularly because embedding algorithms can have input
token limitations (i.e., The embedding algorithms are constrained by the input text
length and cannot capture information exceeding this limit). 2) Dimensionality
Reduction. LongTest applies Principal Component Analysis (PCA) [224] to reduce
the dimensionality of the embedding vector of each test, aiming to decrease the
overall runtime and improve efficiency while retaining the essential characteristics of
the original data. 3) Contrastive Learning. LongTest utilizes contrastive learning
to bring misclassified tests closer in space while pushing misclassified and correctly
classified tests farther apart. As a result, after this step, the original embedding
vector of each test is transformed into a contrastive vector. 4) Ranking. LongTest
employs a trained classification model to estimate the misclassification probability
for each test and ranks all tests based on these probability values.

LongTest has the following notable advantages when applied to prioritize long
text files:
• Leveraging Long Text Characteristics Unlike confidence-based methods that

solely rely on output probabilities from the model’s final layer, LongTest incorpo-
rates rich semantic information from the entire long text file. Specifically, LongTest
processes long text files by splitting them into chunks, generating embedding
vectors, and applying Principal Component Analysis (PCA) for dimensionality
reduction. This process preserves essential information of long text files while

104

6.1. Introduction

reducing the total running time and improving efficiency.
• Enhancing Differentiation via Contrastive Learning LongTest leverages

contrastive learning to bring misclassified test samples closer together in the
feature space while pushing misclassified and correctly classified samples further
apart. This approach enables LongTest to better distinguish between misclassified
and correctly classified samples, thereby improving the prioritization effectiveness.

• Specifically Designed for Long Text LongTest is specifically designed for
prioritizing long text files, fully accounting for the characteristics of their extended
length. Traditional mutation-based prioritization methods are designed for short
texts, with mutation operators proposed specifically for them, making such
methods unsuitable for long text files.
LongTest demonstrates broad application across various scenarios. One typical

application is the classification of medical history records. In this context, classifica-
tion models are used to categorize patients’ medical history records into different
disease types. However, incorrect classification can lead to severe consequences.
For instance, if a patient’s record is misclassified, it can result in misdiagnosis or
inappropriate treatment, delaying the correct medical process and potentially wors-
ening the patient’s condition. In such cases, LongTest can effectively identify and
prioritize medical history records that are more likely to be misclassified by the model.
These potentially misclassified records can then be prioritized for manual review by
medical experts, thereby reducing the risks associated with incorrect classification.
Additionally, developers can conduct an in-depth analysis of the characteristics of
misclassified records to analyze the causes of prediction errors, thus further optimizing
and improving the classification model.

To assess the effectiveness of LongTest, we performed a comprehensive experi-
mental evaluation using 45 subjects comprising three datasets and 15 DNN models.
We compared LongTest against several existing test prioritization approaches that
have demonstrated effectiveness in prior research [3, 7]. The experimental results
exhibit that LongTest outperforms all existing test prioritization methods, with an
average improvement ranging from 14.28% to 70.86%. To facilitate further research,
we have made our dataset, results, and tools publicly available on Github1.

Our work has the following major contributions:
• Approach We proposed LongTest, a test prioritization approach specifically

designed for prioritizing long text files. To this end, we designed an embedding
generation method tailored for long texts and applied contrastive learning to
enhance the effectiveness of test prioritization.

• Study We evaluated LongTest using 45 subjects, including three datasets and 15
DNN models. The experimental results demonstrate that LongTest outperforms
all the compared test prioritization approaches, with an average improvement of
14.28%~70.86%.

• Performance Analysis We investigate the impact of various parameters and
components of LongTest on its performance, including the number of chunks (RQ2),
embedding models (RQ3), dimensionality (RQ4), and main parameters (RQ5).
Additionally, we conduct an ablation study (RQ6) to analyze the contribution of
each individual component to the effectiveness of LongTest.

1https://github.com/yinghuali/LongTest

105

https://github.com/yinghuali/LongTest

Chapter 6. LongTest: Test Prioritization for Long Text Files

6.2 Background
6.2.1 Deep Neural Networks

Deep Neural Networks (DNNs) consist of multiple layers, each containing numer-
ous interconnected units known as neurons [21]. These neurons are connected by links,
each link assigned a specific weight that is optimized during the model’s training pro-
cess. The training data guides the adjustment of these weights, enabling the network
to learn and generalize patterns across various tasks. Text classification [24] is a
common application of DNNs, focusing on categorizing textual data into predefined
classes based on its content. It is widely used in fields like sentiment analysis [25],
spam detection [26, 27], and medical record analysis [225]. Text classification tasks
can vary depending on text length and complexity. Short texts, such as social media
posts or product reviews, are typically brief, with a small number of characters
and straightforward content. Conversely, long texts, including news articles or legal
documents, contain extensive information with complex structures, often spanning
multiple topics and sentiments. Compared to short text classification, long text
classification presents more challenges due to the need to capture information spread
across extensive content.

6.2.2 Contrastive Learning
Contrastive learning [45] learns effective data representations by pulling similar

samples closer in feature space and pushing dissimilar samples apart. In recent years,
contrastive learning has shown notable performance across various fields, especially
with applications in image, text, and multi-modal data [226]. The primary objective
of contrastive learning is to identify a parametric function fθ : RD → Rd that maps an
input image x ∈ RD to a feature representation z = fθ(x) ∈ Rd. This representation
z in the feature space is designed to capture the semantic similarities between input
samples. To accomplish this objective, contrastive learning leverages a contrastive
loss function to optimize the network fθ. The contrastive loss is designed to draw
semantically similar samples closer together in the feature space while pushing apart
dissimilar samples. This method enables the model to learn discriminative features
that effectively distinguish between different categories (between positive samples
and negative samples).

In our study, we propose the LongTest method, which leverages contrastive
learning to enhance test prioritization effectiveness on long text files. Specifically,
we define misclassified tests (those incorrectly predicted by the DNN model) as
positive samples and correctly classified tests as negative samples. By training
the contrastive learning model in this manner, LongTest aims to better distinguish
between misclassified and correctly classified cases, thereby improving the model’s
ability to predict the probability of misclassification for a given test input. This can
ultimately enhance the effectiveness of test prioritization.

6.2.3 Test Input Prioritization for DNNs
Test prioritization aims to identify and prioritize potentially misclassified test

cases earlier in the testing process [3, 227, 228, 33]. Given a model M to test and a
test suite T , the goal of test input prioritization is to systematically rank the test
cases in T so that, when testing is halted at a certain point, the executed test cases
from the prioritized set can reveal as many faults as possible. This approach enables

106

6.3. Approach

the identification of bug-revealing test inputs within a limited timeframe, facilitating
earlier debugging and improving the efficiency of DNN testing.

The existing DNN test prioritization approaches can be broadly classified into
three main categories: coverage-based [4, 5], confidence-based [3, 7, 229], and
mutation-based approaches [2, 34]. Coverage-based approaches adapt traditional
software testing methods to DNN testing by leveraging neuron coverage metrics for
prioritizing test inputs. Confidence-based approaches, on the other hand, prioritize
test cases based on the model’s prediction confidence, under the assumption that
test cases with lower confidence are more likely to be misclassified. For example,
DeepGini [3] calculates the Gini score to quantify the model’s confidence for each
test case and ranks the test cases within the test set based on these scores. Mutation-
based approaches [2] introduce novel mutation operators, including model and input
mutation operators, and utilize the mutation results for test prioritization.

However, although the above approaches have demonstrated effectiveness in
certain cases, they face limitations when applied to long text files: 1) Coverage-based
methods have been shown to be less effective and more computationally expensive
compared to confidence-based approaches [3]; 2) Confidence-based approaches depend
solely on output probabilities from the model’s final layer. They do not use the
rich semantic and hierarchical structure of test inputs (long text files) for test
prioritization, limiting their effectiveness. 3) Mutation-based methods, typically
designed for short text, focus on small-scale mutations, such as modifying a few
characters of a word. These small mutations have negligible impact on long text
files due to their extended length, making mutation-based approaches unsuitable for
such cases. To address the above limitations, in this paper, we propose LongTest,
which leverages the unique characteristics of long text files for test prioritization.
Section 6.5.1 demonstrates the effectiveness of LongTest.

6.3 Approach
6.3.1 Overview

In this paper, we propose a novel test prioritization approach called LongTest.
LongTest is specifically designed for prioritizing long text files. Specifically, the input
to LongTest is an unlabelled test set T and a text classification model M to be
evaluated. LongTest will output a prioritized test set T ′, where tests that are more
likely to be misclassified are prioritized higher. An overview of LongTest is presented
in Figure 6.1. As shown in Figure 6.1, the construction of the LongTest approach is
divided into four steps. The specific details of each step can be found in the following
sections (cf. Section 6.3.2 to Section 6.3.5).
❶ Step1: Text Preprocessing and Dimensionality Reduction Given the

training set R, for each long text-type sample l ∈ R, we first preprocess it. This
preprocessing includes three key steps: 1) splitting the long text l into several
chunks, 2) transforming each chunk into embeddings, and 3) concatenating the
embeddings of all chunks to obtain a final embedding vector, denoted as Vl. Next,
for each sample l, we perform Principal Component Analysis (PCA) [224] to
reduce the dimensionality of its vector Vl and obtain a reduced-dimensional vector
V P CA

l .
❷ Step2: Constructing Positive and Negative Pairs After obtaining the final

dimension-reduced embedding vector of each sample in R, we use these vectors to

107

Chapter 6. LongTest: Test Prioritization for Long Text Files

Vi Vj … Vn

Si Sj … Sn

Mi Mj … Mn

Vi Vj … Vn Si Sj … Sn Mi Mj … Mn

Long Text

EmbeddingShort Text Embedding Vector

Concatenate Vectors

Pi Pj … Pk

Base Network

Li Lj … Lk Ri Rj … Rk

L*
i L*

j … L*
k R*

i R*
j … R*

k

Step1

Step2Step3

Contrastive
Loss

Positive & Negative

Positive & Positive

Negative & Negative

PCA Embedding

Contrastive
VectorNew Long

Text

Misclassification
score

Classification
Model Training

Step4

Figure 6.1: Overview of LongTest
create pairs (e.g., positive & negative pairs). Here, "positive" represents samples
that are misclassified by the model, while "negative" represents samples that are
correctly classified by the model. Since we know the ground truth for each sample
in R, we can simply input each sample in R into the text classification model
M , compare its prediction with the ground truth, and annotate each sample as
misclassified (positive) or correctly classified (negative). The generated pairs are
then passed to the Base Network in Step 3 to train the contrastive learning model.

❸ Step3: Training Contrastive Learning Model In this step, we use the
paired data from the previous step to train the contrastive learning model. After
training, this contrastive learning model will bring the embedding vectors of
misclassified tests closer to each other in space and make the embedding vectors
of correctly classified tests closer to each other. Additionally, it will make the
misclassified tests farther away from the correctly classified tests. This is intended
to enable the subsequent classification model to better predict whether a test will
be misclassified or correctly classified based on its vector.
Specifically, after training, if we input the embedding vector V P CA

t of a new test
t into the contrastive learning model, it will output a transformed contrastive
vector V cont

t . The contrastive vector V cont
t can better reflect how likely a test t

will be misclassified.
❹ Step4: Training Classification Model for Prioritization In the final step, we

trained a classification model for test prioritization. This model predicts whether
a sample will be misclassified based on its contrastive vector, where a misclassified
sample is labelled as "1" and a correctly classified sample as "0". Once the model
was trained, we made some adjustments to it. Specifically, given an input (the
contrastive vector of a test), we make the model output the intermediate value
instead of the binary label (0 or 1). This value is a probability value indicating the
likelihood that the test will be misclassified. We refer to it as the "misclassification
score". The higher this score, the more likely the test will be misclassified.
After the construction of LongTest, given a test set T and model M to be evaluated,
LongTest will predict the misclassification score of each test t ∈ T to rank them.
Tests that have high misclassification scores will be prioritized higher.

108

6.3. Approach

6.3.2 Step 1: Text Preprocessing and Dimensionality Reduction
Given the training set R and the text classification model M to be evaluated, for

each long-text sample l ∈ R, we first performed text preprocessing and dimensionality
reduction on it. In the following, we provide a detailed explanation of each specific
procedure, along with the relevant formulas.

6.3.2.1 Chunk-based Text Splitting

Given the long text sample l ∈ R, we split l into several chunks, as described in
Formula 6.1.

l = [c1, c2, . . . , cn] (6.1)

where ci represents the ith chunk. n is the total number of chunks.

Rationale: The reason we perform text splitting is that embedding models
typically have input token limitations, meaning that they are constrained by
the length of the input text and cannot process information beyond this limit.
Therefore, if the long text l exceeds the token limit, the portion of the text
exceeding this limit will be lost when converting the text into an embedding
vector, resulting in information loss. Through chunk-based splitting, we aim
to enhance the capture of information from the entire long text file.

Specifically, in RQ2 (cf. Section 6.5.2), we investigate the impact of the number
of chunks on the effectiveness of LongTest.

6.3.2.2 Transforming Text into Embeddings

Next, for each long text sample l ∈ R, we transform the obtained chunks
l = [c1, c2, . . . , cn] individually into embeddings using an embedding algorithm [230].
Then, we concatenate all the embeddings of the chunks of l to generate a final
embedding vector Vl. This process is represented as Formula 6.2.

Vl = [Embedding (c1) , Embedding (c2) , . . . , Embedding (cn)] (6.2)

where Embedding(ci) denotes the embedding of the chunk ci. Vl refers to the
embedding vector of the long text sample l.

Rationale: The reason we transform each long text sample l ∈ R into an
embedding vector is that text is unstructured data, which models cannot
directly understand. Embeddings convert text into fixed-dimensional vector
representations, preserving the semantic information of the text and facilitating
subsequent analysis. Through embeddings, the text content of l ∈ R can be
used to train the classification model in the following step (which is used to
predict how likely a long text sample will be misclassified).

Specifically, in RQ3, as detailed in Section 6.5.3, we investigate the impact of
different embedding algorithms on the effectiveness of LongTest.

109

Chapter 6. LongTest: Test Prioritization for Long Text Files

6.3.2.3 Dimensionality Reduction with PCA

In the previous step, for each long text sample l in the training set R, we obtained
its embedding vector Vl. In this step, we perform dimensionality reduction on this
embedding vector using the Principal Component Analysis (PCA) algorithm [224],
aiming to reduce its dimensionality to decrease the overall runtime while preserving
the essential semantic information of the long text. This process can be represented
as Formula 6.3.

V P CA
l = PCA(Vl) (6.3)

where Vl is the original embedding vector of each long text sample l ∈ R.
PCA() denotes the Principal Component Analysis algorithm used for dimensionality
reduction. V P CA

l is the resulting lower-dimensional embedding of l.

Rationale: Dimension reduction aims to reduce the overall runtime of
LongTest and enhance the efficiency of test prioritization while preserving the
features of the original data [231]. High dimensionality can lead to the curse
of dimensionality, which causes computational inefficiency and the risk of
overfitting due to sparse data distribution in high-dimensional spaces.

6.3.3 Step 2: Constructing Positive and Negative Pairs
In this step, we construct positive and negative pairs for training the contrastive

learning model. The specific steps are as follows:
❶ First, for each long text sample l ∈ R, we use the text classification model M to

be evaluated to predict the label of l, obtaining the prediction result ŷl.
❷ Given that the ground truth of l is yl, we compare ŷl with yl to determine whether

l is misclassified by the model. If l is misclassified, we label it as "positive" (+);
otherwise, we label it as "negative" (−). This process is presented in Formula 6.4

zl =
{

+1, if ŷl ̸= yl (misclassified, labeled as "positive")
−1, if ŷl = yl (correctly classified, labeled as "negative") (6.4)

where zl represents whether sample l is misclassified by the model, with zl = +1
indicating that the sample is misclassified (labeled as "positive") and zl = −1
indicating that the sample is correctly classified (labeled as "negative"). Here, ŷl

is the predicted label generated by the text classification model M , and yl is the
ground truth label of the sample l. If ŷl ̸= yl, it corresponds to misclassification.
If ŷl = yl, it corresponds to correct classification.

❸ After labeling all the samples in the training R as "positive" or "negative", we
construct positive and negative sample pairs. Specifically, we construct three types
of sample pairs in total: positive-negative, positive-positive, and negative-negative,
which are presented as follows. These constructed pairs will be used in subsequent
steps to train the contrastive learning model.
In the following, a and b represent two arbitrary data samples from the training
dataset R.
– Positive-Negative Pairs (PP N) The positive-negative pair set PP N includes

pairs where a, b ∈ R, one sample has a positive label, and the other has a

110

6.3. Approach

negative label:

PP N = {(vP CA
a , vP CA

b) | a, b ∈ R, za = +1, zb = −1, a ̸= b}.

– Positive-Positive Pairs (PP P) The positive-positive pair set PP P includes
pairs where a, b ∈ R and both samples have positive labels:

PP P = {(vP CA
a , vP CA

b) | a, b ∈ R, za = +1, zb = +1, a ̸= b}.

– Negative-Negative Pairs (PNN) The negative-negative pair set PNN includes
pairs where a, b ∈ R and both samples have negative labels:

PNN = {(vP CA
a , vP CA

b) | a, b ∈ R, za = −1, zb = −1, a ̸= b}.

where vP CA
a and vP CA

b refer to the PCA-reduced embedding vectors for samples a
and b, respectively. za and zb represent the labels (positive or negative) of samples
a and b, respectively. za = +1 indicates that the sample a has a positive label,
and zb = −1 indicates that the sample b has a negative label. The condition a ̸= b
ensures that a and b are not the same sample.

❹ Finally, we obtained the complete set of sample pairs:

P = PP N ∪ PP P ∪ PNN ,

where P refers to the complete set of sample pairs, which is the union of PP N ,
PP P , and PNN . PP N refers to the set of Positive-Negative Pairs. PP P refers to
the set of Positive-Positive Pairs. PNN refers to the set of Negative-Negative
Pairs.

6.3.4 Step 3: Training Contrastive Learning Model
Using the sample pairs P from the above step, we train the contrastive learning

model. The contrastive loss function works by bringing same-type pairs (Positive-
Positive Pairs, Negative-Negative Pairs) closer in the space while pushing different-
type pairs (Positive-Negative Pairs) farther apart in the space. This brings misclassi-
fied tests ("positive") closer together in space while pushing misclassified ("positive")
and correctly classified tests ("negative") farther apart. This enables better differen-
tiation between misclassified and correctly classified tests, thereby achieving more
effective test prioritization.

After training, we obtain the base network of contrastive learning, which can be
used to transform embedding vectors of a test input. Specifically, if we input the
dimensionality-reduced embedding vector V P CA

t of a long-text test t into the trained
base network, a contrastive vector will be generated based on it. This process is
mathematically represented in Formula 6.5.

vcont
t = fθ

(
vPCA

t

)
(6.5)

where vPCA
t denotes the input vector, representing the dimensionality-reduced

embedding of the long-text test t. fθ denotes the base network, a transformation
function parameterized by θ, which is learned during the training phase of the
contrastive learning model. vcont

t denotes the output vector, referred to as the "con-
trastive vector", which maps the long-text test in a space optimized for distinguishing
between misclassified and correctly classified tests.

111

Chapter 6. LongTest: Test Prioritization for Long Text Files

6.3.5 Step 4: Training Classification Model for Prioritization
In the final step, we trained a Random Forest model [232] to classify between

misclassified tests and correctly classified tests. We chose to use the Random Forest
model because it is faster compared to other classification models, such as XGBoost [8]
and LightGBM [69], while maintaining high effectiveness. Specifically, we built a
new training dataset RRF based on the original training dataset R for training the
Random Forest model. Below, we describe how the training dataset is constructed:
• Feature Extraction Based on the steps described from Section 6.3.2 to Sec-

tion 6.3.4, we transformed each long-text sample l ∈ R into a contrastive vector
vcont

l through text preprocessing, dimensionality reduction, and enhancement by
the contrastive learning model.

• Label Assignment We label each sample l ∈ R as either misclassified or correctly
classified by the model by comparing the model’s prediction result with its ground
truth. If the sample is misclassified by the model, we label it as 1; otherwise, we
label it as 0.

• Training Dataset Construction For each l ∈ R, we use its contrastive vector
vcont

l as features and whether it is misclassified (1 for misclassified and 0 for
correctly classified) as labels to construct the new training dataset RRF for
training the Random Forest model.
Once the Random Forest model was trained, we made slight adjustments to it

so that, when inputting a test t, it could output the probability that t would be
misclassified by the model. Specifically, we configured the Random Forest model to
output the intermediate prediction value. This intermediate value represents the
probability that the model predicts the test as belonging to class 1 ("misclassified")
and, thereby, can be used to estimate the likelihood that a sample will be misclassified.
We used this value as the misclassification score to rank all the tests.

6.3.6 Usage of LongTest
In this section, we present how LongTest performs test prioritization on an un-

ordered, unlabeled long-text test set T = {t1, t2, . . . , tn}, given the text classification
model M to be evaluated.
❶ For each long-text test sample ti in T , LongTest processes it using the text prepro-

cessing and dimensionality reduction steps described in Step 1 (cf. Section 6.3.2),
obtaining the reduced-dimensional embedding for each test. The resulting set of
embeddings is represented as:

Temb =
{
vPCA

t1 , vPCA
t2 , . . . , vPCA

tn

}
where vPCA

ti
represents the PCA-reduced embedding vector for the test sample ti.

Temb represents the set of PCA-reduced embedding vectors for all test samples
t1, t2, . . . , tn.

❷ Next, based on the contrastive learning model trained in Step 3 (cf. Section 6.3.4),
LongTest inputs the reduced-dimensional vector of each test ti into the contrastive
learning model to obtain its contrastive embedding vector. This is represented as:

Tcont =
{
vcont

t1 , vcont
t2 , . . . , vcont

tn

}
where vcont

ti
denotes the contrastive embedding vector for each test sample ti.

Tcont represents the set of contrastive embedding vectors for all test samples

112

6.4. Study design

t1, t2, . . . , tn.
❸ Subsequently, based on each sample’s contrastive learning vector vcont

ti
, LongTest

utilizes the Random Forest model trained in Step 4 (cf. Section 6.3.5) to estimate
the probability of each test sample ti being misclassified by the model M . This is
represented as:

Pmis = {Pmis(t1), Pmis(t2), . . . , Pmis(tn)}

where Pmis(ti) represents the probability of test sample ti being misclassified by
the model M . Pmis, represents the set of misclassification probabilities for all test
samples t1, t2, . . . , tn.

❹ Finally, LongTest ranks all the tests in the test set T based on their probabilities
to be misclassified by the model, resulting in a sorted test set Tranked:

Tranked = {t(1), t(2), . . . , t(n)}

such that:

Pmis(t(1)) ≥ Pmis(t(2)) ≥ · · · ≥ Pmis(t(n))

where Pmis(t(i)) denotes the probability that the sample t(i) will be misclassified by
the model M . The subscript indices (1), (2), . . . , (n) represent the ranked order of
the test samples after sorting by their misclassification probabilities. For example,
t(1) refers to the test sample with the highest misclassification probability.

6.4 Study design
In this section, we comprehensively present our study design from various per-

spectives. Specifically, Section 6.4.1 presents the research questions that served as
the guiding framework for our investigation. Section 6.4.2 presents the datasets
and models employed to assess the effectiveness of LongTest. Section 6.4.3 presents
the measurements we used for evaluation. Section 6.4.4 presents the test prioritiza-
tion approaches we utilized to compare with LongTest. Section 6.4.5 describes the
implementation and configuration setup utilized in our study.

6.4.1 Research Questions
Our experimental evaluation addresses the following research questions.

• RQ1: How does LongTest perform in prioritizing tests for long text
files?
We evaluate the performance of LongTest by comparing it with several existing
test prioritization approaches [7, 3]. We conduct statistical analysis [233, 234] to
prove that the observed improvements achieved by LongTest over the existing
approaches are statistically significant.

• RQ2: How does the number of chunks affect LongTest effectiveness?
To perform test prioritization, LongTest first divides a long text file into smaller
chunks, converts these chunks into embeddings, and then concatenates them.
In this research question, we investigate how splitting into different numbers of
chunks impacts the effectiveness of LongTest.

• RQ3: What is the impact of different embedding models on LongTest?
In the test prioritization process of LongTest, chunks of text are converted into
vectors using an embedding model. This research question investigates the impact
of different embedding models on the effectiveness of LongTest.

113

Chapter 6. LongTest: Test Prioritization for Long Text Files

• RQ4: What is the impact of reducing to different dimensions on
LongTest?
Within the LongTest framework, we apply Principal Component Analysis (PCA) [224]
to reduce the dimensionality of text embedding vectors. This research question
investigates the impact of reducing text vectors to different dimensions on the
effectiveness of LongTest.

• RQ5: How do the main parameters influence the effectiveness of
LongTest?
We investigate the impact of main parameters in LongTest to examine its stability
across different parameter selections.

• RQ6: Does each component contribute to LongTest?
LongTest comprises core components, including contrastive learning and PCA for
dimensionality reduction. This research question investigates the contributions of
these components to the effectiveness of LongTest through an ablation study.

6.4.2 Models and Datasets
To evaluate the effectiveness of LongTest and the compared test prioritization

approaches, we use a set of 45 subjects, including 3 long-text datasets and 15 text
classification models. The essential details and the matching relationship between
the long-text datasets and the models are presented in Table 6.1.
6.4.2.1 Datasets

In our research, we utilized three long text datasets: EURLEX57K [235], Fak-
eNews [236], and Cancer Text Documents [222]. The reasons for selecting these
datasets to evaluate LongTest are as follows: these datasets have been extensively
studied in academia and are widely used and discussed by researchers and developers
on data science competition platforms (such as Kaggle). Additionally, these datasets
contain a considerable proportion of long texts. For example, the CancerDoc dataset
comprises 98.7% long texts, while the EURLEX57K and FakeNews datasets include
51.3% and 32.4% long texts, respectively. Therefore, these datasets are suitable for
testing the long text-oriented test prioritization approach LongTest. Here, based on
prior research, texts with more than 512 tokens are regarded as long texts [237].
• EURLEX57K [235] The EURLEX57K dataset is a large-scale, publicly available

dataset consisting of 57k English-language EU legislative documents from the
EUR-LEX portal.

• FakeNews [236] The FakeNews dataset is a publicly available dataset containing
news articles with titles and full-text content. This dataset is designed for text
classification tasks aimed at distinguishing between real and fake news.

• CancerDoc [222] The Cancer Text Documents dataset is a publicly available
dataset consisting of cancer-related research articles, including abstracts and
full papers. This dataset focuses on lengthy research papers with more than
six pages. It is designed for text classification tasks aimed at analyzing and
categorizing cancer-focused content. Examples of labels include "Thyroid_Cancer"
and "Colon_Cancer."

6.4.2.2 Models

To evaluate the effectiveness of LongTest, we employed 15 well-established text

114

6.4. Study design

Table 6.1: Datasets and Models
ID Dataset Ratio of Long Docs # Size Models

1 CancerDoc 98.7% 7569 DistilRoBERTa-DNN
2 CancerDoc 98.7% 7569 DistilRoBERTa-DT
3 CancerDoc 98.7% 7569 DistilRoBERTa-LR
4 CancerDoc 98.7% 7569 DistilRoBERTa-RF
5 CancerDoc 98.7% 7569 DistilRoBERTa-TabNet
6 CancerDoc 98.7% 7569 MPNet-DNN
7 CancerDoc 98.7% 7569 MPNet-DT
8 CancerDoc 98.7% 7569 MPNet-LR
9 CancerDoc 98.7% 7569 MPNet-RF
10 CancerDoc 98.7% 7569 MPNet-TabNet
11 CancerDoc 98.7% 7569 MiniLM-DNN
12 CancerDoc 98.7% 7569 MiniLM-DT
13 CancerDoc 98.7% 7569 MiniLM-LR
14 CancerDoc 98.7% 7569 MiniLM-RF
15 CancerDoc 98.7% 7569 MiniLM-TabNet
16 EURLEX57K 51.3% 57000 DistilRoBERTa-DNN
17 EURLEX57K 51.3% 57000 DistilRoBERTa-DT
18 EURLEX57K 51.3% 57000 DistilRoBERTa-LR
19 EURLEX57K 51.3% 57000 DistilRoBERTa-RF
20 EURLEX57K 51.3% 57000 DistilRoBERTa-TabNet
21 EURLEX57K 51.3% 57000 MPNet-DNN
22 EURLEX57K 51.3% 57000 MPNet-DT
23 EURLEX57K 51.3% 57000 MPNet-LR
24 EURLEX57K 51.3% 57000 MPNet-RF
25 EURLEX57K 51.3% 57000 MPNet-TabNet
26 EURLEX57K 51.3% 57000 MiniLM-DNN
27 EURLEX57K 51.3% 57000 MiniLM-DT
28 EURLEX57K 51.3% 57000 MiniLM-LR
29 EURLEX57K 51.3% 57000 MiniLM-RF
30 EURLEX57K 51.3% 57000 MiniLM-TabNet
31 FakeNews 32.4% 44898 DistilRoBERTa-DNN
32 FakeNews 32.4% 44898 DistilRoBERTa-DT
33 FakeNews 32.4% 44898 DistilRoBERTa-LR
34 FakeNews 32.4% 44898 DistilRoBERTa-RF
35 FakeNews 32.4% 44898 DistilRoBERTa-TabNet
36 FakeNews 32.4% 44898 MPNet-DNN
37 FakeNews 32.4% 44898 MPNet-DT
38 FakeNews 32.4% 44898 MPNet-LR
39 FakeNews 32.4% 44898 MPNet-RF
40 FakeNews 32.4% 44898 MPNet-TabNet
41 FakeNews 32.4% 44898 MiniLM-DNN
42 FakeNews 32.4% 44898 MiniLM-DT
43 FakeNews 32.4% 44898 MiniLM-LR
44 FakeNews 32.4% 44898 MiniLM-RF
45 FakeNews 32.4% 44898 MiniLM-TabNet

115

Chapter 6. LongTest: Test Prioritization for Long Text Files

classification models, specifically: DistilRoBERTa-DT [238, 197], DistilRoBERTa-
DT [238, 239], DistilRoBERTa-LR [238, 240], DistilRoBERTa-RF [238, 241], DistilRoBERTa-
TabNet [238, 242], MPNet-DNN [243, 197], MPNet-DT [243, 239], MPNet-LR [243,
240], MPNet-RF [243, 241], MPNet-TabNet [243, 242], MiniLM-DNN [230, 197],
MiniLM-DT [230, 239], MiniLM-LR [230, 240], MiniLM-RF [230, 241], and MiniLM-
TabNet [230, 242]. These models are widely recognized combo models combining
embedding and classification components. We selected these models because they
are widely utilized in both industry and academia.

Although our evaluation was conducted using these 15 models, the proposed
LongTest framework is not limited to these specific models. LongTest is primarily
designed to address long-text scenarios and can be applied to any text classification
model. This is explained in detail in Section 6.6.1.

6.4.3 Measurements
To evaluate the effectiveness of LongTest and the comparative test prioritization

methods, following prior work [3], we used two classic test prioritization metrics:
Average Percentage of Fault-Detection (APFD) and Percentage of Fault Detected
(PFD). Below, we provide a detailed explanation of these two metrics.

6.4.3.1 Average Percentage of Fault-Detection (APFD)

APFD [92] is a widely used metric for evaluating the effectiveness of test prioriti-
zation techniques. Higher APFD values indicate faster rates of detecting misclassified
test inputs. The APFD value can be computed using Formula 6.6.

APFD = 1 −
∑M

i=1 oi

M · N
+ 1

2N
(6.6)

where N refers to the total number of test inputs. M denotes the number of
misclassified test cases by the model, and oi refers to the position of the i-th
misclassified test case in the test set after prioritization. Following the existing
study [3], we normalize the APFD value to [0, 1]. If the APFD value of a test
prioritization approach is closer to 1, we consider this prioritization method more
effective. In the following, we explain the corresponding reasons:

First, the larger the APFD value of a test prioritization method, the smaller the
value of ∑M

i=1 oi in Formula 6.6, since both M and N are constants. Here, ∑M
i=1 oi

represents the sum of indices of all misclassified tests within the prioritized test
set. A smaller value of this sum indicates that more misclassified tests have been
prioritized towards the front, suggesting that the test prioritization method is more
effective at detecting misclassifications. Therefore, a test prioritization approach
with high APFD is considered more effective.

6.4.3.2 Percentage of Fault Detected (PFD)

PFD calculates the percentage of misclassified tests detected out of all misclassified
tests when prioritizing a certain percentage of the data. If a test prioritization method
has high PFD values, it means the method can detect more misclassifications and is,
therefore, more effective. PFD is calculated based on Formula 7.6. In our experiment,
we calculated the PFD values for each test prioritization method when prioritizing

116

6.4. Study design

10%, 20%, 30%, 40%, and 50% of the tests, represented as PFD-10, PFD-20, PFD-30,
PFD-40, and PFD-50, respectively.

PFD = |Nd|
|N |

(6.7)

where Nd denotes the set of misclassified tests that have been detected. N represents
the total set of misclassified tests.

6.4.4 Compared Approaches
To evaluate the effectiveness of LongTest, we adopted five test prioritization

methods as comparison approaches, including four confidence-based methods and
a baseline method (random selection). These prioritization methods were selected
for two main reasons: first, all methods can be applied to prioritizing long text
files, and their implementations are open-source. Second, the effectiveness of these
methods has been demonstrated [7, 3]. Below, we provide a detailed description of
the principles and workflows of these prioritization methods.
• DeepGini [3] DeepGini is a confidence-based test prioritization approach, which

calculates the Gini score of the test to estimate how likely this test will be
misclassified. If the score is higher, it means that this test is more likely to be
misclassified. The calculation process of the Gini score is presented in Formula 6.8.

Gini(t) = 1 −
N∑

i=1
(pi(t))2 (6.8)

where pi(t) represents the probability that the input t to be classified to category
i. N denotes the total number of possible categories.

• Vanilla Softmax [7] The Vanilla Softmax (VanillaSM) approach quantifies the
uncertainty of the model’s prediction for a given test by measuring the difference
between the model’s most confident prediction and the ideal value of 1. The
greater this difference, the less confident the model is in its prediction for this
test, indicating that the test is more likely to be misclassified. This difference
value is calculated by Formula 6.9.

VanillaSM(t) = 1 − Nmax
i=1

pi(t) (6.9)

where pi(t) refers to the probability that the input t is classified into category i.
Therefore, maxN

i=1 pi(t) denotes the model’s highest confidence prediction for the
test input t.

• Prediction-Confidence Score The Prediction-Confidence Score (PCS) quanti-
fies the model’s confidence in its prediction for a given test input by calculating
the difference between the probability of the predicted class and that of the second
most confident class in the softmax output. If a test’s PCS value is small, it
indicates that the model is less confident on this test, and this test is more likely
to be misclassified. The computation of PCS is presented in Formula 6.10.

PCS(t) = pmax(t) − psecond (t) (6.10)

where pmax(t) denotes the probability associated with the model’s most confident
prediction for the test input t, and psecond(t) represents the probability associated
with the model’s second most confident prediction for the test input t.

117

Chapter 6. LongTest: Test Prioritization for Long Text Files

• Entropy [7] Entropy measures the model’s confidence in a test input by calculating
the entropy of the softmax likelihood distribution. If the entropy value for a test
input is higher, it indicates that the model is less confident in its prediction, and
this test input is more likely to be misclassified.

• Random selection [133] Random selection determines the execution order of
test inputs in a fully randomized manner.

6.4.5 Implementation and Configuration
We implemented LongTest in Python 3.7.2, utilizing TensorFlow 2.2.0 [244],

PyTorch 1.11.0 [203], sklearn 0.24.2 [245], and SentenceTransformer 2.2.2 [246]. For
the approaches used for comparison, we employed the available implementations pro-
vided by their respective authors [3, 7]. The accuracy of the models used to evaluate
LongTest and the comparison approaches is as follows: On the EURLEX57K dataset,
the models’ accuracy range is 78.5%~86.7%. On the FakeNews dataset, the models’
accuracy range is 71.2%~87.5%. On the CancerDoc dataset, the models’ accuracy
range is 71.4%~92.4%. Our experimental setup involved conducting experiments on
NVIDIA Tesla V100 32GB GPUs. For the data analysis, we utilized a MacBook Pro
laptop running Mac OS Sonoma 14.3, equipped with an Intel Core i9 CPU and 64
GB of RAM.

6.5 Results and analysis
6.5.1 RQ1: Performance of LongTest
Objectives: We aim to evaluate the effectiveness of LongTest, a novel approach
for prioritizing long text files, by comparing its performance with existing test
prioritization techniques.
Experimental design: To comprehensively evaluate the performance of LongTest,
our experimental design focused on three key aspects: effectiveness evaluation,
statistical analysis, and efficiency evaluation.
• Effectiveness evaluation To assess the effectiveness of LongTest, we conducted

experiments on a total of 45 subjects. Each subject represents a unique model-
dataset pair. For instance, the subject (CancerDoc, MiniLM-DT) refers to the
case where we use the dataset CancerDoc with the model MiniLM-DT to evaluate
the test prioritization approaches. Table 6.1 provides basic information of all
the subjects. We selected a set of well-established test prioritization methods (cf.
Section 6.4.4) as the comparison approaches and adopted two classical evaluation
metrics, namely APFD and PFD, for evaluation. Detailed explanations of these
metrics can be found in Section 6.4.3.

• Statistical analysis Due to the inherent randomness in the model training
process, we conducted statistical analysis by running all the experiments ten times
and reported the average results. Moreover, we calculated the p-value and effect
size to validate the stability and statistical significance of the experimental results.
– P-value: To calculate the p-value, we employed the paired two-sample

t-test [233], a widely used statistical method for evaluating differences between
two data sets. Based on prior work [46], we consider differences between two
data sets to be statistically significant if the p-value is less than 10−5.

– Effect size: We quantified the magnitude of the difference between the two
sets of results using effect size, specifically employing Cohen’s d [234] as a

118

6.5. Results and analysis

measure. Here, |d| < 0.2 implies a “negligible” effect, |d| < 0.5 implies a “small”
effect, |d| < 0.8 implies a “medium” effect, and values above 0.8 imply a “large”
effect. To ensure that the difference between the results of LongTest and the
compared approach is "non-negligible", we require that the value of d ≥ 0.2.

• Efficiency evaluation We evaluated the efficiency of LongTest and the compared
test prioritization approaches by quantifying their runtime. Our goal is to gain
insights into the computational efficiency and potential for practical application
of LongTest.

Results: The experimental results of RQ1 is presented in Table 6.2, Table 6.3,
Table 6.4, Table 6.5 and Table 6.6. These tables respectively show the effectiveness
evaluation using APFD, the statistical analysis, the effectiveness evaluation using
PFD, and the efficiency evaluation.
Effectiveness comparison in terms of APFD Table 6.2 presents the effectiveness
comparison between LongTest and the other approaches across different datasets and
models using the APFD metric. Gray highlights indicate the best test prioritization
method for a particular case. In Table 6.2, we see that LongTest outperforms all
the compared approaches in each case. The APFD of LongTest ranges from 0.710
to 0.980, while the APFD values for the compared approaches range from 0.484 to
0.846. Table 6.3 presents an overall comparison between LongTest and the compared
approaches, including the best cases achieved by each approach, the average APFD
of each approach, and the average improvement of LongTest over the other test
prioritization methods. We see that the average effectiveness of LongTest is 0.856,
while the average APFD values of the compared test prioritization methods range
from 0.501 to 0.749. The improvement of LongTest, relative to the comparative
methods, ranges from 14.28% to 70.86%. In conclusion, based on the APFD metric,
we find that LongTest outperforms all the compared test prioritization approaches.
Statistical analysis To demonstrate the statistical significance and stability of
the experimental results, we conducted a statistical analysis, and the experimental
results are presented in Table 6.4. Following the existing study [233], if the p-value
between LongTest and a comparative method is less than 10−5, we consider that
the improvement achieved by LongTest has statistical significance. In Table 6.4, we
see that the p-values between LongTest and each test prioritization method are all
less than 10−5 (ranging from 6.302 × 10−17 to 1.249 × 10−09). These experimental
results indicate that LongTest outperforms all the test prioritization approaches with
statistical significance.
Effectiveness comparison in terms of PFD Table 6.5 presents the average
comparison results between LongTest and the compared approaches in terms of PFD.
We can see that LongTest demonstrates the highest effectiveness across all cases
when prioritizing tests at different proportions. Notably, when prioritizing the top
50% of tests, LongTest identifies between 92.2% and 99.8% of misclassified tests.
Based on these experimental results, we conclude that, in terms of the PFD metric,
LongTest outperforms all other test prioritization approaches.
Efficiency evaluation Table 6.6 presents the efficiency evaluation of LongTest and
the compared test prioritization methods by assessing their running time. From the
table, we see that the total running time of LongTest is less than 8 minutes, with text
embedding taking 5 minutes, contrastive learning taking 2 minutes, and prediction
taking less than 1 second. Although LongTest is not as efficient as confidence-based
test prioritization approaches, it achieves an average effectiveness improvement of

119

Chapter 6. LongTest: Test Prioritization for Long Text Files

Table 6.2: Effectiveness comparison among LongTest, DeepGini, VanillaSM, PCS,
Entropy and random selection in terms of the APFD values

ApproachData Model Random DeepGini VanillaSM PCS Entropy LongTest

DistilRoBERTa-DNN 0.511 0.650 0.693 0.680 0.647 0.861
DistilRoBERTa-DT 0.518 0.753 0.754 0.753 0.753 0.930
DistilRoBERTa-LR 0.511 0.828 0.837 0.845 0.814 0.980
DistilRoBERTa-RF 0.525 0.734 0.760 0.769 0.723 0.912
DistilRoBERTa-TabNet 0.495 0.735 0.734 0.733 0.738 0.893
MPNet-DNN 0.512 0.638 0.662 0.676 0.620 0.865
MPNet-DT 0.515 0.689 0.693 0.689 0.691 0.875
MPNet-LR 0.488 0.695 0.701 0.702 0.685 0.879
MPNet-RF 0.515 0.704 0.725 0.732 0.693 0.889
MPNet-TabNet 0.511 0.740 0.741 0.741 0.740 0.908
MiniLM-DNN 0.492 0.641 0.646 0.646 0.630 0.865
MiniLM-DT 0.506 0.702 0.704 0.704 0.701 0.858
MiniLM-LR 0.490 0.686 0.686 0.683 0.682 0.894
MiniLM-RF 0.487 0.678 0.701 0.710 0.673 0.870

CancerDoc

MiniLM-TabNet 0.522 0.704 0.703 0.702 0.705 0.865
DistilRoBERTa-DNN 0.494 0.806 0.806 0.806 0.806 0.900
DistilRoBERTa-DT 0.505 0.755 0.755 0.754 0.754 0.808
DistilRoBERTa-LR 0.500 0.756 0.755 0.755 0.755 0.883
DistilRoBERTa-RF 0.497 0.797 0.799 0.798 0.793 0.881
DistilRoBERTa-TabNet 0.522 0.835 0.836 0.837 0.835 0.893
MPNet-DNN 0.488 0.829 0.823 0.819 0.838 0.908
MPNet-DT 0.497 0.767 0.768 0.768 0.766 0.825
MPNet-LR 0.503 0.789 0.790 0.790 0.785 0.895
MPNet-RF 0.491 0.821 0.821 0.818 0.817 0.877
MPNet-TabNet 0.499 0.817 0.817 0.817 0.818 0.868
MiniLM-DNN 0.491 0.845 0.843 0.842 0.846 0.918
MiniLM-DT 0.496 0.743 0.743 0.743 0.741 0.814
MiniLM-LR 0.493 0.836 0.834 0.834 0.838 0.911
MiniLM-RF 0.488 0.796 0.796 0.795 0.791 0.880

EURLEX57K

MiniLM-TabNet 0.493 0.776 0.780 0.783 0.761 0.895
DistilRoBERTa-DNN 0.497 0.737 0.746 0.753 0.720 0.868
DistilRoBERTa-DT 0.484 0.697 0.697 0.695 0.695 0.734
DistilRoBERTa-LR 0.504 0.697 0.728 0.737 0.684 0.844
DistilRoBERTa-RF 0.501 0.686 0.700 0.708 0.676 0.790
DistilRoBERTa-TabNet 0.504 0.776 0.768 0.758 0.788 0.836
MPNet-DNN 0.496 0.747 0.759 0.769 0.735 0.842
MPNet-DT 0.499 0.693 0.694 0.691 0.693 0.720
MPNet-LR 0.497 0.730 0.759 0.764 0.717 0.809
MPNet-RF 0.502 0.700 0.711 0.714 0.693 0.783
MPNet-TabNet 0.498 0.780 0.779 0.778 0.781 0.835
MiniLM-DNN 0.495 0.689 0.705 0.711 0.680 0.849
MiniLM-DT 0.499 0.645 0.645 0.644 0.644 0.710
MiniLM-LR 0.494 0.727 0.738 0.741 0.716 0.804
MiniLM-RF 0.512 0.704 0.723 0.737 0.692 0.817

FakeNews

MiniLM-TabNet 0.503 0.750 0.752 0.754 0.746 0.794

120

6.5. Results and analysis

Table 6.3: Effectiveness improvement of LongTest over the compared approaches
in terms of the APFD values

Approach # Best cases Average APFD Improvement(%)

Random 0 0.501 70.86
DeepGini 0 0.741 15.52
VanillaSM 0 0.747 14.59
PCS 0 0.749 14.28
Entropy 0 0.736 16.31
LongTest 45 0.856 -

Table 6.4: Statistical analysis on test inputs (in terms of p-value and effect size)
Random DeepGini VanillaSM PCS Entropy

LongTest (p-value) 6.302 × 10−17 1.632 × 10−09 1.249 × 10−09 2.085 × 10−09 1.267 × 10−09

LongTest (effect size) 6.273 2.403 2.442 2.367 2.441

Table 6.5: Average comparison results among LongTest and the compared ap-
proaches in terms of PFD

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50

Random 0.104 0.204 0.304 0.402 0.496
DeepGini 0.237 0.423 0.580 0.705 0.798
VanillaSM 0.253 0.439 0.601 0.728 0.815
PCS 0.253 0.446 0.599 0.728 0.822
Entropy 0.235 0.424 0.571 0.695 0.790

CancerDoc

LongTest 0.481 0.854 0.997 0.998 0.998
Random 0.097 0.196 0.297 0.399 0.501
DeepGini 0.331 0.584 0.776 0.886 0.940
VanillaSM 0.329 0.585 0.775 0.885 0.939
PCS 0.328 0.585 0.775 0.884 0.939
Entropy 0.325 0.575 0.773 0.885 0.940

EURLEX57K

LongTest 0.537 0.835 0.933 0.967 0.981
Random 0.096 0.199 0.299 0.398 0.499
DeepGini 0.246 0.440 0.601 0.731 0.825
VanillaSM 0.257 0.465 0.626 0.748 0.835
PCS 0.259 0.471 0.633 0.755 0.843
Entropy 0.244 0.430 0.588 0.713 0.812

FakeNews

LongTest 0.401 0.631 0.775 0.864 0.922

14.28%~70.86% compared to confidence-based methods. Considering the trade-off
between effectiveness and efficiency, LongTest remains a practical option.

Answer to RQ1: LongTest outperforms all the compared test prioritization
approaches (i.e., DeepGini, Vanilla SM, PCS, Entropy, and Random), with an
average improvement of 14.28%~70.86%.

6.5.2 RQ2: Impact of Number of Chunks on LongTest
Objectives: In the LongTest workflow, an input test (a long text file) is first divided
into multiple small chunks. The reason for splitting the long text into chunks is
that the embedding models used to convert long text into embeddings typically have
input token limitations, meaning they are constrained by the length of the input
text and cannot process information beyond this limit. By dividing the long text
into smaller chunks, we aim to better capture information from the entire text.

However, the number of chunks can influence the quality of the generated em-

121

Chapter 6. LongTest: Test Prioritization for Long Text Files

Table 6.6: Time cost of LongTest and the compared test prioritization approaches

Time cost Approach

LongTest Random DeepGini VanillaSM PCS Entropy
Text Embedding 5 min - - - - -

Contrastive Learning 2 min - - - - -
Prediction <1 s <1 s <1 s <1 s <1 s <1 s

Table 6.7: The PFD values of LongTest with different numbers of chunks
Chunks PFD-10 PFD-20 PFD-30 PFD-40 PFD-50

Chunk-5 0.372 0.592 0.738 0.838 0.905
Chunk-10 0.401 0.631 0.775 0.864 0.923
Chunk-15 0.405 0.641 0.788 0.875 0.930
Chunk-20 0.412 0.652 0.793 0.882 0.934

beddings, thereby affecting the overall effectiveness of LongTest. For instance, if the
number of chunks is too small, the chunk size can exceed the input limitations of
the embedding model, resulting in information loss. In this research question, we
explored the impact of the number of chunks on the effectiveness of LongTest.
Experimental design: To investigate the impact of chunk number on the effec-
tiveness of LongTest, we kept all other workflows in LongTest unchanged, adjusting
only the chunk number to values of 5, 10, 15, and 20, and compared LongTest’s
effectiveness. We used the metrics APFD and PFD for evaluation.
Results: The experimental results for RQ2 are presented in Table 6.7 and Figure 6.2.
Table 6.7 shows the effectiveness of LongTest when the input long text file is divided
into different numbers of chunks. We see that as the number of chunks increases, the
effectiveness of LongTest improves. Figure 6.2 visually demonstrates this relationship.
Specifically, Figure 6.2a) shows the evaluation using the PFD metric, where the
X-axis represents the percentage of tests executed, and the Y-axis represents the
effectiveness of LongTest. We see that LongTest with 20 chunks (represented by a
black line) achieves the highest effectiveness. As the number of chunks increases, the
effectiveness of LongTest gradually rises. Figure 6.2b) presents the evaluation results
based on the APFD metric, with the X-axis representing the number of chunks and
the Y-axis representing the APFD value of LongTest. We also see that as the number
of chunks increases, the effectiveness of LongTest improves.

However, although increasing the number of chunks can improve the effectiveness
of LongTest, the improvement effect gradually slows down. From Figure 6.2a), we see
that the gap between the curves for Chunk-10 and Chunk-15 is much smaller than
the gap between Chunk-5 and Chunk-10, and the curve for Chunk-20 nearly overlaps
with that of Chunk-15. This indicates that as the number of chunks continues to
increase, the growth in effectiveness becomes limited.

Answer to RQ2: When the number of chunks increases, the effectiveness of
LongTest improves. However, as the number of chunks continues to increase, the
growth in effectiveness becomes limited.

6.5.3 RQ3: Impact of Different Embedding Models on LongTest
Objectives: Within the LongTest framework, text chunks are converted into
embedding vectors, which serve as the foundation for test prioritization. Different
embedding models can capture different semantic nuances, contextual relationships,
and feature representations, impacting the effectiveness of LongTest. By investigating

122

6.5. Results and analysis

20% 30% 40% 50%

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

P
FD

Chunk-5
Chunk-10
Chunk-15
Chunk-20

a) PFD
Chunk-5 Chunk-10 Chunk-15 Chunk-20

0.790

0.795

0.800

0.805

0.810

0.815

A
P

FD

b) APFD
Figure 6.2: The APFD and PFD values of LongTest with different numbers of
chunks

Table 6.8: The APFD values of LongTest with different embedding models
DatasetEmbedding Model CancerDoc EURLEX57K FakeNews Average

DistilRoBERTa 0.916 0.873 0.815 0.868
MPNet 0.883 0.875 0.798 0.852
MiniLM 0.871 0.883 0.795 0.849

the effectiveness of Longtest with different embedding models, we aim to identify
the models that are more suitable for LongTest to perform test prioritization.

Experimental design: To investigate the impact of different embedding models
on LongTest, we studied three popular embedding models: DistilRoBERTa [238],
MPNet [243], and MiniLM [230]. The core function of these models is to convert text
into embeddings, which involves transforming the input text into vector representa-
tions to capture semantic information. 1) DistilRoBERTa is a simplified version of
the RoBERTa model [238]. RoBERTa is a pre-trained language model particularly
skilled in capturing subtle semantics and contextual relationships within text. Distil-
RoBERTa achieves higher computational efficiency through distillation, maintaining
strong semantic understanding capabilities while reducing resource demands. 2)
MPNet combines the advantages of BERT [247] and XLNet [248], utilizing parallel
masking and positional encoding to improve the model’s performance in contextual
semantic understanding. 3) MiniLM is a lightweight transformer model that lever-
ages deep distillation techniques to strike a balance between efficient performance
and embedding quality.

Specifically, in our study, we kept other workflows within LongTest unchanged,
modifying only the embedding models used. We then evaluated LongTest’s effective-
ness with each embedding model using APFD and PFD metrics.

Results: The experimental results for RQ3 are presented in Table 6.8 and Table 6.9.
Table 6.8 shows the effectiveness of LongTest when using different embedding mod-
els, evaluated by APFD. Specifically, with the embedding model DistilRoBERTa,
LongTest achieves the highest average effectiveness (0.868), surpassing the results
with embedding models MPNet (0.852) and MiniLM (0.849). Table 6.9 presents
the evaluation results with PFD as the metric. We see that, regardless of the ratio
of test inputs prioritized, LongTest’s effectiveness is consistently the best when
using DistilRoBERTa as the embedding model. The above experimental results
demonstrate that, compared to the embedding model MPNet and MiniLM, LongTest
with DistilRoBERTa performs better in most cases.

123

Chapter 6. LongTest: Test Prioritization for Long Text Files

Table 6.9: The PFD values of LongTest with different embedding models
Embedding Model PFD-10 PFD-20 PFD-30 PFD-40 PFD-50

DistilRoBERTa 0.511 0.802 0.909 0.949 0.972
MPNet 0.452 0.769 0.896 0.937 0.963
MiniLM 0.454 0.749 0.899 0.942 0.967

Table 6.10: The APFD values of LongTest with different dimensions
DatasetDimension Vector CancerDoc EURLEX57K FakeNews Average

32 0.870 0.868 0.765 0.834
64 0.871 0.881 0.787 0.846
128 0.890 0.877 0.802 0.856
256 0.864 0.878 0.798 0.847

Answer to RQ3: LongTest with the embedding model DistilRoBERTa performs
better in most cases compared to MPNet and MiniLM.

6.5.4 RQ4: Impact of Dimension Reduction on LongTest
Objectives: Within the LongTest framework, a crucial step is using the PCA
algorithm [224] for dimensionality reduction, which involves reducing the original
high-dimensional embedding vectors of long text to low-dimensional vectors. This
approach aims to reduce the overall runtime and enhance the efficiency of test
prioritization while preserving the features of the original data. In this research
question, we investigate the impact of reducing to different dimensions on the
effectiveness of LongTest. This analysis helps identify the optimal dimensionality
reduction level that preserves semantic information while improving computational
efficiency.
Experimental design: To investigate the impact of different dimensions on
LongTest, we selected the dimensions 32, 64, 128, and 256, which are common
dimensions in the literature [249]. We used APFD and PFD as evaluation metrics to
assess the effectiveness of LongTest with these different dimensions.

Throughout the experiment, we kept all other workflows in LongTest unchanged,
adjusting only the dimensionality reduced by PCA to study its effect on LongTest.
We repeated the experiment across different datasets and models to validate the
stability and generalizability of the results.
Results: The experimental results of RQ4 are presented in Table 6.10 and Table 6.11.
Table 6.10 presents the effectiveness of LongTest with different dimensions measured
by APFD. We see that LongTest with a dimension of 128 achieves the highest
effectiveness (with an APFD of 0.856), while LongTest with dimensions of 256, 64,
and 32 results in effectiveness values of 0.847, 0.846, and 0.834, respectively. Table 6.9
provides further evaluations using PFD. In Table 6.9, we see that at various test
prioritization ratios, LongTest with a dimension of 128 consistently achieves the
highest average effectiveness. These results indicate that a 128-dimensional reduction
optimally preserves LongTest’s effectiveness.

Answer to RQ4: Within the LongTest framework, when utilizing the PCA algo-
rithm to reduce the dimensionality of the input long text files, the 128-dimensional
reduction optimally preserves LongTest’s effectiveness.

124

6.5. Results and analysis

Table 6.11: The PFD values of LongTest with different dimensions
Dimension Vector PFD-10 PFD-20 PFD-30 PFD-40 PFD-50

32 0.412 0.698 0.862 0.915 0.951
64 0.439 0.729 0.886 0.934 0.963
128 0.473 0.773 0.902 0.943 0.967
256 0.451 0.748 0.893 0.934 0.959

6.5.5 RQ5: Impact of Main Parameters on LongTest

a) CancerDoc, max_depth

3 4 5 6
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84

LongTest
DeepGini
Entropy
VanillaSM
PCS

b) CancerDoc, min_samples_split

2 4 6 8
0.70

0.72

0.74

0.76

0.78

0.80

0.82

LongTest
DeepGini
Entropy
VanillaSM
PCS

c) CancerDoc, min_samples_leaf

1 3 5 7
0.70

0.72

0.74

0.76

0.78

0.80

0.82

LongTest
DeepGini
Entropy
VanillaSM
PCS

d) EURLEX57K, max_depth

3 4 5 6

0.80

0.82

0.84

0.86

0.88

LongTest
DeepGini
Entropy
VanillaSM
PCS

e) EURLEX57K, min_samples_split

2 4 6 8

0.80

0.82

0.84

0.86

0.88

LongTest
DeepGini
Entropy
VanillaSM
PCS

f) EURLEX57K, min_samples_leaf

1 3 5 7

0.80

0.82

0.84

0.86

0.88

LongTest
DeepGini
Entropy
VanillaSM
PCS

g) FakeNews, max_depth

3 4 5 6
0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

LongTest
DeepGini
Entropy
VanillaSM
PCS

h) FakeNews, min_samples_split

2 4 6 8
0.71

0.72

0.73

0.74

0.75

0.76

0.77

LongTest
DeepGini
Entropy
VanillaSM
PCS

i) FakeNews, min_samples_leaf

1 3 5 7
0.71

0.72

0.73

0.74

0.75

0.76

0.77

LongTest
DeepGini
Entropy
VanillaSM
PCS

Figure 6.3: Impact of main parameters in LongTest
Objectives: We investigate the impact of the main parameters in LongTest.
LongTest uses Random Forest [241] to predict the misclassification probability of a test
input. We aim to assess whether LongTest can maintain stability in effectiveness when
the main parameters change. The main parameters include: max_depth (the maxi-
mum depth of each tree in the Random Forest), min_samples_split (the mini-
mum number of samples required to split an internal node), and min_samples_leaf
(the minimum number of samples required to be at a leaf node) in the Random
Forest ranking algorithm.
Experimental design: Following existing research [2], we varied each main pa-
rameter across a range of values and evaluated the extent to which the effectiveness
of LongTest fluctuates. In each evaluation during the experiment, we ensured that
the rest of LongTest’s workflow remained unchanged, only altering the value of
the specific main parameter. We performed experiments on all subjects within the
dataset, aiming to study whether LongTest can maintain stability when the values

125

Chapter 6. LongTest: Test Prioritization for Long Text Files

of these main parameters change.
Results: The experimental results of RQ5 are presented in Figure 6.3, which illus-
trates the impact of three main parameters max_depth, min_samples_split,
and min_samples_leaf on the effectiveness of LongTest across different datasets.
Each row represents one of these datasets, and each column represents one parameter
being varied, with values shown along the x-axis. The y-axis indicates the test
prioritization effectiveness (evaluated by APFD). Here, the solid red line represents
LongTest, while the dashed lines present the compared test prioritization approaches.

In Figure 6.3, we see that, across all datasets, regardless of changes in parameter
values, LongTest consistently outperforms the compared test prioritization meth-
ods (i.e., DeepGini, Entropy, VanillaSM, and PCS). On the CancerDoc dataset,
when the values of the main parameters vary, the fluctuation range of LongTest’s
effectiveness is around 0.01 to 0.02. For example, when the value of the parameter
min_samples_split changes, LongTest’s effectiveness fluctuates between 0.81
and 0.82. On the EURLEX57K dataset, when the range of main parameter values
changes, the fluctuation range of LongTest’s effectiveness is less than 0.1. For ex-
ample, when the value of min_samples_leaf changes, LongTest remains stable
around 0.88 regardless of the parameter change. On the FakeNews dataset, when
the main parameter values vary, the fluctuation range of LongTest’s effectiveness is
around 0.01. The experimental results demonstrate that LongTest performs stably
under different parameter settings.

Answer to RQ5: LongTest consistently outperforms the compared test prioritiza-
tion methods across various parameter settings.

6.5.6 RQ6: Contributions of Core Components to LongTest
Objectives: LongTest utilizes some core components to perform test prioritization,
including contrastive learning and PCA-based dimensionality reduction. Specifically,
within the LongTest framework, the contrastive learning model can bring the em-
bedding vectors of misclassified tests closer to each other in the space while pushing
the misclassified tests farther from the correctly classified ones. The objective is
to enable better classification between misclassified and correctly classified samples.
PCA-based dimensionality reduction aims to map the original high-dimensional
vectors of long text files to a lower-dimensional space, thereby reducing overall run-
time and improving the efficiency of test prioritization, while preserving the feature
information of the original data. In this research question, we conducted an ablation
study to investigate the contributions of each component to LongTest.
Experimental design: We conducted an ablation study to investigate the contribu-
tions of each core component to the effectiveness of LongTest. Following the existing
approach [250], the specific experimental procedure is as follows:
• We evaluate the test prioritization effectiveness of LongTest when all core compo-

nents (including contrastive learning and dimensionality reduction) are applied.
• We evaluate the effectiveness of LongTest without applying contrastive learning.
• We evaluate the effectiveness of LongTest without applying both contrastive

learning and dimensionality reduction.
• Finally, we compare the changes in the effectiveness of LongTest across these

different scenarios.
Results: The experimental results for RQ6 can be found in Table 6.12, which

126

6.6. Discussion

Table 6.12: Ablation study results
DatasetApproach CancerDoc EURLEX57K FakeNews Average

LongTest (None) 0.817 0.796 0.672 0.762
LongTest (PCA) 0.811 0.801 0.687 0.766
LongTest (PCA + Contrastive Learning) 0.889 0.877 0.802 0.856

presents the ablation study results to evaluate the impact of different components in
LongTest. The study compares three configurations of LongTest:
• LongTest (None): the scenario where LongTest does not use either PCA or

contrastive learning for test prioritization.
• LongTest (PCA): the scenario where LongTest uses dimensionality reduction

with PCA but does not use contrastive learning.
• LongTest (PCA + Contrastive Learning): the scenario where LongTest uses

both dimensionality reduction and contrastive learning for test prioritization.
From Table 6.12, we see that LongTest (PCA + Contrastive Learning) has

an average effectiveness of 0.856, while LongTest (PCA) has an average APFD of
0.766. This case indicates that removing contrastive learning leads to an approximate
0.09 reduction in average APFD. These results demonstrate that the contrastive
learning component contributes to the overall effectiveness of LongTest.

In Table 6.12, we see that the average APFD of LongTest (PCA) is 0.766,
while the average APFD of LongTest (None) is 0.762. This indicates that using
PCA-based dimensionality reduction slightly improves model performance. The main
purpose of applying PCA-based dimensionality reduction is to decrease the runtime
of LongTest by processing vectors with fewer dimensions, thereby enhancing overall
efficiency. As evidenced by prior research [251, 252], the PCA algorithm has proven
effective in enhancing the efficiency of data processing in models. Therefore, based
on the experimental results, we conclude that the contribution of dimensionality
reduction to LongTest lies in enabling it to operate more efficiently while maintaining
the effectiveness.

Answer to RQ6: The core component contrastive learning contributes to the
effectiveness of LongTest, while the core component dimensionality reduction
enables LongTest to operate more efficiently while maintaining the effectiveness.

6.6 Discussion
In this section, we discuss the generality of LongTest and elaborate on the

potential threats to its validity. Specifically, we explain why LongTest can be applied
to a wide range of long-text classification tasks and analyze potential internal and
external threats that may affect the reliability of our results.

6.6.1 Generality of LongTest
Although our evaluation was conducted using 15 text classification models and

three long text datasets (cf. Section 6.4.2), the proposed LongTest framework is
not limited to these specific subjects. LongTest is primarily designed to address
the test prioritization problem in long-text scenarios and can be applied to any
text classification models. This is because the core steps of LongTest include text
splitting, embedding generation, embedding concatenation, dimensionality reduction,
and contrastive learning. These procedures are applicable to any classification task

127

Chapter 6. LongTest: Test Prioritization for Long Text Files

with long-text data. By leveraging the features of long texts, LongTest can effectively
capture the entire textual information. Through its contrastive learning mechanism,
LongTest enhances the ability to distinguish between misclassified and correctly
classified samples, thereby improving the effectiveness of test prioritization.

6.6.2 Threats to Validity
Threats to Internal Validity. The internal threats to validity primarily stem
from the implementation of our proposed LongTest framework and the test priori-
tization approaches used for comparison. To mitigate this threat, we implemented
LongTest using widely recognized libraries, including PyTorch [203], TensorFlow [244],
sklearn [245], and SentenceTransformer [246] (specific versions are detailed in Sec-
tion 6.4.5). For the compared test prioritization methods, we utilized the original
implementations provided by their authors to minimize potential biases introduced
during re-implementation. Another internal threat arises from the randomness in
the model training process. To mitigate this threat, we conducted a statistical study
by repeating all the experiments ten times and reporting the average experimental
results. Moreover, we assessed the statistical significance of the results by calculating
the p-value [233] and effect size [234]. This approach helps reduce the impact of
randomness on our experimental findings.
Threats to External Validity. External threats to validity in our study
primarily arise from the long text datasets and text classification models utilized. To
mitigate this threat, we employed 15 diverse text classification models, ensuring broad
applicability. Additionally, we selected datasets from three different domains: medical
(Cancer Text Documents), legal (EURLEX57K), and news articles (FakeNews), to
capture a variety of long-text characteristics.

6.7 Related Work
6.7.1 Test Prioritization for Traditional Software

In traditional software testing [169, 253, 140, 254, 133, 139, 255, 92, 256, 257, 258],
test prioritization is also an important direction to improve the efficiency of testing,
which aims to prioritize all the tests to reveal software bugs as early as possible. In
the literature, Jiang et al. [137] proposed an adaptive random test case prioritization
(TCP) approach that uses test distance to arrange the order of test execution.
Thomas et al. [253] introduced a novel static black-box TCP method that examines
linguistic data within test cases, such as identifier names, comments, and string
literals, to represent the test cases. This technique employs topic modeling to
process this linguistic information, estimating the specific functionality each test
case targets and prioritizing test cases that cover different functionalities. Lou et
al. [141] developed a mutation-based prioritization approach targeting the sequencing
of test cases during software evolution. By generating mutation faults based on code
modifications between software versions, this approach simulates realistic faults to
improve prioritization relevance. The method employs statistical and probabilistic
models to quantify each test case’s fault-detection potential based on its effectiveness
in "killing" mutants.

Chen et al. [259] conducted an empirical evaluation of various TCP techniques
and developed a machine learning-based system to recommend the best prioritization
method for specific projects by leveraging test distribution patterns. Pan et al. [260]

128

6.8. Conclusion

conducted a systematic literature review on the application of machine learning
(ML) techniques in test case prioritization. Their findings indicate that ML-based
prioritization methods primarily utilize features such as execution history, coverage
information, code complexity, and textual data, with supervised learning being the
most commonly employed technique. More recently, Chen et al. [261] introduced
LogTCP, a framework that enhances black-box test case prioritization by analyzing
test execution logs to better capture test behaviors.

6.7.2 Testing Deep Learning Systems
Beyond test input prioritization, DNN testing [262, 146, 263, 264, 265, 266] also

includes other critical areas, such as accuracy estimation [36, 35, 267] and adequacy
measurement [4, 5, 49, 51]. Accuracy estimation aims to improve the efficiency of
DNN testing by selecting a representative subset of the original test set to estimate
the model’s accuracy on the entire dataset. In the literature, Li et al. [36] proposed
Cross Entropy-based Sampling (CES) for accuracy estimation, which minimizes the
cross-entropy between the distribution of the selected subset and the original test set
to achieve a representative estimation. Chen et al. [35] proposed Practical Accuracy
Estimation (PACE), which employs a clustering-based approach. Specifically, PACE
first clusters the test inputs into different groups, then utilizes the MMD-critic
algorithm [37] to select prototypes from each cluster, thus achieving a practical
estimation of accuracy.

For adequacy measurement [4, 5, 49], Pei et al.[4] proposed neuron coverage
as a metric to evaluate the extent to which a test set activates the internal logic
of a DNN model. Expanding on their work, Ma et al.[5] proposed DeepGauge,
a tool that broadens neuron coverage by introducing a more comprehensive suite
of criteria to assess DNN adequacy. Additionally, Kim et al. [49] presented the
concept of surprise adequacy, which measures test input effectiveness by analyzing
the behavioral variations a DL model exhibits between the training and testing set.

6.8 Conclusion
To address the challenge of high labeling costs for long text files, we propose a

novel approach called LongTest, which prioritizes test inputs that are more likely to be
misclassified. LongTest leverages the unique characteristics of long text files for test
prioritization by incorporating two core components: 1) Embedding Generation
Mechanism. This mechanism is specifically designed to enhance the capture of infor-
mation from the entire long text file. Specifically, for a long text file, LongTest divides
it into smaller chunks, converts each chunk into an embedding, and concatenates
all chunk embeddings to produce a final embedding vector. LongTest then applies
Principal Component Analysis (PCA) to the embedding vector, aiming to decrease its
dimensionality while preserving the essential characteristics of the original data. 2)
Contrastive Learning. Contrastive learning brings the embeddings of misclassified
samples closer while pushing the embeddings of misclassified and correctly classified
samples further apart. This approach enables more effective differentiation between
misclassified and correctly classified samples, thereby improving the effectiveness
of test prioritization. We conducted an extensive evaluation of LongTest involving
45 subjects, covering three datasets and 15 DNN models. The experimental results
demonstrate the effectiveness of LongTest. Specifically, LongtTest outperforms all the
compared test prioritization approaches, achieving an average improvement ranging

129

Chapter 6. LongTest: Test Prioritization for Long Text Files

from 14.28% to 70.86%.
Availability. All artifacts are available in the following public repository:

https://github.com/yinghuali/LongTest

130

https://github.com/yinghuali/LongTest

7 Towards Exploring the Limitations
of Test Selection Techniques on Graph
Neural Networks: An Empirical Study

In this chapter, we conduct an empirical study on existing Deep Neural Network
(DNN) test selection approaches for Graph Neural Networks (GNNs). Unlike DNNs,
GNN test inputs exhibit interdependencies, which may reduce the effectiveness of
existing selection methods. In our study, we evaluated 22 test selection approaches
across 7 graph datasets and 8 GNN models, focusing on assessing the effectiveness
of existing test selection approaches in the context of misclassification detection,
accuracy estimation, and performance enhancement, respectively.

This chapter is based on the work published in the following research paper:
• Xueqi Dang, Yinghua Li, Wei Ma, Yuejun Guo, Qiang Hu, Mike Papadakis,

Maxime Cordy, Yves Le Traon. Towards Exploring the Limitations of Test Se-
lection Techniques on Graph Neural Networks: An Empirical Study. Empirical
Software Engineering (EMSE). Accepted for publication on July. 22, 2024.

Contents
7.1 Introduction . 133
7.2 Background . 135

7.2.1 Graph Neural Networks 135
7.2.2 Test Selection in DNN Testing 137
7.2.3 Active Learning . 138

7.3 Approach . 138
7.3.1 Misclssification Detection Approaches 138
7.3.2 Accuracy Estimation Approaches 140
7.3.3 Node Importance metrics 141

7.4 Study design . 142
7.4.1 Overview . 142
7.4.2 Research Questions . 143
7.4.3 GNN models and Datasets 144
7.4.4 Measurements . 147
7.4.5 Implementation and Configuration 147

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

7.5 Results and analysis . 147
7.5.1 RQ1: Test selection for GNN misclassification detection 147
7.5.2 RQ2: Test selection for GNN accuracy estimation 152
7.5.3 RQ3: Confidence-based test selection for GNN perfor-

mance enhancement . 155
7.5.4 RQ4: Node importance-based test selection for GNN

performance enhancement 158
7.6 Threats to Validity . 159
7.7 Related Work . 159

7.7.1 DNN Test Selection . 160
7.7.2 Deep Neural Network Testing 161
7.7.3 Empirical study on Active Learning 161

7.8 Conclusion . 161

132

7.1. Introduction

7.1 Introduction
Graph Neural Networks (GNNs) have emerged as powerful tools across a wide

range of domains, such as social network analysis [158, 159, 160], recommendation
systems [155, 156, 157], and drug discovery [161, 162]. Their ability to capture intri-
cate relationships within graph-structured data has driven significant advancements
in the fields of machine learning and artificial intelligence [53]. As the application of
GNNs continues to expand, the need for effective testing and evaluation methods
becomes increasingly critical.

Similar to traditional deep neural networks (DNNs), testing GNNs faces challenges
due to the lack of automated testing oracles [32]. As a result, labeling GNN test
inputs heavily relies on manual annotation, which can be expensive and time-
consuming, especially when dealing with large and intricate graphs. Furthermore,
in specific specialized domains such as molecular property prediction [268], where
nodes represent atoms and edges represent covalent bonds, the labeling process can
heavily rely on domain-specific knowledge, further increasing the expenses.

In the literature [46, 35, 2], a promising approach for mitigating labeling costs is
test selection. It focuses on the selection and labeling of a subset of data from the
entire test set. Within the field of DNN testing, various test selection techniques
have emerged. These techniques can be broadly classified into two categories: 1)
test selection for rapid detection of potentially misclassified tests [46, 3] and 2)
test selection for precise accuracy estimation [35, 36]. For simplicity, we refer to
these approaches as misclassification detection approaches and accuracy estimation
approaches, respectively.

Misclassification detection approaches are designed to identify test inputs
that are most likely to be misclassified by the DNN model. These selected inputs
serve two primary purposes: facilitating the debugging of DNN-based software and
retraining the original DNN model to enhance its accuracy [3]. In the literature,
there are three main methods for misclassification detection: 1) Coverage-Based
Methods [5, 4]: These methods assess the coverage of DNN neurons to identify
potentially misclassified test inputs; 2) Surprise Adequacy-Based Methods [49]:
These techniques select test inputs using metrics related to surprise adequacy and
activation traces within DNNs; 3) Confidence-Based Approaches [3, 46, 7]: These
methods selects tests based on the model’s prediction confidence. Test inputs that
the DNN model is more uncertain are selected. Notably, confidence-based metrics
have proven to be more effective and efficient than both surprise adequacy and
coverage-based approaches, with runtime typically taking less than 1 second in most
cases [3].

Accuracy estimation approaches aim to select a small set of test inputs
to precisely estimate the accuracy of the whole testing set. By only labeling the
selected representative tests, it becomes feasible to reduce the labeling expenses.
However, existing approaches designed for DNNs, like CES [36] and PACE [35], are
not suitable for GNNs due to their design not aligning with graph datasets.

GNNs fundamentally belong to the family of DNN algorithms. They inherit
several core concepts from DNNs, such as deep architectures, nonlinear activation
functions, and backpropagation algorithms. Therefore, several existing DNN test
selection approaches can be applied to GNNs. However, there is a significant gap in
adapting DNN test selection methods for GNNs. This challenge arises because, unlike

133

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

DNNs, where each sample in the test set is treated independently, GNNs exhibit
interdependencies among their test inputs (nodes) [269]. Consequently, it remains
unclear whether test selection approaches designed for DNNs can be effectively
utilized for GNNs. Therefore, it is crucial to investigate the effectiveness of DNN test
selection methods in the context of GNNs. To fill the gap, we conduct an empirical
study to evaluate the effectiveness of test selection methods when applied to GNNs.
Our research focuses on four key aspects:
• Test Selection for Misclassification Detection As previously mentioned,

confidence-based metrics have demonstrated higher effectiveness and efficiency
compared to other existing test selection approaches [3]. Therefore, we specifically
evaluate the effectiveness of various confidence-based test selection approaches for
selecting potentially misclassified GNN test inputs.

• Test Selection for Accuracy Estimation We investigate the effectiveness of
various clustering methods for GNN test selection. We extend the concept of
model confidence to accuracy estimation, making clustering approaches utilize the
model’s prediction probability vector for tests (which reflects model confidence)
to conduct clustering.

• Test Selection for Performance Enhancement (using confidence-based
approaches) We investigate the effectiveness of various confidence-based test
selection methods, encompassing both approaches for misclassification detection
and accuracy estimation, in selecting retraining inputs to enhance the accuracy of
GNNs.

• Test Selection for Performance Enhancement (using approaches based
on node importance) We investigate the effectiveness of node importance-based
test selection methods in selecting retraining inputs to improve GNN accuracy.
This exploration is motivated by three factors: 1) Nodes with high importance
typically encapsulate critical information and exert a more pronounced influence
over the entire graph. Therefore, these nodes are more likely to capture essential
information crucial for enhancing model performance [270]; 2) Unimportant
nodes can contain noise or irrelevant data that can introduce interference during
retraining, thereby diminishing model performance; 3) Node importance is a
unique data feature in GNNs that can be leveraged for selecting crucial tests.
To the best of our knowledge, there has been limited or no study investigating
whether node importance can be effectively used for selecting retraining inputs,
highlighting the necessity of conducting relevant research.
Building upon these four critical aspects, we perform an empirical study that

encompasses 7 graph datasets and 8 GNN models, systematically evaluating the
performance of 22 test selection approaches. To offer a more comprehensive evaluation,
we incorporate not only node classification datasets [186] but also graph classification
datasets [31, 271, 272] in our analysis. Our empirical findings reveal that while
certain test selection methods demonstrate efficacy in the context of DNNs [46], they
do not translate to the same level of effectiveness when applied to GNNs. We delve
into the underlying reasons for this disparity in the experimental section. To provide
a concise summary, we present the following key conclusions.
• Test Selection for Misclassification Detection In the context of GNNs,

confidence-based test selection methods do not exhibit the same level of effective-
ness as observed in DNNs.

• Test Selection for Accuracy Estimation In most cases, clustering-based test

134

7.2. Background

selection methods that utilize the model’s confidence vector perform better than
random selection. However, their improvements compared to random selection
are slight.

• Test Selection for Performance Enhancement (using confidence-based
approaches) The effectiveness of both confidence-based and clustering-based
test selection methods shows only slight enhancements when compared to random
selection in selecting retraining inputs to improve GNN accuracy, despite some
methods having been demonstrated as performing well in DNNs [47].

• Test Selection for Performance Enhancement (using node importance-
based approaches) Node importance-based test selection methods are not
suitable for selecting retraining data to improve GNN accuracy, and in many
cases, they even perform worse than random selection.
Our empirical study provides valuable insights for engineers seeking to apply

test selection metrics in GNN contexts. We emphasize the constraints of current
test selection approaches for GNNs, thus providing guidance for future research to
develop new approaches tailored for GNNs. Our datasets, results, and tools are
accessible to the community on GitHub1.

In summary, we make the following contributions in this paper:
• We conduct an empirical study to assess the effectiveness of confidence-based test

selection methods in identifying potentially misclassified test inputs for GNNs.
Our study reveals that confidence-based test selection methods, which perform
well in DNNs, do not demonstrate the same level of effectiveness.

• We empirically investigate the effectiveness of clustering approaches that utilize
model confidence vectors in estimating GNN accuracy. We demonstrate that
clustering-based methods, while consistently performing better than random
selection, provide only slight improvements.

• We investigate the effectiveness of misclassification detection approaches and
accuracy estimation approaches in selecting retraining inputs to improve GNN
accuracy. We find that test selection methods, such as confidence-based and
clustering-based test selection methods, demonstrate only slight effectiveness.

• We investigate the effectiveness of test selection methods based on node importance
in selecting retraining inputs to improve the GNN accuracy. The results show
that node importance-based test selection methods are not suitable, and in many
cases, they even perform worse than random selection.

7.2 Background
In this section, we present the fundamental domain concepts central to our

research. These encompass Graph Neural Networks, Test Selection in DNN Testing,
and Active Learning.

7.2.1 Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated remarkable effectiveness in

addressing machine learning challenges associated with graph-structured data [177,
157, 178]. These challenges span a variety of domains, including social networks [158,
159, 160], recommendation systems [155, 156, 157] and bioinformatics [184, 273, 274].
In Figure 7.1, we present a general pipeline for GNN models, which includes four main

1https://github.com/BlueBerry-xueqi/graph_testing

135

https://github.com/BlueBerry-xueqi/graph_testing

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

GNN

Layer-n

GNN

Layer-1

GNN

Layer-2

Input Task

Node-level

Edge-level

Graph-level

Node

Embedding

Edge

Embedding

Graph

 Embedding

GNN Layers

Figure 7.1: The general pipeline for GNN models
parts: 1) The GNN model receives graph-structured inputs, which can contain nodes
and edges (representing the connections between nodes). 2) GNN layers then process
this graph-structured data. 3) After multiple layers of processing, the GNN model
can generate node/edge/graph embedding vectors. These are low-dimensional vector
representations of node/edge/graph, facilitating efficient processing and analysis by
GNN models. 4) Utilizing these embedding vectors, the GNN model can address
tasks at the node-level, edge-level, or graph-level correspondingly.

In the following, we introduce some fundamental concepts related to GNNs and
graph datasets.
Graphs A graph can be formally represented as G = (V, E), with V representing the
set of nodes and E denoting the set of edges that establish connections between these
nodes [275]. Graphs are widely used in various domains [276, 277, 177]. For instance,
in citation networks [185], papers can be represented as nodes linked by citations
(edges) and grouped into different categories. In chemistry [278], molecules can be
viewed as graphs with atoms as nodes and covalent bonds as edges, simplifying the
representation of their 3D structures.
Graph Analytics Tasks GNNs can leverage graph structure and node features to
perform various analytics tasks. 1) Node-level classification [29, 279], such as
categorizing nodes into distinct classes, utilizes individual node predictions. Preva-
lent datasets for such tasks include Cora [30], CiteSeer [30], and PubMed [30]. 2)
Graph-level classification aims to determine entire graph attributes, like pre-
dicting molecular properties in a chemical graph. Datasets for these tasks include
Mutagenicity [31], NCI1 [280], and MSRC21 [272]. 3) Edge-level classification
focuses on classifying edge types between two given nodes. For example, in biological
networks, GNNs can utilize the information of a protein and a small molecule to
predict their binding affinity, which is considered as edges within a graph. Datasets
for edge classification include: DrugBank [281] and BindingDB [282].
Graph Embeddings [188] offer an approach to diminish the dimensions of nodes,
edges, and their related attributes while preserving vital structural information and
graph characteristics [283]. In graph embedding, each node or edge is mapped to a
vector, typically in low dimensions. This low-dimensional representation effectively
captures the relationships and similarities between nodes or edges, enabling more
efficient computation and analysis within the vector space.
Message Passing The fundamental concept behind Message Passing in GNNs is
to enhance the representation of individual nodes by propagating and aggregating
information among neighboring nodes, as described in [269]. For example, when
calculating the representation of a node N at time step k, the process involves: 1)
Gather information from neighbors: Compute the sum of messages from all neigh-
boring nodes of node N to gather information. 2) Utilize the obtained information:
Combine the received messages with the representation of node N at time step (k −1)

136

7.2. Background

to compute the representation of node N at time step k.
Applying GNNs in Software Engineering GNNs can be applied to various
aspects of the field of software engineering. One prevalent application lies in software
vulnerability detection [284, 285]. [284] proposed DeepWukong, a novel approach for
software vulnerability detection, which utilizes GNNs to encode code fragments into
a concise low-dimensional representation. Initially, DeepWukong extracts program
slices from code fragments, labeling a slice (or an XFG) as vulnerable if it contains a
vulnerable statement. Subsequently, a neural network model is trained using both
safe and vulnerable program slices. Both the unstructured and structured code
information of a program are incorporated when constructing the neural networks,
with both types of information fed into the GNNs to generate a compact code
representation in the latent feature space. By leveraging recent advancements in
GNNs to learn from vulnerable and safe program slices, DeepWukong enables more
precise bug prediction. [285] proposed ContraFlow, which overcomes limitations
of previous GNN-based software vulnerability detection methods by focusing on
preserving value flow paths rather than the entire graph. By employing contrastive
learning, ContraFlow efficiently selects feasible value-flow paths in the embedding
space to represent a code fragment accurately. ContraFlow can identify potential
error paths based on path-sensitive representations and interpret crucial value flow
paths causing vulnerabilities.

7.2.2 Test Selection in DNN Testing
In the context of DNN testing [286, 287, 227, 288], test selection [46, 47] focuses

on addressing a practical concern: while collecting unlabelled data is easy and
cost-effective, labeling all of it demands substantial effort and specialized domain
knowledge. This challenge is typically exacerbated by three key factors: 1) Large-
Scale Test Sets: Test sets can be extensive, increasing the workload associated
with labeling. 2) Manual Analysis as the Primary Labeling Method: The primary
method of labeling involves manual analysis, typically requiring the involvement of
multiple individuals to ensure accurate labeling. 3) Dependency on Domain-Specific
Knowledge: Labeling frequently necessitates domain-specific expertise, resulting in
higher costs associated with employing professionals for the task.

Test selection has emerged as a practical solution for dealing with the labelling
cost issue. It involves carefully selecting a subset of unlabeled test data to serve two
main objectives: testing DNNs and improving the performance of pre-trained DNNs
through retraining. Test selection can be broadly categorized into two main aspects:
• Misclassification Detection [46, 3] This aspect focuses on selecting test inputs

that are more likely to be misclassified by the DNN model. These tests are
more likely to reveal errors in the DNN model and are therefore referred to as
“bug-revealing test inputs". Labeling only these test data can lead to reduced
overall labeling costs. Furthermore, in active learning contexts, this test data can
then be utilized to enhance the model through retraining [47].

• Accuracy Estimation [35, 36] This aspect involves selecting a small set of
representative test inputs capable of precisely estimating the accuracy of the
entire testing dataset. By labeling only these representative tests, it becomes
possible to estimate the accuracy of the entire test set, thus reducing labeling
costs.

137

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

7.2.3 Active Learning
Active learning is a well-established concept within both the software engineering

(SE) and machine learning (ML) communities [47]. The fundamental idea behind
active learning is to employ machine learning techniques to identify data samples
that are relatively challenging to classify [206]. These samples are then presented
for human annotation. The annotated data is subsequently used to further train
the target ML models to improve the model’s performance. The primary objective
of active learning is to determine which samples should be prioritized for manual
labelling, enabling the model to actively select the informative data to train the
model [289]. Existing work [7] has demonstrated that test selection methods can be
employed for active learning. [7] empirically investigated the effectiveness of various
DNN test selection techniques (e.g., DeepGini and Entropy) in identifying inputs
potentially useful for active learning. Their study shows that DeepGini, along with
several uncertainty-based methods, can effectively select informative inputs in the
context of active learning.

7.3 Approach
In our study, we assessed a total of 22 approaches, comprising 7 test selection

methods for misclassification detection, 5 test selection approaches for accuracy esti-
mation, 7 node importance metrics, and one baseline method (i.e., random selection).
We selected these approaches for the following reasons: 1) These approaches are
adaptable for the corresponding GNN test selection task. For example, DeepGini, as
highlighted in its original paper [3], can be used to identify potentially misclassified
test inputs; 2) The selected approaches have demonstrated their effectiveness in
the context of DNNs [3, 46]; 3) The authors of these approaches have made their
implementations publicly available. Below, we will provide a detailed explanation of
the basic logic behind each test selection method.

7.3.1 Misclssification Detection Approaches
We employed a total of 10 test selection methods that can be used to detect

potentially misclassified GNN tests. One of the classic methods is DeepGini [3]. More-
over, our empirical study also evaluated several active learning-based test selection
strategies [172], including Margin Sampling, Least Confidence, and Entropy. Active
learning [47] focuses on maximizing model performance gains with minimal sample
labeling. Specifically, it aims to select the most valuable samples within an unlabeled
dataset and hand them over to the oracle (e.g., human annotator) for labeling,
thereby reducing labeling costs while maintaining the model performance. Below,
we provide a detailed introduction to the test selection approaches we evaluated.
• DeepGini [3] DeepGini quantifies the uncertainty in a model’s prediction for a

given test by calculating the Gini score of this test. This score is derived from the
model’s prediction probability vector for the test. A higher Gini value indicates
that the model is more uncertain on the specific test. Therefore, the test is
considered more likely to be misclassified. The computation of the Gini score is
illustrated in Formula 7.1.

G(t) = 1 − ΣN
i=1p

2
t,i (7.1)

where N represents the number of prediction classes, and pt,i represents the
probability that the model will classify the test t into class i.

138

7.3. Approach

• Margin Sampling [172] Margin sampling is an uncertainty-based active learning
strategy. Its core idea is to select samples that the model finds most challenging
to classify for labeling. Margin Sampling focuses on the difference in the model’s
predicted probabilities for the two most confident classes. The smaller this
probability gap, the more uncertain the model is about the classification of that
sample. The uncertainty score of Margin Sampling is calculated by Formula 7.2.

Margin(t) = pk(t) − pj(t) (7.2)

where pk(t) refers to the model’s predicted probability for the most confident
classification. pj(t) refers to model’s predicted probability for the second most
confident classification

• Least Confidence (LC) [172] Least Confidence is an active learning strategy
based on model uncertainty. Specifically, it selects samples for which the model’s
prediction is the least confident for labeling. In a classification task, if a model
has a low maximum predicted probability value for a specific unlabeled sample,
it indicates that the model is highly uncertain about the classification of that
sample. The Least Confidence strategy selects such samples for labelling. The
score of Least Confidence is computed using Formula 7.3.

L(t) = 1 − max
i=1:n

pi(t) (7.3)

where pi(t) represents the probability of test input t being classified into category
i. Hence, maxi=1:n pi(t) represents the model’s predicted probability for the most
confident classification.

• Least Confidence-variant (LC-variant) [172] In contrast to the Least Confi-
dence metric, which ranks classifications based on the most confident predictions,
the Least Confidence-variant model assesses uncertainty by focusing on the model’s
least confident prediction category. This variant considers that when the difference
between the model’s prediction probability for the least confident classification
and 0 is large, it signifies that the model is more uncertain about this test, and
this test is more likely to be misclassified. The formula for this variant is provided
in Formula 7.4.
The rationale behind this variant is rooted in the concept of uncertainty, as
discussed in previous studies [3]. Specifically, considering a classifier M capable of
classifying test inputs into N categories, when the prediction probability vector of
M for a test t is (1

N
, 1

N
, . . . , 1

N
), it signifies that classifier M is the most certain

about this test t. Since the highest value that the model’s prediction probability
can reach for its least confident classification is 1

N
, when the model’s prediction

probability for the least confident category is higher, it suggests that the model’s
confidence for the least confident category approaches 1

N
. This suggests that the

model exhibits greater uncertainty when predicting this test case. This test is
considered more likely to be misclassified.

L(t) = min
i=1:n

pi(t) − 0 (7.4)

where pi(t) represents the probability of test input t being classified into category
i. Hence, mini=1:n pi(t) represents the model’s predicted probability for the least
confident classification.

139

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

• Entropy [7] Entropy is a commonly used method in active learning. It can
measure the uncertainty of a model’s predictions for a given sample. The entropy
method selects samples by calculating the entropy value of the model’s predictions
for each unlabeled sample. For a given sample, a high entropy value indicates that
the model is highly uncertain about the classification of that sample. Therefore,
this strategy tends to select samples with high entropy values for labeling, with
the aim of improving the model’s performance by adding information from these
highly uncertain samples.

• Multiple-Boundary Clustering and Prioritization (MCP) [290] MCP is
an extension of the Margin Sampling. It begins by dividing the data into distinct
“boundary areas" based on the top-2 predicted classes. Then, MCP selects data
points from each area based on the Margin. The selected data points are considered
to be tests for which the model exhibits a higher degree of uncertainty. These
tests are considered more likely to be misclassified.

• Variance [46] For a given test case, Variance quantifies the uncertainty in the
model’s predictions by computing the variance of the model’s prediction probabil-
ities for that specific test. A smaller variance suggests that the model exhibits
greater uncertainty regarding this test, and this test is considered more likely to
be misclassified. The formula for Variance is provided in Formula 7.5.

Var(x) = 1
N

N∑
i=1

var (pi(t)) (7.5)

where N represents the number of test inputs in the test set. where pi(t) represents
the probability of test t being classified into category i.

• ATS [291] ATS is the first adaptive test selection method designed for DNNs,
which utilizes differences in model outputs to measure the diversity of behaviors
of DNN test inputs. The objective of ATS is to select more diverse tests from the
candidate set, as these tests can reveal more different faults in the DNN-driven
software.

• GraphPrior [32] GraphPrior is a test prioritization method specifically designed
for GNNs. It utilizes mutation testing to prioritize potentially misclassified test
inputs. Specifically, given a test set and a GNN model under testing, GraphPrior
generates mutated models based on the original GNN model. GraphPrior assumes
that a test input is more likely to be misclassified if it can “kill” many mutated
models. Based on this assumption, it identifies and prioritizes possibly misclassified
tests.

• Random selection [133] Through the baseline random selection, tests are selected
randomly from the test set.

7.3.2 Accuracy Estimation Approaches
The aforementioned confidence-based methods rely on the model’s prediction

probability vector to assess whether a test is prone to being incorrectly predicted.
These methods are efficient and consume minimal time since they only use the model’s
final prediction probability vector and mathematical approaches for estimating
uncertainty. Based on existing research [35], clustering is a practical approach for
test selection to estimate the accuracy of a test set. Clustering groups similar data
points together, allowing for the extraction of representative points from each cluster,
which can effectively represent the entire test set. Therefore, we empirically explore

140

7.3. Approach

the combination of clustering methods with prediction probability vectors for test
selection in the context of graph networks to estimate the accuracy of the test set.
Below, we introduce all the clustering methods used in our study.
• K-Means [292] K-Means is an unsupervised clustering algorithm. The algorithm

initially divides the data into K groups and randomly selects K objects as the
initial cluster centers. It then computes distances between each point and all
the cluster centers, assigning each point to the closest center. Subsequently, the
algorithm recalculates the centroid of each cluster. This process continues to
iterate until a specific termination condition is met.

• K-Means Plus [293] K-Means Plus is an extension of the K-Means algorithm,
primarily enhancing the way initial cluster centers are chosen. In the traditional
K-Means algorithm, initial cluster centers are randomly chosen, which can lead to
different results in different runs and can affect the algorithm’s convergence speed
and clustering quality. K-Means++ addresses this issue by intelligently selecting
the initial cluster centers, aiming to enhance the algorithm’s performance.

• MiniBatch K-means [294] MiniBatch K-means is an optimized variant of the
K-Means algorithm designed for efficiently handling large-scale data, reducing
computational time. It utilizes mini-batches, which are small, random, fixed-size
data subsets, to manage data in memory. During each iteration, the algorithm
gathers a random sample of the data and employs it to update the clusters.

• Gaussian Mixture Model (GMM) [295] The Gaussian Mixture Model is a
probabilistic model that posits that all data points are generated by a mixture
of finite Gaussian distributions with unknown parameters. It can be thought of
as an extension of K-means clustering that incorporates information about the
data’s covariance structure and potential Gaussian distribution centers.

• Hierarchical Clustering [296] Hierarchical Clustering is a versatile clustering
algorithm that iteratively combines or divides clusters to create nested structures.
The hierarchical organization in Hierarchical Clustering is visualized as a tree, with
the root representing the cluster containing all samples and the leaves representing
clusters with only one sample each.

7.3.3 Node Importance metrics
In RQ4, we employed seven approaches to measure node importance in order

to perform test selection. These methods were extracted from existing studies [297,
298, 299, 300].
• Degree Degree measures the importance of a node based on the number of edges

surrounding the node. Nodes with a higher number of edges are considered more
important.

• Eccentricity Eccentricity quantifies a node’s importance by assessing the longest
distance from that node to all other nodes. Nodes with small eccentricity values are
deemed more crucial, as they play a pivotal role in connecting various components
and influencing information dissemination.

• Center The Center approach assesses the importance of a node by calculating its
distance from the network center. Nodes closer to the center are considered more
important. Center posits that nodes closer to the center have a greater influence
and significance in terms of network connectivity and information propagation.

• Betweenness Centrality (BC) BC assesses the importance of a node by
evaluating its role as an intermediary within the network. The node’s betweenness

141

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

Graph Data

RQ1: Test selection for GNN

misclassification detection

RQ2: Test selection for GNN

accuracy estimation

RQ4: Node importance-based test selection

for GNN performance enhancement

RQ3: Confidence-based test selection for

GNN performance enhancement

Accuracy

Estimation

Misclassification

Detection

GNN Performance

Enhancement

Figure 7.2: Overview of our empirical study
centrality depends on the number of times it acts as a transit point along the
shortest paths in the network. A higher betweenness centrality indicates that the
node plays a more crucial role in connecting paths between different nodes in the
network, and therefore, it is considered more important.

• Eigenvector Centrality (EC) Eigenvector Centrality associates a node’s im-
portance with the degree to which it is connected to other important nodes. The
centrality of a node is determined by the importance of the nodes it is linked to;
if a node is connected to others with high Eigenvector Centrality, it will also be
considered more important.

• PageRank PageRank evaluates the relative significance of nodes in a graph by
considering their connectivity and the influence of nodes linked to them. A node’s
PageRank value depends on both its number of connections and the importance
of the nodes that are connected to it. Nodes connected to nodes with higher
PageRank values are regarded as more important in this ranking method.

• Hyperlink-Induced Topic Search (Hits) Hits determine the importance of
nodes through two metrics: Authorities and Hubs. Authorities are assessed based
on the quantity and quality of inbound links a node receives, measuring its role
as a source of information. Hubs, on the other hand, are evaluated based on the
quantity and quality of outbound links, gauging their role as intermediaries in
information dissemination. These two metrics interact and are jointly used to
assess the relative importance of nodes in the graph network.

7.4 Study design
7.4.1 Overview

Similar to traditional deep neural networks (DNNs), testing Graph Neural Net-
works (GNNs) also faces challenges due to the absence of automated testing oracles.
This leads to the need for manual labeling of test inputs, a process that can be
labor-intensive, especially for large and intricate graphs. Furthermore, in specialized
domains like drug discovery, as exemplified by protein interface prediction [180], label-
ing heavily relies on domain-specific knowledge, further escalating costs. In response
to the labeling cost issue, existing studies mainly focus on two motivations in the
field of DNN testing selection: misclassification detection and accuracy estimation.
• Misclassification Detection Misclassification detection aims to select test inputs

that are more likely to be misclassified by the DNN model. These selected tests
serve two primary purposes: 1) Testers can use them for debugging DNN-based
software to enhance the quality of DNNs, and 2) Testers can employ them for

142

7.4. Study design

DNN model retraining, effectively reducing the cost associated with retraining.
• Accuracy Estimation Accuracy Estimation aims to select a small set of repre-

sentative test inputs capable of providing an accurate estimate of the entire test
set’s accuracy.
However, a notable gap exists in adapting DNN test selection methods for GNNs.

This challenge emerges due to the distinct nature of GNN test data, where test
inputs (nodes) are interconnected, unlike DNNs, where each test sample is treated
independently. Consequently, it remains uncertain whether test selection approaches
originally tailored for DNNs can be suitably applied to GNNs. To fill the gap, we
conduct an empirical study to assess the effectiveness of test selection methods
when employed within the context of GNNs, including confidence-based approaches,
clustering-based approaches, and node-importance-based approaches.

Figure 7.2 presents an overview of our empirical study. Our study initially focused
on three crucial aspects of GNN test selection: GNN accuracy estimation, GNN
misclassification detection, and GNN performance enhancement. Specifically, RQ1
focuses on misclassification detection. RQ2 corresponds to accuracy estimation. RQ3
and RQ4 target GNN performance enhancement. In the following, we provide a
detailed description of each research question.
• RQ1: Misclassification Detection. We evaluate the effectiveness of confidence-

based test selection methods for identifying potentially misclassified GNN test
inputs, building on their demonstrated efficiency in previous work [3].

• RQ2: Accuracy Estimation. We extend the concept of model confidence for
accuracy estimation, evaluating the effectiveness of various clustering methods
that utilize the model’s confidence vector in estimating the accuracy of the GNN
test set.

• RQ3: Performance Enhancement (using confidence-based methods).
We assess the effectiveness of various test selection approaches, encompassing
both misclassification detection and accuracy estimation approaches, in selecting
retraining inputs for enhancing GNN accuracy.

• RQ4: Performance Enhancement (using node importance-based meth-
ods). We investigate the effectiveness of node importance-based test selection
methods in selecting retraining inputs for improving GNN accuracy. This is
motivated by the fact that nodes with high importance tend to capture critical
information, while low-importance nodes can introduce noise during retraining.
Leveraging node importance in GNNs for test selection is a novel and unexplored
area of research.
To provide a more comprehensive assessment, we conducted experiments using a

diverse set of 7 graph datasets with 8 GNN models to evaluate the performance of
20 test selection approaches. It is important to emphasize that our dataset includes
not only widely adopted node-level datasets but also graph-level datasets in order to
ensure a robust evaluation of our methodology. By analyzing the performance of
current test selection approaches for GNNs, we aim to investigate the limitations of
existing test selection methods in the context of GNNs and provide insights for the
future development of novel GNN-oriented test selection methods.

7.4.2 Research Questions
Our experimental evaluation answers the research questions below.

• RQ1: How effective are different test selection metrics in detecting

143

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

misclassified test inputs for GNNs?
Test selection has emerged as a promising approach for reducing the labelling cost
in the testing process. While several test selection techniques have been proposed in
the context of DNN testing, their adaptation to GNNs poses distinctive challenges
owing to the differences between the test data for DNNs and GNNs. In particular,
DNN test inputs are typically independent of one another, whereas GNN test
inputs, represented as nodes, exhibit complex interdependencies. Consequently,
it remains uncertain whether the DNN test selection methods can perform well
on GNNs. In this research question, we assess the effectiveness of multiple
test selection approaches in identifying test inputs that are more likely to be
misclassified within the context of GNNs.

• RQ2: How do various accuracy estimation methods perform when
applied to GNNs?
Test selection approaches for accuracy estimation are designed to select a subset of
test inputs that can effectively estimate the accuracy of the entire testing set. By
labeling only the selected tests, the labeling costs can be reduced. In this research
question, we empirically assess various test selection approaches in estimating the
accuracy of GNNs.

• RQ3: How do different test selection approaches perform in selecting
informative inputs for retraining GNN models?
In this research question, we investigate the effectiveness of diverse confidence-
based test selection methods in selecting retraining inputs for GNN accuracy
improvement. These methods encompass misclassification detection approaches
(RQ1) and accuracy estimation approaches (RQ2).

• RQ4: To what extent can node importance guide the selection of
retraining inputs for GNNs?
In this research question, we explore the effectiveness of node importance-based
methods in selecting inputs to enhance GNN accuracy. This exploration is
motivated by: 1) Nodes with high importance typically contain crucial information
and have a significant impact on the entire graph, making them valuable for
improving model performance; 2) Conversely, unimportant nodes can introduce
noise or irrelevant data during retraining, potentially degrading model performance;
3) Node importance in GNNs remains unexplored for selecting crucial tests. Our
research aims to address this gap.

7.4.3 GNN models and Datasets
In our experiments, we utilized 7 graph datasets and 8 GNN models to assess

the performance of 20 test selection approaches. Detailed information about each
dataset and model is elaborated upon in the subsequent sections.
7.4.3.1 Graph datasets

To provide a more comprehensive evaluation, our dataset encompasses not only
widely adopted node-level datasets but also edge-level and graph-level datasets.
Node-level tasks are centered on making predictions for individual nodes within a
graph. The node-level datasets we utilized consist of Cora [186], CiteSeer [186], and
PubMed [186]. Edge-level datasets focus on predicting edge types between two given
nodes. Our adopted edge-level datasets are DrugBank [281] and BindingDB [282].
In contrast, graph-level tasks are oriented towards predicting global properties or
characteristics of an entire graph. Our selection of graph-level datasets includes

144

7.4. Study design

Mutagenicity [31], NCI1 [280], GraphMNIST [271], and MSRC21 [272].
1) Node Classification Datasets
• Cora [186] The Cora dataset comprises 2,708 scientific publications (nodes) and

5,429 links (edges) representing citations between them. Nodes represent machine
learning papers, and edges indicate citations between pairs of papers. Each paper
is categorized into one of seven classes, including topics like reinforcement learning
and neural networks.

• CiteSeer [186] The CiteSeer dataset comprises 3,327 scientific publications (nodes)
and 4,732 links (edges). Each paper belongs to one of six categories (e.g., artificial
intelligence and machine learning).

• PubMed [186] The PubMed dataset contains 19,717 diabetes-related scientific
publications (nodes) connected by 44,338 links (edges). Publications are classified
into three classes (e.g., Cancer and AIDS).

2) Graph Classification Datasets
• Mutagenicity [31] The Mutagenicity dataset presents a diverse collection of 4,337

small molecule graphs, each belonging to one of two distinct classes. It serves
as a valuable resource for exploring the mutagenic properties of these molecules,
offering insights into their potential health and environmental implications.

• NCI1 [280] NCI1 encompasses 4,110 small molecule graphs, comprising 407
unique molecules classified into two fundamental categories: toxicity and biological
relevance. This dataset plays a crucial role in toxicity prediction and drug discovery
efforts.

• GraphMNIST [271] GraphMNIST stands as a significant resource in the field of
computer vision, consisting of a vast database of handwritten digits. It comprises
412 instances across ten distinct classes, corresponding to integer values from 0 to
9.

• MSRC21 [272] The MSRC21 dataset is a comprehensive compilation of 563
real-world network graphs from the field of computer vision.

3) Edge Classification Datasets
• DrugBank [281] The DrugBank dataset is a multi-class classification dataset

primarily focused on drug-drug interactions (DDIs). It involves predicting the
interaction type between pairs of drugs given their SMILES strings. Compiled
manually from FDA/Health Canada drug labels and original literature, the dataset
encompasses 86 distinct interaction types, covering a total of 191,808 DDI pairs
involving 1,706 unique drugs.

• BindingDB [282] BindingDB is a public, web-accessible database dedicated to
measuring binding affinities. It primarily focuses on the interactions between
proteins considered to be drug targets and drug-like small molecules. In our
experiment, we classified edges based on the magnitude of their binding affinities
for the edge classification task.

7.4.3.2 GNN models

• GCN [163] GCN is a specialized type of convolutional neural network designed
to operate directly on graph structures. It addresses the task of classifying nodes
within graphs, such as documents in citation networks, where only a limited number
of nodes have labels. The fundamental concept behind GCN involves leveraging
the relationships between edges in a graph to consolidate node information and
produce updated node representations. GCN has found application in various

145

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

research studies, as evidenced by its inclusion in prior works [199, 201].
• GAT [185] The inception of GAT arose from the necessity to enhance traditional

Graph Convolutional Networks (GCN). GCN considers all neighboring nodes as
equally important. However, in practical scenarios, different neighboring nodes
can hold different degrees of significance. As a result, GAT incorporates a self-
attention mechanism that assigns individualized attention scores to each neighbor.
Consequently, GAT excels in identifying and prioritizing the most crucial neighbors
during the information aggregation process.

• Graph Isomorphism Network (GIN) [190] GIN is designed for processing
graph data and solving the graph isomorphism problem. Its working principle
involves learning the structural information and connectivity patterns among
nodes in a graph, enabling effective identification and comparison of isomorphism
between different graphs. The core idea of GIN is to iteratively aggregate feature
information from nodes within the graph, capturing and representing essential
features of the entire graph.

• Higher-order Graph Neural Networks (GraphNN) [301] GraphNN is an
advanced class of graph-based machine learning models that extend traditional
GNNs to capture intricate higher-order relationships within graph-structured
data.

• Message Passing Neural Networks (MPNNs) [189] MPNN is a general
framework for supervised learning on graphs structured data. It is based on the
commonness between several state-of-the-art graph-based neural models.

• Attention-based Graph Neural Network (AGNN) [302] AGNN is a neural
network architecture designed for graph data analysis. Its distinctive feature is
the complete removal of traditional fully connected intermediate layers, replaced
with attention mechanisms to better preserve the information within the graph
structure.

• Graclus GNNs [303] Graclus GNNs is an approach that integrates the Graclus
graph clustering algorithm with GNNs. Graclus is utilized for partitioning a given
graph into clusters or communities based on node similarity or relationships. In
this model, the graph data undergoes pre-processing with Graclus.

• GNNs with convolutional ARMA filters (ARMA) [271] ARMA refers to
an optimized GNN architecture with a new graph convolutional layer inspired
by the auto-regressive moving average (ARMA) filter. ARMA brings significant
improvements for node classification, graph classification, etc.

• GSAGE-E [191] Graph Sample and Aggregate (GraphSAGE) generates embed-
dings for nodes by accumulating and integrating characteristics from their adjacent
nodes. GraphSAGE samples a predetermined quantity of neighbors for each node.
GSAGE-E is a variant model of GraphSAGE aimed at edge classification tasks.
In this model, the fused information of two nodes (i.e., concatenating the vectors
of two nodes) is utilized to predict the category of the edge between them.

• TAGCN-E [192] The Topology Adaptive GCN (TAGCN) employs a collection
of learnable filters, each of a fixed size, to execute convolutional operations on
graph structures. These filters adapt to the unique topology of the graph during
the convolution process. TAGCN-E is a variant model of TAGCN that focuses on
edge classification. In TAGCN-E, the fused information of two nodes is utilized
to predict the category of the edge between them.

146

7.5. Results and analysis

7.4.4 Measurements
7.4.4.1 Percentage of Fault Detected (PFD)

Following the prior research [3], we employ PFD to assess the effectiveness of
various test selection methods in detecting misclassified test inputs. The computation
of PFD is represented in Formula 7.6. From a mathematical standpoint, PFD
measures the ratio of correctly detected misclassified test inputs to the total number
of misclassified tests within the test set. A higher PFD value indicates that the
evaluated test selection approach is more effective at identifying misclassified inputs.

PFD = #Tdetect

#Tmis

(7.6)

where #Tdetect represents the number of detected misclassified test inputs, while
#Tmis denotes the total number of misclassified test inputs in the test set. In our
study, we assessed the PFD values of different test selection approaches under varying
ratios of prioritized tests
7.4.4.2 Root Mean Square Error

The root mean square error (RMSE) measures the average difference between the
estimated accuracy and the actual accuracy of a test set. The calculation formula is
shown in Formula 7.7. A lower RMSE value indicates that the selected test inputs
can predict the accuracy of the entire test set more accurately, indicating that the
utilized test selection method is more effective.

RMSE =
√√√√ 1

n

n∑
i=1

|aĉci − acc|2 (7.7)

where acc refers to the actual accuracy, and aĉc refers to the estimated accuracy.

7.4.5 Implementation and Configuration
This project is implemented using the PyTorch 1.11.0 and PyTorch Geometric

2.1.0 framework. We integrated the available implementations of the test selection
approaches [3, 46, 47] into our experimental pipeline. To implement the clustering-
based test selection methods, we utilized the package scikit-learn 1.0.2. To implement
node importance metrics, we employed the package networkx 2.6.3. Our experiments
were conducted on a high-performance computer cluster, with each cluster node
equipped with a 2.6 GHz Intel Xeon Gold 6132 CPU and an NVIDIA Tesla V100 16G
SXM2 GPU. For data processing tasks, we conducted corresponding experiments on
a MacBook Pro laptop running Mac OS Big Sur 11.6, equipped with an Intel Core
i9 CPU and 64 GB of RAM.

7.5 Results and analysis
7.5.1 RQ1: Test selection for GNN misclassification detection
Objectives: We investigate the effectiveness of 8 confidence-based test selection
methods for GNNs in the context of node classification and graph classification tasks,
respectively.
Experimental Design: In the first step, we collected 10 test selection methods from
existing studies [46, 3, 7] that can be adapted for GNN misclassification detection.

147

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study
Table 7.1: Effectiveness of misclassification detection approaches with respect to
random selection (baseline) in terms of PFD

ApproachData Model DeepGini ATS LC Margin GraphPrior Entropy LC-variant Variance MCP
GCN 4.0588 2.3725 4.1531 4.7450 5.9804 3.9332 3.2034 4.0500 4.3557
GAT 2.0876 2.8715 2.3436 5.7431 6.5317 1.9738 1.3559 2.0649 4.5054
AGNN 3.4733 2.4286 3.4006 4.8574 5.6503 3.4509 3.2690 3.4613 3.7715Cora

ARMA 4.2897 2.7089 4.2859 5.4179 6.6693 4.1769 3.5346 4.2250 4.9692
GCN 1.9209 1.8116 2.1096 3.6233 4.9170 1.8282 1.3654 1.8942 3.5128
GAT 1.0895 2.0998 1.2338 4.1997 5.4637 1.0201 0.7090 1.1042 3.5111
AGNN 2.1020 2.0201 2.0425 4.0402 5.2734 2.0891 1.9020 2.0891 3.9655CiteSeer

ARMA 2.5656 1.8109 2.6523 3.6219 4.2475 2.4156 2.0682 2.5614 3.3946
GCN 3.1220 2.2013 3.3303 4.4028 5.4706 2.8711 1.7775 3.1095 4.2942
GAT 1.8241 1.5241 1.8955 5.2141 5.7141 1.6941 1.2343 1.7783 5.1693
AGNN 2.5477 2.5891 2.6080 5.1784 5.9597 2.4586 1.8991 2.5610 4.8041PubMed

ARMA 4.2553 3.2553 4.2477 5.0853 5.5853 4.1420 2.9595 4.2304 5.1101

GraphNN 5.0694 4.0694 5.0944 6.0750 - 4.9306 3.6417 5.1600 4.9083MSRC21 GIN 2.5519 2.2519 2.6519 3.9764 - 2.4736 2.2387 2.5962 1.9009
GSAGE-E 4.0417 1.9535 4.0878 3.9071 - 3.8784 3.0482 4.0321 4.0122DrugBank TAGCN-E 3.7352 1.7373 3.7517 3.4748 - 3.5893 2.8072 3.7024 3.6539
GSAGE-E 3.1728 1.5787 3.1799 3.1574 - 3.1616 2.8503 3.1682 3.1701BindingDB TAGCN-E 2.9532 1.4667 2.9856 2.9335 - 2.9582 2.7912 2.9515 2.9574

These approaches have been proven effective in the context of DNNs. Moreover, we
also evaluated a test prioritization method specifically designed for GNNs, called
GraphPrior [32], and compared its effectiveness with these DNN test prioritization
methods. To provide a more comprehensive evaluation, we include not only node
classification datasets but also edge classification and graph classification datasets
in our analysis. Following the methodology of previous research [3], we utilized the
PFD metric to evaluate the effectiveness of various test selection methods in selecting
misclassified test inputs. PFD directly measures the ratio of correctly identified
misclassified test inputs to the total number of misclassified tests within the test set.
Hence, it provides a straightforward reflection of the effectiveness of test selection
methods. A higher PFD value indicates that the evaluated test selection approach is
more effective at detecting misclassified inputs. Moreover, in order to more clearly
demonstrate the difference in effectiveness between the test selection method and the
baseline method (random selection), we performed normalization to the experimental
results (using Formula 7.8 [304]) and reported the results.

xnormalized = x − xmin

xmax − xmin
(7.8)

where x is the original value. xmin is the minimum value within all the values. xmax
is the maximum value within all the values. xnormalized is the resulting normalized
value.
Results: The results of RQ1 are presented in Table 7.1, Table 7.2, Table 7.3, and
Figure 7.3. Table 7.1 presents the effectiveness of various test selection approaches
on graph datasets across three different classification tasks: node classification,
edge classification, and graph classification datasets. We shaded the approach with
the highest effectiveness for each case in gray. On the node classification dataset,
we highlighted in bold the method that performs best among all approaches not
specifically designed for GNNs.

From Table 7.1, we see that on the node classification datasets (i.e., Cora, CiteSeer,
and PubMed), GraphPrior, specifically designed for GNNs, demonstrates the highest
effectiveness across all cases. Furthermore, among all approaches not specifically
designed for GNNs, Margin performs the best in the majority of cases (90% among

148

7.5. Results and analysis

a) CiteSeer, GCN

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

b) CiteSeer, GAT

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

c) CiteSeer, AGNN

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

d) Cora, GCN

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

e) Cora, GAT

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

f) Cora, AGNN

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

g) PubMed, GCN

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

h) PubMed, AGNN

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
GraphPrior
ATS
Least Confidence
Margin
Entropy
LC-variant
MCP
Variance
Random

i) DrugBank, GSAGE-E

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
Least Confidence
Entropy
LC-variant
MCP
Variance
Margin
ATS
Random

j) DrugBank, TAGCN-E

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
Least Confidence
Entropy
LC-variant
MCP
Variance
Margin
ATS
Random

k) BindingDB, GSAGE-E

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
Least Confidence
Entropy
LC-variant
MCP
Variance
Margin
ATS
Random

l) BindingDB, TAGCN-E

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
Least Confidence
Entropy
LC-variant
MCP
Variance
Margin
ATS
Random

Figure 7.3: Percentage of Fault Detected (y-axis) with different test selection
approaches given the ratio of tests executed (x-axis)

Table 7.2: Comparative effectiveness of misclassification detection approaches
relative to baseline (normalization analysis)

ApproachData Model DeepGini ATS LC Margin GraphPrior Entropy LC-variant Variance MCP
GCN 0.6787 0.3967 0.6945 0.7934 1.0000 0.6577 0.5356 0.6772 0.7283
GAT 0.3196 0.4396 0.3588 0.8793 1.0000 0.3022 0.2076 0.3161 0.6898
AGNN 0.6147 0.4298 0.6018 0.8597 1.0000 0.6107 0.5786 0.6126 0.6675Cora

ARMA 0.6432 0.4062 0.6426 0.8124 1.0000 0.6263 0.5300 0.6335 0.7451
GCN 0.3907 0.3684 0.4290 0.7369 1.0000 0.3718 0.2777 0.3852 0.7144
GAT 0.1994 0.3843 0.2258 0.7687 1.0000 0.1867 0.1298 0.2021 0.6426
AGNN 0.3986 0.3831 0.3873 0.7661 1.0000 0.3962 0.3607 0.3962 0.7520CiteSeer

ARMA 0.6040 0.4263 0.6244 0.8527 1.0000 0.5687 0.4869 0.6030 0.7992
GCN 0.5707 0.4024 0.6088 0.8048 1.0000 0.5248 0.3249 0.5684 0.7850
GAT 0.3192 0.2667 0.3317 0.9125 1.0000 0.2965 0.2160 0.3112 0.9047
AGNN 0.4275 0.4344 0.4376 0.8689 1.0000 0.4125 0.3187 0.4297 0.8061PubMed

ARMA 0.7619 0.5828 0.7605 0.9105 1.0000 0.7416 0.5299 0.7574 0.9149

GraphNN 0.8345 0.6699 0.8386 1.0000 - 0.8116 0.5995 0.8494 0.8080MSRC21 GIN 0.6418 0.5663 0.6669 1.0000 - 0.6221 0.5630 0.6529 0.4780
GSAGE-E 0.9887 0.4779 1.0000 0.9558 - 0.9488 0.7457 0.9864 0.9815DrugBank TAGCN-E 0.9956 0.4631 1.0000 0.9262 - 0.9567 0.7482 0.9869 0.9739
GSAGE-E 0.9978 0.4965 1.0000 0.9929 - 0.9942 0.8963 0.9963 0.9969BindingDB TAGCN-E 0.9891 0.4913 1.0000 0.9825 - 0.9908 0.9349 0.9886 0.9906

149

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

Table 7.3: Effectiveness comparison of misclassification detection approaches on
node and graph classification tasks, respectively

Percentage of test case executedTask Approach 10% 20% 30% 40% 50% 60% 70%
DeepGini 0.1855 0.3372 0.4792 0.6014 0.7080 0.7971 0.8693
ATS 0.1833 0.3401 0.4683 0.5805 0.6726 0.7531 0.8212
LC 0.1850 0.3403 0.4859 0.6154 0.7180 0.8029 0.8743
Margin 0.2895 0.5031 0.6474 0.7596 0.8366 0.8994 0.9367
GraphPrior 0.3963 0.5812 0.7268 0.8244 0.9015 0.9493 0.9642
Entropy 0.1827 0.3346 0.4704 0.5928 0.6982 0.7846 0.8640
LC-variant 0.1750 0.3152 0.4410 0.5543 0.6528 0.7409 0.8203
MCP 0.2644 0.4669 0.6175 0.7298 0.8119 0.8681 0.9183
Variance 0.1828 0.3370 0.4784 0.6042 0.7077 0.7966 0.8671

Node-Level

Random 0.0997 0.2009 0.3014 0.4019 0.4991 0.6033 0.6993
DeepGini 0.1743 0.3835 0.5691 0.6952 0.7977 0.8614 0.9181
ATS 0.1723 0.3532 0.4976 0.6401 0.7612 0.8235 0.8991
LC 0.1878 0.4054 0.5366 0.7131 0.7973 0.8651 0.9257
Margin 0.2238 0.5498 0.6253 0.7935 0.8684 0.9251 0.9811
Entropy 0.1781 0.4147 0.5616 0.6934 0.7836 0.8512 0.9013
LC-variant 0.1653 0.3298 0.4746 0.6033 0.7311 0.8068 0.8906
MCP 0.2238 0.4193 0.5414 0.6625 0.7558 0.8401 0.8684
Variance 0.1869 0.4123 0.5818 0.6953 0.7986 0.8693 0.9177

Graph-Level

Random 0.0950 0.2158 0.3005 0.3827 0.4972 0.6088 0.6959
DeepGini 0.1944 0.3667 0.5318 0.6650 0.7762 0.8602 0.9196
ATS 0.1414 0.2800 0.4089 0.5288 0.6382 0.7314 0.8115
LC 0.1936 0.3733 0.5299 0.6689 0.7774 0.8636 0.9194
Margin 0.1813 0.3560 0.5152 0.6572 0.7730 0.8585 0.9193
Entropy 0.1934 0.3614 0.5201 0.6613 0.7732 0.8536 0.9156
LC-variant 0.1795 0.3429 0.4940 0.6197 0.7302 0.8130 0.8784
MCP 0.1898 0.3654 0.5256 0.6637 0.7755 0.8608 0.9194
Variance 0.1941 0.3661 0.5312 0.6648 0.7759 0.8575 0.9192

Edge-Level

Random 0.1015 0.2039 0.3026 0.4005 0.5032 0.6043 0.7036

150

7.5. Results and analysis

all cases). Similarly, on the graph classification datasets, the best-performing test
selection method is also Margin. On the edge classification datasets (i.e., DrugBank
and BindingDB), the best-performing method is the least confidence, which performs
the best across all cases.

Table 7.2 presents the normalization results for the sum of PFDs for all test
selection methods. We utilize random selection as the baseline for normalization.
Hence, the normalization results for random selection (baseline) are consistently
0 across all subjects. Detailed normalization calculation methods are provided in
the experimental design of RQ1. In this context, if the value for a test selection
approach is closer to 1, it indicates that the effectiveness of this test selection method
is higher. The experimental results confirm the above conclusions that, on the node
classification datasets, GraphPrior, specifically tailored for GNNs, performs as the
most effective method in each case. Among the approaches not specifically designed
for GNNs, Margin outperforms others in most instances. On graph classification
datasets, Margin also performs as the top-performing test selection method. For
edge classification datasets, least confidence performs as the most effective approach.

Table 7.3 provides a more detailed breakdown of the effectiveness of various
test selection methods across different classification tasks, including the node-level,
edge-level, and graph-level classification tasks. The method that performs the best
in each case is still highlighted in gray, and in node classification datasets, the
best-performing method among all methods not specifically designed for GNNs is
also highlighted in bold. In Table 7.3, we see that, in the node classification datasets,
the best-performing method is GraphPrior, which is specifically designed for GNNs.
Among all methods not specifically designed for GNNs, Margin performs the best.
In the edge-level datasets, Least Confidence and DeepGini perform the best. In
graph-level datasets, Margin performs the best. This further confirms the conclusions
obtained above.

However, we find that in GNNs, uncertainty-based test selection methods (such
as Margin Sampling) perform less effectively compared to their performance in the
context of traditional DNNs. Based on the findings from previous work (Feng et
al., 2020), DeepGini can achieve a PFD of around 90% when selecting 30% of the
data, which means that DeepGini can detect about 90% misclassified tests when
selecting 30% of tests from the test set. However, as suggested in Figure 7.3, which
visually illustrates the effectiveness of different test selection methods, DeepGini
can only detect around 50% of misclassified tests when selecting 30% of tests in
the context of GNN test selection. Even the best-performing test selection method,
Margin Sampling, can only detect approximately 50% to 70% of misclassified tests,
significantly lower than its performance on DNNs. Below, we analyze the reasons for
the reduced performance of uncertainty-based methods.

There are four potential factors that hinder confidence-based approaches from
achieving the same level of effectiveness as in DNNs. In test selection: 1) they do
not account for the interdependencies among test inputs (nodes) within the GNN
test set, which are crucial for GNN model inference. Confidence-based prioritization
approaches typically function on test sets where each test is treated as independent;
2) Irregular Data: Graph data is typically irregular, with varying numbers of
connections and neighbor nodes for each node. This irregularity adds complexity
to the application of confidence-based approaches to graphs, making it potentially
challenging to effectively capture this complexity; 3) Local and Global Dependencies:

151

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

Graph data typically exhibit both local and global dependencies. Node attributes
and connections can introduce complexity to confidence-based methods since it
is challenging to capture these multi-scale dependencies; 4) Size and complexity
of graphs. Graphs can exhibit different sizes and complexities. Confidence-based
methods can be affected when applied to graph datasets of different sizes and
complexities.

Answer to RQ1: When applied to GNNs (including tasks such as node classifica-
tion, edge classification, and graph classification), uncertainty-based test selection
methods (such as Margin and DeepGini), as well as ATS, do not demonstrate the
same level of effectiveness as they exhibited in DNNs.

7.5.2 RQ2: Test selection for GNN accuracy estimation
Objectives: We evaluate the effectiveness of various clustering methods that utilize
the model’s confidence vector in estimating the accuracy of the GNN test set.
Experimental Design: In the initial step, we selected five widely recognized
clustering algorithms. For each test instance in the test set, we obtain the model’s
prediction probability vector, which can reflect the model’s confidence in its pre-
dictions. We call this vector the confidence vector. Following this, we utilize each
clustering algorithm to group these instances based on their respective confidence
vectors. Subsequently, we select N central points from each cluster. These chosen
test instances form a subset of the original test set and can then be employed to
predict the overall accuracy of the entire test set.
Table 7.4: Effectiveness of accuracy estimation approaches with respect to random
selection (baseline) in terms of RMSE

ApproachData Model GMM Hierarchical K-Means K-Means Plus MiniBatch K-Means
GCN 0.4332 0.3596 0.3912 0.3713 0.4172
GAT -0.0758 0.2509 0.2008 0.0977 -0.0957
AGNN 0.2029 -0.0571 -0.0479 -0.0273 0.1537Cora

ARMA -0.3282 0.1636 0.1449 -0.2729 -0.2430
GCN 0.2617 -0.2774 -0.2906 0.2151 0.1487
GAT 0.2181 0.1796 0.2217 0.1153 0.0731
AGNN 0.2054 0.0359 -0.0089 0.2052 0.2437CiteSeer

ARMA 0.0860 0.1633 0.1799 0.0878 0.2096
GCN 0.2891 0.2037 0.2645 0.3233 0.1979
GAT 0.2163 0.2303 0.1739 0.2597 0.2321
AGNN 0.3540 0.3506 0.3078 0.3010 0.3603PubMed

ARMA 0.2070 0.2177 0.1979 0.2435 0.2080
GraphNN 0.2364 0.2566 0.2277 0.0892 0.2120Mutagenicity GIN 0.2773 0.2023 0.2503 0.2190 0.1766
GraphNN 0.2582 0.1768 0.2845 0.3240 0.2798NCI1 GIN 0.1849 0.1914 0.1720 0.1341 0.1894
GSAGE-E -0.0394 -0.0378 -0.0365 -0.0298 -0.0422BindingDB TAGCN-E 0.0076 0.0067 0.0113 0.0191 -0.0013

Results: The results pertaining to RQ2 are presented in Table 7.4, Table 7.5,
Table 7.6, and Figure 7.4. Specifically, Table 7.4 exhibits the effectiveness of different
test selection approaches related to random selection. In Table 7.4, the values
represent the effectiveness of each test selection approach relative to random selection.
Specifically, the calculation process is illustrated in Formula 7.9. It is important to
note that when using RMSE values to measure effectiveness, a smaller RMSE implies

152

7.5. Results and analysis

Table 7.5: Average Effectiveness of accuracy estimation approaches with respect to
random selection (baseline) in terms of RMSE

ApproachData Model GMM Hierarchical K-Means K-Means Plus MiniBatch K-Means
GCN 0.0217 0.0180 0.0196 0.0186 0.0010
GAT -0.0002 0.0006 0.0005 0.0002 -0.0002
AGNN 0.0101 -0.0029 -0.0024 -0.0014 0.0077Cora

ARMA -0.0164 0.0082 0.0072 -0.0136 -0.0121
GCN 0.0131 -0.0139 -0.0145 0.0108 0.0074
GAT 0.0109 0.0090 0.0111 0.0058 0.0037
AGNN 0.0103 0.0018 -0.0004 0.0103 0.0122CiteSeer

ARMA 0.0043 0.0082 0.0090 0.0044 0.0105
GCN 0.0145 0.0102 0.0132 0.0162 0.0099
GAT 0.0108 0.0115 0.0087 0.0130 0.0116
AGNN 0.0177 0.0175 0.0154 0.0150 0.0180PubMed

ARMA 0.0103 0.0109 0.0099 0.0122 0.0104
GraphNN 0.0118 0.0128 0.0114 0.0045 0.0106Mutagenicity GIN 0.0139 0.0101 0.0125 0.0109 0.0088
GraphNN 0.0129 0.0088 0.0142 0.0162 0.0140NCI1 GIN 0.0092 0.0096 0.0086 0.0067 0.0095
GSAGE-E -0.0020 -0.0019 -0.0018 -0.0015 -0.0021BindingDB TAGCN-E 0.0004 0.0003 0.0006 0.0010 -0.0001

higher effectiveness for a given test selection method. Therefore, in Formula 7.9, if the
diff for a test selection method TS is positive, it indicates that the sum of RMSE
values for TS is lower than that of random selection, suggesting that the effectiveness
of TS is higher than random selection. In the case where TS’ diff is positive, if
the diff is larger, it indicates that the RMSE values of TS compared to those of
random selection are smaller. Since smaller RMSE implies higher effectiveness, it
suggests that the effectiveness of TS relative to random selection is higher.

diff =
100∑

r=10
(RMSEr

Random − RMSEr
T S) (7.9)

where r represents the number of tests selected. For example, if r = 80, it indicates
that 80 tests are selected from the test set. RMSEi

T S refers to the effectiveness
(measured by RMSE) of the test selection approach TS when selecting r test inputs.
RMSEi

Random refers to the effectiveness (measured by RMSE) of random selection
when selecting r test inputs.

In Table 7.4, we see that, on node classification datasets (i.e., Cora, CiteSeer, and
PubMed), the clustering-based test selection methods perform better than random
selection in the majority of cases (85%). Similarly, on graph classification datasets
(Mutagenicity and NCI1), the clustering methods consistently perform better than
random selection. Table 7.6 further illustrates the effectiveness of different clustering-
based test selection approaches, with the best-performing method highlighted in
gray for each case. In Table 7.6, the “Number of Selected Test Inputs” indicates the
number of tests selected from the test set. We see that, across both node classification
and graph classification tasks, clustering-based test selection methods consistently
perform the best.

However, the improvement achieved by clustering-based test selection methods
compared to random selection is marginal. For example, when selecting ten tests, in
terms of RMSE, the best clustering-based method only exceeds random selection by
approximately 0.03, and when selecting 80 tests, the best clustering-based method

153

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

Table 7.6: Effectiveness comparison among accuracy estimation approaches on
node, graph, and edge classification, respectively

Number of Selected Test InputsTask Approach 10 20 30 40 50 60 70 80 90 100
GMM 0.0908 0.0719 0.0621 0.0515 0.0473 0.0444 0.0385 0.0406 0.0418 0.0389
Hierarchical 0.1015 0.0711 0.0598 0.0543 0.0501 0.0384 0.0410 0.0392 0.0363 0.0344
K-Means 0.1022 0.0739 0.0638 0.0529 0.0456 0.0456 0.0383 0.0370 0.0345 0.0349
K-Means Plus 0.1041 0.0715 0.0599 0.0510 0.0462 0.0395 0.0399 0.0405 0.0416 0.0386
MiniBatch K-Means 0.0987 0.0727 0.0624 0.0544 0.0438 0.0467 0.0422 0.0404 0.0338 0.0366

Node-Level

Random 0.1241 0.0851 0.0724 0.0618 0.0557 0.0475 0.0454 0.0416 0.0439 0.0394
GMM 0.0850 0.0685 0.0531 0.0464 0.0376 0.0403 0.0359 0.0363 0.0359 0.0281
Hierarchical 0.1152 0.0544 0.0501 0.0521 0.0555 0.0357 0.0372 0.0333 0.0323 0.0364
K-Means 0.0942 0.0672 0.0533 0.0556 0.0421 0.0385 0.0335 0.0350 0.0341 0.0358
K-Means Plus 0.0998 0.0773 0.0537 0.0483 0.0483 0.0410 0.0366 0.0341 0.0423 0.0254
MiniBatch K-Means 0.0967 0.0765 0.0525 0.0452 0.0417 0.0442 0.0382 0.0369 0.0245 0.0299

Graph-Level

Random 0.1253 0.0897 0.0716 0.0586 0.0550 0.0512 0.0449 0.0407 0.0428 0.0411
GMM 0.3225 0.1826 0.1810 0.1593 0.1387 0.1294 0.1458 0.0891 0.0792 0.0611
Hierarchical 0.2662 0.1771 0.1939 0.1854 0.1286 0.1340 0.1397 0.0930 0.0825 0.0722
K-Means 0.2404 0.1720 0.1885 0.1387 0.1533 0.1550 0.1494 0.1148 0.0744 0.0639
K-Means Plus 0.1446 0.1631 0.1434 0.1426 0.1507 0.1607 0.1346 0.1365 0.0791 0.0746
MiniBatch K-Means 0.2126 0.2465 0.1625 0.1558 0.1819 0.1595 0.1657 0.1185 0.0893 0.0852

Edge-Level

Random 0.2326 0.1706 0.1351 0.1164 0.1047 0.0974 0.0903 0.0755 0.0522 0.0517

a) PubMed, GCN

10 25 40 55 70 85 100

0.02

0.04

0.06

0.08

0.10

0.12 GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

b) PubMed, GAT

10 25 40 55 70 85 100
0.02

0.04

0.06

0.08

0.10

0.12

0.14
GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

c) PubMed, AGNN

10 25 40 55 70 85 100

0.04

0.06

0.08

0.10

0.12

0.14 GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

d) CiteSeer, GCN

10 25 40 55 70 85 100
0.02

0.04

0.06

0.08

0.10

0.12 GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

e) CiteSeer, AGNN

10 25 40 55 70 85 100
0.02

0.04

0.06

0.08

0.10

0.12 GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

f) Cora, GCN

10 25 40 55 70 85 100
0.02

0.04

0.06

0.08

0.10

0.12 GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

g) Cora, AGNN

10 25 40 55 70 85 100

0.04

0.06

0.08

0.10

0.12

0.14 GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

h) Mutagenicity, GraphNN

10 25 40 55 70 85 100
0.02

0.04

0.06

0.08

0.10

0.12

0.14
GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

i) NCI1, GraphNN

10 25 40 55 70 85 100
0.02

0.04

0.06

0.08

0.10

0.12
GMM
Hierarchical
Kmeans
Kmeans Plus
Mini Batch Kmeans
Random

Figure 7.4: Root Mean Squared Errors(y-axis) of different test selection approaches
given the number of tests selected (x-axis)

154

7.5. Results and analysis

only surpasses random selection by around 0.01. Similarly, Figure 7.4 visually
confirms these conclusions, with the blue line representing the baseline (i.e., random
selection). We see that while all clustering methods are effective in most cases,
the improvements achieved are slight. Moreover, Table 7.5 presents the average
differences between all test selection methods and random selection across all cases.
The difference values are all around 0.01. Hence, we conclude that clustering-based
methods are effective in selecting representative test data for node classification and
graph classification datasets but achieve limited improvements.

In the above, we analyzed the effectiveness of the clustering-based test selection
approach in node classification and graph classification tasks. Next, we focus on
the effectiveness of clustering methods in edge classification datasets (BindingDB).
In Table 7.4, we see that, on edge classification datasets, the clustering-based
test selection approaches perform better than random selection in 40% of cases.
Furthermore, Table 7.6 further highlights the effectiveness of clustering methods
across different classification tasks. We see that, in edge-level tasks, random selection
exhibits better performance in most cases. From selecting 30 tests and 40 tests up to
selecting 100 tests, random selection consistently shows the best performance. This
implies that, in the majority of cases, the clustering-based test selection method
does not perform as well as random selection on edge classification datasets. In the
following, we analyze the potential reasons:

In graph datasets, since a node can be connected to multiple other nodes, the
number of edges can far exceed the number of nodes, making the information on edges
more complex and diverse, leading to uneven data distribution. Clustering algorithms
typically aim to group data points into collections with higher similarities. However,
when the data distribution is uneven, clustering algorithms can have difficulty
effectively assigning data to the correct clusters. This leads to poor performance
when using clustering-based test selection methods in edge classification tasks.

Answer to RQ2: In node classification and graph classification tasks, all
clustering-based test selection methods perform better than random selection in
most cases, but their improvements relative to random selection are slight. On
edge classification tasks, clustering-based test selection methods do not perform
better than random selection in most cases.

7.5.3 RQ3: Confidence-based test selection for GNN perfor-
mance enhancement

Objectives: We evaluate the effectiveness of various test selection methods derived
from the two aforementioned research questions in selecting informative retraining
inputs to enhance GNN model performance. Specifically, these methods correspond
to the test selection approaches for misclassification detection (RQ1) and accuracy
estimation (RQ2).
Experimental Design: In previous research questions, we assessed multiple test
selection methods tailored for misclassification detection and accuracy estimation.
In this research question, we apply these methods to select tests for the retraining of
the original GNN model, with the objective of improving its prediction accuracy.

The steps and methods we employed for retraining follow the existing study of
DNN test selection [46]. In the initial phase, given a GNN model M and a graph
dataset, we partition the dataset into a training set, a candidate set, and a test set.

155

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

a) CiteSeer, GCN

0 15 30 45 60 75 90

0.45

0.50

0.55

0.60

0.65

0.70

0.75

GMM
GraphPrior
ATS
Hierarchical
K-Means
DeepGini
Least Confidence
Margin
Entropy
Variance
MCP
Random

b) Cora, GCN

0 15 30 45 60 75 90

0.60

0.65

0.70

0.75

0.80

0.85
GMM
GraphPrior
ATS
Hierarchical
K-Means
DeepGini
Least Confidence
Margin
Entropy
Variance
MCP
Random

c) Cora, GAT

0 15 30 45 60 75 90
0.60

0.65

0.70

0.75

0.80

0.85
GMM
GraphPrior
ATS
Hierarchical
K-Means
DeepGini
Least Confidence
Margin
Entropy
Variance
MCP
Random

d) Cora, AGNN

0 15 30 45 60 75 90

0.4

0.5

0.6

0.7

0.8

0.9

GMM
GraphPrior
ATS
Hierarchical
K-Means
DeepGini
Least Confidence
Margin
Entropy
Variance
MCP
Random

e) PubMed, AGNN

0 15 30 45 60 75 90
0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

GraphPrior
ATS
DeepGini
Least Confidence
Margin
Entropy
Variance
MCP
Random

f) GraphMNIST, MPNNs

0 15 30 45 60 75 90

0.70

0.75

0.80

0.85

0.90

0.95

GMM
GraphPrior
ATS
Hierarchical
K-Means
DeepGini
Least Confidence
Margin
Entropy
Variance
MCP
Random

Figure 7.5: Test accuracy (y-axis) achieved by different data selection approaches
given the percentage of retrain data selected (x-axis)
Table 7.7: Effectiveness of test selection approaches with respect to random selection
(baseline) in selecting retraining inputs to improve GNN accuracy

ApproachData Model GMM Hierarchical K-Means Spectrum GraphPrior ATS DeepGini LC Margin Entropy Variance MCP
GCN 0.3741 0.2778 0.3704 0.4926 0.2094 0.3759 0.2333 -0.1296 0.2593 0.2259 0.3815 0.4667
GAT 0.2037 0.2185 0.1926 -0.0333 0.4004 0.1629 0.1185 -0.1741 0.3481 0.0444 0.1333 0.2815
AGNN -0.3778 -0.4407 -0.6593 -0.5333 0.0449 -0.4426 0.0815 -0.6667 0.1778 0.1185 -0.2259 -0.0481Cora

ARMA 0.0889 0.0111 -0.1296 -0.0111 0.2561 -0.0278 0.0815 -0.1407 0.2148 0.0556 0.0741 0.1667
GCN 0.0482 0.0000 -0.1777 0.0120 0.1191 -0.1009 -0.1777 -0.4518 0.0693 0.0090 -0.0241 0.1235
GAT -0.0271 0.0090 0.0030 -0.0542 0.2327 0.0256 0.0904 -0.1596 0.1837 0.0572 0.0813 0.2319
AGNN -0.1536 -0.0723 -0.1084 -0.1265 -0.0293 -0.1024 -0.0331 -0.2289 -0.0873 -0.0813 -0.1024 -0.0904CiteSeer

ARMA 0.0723 -0.0331 -0.0663 -0.0873 -0.0654 -0.0632 -0.0151 -0.1265 -0.1114 -0.0843 -0.0361 -0.0512
GCN - - - - 0.1402 0.0426 0.0396 -0.0573 0.0873 0.0553 0.1167 0.3151
GAT - - - - 0.1057 0.0253 0.0223 0.0061 0.0492 0.007 0.1451 0.2055
AGNN - - - - 0.0275 -0.0621 -0.0147 -0.1096 -0.1243 -0.0096 -0.3125 -0.2760PubMed

ARMA - - - - 0.1255 0.0352 0.0208 -0.0436 0.0680 0.0639 0.0213 0.0685
NN 0.0612 0.0750 -0.0012 0.0362 0.1022 0.0243 0.0888 -0.0400 0.0562 0.0800 0.0500 0.0175MNIST GRACLUS 0.2340 0.1180 0.0760 0.2220 0.2099 0.125 0.1300 0.0280 0.2500 0.0720 0.1760 -0.0040

The test set remains untouched throughout the process. First, we train an initial
GNN model using the training set and record the initial accuracy of M on the test
set. Subsequently, we apply various test selection methods to select different subsets
of data from the candidate set. We then utilize the selected test data to retrain
the original GNN model, recording the model’s accuracy after each retraining. By
observing the improvement in model accuracy after retraining with data selected
using different test selection methods, we can assess and compare the effectiveness of
these data selection methods.

Additionally, in the retraining experiments (RQ3), the initial accuracy of the
utilized GNN models are: on the CiteSeer dataset: 40% to 60%, on the PubMed
dataset: 65% to 70%, on the Cora dataset: 35% to 65%, and on the GraphMNIST
dataset: 65% to 70%. The evaluated models’ original accuracy range follows the
work of [47].

Results: The experimental results for RQ3 are presented in Table 7.7 and Figure 7.5.
Table 7.7 presents the effectiveness of all test selection methods in terms of their
relative improvement or decline compared to the baseline method (i.e., random
selection). We calculate the improvement of each test selection method relative
to random selection using Formula 7.10. In Table 7.7, if a test selection method
outperforms random, its value is positive and highlighted in gray; conversely, if it
performs worse, its value is negative and highlighted in white.

156

7.5. Results and analysis

imp =
steps∑
i=1

(
Acci

T S − Acci
Random

)
(7.10)

where steps represent the total number of retraining steps. Acci
T S refers to the

accuracy of the model retrained using the data selected by the test selection metric
TS. Acci

Random refers to the accuracy of the model retrained using the data selected
by the random selection approach. imp represents the effectiveness improvement of
the test selection metric TS over random selection.

In Table 7.7, we see that some test selection methods, such as DeepGini and
MCP, along with GraphPrior, perform better than the baseline (random selection) in
the majority of cases. Specifically, in approximately 61% of the cases, the evaluated
test selection methods perform better than random selection. The top three best-
performing methods are GraphPrior, Margin Sampling, and MCP. GraphPrior
achieves the best performance in 50% of the cases, MCP in 21.43% of the cases, and
Margin Sampling leads in 14.29% of the cases.

However, despite improvements, the extent to which test selection methods
improve GNN model accuracy compared to the baseline is slight. Figure 7.5 offers
a visual representation of the effectiveness of various test selection methods. In
this figure, the blue line denotes the baseline - random selection. We see that the
majority of uncertainty-based test selection methods, as well as GraphPrior, only
show minor improvements over the baseline (random selection), with some methods
even performing worse than random selection. However, a previous study on DNN
test selection [47] demonstrated that some uncertainty-based test selection metrics,
such as Margin and MCP, can consistently exhibit strong performance. However,
these metrics do not achieve consistently strong performance in GNN test selection.

Below, we provide some potential reasons why some test selection methods (e.g.,
margin and MCP) are effective in DNNs but exhibit only small improvements over
the baseline approach when applied to GNNs.
• Inadequate representativeness The inputs selected through test selection

methods aimed at misclassification detection are typically samples that are more
likely to be misclassified. These inputs can be specific in the feature space,
representing only a small part of the data distribution. They cannot be sufficient
to represent the complex structure and diversity of the entire graph, thus affecting
the effectiveness of retraining.

• Differences in data structure DNNs typically process data where each sample
is independent of others, and retraining the model does not require considering
the relationships between samples. In contrast, in graph data processed by GNNs,
nodes (i.e., samples) are interconnected through edges. Therefore, the information
of a node depends not only on its own features but also on its neighboring nodes
and the overall structure of the graph. When test selection methods from DNNs
are applied to GNNs, these methods cannot adequately capture and utilize the
complex interdependence of graph data for retraining.

• Differences in Learning Mechanisms GNNs update node representations by
aggregating information from neighboring nodes, which differs from the working
mechanism of DNNs. Therefore, the reason for the misclassification of a node
can be not only due to the features of the node itself but could also involve
information from its neighboring nodes. Simply selecting these misclassified
inputs for retraining ignores the crucial information from their neighbors.

157

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study
Table 7.8: Effectiveness of node importance-based test selection approaches with
respect to random selection (baseline) in selecting retraining inputs to improve GNN
accuracy

Percentage of test case executedApproach 10% 20% 30% 40% 50% 60% 70% 80%
BC 0.8032 0.8060 0.8087 0.8100 0.8171 0.8225 0.8250 0.8265
Center 0.8002 0.8035 0.8042 0.8066 0.8090 0.8135 0.8173 0.8209
Degree 0.7999 0.8002 0.8041 0.8108 0.8136 0.8201 0.8209 0.8237
EC 0.7994 0.7995 0.8020 0.8061 0.8117 0.8136 0.8144 0.8201
Eccentricity 0.8034 0.8051 0.8040 0.8069 0.8094 0.8131 0.8171 0.8216
Hits 0.7999 0.7995 0.8011 0.8080 0.8118 0.8132 0.8120 0.8175
PageRank 0.8028 0.8074 0.8091 0.8157 0.8190 0.8203 0.8262 0.8297
Random 0.8029 0.8061 0.8164 0.8189 0.8259 0.8328 0.8399 0.8426

Answer to RQ3: The effectiveness of both confidence-based and clustering-based
test selection methods in improving GNN model accuracy through the selection of
retraining data shows only slight enhancements when compared to random selection,
despite some methods having been demonstrated to be effective in DNNs.

7.5.4 RQ4: Node importance-based test selection for GNN per-
formance enhancement

Objectives: We assess the effectiveness of node importance-based test selection
methods in improving GNN accuracy during retraining. This investigation is driven
by several factors: 1) Nodes with high importance typically encapsulate critical
information and have a more significant impact on the overall graph [270]. Conse-
quently, these nodes are more likely to capture essential information that is crucial for
enhancing model performance; 2) Unimportant nodes may contain noise or irrelevant
data that could introduce interference during retraining, potentially leading to a
reduction in model performance; 3) Node importance is a distinctive data feature
in GNNs that can be leveraged for the selection of critical tests. Currently, there
is a gap in research regarding whether node importance can effectively guide the
selection of retraining inputs. Therefore, it is imperative to conduct relevant studies
in this area.
Experimental Design: In the initial step, we evaluated the initial accuracy of the
target GNN model. Subsequently, we ranked all tests in the test set by importance,
using each node importance metric. Based on each metric, we selected the top
important tests, ranging from 10% to 80%, and then proceeded to retrain the original
GNN model. We recorded the model’s accuracy after each round of retraining.
Results: The experimental results for RQ4 are presented in Table 7.8. Here, we
have shaded in gray the approach with the highest effectiveness for each case. We
see that, in the majority of cases, test selection methods based on node importance
exhibit limitations when selecting inputs for retraining GNN models to improve
accuracy. These methods tend to perform less effectively than random selection.
Specifically, random selection outperforms node importance-based methods in 75%
of the cases. Conversely, node importance-based test selection methods excel in
only the remaining 25% of cases. Some potential factors that can lead to the low
performance of node importance-based methods include:
• Lack of Diversity Node importance methods can select a group of similar or

closely related nodes, potentially resulting in a lack of diversity in the selected data.

158

7.6. Threats to Validity

In contrast, randomly selecting nodes can introduce greater diversity, thereby
enhancing the model’s ability to generalize.

• Overfitting If the nodes selected by node-importance methods are overly specific
or concentrated in a particular area, the model can be prone to overfitting to
these selected nodes. Randomly selected nodes, on the other hand, can provide a
more varied set of information, contributing to mitigate overfitting

• Noise Tolerance Occasionally, incorporating some noisy or less significant nodes
can potentially enhance the model’s robustness. Randomly selected nodes can
introduce such beneficial noise.

Answer to RQ4: Node importance-based test selection methods are not suitable
for selecting retraining data to improve GNN accuracy, and in many cases, they
even perform worse than random selection.

7.6 Threats to Validity
Threats to Internal Validity. The internal threats to validity primarily stem
from the implementation of the evaluated test selection approaches. To mitigate
this threat, we implemented these approaches using the widely adopted PyTorch
library and utilized the implementations of the compared approaches as provided
by their respective authors. Another internal threat arises from the selection of
clustering algorithms. The effectiveness of test selection can be influenced by the
performance of the selected clustering algorithm. To mitigate this threat, we utilized
established frameworks in our study. We opted for the widely adopted scikit-learn
framework [134] to implement the clustering algorithm. Scikit-learn is renowned for
its robust performance and extensive user community.
Threats to External Validity. The primary external threats to the validity of
our study are closely linked to two key aspects: the GNN models under evaluation
and the test datasets used in our research. These factors can significantly impact
the generalizability and applicability of our findings. To mitigate these potential
threats, we made a conscious effort to include a large and diverse set of subjects
(pairs of datasets and models) in our study. These subjects represent different
combinations of GNN models and test datasets, ensuring that our analysis covers a
wide spectrum of scenarios. Firstly, we recognized the critical role of dataset diversity
and comprehensiveness in evaluating the efficacy of test selection approaches. We
utilized seven prevalent graph datasets, encompassing not only node classification
datasets but also graph classification datasets. This deliberate selection allows us
to account for various problem domains, thereby enhancing the robustness and
adaptability of our study to a multitude of GNN applications. Beyond dataset
diversity, the choice of GNN models is pivotal in gaining insights into how test
selection methods interact with different model architectures. To this end, we
utilized a set of eight distinct GNN models, each possessing its unique characteristics
and capabilities. These models span a spectrum of complexity and sophistication,
ranging from simpler models to more advanced ones.

7.7 Related Work
We present the related works from three perspectives: DNN test selection, DNN

Testing, and Empirical study on active learning.

159

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

7.7.1 DNN Test Selection
To tackle the challenge of labeling costs, test selection [305] has emerged as a

practical solution.
In terms of misclassification detection, Ma et al. [46] conducted an evaluation

of various test selection methods tailored for misclassification detection, including
coverage-based, surprise adequacy-based, and confidence-based approaches. Experi-
mental results demonstrated that confidence-based metrics exhibit a robust ability
to identify misclassified inputs, surpassing both the surprise adequacy-based and
coverage-based test selection approaches. Hu et al. [47] conducted an empirical
evaluation of 15 active learning metrics to determine their effectiveness in selecting
inputs for retraining DNNs. Their research demonstrated that the choice of data
selection metrics can significantly influence the quality of the resulting model when
using active learning for training.

Kim et al. [49] proposed the Surprise Adequacy Criteria (SADL) for DNN test
selection. SADL operates by extracting intermediate outputs from both the test
and training data of DNNs, treating them as features, and then evaluating the
surprise adequacy based on the dissimilarity between these features. In this process,
two measurements are utilized: Likelihood-based Surprise Adequacy (LSA) and
Distance-based Surprise Adequacy (DSA). LSA employs kernel density estimation to
compute the dissimilarity, while DSA directly utilizes Euclidean distance. Despite
the effectiveness of SADL in the context of DNNs, SADL cannot be directly applied
to GNNs. This is because implementing SADL requires measuring the distance
between the targeted test inputs and training inputs. However, their method for
measuring distance is specifically designed for image/text data, which cannot be
directly applied to graph-structured data.

Wang et al. [2] proposed PRIMA for DNN test prioritization, which identified and
prioritizes potentially misclassified test inputs based on intelligent mutation analysis.
Despite its effectiveness in the context of DNNs, PRIMA is not suitable for GNNs.This
is because PRIMA’s mutation operators are not adapted to graph-structured data
and GNN models.

In terms of accuracy estimation, Li et al. [36] introduced the CES (Cross Entropy-
based Sampling) method to tackle this challenge. CES accomplishes test selection
by minimizing the cross-entropy between the selected subset and the original test
set, ensuring that the distribution of the selected test inputs closely matches that of
the original test set. Chen et al. [35] proposed the PACE, which employs a range of
techniques to perform test selection, including clustering, prototype selection, and
adaptive random testing. The process begins by categorizing all test inputs into
different groups based on their testing characteristics. Subsequently, PACE utilizes
the MMD-critic algorithm [37] to identify prototype test inputs from each group. For
test inputs that do not fit into any specific group, PACE employs adaptive random
testing to select representative tests.

Our empirical study focuses on evaluating test selection approaches across four
areas: 1) Misclassification Detection, 2) Accuracy Estimation, 3) Performance En-
hancement guided by confidence-based approaches, and 4) Performance Enhancement
guided by node importance-based approaches.

Regarding misclassification detection and performance enhancement, our em-
phasis has been on evaluating confidence-based approaches due to the following
reasons: 1) prior studies [46] have demonstrated that confidence-based methods

160

7.8. Conclusion

outperform coverage-based and surprise-based approaches in terms of effectiveness; 2)
Confidence-based test selection methods are widely recognized as the most efficient
and straightforward to implement [7], with runtime of less than 1 second in most
cases.

7.7.2 Deep Neural Network Testing
In addition to test selection, the field of DNN testing [39, 306, 307] encompasses

various noteworthy research directions, with one notable focus being the assessment
of DNN adequacy. Pei et al. [4] introduced the concept of “neuron coverage" as a
metric for gauging the comprehensiveness of a test set in terms of its coverage of
a DNN model’s logic. They employed this metric to propose a white-box testing
framework tailored for DNNs. In a subsequent study, Ma et al. [5] introduced
DeepGauge, a set of coverage criteria designed to evaluate the adequacy of tests
applied to DNNs. DeepGauge also placed significant emphasis on neuron coverage as
a valuable indicator of test input effectiveness. Additionally, they introduced novel
metrics with varying levels of granularity to distinguish between adversarial attacks
and legitimate test data. Kim et al. [49] contributed to this area by introducing
“surprise adequacy" as a measure for testing DL models. This approach evaluates the
effectiveness of a test input by quantifying the surprise it generates concerning the
training set. Specifically, the surprise of a test input is determined by measuring the
difference in the activation values of neurons when exposed to this new test input.

7.7.3 Empirical study on Active Learning
Active learning has been a subject of extensive research in recent years, with

empirical studies spanning various domains. Yu et al. [308] conducted empirical
research that focused on active learning techniques for literature reviews. In their
work, they cataloged and refined three state-of-the-art active learning methods
derived from evidence-based medicine and legal electronic discovery. This effort led
to the development of a novel active learning approach designed for the analysis
of large document corpora, incorporating and fine-tuning the most effective active
learning algorithms. Chen et al. [309] delved into the effectiveness of active learning
in the context of word sense disambiguation. They examined the behavior of active
learning by considering two fundamental data selection metrics: entropy and margin.
Sassano et al. [310] explored the practical application of active learning with Support
Vector Machines in a challenging natural language processing task, providing insights
into its performance in complex scenarios. Furthermore, Weiss et al. [7] conducted
a comprehensive investigation into various active learning techniques, revealing
that confidence-based methods delivered surprisingly strong results when applied to
DNNs.

7.8 Conclusion
In this paper, we conducted a comprehensive empirical study to explore the

limitations of test selection approaches in the context of GNNs. We totally evaluated
22 test selection approaches based on 7 graph datasets and 8 GNN models. The results
reveal that test selection approaches do not exhibit the same level of effectiveness
when applied to GNNs in comparison to DNNs. More specifically, we draw the
following conclusions: 1) Confidence-based test selection methods, which perform
well in DNNs, do not yield the same level of effectiveness in detecting potentially

161

Chapter 7. Towards Exploring the Limitations of Test Selection
Techniques on Graph Neural Networks: An Empirical Study

misclassified tests for GNNs; 2) In the majority of cases, clustering-based test
selection methods that utilize the model’s confidence vector perform better than
random selection. However, their improvements compared to random selection are
slight; 3) In terms of performance enhancement, both confidence-based and clustering-
based test selection methods show only slight effectiveness; 4) Node importance-based
test selection methods are unsuitable for selecting retraining data to enhance GNN
accuracy.

162

8 Conclusion and Future Work

In this chapter, we conclude this dissertation and outline promising directions for
future research.

Contents
8.1 Conclusion . 164
8.2 Future Work . 164

Chapter 8. Conclusion and Future Work

8.1 Conclusion
This thesis focused on test prioritization for machine learning models, address-

ing key challenges in specific scenarios: classical machine learning models, graph
neural networks (GNNs), and long-text classification. Below, we provide detailed
explanations of the test prioritization methods we proposed for each specific scenario.

In the first part, we proposed MLPrior, a test prioritization method tailored
for classical machine learning models. The core idea is that test inputs close to
the decision boundary and sensitive to feature mutations are more likely to be
misclassified. By leveraging model interpretability and feature attributes, MLPrior
effectively identifies potentially misclassified test cases. The evaluation results
confirmed the effectiveness of MLPrior across diverse classical ML datasets.

In the second part, we presented GraphPrior, a test prioritization approach
specifically developed for graph neural networks (GNNs). GraphPrior considers
graph-structured dependencies and incorporates novel mutation rules to prioritize test
cases that are more likely to reveal model faults. The evaluation results demonstrated
that GraphPrior outperformed all compared methods on both natural and adversarial
test cases for GNNs.

In the third part, we introduced LongTest, a test prioritization approach designed
for long-text classification. LongTest integrates specialized embeddings and con-
trastive learning to address the complexity of long-text inputs. Experimental results
showed that LongTest outperformed existing methods in prioritizing potentially
misclassified test cases for long-text datasets.

Finally, we conducted an empirical study to highlight the limitations of applying
existing DNN test selection methods to GNN models. In this study, we evaluated 22
test selection methods on 7 graph datasets and 8 GNN models, revealing that DNN
test prioritization approaches are less effective for GNNs. This study highlights the
necessity of developing tailored methods specifically for GNN models.

8.2 Future Work
In this section, we outline promising directions for future research.

• Test Prioritization for Large Language Models (LLMs) As Large Language
Models (LLMs), such as GPT [311], are increasingly adopted across diverse fields
(e.g., healthcare, education, and customer service), ensuring their accuracy and
reliability has become critical. Despite their impressive capabilities, LLMs can
also make errors that may lead to serious consequences, especially in high-stakes
contexts such as medical diagnosis support and legal advice generation. To address
this issue, one of our future research goals is to develop novel test prioritization
methods specifically tailored for LLMs. These methods aim to identify and
prioritize test inputs (e.g., questions or prompts) that are more likely to trigger
incorrect responses from LLMs. By accelerating the detection of such misclassified
cases, the debugging process can be expedited, thereby improving LLM testing
efficiency and contributing to the refinement and optimization of their performance.

• Integration of Test Prioritization with Model Retraining The main goal
of test prioritization is to prioritize inputs that models are likely to misclassify
so that these inputs can be used to accelerate the debugging process, thereby
improving testing efficiency. Moreover, these prioritized inputs can also be used to
retrain models to enhance their performance. Therefore, one of our future research

164

8.2. Future Work

directions is to investigate whether the proposed test prioritization methods in
this dissertation can effectively enhance model retraining. This could involve
comparing the effectiveness of these methods against traditional test selection
techniques (such as uncertainty-based approaches [3, 172] and surprise-based
approaches [49]) to evaluate their effectiveness in improving model accuracy.

• Test Prioritization for Speech Classification Systems Beyond the specific
domains explored in this dissertation, such as classical machine learning classifica-
tion, graph neural network (GNN) classification, and long-text classification, other
scenarios, such as speech classification, are also worthy of attention. The moti-
vation lies in the fact that Automated Speech Recognition (ASR) systems [312],
widely used in applications like virtual assistants and transcription services, re-
quire thorough testing to ensure accuracy. However, the cost and time involved
in collecting and evaluating speech test cases can be significant. Therefore, one
of our future research directions involves developing test prioritization methods
tailored specifically for ASR systems to reduce the labelling effort and improve
testing efficiency.

165

Chapter 8. Conclusion and Future Work

166

Research Activities

In this chapter, we present the research activities conducted throughout my Ph.D.
journey. Specifically, we outline 1) the papers to which we contributed and 2) the
venues where I have served.

List of Papers

Papers included in this dissertation:

• Xueqi Dang, Yinghua Li, Mike Papadakis, Jacques Klein, Tegawendé F.
Bissyandé, Yves Le Traon. Test input prioritization for Machine Learning
Classifiers. IEEE Transactions on Software Engineering (TSE), 50(3), 413-442.
Accepted for publication on 05 January 2024.

• Xueqi Dang, Yinghua Li, Mike Papadakis, Jacques Klein, Tegawendé F. Bis-
syandé, Yves Le Traon. GraphPrior: Mutation-based Test Input Prioritization
for Graph Neural Networks. ACM Transactions on Software Engineering and
Methodology (TOSEM), 33(1), 1-40. Accepted for publication on 24 November
2023.

• Xueqi Dang, Yinghua Li, Wei Ma, Yuejun Guo, Qiang Hu, Mike Papadakis,
Maxime Cordy, Yves Le Traon. Towards Exploring the Limitations of Test Se-
lection Techniques on Graph Neural Networks: An Empirical Study. Empirical
Software Engineering (EMSE), 29(5), 112. Accepted for publication on 22 July
2024.

• Xueqi Dang, Yinghua Li, Wendkuuni C. Ouédraogo, Maxime Cordy, Mike
Papadakis, Jacques Klein, Tegawendé F. Bissyandé, Yves Le Traon. LongTest:
Test Prioritization for Long Text Files. Under Review in IEEE Transactions
on Software Engineering (TSE), 2025.

Papers not included in this dissertation:

• Yinghua Li, Xueqi Dang, Lei Ma, Jacques Klein, Yves Le Traon, Tegawendé F.
Bissyandé. Test Input Prioritization for 3D Point Clouds. ACM Transactions
on Software Engineering and Methodology (TOSEM), 33(5), 1-44. Accepted
for publication on 04 June 2024.

Services

Journal Referee:

Chapter 8. Conclusion and Future Work

• Automated Software Engineering

Program Committee:
• The 34th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA 2025, Tool Demonstrations Track)
• The 47th International Conference on Software Engineering (ICSE 2025, Arti-

fact Evaluation Track)

External Reviewer:
• The 33rd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA 2024)

168

Bibliography

[1] M. J. Raihan, M. A.-M. Khan, S.-H. Kee, and A.-A. Nahid, “Detection of the
chronic kidney disease using xgboost classifier and explaining the influence
of the attributes on the model using shap,” Scientific Reports, vol. 13, no. 1,
p. 6263, 2023.

[2] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang, “Prioritizing test
inputs for deep neural networks via mutation analysis,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp. 397–409,
IEEE, 2021.

[3] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini: prioritizing
massive tests to enhance the robustness of deep neural networks,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 177–188, 2020.

[4] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium on
Operating Systems Principles, pp. 1–18, 2017.

[5] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li,
Y. Liu, et al., “Deepgauge: Multi-granularity testing criteria for deep learning
systems,” in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 120–131, 2018.

[6] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box safety
testing of deep neural networks,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pp. 408–426, Springer,
2018.

[7] M. Weiss and P. Tonella, “Simple techniques work surprisingly well for neu-
ral network test prioritization and active learning (replicability study),” in
Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 139–150, 2022.

[8] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pp. 785–794, 2016.

[9] Y.-Y. Song and L. Ying, “Decision tree methods: applications for classification
and prediction,” Shanghai archives of psychiatry, vol. 27, no. 2, p. 130, 2015.

[10] P. Gogas and T. Papadimitriou, “Machine learning in economics and finance,”
Computational Economics, vol. 57, pp. 1–4, 2021.

169

Bibliography

[11] M. Hanafy and R. Ming, “Machine learning approaches for auto insurance big
data,” Risks, vol. 9, no. 2, p. 42, 2021.

[12] M. Fatima, M. Pasha, et al., “Survey of machine learning algorithms for disease
diagnostic,” Journal of Intelligent Learning Systems and Applications, vol. 9,
no. 01, p. 1, 2017.

[13] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing: Survey,
landscapes and horizons,” IEEE Transactions on Software Engineering, vol. 48,
no. 1, pp. 1–36, 2020.

[14] R. E. Wright, “Logistic regression.,” 1995.

[15] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3, pp. 41–46,
Seattle, WA, USA;, 2001.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[17] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural
networks: analysis, applications, and prospects,” IEEE transactions on neural
networks and learning systems, vol. 33, no. 12, pp. 6999–7019, 2021.

[18] L. R. Medsker, L. Jain, et al., “Recurrent neural networks,” Design and
Applications, vol. 5, no. 64-67, p. 2, 2001.

[19] M. Ghassemi, T. Naumann, P. Schulam, A. L. Beam, I. Y. Chen, and R. Ran-
ganath, “A review of challenges and opportunities in machine learning for
health,” AMIA Summits on Translational Science Proceedings, vol. 2020, p. 191,
2020.

[20] F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato, “Machine learning for
quantitative finance applications: A survey,” Applied Sciences, vol. 9, no. 24,
p. 5574, 2019.

[21] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller,
“Explaining deep neural networks and beyond: A review of methods and
applications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.

[22] Y. Li, X. Dang, H. Tian, T. Sun, Z. Wang, L. Ma, J. Klein, and T. F. Bissyandé,
“An empirical study of ai techniques in mobile applications,” Journal of Systems
and Software, vol. 219, p. 112233, 2025.

[23] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms as
gradient descent,” Advances in neural information processing systems, vol. 12,
1999.

[24] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and
D. Brown, “Text classification algorithms: A survey,” Information, vol. 10,
no. 4, p. 150, 2019.

170

Bibliography

[25] E. Haddi, X. Liu, and Y. Shi, “The role of text pre-processing in sentiment
analysis,” Procedia computer science, vol. 17, pp. 26–32, 2013.

[26] S. Sharmin and Z. Zaman, “Spam detection in social media employing machine
learning tool for text mining,” in 2017 13th international conference on signal-
image technology & internet-based systems (SITIS), pp. 137–142, IEEE, 2017.

[27] N. Jindal and B. Liu, “Review spam detection,” in Proceedings of the 16th
international conference on World Wide Web, pp. 1189–1190, 2007.

[28] X. Chen, P. Cong, and S. Lv, “A long-text classification method of chinese
news based on bert and cnn,” IEEE Access, vol. 10, pp. 34046–34057, 2022.

[29] S. Xiao, S. Wang, Y. Dai, and W. Guo, “Graph neural networks in node classi-
fication: survey and evaluation,” Machine Vision and Applications, Springer,,
vol. 33, pp. 1–19, 2022.

[30] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI magazine, AAAI,, vol. 29, no. 3,
pp. 93–93, 2008.

[31] K. Riesen and H. Bunke, “Iam graph database repository for graph based pat-
tern recognition and machine learning,” in Structural, Syntactic, and Statistical
Pattern Recognition: Joint IAPR International Workshop, SSPR & SPR 2008,
Orlando, USA, December 4-6, 2008. Proceedings, pp. 287–297, Springer, 2008.

[32] X. Dang, Y. Li, M. Papadakis, J. Klein, T. F. Bissyandé, and Y. L. Traon,
“Graphprior: Mutation-based test input prioritization for graph neural net-
works,” ACM Transactions on Software Engineering and Methodology, 2023.

[33] Y. Li, X. Dang, L. Ma, J. Klein, and T. F. Bissyandé, “Prioritizing test cases for
deep learning-based video classifiers,” Empirical Software Engineering, vol. 29,
no. 5, p. 111, 2024.

[34] Y. Li, X. Dang, W. Pian, A. Habib, J. Klein, and T. F. Bissyandé, “Test input
prioritization for graph neural networks,” IEEE Transactions on Software
Engineering, vol. 50, no. 6, pp. 1396–1424, 2024.

[35] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical accuracy
estimation for efficient deep neural network testing,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–35,
2020.

[36] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting operational dnn
testing efficiency through conditioning,” in Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 499–509, 2019.

[37] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn
to criticize! criticism for interpretability,” Advances in neural information
processing systems, vol. 29, 2016.

171

Bibliography

[38] Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing,” IEEE transactions on software engineering, vol. 37, no. 5, pp. 649–678,
2010.

[39] G. Jahangirova and P. Tonella, “An empirical evaluation of mutation operators
for deep learning systems,” in 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pp. 74–84, IEEE, 2020.

[40] D. Schuler and A. Zeller, “Javalanche: Efficient mutation testing for java,”
in Proceedings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pp. 297–298, 2009.

[41] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit: a
practical mutation testing tool for java,” in Proceedings of the 25th international
symposium on software testing and analysis, pp. 449–452, 2016.

[42] A. M. Dakhel, A. Nikanjam, V. Majdinasab, F. Khomh, and M. C. Desmarais,
“Effective test generation using pre-trained large language models and mutation
testing,” Information and Software Technology, vol. 171, p. 107468, 2024.

[43] A. B. Sánchez, P. Delgado-Pérez, I. Medina-Bulo, and S. Segura, “Mutation
testing in the wild: findings from github,” Empirical Software Engineering,
vol. 27, no. 6, p. 132, 2022.

[44] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and L. Zhang, “Pre-
dictive mutation testing,” in Proceedings of the 25th international symposium
on software testing and analysis, pp. 342–353, 2016.

[45] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola, “What makes
for good views for contrastive learning?,” Advances in neural information
processing systems, vol. 33, pp. 6827–6839, 2020.

[46] W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, and Y. L. Traon, “Test selection
for deep learning systems,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 2, pp. 1–22, 2021.

[47] Q. Hu, Y. Guo, M. Cordy, X. Xie, W. Ma, M. Papadakis, and Y. Le Traon,
“Towards exploring the limitations of active learning: An empirical study,”
in 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 917–929, IEEE, 2021.

[48] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu,
J. Zhao, et al., “Deepmutation: Mutation testing of deep learning systems,” in
2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE), pp. 100–111, IEEE, 2018.

[49] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing using
surprise adequacy,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pp. 1039–1049, IEEE, 2019.

172

Bibliography

[50] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct: Tomo-
graphic combinatorial testing for deep learning systems,” in 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 614–618, IEEE, 2019.

[51] S. Dola, M. B. Dwyer, and M. L. Soffa, “Input distribution coverage: Measuring
feature interaction adequacy in neural network testing,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 3, pp. 1–48, 2023.

[52] V. Riccio, N. Humbatova, G. Jahangirova, and P. Tonella, “Deepmetis: Aug-
menting a deep learning test set to increase its mutation score,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 355–367, IEEE, 2021.

[53] Y. Li, X. Dang, H. Tian, T. Sun, Z. Wang, L. Ma, J. Klein, and T. F. Bissyande,
“Ai-driven mobile apps: an explorative study,” arXiv preprint arXiv:2212.01635,
2022.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[55] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of
deep learning for natural language processing,” IEEE transactions on neural
networks and learning systems, vol. 32, no. 2, pp. 604–624, 2020.

[56] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, et al., “Transformers: State-of-the-art natural
language processing,” in Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstrations, pp. 38–45,
2020.

[57] Z. Batmaz, A. Yurekli, A. Bilge, and C. Kaleli, “A review on deep learning for
recommender systems: challenges and remedies,” Artificial Intelligence Review,
vol. 52, pp. 1–37, 2019.

[58] J. Zeng, H. Tang, Y. Li, and X. He, “A deep learning model based on sparse
matrix for point-of-interest recommendation.,” in SEKE, pp. 379–492, 2019.

[59] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning inter-
pretability: A survey on methods and metrics,” Electronics, vol. 8, no. 8, p. 832,
2019.

[60] D. Yu, Z. Liu, C. Su, Y. Han, X. Duan, R. Zhang, X. Liu, Y. Yang, and S. Xu,
“Copy number variation in plasma as a tool for lung cancer prediction using
extreme gradient boosting (xgboost) classifier,” Thoracic cancer, vol. 11, no. 1,
pp. 95–102, 2020.

[61] T. W. Cenggoro, B. Mahesworo, A. Budiarto, J. Baurley, T. Suparyanto, and
B. Pardamean, “Features importance in classification models for colorectal
cancer cases phenotype in indonesia,” Procedia Computer Science, vol. 157,
pp. 313–320, 2019.

173

Bibliography

[62] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran,
“Killing strategies for model-based mutation testing,” Softw. Test. Verification
Reliab., vol. 25, no. 8, pp. 716–748, 2015.

[63] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P. Schobbens, and P. Hey-
mans, “Featured model-based mutation analysis,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016 (L. K. Dillon, W. Visser, and L. A. Williams, eds.),
pp. 655–666, ACM, 2016.

[64] M. Papadakis, C. Henard, and Y. L. Traon, “Sampling program inputs with
mutation analysis: Going beyond combinatorial interaction testing,” in Sev-
enth IEEE International Conference on Software Testing, Verification and
Validation, ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA,
pp. 1–10, IEEE Computer Society, 2014.

[65] X. Gao, J. Zhai, S. Ma, C. Shen, Y. Chen, and Q. Wang, “Fairneuron: improving
deep neural network fairness with adversary games on selective neurons,” in
Proceedings of the 44th International Conference on Software Engineering,
pp. 921–933, 2022.

[66] Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, “Maat: a novel ensemble
approach to addressing fairness and performance bugs for machine learning
software,” in Proceedings of the 30th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
pp. 1122–1134, 2022.

[67] C. Molinier, P. Temple, and G. Perrouin, “Fairpipes: Data mutation pipelines
for machine learning fairness,” in 2024 IEEE/ACM International Conference
on Automation of Software Test (AST), pp. 224–234, 2024.

[68] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani,
and P. Pérez, “Deep reinforcement learning for autonomous driving: A sur-
vey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6,
pp. 4909–4926, 2021.

[69] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” Advances in
neural information processing systems, vol. 30, 2017.

[70] S. Mallat, “Understanding deep convolutional networks,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 374, no. 2065, p. 20150203, 2016.

[71] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision, pp. 818–833, Springer,
2014.

[72] B. Yeo and D. Grant, “Predicting service industry performance using decision
tree analysis,” International Journal of Information Management, vol. 38, no. 1,
pp. 288–300, 2018.

174

Bibliography

[73] M. Sewak, S. K. Sahay, and H. Rathore, “Comparison of deep learning and
the classical machine learning algorithm for the malware detection,” in 2018
19th IEEE/ACIS international conference on software engineering, artificial
intelligence, networking and parallel/distributed computing (SNPD), pp. 293–
296, IEEE, 2018.

[74] P. Weber, K. V. Carl, and O. Hinz, “Applications of explainable artificial
intelligence in finance—a systematic review of finance, information systems,
and computer science literature,” Management Review Quarterly, pp. 1–41,
2023.

[75] C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, and T. Wang, “A holistic
approach to interpretability in financial lending: Models, visualizations, and
summary-explanations,” Decision Support Systems, vol. 152, p. 113647, 2022.

[76] A. Adadi and M. Berrada, “Explainable ai for healthcare: from black box
to interpretable models,” in Embedded Systems and Artificial Intelligence:
Proceedings of ESAI 2019, Fez, Morocco, pp. 327–337, Springer, 2020.

[77] M. Verdicchio and A. Perin, “When doctors and ai interact: on human re-
sponsibility for artificial risks,” Philosophy & Technology, vol. 35, no. 1, p. 11,
2022.

[78] H. Smith, “Clinical ai: opacity, accountability, responsibility and liability,” Ai
& Society, vol. 36, no. 2, pp. 535–545, 2021.

[79] J. Amann, A. Blasimme, E. Vayena, D. Frey, V. I. Madai, and P. Consortium,
“Explainability for artificial intelligence in healthcare: a multidisciplinary
perspective,” BMC medical informatics and decision making, vol. 20, pp. 1–9,
2020.

[80] T. Grote and P. Berens, “On the ethics of algorithmic decision-making in
healthcare,” Journal of medical ethics, 2019.

[81] H. Yan, S. Lin, et al., “New trend in fintech: Research on artificial intelligence
model interpretability in financial fields,” Open Journal of Applied Sciences,
vol. 9, no. 10, p. 761, 2019.

[82] K. Suzuki, “Overview of deep learning in medical imaging,” Radiological physics
and technology, vol. 10, no. 3, pp. 257–273, 2017.

[83] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,”
Annual review of biomedical engineering, vol. 19, pp. 221–248, 2017.

[84] Z. A. Shirazi, C. P. de Souza, R. Kashef, and F. F. Rodrigues, “Deep learning in
the healthcare industry: theory and applications,” in Computational intelligence
and soft computing applications in healthcare management science, pp. 220–245,
IGI Global, 2020.

[85] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you
need,” Information Fusion, vol. 81, pp. 84–90, 2022.

175

Bibliography

[86] Y. Wang and T. Wang, “Application of improved lightgbm model in blood
glucose prediction,” Applied Sciences, vol. 10, no. 9, p. 3227, 2020.

[87] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine learning,”
in 2018 IEEE 5th International Conference on data science and advanced
analytics (DSAA), pp. 80–89, IEEE, 2018.

[88] M. A. Hanif, F. Khalid, R. V. W. Putra, S. Rehman, and M. Shafique, “Robust
machine learning systems: Reliability and security for deep neural networks,”
in 2018 IEEE 24th international symposium on on-line testing and robust
system design (IOLTS), pp. 257–260, IEEE, 2018.

[89] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey
on bias and fairness in machine learning,” ACM Computing Surveys (CSUR),
vol. 54, no. 6, pp. 1–35, 2021.

[90] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal, “Enhancing robustness
of machine learning systems via data transformations,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS), pp. 1–5, IEEE, 2018.

[91] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,” Journal
of Systems and Software, vol. 84, no. 4, pp. 544–558, 2011.

[92] S. Yoo and M. Harman, “Regression testing minimization, selection and priori-
tization: a survey,” Software testing, verification and reliability, vol. 22, no. 2,
pp. 67–120, 2012.

[93] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression.
John Wiley & Sons, 2013.

[94] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and regression
trees. Routledge, 2017.

[95] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:
Help for the practicing programmer,” IEEE Computer, vol. 11, no. 4, pp. 34–41,
1978.

[96] P. Ammann and J. Offutt, Introducation to Software Testing. Cambridge
University Press, 2008.

[97] P. Delgado-Pérez, I. Habli, S. Gregory, R. Alexander, J. Clark, and I. Medina-
Bulo, “Evaluation of mutation testing in a nuclear industry case study,” IEEE
Transactions on Reliability, vol. 67, no. 4, pp. 1406–1419, 2018.

[98] G. Petrovic, M. Ivankovic, B. Kurtz, P. Ammann, and R. Just, “An industrial
application of mutation testing: Lessons, challenges, and research directions,”
in 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 47–53, IEEE, 2018.

176

Bibliography

[99] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental
determination of sufficient mutant operators,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 5, no. 2, pp. 99–118, 1996.

[100] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: an analysis and survey,” in Advances in Computers,
vol. 112, pp. 275–378, Elsevier, 2019.

[101] T. Fredriksson, J. Bosch, and H. H. Olsson, “Machine learning models for
automatic labeling: A systematic literature review.,” ICSOFT, pp. 552–561,
2020.

[102] T. Fredriksson, D. I. Mattos, J. Bosch, and H. H. Olsson, “Data labeling: An
empirical investigation into industrial challenges and mitigation strategies,” in
International Conference on Product-Focused Software Process Improvement,
pp. 202–216, Springer, 2020.

[103] M. Desmond, E. Duesterwald, K. Brimijoin, M. Brachman, and Q. Pan, “Semi-
automated data labeling,” in NeurIPS 2020 Competition and Demonstration
Track, pp. 156–169, PMLR, 2021.

[104] J. Wu, C. Ye, V. S. Sheng, Y. Yao, P. Zhao, and Z. Cui, “Semi-automatic
labeling with active learning for multi-label image classification,” in Advances in
Multimedia Information Processing–PCM 2015: 16th Pacific-Rim Conference
on Multimedia, Gwangju, South Korea, September 16-18, 2015, Proceedings,
Part I 16, pp. 473–482, Springer, 2015.

[105] “Making automated data labeling a reality in modern ai,” Accessed, 2023.

[106] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli, “Evasion attacks against machine learning at test time,” in Machine
Learning and Knowledge Discovery in Databases (H. Blockeel, K. Kersting,
S. Nijssen, and F. Železný, eds.), (Berlin, Heidelberg), pp. 387–402, Springer
Berlin Heidelberg, 2013.

[107] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based approach
in classification,” in On The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003.
Proceedings, pp. 986–996, Springer, 2003.

[108] H. Kim and Z. Gu, “A logistic regression analysis for predicting bankruptcy in
the hospitality industry,” The Journal of Hospitality Financial Management,
vol. 14, no. 1, pp. 17–34, 2006.

[109] A. Mayr, H. Binder, O. Gefeller, and M. Schmid, “The evolution of boosting
algorithms,” Methods of information in medicine, vol. 53, no. 06, pp. 419–427,
2014.

[110] P. Chen, S. Liu, H. Zhao, and J. Jia, “Gridmask data augmentation,” arXiv
preprint arXiv:2001.04086, 2020.

177

Bibliography

[111] Q. H. Nguyen, H.-B. Ly, L. S. Ho, N. Al-Ansari, H. V. Le, V. Q. Tran,
I. Prakash, and B. T. Pham, “Influence of data splitting on performance of
machine learning models in prediction of shear strength of soil,” Mathematical
Problems in Engineering, vol. 2021, pp. 1–15, 2021.

[112] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[113] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced
data using matthews correlation coefficient metric,” PloS one, vol. 12, no. 6,
p. e0177678, 2017.

[114] “The adult census income dataset,” 2017.

[115] “The bank dataset.,” 2014.

[116] T. Tazin, M. N. Alam, N. N. Dola, M. S. Bari, S. Bourouis, M. Monirujja-
man Khan, et al., “Stroke disease detection and prediction using robust learning
approaches,” Journal of healthcare engineering, vol. 2021, 2021.

[117] G. ÖZSEZER and G. MERMER, “Diabetes risk prediction with machine
learning models,” Artificial Intelligence Theory and Applications, vol. 2, no. 2,
pp. 1–9, 2022.

[118] J. Hua, B. Chu, J. Zou, and J. Jia, “Ecg signal classification in wearable devices
based on compressed domain,” Plos one, vol. 18, no. 4, p. e0284008, 2023.

[119] S. Tizpaz-Niari, A. Kumar, G. Tan, and A. Trivedi, “Fairness-aware configu-
ration of machine learning libraries,” in Proceedings of the 44th International
Conference on Software Engineering, pp. 909–920, 2022.

[120] Y. Li, L. Meng, L. Chen, L. Yu, D. Wu, Y. Zhou, and B. Xu, “Training data
debugging for the fairness of machine learning software,” in Proceedings of the
44th International Conference on Software Engineering, pp. 2215–2227, 2022.

[121] H. Zheng, Z. Chen, T. Du, X. Zhang, Y. Cheng, S. Ji, J. Wang, Y. Yu, and
J. Chen, “Neuronfair: Interpretable white-box fairness testing through biased
neuron identification,” in Proceedings of the 44th International Conference on
Software Engineering, pp. 1519–1531, 2022.

[122] D. Dua and C. Graff, “Uci machine learning repository. university of california,
school of information and computer science, irvine, ca (2019),” 2019.

[123] R. Kohavi et al., “Scaling up the accuracy of naive-bayes classifiers: A decision-
tree hybrid.,” in Kdd, vol. 96, pp. 202–207, 1996.

[124] A. Ogunleye and Q.-G. Wang, “Xgboost model for chronic kidney disease diag-
nosis,” IEEE/ACM transactions on computational biology and bioinformatics,
vol. 17, no. 6, pp. 2131–2140, 2019.

[125] C. Rao, Y. Liu, and M. Goh, “Credit risk assessment mechanism of personal
auto loan based on pso-xgboost model,” Complex & Intelligent Systems, vol. 9,
no. 2, pp. 1391–1414, 2023.

178

Bibliography

[126] M. Mukid, T. Widiharih, A. Rusgiyono, and A. Prahutama, “Credit scoring
analysis using weighted k nearest neighbor,” in Journal of Physics: Conference
Series, vol. 1025, p. 012114, IOP Publishing, 2018.

[127] H. Kamel, D. Abdulah, and J. M. Al-Tuwaijari, “Cancer classification using
gaussian naive bayes algorithm,” in 2019 International Engineering Conference
(IEC), pp. 165–170, IEEE, 2019.

[128] D. Slack, S. A. Friedler, C. Scheidegger, and C. D. Roy, “Assessing the local
interpretability of machine learning models,” arXiv preprint arXiv:1902.03501,
2019.

[129] Y. Li, J. Wang, and C. Wang, “Systematic testing of the data-poisoning
robustness of knn,” in ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2023.

[130] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P.
Hamilton, and D. Roth, “A comparative study of fairness-enhancing inter-
ventions in machine learning,” in Proceedings of the conference on fairness,
accountability, and transparency, pp. 329–338, 2019.

[131] A. Stevens, P. Deruyck, Z. Van Veldhoven, and J. Vanthienen, “Explainability
and fairness in machine learning: Improve fair end-to-end lending for kiva,” in
2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1241–
1248, IEEE, 2020.

[132] R. J. Lewis, “An introduction to classification and regression tree (cart) analy-
sis,” in Annual meeting of the society for academic emergency medicine in San
Francisco, California, vol. 14, Citeseer, 2000.

[133] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization:
A family of empirical studies,” IEEE transactions on software engineering,
vol. 28, no. 2, pp. 159–182, 2002.

[134] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn:
Machine learning in python,” the Journal of machine Learning research, vol. 12,
pp. 2825–2830, 2011.

[135] M. Fan, W. Wei, W. Jin, Z. Yang, and T. Liu, “Explanation-guided fairness
testing through genetic algorithm,” in Proceedings of the 44th International
Conference on Software Engineering, pp. 871–882, 2022.

[136] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases
for regression testing,” IEEE Transactions on software engineering, vol. 27,
no. 10, pp. 929–948, 2001.

[137] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test case
prioritization,” in 2009 IEEE/ACM International Conference on Automated
Software Engineering, pp. 233–244, IEEE, 2009.

179

Bibliography

[138] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Prioritizing junit test cases
in absence of coverage information,” in 2009 IEEE International Conference
on Software Maintenance, pp. 19–28, IEEE, 2009.

[139] P. Tonella, P. Avesani, and A. Susi, “Using the case-based ranking methodology
for test case prioritization,” in 2006 22nd IEEE international conference on
software maintenance, pp. 123–133, IEEE, 2006.

[140] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge,” in Pro-
ceedings of the eighteenth international symposium on Software testing and
analysis, pp. 201–212, 2009.

[141] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization in
software evolution,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), pp. 46–57, IEEE, 2015.

[142] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon, “Compar-
ing white-box and black-box test prioritization,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pp. 523–534, IEEE,
2016.

[143] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on regression
test selection techniques,” Information and Software Technology, vol. 52, no. 1,
pp. 14–30, 2010.

[144] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-based testing
through test case diversity,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 22, no. 1, pp. 1–42, 2013.

[145] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Coverage prediction for accelerating compiler testing,” IEEE Transactions on
Software Engineering, vol. 47, no. 2, pp. 261–278, 2018.

[146] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: mutation testing
of deep learning systems based on real faults,” in Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp. 67–78, 2021.

[147] T. Byun, V. Sharma, A. Vijayakumar, S. Rayadurgam, and D. Cofer, “In-
put prioritization for testing neural networks,” in 2019 IEEE International
Conference On Artificial Intelligence Testing (AITest), pp. 63–70, IEEE, 2019.

[148] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the 40th in-
ternational conference on software engineering, pp. 303–314, 2018.

[149] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random testing,” in Advances
in Computer Science-ASIAN 2004. Higher-Level Decision Making: 9th Asian
Computing Science Conference. Dedicated to Jean-Louis Lassez on the Occasion
of His 5th Birthday. Chiang Mai, Thailand, December 8-10, 2004. Proceedings
9, pp. 320–329, Springer, 2005.

180

Bibliography

[150] D. Shin, S. Yoo, M. Papadakis, and D.-H. Bae, “Empirical evaluation of
mutation-based test case prioritization techniques,” Software Testing, Verifica-
tion and Reliability, vol. 29, no. 1-2, p. e1695, 2019.

[151] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++: A mu-
tation testing framework for deep learning systems,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 1158–
1161, IEEE, 2019.

[152] T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu, J. B. Hayter,
R. Vickers, C. Roberts, J. Tang, et al., “Utilizing graph machine learning
within drug discovery and development,” Briefings in bioinformatics, vol. 22,
no. 6, p. bbab159, 2021.

[153] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
“Open graph benchmark: Datasets for machine learning on graphs,” Advances
in neural information processing systems, vol. 33, pp. 22118–22133, 2020.

[154] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20,
no. 1, pp. 61–80, 2008.

[155] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems,” in
Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 974–983, 2018.

[156] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in
recommender systems: a survey,” ACM Computing Surveys, vol. 55, no. 5,
pp. 1–37, 2022.

[157] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural
networks for social recommendation,” in The world wide web conference, pp. 417–
426, 2019.

[158] C. Li, J. Ma, X. Guo, and Q. Mei, “Deepcas: An end-to-end predictor of
information cascades,” in Proceedings of the 26th international conference on
World Wide Web, pp. 577–586, 2017.

[159] L. Wu, P. Sun, R. Hong, Y. Fu, X. Wang, and M. Wang, “Socialgcn: An
efficient graph convolutional network based model for social recommendation,”
arXiv preprint arXiv:1811.02815, 2018.

[160] J. Yu, H. Yin, J. Li, M. Gao, Z. Huang, and L. Cui, “Enhance social recom-
mendation with adversarial graph convolutional networks,” IEEE Transactions
on Knowledge and Data Engineering, 2020.

[161] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “Graphaf: a flow-
based autoregressive model for molecular graph generation,” arXiv preprint
arXiv:2001.09382, 2020.

[162] P. Bongini, M. Bianchini, and F. Scarselli, “Molecular generative graph neural
networks for drug discovery,” Neurocomputing, vol. 450, pp. 242–252, 2021.

181

Bibliography

[163] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[164] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[165] S. Geisler, T. Schmidt, H. Şirin, D. Zügner, A. Bojchevski, and S. Günnemann,
“Robustness of graph neural networks at scale,” Advances in Neural Information
Processing Systems, vol. 34, pp. 7637–7649, 2021.

[166] J. Ma, S. Ding, and Q. Mei, “Towards more practical adversarial attacks on
graph neural networks,” Advances in neural information processing systems,
vol. 33, pp. 4756–4766, 2020.

[167] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Attacking graph convolutional
networks via rewiring,” arXiv preprint arXiv:1906.03750, 2019.

[168] N. Pancino, A. Rossi, G. Ciano, G. Giacomini, S. Bonechi, P. Andreini,
F. Scarselli, M. Bianchini, and P. Bongini, “Graph neural networks for the
prediction of protein-protein interfaces.,” in ESANN, pp. 127–132, 2020.

[169] Y. Lou, J. Chen, L. Zhang, and D. Hao, “A survey on regression test-case
prioritization,” in Advances in Computers, vol. 113, pp. 1–46, Elsevier, 2019.

[170] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,” Adv.
Comput., vol. 112, pp. 275–378, 2019.

[171] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman, “An empirical study
on mutation, statement and branch coverage fault revelation that avoids the
unreliable clean program assumption,” in Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina,
May 20-28, 2017 (S. Uchitel, A. Orso, and M. P. Robillard, eds.), pp. 597–608,
IEEE / ACM, 2017.

[172] D. Wang and Y. Shang, “A new active labeling method for deep learning,” in
2014 International joint conference on neural networks (IJCNN), pp. 112–119,
IEEE, 2014.

[173] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks
via meta learning,” arXiv preprint arXiv:1902.08412, 2019.

[174] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and X. Lin,
“Topology attack and defense for graph neural networks: An optimization
perspective,” arXiv preprint arXiv:1906.04214, 2019.

[175] A. Bojchevski and S. Günnemann, “Adversarial attacks on node embeddings via
graph poisoning,” in International Conference on Machine Learning, pp. 695–
704, PMLR, 2019.

[176] Y. Li, W. Jin, H. Xu, and J. Tang, “Deeprobust: A pytorch library for
adversarial attacks and defenses,” arXiv preprint arXiv:2005.06149, 2020.

182

Bibliography

[177] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” AI Open,
vol. 1, pp. 57–81, 2020.

[178] C. Sun, A. Shrivastava, C. Vondrick, R. Sukthankar, K. Murphy, and C. Schmid,
“Relational action forecasting,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 273–283, 2019.

[179] R. Yin, K. Li, G. Zhang, and J. Lu, “A deeper graph neural network for
recommender systems,” Knowledge-Based Systems, vol. 185, p. 105020, 2019.

[180] K. Jha, S. Saha, and H. Singh, “Prediction of protein–protein interaction using
graph neural networks,” Scientific Reports, vol. 12, no. 1, pp. 1–12, 2022.

[181] H. Zhou, W. Wang, J. Jin, Z. Zheng, and B. Zhou, “Graph neural network
for protein–protein interaction prediction: A comparative study,” Molecules,
vol. 27, no. 18, p. 6135, 2022.

[182] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A survey,”
Expert Systems with Applications, vol. 207, p. 117921, 2022.

[183] C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng, “Gated
residual recurrent graph neural networks for traffic prediction,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 33, pp. 485–492, 2019.

[184] Q. Zhang, K. Yu, Z. Guo, S. Garg, J. J. Rodrigues, M. M. Hassan, and
M. Guizani, “Graph neural network-driven traffic forecasting for the connected
internet of vehicles,” IEEE Transactions on Network Science and Engineering,
vol. 9, no. 5, pp. 3015–3027, 2021.

[185] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[186] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised learning
with graph embeddings,” in International conference on machine learning,
pp. 40–48, PMLR, 2016.

[187] B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs: Birds of a
feather, from statistical descriptors to parametric models,” in Proceedings of the
29th ACM international conference on information & knowledge management,
pp. 1325–1334, 2020.

[188] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of graph
embedding: Problems, techniques, and applications,” IEEE transactions on
knowledge and data engineering, vol. 30, no. 9, pp. 1616–1637, 2018.

[189] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neu-
ral message passing for quantum chemistry,” in International conference on
machine learning, pp. 1263–1272, PMLR, 2017.

[190] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” arXiv preprint arXiv:1810.00826, 2018.

183

Bibliography

[191] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” Advances in neural information processing systems, vol. 30,
2017.

[192] J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar, “Topology adaptive graph
convolutional networks,” arXiv preprint arXiv:1710.10370, 2017.

[193] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial
attack on graph structured data,” in International conference on machine
learning, pp. 1115–1124, PMLR, 2018.

[194] L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, L. He, and B. Li, “Adversarial
attack and defense on graph data: A survey,” arXiv preprint arXiv:1812.10528,
2018.

[195] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural
networks for graph data,” in Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, pp. 2847–2856,
2018.

[196] L. Zhang, X. Sun, Y. Li, and Z. Zhang, “A noise-sensitivity-analysis-
based test prioritization technique for deep neural networks,” arXiv preprint
arXiv:1901.00054, 2019.

[197] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[198] M. Prince, “Does active learning work? a review of the research,” Journal of
engineering education, vol. 93, no. 3, pp. 223–231, 2004.

[199] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn: Sim-
plifying and powering graph convolution network for recommendation,” in
Proceedings of the 43rd International ACM SIGIR conference on research and
development in Information Retrieval, pp. 639–648, 2020.

[200] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text classifica-
tion,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
pp. 7370–7377, 2019.

[201] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5966–5978, 2020.

[202] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[203] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

184

Bibliography

[204] D. Zhao, H. Wang, K. Shao, and Y. Zhu, “Deep reinforcement learning with
experience replay based on sarsa,” in 2016 IEEE symposium series on compu-
tational intelligence (SSCI), pp. 1–6, IEEE, 2016.

[205] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning,” nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[206] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang, “A survey of deep active learning,” ACM computing surveys (CSUR),
vol. 54, no. 9, pp. 1–40, 2021.

[207] H. Do and G. Rothermel, “On the use of mutation faults in empirical assess-
ments of test case prioritization techniques,” IEEE Transactions on Software
Engineering, vol. 32, no. 9, pp. 733–752, 2006.

[208] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to prioritize
test programs for compiler testing,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp. 700–711, IEEE, 2017.

[209] J. Chen, “Learning to accelerate compiler testing,” in Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings,
pp. 472–475, 2018.

[210] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-based test
case prioritisation: An industrial case study,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pp. 302–311,
IEEE, 2013.

[211] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression
testing in continuous integration development environments,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 235–245, 2014.

[212] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression test
case prioritization,” IEEE Transactions on software engineering, vol. 33, no. 4,
pp. 225–237, 2007.

[213] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon,
“Bypassing the combinatorial explosion: Using similarity to generate and prior-
itize t-wise test configurations for software product lines,” IEEE Transactions
on Software Engineering, vol. 40, no. 7, pp. 650–670, 2014.

[214] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test cases
with string distances,” Automated Software Engineering, vol. 19, no. 1, pp. 65–
95, 2012.

[215] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp), pp. 39–57,
Ieee, 2017.

185

Bibliography

[216] W. Shen, J. Wan, and Z. Chen, “Munn: Mutation analysis of neural networks,”
in 2018 IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 108–115, IEEE, 2018.

[217] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and
J. Gao, “Deep learning–based text classification: a comprehensive review,”
ACM computing surveys (CSUR), vol. 54, no. 3, pp. 1–40, 2021.

[218] Q. Li, H. Peng, J. Li, C. Xia, R. Yang, L. Sun, P. S. Yu, and L. He, “A survey
on text classification: From traditional to deep learning,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 13, no. 2, pp. 1–41, 2022.

[219] S. Gao, M. Alawad, M. T. Young, J. Gounley, N. Schaefferkoetter, H. J.
Yoon, X.-C. Wu, E. B. Durbin, J. Doherty, A. Stroup, et al., “Limitations of
transformers on clinical text classification,” IEEE journal of biomedical and
health informatics, vol. 25, no. 9, pp. 3596–3607, 2021.

[220] F. Wei, H. Qin, S. Ye, and H. Zhao, “Empirical study of deep learning for text
classification in legal document review,” in 2018 IEEE International Conference
on Big Data (Big Data), pp. 3317–3320, IEEE, 2018.

[221] Y. Zhang, B. Jin, X. Chen, Y. Shen, Y. Zhang, Y. Meng, and J. Han, “Weakly
supervised multi-label classification of full-text scientific papers,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 3458–3469, 2023.

[222] C. Che, H. Hu, X. Zhao, S. Li, and Q. Lin, “Advancing cancer document
classification with r andom forest,” Academic Journal of Science and Technology,
vol. 8, no. 1, pp. 278–280, 2023.

[223] S. Hu, F. Teng, L. Huang, J. Yan, and H. Zhang, “An explainable cnn approach
for medical codes prediction from clinical text,” BMC Medical Informatics and
Decision Making, vol. 21, pp. 1–12, 2021.

[224] N. Salem and S. Hussein, “Data dimensional reduction and principal compo-
nents analysis,” Procedia Computer Science, vol. 163, pp. 292–299, 2019.

[225] X. Dong, L. Qian, Y. Guan, L. Huang, Q. Yu, and J. Yang, “A multiclass
classification method based on deep learning for named entity recognition in
electronic medical records,” in 2016 New York scientific data summit (NYSDS),
pp. 1–10, IEEE, 2016.

[226] H. Hu, X. Wang, Y. Zhang, Q. Chen, and Q. Guan, “A comprehensive survey
on contrastive learning,” Neurocomputing, p. 128645, 2024.

[227] X. Dang, Y. Li, M. Papadakis, J. Klein, T. F. Bissyandé, and Y. Le Traon,
“Test input prioritization for machine learning classifiers,” IEEE Transactions
on Software Engineering, 2024.

[228] Y. Li, X. Dang, L. Ma, J. Klein, Y. Le Traon, and T. F. Bissyandé, “Test input
prioritization for 3d point clouds,” ACM Transactions on Software Engineering
and Methodology, vol. 33, no. 5, pp. 1–44, 2024.

186

Bibliography

[229] X. Dang, Y. Li, W. Ma, Y. Guo, Q. Hu, M. Papadakis, M. Cordy, and Y. L.
Traon, “Towards exploring the limitations of test selection techniques on graph
neural networks: An empirical study,” Empirical Software Engineering, vol. 29,
no. 5, p. 112, 2024.

[230] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers,”
Advances in Neural Information Processing Systems, vol. 33, pp. 5776–5788,
2020.

[231] L. Van Der Maaten, E. O. Postma, H. J. Van Den Herik, et al., “Dimensionality
reduction: A comparative review,” Journal of machine learning research, vol. 10,
no. 66-71, p. 13, 2009.

[232] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” Ensemble
machine learning: Methods and applications, pp. 157–175, 2012.

[233] T. K. Kim, “T test as a parametric statistic,” Korean journal of anesthesiology,
vol. 68, no. 6, pp. 540–546, 2015.

[234] K. Kelley and K. J. Preacher, “On effect size.,” Psychological methods, vol. 17,
no. 2, p. 137, 2012.

[235] I. Chalkidis, M. Fergadiotis, P. Malakasiotis, and I. Androutsopoulos,
“Large-scale multi-label text classification on eu legislation,” arXiv preprint
arXiv:1906.02192, 2019.

[236] B. Jikadara, “Fake News Detection,” 2023. Accessed: 2024-09-07.

[237] H. Y. Koh, J. Ju, M. Liu, and S. Pan, “An empirical survey on long document
summarization: Datasets, models, and metrics,” ACM computing surveys,
vol. 55, no. 8, pp. 1–35, 2022.

[238] V. Sanh, “Distilbert, a distilled version of bert: smaller, faster, cheaper and
lighter,” arXiv preprint arXiv:1910.01108, 2019.

[239] B. De Ville, “Decision trees,” Wiley Interdisciplinary Reviews: Computational
Statistics, vol. 5, no. 6, pp. 448–455, 2013.

[240] J. M. Hilbe, “Logistic regression.,” International encyclopedia of statistical
science, vol. 1, pp. 15–32, 2011.

[241] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[242] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learning,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 35, pp. 6679–
6687, 2021.

[243] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: Masked and permuted
pre-training for language understanding,” Advances in neural information
processing systems, vol. 33, pp. 16857–16867, 2020.

187

Bibliography

[244] M. Abadi, “Tensorflow: learning functions at scale,” in Proceedings of the 21st
ACM SIGPLAN international conference on functional programming, pp. 1–1,
2016.

[245] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[246] N. Reimers and I. Gurevych, “Making monolingual sentence embeddings mul-
tilingual using knowledge distillation,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, Association for Compu-
tational Linguistics, 11 2020.

[247] J. Devlin, “Bert: Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[248] Z. Yang, “Xlnet: Generalized autoregressive pretraining for language under-
standing,” arXiv preprint arXiv:1906.08237, 2019.

[249] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[250] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation studies to
uncover structure of learned representations in artificial neural networks,” in
Proceedings on the International Conference on Artificial Intelligence (ICAI),
pp. 185–191, The Steering Committee of The World Congress in Computer
Science, Computer . . . , 2019.

[251] B. F. Ljungberg, “Dimensionality reduction for bag-of-words models: Pca vs
lsa,” Semanticscholar. org, 2019.

[252] D. Sachin et al., “Dimensionality reduction and classification through pca and
lda,” International journal of computer Applications, vol. 122, no. 17, 2015.

[253] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test case
prioritization using topic models,” Empirical Software Engineering, vol. 19,
pp. 182–212, 2014.

[254] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case prioritization:
An empirical study,” in Proceedings IEEE International Conference on Software
Maintenance-1999 (ICSM’99).’Software Maintenance for Business Change’(Cat.
No. 99CB36360), pp. 179–188, IEEE, 1999.

[255] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-based
regression test case selection, minimization and prioritization: A case study on
an industrial system,” Software Testing, Verification and Reliability, vol. 25,
no. 4, pp. 371–396, 2015.

[256] M. Pezze, Software testing and analysis: process, principles, and techniques.
John Wiley & Sons, 2008.

188

Bibliography

[257] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest: Automatic
black-box testing of interactive applications,” in 2012 IEEE fifth international
conference on software testing, verification and validation, pp. 81–90, IEEE,
2012.

[258] M. Brunetto, G. Denaro, L. Mariani, and M. Pezzè, “On introducing automatic
test case generation in practice: A success story and lessons learned,” Journal
of Systems and Software, vol. 176, p. 110933, 2021.

[259] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang, “Optimiz-
ing test prioritization via test distribution analysis,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 656–667, 2018.

[260] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection
and prioritization using machine learning: a systematic literature review,”
Empirical Software Engineering, vol. 27, no. 2, p. 29, 2022.

[261] Z. Chen, J. Chen, W. Wang, J. Zhou, M. Wang, X. Chen, S. Zhou, and J. Wang,
“Exploring better black-box test case prioritization via log analysis,” ACM
Transactions on Software Engineering and Methodology, vol. 32, no. 3, pp. 1–32,
2023.

[262] V. Riccio and P. Tonella, “Model-based exploration of the frontier of behaviours
for deep learning system testing,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 876–888, 2020.

[263] Z. Tahereh, V. Riccio, T. Paolo, et al., “Deepatash: Focused test generation
for deep learning systems,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023.

[264] V. Riccio and P. Tonella, “When and why test generators for deep learning
produce invalid inputs: an empirical study,” in 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE), pp. 1161–1173, IEEE,
2023.

[265] T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, “Efficient and effective
feature space exploration for testing deep learning systems,” ACM Transactions
on Software Engineering and Methodology, vol. 32, no. 2, pp. 1–38, 2023.

[266] M. Biagiola and P. Tonella, “Boundary state generation for testing and im-
provement of autonomous driving systems,” IEEE Transactions on Software
Engineering, 2024.

[267] L. Zhao, T. Zhao, Z. Lin, X. Ning, G. Dai, H. Yang, and Y. Wang, “Flasheval:
Towards fast and accurate evaluation of text-to-image diffusion generative
models,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16122–16131, 2024.

189

Bibliography

[268] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for
learning molecular fingerprints,” Advances in neural information processing
systems, ACM New York, NY,, vol. 28, 2015.

[269] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE transactions on neural networks and
learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[270] N. Park, A. Kan, X. L. Dong, T. Zhao, and C. Faloutsos, “Estimating node
importance in knowledge graphs using graph neural networks,” in Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery &
data mining, pp. 596–606, ACM New York, NY, 2019.

[271] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural networks
with convolutional arma filters,” IEEE transactions on pattern analysis and
machine intelligence, IEEE,, vol. 44, no. 7, pp. 3496–3507, 2021.

[272] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting, “Propagation
kernels: efficient graph kernels from propagated information,” Machine learning,
Springer,, vol. 102, pp. 209–245, 2016.

[273] Y. Long, M. Wu, Y. Liu, Y. Fang, C. K. Kwoh, J. Chen, J. Luo, and X. Li,
“Pre-training graph neural networks for link prediction in biomedical networks,”
Bioinformatics, Oxford University Press,, vol. 38, no. 8, pp. 2254–2262, 2022.

[274] M. Réau, N. Renaud, L. C. Xue, and A. M. Bonvin, “Deeprank-gnn: a graph
neural network framework to learn patterns in protein–protein interfaces,”
Bioinformatics, Oxford University Press,, vol. 39, no. 1, p. btac759, 2023.

[275] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson,
“Benchmarking graph neural networks,” arXiv preprint arXiv:2003.00982, 2020.

[276] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in
Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 338–348, ACM New York, NY, 2020.

[277] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure
learning for robust graph neural networks,” in Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining,
pp. 66–74, ACM New York, NY, 2020.

[278] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel,
and T. Langer, “A compact review of molecular property prediction with
graph neural networks,” Drug Discovery Today: Technologies, Elsevier,, vol. 37,
pp. 1–12, 2020.

[279] T. Zhao, X. Zhang, and S. Wang, “Graphsmote: Imbalanced node classification
on graphs with graph neural networks,” in Proceedings of the 14th ACM
international conference on web search and data mining, pp. 833–841, ACM
New York, NY, 2021.

190

Bibliography

[280] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M.
Borgwardt, “Weisfeiler-lehman graph kernels.,” Journal of Machine Learning
Research, JMLR,, vol. 12, no. 9, 2011.

[281] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant,
T. Sajed, D. Johnson, C. Li, Z. Sayeeda, et al., “Drugbank 5.0: a major update
to the drugbank database for 2018,” Nucleic acids research, Oxford University
Press, vol. 46, no. D1, pp. D1074–D1082, 2018.

[282] T. Liu, Y. Lin, X. Wen, R. N. Jorissen, and M. K. Gilson, “Bindingdb: a
web-accessible database of experimentally determined protein–ligand binding
affinities,” Nucleic acids research, Oxford University Press, vol. 35, no. suppl_1,
pp. D198–D201, 2007.

[283] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated graph
neural network for heterogeneous graph embedding,” in Proceedings of The
Web Conference 2020, pp. 2331–2341, ACM New York, NY, 2020.

[284] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,” ACM
Transactions on Software Engineering and Methodology (TOSEM), ACM New
York, NY, USA, vol. 30, no. 3, pp. 1–33, 2021.

[285] X. Cheng, G. Zhang, H. Wang, and Y. Sui, “Path-sensitive code embedding
via contrastive learning for software vulnerability detection,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 519–531, ACM New York, NY, USA, 2022.

[286] F. U. Haq, D. Shin, S. Nejati, and L. Briand, “Can offline testing of deep
neural networks replace their online testing? a case study of automated driving
systems,” Empirical Software Engineering, Springer,, vol. 26, no. 5, p. 90, 2021.

[287] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case generation
as a many-objective optimisation problem with dynamic selection of the targets,”
IEEE Transactions on Software Engineering, vol. 44, no. 2, pp. 122–158, 2017.

[288] Y. Li, X. Dang, L. Ma, J. Klein, Y. L. Traon, and T. F. Bissyandé, “Test input
prioritization for 3d point clouds,” ACM Transactions on Software Engineering
and Methodology, ACM New York, NY, 2023.

[289] H. Ranganathan, H. Venkateswara, S. Chakraborty, and S. Panchanathan,
“Deep active learning for image classification,” in 2017 IEEE International
Conference on Image Processing (ICIP), pp. 3934–3938, IEEE, 2017.

[290] W. Shen, Y. Li, L. Chen, Y. Han, Y. Zhou, and B. Xu, “Multiple-boundary
clustering and prioritization to promote neural network retraining,” in Proceed-
ings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, pp. 410–422, IEEE, 2020.

[291] X. Gao, Y. Feng, Y. Yin, Z. Liu, Z. Chen, and B. Xu, “Adaptive test selection
for deep neural networks,” in Proceedings of the 44th International Conference
on Software Engineering, pp. 73–85, IEEE, 2022.

191

Bibliography

[292] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A compre-
hensive survey and performance evaluation,” Electronics, MDPI,, vol. 9, no. 8,
p. 1295, 2020.

[293] D. Arthur and S. Vassilvitskii, “K-means++ the advantages of careful seeding,”
in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1027–1035, ACM New York, NY, USA, 2007.

[294] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th inter-
national conference on World wide web, pp. 1177–1178, ACM New York, NY,
2010.

[295] E. Patel and D. S. Kushwaha, “Clustering cloud workloads: K-means vs
gaussian mixture model,” Procedia computer science, Elsevier,, vol. 171, pp. 158–
167, 2020.

[296] M. Kaushik and B. Mathur, “Comparative study of k-means and hierarchical
clustering techniques,” International Journal of Software & Hardware Research
in Engineering, iJournals,, vol. 2, no. 6, pp. 93–98, 2014.

[297] P. Hu, W. Fan, and S. Mei, “Identifying node importance in complex networks,”
Physica A: Statistical Mechanics and its Applications, Elsevier,, vol. 429,
pp. 169–176, 2015.

[298] Q. Qiong and W. Dongxia, “Evaluation method for node importance in complex
networks based on eccentricity of node,” in 2016 2nd IEEE International
Conference on Computer and Communications (ICCC), pp. 2499–2502, IEEE,
2016.

[299] Y. Yang, L. Yu, X. Wang, Z. Zhou, Y. Chen, and T. Kou, “A novel method
to evaluate node importance in complex networks,” Physica A: Statistical
Mechanics and its Applications, Elsevier,, vol. 526, p. 121118, 2019.

[300] H. Ando, M. Bell, F. Kurauchi, K.-I. Wong, and K.-F. Cheung, “Connectivity
evaluation of large road network by capacity-weighted eigenvector centrality
analysis,” Transportmetrica A: Transport Science, Taylor & Francis,, vol. 17,
no. 4, pp. 648–674, 2021.

[301] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural
networks,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 33, pp. 4602–4609, 2019.

[302] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-based graph
neural network for semi-supervised learning,” arXiv preprint arXiv:1803.03735,
2018.

[303] D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in graph neural
networks,” Advances in Neural Information Processing Systems, ACM New
York, NY, vol. 33, pp. 2220–2231, 2020.

192

Bibliography

[304] P. J. M. Ali, R. H. Faraj, E. Koya, P. J. M. Ali, and R. H. Faraj, “Data
normalization and standardization: a technical report,” Machine Learning
Technical Reports, vol. 1, no. 1, pp. 1–6, 2014.

[305] Z. Aghababaeyan, M. Abdellatif, M. Dadkhah, and L. Briand, “Deepgd: A
multi-objective black-box test selection approach for deep neural networks,”
arXiv preprint arXiv:2303.04878, 2023.

[306] A. Zolfagharian, M. Abdellatif, L. C. Briand, M. Bagherzadeh, and S. Ramesh,
“A search-based testing approach for deep reinforcement learning agents,” IEEE
Transactions on Software Engineering, IEEE, 2023.

[307] Z. Aghababaeyan, M. Abdellatif, L. Briand, S. Ramesh, and M. Bagherzadeh,
“Black-box testing of deep neural networks through test case diversity,” IEEE
Transactions on Software Engineering, IEEE, 2023.

[308] Z. Yu, N. A. Kraft, and T. Menzies, “Finding better active learners for faster
literature reviews,” Empirical Software Engineering, Springer,, vol. 23, pp. 3161–
3186, 2018.

[309] J. Chen, A. Schein, L. Ungar, and M. Palmer, “An empirical study of the
behavior of active learning for word sense disambiguation,” in Proceedings of
the Human Language Technology Conference of the NAACL, Main Conference,
pp. 120–127, ACM New York, NY, 2006.

[310] M. Sassano, “An empirical study of active learning with support vector machines
forjapanese word segmentation,” in Proceedings of the 40th annual meeting
of the association for computational linguistics, pp. 505–512, Association for
Computational Linguistics, 2002.

[311] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,”
Minds and Machines, vol. 30, pp. 681–694, 2020.

[312] S. Alharbi, M. Alrazgan, A. Alrashed, T. Alnomasi, R. Almojel, R. Alharbi,
S. Alharbi, S. Alturki, F. Alshehri, and M. Almojil, “Automatic speech recog-
nition: Systematic literature review,” Ieee Access, vol. 9, pp. 131858–131876,
2021.

193

	Introduction
	Motivation
	Limitations of Existing Methods
	Classical Machine Learning classification
	GNN classification
	Long Text Classification

	Contributions
	Roadmap

	Background
	Machine Learning
	Classical Machine Learning
	Deep Neural Networks
	Graph Neural Networks

	Test Optimization in DNN Testing
	Mutation Testing
	Contrastive Learning

	Related Work
	Test Selection for DNNs
	Deep Neural Network Testing

	Test input prioritization for Machine Learning Classifiers
	Introduction
	Background
	Machine Learning and ML testing
	Test Case Prioritization
	Mutation Testing
	Automated Labeling Approaches for Machine Learning

	Approach
	Overview
	Mutation Rule Specification
	Model mutation rules
	Input mutation rules

	Mutation Feature generation
	Feature Concatenation
	Learning-to-rank
	Variants of MLPrior

	Study Design
	Research Questions
	Subjects
	Datasets
	Classical ML models

	Compared Approaches
	Measurements
	Implementation and Configuration

	Study Results
	RQ1: Effectiveness and Efficiency of MLPrior
	RQ2: Effectiveness of MLPrior on different types of test inputs
	RQ3: Impact of ranking models on the effectiveness of MLPrior
	RQ4: Feature contribution Analysis
	RQ5: Impact of Main Parameters in MLPrior

	Discussion
	Generality of MLPrior
	Threats to Validity

	Related Work
	Test Prioritization Techniques
	DNN Testing
	Mutation-based Test Prioritization for Traditional Software
	Mutation Testing and Mutation-based Test prioritisation for Deep Learning

	Conclusion

	GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks
	Introduction
	Background
	Graph Neural Networks
	Test Input Prioritization for DNNs

	Approach
	Overview
	Mutation Rules
	Killing-based GraphPrior
	Feature-based GraphPrior
	Usage of GraphPrior

	Study design
	Research Questions
	GNN models and Datasets
	GNN Models
	Datasets

	Compared Approaches
	Graph Adversarial Attacks
	Evaluation of mutation rules (RQ5)
	Implementation and Configuration
	Measurements

	Results and analysis
	RQ1: Effectiveness of the killing-based GraphPrior approach (KMGP)
	RQ2: Effectiveness of the feature-based GraphPrior approaches
	RQ3: Effectiveness of GraphPrior on adversarial test inputs
	RQ4: Effectiveness of GraphPrior against adversarial attacks at varying attack levels
	RQ5: Contribution analysis of different mutation rules
	RQ6: Enhancing GNNs with GraphPrior

	Discussion
	Generality of GraphPrior
	Limitations of GraphPrior
	Threats to Validity

	Related Work
	Test prioritization Techniques
	Deep Neural Network Testing
	Mutation Testing for DNNs
	Mutation-based Test Prioritization for Traditional Software

	Conclusion

	LongTest: Test Prioritization for Long Text Files
	Introduction
	Background
	Deep Neural Networks
	Contrastive Learning
	Test Input Prioritization for DNNs

	Approach
	Overview
	Step 1: Text Preprocessing and Dimensionality Reduction
	Chunk-based Text Splitting
	Transforming Text into Embeddings
	Dimensionality Reduction with PCA

	Step 2: Constructing Positive and Negative Pairs
	Step 3: Training Contrastive Learning Model
	Step 4: Training Classification Model for Prioritization
	Usage of LongTest

	Study design
	Research Questions
	Models and Datasets
	Datasets
	Models

	Measurements
	Average Percentage of Fault-Detection (APFD)
	Percentage of Fault Detected (PFD)

	Compared Approaches
	Implementation and Configuration

	Results and analysis
	RQ1: Performance of LongTest
	RQ2: Impact of Number of Chunks on LongTest
	RQ3: Impact of Different Embedding Models on LongTest
	RQ4: Impact of Dimension Reduction on LongTest
	RQ5: Impact of Main Parameters on LongTest
	RQ6: Contributions of Core Components to LongTest

	Discussion
	Generality of LongTest
	Threats to Validity

	Related Work
	Test Prioritization for Traditional Software
	Testing Deep Learning Systems

	Conclusion

	Towards Exploring the Limitations of Test Selection Techniques on Graph Neural Networks: An Empirical Study
	Introduction
	Background
	Graph Neural Networks
	Test Selection in DNN Testing
	Active Learning

	Approach
	Misclssification Detection Approaches
	Accuracy Estimation Approaches
	Node Importance metrics

	Study design
	Overview
	Research Questions
	GNN models and Datasets
	Graph datasets
	GNN models

	Measurements
	Percentage of Fault Detected (PFD)
	Root Mean Square Error

	Implementation and Configuration

	Results and analysis
	RQ1: Test selection for GNN misclassification detection
	RQ2: Test selection for GNN accuracy estimation
	RQ3: Confidence-based test selection for GNN performance enhancement
	RQ4: Node importance-based test selection for GNN performance enhancement

	Threats to Validity
	Related Work
	DNN Test Selection
	Deep Neural Network Testing
	Empirical study on Active Learning

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

