
A Piece of QAICCC: Towards a Countermeasure
Against Crosstalk Attacks in Quantum Servers

Yoann Marquer
University of Luxembourg

Luxembourg
yoann.marquer@uni.lu, 0000-0002-4607-967X

Domenico Bianculli
University of Luxembourg

Luxembourg
domenico.bianculli@uni.lu, 0000-0002-4854-685X

Abstract—Quantum computing, while allowing for processing
information exponentially faster than classical computing, re-
quires computations to be delegated to quantum servers, which
makes security threats possible. For instance, previous studies
demonstrated that crosstalk between attacker and victim’s qubits
can be exploited to mount security attacks.

In this idea paper, we propose the QAICCC approach to
allocate qubits between users to minimize inter-circuit crosstalk
and, thus, possibilities for attacks, while maximizing qubit usage.
Also, combined with existing techniques, QAICCC aims to
reduce intra-circuit noise. Thus, QAICCC will support quantum
computing adoption by securing the usage of quantum servers
by a large number of actors.

Index Terms—Crosstalk analysis, Quantum server, Qubit allo-
cation, Noise reduction, Security threat, Transpilation.

I. INTRODUCTION

Quantum computing (QC) uses quantum bits (qubits) in-
stead of the bits used in classical computing, enabling massive
parallel computation based on quantum physics properties like
quantum superposition. This allows quantum computers to
process information exponentially faster than any classical
computer, with empirical evidence for quantum supremacy [1].
Thus, QC has an impact on many emerging technologies [2]
and industrial use cases, especially regarding optimization
problems [3]. For this reason, technology giants such as IBM,
Google, and Microsoft have heavily invested in QC [4].

Nevertheless, because of cost and needs for ultra-cold
temperature, shielded environment, and complex wiring for
control, QC is far from becoming a personal commodity [5].
Hence, access to quantum computers is likely to be provided
remotely, through quantum servers. Sharing quantum hardware
between multiple users allows to efficiently use quantum
resources, but make some security threats possible [6]. For
instance, correlations between attacker and victim’s qubits
used in the same server can be exploited in various security
attacks [5] like fault-injection attacks to disrupt victim’s out-
put [7] and data-leakage attacks to retrieve victim’s output [8].

Several countermeasures have been designed against the
unintended interaction of qubits, called crosstalk [9]. Buffer
qubits between user circuits could likely prevent crosstalk
attacks [7], but would be a waste of quantum resources. Other
approaches based on gate scheduling [9] or graph coloring [10]
have been used to reduce crosstalk in quantum circuits, but
never between user circuits.

In this idea paper, we address the problem of securing
user circuits submitted to quantum servers, so that quantum
computing can be used in a safe way by more and more
actors. We propose the Qubit Allocation for Inter-Circuit
Crosstalk Countermeasure (QAICCC) approach, which aims to
maximize qubit usage, reduce inter-circuit crosstalk as well as
intra-circuit noise. QAICCC performs (1) a crosstalk analysis
of the targeted platform1 to determine qubits involved in
crosstalk with the largest intensity; (2) the allocation of qubits
in the safest possible way; and (3) the application of existing
techniques to further reduce crosstalk between circuits and
noise in user circuits. The main contribution of this paper is
the allocation algorithm, which aims to maximize qubit usage
(including making unused qubits available for future usage)
while minimizing the largest inter-circuit crosstalk error rate.

II. BACKGROUND

A. Crosstalk

The qubit connectivity of a quantum platform determines
how qubits are connected to each other. It is represented using
a graph, where qubits are vertices and edges indicates which
qubits are connected and thus can be used together by quantum
gates to perform quantum operations. Figure 1 illustrates the
qubit connectivity of an IBM 5-qubit platform; we will use
this as running example.

Before execution, quantum programs must be transpiled 1)
to add swap gates to match platform connectivity and 2) to
simulate unsupported gates by combining supported ones [12].
Transpilation is usually done automatically by frameworks like
Qiskit.

Qubits suffer from a short lifetime, leading to a spontaneous
loss of qubit state information, called decoherence, because of
relaxation or dephasing [10]. Another source of noise in quan-
tum computing is the unintended interaction of qubits, called
crosstalk, which covers a wide range of physical phenomena
and varies across quantum platforms [13]. Crosstalk is usually
due to qubit connectivity (adjacent qubits, like q2 and q3 in
Figure 1, are more likely to interact) and operating frequency
(qubits tuned to close frequencies can be in resonance [10]).

1In this article, we use the term “platform” to indicate the chosen quantum
processing unit performing the computation (e.g., the ibmqx2 platform
represented in Figure 1 and IBM available platforms [11]) or a simulator.

q0

q1

q2 q3

q4

Fig. 1. Qubit connectivity of the ibmqx2 platform.

Noise (including crosstalk) is measured using various metrics
called error rates (e.g., Hamiltonian, Stochastic, and Affine
error rates) that can be obtained using tools like the pyGSTi
simulator [14]. For instance, the crosstalk error rate of qubit
q2 in Figure 1 is larger when qubits q3 and q4 are activated,
because q2 is connected to q3 and q4, and because q2’s
operating frequency is close to q4’s one [7].

Ash-Saki et al. [7] demonstrated that crosstalk can be a
larger source of noise than quantum gate error and deco-
herence. Moreover, they demonstrated that crosstalk between
qubits allocated to different users can be exploited for security
attacks. In their attack scenario, a user (the victim) requests
qubits to the server; then, another user (the attacker) requests
several copies of small quantum circuits to control the largest
number possible of remaining qubits. The victim runs her
circuit to obtain a result in a qubit output, e.g., q2 in Figure 1;
the attacker runs her circuit, e.g., a sequence of CNOT gates
involving q3 and q4. Due to the presence of crosstalk from
q3 and q4 to q2, the magnitude of the victim’s expected
output can be reduced below the magnitude of other results. In
other words, because of crosstalk, an attacker can use qubits
(like q3 and q4 in the example) impacting a victim’s qubit
(q2 in the example) to tamper its quantum state and even
the victim’s outcome, after the impacted qubit is measured.
We call crosstalk attacks security attacks made possible by
crosstalk, like Ash-Saki et al. [7]’s fault injection attack.

B. Noise reduction techniques

Current quantum computers are called NISQ (noisy
intermediate-scale quantum) computers, because they are
larger than small-scale prototypes with a few qubits, but
not large enough so that quantum error correction can be
applied [3]. Hence, current quantum executions are noisy,
which decreases their success rate, i.e., the probability to
obtain the expected output [10].

Many approaches have been proposed to reduce noise in
quantum circuits; below we briefly present those used in our
approach. Notably, Murali et al. [9] proposed an approach to
reduce the time required to identify crosstalk by considering
only adjacent pairs (as crosstalk is usually a short-range
phenomenon) and performing the measurements of distant
pairs in parallel. Moreover, they proposed a gate scheduling
technique to reduce both decoherence and crosstalk, obtaining
the XtalkSched scheduler, which writes slightly longer circuits
than the current state of the art in Qiskit but outperformed
it in terms of error rate. Ding et al. [10] proposed another

approach to mitigate crosstalk, called ColorDynamic, for allo-
cating qubit and gate frequencies. They considered the vertex-
coloring of the connectivity graph of the targeted platform and
the edge-coloring of a crosstalk graph representing relevant
qubits pairs, in order to prevent close qubits or gates to share
close operating frequencies and thus be in resonance.

III. APPROACH

A. Motivations and goals

As NISQ computers do not have enough qubits for error
correction, they resort to noisy computations that hinder QC
adoption. This situation warrants 1) increasing the number of
available qubits and 2) reducing noise in quantum computa-
tions.

For the former, since each qubit is a precious resource that
should not be wasted, we see maximizing qubit usage—as in
allocating qubits in quantum servers to users or, if current
users’s needs are already satisfied, being ready for the next
user(s)—as a priority.

For the latter, since crosstalk attacks are possible between
users of the same quantum servers, in this paper we distin-
guish two kinds of noise: inter-circuit crosstalk, i.e., crosstalk
between qubits allocated to different users, and intra-circuit
noise, i.e., crosstalk and decoherence involving qubits allo-
cated to the same user.

Another priority for QC adoption is that quantum servers
can be used in a safe way, without a user being able to interfere
with other users’ executions. Hence the need to reduce inter-
circuit crosstalk. More precisely, since crosstalk is quantified
using error rate and the targeted platform may exhibit many
qubit combinations leading to crosstalk, we aim to minimize
the largest inter-circuit crosstalk error rate.

Finally, maximizing qubit usage while reducing inter-circuit
crosstalk implies that each combination of qubits involved in
crosstalk should be controlled, when possible, by the same
user. Such a qubit allocation would tend to increase intra-
circuit noise, which should be reduced as well to improve
success rate and thus quality of service. Therefore, intra-circuit
noise reduction is another priority in NISQ computers.

To summarize, our approach aims to achieve the following
goals, in decreasing priority:
G1: maximizing qubit usage (including making unused qubits

available for future usage);
G2: minimizing the largest inter-circuit crosstalk error rate;
G3: reducing intra-circuit noise (crosstalk and decoherence).

B. Overview

Figure 2 provides a graphical overview of our Qubit Allo-
cation for Inter-Circuit Crosstalk Countermeasure (QAICCC)
approach, using the UML activity diagrams notation. It takes
as input the targeted quantum platform, the user circuits, and
a (potentially empty) list of trusted users; it returns transpiled
circuits (i.e., ready to be executed on the platform) that can
be executed in a safe way, minimizing the threat of crosstalk
attacks.

Qubit Allocation for Inter-Circuit Crosstalk
Countermeasure (QAICCC)

Crosstalk
analysis

Allocation
algorithm

Transpilation

error rates

connectivity

Noise
reduction

sizes

platform

user circuits
final circuitsqubit allocations

transpiled circuits

Step 1

Step 2

Step 3 Step 4

(eventually)
trusted users

Fig. 2. Activity diagram of the Qubit Allocation for Inter-Circuit Crosstalk
Countermeasure (QAICCC) approach.

The approach consists of four main steps. In Step 1,
the platform is analyzed to determine crosstalk error rates
(§ III-C). In Step 2, based on these error rates, the connectivity
of the platform, the sizes of the user circuits, and the list
of trusted users, qubits are allocated to users; we detail the
allocation algorithm in § III-D. In Step 3, user circuits are
transpiled according to the selected qubit allocation to match
the platform connectivity and supported gates (§ III-E). In
Step 4, transpiled circuits are transformed to reduce noise
during quantum executions, using existing techniques like
XtalkSched and ColorDynamic (§ III-F).

The QAICCC approach fulfills the goals identified in § III-A
as follows. To meet G1, if there are unused qubits, these are
allocated so that they are connected to each other, making them
available to future users. This is done in Step 2 by introducing
a new (idle) user, allocating the unallocated qubits to the idle
user, and ensuring that each user’s qubit allocation forms a
connected component. To meet G2, qubits are allocated to
minimize the largest inter-circuit crosstalk error rate. This is
done through Step 1, by quantifying error rates, Step 2, by
processing them in decreasing order, and through Step 4, by
applying XtalkSched and ColorDynamic to reduce remaining
inter-circuit crosstalk. To meet G3, XtalkSched and ColorDy-
namic are applied in Step 4 to minimize intra-circuit noise,
while preserving the changes required to meet G2.

C. Step 1: Crosstalk analysis

In this step, the platform is analyzed (e.g., with the pyGSTi
simulator [14]) to determine crosstalk error rates between
qubits. We consider the impact of one or two qubits on another
qubit (as in Ash-Saki et al. [7]’s work) and the impact of two
qubits on two qubits (i.e., gate errors, as in Murali et al. [9]’s
work), which we respectively call 1-1, 2-1, and 2-2 crosstalk.

To save time, we take inspiration from Murali et al. [9]’s
methodology (Section II) by considering neighboring qubits
and measuring error rates of distant qubits in parallel. More
precisely, each m-n crosstalk is measured so that the m + n
considered qubits form a connected component. Note that this
implies the existence of a path between each two considered

Algorithm 1 Qubit allocation algorithm
type: Allocation = (Q∅, QT , QU), where Q∅ is a set of qubits and QT

and QU are sets of sets of qubits
input: C = (V,E), where V is a set of qubits and E is a set of unordered

pairs of qubits
input: Sizes = (ST , SU), where ST and SU are lists of integers
input: ErrorRates: List of triples (score, Q→, Q←) as in Step 1 (§ III-C)
output: Set of Allocations or Error

1: if
∑

s∈ST
s+

∑
s∈SU

s > card(V) then
2: return Error . Not enough qubits
3: Sizes ← updSizes(V,Sizes) . Idle user, if needed
4: Allocation alloc0 ← initAlloc(V,ErrorRates)
5: Set of Allocations Pop ← {alloc0} . Initial population
6: Set of Allocations Archive ← ∅
7: ErrorRates ← sort(ErrorRates, reverse = True)
8: for rate ∈ ErrorRates do . Largest to smallest
9: Set of Allocations CurrentPop ← Pop

10: for alloc1 ∈ CurrentPop do
11: Set of Allocations Allocs ← ∅
12: if isSafe(alloc1, rate) then . Safe allocation pattern
13: if nbUsers(alloc1, rate) ≥ 2 then
14: Allocs ← allocMerge(alloc1, rate, E,Sizes)

15: updAlloc(alloc1, rate) . Update attributes
16: else
17: Allocs ← allocImpacted(alloc1, Q←, C,Sizes)
18: Allocs ← allocControl(Allocs, rate, C,Sizes)
19: Allocs ← Allocs ∪ allocMerge(alloc1, rate, C,Sizes)
20: Allocs ← Allocs ∪ allocTrusted(alloc1, Q→, C,Sizes)
21: Pop,Archive ← archAlloc(alloc1,Pop,Archive)

22: Pop ← updPop(Allocs,Pop,Archive, rate)

23: if Pop = ∅ then . No new change
24: break
25: return Pop ∪Archive . All the obtained allocations

qubits; at the same time, it does not imply that all the
considered qubits are directly connected to each other. For
instance, in Figure 1, qubits q1, q2, and q3 form a connected
component; q1 and q2 may impact q3, but q3 is not directly
connected to q1.

In QAICCC, crosstalk is quantified using a single metrics
like the composite score, which is the sum of the Stochastic
error rates and the square of the Hamiltonian error rates, as
defined in Ash-Saki et al. [7]’s work. Hence, for each m-n
crosstalk, we obtain a triple (score, Q→, Q←), where score is
the composite score, Q→ a set of m impacting qubits, and Q←
a set of n impacted qubits. We denote by ErrorRates the list
of such triples. For instance, the analysis of the platform shown
in Figure 1 using the pyGSTi simulator, yields the following
composite scores (as reported by Ash-Saki et al. [7] in their
first run): 0.0027 from q3 and q4 to q2, 0.0024 from q2 and
q4 to q3, etc. Thus, ErrorRates = [(0.0027, {q3, q4} , {q2}),
(0.0024, {q2, q4} , {q3}), . . .].

D. Step 2: Allocation algorithm

In this step, we allocate qubits to users in order to meet G1
and G2, using Algorithm 1. The algorithm takes as input the
connectivity of the platform C, the information on the size of
the user circuits Sizes , and the list ErrorRates returned by
Step 1 (§ III-C).

The platform connectivity C is represented as an undirected
graph (V,E), where the set of vertices V corresponds to the
qubits and the set of edges E corresponds to the connected

qubit pairs. As for the information on the size of the user
circuit (i.e., the number of qubits they require), since some
users are trusted, we represent Sizes as the pair Sizes =
(ST , SU), where ST and SU are lists of integers, respectively
corresponding to the circuit sizes requested by trusted and
untrusted users.

We introduce the concept of qubit allocation, i.e., how
the qubits in V are either unallocated or allocated to users.
Each allocation, corresponding to the type Allocation declared
on the first line of Algorithm 1, is represented as a triple
(Q∅, QT , QU), where Q∅ is the set of unallocated qubits
and QT and QU are sets of sets of qubits, representing the
qubits allocated to, respectively, trusted and untrusted users.
Moreover, each allocation has several attributes: Incidental is a
list of remaining inter-circuit incidental crosstalk, (eventually)
to be minimized in Step 4 (§ III-F); score is the score used
to rank allocations (the lower the score, the more secure the
allocation); penalty represents the penalty of the allocation,
i.e., it is a metric quantifying cumulative incidental crosstalk
and used to rank allocations in case of a tie in score; lastRate
is the first encountered error rate for which the allocation is
unsafe. For a given allocation, if a qubit is allocated to a user,
we say that this user controls the qubit.

The algorithm takes inspiration from genetic search by
maintaining an evolving population of possible allocations,
but does not involve any randomness. To minimize the largest
inter-circuit crosstalk error rate, it processes error rates re-
turned by Step 1 (§ III-C) in decreasing order, so that the qubits
involved in crosstalk with the largest intensity are allocated
first. For a given error rate, each allocation in the population
is tested to determine if it is already safe, i.e., impacting
qubits are allocated to trusted users or impacted users control
impacting qubits. If the allocation is safe, then it is used in the
next iteration. Otherwise, it is removed from the population,
and then (when possible, due to size constraints) new safe
allocations are generated from it and added to the population.
In this way, the last individuals in the population correspond
to allocations of qubits done in the safest possible way.

The algorithm starts by testing if the number of qubits to
allocate is larger than the number of available qubits (Line 1).
If so, then no qubit allocation is possible and QAICCC returns
an error (Line 2). Instead, if the number of qubits to allocate
is smaller than the number of available qubits, then this
means some qubits are not used by the users’ circuits. In
this case, to meet G1, the algorithm should allocate qubits
for potential, future users. To do so, we use the auxiliary
function updSizes, which works as follows. It introduces an
untrusted idle user requesting for the rest of the qubits, so that
all the qubits will be allocated, then it updates the tuple Sizes
accordingly (Line 3). Since each user’s allocation will form
a connected component, the unused qubits will be connected,
which increases the chance of being able to allocate them
to new users. If the users already requested all the available
qubits, then there is no need for an idle user and, thus, Sizes
is not updated.

The initial allocation alloc0 is generated at Line 4 such

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

Fig. 3. Safe allocation patterns for 1-1, 2-1, and 2-2 crosstalk: impacting
qubits Q→ are on the left of an arrow and impacted qubits Q← on the
right, each box with plain (resp. dashed) edges represents qubits allocated to
a trusted (resp. any) user.

that all the qubits are unallocated, its score is higher than the
ones in ErrorRates (to reflect that it is unsafe), its penalty is
zero, and its Incidental is empty. The population, denoted by
Pop, is a set of allocations which are safe for the crosstalk
error rates in ErrorRates investigated so far. The population
is initialized at Line 5 with the initial allocation. The archive,
denoted by Archive , is a set of allocations which are unsafe
for at least one error rate; it is initialized empty at Line 6.

To meet G2, we minimize the largest inter-circuit crosstalk
error rate. The list of error rates ErrorRates obtained during
crosstalk analysis (§ III-C) is first sorted in decreasing order of
score (Line 7); then, each error rate rate = (score, Q→, Q←)
is processed to obtain safe allocations (Lines 8-24). More
specifically, at each iteration, the current population is stored in
an ancillary variable (Line 9) and each allocation alloc1 in the
current population is used in the body of the loop to (eventu-
ally) update Pop (Line 10). Depending on alloc1’s properties,
new allocations are (eventually) generated and added to the
population. This set of new allocations is denoted by Allocs
and initialized empty at Line 11. Each new allocation inherits
its attributes from alloc1 and is generated by updating alloc1 to
address the current error rate. Moreover, to ensure user circuits
can be transpiled using the obtained qubit allocations, each
user’s allocation is determined so that it forms a connected
component. For instance, if two users respectively submit a
2-qubit and a 3-qubit circuit for the platform illustrated in
Figure 1, an allocation where q0, q2, and q3 are controlled by
the same user will not be considered, as it is not possible to
use q0, q2, and q3 in one circuit and q1 and q4 in another one,
since q1 and q4 are not connected.

First, alloc1 is tested to determine if it is already safe with
respect to rate (Line 12), i.e., if the allocation matches a safe
allocation pattern depicted in Figure 3. In short, a pattern is
safe if a trusted user controls at least one impacting qubit or if
all impacted users control at least one impacting qubit2. Note
that trusted users are not necessary, as several safe patterns for
1-1, 2-1, and 2-2 crosstalk do not involve them.

Second, in case qubits involved in crosstalk are allocated to
several users, some crosstalk may occur when these qubits are

2It is not enough to spread the control of impacting qubits to different users,
since they may be in collusion or simply be the same actor having submitted
several circuits.

activated at the same time. In the context of this paper, this
phenomenon is called incidental crosstalk since, as opposed
to a crosstalk attack, it is not intentionally triggered by a user.
Thus, even if the allocation matches a safe pattern, it is tested
to determine the number of users controlling the qubits of rate
(Line 13). If only one user is involved, then there is no need for
new allocations, thus Allocs remains empty. Otherwise, new
allocations involving only one user are generated using the
auxiliary function allocMerge (Line 14) which reallocates
the involved qubits to a unique user, by merging the allocations
of users controlling an involved qubit. At this point (Line 15),
since alloc1 is safe, it is kept for the next iteration and its
attributes are updated using the auxiliary function updAlloc
as follows: its score becomes score and, if alloc1 involves
several users controlling qubits in rate, then its penalty is
increased by score and rate is appended to Incidental(alloc1).

If alloc1 is unsafe, then new safe allocations are generated
and stored in Allocs as follows (Lines 17-20). First, all the
unallocated impacted qubits are allocated to users (Line 17);
then, function allocControl updates the allocations so that
each impacted user u2 controls an impacting qubit (Line 18).
These updates are achieved either by allocating an unallocated
(if any) impacting qubit to u2 or by merging u2’s qubits with
qubits controlled by a user u1 controlling an impacting qubit.
At this stage, the set of allocation is further updated, by allo-
cating all the qubits involved in the error rate to the same user
(Line 19)—as in Line 14—and by allocating an unallocated
(if any) impacting qubit to a trusted user (Line 20). Then,
since alloc1 is unsafe, it has to be removed from the current
population. This is achieved by calling function archAlloc,
which sets lastRate(alloc1) to rate, removes alloc1 from
Pop, and adds it to Archive . Since only allocations in the
population will be investigated in future iterations, alloc1’s
attributes will not change until the end of the algorithm.

After these tests, Allocs (if not empty) contains allocations
which are safe for all the crosstalk error rates investigated so
far. The population is (eventually) updated at Line 22. More
precisely, for each alloc2 in Allocs , if alloc2 does not already
belong to Pop∪Archive , then its attributes are updated (as in
Line 15) and it is added to the population. The purpose of this
condition is to prevent a conflict of attributes between several
occurrences of the same allocation.

Finally, if no allocation can address rate , then the popula-
tion becomes empty (Line 23). Since no population change can
occur from this state, the loop stops (Line 24). In this case or
if all crosstalk error rates were exhausted, Algorithm 1 returns
all the obtained allocations (Line 25).

The additional auxiliary functions used in Algorithm 1 are
detailed in Appendix A.

E. Step 3: Transpilation

In this step, user circuits are transpiled according to the
selected qubit allocation.

Allocations returned by Algorithm 1 are first sorted by
increasing score; in case of a tie, they are further sorted by
increasing penalty In this way, the initial (empty) allocation

is the last one, while the allocations obtained last with Al-
gorithm 1 (i.e., those addressing the largest number of error
rates) are the first ones. Starting from the first allocation, an
allocation is selected and tested as follows. Qiskit is called to
transpile the user circuits according to the current allocation,
to match the platform connectivity and supported gates. If
the transpilation is successful, then the transpiled circuits
are selected for Step 4. Otherwise, the next allocation is
selected and tested. This process continues until an allocation
is successful. If no allocation is successful, then QAICCC
returns an error.

During transpilation, gates acting on more than two qubits
are decomposed in binary gates supported by the platform;
hence, a transpiled circuit will contain only unary and binary
gates. Moreover, since qubits allocated to each circuit form a
connected component (§ III-D) and swap gates ensure that, in
a connected component, any pair of qubits can be used in a
quantum operation, it is likely that all allocations would be
successfully transpiled (depending on Qiskit’s behavior).

F. Step 4: Noise reduction

In this step, QAICCC uses existing techniques like the
XtalkSched scheduler [9] and ColorDynamic [10] (Section II)
on the transpiled circuits to reduce noise further. These tech-
niques can be used either in isolation or in combination.
ColorDynamic can be used only if the platform supports
frequency allocation, while there are no preconditions for
XtalkSched. If used in combination, since ColorDynamic does
not impact the circuit schedule, it should be used first (to
reduce crosstalk) and then followed by XtalkSched (to reduce
the remaining noise).

To meet G2, the priority is to reduce first remaining inter-
circuit crosstalk of the qubit allocation selected in Step 3
(§ III-E), i.e., error rates in its attribute Incidental; then, error
rates starting from its attribute lastRate are also considered
as candidates for reduction. Note that these error rates are
already sorted by decreasing order of score (§ III-D). Hence,
noise reduction techniques can be applied following the same
order to reduce the error rates.

To meet G3, the aforementioned noise reduction techniques
can be also independently applied to each circuit, to reduce
intra-circuit noise (crosstalk and decoherence). Since G2 has
higher priority than G3, such techniques have to be applied in
a way that preserves the changes (e.g., frequency allocation for
ColorDynamic and gate scheduling for XtalkSched) required
to meet G2.

G. Application to the Running Example

Let us assume that two untrusted users respectively submit a
2-qubit and a 3-qubit circuit for the platform illustrated in Fig-
ure 1. Step 1 obtains ErrorRates = [(0.0027, {q3, q4} , {q2}),
(0.0017, {q1, q2} , {q0}), (0.0013, {q2, q4} , {q0}), . . .].

In Step 2, the allocation algorithm determines that
all the qubits are used, hence no idle user is necessary
(Line 3). The population is initialized (Line 5) with the
initial individual (Q∅, QT , QU) where all the qubits are

unallocated, i.e., Q∅ = {q0, q1, q2, q3, q4}, QT = ∅, and
QU = ∅. Since there is no trusted user in this example, we
simply denote an allocation by (QU), omitting Q∅ = E \QU

and QT = ∅. The iteration (Line 8) starts with the
largest error rate (0.0027, {q3, q4} , {q2}). Since the only
individual present in Pop is (∅), which is unsafe since
qubits involved in the error rate could be allocated to any
user, it is archived and new allocations are generated. First,
the impacted qubit is allocated (Line 17), obtaining the
allocation ({{q2}}). Second, impacting qubits are allocated
to the user controlling the impacted qubit (Line 18), so
({{q2}}) is replaced by ({{q2, q3}}) and ({{q2, q4}}).
Because the unallocated controlling qubit could be allocated
to another user, these allocations have a penalty of 0.0027.
Then, the algorithm adds allocation ({{q2, q3, q4}}), where
only one user is involved, to the population (Line 19).
This allocation has the same score (i.e., 0.0027) as the
allocations ({{q2, q3}}) and ({{q2, q4}}), but its penalty is
0. Since no user is trusted in this example, Line 20 never
generates new allocations. Then, the algorithm continues
with the next error rate (0.0017, {q1, q2} , {q0}). To address
this error rate, the population evolves from {({{q2, q3}}),
({{q2, q4}}), ({{q2, q3, q4}})} to {({{q0, q1} , {q2, q3}}),
({{q0, q1} , {q2, q4}}), ({{q0, q1} {q2, q3, q4}})}. Finally,
the algorithm continues with the next error rate
(0.0013, {q2, q4} , {q0}). This time, no allocation is safe and
no safe allocation can be generated. Hence, the allocations are
archived (Line 21) and the iteration stops (Line 24). Finally,
Algorithm 1 returns the archived allocations (Line 25).

In Step 3, QAICCC will select allocation
({{q0, q1} , {q2, q3, q4}}), as it has the same score as
the other best allocations, but has a smaller penalty. Both
circuits would successfully be transpiled according to this
allocation, which reduces inter-circuit crosstalk compared to
the allocation ({{q0, q1, q2} , {q3, q4}}) exploited by Ash-Saki
et al. [7]’s injection attack.

However, even if reduced, inter-circuit crosstalk may still
subsist. In Step 4, noise reduction techniques may be used to
further reduce noise. For instance, XtalkSched can be used to
reduce inter-circuit crosstalk, e.g., from q2 and q4 to q0, then
to reduce intra-circuit crosstalk, e.g., from q2 and q3 to q4.

IV. RELATED WORK

Ash-Saki et al. [7] proposed buffer qubits between user
circuits to prevent inter-circuit crosstalk as well as the injection
attack they demonstrated. While such an approach can meet
G2, it would be a waste of quantum resources, failing to meet
G1. This contrasts with QAICCC, which does not need to
unallocate qubits to prevent attacks and makes unused qubits
accessible for the next users.

To the best of our knowledge, existing reducing-crosstalk
techniques like XtalkSched [9] and ColorDynamic [10] do not
take into account security vulnerabilities. Nevertheless, they
are useful to meet G3 and, if they can be updated to prioritize
inter-circuit over intra-circuit crosstalk and larger error rates
over smaller ones (§ III-F), then they can contribute to meeting

G2. Moreover, ColorDynamic can only be used when qubit
operating frequencies can be controlled by the software (e.g.,
tunable qubit architectures proposed in some prototypes [15]
or by Google [16]), while XtalkSched and QAICCC can be
used on any platform. Finally, XtalkSched focuses on gate
errors, i.e., 2-2 crosstalk (§ III-D), while QAICCC uses qubit
allocation to also reduce 1-1 and 2-1 crosstalk.

V. RESEARCH OUTLOOK AND CONCLUSIONS

In this idea paper, we presented QAICCC, an approach for
securing users’ program executions from crosstalk attacks in
quantum servers. We proposed a qubit allocation algorithm
that maximizes qubit usage while minimizing the largest inter-
circuit crosstalk error rate. Below, we outline our research plan
to further develop this idea into a full-fledged solution.

First, we plan to set-up an environment for Qiskit and
pyGSTi to replicate Ash-Saki et al. [7]’s crosstalk attack
on several platforms. This attack acts on qubits involved in
crosstalk and consists of executing several times a CNOT gate
on impacting qubit(s) to reduce the magnitude of the desired
output in the impacted qubit(s) below the magnitude of other
results. Thus, for various platform and qubit combinations, we
will be able to determine the correlation between the number
of CNOT gate executions necessary for the attack and the
different error rates measured by pyGSTi. Such a correlation
will allow us to assess whether the composite score they
proposed in their study is the best surrogate metric to quantify
the strength of the threat; shouldn’t this be the case, we will
investigate alternative metrics.

Second, we will implement QAICCC in Python for better
integration with frameworks like Qiskit and PennyLane, and
apply it to various platforms and quantum circuits.

Furthermore, we plan to conduct an empirical evaluation of
QAICCC (either with a simulator or with a quantum processor,
depending of available ressources). The qubit allocation algo-
rithm will be evaluated by comparing the largest inter-circuit
crosstalk error rate between its allocation and an allocation
performed by the last version of Qiskit. QAICCC will be
evaluated by simulating various combinations of attacker,
victim, trusted, and untrusted users and comparing—in terms
of success rate—the execution of QAICCC’s transpiled circuits
with transpiled circuits obtained by baselines like Qiskit and
XtalkSched alone.

ACKNOWLEDGMENT

This project has received funding from SES and the Luxem-
bourg National Research Fund under the Industrial Partnership
Block Grant (IPBG), ref. IPBG19/14016225/INSTRUCT.

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin,
R. Barends, R. Biswas, S. Boixo, F. Brandao, D. Buell,
B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins,
W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, and
J. Martinis, “Quantum supremacy using a programmable

superconducting processor,” Nature, vol. 574, pp. 505–
510, 10 2019.

[2] M. A. Akbar, A. A. Khan, S. Mahmood, and
S. Rafi, “Quantum software engineering: A new
genre of computing,” in Proceedings of the 1st
ACM International Workshop on Quantum Software
Engineering: The Next Evolution, ser. QSE-NE 2024.
New York, NY, USA: Association for Computing
Machinery, 2024, p. 1–6. [Online]. Available: https:
//dl.acm.org/doi/abs/10.1145/3663531.3664750

[3] P. Liimatta, P. Taipale, K. Halunen, T. Heinosaari,
T. Mikkonen, and V. Stirbu, “Research versus practice in
quantum software engineering: Experiences from credit
scoring use case,” IEEE Software, vol. 41, no. 6, pp. 9–
16, Nov 2024.

[4] A. A. Khan, M. Azeem Akbar, and P. Liang,
“First international workshop on quantum software
engineering: The next evolution (qse-ne) summary
2024,” SIGSOFT Softw. Eng. Notes, vol. 49, no. 4,
p. 26–28, Oct. 2024. [Online]. Available: https:
//doi.org/10.1145/3696117.3696124

[5] A. A. Saki, M. Alam, K. Phalak, A. Suresh, R. O.
Topaloglu, and S. Ghosh, “A survey and tutorial on secu-
rity and resilience of quantum computing,” in 2021 IEEE
European Test Symposium (ETS). 3 Park Avenue, New
York City, U.S.: Institute of Electrical and Electronics
Engineers, May 2021, pp. 1–10.

[6] S. Ghosh, S. Upadhyay, and A. A. Saki, “A primer
on security of quantum computing,” 2023. [Online].
Available: https://arxiv.org/abs/2305.02505

[7] A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of
crosstalk in nisq devices and security implications
in multi-programming regime,” in Proceedings of
the ACM/IEEE International Symposium on Low
Power Electronics and Design, ser. ISLPED ’20.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 25–30. [Online]. Available: https:
//doi.org/10.1145/3370748.3406570

[8] A. Ash-Saki and S. Ghosh, “Qubit sensing: A new attack
model for multi-programming quantum computing,” 04
2021.

[9] P. Murali, D. C. Mckay, M. Martonosi, and
A. Javadi-Abhari, “Software mitigation of crosstalk
on noisy intermediate-scale quantum computers,”
in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 1001–1016. [Online]. Available:
https://doi.org/10.1145/3373376.3378477

[10] Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and
F. T. Chong, “Systematic crosstalk mitigation for super-
conducting qubits via frequency-aware compilation,” in
2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 3 Park Avenue, New
York City, U.S.: Institute of Electrical and Electronics

Engineers, Oct 2020, pp. 201–214.
[11] IBM, “Quantum processing units,” (Accessed 2025-

02-25). [Online]. Available: https://quantum.ibm.com/
services/resources

[12] M. Paltenghi and M. Pradel, “Analyzing quantum
programs with lintq: A static analysis framework for
qiskit,” Proc. ACM Softw. Eng., vol. 1, no. FSE, Jul.
2024. [Online]. Available: https://dl.acm.org/doi/abs/10.
1145/3660802

[13] M. Sarovar, T. Proctor, K. Rudinger, K. Young,
E. Nielsen, and R. Blume-Kohout, “Detecting crosstalk
errors in quantum information processors,” Quantum,
vol. 4, p. 321, Sep. 2020. [Online]. Available:
https://doi.org/10.22331/q-2020-09-11-321

[14] pyGSTi, “A python implementation of gate set
tomography,” 0.9.13. [Online]. Available: https:
//github.com/sandialabs/pyGSTi

[15] M. D. Hutchings, J. B. Hertzberg, Y. Liu, N. T.
Bronn, G. A. Keefe, M. Brink, J. M. Chow, and
B. L. T. Plourde, “Tunable superconducting qubits
with flux-independent coherence,” Phys. Rev. Appl.,
vol. 8, p. 044003, Oct 2017. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevApplied.8.044003

[16] R. Barends, C. M. Quintana, A. G. Petukhov, Y. Chen,
D. Kafri, K. Kechedzhi, R. Collins, O. Naaman,
S. Boixo, F. Arute, K. Arya, D. Buell, B. Burkett,
Z. Chen, B. Chiaro, A. Dunsworth, B. Foxen, A. Fowler,
C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey,
J. Kelly, P. V. Klimov, F. Kostritsa, D. Landhuis,
E. Lucero, M. McEwen, A. Megrant, X. Mi, J. Mutus,
M. Neeley, C. Neill, E. Ostby, P. Roushan, D. Sank,
K. J. Satzinger, A. Vainsencher, T. White, J. Yao,
P. Yeh, A. Zalcman, H. Neven, V. N. Smelyanskiy,
and J. M. Martinis, “Diabatic gates for frequency-
tunable superconducting qubits,” Phys. Rev. Lett.,
vol. 123, p. 210501, Nov 2019. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.123.210501

https://dl.acm.org/doi/abs/10.1145/3663531.3664750
https://dl.acm.org/doi/abs/10.1145/3663531.3664750
https://doi.org/10.1145/3696117.3696124
https://doi.org/10.1145/3696117.3696124
https://arxiv.org/abs/2305.02505
https://doi.org/10.1145/3370748.3406570
https://doi.org/10.1145/3370748.3406570
https://doi.org/10.1145/3373376.3378477
https://quantum.ibm.com/services/resources
https://quantum.ibm.com/services/resources
https://dl.acm.org/doi/abs/10.1145/3660802
https://dl.acm.org/doi/abs/10.1145/3660802
https://doi.org/10.22331/q-2020-09-11-321
https://github.com/sandialabs/pyGSTi
https://github.com/sandialabs/pyGSTi
https://link.aps.org/doi/10.1103/PhysRevApplied.8.044003
https://link.aps.org/doi/10.1103/PhysRevApplied.8.044003
https://link.aps.org/doi/10.1103/PhysRevLett.123.210501

APPENDIX

A. Auxiliary functions

The additional auxiliary functions used in Algorithm 1 are
detailed in Figure 4. Function allocImpacted allocates
unallocated impacted qubits; it takes as input the current
allocation alloc1 and the impacted qubits Q←, and returns the
set of allocations Allocs1. Function allocControl updates
allocations in Allocs1 so that each impacted user controls at
least one impacting qubit; it takes as input the set of allocations
Allocs1 and the current error rate rate , and returns the
updated set of allocations Allocs1. Function allocMerge
generates new allocations involving only one user; it takes
as input the current allocation alloc1 and the current error
rate rate , and returns the set of allocations Allocs1. Function
allocTrusted allocates unallocated impacting qubits to
trusted users; it takes as input the current allocation alloc1
and the impacting qubits Q→, and returns the set of allocations
Allocs .

These four auxiliary functions also take as input (but with-
out using them directly) the platform connectivity C = (V,E)
and the circuit sizes Sizes because they call the connect and
newAlloc functions, which require these inputs. Function
connect is responsible for finding possible paths to connect
qubits in a set of qubits User with qubits in a set of qubits
S and for using these paths to obtain (if any) connected com-
ponents matching the circuit size limits. It takes as input an
allocation alloc1, the sets of qubits User and S, the platform
connectivity C and the circuit sizes Sizes; it returns a set of
allocations Allocs . If User is empty (e.g., when connect
is called but no qubit has been allocated so far), then paths
consist of either S itself, if it is connected, or connected
components containing S. Finally, newAlloc generates a
new allocation; it takes as input an allocation alloc1, the
set of qubits User , the current error rate rate , the platform
connectivity C and the circuit sizes Sizes , and returns a set
of allocations Allocs . A new allocation alloc2 is generated
based on alloc1, so qubits in User are allocated to the same
user. Then, newAlloc checks if alloc2 is compatible with the
platform connectivity C and satisfies the circuit size limits
Sizes . If so, alloc2’s attributes are updated by the auxiliary
function updAlloc according to the error rate rate, then
Allocs = {alloc2} is returned; otherwise, Allocs = ∅ is
returned.

1: procedure allocImpacted(alloc1, Q←, E,Sizes)
2: Set of Allocations Allocs1 ← {alloc1}
3: for Qubit q ∈ Q← do
4: Set of Allocations Allocs2 ← ∅
5: for Allocation alloc2 = (Q∅, QT , QU) ∈ Allocs1 do
6: if q ∈ Q∅ then
7: for Set of Qubits User ∈ QT ∪QU do
8: Allocs2 ← Allocs2 ∪ connect(alloc2,User , {q} , C,Sizes)

9: else
10: Allocs2 ← Allocs2 ∪ {alloc2}
11: Allocs1 ← Allocs2
12: return Allocs1
13:
14: procedure allocControl(Allocs1, rate =

(score, Q→, Q←) , C,Sizes)
15: for Qubit q1 ∈ Q← do
16: Set of Allocations Allocs2 ← ∅
17: for Allocation alloc2 = (Q∅, QT , QU) ∈ Allocs1 do
18: Set of Qubits User1 ← getUser(q1, alloc2)
19: for Qubit q2 ∈ Q→ do
20: if q2 ∈ Q∅ then
21: Allocs2 ← Allocs2 ∪ connect(alloc2,User1, {q2} , C,Sizes)
22: else
23: Set of Qubits User2 ← getUser(q2, alloc2)
24: Allocs2 ← Allocs2∪connect(alloc2,User1,User2, C,Sizes)

25: Allocs1 ← Allocs2
26: return Allocs1
27:
28: procedure allocMerge(alloc1 = (Q∅, QT , QU) , rate =

(score, Q→, Q←) , C,Sizes)
29: Set of Allocations Allocs1 ← ∅
30: Set of Qubits S ← Q→ ∪Q← . involved qubits
31: Set of Qubits Usermerge ←

⋃
q∈S getUser(q, alloc1)

32: if Usermerge = ∅ then . are unallocated
33: Set of Allocations Allocs2 ← newAlloc(alloc1, S, rate, C,Sizes)
34: if Allocs2 6= ∅ then
35: Allocs1 ← Allocs2
36: else
37: for User ∈ QT ∪QU do
38: Allocs1 ← Allocs1 ∪ connect(alloc1,User , S, C,Sizes)

39: else
40: Allocs1 ← newAlloc(alloc1,Usermerge ∪ S, rate, C,Sizes)

41: return Allocs1
42:
43: procedure allocTrusted(alloc1 = (Q∅, QT , QU) , Q→, C,Sizes)
44: Set of Allocations Allocs ← ∅
45: for Set of Qubits S ⊆ Q→ ∩Q∅ do
46: for Set of Qubits User ∈ QT do
47: if Q→ ∩ (User ∪ S) 6= ∅ then
48: Allocs ← Allocs ∪ connect(alloc1,User , S, C,Sizes)

49: return Allocs
50:
51: procedure connect(alloc1 = (Q∅, QT , QU) ,User , S, C,Sizes)
52: Set of Allocations Allocs ← ∅
53: Integer maxLen ← rem(User , alloc1,Sizes)− card(S \User)
54: for Set of Qubits Path ∈ getPaths(User , S,Q∅, C,maxLen) do
55: Allocs ← Allocs ∪ newAlloc(alloc1,User ∪ S ∪

Path, rate, C,Sizes)

56: return Allocs

Fig. 4. Auxiliary functions used in Algorithm 1

	Introduction
	Background
	Crosstalk
	Noise reduction techniques

	Approach
	Motivations and goals
	Overview
	Step 1: Crosstalk analysis
	Step 2: Allocation algorithm
	Step 3: Transpilation
	Step 4: Noise reduction
	Application to the Running Example

	Related Work
	Research Outlook and Conclusions
	Appendix
	Auxiliary functions

