
A Piece of QAICCC: Towards a Countermeasure
Against Crosstalk Attacks in Quantum Servers

Yoann Marquer
University of Luxembourg

Luxembourg
yoann.marquer@uni.lu, 0000-0002-4607-967X

Domenico Bianculli
University of Luxembourg

Luxembourg
domenico.bianculli@uni.lu, 0000-0002-4854-685X

Abstract—Quantum computing, while allowing for processing
information exponentially faster than classical computing, is
far from becoming a personal commodity. Indeed, because of
cost and needs for ultra-cold temperature, shielded environment,
and complex wiring for control, access to quantum computers
is likely to be provided remotely, through quantum servers.
Sharing quantum hardware between multiple users enables the
efficient use of quantum resources, but makes some security
threats possible. For instance, previous studies demonstrated that
crosstalk between attacker and victim’s qubits can be exploited
to mount security attacks.

In this work, we address the problem of securing user circuits
submitted to quantum servers. We propose the Qubit Allocation
for Inter-Circuit Crosstalk Countermeasure (QAICCC), which
aims to maximize qubit usage, reduce inter-circuit crosstalk as
well as intra-circuit noise. QAICCC performs (1) a crosstalk
analysis of the targeted quantum processor to determine qubits
involved in crosstalk with the largest intensity; (2) the allocation
of qubits in the safest possible way; and (3) the application of
existing techniques to further reduce crosstalk between circuits
and noise in user circuits. The main contribution is the allocation
algorithm, which aims to maximize qubit usage (including mak-
ing unused qubits available for future usage) while minimizing
the largest inter-circuit crosstalk error rate. Thus, QAICCC will
support quantum computing adoption by securing the usage of
quantum servers by a large number of actors.

Index Terms—Crosstalk analysis, Quantum server, Qubit allo-
cation, Noise reduction, Security threat, Transpilation.

I. INTRODUCTION

Ash-Saki et al. [1] demonstrated that crosstalk between
qubits allocated to different users can be exploited for security
attacks. In their attack scenario, a user (the victim) requests
qubits to the server; then, another user (the attacker) requests
several copies of small quantum circuits to control the largest
number possible of remaining qubits. The victim runs her
circuit to obtain a result in a qubit output while the attacker
runs her circuit(s). Due to crosstalk from attacker’s qubits
to the victim’s output qubit, the magnitude of the victim’s
expected output can be reduced below the magnitude of other
results, thus tampering the victim’s output. We call crosstalk
attacks security attacks made possible by crosstalk, like Ash-
Saki et al. [1]’s fault injection attack.

As NISQ computers do not have enough qubits for error
correction, they resort to noisy computations that hinder
quantum computing (QC) adoption. This situation warrants

1) increasing the number of available qubits and 2) reducing
noise in quantum computations.

For the former, since each qubit is a precious resource that
should not be wasted, we see maximizing qubit usage as a
priority. For the latter, since crosstalk attacks are possible
between users of the same quantum servers, in this paper
we distinguish two kinds of noise: inter-circuit crosstalk, i.e.,
crosstalk between qubits allocated to different users, and intra-
circuit noise, i.e., crosstalk and decoherence involving qubits
allocated to the same user.

Another priority for QC adoption is that quantum servers
can be used in a safe way, without a user being able to interfere
with other users’ executions. Hence the need to reduce inter-
circuit crosstalk. More precisely, since crosstalk is quantified
using error rates and the targeted processor may exhibit many
qubit combinations leading to crosstalk, we aim to minimize
the largest inter-circuit crosstalk error rate.

Finally, maximizing qubit usage while reducing inter-circuit
crosstalk implies that each combination of qubits involved in
crosstalk should be controlled, when possible, by the same
user. Such a qubit allocation would tend to increase intra-
circuit noise, which should be reduced as well to improve
success rate and thus quality of service. Therefore, intra-circuit
noise reduction is another priority in NISQ computers.

To summarize, our approach for inter-circuit crosstalk coun-
termeasure aims to achieve the following goals, in decreasing
priority:
G1: maximizing qubit usage (including making unused qubits

available for future usage);
G2: minimizing the largest inter-circuit crosstalk error rate;
G3: reducing intra-circuit noise (crosstalk and decoherence).

II. APPROACH

Our Qubit Allocation for Inter-Circuit Crosstalk Coun-
termeasure (QAICCC) approach takes as input the targeted
quantum processor, user circuits, and (potential) trusted users;
it returns transpiled circuits that can be executed in a safe way,
minimizing the threat of crosstalk attacks.

The approach consists of four main steps. In Step 1, the pro-
cessor is analyzed to determine crosstalk error rates (§ II-A).
In Step 2, qubits are allocated to users (§ II-B). In Step 3,
user circuits are transpiled according to the selected qubit
allocation to match the processor connectivity and supported



gates (§ II-C). In Step 4, transpiled circuits are transformed to
reduce noise during quantum executions (§ II-D).

A. Step 1: Crosstalk analysis

In this step, the processor is analyzed (e.g., with pyGSTi [2])
to determine crosstalk error rates between qubits. We consider
the impact of one or two qubits on another qubit (as in Ash-
Saki et al. [1]’s work) and the impact of two qubits on two
qubits (i.e., gate errors, as in Murali et al. [3]’s work), which
we respectively call 1-1, 2-1, and 2-2 crosstalk.

We take inspiration from Murali et al. [3]’s methodology
by considering only neighboring qubits. More precisely, each
m-n crosstalk is measured so that the m+n considered qubits
form a connected component.

In QAICCC, crosstalk is quantified using a single metric
like the composite score, which is the sum of the Stochastic
error rates and the square of the Hamiltonian error rates, as
defined in Ash-Saki et al. [1]’s work.

B. Step 2: Allocation algorithm

In this step, we allocate qubits to users in order to meet
G1 and G2, using an allocation algorithm detailed in the long
version of this work [4]. The algorithm takes as input the
connectivity of the processor, the information on the size of
the user circuits, and the error rates returned by Step 1.

In case the number of qubits to allocate is smaller than
the number of available qubits, to meet G1, the algorithm
allocates qubits for potential, future users, by introducing an
untrusted idle user requesting for the rest of the qubits. To
ensure user circuits can be transpiled using the obtained qubit
allocations, each user’s allocation is determined so that it
forms a connected component. Thus, the unused qubits will
be connected, which increases the chance of being able to
allocate them to new users.

The algorithm takes inspiration from genetic search by
maintaining an evolving population of possible allocations, but
does not involve any randomness. To meet G2, it processes
error rates in decreasing order of score, so that the qubits
involved in crosstalk with the largest intensity are allocated
first. For a given error rate, each allocation in the population
is tested to determine if it is already safe, i.e., impacting
qubits are allocated to trusted users or impacted users control
impacting qubits. If the allocation is safe, then it is used in the
next iteration. Otherwise, it is removed from the population,
and then (when possible, due to size constraints) new safe
allocations are generated from it (based on the processor
connectivity and circuit sizes) and added to the population.
In this way, the last individuals in the population correspond
to allocations of qubits done in the safest possible way.

C. Step 3: Transpilation

In this step, user circuits are transpiled according to the
selected qubit allocation. Allocations returned by Step 2 are
sorted by increasing score, so the allocations obtained last (i.e.,
those addressing the largest number of error rates) are the
first ones. Starting from the first allocation, an allocation is

selected and tested as follows. Qiskit is called to transpile the
user circuits according to the current allocation, to match the
processor connectivity and supported gates. If the transpilation
is successful, then the transpiled circuits are selected for
Step 4. Otherwise, the next allocation is selected and tested.
This process continues until an allocation is successful. If no
allocation is successful, then QAICCC returns an error.

D. Step 4: Noise reduction

In this step, QAICCC uses existing techniques like the
XtalkSched scheduler [3] and ColorDynamic [5] on the tran-
spiled circuits to reduce noise further. To meet G2, the priority
is to reduce first remaining inter-circuit crosstalk of the qubit
allocation selected in Step 3. To meet G3, these techniques
can be also independently applied to each circuit, to reduce
intra-circuit noise.

III. CONCLUSION AND FUTURE WORK

We have presented QAICCC, an approach for securing
users’ program executions from crosstalk attacks in quantum
servers. Our ongoing work focuses on implementing QAICCC
(in Python, for better integration with frameworks like Qiskit
and PennyLane), followed by an experimental campaign. We
plan to evaluate the qubit allocation algorithm by compar-
ing the largest inter-circuit crosstalk error rate between its
allocation and an allocation performed by the last version of
Qiskit; we plan to evaluate QAICCC by simulating various
combinations of attacker, victim, trusted, and untrusted users
and comparing—in terms of success rate—the execution of
QAICCC’s transpiled circuits with transpiled circuits obtained
by baselines like Qiskit and XtalkSched [3] alone.

ACKNOWLEDGMENT

This project has received funding from SES and the Luxem-
bourg National Research Fund under the Industrial Partnership
Block Grant (IPBG), ref. IPBG19/14016225/INSTRUCT.

REFERENCES

[1] A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of
crosstalk in nisq devices and security implications in
multi-programming regime,” in Proceedings of ISLPED
’20. ACM.

[2] pyGSTi, “A python implementation of gate set
tomography,” 0.9.13. [Online]. Available: https:
//github.com/sandialabs/pyGSTi

[3] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-
Abhari, “Software mitigation of crosstalk on noisy
intermediate-scale quantum computers,” in Proceedings
of ASPLOS ’20. ACM.

[4] Y. Marquer and D. Bianculli, “A Piece of QAICCC:
Towards a Countermeasure Against Crosstalk Attacks
in Quantum Servers,” 2025. [Online]. Available: https:
//orbilu.uni.lu/handle/10993/64693

[5] Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson,
and F. T. Chong, “Systematic crosstalk mitigation for
superconducting qubits via frequency-aware compilation,”
in 2020 MICRO. IEEE, Oct 2020, pp. 201–214.

https://github.com/sandialabs/pyGSTi
https://github.com/sandialabs/pyGSTi
https://orbilu.uni.lu/handle/10993/64693
https://orbilu.uni.lu/handle/10993/64693

	Introduction
	Approach
	Step 1: Crosstalk analysis
	Step 2: Allocation algorithm
	Step 3: Transpilation
	Step 4: Noise reduction

	Conclusion and future work

