
DCRuntime: Toward Efficiently Sharing
CPU-GPU Architectures

Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

University of Luxembourg, Luxembourg
{ovidiu-cristian.marcu,gregoire.danoy,pascal.bouvry}@uni.lu

Abstract. Managing distributed data movement and computation for
large-scale, data-intensive applications (Big Data, ML/AI) on modern
heterogeneous architectures (CPU, GPU) presents significant challenges.
Current systems often rely on passive, application-driven (pull-based)
data access, leading to inefficient resource utilization, particularly high
GPU idle times (up to 70%), complex manual memory management, and
limited opportunities for global optimization and fault tolerance. This pa-
per introduces DCRuntime, a vision for a unified, runtime-orchestrated
system designed to actively manage both data and compute streaming.
DCRuntime employs a proactive, push-based "compute-follows-data"
execution model. It exposes two core abstractions: 1) distributed data
streams, representing potentially unbounded sequences of (im)mutable
buffers spanning cluster resources, and 2) global compute streams, en-
abling asynchronous task execution across multiple devices, tightly cou-
pled with data availability. By delegating data sourcing, sinking, shuf-
fling, and compute scheduling to the runtime, DCRuntime gains a global
perspective to optimize data placement, minimize I/O stalls, mitigate
interference and power jitter, and enable faster, application-aware fault
recovery. This approach aims to abstract away low-level complexities,
significantly improve resource utilization (especially for GPUs), enhance
scalability, and provide a resilient foundation for demanding workloads
on shared, heterogeneous high-performance computing infrastructure.

Keywords: data stream · compute stream · data movement · distributed
memory and compute orchestration · compute-follows-data · shared GPU
clusters.

1 Introduction: Background and Vision

Distributed memory management is a difficult system problem exacerbated by
three factors: 1) large-scale data-intensive distributed applications that require
efficient data movement in heterogeneous exascale architectures (e.g., CPU,
GPU, high-end networking), 2) specialized frameworks (big data, machine learn-
ing) needing interoperability (i.e., to avoid inefficient data transfers and sharing)
and portability across device-specific accelerators, and 3) the need to co-design
memory management with system schedulers for energy-efficient fault tolerance
(e.g., lineage, replication, checkpointing).



2 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

Solving this memory system problem would alleviate significant burdens on
application developers who currently struggle with manual memory manage-
ment, explicit data transfers, complex logic for data consistency and failure
recovery, and the intricacies of dynamic data partitioning for scalability. Ef-
fective memory management is increasingly important given the rising cost and
rapid advancements in specialized hardware (like NVIDIA GPUs), making it
exceedingly difficult for developers to efficiently tune both existing and new
workloads to maximize the utilization of these costly resources, particularly in
shared, multi-tenant [38, ?] GPU environments that optimize resource usage and
reduce training costs for deep neural network applications [34].

Entity-scoped multi-tenancy and collaboration in data-intensive systems present
significant challenges, particularly for frameworks like JAX/XLA [11]. While
JAX/XLA optimizes code for specific hardware accelerators (CPUs, GPUs, TPUs),
existing limitations related to cluster device sharing (multi-tenancy) and dy-
namic scaling hinder efficient resource utilization in collaborative environments.
Addressing these limitations will necessitate a reevaluation of how data and com-
pute are abstracted, highlighting the need to orchestrate both data and compute
management, which we discuss next.

The need to abstract away data orchestration. Most (in-memory and/or disk-
based) distributed storage architectures remain passive relative to computations
while exposing pull-based (application-initiated) data access APIs to compute-
optimized systems for handling big data, machine learning, and artificial intelli-
gence (BD/ML/AI) workloads. Processing engines typically deploy pipelines of
operators, including source, sink, and shuffle operators. Source operators fetch
input data from a storage system using a pull-based approach, while sink opera-
tors write data to the storage system using a push-based approach. Additionally,
shuffle operators are responsible for redistributing data based on partitioning
methods, such as key-based partitioning. Traditionally, the shuffle mechanism is
implemented at the application level. Unfortunately, system developers handling
large-scale computations often overlook critical optimizations due to lacking a
global I/O perspective. For example, GPUs can spend up to 70% of their time
waiting for data [7], a stall primarily caused by data movement latency.

A push-based strategy for data source delivery, however, can mitigate some
of these delays by proactively staging data closer to the compute resource. This
approach may look similar to how operating systems may prefetch data into the
page cache before an application requests it, or how CUDA [18, 33] program-
mers may invoke cudaMemPrefetchAsync to preload data onto the GPU before
launching a kernel. However, application-driven prefetching requires complex
management logic within the application itself and often lacks a holistic view
of the system’s state, including network congestion, storage tier performance,
or the resource needs of other concurrent applications/tenants. This can lead
to suboptimal prefetching decisions (either too aggressive, wasting resources, or
too conservative, still resulting in stalls). Furthermore, even with prefetching,
the final step often involves the application checking or waiting for data arrival
before initiating computation, introducing potential micro-stalls.



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 3

A push-based strategy for data delivery, orchestrated by the runtime system
itself, fundamentally shifts this dynamic. Instead of computation pulling data
when needed (or prefetching reactively), the runtime proactively pushes data to
designated compute resources based on declared application requirements (e.g.,
data stream dependencies for compute kernels). This approach moves beyond
mere prefetching; it enables the runtime, with its potential global view, to man-
age the end-to-end data flow and tightly couple data availability with compute
scheduling. By shifting from a purely application-initiated model (pull or app-
level prefetch) to a runtime-initiated push model, storage systems and processing
frameworks can minimize data stalls more effectively, enable more sophisticated
cross-application optimizations, and improve overall throughput, as envisioned
by DCRuntime.

The need to abstract away compute execution. Additionally, extreme power
jitter [3] [section 3.3], arising from the synchronization of tasks like checkpoint-
ing [28], collective communication [10], and training computations during large
language model (LLM) training, presents a significant challenge (synchronized
power fluctuations across tens of thousands of GPUs can strain data center power
grids, potentially reaching tens of megawatts). To address this, system developers
should be aware of pending computations from source, sink, and shuffle oper-
ations and utilize idle GPU resources for other computations to reduce power
jitter by dynamically scheduling other tasks on otherwise idle GPUs. For exam-
ple, this is possible with NVIDIA Hopper, which provides the ability for waiting
threads to sleep until all other threads arrive [4]. On previous chips, waiting
threads would spin on the barrier object in shared memory.

Therefore, a runtime system should not only actively manage data movement
on behalf of applications but also be responsible for scheduling computation
when data is available and efficiently utilize available memory and compute
resources by sharing them with other applications when possible.

Traditionally, system researchers explore runtime API abstractions to ad-
dress this question: How to abstract distributed memory management into a
single-system runtime [36, 5, 39, 11, 29, 17, 12]? We argue that the main runtime
strategy and challenge should be to delegate (abstract away) both data movement
and computation to a distributed runtime. In this context, data movement en-
compasses data allocation, garbage collection, transfer, ingestion, and shuffling
on top of distributed memory management. We believe that this dual objective
is best achieved in a streaming runtime designed with a compute-follows-data
strategy, as further introduced.

2 Motivation: Lack of Global I/O and Compute
Perspective in Current Middleware Systems

Today’s high-performance computing relies on complex, heterogeneous systems
comprising CPUs, GPUs, and specialized hardware. Applications processing
massive datasets require efficient data movement across these components, but
often face severe bottlenecks. Expensive accelerators like GPUs frequently sit



4 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

idle, waiting for data, which points to fundamental inefficiencies in how data is
supplied to compute resources, limiting overall system throughput and increasing
operational costs.

The software ecosystem adds another layer of complexity. Diverse frameworks
for big data, machine learning, and AI often lack seamless interoperability, forc-
ing cumbersome data transfers and hindering portability across different accel-
erators. Developers currently struggle with low-level details: manually managing
memory, orchestrating data transfers, ensuring consistency, implementing fault
tolerance, and scaling applications through intricate partitioning logic, detract-
ing significantly from core application development.

Current system architectures typically exacerbate these issues. Storage sys-
tems often remain passive, requiring applications to actively pull data when
needed. This application-centric control over data flow, including input, out-
put, and data redistribution (shuffling), lacks a global system perspective. This
prevents holistic optimization, hinders proactive data placement, and can lead
to system-wide inefficiencies like synchronized power spikes during large-scale
computations. A more integrated approach is needed, where the runtime takes
a proactive role in orchestrating both data and compute resources. The goal is
to abstract away low-level concerns like data partitioning and movement effi-
ciency, allowing developers to concentrate solely on defining the computation
and its inherent data relationships, while the runtime should optimize resource
utilization, performance etc.

We design the following experimental setup to evaluate GPU performance op-
timization techniques using a convolutional neural network (CNN) for CIFAR-
100 image classification and large 4000×4000 matrix multiplications as work-
loads, see Figure 1. The baseline consists of sequential execution on a single
GPU, where data loading, transfer, computation, and result retrieval occur se-
quentially without overlapping.

The optimized implementation introduces several techniques to enhance GPU
utilization. It employs compilation caching to avoid recompiling JAX functions
between runs, carefully separates and times different execution phases (data
loading, compilation, computation, evaluation), and implements precise memory
transfer optimization with explicit CPU-to-GPU transfers. We measure both
GPU compute throughput and memory utilization.

Most significantly, the experimental approach implements concurrent pro-
cessing and parallelized data transfers through an ‘AdvancedMatrixWorker‘ class
that creates a pipeline with separate threads for transfers and computation. This
enables overlapping of operations that would otherwise happen sequentially, al-
lowing matrix computations to run in the background during CNN training.
Although we observe improved GPU utilization and overall end to end applica-
tion runtime decreases, there is more room for improvement.



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 5

Fig. 1: Sequential (top) versus Concurrent (bottom) workloads running on GPU.

3 The DCRuntime Approach

This paper introduces the stream-active runtime approach, DCRuntime, to man-
age distributed data movement and computation across heterogeneous architec-
tures, as shown in Figure 2. DCRuntime shifts data movement management,
including source/sink handling and data shuffling, from BD/ML/AI applica-
tions directly to DCRuntime. It operates on a virtual log-structured in-memory
storage framework that exposes references to pooled data stream mutable buffers
and computation streams (see next section). By leveraging immutable data ac-
cess patterns and facilitating efficient real-time data movement, the DCRuntime
architecture will be deployed on tens of thousands of large many-core CPU and
CPU-GPU nodes. DCRuntime will harness their memory and computational re-



6 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

Fig. 2: Distributed data and compute runtime (DCRuntime) for shared hetero-
geneous computing. Data movement and computation scheduling are actively
handled by the DCRuntime.

sources while ensuring efficient and transparent communication with traditional
disk-based file storage systems.

We propose a push-based streaming execution model that enables DCRun-
time to efficiently leverage application-specific data (such as consumer/producer
offsets and data access patterns, including read, write, and shuffle). This model
supports several optimizations: scalable data movement partitioning algorithms;
faster stream storage recovery; mitigation of application stragglers; power fluc-
tuation mitigation during large-scale ML/AI training by utilizing idle GPU re-
sources for other computing tasks; and reduced I/O interference in multi-CPU-
GPU deployments for multiple applications sharing an exascale computing in-
frastructure.

The rationale behind a push-based streaming model, in addition to its low-
latency processing advantages, is driven by the continuous and bursty [3] data
processing demands of use cases such as LLM training and real-time stream pro-
cessing that often involve petabytes of input data and checkpointing data with
tens of TB/s peak throughput. By proactively managing data movement (input,
output, and shuffling), a push-based stream storage runtime minimizes GPU
idle time, reduces costs, and enables optimizations not easily achievable with
a pull-based model, such as reduced I/O interference, faster recovery, straggler
mitigation, and higher ingestion/checkpointing throughput. Moreover, insights
into application behavior provided by the push-based protocol’s offsets eliminate
the need for costly monitoring infrastructure to predict access patterns, thereby
simplifying optimization and fault recovery.

Through its global view of I/O, enabled by a push-based in-memory comput-
ing approach, DCRuntime promises significant performance improvements for
data-intensive applications by actively handling data movement and eliminates
the need for manual memory tuning and inefficient application-based data man-



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 7

agement. This will also help efficiently handle fault tolerance, a critical challenge
at exascale that can result in significant wasted compute capacity (20% or more)
due to failures and recovery, as highlighted by the European Strategic Research
Agenda for HPC [16] [pages 79-82]. DCRuntime achieves this through a virtual
immutable log-structured design and its novel push-based stream-active pro-
gramming model that couples global computational streams with data streams.
Our envisioned approach enables valuable insights into the patterns of data
access in applications, facilitating faster recovery, as detailed in the following
sections.

Our global vision for DCRuntime is a unified stream-active storage and com-
pute architecture for BD/ML/AI processing on heterogeneous HPC infrastruc-
ture, enabled by a push-based streaming execution model with the follow-
ing key benefits:

– Unified CPU-GPU Deployment and Optimized Performance: DCRun-
time will be deployed across the CPU-GPU HPC infrastructure, leveraging
combined memory and computing resources to support a push-based, stream-
based programming model (see Figure 2 and API). This unified approach
will facilitate efficient data movement and processing at exascale.

– Transparent Scalability and Resiliency: DCRuntime will provide users
with dynamic partitioning and automatic resiliency while efficiently scaling
ML pipelines on HPC infrastructure. This will enable users to focus on their
core research and development tasks without the burden of managing manual
scaling and fault-tolerant storage.

DCRuntime introduces a memory-agnostic runtime that exposes two core ab-
stractions: 1) distributed data streams, which provide a potentially unbounded
set of (im)mutable buffers spanning the aggregated memory of a cluster of CPU-
GPU nodes, supported by pools of mutable buffers that become immutable once
added to the data streams; and 2) global compute streams, similar to CUDA
streams, designed for asynchronous pipelining of computations and I/O across
multiple devices. Applications use compute stream references to access these
global compute streams, enabling resource sharing through futures (e.g., as in
XLA/PJRT and Ray). Compute streams are tightly coupled with data streams
via a push-based protocol that orchestrates computations based on data avail-
ability. Data streams abstract memory allocation (e.g., malloc) and data transfer.
DCRuntime actively manages both data movement and computation scheduling,
providing a global I/O perspective and facilitating seamless resource sharing for
interoperability between applications and data-intensive engines. Its push-based
model, unlike traditional pull-based approaches, is central to optimizing data
movement and minimizing GPU idle time by proactively anticipating computa-
tional needs.

Recognizing that data-intensive applications (e.g., real-time streaming, LLM
training) demand continuous data movement, including input, output, and shuf-
fling, we propose delegating these operations to DCRuntime itself. Specifically,
source operators register their input stream requirements (including any filtering



8 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

functions) with DCRuntime, which then proactively fills input buffers using a
push-based approach. Sink operators operate on preregistered stream buffers and
notify DCRuntime when data are ready to be written, triggering asynchronous
persistence to disk and buffer reuse. Shuffle operations function similarly, allow-
ing DCRuntime to reorganize input stream buffers asynchronously.

Our vision of decoupling data movement operations from processing oper-
ators is realized through the DCRuntime middleware layer positioned between
the disk-based file storage system and application engines. DCRuntime manages
both CPU and GPU host memory and integrates GPU device memory via na-
tive code (e.g., CUDA streams) under a push-based approach. Garbage collection
is managed at the DCRuntime level. All stream metadata are registered with
DCRuntime before and during deployment when source, sink, and shuffle oper-
ations are delegated. When an application crashes or shuts down, DCRuntime
automatically cleans up associated active streams.

Managing data movement for scalability, performance, faster recovery, and
reduced power jitter at exascale can be significantly more efficient when man-
aged by the DCRuntime system. While handling metadata for a large number
of streams presents challenges, DCRuntime differs from traditional approaches,
where this responsibility typically falls on application developers and their en-
gines, leading to suboptimal performance and increased complexity.

4 DCRuntime Data and Compute API

DCRuntime’s goal is to provide a global perspective on distributed memory
and compute resources. The DCRuntime API exposes two core abstractions: 1)
global compute streams, which have semantics similar to CUDA streams but
refer to computational resources across multiple nodes or devices rather than
a single device, and 2) data streams, which consist of immutable, shareable
buffers distributed across multiple nodes and tightly associated with compute
streams. This design ensures parallelism for data-intensive applications while
enabling the overlap of computations and data movement, both delegated to
DCRuntime for scheduling. Data streams are coupled with compute streams to
allow the DCRuntime runtime to implement a push-based compute-follows-data
execution.

Table 1 outlines the essential data and compute stream APIs. DCRuntime
manages global memory and computational resource pools exposed via these
APIs. Consumer and producer operators (e.g., GPU kernel tasks) within com-
pute engines create data and compute streams to interact with shared in-memory
buffers managed by DCRuntime. The source, sink, and shuffle operators dele-
gate their read and write I/O operations to DCRuntime, which manages these
shared stream buffers. Stream creation generates a reference (StreamRef) similar
to RPC references in [36]; however, data stream references offer better support
for partitioning by pointing to stream partitions and their buffers across multiple
nodes. A source is represented by a data stream of immutable stream buffers. A



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 9

Table 1: Data and Compute Stream Operations.
GCStreamRef A reference to a global compute stream to asso-

ciate with all data streams.

CStreamRef A reference to a local compute stream.

StreamRef A reference to a distributed data stream.

StreamBufferRef A reference to a buffer (chunk/partition) of a
data stream.

CreateComputeStream(
KernelAttributes,
ResourceProperties) ->
GCStreamRef

Creates a new global compute stream and re-
turns GCStreamRef. ResourceProperties can
specify the number of nodes/devices to use or
if sharing computational resources with other
applications is possible.

GetCStreams(GCStreamRef) ->
Set<CStreamRef>

Provides a set of existing CStreamRef references
to local compute streams.

CreateDataStream(
GCStreamRef, Properties,
[StreamRef]) -> StreamRef

Creates a new data stream and returns
StreamRef. It can optionally build on another
data stream. Properties can tag data streams
to be shared with other applications.

GetNextBuffer(StreamRef) ->
StreamBufferRef

Dynamically provisions a local mutable
StreamBufferRef reference to a memory chunk
that acts as the application’s local state.

GetBuffers(StreamRef) ->
Set<StreamBufferRef>

Provides a set of existing local mutable
StreamBufferRef references to memory chunks
that act as the application’s global state.

WriteTo(StreamRef,
StreamBufferRef)

Writes the content of StreamBufferRef to a
specified stream, marking the stream buffer im-
mutable.

ReadFrom(StreamRef) ->
Set<StreamBufferRef>

Provides a set of immutable StreamBufferRef
references for push-based data access.

ShuffleStream(StreamRef,
ShuffleFunction, Set<Nodes>)

Repartitions a data stream across a specified set
of nodes.

KernelFunction.Execute(
GCStreamRef, StreamRef,
GlobalPartitioner) ->
StreamRef

Schedules computation using global compute
stream resources over a data stream and returns
a reference to a (potentially new) data stream
to share with other applications.

KernelFunction.Execute(
Set<CStreamRef>,
Set<StreamBufferRef>,
LocalPartitioner) ->
StreamRef

Schedules computation using local compute
stream resources over a set of local stream
buffers and returns a reference to a (potentially
new) data stream to share with other applica-
tions.

DestroyStream(StreamRef) Schedules the deletion of the stream.



10 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

sink converts mutable buffers into immutable ones. Shuffle operates on mutable
buffers, which are materialized as immutable when transferred to data streams.

DCRuntime exposes global compute streams similar to single-device CUDA
streams but with key differences. A CUDA stream is a sequence of operations
(I/O and compute) executed in order on a specific CUDA device, allowing op-
erations in different streams to run concurrently on the same device. In con-
trast, DCRuntime introduces compute streams that span multiple devices glob-
ally, though they may be internally implemented similarly to CUDA streams.
CStreamRef functions similarly to a CUDA stream, while StreamRef is concep-
tually similar to a streaming topic. Whereas a kernel function typically executes
by default in the CUDA default stream on a single device, DCRuntime compute
streams enable kernel functions to execute by default across multiple devices.
Additionally, compute streams are tightly coupled with data streams through
a push-based execution protocol. The kernel function launch syntax resembles
CUDA’s but includes additional arguments for data streams associated with
the compute streams. Push-based data consumption is handled transparently
by DCRuntime.

Central to DCRuntime is its push-based streaming execution model. This
model is deliberately chosen over traditional pull-based or even purely runtime-
managed prefetching approaches for several key reasons:

– Tighter Compute-Data Coupling: In a pull or prefetch model, the com-
pute engine typically initiates the data request and often needs to check for
its completion before starting work. In DCRuntime’s push model, the run-
time knows precisely when the required data partitions have been pushed
into the target StreamBufferRefs associated with a compute task (CStream-
Ref/GCStreamRef). This allows the runtime to directly trigger or schedule
the computation immediately upon data readiness, minimizing the schedul-
ing latency between data arrival and kernel launch. Control shifts from com-
pute asking for data to data arrival enabling compute.

– Truly Proactive Orchestration: Application prefetching is inherently limited
by the application’s local view and predictive capability. Even runtime-
managed prefetching often relies on predicting future pulls. DCRuntime’s
push model, however, operates on declared intent. Applications register their
computational graphs and associated data stream dependencies via the API
(Table I). The runtime uses this explicit declaration to proactively orches-
trate data movement end-to-end, pushing data not just in anticipation of a
pull, but as a direct consequence of the defined workflow.

– Enhanced Global Optimization Potential: By managing the active push of
data, DCRuntime gains a superior advantage point for global optimization
compared to systems merely reacting to pull requests or managing predictive
prefetching. It can make more informed decisions about resource allocation,
data placement, interference mitigation, power jitter reduction and simplified
application flow control.



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 11

Fig. 3: DCRuntime middleware controls devices memory and data movement (eg
CUDA streams) and shares responsibilities with PJRT.

5 Discussion: Implementation Feasibility and Challenges

JAX is a Python library designed for high-performance numerical computing
and machine learning research. It provides a familiar NumPy-style API while en-
abling advanced capabilities like automatic differentiation, just-in-time compila-
tion, and parallel computation across accelerators. JAX achieves its performance
by building on XLA (Accelerated Linear Algebra), an open-source compiler that
optimizes mathematical computations for various hardware platforms including
GPUs, CPUs, and specialized ML accelerators. Together, JAX and XLA allow
researchers and engineers to write high-level Python code that executes with
near-native hardware performance.

XLA takes computational graphs from frameworks like JAX and applies opti-
mizations such as fusion (combining operations to reduce memory transfers), lay-
out optimization (arranging data for efficient memory access patterns), and spe-



12 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

cialized code generation for target hardware. These optimizations significantly
reduce memory usage and execution time compared to naive implementations.
XLA achieves this through a multi-stage compilation process that converts high-
level operations into optimized machine code specifically designed for the target
architecture.

PJRT (Portable JAX Runtime) provides the critical abstraction layer that
enables JAX and XLA to run efficiently across diverse hardware. It defines a
uniform device API with components such as PjRtClient (managing framework-
device communication), PjRtDevice (representing computational resources), PjRt-
MemorySpace (abstracting memory locations), PjRtBuffer (handling data stor-
age and transfer), and PjRtExecutable (managing compiled computation). This
architecture separates framework concerns from hardware-specific implementa-
tions, allowing frameworks to interact with a consistent API while hardware
vendors can focus on optimizing their specific implementations without modify-
ing the frameworks themselves.

From an architectural implementation perspective, DCRuntime can enhance
the JAX+XLA+PJRT stack through strategic integration at multiple levels
of the PJRT abstraction hierarchy, see Figure 3. This integration would en-
able DCRuntime’s push-based data orchestration while preserving PJRT’s clean
hardware abstraction model: At the client level, DCRuntime would extend PjRt-
Client to implement global resource coordination across multiple JAX applica-
tions. This extended client would function as a multi-tenant resource manager
that maintains awareness of all active workloads in the system. When imple-
mented, this component would intercept client operations like device enumer-
ation, buffer creation, and execution requests, augmenting them with DCRun-
time’s global scheduling logic. The client extension would communicate with
DCRuntime’s fault-tolerant coordinators to maintain system-wide metadata and
manage resource allocation policies across applications, enabling true multi-
tenancy without requiring application-level coordination.

For memory management, DCRuntime would implement specialized ver-
sions of PjRtMemorySpace and PjRtBuffer that interface with its distributed
data streams abstraction. These components would transform PJRT’s default
pull-based memory model by integrating with CPU-based stream brokers that
proactively prefetch data from storage into appropriate memory locations. The
implementation would leverage DCRuntime’s push-based architecture to antici-
pate data needs based on analysis of computational patterns across applications,
ensuring buffers are populated before computation begins. When JAX requests
data transfers through PJRT APIs, DCRuntime-enhanced buffers would often
have the data already positioned, eliminating transfer latency at computation
time.

The execution layer integration would modify how PjRtLoadedExecutable
instances schedule work on devices. DCRuntime would enhance PJRT’s execu-
tion methods to coordinate with its GPU cache components, which schedule I/O
and compute operations across the hardware. This integration would transform
PJRT’s async computation model to fully leverage DCRuntime’s distributed



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 13

Fig. 4: Partial fault recovery with push-based offsets in DCRuntime.

compute streams, enabling asynchronous pipelining of computations and I/O
across multiple GPU devices. The implementation would extend PjRtFutures
to work with DCRuntime’s orchestration layer, maintaining appropriate syn-
chronization while maximizing parallel execution opportunities across the entire
resource pool.

Through these architectural enhancements, DCRuntime would address key
limitations in current JAX+XLA deployments while preserving the program-
ming model that developers rely on. Applications would continue to use stan-
dard JAX APIs, but would benefit from potentially improved resource utiliza-
tion, multi-tenant efficiency, and dynamic scaling capabilities without requiring
code modifications.

As shown in Figure 4, a potential implementation of DCRuntime will sup-
port partial recovery by leveraging log-structured in-memory storage [32] and
push-based data movement, potentially using RDMA technology [22]. Our novel
approach to fast crash recovery in unified, in-memory, log-structured storage
(e.g., [27]) hinges on DCRuntime’s push-based model, enabling recovery from
the most recent consumer/producer offsets. This design allows for faster recov-
ery compared to traditional methods that require full log recovery. By focusing
solely on the relevant application stream offsets, DCRuntime substantially re-
duces the overhead associated with restoring large-scale applications following a
crash.

DCRuntime’s architecture integrates three interacting components: fault-
tolerant coordinators orchestrating metadata and system state, CPU-based stream
brokers proactively prefetching and then pushing data from underlying filesys-
tem storage into stream buffers, and GPU-based application stream components
managing memory allocation and access for CPU-GPU. Applications will di-
rectly or transparently through runtime use DCRuntime APIs to create and
manage data and compute streams, with coordinators orchestrating broker ac-



14 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

tions. DCRuntime’s global view of data and compute resources enables more
informed data partitioning strategies to efficiently utilize multiple GPUs. Its
push-based model facilitates proactive caching, reducing application delays by
anticipating computational needs. Furthermore, a significant aspect involves de-
signing and developing a push-based approach for seamless CPU-to-CPU-GPU
node integration, balancing trade-offs in areas such as availability, partition-
ing granularity, performance overhead, and fault tolerance mechanisms. Unlike
traditional systems, DCRuntime leverages data stream access patterns, specif-
ically tracked consumed data stream offsets, to prioritize recovery.In the event
of a crash, it resumes from the application’s last known progress point, enabling
faster restarts by avoiding the overhead of full log recovery.

Key challenges addressed by DCRuntime’s architecture include finding ap-
propriate data partitioning and program parallelism mechanisms to efficiently
feed multiple GPUs. DCRuntime’s global view of data streams and compute
resources allows for more informed partitioning strategies. Another challenge is
determining how to cache datasets to prevent application delays. The push-based
model enables proactive caching based on anticipated computational needs.

Current storage and processing systems often handle recovery in isolation,
lacking the crucial application-level insights needed for effective recovery pri-
oritization. DCRuntime directly addresses this limitation by leveraging data
stream access patterns, particularly the application’s consumed offsets, which
are tracked and managed by the runtime. Through push-based consumption,
DCRuntime gains knowledge of the application’s progress. Upon a crash, DCRun-
time immediately prioritizes recovering logs starting from the application’s last
known consumed offsets, enabling partial recovery. This allows for rapid access
to the critical data needed for restarting the application and significantly reduces
downtime compared to traditional systems that execute full log recovery, incur-
ring substantial overhead and unnecessarily delaying the application restart.

6 Related Work

DCRuntime can serve as a storage and compute runtime foundation for multi-
tenant and collaborative data-intensive systems. Beyond direct application use,
the DCRuntime runtime API holds the potential to serve as a foundational layer
for other data-intensive frameworks. For instance, frameworks like JAX and
OpenXLA could leverage DCRuntime to manage the underlying data movement
and distribution of large tensors across the distributed hardware, potentially
simplifying the integration of accelerators and improving data locality. Similarly,
Apache Spark could utilize DCRuntime’s stream and compute abstractions to
implement more efficient and lower-latency shuffle operations, or to manage the
persistence and access of RDD partitions in a more fine-grained manner. Spark
can share (although not efficiently) RDDs via Apache Ignite [1], another JVM-
based in-memory data platform. By providing a unified and actively managed
data layer, DCRuntime could simplify the development and deployment of com-
plex data-intensive applications built on top of these higher-level frameworks.



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 15

Enabling the unified DCRuntime architecture requires the integration of sev-
eral functional components. Data Ingestion acquires, buffers, and temporarily
stores fast data streams and raw file data in memory. Data storage (persis-
tent/caching) [14] ensures durability, availability, and fault tolerance. Big data
processing [9] and ML/AI analytics [40, 2] further enable efficient data stream
consumption by ML/AI applications.

DCRuntime distinguishes itself from existing work in several ways. Unlike
Ray, whose object references are tied to specific tasks which limits interoperabil-
ity [37], DCRuntime offers globally managed compute streams. Chapel [8] lacks
native GPU support and fine-grained control over overlapping data transfers and
computations, both of which are central to DCRuntime’s design. While mono-
lithic architectures [41] achieve tighter integration, DCRuntime strikes a balance
between modularity and cross-layer optimization. Moreover, unlike systems that
handle static streams (e.g., Apache Kafka [35, 31]), DCRuntime provides appli-
cation engines with direct, dynamic access to stream buffers.

Apache Kafka [35, 31], a CPU-only cloud stream storage solution, will not
scale at HPC exascale and it requires time-consuming and costly manual data
re-partitioning, lacking support for partial recovery. DCRuntime could build
over our in-memory storage system KerA [26, 24, 27, 25], leveraging its dynamic
partitioning and push-based streaming integration, although it currently lacks
support for GPUs as argued in this paper.

Although fault-tolerant storage systems typically fully recover crashed nodes
[30], they often do so without considering application-specific requirements [23].
Notably, no existing system fully implements the DCRuntime active data move-
ment approach. As a result, efforts to mitigate stragglers and multi-application
I/O interference often rely on resource-intensive monitoring tools that intro-
duce considerable overhead. Although DCRuntime uses CPU memory to man-
age metadata and orchestrate data movement, the potential performance gains
and reduced operational costs associated with its active approach can justify the
additional CPU memory overhead (to be explored).

Prior work advocates for a push-based streaming model [25] across the com-
puting continuum, and recent research on data flow in modern hardware [21] also
supports the concept of stream processing across the entire architecture. While
their focus is primarily on reducing data movement (and thus orthogonal to
ours), DCRuntime takes a different data movement approach to integrate seam-
lessly with and enhance existing processing engines. To ensure DCRuntime’s
correctness and robustness (e.g., [15]), we plan to use a holistic design approach
using TLA+ [19, 6], a language specifically designed for specifying and verifying
concurrent and distributed systems.

Exascale computing provides significant computational resources, yet I/O
bottlenecks remain a critical challenge. Even with large-scale hardware deploy-
ments, such as 16000 H100 GPUs used for LLAMA 3.1 training (where Model
FLOPs Utilization is only around 38–43% [MFU]), maximizing performance de-
mands a fundamental shift in the way we manage data and computations. Solu-
tions like ADIOS2 [13] offer improvements, but they serve more as intermediate



16 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

steps. Although ADIOS2 is a powerful embeddable I/O library, it explicitly states
that ADIOS2 is not a Memory Manager library. It optimizes data staging and
transfer but leaves memory management to the application, limiting its ability
to address data movement challenges at exascale comprehensively. It is essential
to move beyond solely optimizing I/O operations and focus on actively managing
global memory.

The implementation of distributed futures in Ray [37, 36] extends RPC mech-
anisms to efficiently manage parallelism and data movement on behalf of appli-
cations, enabling support for fine-grained tasks that execute in milliseconds.
These distributed futures closely resemble distributed procedure calls [20], as
their references function similarly to handles. However, DCRuntime advances
this concept by tightly integrating data movement and computation within a
unified, push-based runtime. Unlike Ray’s task-centric approach, DCRuntime’s
global compute and data streams provide seamless scalability across heteroge-
neous hardware while minimizing overhead. This integration allows DCRuntime
to proactively manage data placement and computation scheduling, further re-
ducing latency and improving performance for data-intensive workloads.

7 Conclusion

DCRuntime introduces a unified, push-based runtime vision to integrate data
movement and computation across heterogeneous systems. By abstracting mem-
ory and compute management through global data and compute streams, DCRun-
time aims to optimize resource utilization, to reduce GPU idle time, and to opti-
mize fault tolerance. Beyond addressing scalability and performance challenges
at exascale, DCRuntime opens exciting new research directions in dynamic re-
source management, cross-layer optimization, and multi-tenant system design.
We invite the community to engage in exploring and advancing this vision for
the future of data-intensive computing.

Acknowledgments. This work is partially funded by the SnT-LuxProvide partner-
ship on bridging clouds and supercomputers and by the Fonds National de la Recherche
Luxembourg (FNR) POLLUX program under the SERENITY Project (ref.C22/IS/17395419).

References

1. Apache ignite: A memory-centric distributed database, caching, and processing
platform. https://ignite.apache.org/ (2025), accessed: 2025-01-12

2. Abadi, M.e.a.: Tensorflow: A system for large-scale machine learning. In: Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Implemen-
tation. p. 265–283. OSDI’16, USENIX Association, USA (2016)

3. et al., A.D.: The llama 3 herd of models (2024), https://arxiv.org/abs/2407.21783
4. Andersch, M., Palmer, G., Krashinsky, R., Stam, N., Mehta, V.,

Brito, G., Ramaswamy, S.: Nvidia hopper architecture in-depth.
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ (Mar
2022), accessed: 2025-01-12



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 17

5. Anneser, C., Vogel, L., Gruber, F., Bandle, M., Giceva, J.: Programming fully
disaggregated systems. In: Proceedings of the 19th Workshop on Hot Topics in
Operating Systems. p. 188–195. HOTOS ’23, Association for Computing Ma-
chinery, New York, NY, USA (2023). https://doi.org/10.1145/3593856.3595889,
https://doi.org/10.1145/3593856.3595889

6. Batson, B., Lamport, L.: High-level specifications: Lessons from industry. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Meth-
ods for Components and Objects. pp. 242–261. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

7. Ben David, S.: Why a data plane architecture is critical for optimizing next-
generation workloads. In: Proceedings of the 2022 Workshop on Emerging
Open Storage Systems and Solutions for Data Intensive Computing. p. 9.
EMOSS ’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3526061.3532101

8. Callahan, D., Chamberlain, B., Zima, H.: The cascade high productivity lan-
guage. In: Ninth International Workshop on High-Level Parallel Programming
Models and Supportive Environments, 2004. Proceedings. pp. 52–60 (2004).
https://doi.org/10.1109/HIPS.2004.1299190

9. Dean, J., Ghemawat, S.: Mapreduce: Simplified data process-
ing on large clusters. Commun. ACM 51(1), 107–113 (jan 2008).
https://doi.org/10.1145/1327452.1327492

10. Dryden, N., Maruyama, N., Moon, T., Benson, T., Yoo, A., Snir, M., Van Es-
sen, B.: Aluminum: An asynchronous, gpu-aware communication library opti-
mized for large-scale training of deep neural networks on hpc systems. In: 2018
IEEE/ACM Machine Learning in HPC Environments (MLHPC). pp. 1–13 (2018).
https://doi.org/10.1109/MLHPC.2018.8638639

11. Frostig, R., Johnson, M., Leary, C.: Compiling machine learning pro-
grams via high-level tracing. In: SysML Conference 2018 (2018),
https://mlsys.org/Conferences/doc/2018/146.pdf

12. Ghemawat, S., Grandl, R., Petrovic, S., Whittaker, M., Patel, P., Posva,
I., Vahdat, A.: Towards modern development of cloud applications. In:
Proceedings of the 19th Workshop on Hot Topics in Operating Sys-
tems. p. 110–117. HOTOS ’23, Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3593856.3595909,
https://doi.org/10.1145/3593856.3595909

13. Godoy, W.F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J.,
Davis, P., Choi, J., Germaschewski, K., Huck, K., Huebl, A., Kim, M., Kress,
J., Kurc, T., Liu, Q., Logan, J., Mehta, K., Ostrouchov, G., Parashar, M.,
Poeschel, F., Pugmire, D., Suchyta, E., Takahashi, K., Thompson, N., Tsut-
sumi, S., Wan, L., Wolf, M., Wu, K., Klasky, S.: Adios 2: The adaptable input
output system. a framework for high-performance data management. SoftwareX
12, 100561 (2020). https://doi.org/https://doi.org/10.1016/j.softx.2020.100561,
https://www.sciencedirect.com/science/article/pii/S2352711019302560

14. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Sixth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
6th edn. (2017)

15. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concur-
rent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (jul 1990).
https://doi.org/10.1145/78969.78972, https://doi.org/10.1145/78969.78972



18 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

16. for High Performance Computing (ETP4HPC), T.E.T.P.:
Strategic research agenda for hpc in europe (2022),
https://www.etp4hpc.eu/pujades/files/ETP4HPC-SRA5_2022_web.pdf

17. Hu, C., Wang, C., Wang, S., Sun, N., Bao, Y., Zhao, J., Kashyap, S.,
Zuo, P., Chen, X., Xu, L., Zhang, Q., Feng, H., Shan, Y.: Skadi: Build-
ing a distributed runtime for data systems in disaggregated data cen-
ters. In: Proceedings of the 19th Workshop on Hot Topics in Operat-
ing Systems. p. 94–102. HOTOS ’23, Association for Computing Machin-
ery, New York, NY, USA (2023). https://doi.org/10.1145/3593856.3595897,
https://doi.org/10.1145/3593856.3595897

18. Kirk, D.: Nvidia cuda software and gpu parallel computing architec-
ture. In: Proceedings of the 6th International Symposium on Memory
Management. p. 103–104. ISMM ’07, Association for Computing Machin-
ery, New York, NY, USA (2007). https://doi.org/10.1145/1296907.1296909,
https://doi.org/10.1145/1296907.1296909

19. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (may 1994). https://doi.org/10.1145/177492.177726

20. Lee, C.S.T.: DISTRIBUTED PROCEDURE CALL. Ph.D. thesis, Stanford Uni-
versity (June 2021), https://web.stanford.edu/ ouster/cgi-bin/papers/LeePhD.pdf

21. Lerner, A., Alonso, G.: Data flow architectures for data processing on modern hard-
ware. In: Proceedings of the IEEE International Conference on Data Engineering
(ICDE) (May 2024), presented at the Data Engineering Future Technologies Track

22. Ma, S., Ma, T., Chen, K., Wu, Y.: A survey of storage systems in the
rdma era. IEEE Trans. Parallel Distrib. Syst. 33(12), 4395–4409 (dec 2022).
https://doi.org/10.1109/TPDS.2022.3188656

23. Magalhaes, A., Monteiro, J.M., Brayner, A.: Main memory database recovery: A
survey 54(2) (mar 2021). https://doi.org/10.1145/3442197

24. Marcu, O.C.: KerA: A Unified Ingestion and Storage System for Scalable Big
Data Processing. Theses, INSA Rennes (Dec 2018), https://theses.hal.science/tel-
01972280

25. Marcu, O.C., Bouvry, P.: In support of push-based streaming for the computing
continuum. In: 15th Asian Conference on Intelligent Information and Database
Systems. Phuket, Thailand (Jul 2023)

26. Marcu, O.C., Costan, A., Antoniu, G., Pérez-Hernández, M., Nicolae, B., Tudoran,
R., Bortoli, S.: Kera: Scalable data ingestion for stream processing. In: 2018 IEEE
38th ICDCS. pp. 1480–1485. IEEE (2018)

27. Marcu, O.C., Costan, A., Nicolae, B., Antoniu, G.: Virtual Log-Structured Storage
for High-Performance Streaming. In: Cluster 2021 - IEEE International Conference
on Cluster Computing. pp. 1–11. Portland / Virtual, United States (Sep 2021)

28. Maurya, A., Underwood, R., Rafique, M.M., Cappello, F., Nicolae,
B.: DataStates-LLM: Lazy Asynchronous Checkpointing for Large Lan-
guage Models. In: HPDC’24: 33nd International Symposium on High-
Performance Parallel and Distributed Computing. Pisa (IT), Italy (Jun 2024).
https://doi.org/10.1145/3625549.3658685, https://hal.science/hal-04614247

29. Nicolae, B.: DataStates: Towards Lightweight Data Models for Deep Learning.
In: SMC’20: The 2020 Smoky Mountains Computational Sciences and Engi-
neering Conference. Nashville (virtual conference), United States (Aug 2020),
https://hal.science/hal-02941295

30. Ongaro, D., Rumble, S.M., Stutsman, R., Ousterhout, J., Rosenblum, M.: Fast
crash recovery in ramcloud. In: Proceedings of the Twenty-Third ACM Symposium



DCRuntime: Toward Efficiently Sharing CPU-GPU Architectures 19

on Operating Systems Principles. p. 29–41. SOSP ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2043556.2043560,
https://doi.org/10.1145/2043556.2043560

31. Povzner, A.e.a.: Kora: A cloud-native event stream-
ing platform for kafka. Proc. VLDB Endow. 16(12),
3822–3834 (aug 2023). https://doi.org/10.14778/3611540.3611567,
https://doi.org/10.14778/3611540.3611567

32. Rumble, S.M., Kejriwal, A., Ousterhout, J.: Log-structured memory for dram-
based storage. In: Proceedings of the 12th USENIX FAST. p. 1–16. FAST’14,
USENIX Association, USA (2014)

33. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B.,
Hwu, W.m.W.: Optimization principles and application performance eval-
uation of a multithreaded gpu using cuda. In: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming. p. 73–82. PPoPP ’08, Association for Computing Machin-
ery, New York, NY, USA (2008). https://doi.org/10.1145/1345206.1345220,
https://doi.org/10.1145/1345206.1345220

34. Strati, F., Ma, X., Klimovic, A.: Orion: Interference-aware, fine-grained gpu shar-
ing for ml applications. In: Proceedings of the Nineteenth European Conference
on Computer Systems. p. 1075–1092. EuroSys ’24, Association for Computing Ma-
chinery, New York, NY, USA (2024). https://doi.org/10.1145/3627703.3629578,
https://doi.org/10.1145/3627703.3629578

35. Wang, G.e.a.: Consistency and completeness: Rethinking distributed stream pro-
cessing in apache kafka. In: Proceedings of the 2021 International Conference on
Management of Data. p. 2602–2613. SIGMOD ’21, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3448016.3457556

36. Wang, S., Hindman, B., Stoica, I.: In reference to rpc: it’s time to add dis-
tributed memory. In: Proceedings of the Workshop on Hot Topics in Op-
erating Systems. p. 191–198. HotOS ’21, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3458336.3465302,
https://doi.org/10.1145/3458336.3465302

37. Wang, S., Liang, E., Oakes, E., Hindman, B., Luan, F.S., Cheng, A., Sto-
ica, I.: Ownership: A distributed futures system for Fine-Grained tasks.
In: 18th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 21). pp. 671–686. USENIX Association (Apr 2021),
https://www.usenix.org/conference/nsdi21/presentation/cheng

38. Xue, Y., Liu, Y., Nai, L., Huang, J.: V10: Hardware-assisted npu
multi-tenancy for improved resource utilization and fairness. In: Pro-
ceedings of the 50th Annual International Symposium on Com-
puter Architecture. ISCA ’23, Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3579371.3589059,
https://doi.org/10.1145/3579371.3589059

39. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing. p. 10. HotCloud’10, USENIX Association, USA
(2010)

40. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Dis-
cretized streams: Fault-tolerant streaming computation at scale. In: Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. p. 423–438. SOSP ’13, Association for Computing Machin-



20 Ovidiu-Cristian Marcu, Grégoire Danoy, and Pascal Bouvry

ery, New York, NY, USA (2013). https://doi.org/10.1145/2517349.2522737,
https://doi.org/10.1145/2517349.2522737

41. Zou, J., Iyengar, A., Jermaine, C.: Pangea: Monolithic dis-
tributed storage for data analytics. Proc. VLDB Endow. 12(6),
681–694 (feb 2019). https://doi.org/10.14778/3311880.3311885,
https://doi.org/10.14778/3311880.3311885


