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Abstract
Predicting affective and cognitive states through brain activity
can enhance user experience, particularly in adaptive games that
need to adjust difficulty according to the user’s mood as gameplay
progresses. While previous studies have focused on isolated appli-
cations of brain signals, integrating multiple brain-related features
remains a challenge. We present an adaptive Brain-Computer Inter-
face (BCI) game that processes electroencephalogram (EEG) signals
in real-time, dynamically adjusting the difficulty and environment
of the game based on detected mental fatigue, with blink activity
serving as a control mechanism. Our preliminary results demon-
strate an effective integration of multimodal biofeedback, providing
valuable information on the usability of EEG for adaptive games.

CCS Concepts
•Hardware→Biology-related information processing; •Human-
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1 Introduction
Adaptive systems play an important role in improving user expe-
riences by responding to real-time changes in cognitive and emo-
tional states [16, 23]. With Brain-Computer Interfacing (BCI), such
systems can leverage neural signals to tailor interactions, providing
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a personalized and engaging user experience [2, 15, 29, 35]. Elec-
troencephalography (EEG), a noninvasive method for measuring
brain activity, is a powerful tool for assessing user mental states,
including cognitive load, fatigue, and affective responses [3, 4, 33].

We present an adaptive BCI game designed to dynamically ad-
just its difficulty and environment based on real-time EEG signals.
The system integrates cognitive load and mental fatigue analysis
with blink detection as a control mechanism. Unlike traditional
games that rely solely on performance-based metrics for difficulty
adjustment [12, 17], our proposed system incorporates neurophysi-
ological data to provide a more nuanced understanding of the user’s
mental state, allowing for more effective adaptations.

The concept of adaptive games has already been explored in the
research literature [1, 18, 21, 28, 30, 31], with applications ranging
from dynamic difficulty adjustment [9, 26] to personalized learn-
ing environments [25]. Previous studies have demonstrated task-
specific adaptations using EEG signals [5, 7, 10, 12, 18, 20]. However,
these approaches often focus on isolated dimensions, such as min-
imizing cognitive load. In contrast, our game integrates multiple
neurophysiological features to create a holistic adaptive framework
that supports both the prediction of affective state and the control
of active gameplay.

2 System Description
Our BCI game, based on the classic Chrome browser’s “Dinosaur
Game” [27], is designed to assess player performance and cognitive
load using EEG signals. The player controls a dinosaur character
by blinking their eyes, aiming to clear obstacles and reach a pre-
determined score of 50 points, following insights from previous
work [14, 27].

2.1 Game Interface
The game interface, as illustrated in Figure 1a, incorporates the
following elements. (1) Score: represents user performance and is
calculated based on the number of successful jumps over obstacles.
For each cleared obstacle, the player receives a point. (2) Time:
indicates how long has passed since the start of the game. (3) Diffi-
culty: indicates the current difficulty level. (4) Progress bar: shows
how close the player is to completing the game. (5) Background
object: passes through the screen from right to left and serves as a
distraction. (6) High obstacles: are represented by a bird (or group
of birds) flying over the character. (7) Red obstacles: the player
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(a) Game screen

(b) Backgrounds

Figure 1: Annotated screenshot of the game (a) and back-
ground types (b).

must stay on the ground to avoid high obstacles and jump over
low obstacles. (8) Player character: represented by a dinosaur,
the only action it can perform is jumping at a predefined height of
218 px (considering that the screen is 700 px high and the ground
level is at a height of 250 px). (9) Low obstacles: are represented
by one or multiple cacti that approach the player at the character’s
running height. (10) Green obstacles: need to be passed through
and not avoided.

2.2 Game Difficulty Levels and Adaptation
The BCI game is played in three difficulty levels: Easy, Medium, and
Hard. In the Easy level, obstacles move slowly, are narrow, and
appear less frequently, giving players ample time to react. At the
Medium level, obstacles increase in speed and width, presenting
a moderate challenge. In the Hard level, obstacles become signifi-
cantly faster, wider, and more frequent, making the game highly
challenging.

The game operates in two versions: non-adaptive and adaptive,
each adjusting the difficulty in different ways. In the non-adaptive
version, difficulty increases based solely on the player’s score. The
game adjusts the difficulty when the player reaches 33% and 66% of
the target score, adding more obstacles and increasing their speed.
There is no consideration of cognitive load in this version, and the
difficulty progression is predictable, based only on the score.

The difficulty level in the adaptive version is adjusted based on
both the player’s success rate and cognitive load, with these factors

(a) EEG channels

(b) Blink extraction

Figure 2: EEG channel locations (a) and extracted eye blink
data (b) from an EEG signal.

considered concurrently to ensure balanced engagement. After the
player has encountered ten low obstacles, the game calculates their
success rate for the last 10 obstacles. If the success rate is 70% or
higher, the difficulty increases, provided the player is not already
at the highest difficulty. If the success rate is 40% or lower, the
difficulty decreases, provided the player is not already at the lowest
difficulty. If the success rate is between 50% and 60%, the difficulty
remains unchanged. These thresholds were derived from pilot data
analysis, where a 70% success rate indicated sufficient proficiency to
increase difficulty without causing frustration, while the 40% lower
bound prevented excessive failure and disengagement. The 50–60%
range was identified as a balanced challenge, ensuring sustained
engagement without unnecessary difficulty shifts.

2.2.1 Cognitive Load and Mental Fatigue Monitoring. Cognitive
load is continuously monitored using the Theta-Alpha Ratio (TAR).
If a significant change in trend or saturation in TAR is detected,
the game adjusts the difficulty level to maintain optimal engage-
ment (see Section 3). Furthermore, mental fatigue is continuously
monitored using the frontal beta power, using Wavelet Packet De-
composition (WPD). If a significant increase inWPD is detected, the
game alters the background color as a visual feedback mechanism
to alert the player (Figure 1b). This background color change helps
to reduce monotony, improves focus, and supports the player in
maintaining a balanced cognitive load and mental fatigue.
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2.3 Signal Processing
EEG data were acquired using the Bitbrain Diadem 12-channel
EEG device (Figure 2a) with a sampling rate of 256Hz. A 50Hz
notch filter was applied to remove powerline interference from
the acquired EEG data. The eye blinks, cognitive load and mental
fatigue features are derived from the 12-channel EEG data and they
are extracted in real time during gameplay using two buffers: a
0.5-second buffer for eye blinks and a 2-second buffer for cognitive
load and mental fatigue. These buffers are continuously updated,
allowing for real-time adaptation and control based on feature
changes [11, 34]. Eye Blink Extraction. Eye blinks are detected
using the FP1 EEG channel. The raw data is down-sampled to 32
Hz, and a third-order Butterworth FIR band-pass filter (0.5 to 10 Hz)
is applied to smooth the signal. To eliminate gradual trends, the
discrete difference of the filtered data is computed [8]. Voluntary eye
blinks are identified by detecting peaks in the signal and applying
a threshold set individually for each participant; see Figure 2b.
Cognitive Load Estimation. As explained earlier, cognitive load
is measured using TAR [22], calculated from EEG data recorded
from the F3, F4, P3, and P4 channels. The data is band-pass filtered
between 0.5 and 35 Hz, followed by a Fast Fourier Transform (FFT)
to compute the TAR.
Mental Fatigue Estimation.As explained earlier, mental fatigue is
assessed by analyzing frontal beta power viaWPD, with Daubechies
10 wavelet (db10) as the mother wavelet [24, 32]. The EEG data,
filtered between 0.5 and 45Hz, is decomposed using a 7-level WPD.
From the Wavelet Packet Coefficients (WPC), the Wavelet Packet
Energy (WPE) is computed across frequency bands, with a specific
focus on relative beta energy from the frontal channels (F3, F4).

3 Evaluation
We recruited twenty-two participants (5 F, 17M) with an average
age of 26.23 years. Ten participants were pilot users, from whom
we analyzed their data to understand the challenge of real-time
adaptation based on cognitive load and mental fatigue. Based on
their data, we fine-tuned the logic of the adaptive BCI game and
subsequently tested it with the remaining 12 participants. There
were no specific inclusion criteria for participating in the study. The
study was approved by the Ethics Review Panel of the University
of Luxembourg, under application ID ERP 22-071.

As a baseline condition, we considered the non-adaptive ver-
sion of the game. Each participant played both the adaptive and
non-adaptive versions, with the order of both conditions counter-
balanced (Latin square design).

Figure 3a illustrates the behavior of the best performing par-
ticipant in adaptive gameplay. The pastel green, yellow, and red
areas represent changes in the difficulty of the game. As the game
progresses, the overall score follows a linear curve, as expected, and
the TAR also follows a similar linear trend, indicating controlled
gameplay with focused attention and concentration. The alloca-
tion of cognitive load resources in the brain remains linear as the
difficulty level increases. Figure 3b illustrates the behavior of the
participant with the poorest performance in adaptive gameplay.
Their score exhibits an oscillatory pattern and TAR is not linear.
When the score enters a decaying phase, and the TAR fluctuates
and exhibits a non-linear pattern, the difficulty level is decreased by

(a) Best gameplay performance

(b) Worst gameplay performance

(c) NASA-TLX scores

Figure 3: Examples of best (a) and worst (b) gameplays, to-
gether with NASA-TLX scores (c). Asterisks denote statisti-
cally significant differences.

one step. Therefore, the adaptive version helps the user maintain
performance and reach the target score by dynamically adjusting
the difficulty level based on their cognitive load.

WPD remains steady when the participant is not fatigued. How-
ever, deviations from the mean and fluctuations in frontal beta
power indicate the onset of mental fatigue. To mitigate visual sat-
uration caused by prolonged exposure to the same background,
the game changes the background color whenever the frontal beta
power deviates by more than twice the standard deviation.

After each gameplay session (adaptive and non-adaptive), par-
ticipants completed the NASA-TLX questionnaire [6, 13]. A paired
𝑡-test with Bonferroni correction was performed to assess statistical
significance. As shown in Figure 3c, physical and mental demand
were similar between the two game versions, whereas temporal
demand, effort to finish the game, and frustration were higher for
the non-adaptive version. In contrast, performance was higher for
the adaptive version (this TLX dimension is measured in opposite
direction). In sum, users performed better in the adaptive version.
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4 Limitations and Future Work
Our limited sample size precludes generalizability but demonstrates
the feasibility of our approach for cognitive state monitoring. Fu-
ture work will scale up our evaluation and test different gaming
environments. On the other hand, assuming a linear relationship
between TAR and cognitive load may be simplistic. Future work
should explore non-linear relationships and alternative EEG fea-
tures, such as beta-band activity and alpha asymmetry. Finally,
incorporating multimodal approaches, like combining EEG with
eye-tracking, could further improve cognitive state estimation and
adaptive systems, as shown in previous studies [19].

5 Conclusion
We have described the design, implementation, and evaluation of
an adaptive BCI game that integrates cognitive load and mental
fatigue detection with blink activity as input control. Our game
demonstrates the potential of EEG-driven systems to enhance the
user experience by adjusting game difficulty and environment in
real-time. Our research highlights the viability of using biofeedback
to create more user-centered interfaces, paving the way for future
applications in both gaming and mental well-being enhancement.
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