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Abstract

The role of inflammation and immune reactions in Noncommunicable diseases (NCD) remains
a critical area of research. Most NCDs are complex and often share common early clinical
phenotypes despite the underlying molecular behavior. We aim to i) identify biomarkers that
drive the clinical phenotype development, ii) characterize immune interaction profiles, and

iii) model systemic inflammatory and immune-related responses.

Noteworthy, we focus on three independent modalities of disease complexity. Our project
integrates heterogeneous types of datasets (omics / non-omics datasets) to investigate inflam-
matory and immune-related pathways. We use Single-cell RNA sequencing (scRNA-seq) to
understand pathways driven by fibroblast stratification in cancer. Further, we implement
a network-based modeling approach to understand allergy reaction profiles. We analyze
established genetic predispositions to explore their impacts on the associated inflammatory

disruptions in the gut.

Our results help to advance the understanding of inflammatory and immune-related
mechanisms. In the first modality, we identify iCAF’s WNT5A-related receptors to specific
epithelial stem cells. As for the second modality, we propose correlated immune cell and
cytokines signatures that could drive the allergy responses. The third modality foresees
characterizing genetic and food-related immune profiles tailored to the food habits of the

population.
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Introduction






Chapter 1

Biological complexity: Insights from

multi-omics integration

This introduction aims to assemble essential concepts for building a comprehensive under-
standing of the bioinformatic approaches developed to explore and analyze organisms and
the complexity of their molecular pathways and interactions. It poses basis for understanding
how inflammation, a complex biological response, connects diverse molecular and cellular
factors to Noncommunicable diseases (NCD), as outlined in figure 1.1.

The background section introduces the foundational concepts of biological information.
It begins with a discussion on how biological signatures rule physiological complexity in
section 1.1. Building upon this, the narrative transitions into describing how omics technolo-
gies enable us to study individual biological dimensions in section 1.2. Finally, the concept of
Multi-Omics (MO) is presented as a holistic framework that captures the interplay of various
biological layers in section 1.3.

The figure 1.1 serves as a visual summary of the key biological factors and parameters
influencing inflammation. Fixed factors, such as genetics and epigenetics, combine with
variable environmental and lifestyle factors, leading to inflammatory responses. These
responses, characterized at the cellular and systemic levels, have significant implications in
the context of acute and chronic conditions. The progression from inflammation to NCD (e.g.
cardiovascular diseases, cancer, diabetes) emphasizes the translational relevance of the thesis
work.

The second part of the introduction connects the theory of omics technologies to their
practical applications in modern medicine. The section 2.1 outlines the role of translational re-

search in bridging scientific discoveries with clinical applications, highlighting the importance



of converting molecular insights into actionable patient care strategies.

The section 2.2 introduces the i2TRON translational research project, which investigates
inflammation in NCD context, as shown in figure 1.1. The project underscores the importance
of integrating fixed and variable factors in understanding the systemic effects of inflammation.
The exploration of cytokines, immune cell pathways, and systemic responses is the backbone
of this thesis, aligning with the broader research goal of identifying actionable bio-signatures

for patient stratification.

1.1 Biological signatures reveal complexity in Life sci-

ences

Recent advances in omics technologies have fundamentally transformed the field of molecular
biology, providing unprecedented insights into cellular processes and complex biological
systems. While breakthrough technologies, such as CRISPR-Cas9, have revolutionized fields
from immunotherapy to cancer research, significant challenges persist, including off-target
effects and the need for precise functional annotations. Understanding these complex biologi-
cal systems requires integrated approaches that elucidate gene functions and their regulatory

mechanisms within broader molecular networks.

This section examines the evolution of omics technologies, their applications, and the
computational frameworks addressing their inherent challenges. Particular emphasis is placed
on gene expression analysis, systems biology approaches, and network-based methodologies
to provide a comprehensive understanding of cellular functions and their implications for

research and medicine.

1.1.1 Genomics provides foundation for advances research

The genome, comprising complete Deoxyribonucleic acid (DNA) sequence, contains all the
information necessary for an organism to develop and function. Located in the cell nucleus
and organized into chromosomes. Genes, discrete sections of DNA, codes for Ribonucleic
acid (RNA) molecules that facilitate protein synthesis outside the nucleus. Understanding the
genome has become essential for explaining how sequence defect can lead to disruptions in

biological pathways and disease manifestations.
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Figure 1.1 Inflammation as a central hub linking biological, environmental, and lifestyle
factors to Noncommunicable diseases. The diagram illustrates how fixed (e.g. genetics, epigenetics)
and variable (e.g. diet, microbiome, pollutants) factors influence inflammatory pathways at the cellular
and systemic levels. Acute and chronic inflammation drive distinct pathological outcomes, with
chronic inflammation contributing to NCD development (e.g. cardiovascular disease, cancer, diabetes).
Targeted interventions, such as dietary modifications (Dietary fibers) and allergy management, can

modulate these inflammatory processes.
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Genome sequencing encompasses methods to capture comprehensive DNA information,
of an organism, at a specific time point. This capability has shifted research toward data-driven
approaches within the fields of “bioinformatics”. Whole Genome Sequencing (WGS), a widely
adopted method, aims to determine “precise” sequence of nucleic bases (A, T, G, C) by detecting
single nucleotide variants, insertions or deletions, copy number changes, and large structural
variants. This technology has proven particularly valuable in identifying genetic factors
driving diseases, as evidenced by a 62.5% diagnostic rate in previously undiagnosed patients
and the discovery of potentially pathogenic variants were discovered for mitochondrial disease
(IGF2/INS-IGF2) and Klippel-Trenaunay-Weber syndrome (FBN3) [1]. To understand current
challenges and gap, it is essential to start from the historical first revolution in the field of

genome sequencing.

Sanger sequencing sets the Gold standard for genomics studies

First generation sequencing is exemplified by the Sanger method, developed in the 1970s by
Federick Sanger. This pioneering technique, also known as the chain termination method,
involves the selective incorporation of chain-terminating dideoxynucleotides during DNA
replication, yielding DNA fragments of various lengths. These fragments undergo separation
by gel electrophoresis and subsequent analysis deduce the DNA sequence [2]. The Human
Genome Project (HGP) [3], operational from 1990 and 2003, represented a groundbreaking
global scientific initiative that addressed significant challenges, such as characterizing the
high number of genes in the human genome (= 20000 coding genes) and more than 3 billion
nucleotides. The project was achieved completion ahead of the initial schedule, successfully
delivering the first first human genome sequence covering 99% of gene-containing regions
with 99.99% accuracy. While the HGP relied on the Sanger sequencing method to determine
relatively small fragment, considerable efforts focused on overlapping these fragments to
create longer sequences and eventually reconstruct each chromosomes.

The scientific community recognized that to fully leverage the acquired knowledge in the
future, more efficient, cheaper and more convenient methods needed to be developed. This
realization catalyzed the development of next-generation sequencing technologies, which

revolutionized the field of genomics.

Emerging technologies in sequencing offers new opportunities
Second and third generation sequencing technologies have transformed genomics research

12



by drastically improving speed and reducing costs [4]. Second generation sequencing, also
known as Next generation sequencing (NGS) enables parallel sequencing of millions of
DNA fragments (short reads from 100 to 300 bp) simultaneously. The field is dominated by
platforms such as Illumina, Ion Torrent and Roche 454 pyrosequencing, facilitating high-
throughput sequencing of genomes, transcriptomes and metagenomes [5]. However, NGS
faces certain limitations, such as Polymerase Chain Reaction (PCR) amplification bias and
difficulty sequencing repetitive regions due to short read lengths [6]. To address these
challenges, Third generation sequencing (TGS) technologies, such as Pacbio SMRT sequencing
and Oxford Nanopore sequencing, have emerged, capable of generating much longer reads,
often over 10kb in length, without the need of PCR amplification [6]. TGS offers several
advantages over NGS, including enhanced capability in resolving complex genomic regions,
identifying structural variations and generating high-quality de novo genome assemblies.
The selection of appropriate technologies depends on project-specific requirements, such
as the scale, type of data needed, error tolerance, and available budget [7]. In a recent study
focused on Thalassemia applications [8], researchers determined that TGS currently has higher
error rates and cost compared to NGS, which is useful for variant calling. Consequently, TGS
is more appropriate for studying variants on homologous genes and CNV calling, while NGS

remains the more cost effective solutions for large sample volumes.

Genomics applications across diverse research domains

Modern sequencing technologies have become indispensable tools in various medical appli-
cations [9]. In the context of clinical diagnostics, these technologies facilitate rare disorder
evaluation by enabling accurate diagnosis and informing therapeutic strategies. Additionally,
they prove crucial in understanding neoplasms, which result from abnormal tissue growth.
These conditions frequently present genetic alterations, and their identification can guide
Personalized medicine (PM) and treatment plans. Through comprehensive genetic analysis of
a neoplasm, clinicians can implement effective targeted therapies, thereby enhancing patient
prognosis. Furthermore, these technologies support prenatal screening by evaluating chro-
mosomal aneuploidies and other genetic disorders, providing vital information for informed
decision-making and early intervention when necessary.

Two predominant approaches have emerged in clinical genomics: exome sequencing and
multi-gene panel. The selection between these methods depends on various factor, including

clinical indication, suspected genetic aetiology and the available resources:

13



Exome sequencing encompasses the analysis of protein-coding regions, named exons,
providing a cost-effective and a targeted approach for identifying clinically relevant

genetic alterations.

Multi gene panels involve the parallel sequencing of a predefined set of genes, offering

greater efficiency and focus compared to whole exome approaches.

For example, if a specific genetic disorder is suspected, a multi-gene panel targeting the
genes associated with that disorder may be the more appropriate approach. On the other
hand, if the genetic cause is unknown or multiple genetic disorders are suspected, exome
sequencing may be a more comprehensive approach.

The application of sequencing technologies has significantly advanced our understanding
of evolutionary biology, particularly in elucidating genetic relationships between organisms
at both inter- and intra-species levels. At the inter-species level, substantial progress has
been made in phylogenetics, notably in the identification of speciation genes and comparative
analysis of orthologous genes across species. This has enhanced our ability to reconstruct
evolutionary histories and understand the mechanisms driving species divergence [10, 11].

At the intra-species level, these technologies enable temporal analyses of genetic variation.
At a given time point, population genetics approaches can reveal patterns of genetic diversity
and structure within species. Over time, these analyses extend to studying genome evolution,
developmental biology, and population-level epidemiology [12]. In microbial systems, this
temporal dimension is particularly informative due to their rapid generation times and
adaptability.

Microbial applications expand to clinical, veterinary, food industry, and environmental
applications. In the context of the antibiotic resistance crisis, microbial genomics has become
an essential tool for investigating pathogenic mechanisms, tracking genetic drift, and identi-
fying novel drug targets [13]. Recent microbiome studies have revealed crucial host-microbe
interactions, particularly in the gut-brain axis, with significant implications for understanding

neurodegenerative disorders [14].

Overcoming technical challenges in sequencing

Omics sciences represent a translational field that bridges molecular biology, computational
methods, and statistical analysis. This integration faces multiple technical challenges across

different domains that need to be addressed systematically.

14



The biological hardware challenges primarily comes from the physical processes of genetic
material manipulation. Sequencing techniques present significant challenges in terms of
accuracy and data management. Sequencing errors can occur due to incorrect base calls
in specific sequence contexts, such as homopolymer runs or GC-rich regions, potentially
leading to false positive variant calls [15]. Short sequencing reads often encounter mapping
ambiguities in repetitive regions of the reference genome, complicating the accurate calling
of variants in these challenging regions. Additionally, biases in sequencing coverage can
arise from factors such as GC content and PCR amplification during library preparation,

significantly impacting read depth and affecting variant calling [16].

The biological software challenges involve converting raw molecular signals into orga-
nized digital information. The distinction between true genetic variants from sequencing
errors remains a challenge, particularly for rare variants [17]. In clinical settings, calling
somatic mutations in oncology, remains challenging due to tumor heterogeneity, normal
cell contamination and a diverse range of variant allele frequencies. Implementation of best
practices, including multiple biopsies and paired tumor-normal designs, can substantially

improve accuracy [18].

The computational software challenges involve developing and optimizing statistical
methods and algorithms for data analysis. These include addressing the computational
complexity of variant calling in repetitive regions, managing mapping ambiguities with short-
read data, and optimizing analysis pipelines for different variant types, from Single-nucleotide

polymorphism (SNP) to complex structural variants [19].

The computational hardware challenges center around the infrastructure required for
processing and storing datasets. Several “disciplines” generate vast amounts of data, including
astronomy research, social media platforms (including Youtube and Twitter) and Biology re-
search [20]. The exponential growth in data volume poses massive storage and computational
challenges, particularly in the context of metagenomics and Genome-Wide Association Study
(GWAS). To illustrate, a single human genome comprises more than 3 billion of nucleotides,
requiring approximately 3 gigabytes of storage [21]. Current projections by the International
Data Corporation indicate that the worldwide need for data storage will escalate to 175

zettabytes as we approach 2025 [22].

The ability to decode the genetic code of an organism opens new avenue for understanding
its biology, from 3D structure and protein binding to precision medicine, through compre-

hensive examination of the relationships between mutations, phenotypes, and genotypes.
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The field of bioinformatics has evolved to extract meaningful insights from this data, driven
by advancements in both physical technologies (high-performance computing, nanopore
sequencing, cryo-eletron microscopy) and computational approaches (from classical and

Bayesian statistics to a large range of machine learning techniques).

1.1.2 Functional analysis drives insights from Big Data

The vast quantity of genomic data generated by modern sequencing studies has created an
imperative need to understand gene roles of theses genes and their expression profiles under
varying conditions. This section explores how functional analysis has evolved to meet these

challenges and its crucial role in current research environment.

Linking functional analysis to biomedical applications

The relationship between genome and phenotype exhibits remarkable complexity and mul-
tifaceted interactions. While the genome plays a crucial role in determining the phenome
(the complete set of observable characteristics expressed by an organism), the relationship
is not straightforward, as multiple processes and environmental factors influence the phe-
notypic expression. For instance, studying differences and predisposition in sports requires
measuring different omics data to better understand the effects from the micro to the macro
scale [23]. A gene’s function refers to the biological activities across multiple scales, from
molecular to cellular to organism level. Understanding this multi-level complexities is crucial

for elucidating disease mechanisms.

Historical context highlights the evolution of functional analysis

The foundations of functional analysis trace back to classical genetics, with (Mendel’s Laws)
formulating the principle of inheritance through his pioneering work with pea plants [24].
However, the field has since recognized that not all the genes comply with the strict con-
ditions of two allelic variants with discrete effects on trait and complete dominance. The
discipline evolved significantly in the 1900s with the development of the chromosome theory
of inheritance [25]. Modern understanding reveals that the relationship between genes and
functions is is vastly more intricate, and the field has evolved through advancements in genet-

ics, molecular biology, and gene editing technologies. Contemporary methods include DNA

16



transgenes approach, transgenes detection, gene expression assessment through transcription
levels measurement, and proteins expression detection. More on the following resource:

History of Transgenesis [26].

Bioinformatics approaches for functional analysis

Modern functional analysis use technologies for gene manipulation and study. Gene knockout
technologies aim to disable a specific gene, providing crucial insights into their roles in

organism development, physiology or pathology [27]. Several technologies have emerged:
RNAi Employs small RNA molecules to inhibit gene expression

Zinc Finger Nuclease (ZFNs) Engineered proteins designed to bind and cut specific DNA

locations, then disrupting gene’s function
Transcription Activator-Like Effector Nucleases (TALENs) similar than ZFN

CRISPR/Cas9 Currently the predominant method utilizing guide RNA molecules to direct

Cas9 protein for precise genetic modifications

These technologies have revolutionized various fields, such as developing immunotherapy
such as CAR T cell-based treatment [28]. However, significant challenges persist including
off-target effect [29], inefficiency of precise knock-in, or PAM restriction for CRISPR-CAS9
[28]. While functional analysis provides important biological insights, it is recognized that
biological functions rely on complex molecular systems, necessitating integration with gene

expression analysis for comprehensive understanding.

1.1.3 Gene expression analysis explains cellular functions

Gene expression analysis facilitates understanding of the transcriptome, encompassing the set
of RNA transcripts produced under specific conditions. This approach enables investigation of
gene expression profiles that differ between individuals. Researchers can identify patterns and
signatures while studying the transcriptional activity of genes in diseases, as demonstrated
in studies of pesticide exposure [30]. In response to varying conditions, genes may be up-
regulated or down-regulated. The identification of these Differentially expressed genes (DEG)

provides valuable insights into dysfunctional pathways, or disease mechanisms.
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Evolution of gene expression analysis techniques

The progression of expression analysis techniques represents a significant advancement in
molecular biology. Northern blots representing one of the earliest methods for RNA analysis,
involves separating RNA fragments based on their size using gel electrophoresis, transferring
them to a membrane, and detecting specific sequences using labeled DNA probes. While
this technique established fundamental principles, its low-throughput nature has led to its
replacement by more advanced methods.

The development of Reverse Transcription PCR (RT-PCR) marked a significant advance-
ment in the field [31]. This technique’s key lies in the amplification and quantification of
RNA through initial conversion to complementary DNA (cDNA). Further refinement led to
Real-time RT-PCR, which enables quantitative measurement of RNA through continuous
monitoring of the amplification process using fluorescent probes [32].

A paradigm shift occurred with the introduction of microarrays, which incorporate thou-
sands of DNA probes immobilized on a solid surface, enabling high-throughput parallel
analysis of gene expression [33]. The technique employs fluorescence-labeled cDNA hy-
bridization to the array, and the signal intensity correlates with the expression level. This
development represented a major advancements over the PCR-based methods by facilitating
genome-wide expression profiling.

In current research, RNA has largely replaced microarrays as the preferred method for
transcriptomics, involving direct sequencing of cDNA libraries for expression quantification.
A significant recent innovation is Single-cell RNA sequencing (scRNA-seq), which enables
expression levels measurement in individual cells rather than bulk samples, revealing cell
to cell heterogeneity and facilitating identification of rare cell types. This technological
advancement has proven instrumental in building cell atlases, studying development, and

characterizing complex tissues [34].

Resources and Databases for gene expression research

The filed of gene expression analysis is supported by several crucial developments in databases

and tools, particularly those essential for analyzing large-scale human genomics data.

« Gene Expression Omnibus (GEO): a public repository that archives microarray, next-

generation sequencing, and other high throughput functional genomics data [35].
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« Genotype-Tissue Expression (GETx): a large scale RNA sequencing study that accu-
mulated massive quantities of data across different human tissues and pathologies

[36].

« The Cancer Genome Atlas (TCGA): a cancer genomic program that “characterized over

20000 primary cancer and matched normal samples spanning 33 cancer types” [37].

« Expression Atlas (EMBL-EBI): provides information on “gene and protein expression
across species and biological conditions such as different tissues, cell types, develop-

mental stages and diseases” [38].

Transformative applications in research and medicine

Gene expression profiling in multicellular organisms facilitates the identification of co-
regulated genes sets and jointly up- or down- regulated, while also enabling the discovery of
essential housekeeping genes crucial for the organism function [39]. Comparative analysis
of developmental gene expression patterns between normal and abnormal states, such as in
Down syndrome [40], can elucidate genes and pathways potentially responsible for disorders
when miss-regulated.

Recent research in depressive disorder [41] has led to the identification of DEG related to
antidepressant treatment and response. Gene expression data has also demonstrated signifi-
cant utility in drug re-purposing and drug combination prediction, enabling the identification
of potential new application of existing drugs or synergistic drug combinations through anal-
ysis of complementary or opposing gene expression patterns [42]. Furthermore, microarray

data has proven valuable in drug toxicity prediction [43].

Challenges in interpreting gene expression data

The inherent complexity of gene expression data presents multiple analytical challenges.
A fundamental challenge lies in distinguishing between causative and reactive differences
in gene expression, i.e. specifically determining whether differential expression drives a
phenotype or merely responds to other factors. While methodological approaches such as
Likelihood Causality Model Selection (LCMS) have been proposed, they face limitations when
dealing with highly correlated genes or complex networks [44].
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Gene expression datasets frequently exhibit high levels of technical and biological
noise/variation, potentially obscuring true signals. While some strategies such as Random
Matrix Theory have been proposed, these approaches risk eliminating meaningful gene
relationships. Alternative methodologies like Knowledge Independent Network Construction
attempt to address noise by assessing each gene-gene pair independently, rather than applying

global threshold to entire gene sets [45].

The simultaneous measurement of thousands of genes requires rigorous multiple hy-
pothesis testing correction to effectively control false positive results and ensure statistical
relevance. The scientific community has adopted several methods to control significance,
including false discovery rate estimation, permutation testing and null hypothesis comparison
[46]. Enhanced confidence in significant gene targets can be achieved through integration
of results across multiple studies and datasets. An additional strategic approach involves
cross-referencing expression data with epigenetic information to develop a more holistic view

of gene regulation.

New approaches shaping gene expression studies

The emergence of advanced computational methods, particularly single-cell technologies with
RNA and genomics focus, has enabled profiling at the individual cell resolution, providing
unprecedented insights into cellular heterogeneity and states [47, 48]. The field of MO offers
the potential to leverage simultaneous measurement of multiple omics layers to investigate

these intricate interactions [49].

Real-time analysis platforms have evolved to meet these complex demands. Systems
such as Argonaut [50] and STAGEs [51] provide comprehensive integrated environments for
multiple aspects of analysis, including data management, Quality Control (QC), normalization,
statistical analysis, and visualization of gene expression and MO experiments. Notable
example include platforms like GENEASE [52], which facilitate integrated analysis across
multiple data types.

Machine Learning (ML) has emerged as a powerful approach in this domain, with models
such as Enformer [53] demonstrating superior accuracy in gene expression prediction com-
pared to previous approaches. Feature selection methods, exemplified by MRMR (Maximum
Relevance Minimum Redundancy), provide enhanced capabilities for differential expres-

sion analysis, identifying the most informative genes while minimizing redundancy [54].
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Additional algorithmic advances include HAPLEXD, which has improved gene expression
prediction from haplotype sequence, [55], while other ML approaches continue to enhance

prediction accuracy across various contexts [56].

1.1.4 Biological network databases expand to meet research needs

Biological network serve as sophisticated framework for modeling and understanding complex
cellular interactions and processes. Rather than examining pathways in isolation, network
approaches conceptualize biological systems as highly interconnected networks of interact-
ing components. From a mathematical perspective, biological networks are represented as
graphs, where nodes represent biological entities such as genes, proteins or metabolites, and
edges capture the interactions or relationships between them. This representation enables
the application of graph theory and network analysis [57] methods from mathematics and

computer science to elucidate the structure and dynamics of these networks.

Small-World properties define of biological networks

A fundamental characteristic of biological networks is their exhibition of the “small-world”
property [58], first described by Watts and Strogatz in 1998. This property manifests through
two key characteristics: a high clustering coefficient, indicating that nodes tend to form
tightly connected neighborhoods, and a low characteristic path length, demonstrating that
most nodes can be reached from every node through a small number of connections. Theses

features facilitate efficient communication between nodes while preserving modular structure.

Scale-Free topologies for understanding biological systems

Another fundamental characteristic, described by Barabasi and Albert in 1999, is the free scale
topology of biological networks [59]. This property is characterized by node degrees following
a power law distribution, where a few highly connected hub nodes maintain network cohesion

while most nodes maintain a limited number of connections.

Methods unraveling complexity in biological networks

The aforementioned properties enable computational analysis of large-scale biological net-
works. Key analytical approaches include the identification of important nodes based on

centrality measures such as degree, betweenness, closeness and eigenvector centrality [60].
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Additional methodologies focus on detecting functional modules and communities using
clustering methods [61], comparing networks through similarity and distance measures,
modeling network perturbations and robustness, and predicting links or interactions [62].
The scientific community has developed various tools for network visualization, topological
analysis and integration of omics datasets, with Cytoscape emerging as one of the most widely
adopted and versatile platforms. Several major categories of biological networks capture

different aspects of cellular interaction:

Metabolic networks represent the complete set of metabolic and physical processes that
determine the physiological and biochemical properties of a cell [63]. The nodes
represents metabolites such as carbohydrates, lipids, amino acids and nucleotides. The
edges are the chemical reactions representing the process between two metabolites
such as catalisation by an enzyme. Analysis of these networks can provide insights into
how selection acts on the metabolic pathways. Perturbations in conserved subsystems
of metabolic networks influence the functions of the entire network across different

species more strongly than other subsystems [64].

Protein-Protein Interaction networks represents the interactions between proteins, as
the nodes in a cell [65]. Their interactions are exclusively described as undirected edges,
and they are essential to most cellular processes. They tend to exhibit small-world
network properties, helping to identify functional modules. Analyzing them also helps
revealing protein functions, discover disease mechanisms and find potential new drug

targets [66].

Gene regulatory networks represent how genes would activate or repress each other’s
expression [67]. Genes are represented by nodes and the directed edges indicate
the regulatory interactions, with transcription factors as key players. They exhibit a
hierarchical scale-free topology, with few highly connected hub genes and many genes

with few connections.

Signaling networks represent how cells sens and reacts to their environment via cascades
of protein-protein interactions and post-translational modifications. Typically, they
integrate the above mentioned networks, nodes are proteins and metabolites and edges
are physical and regulatory interactions. They are characterized by their modularity

where they have functional modules such as Kinase cascades [68], feedback loops [69].
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Advancements in biological network databases

The field has witnessed significant advancement in computational tools and methodologies
designed to extract biological insights from network data [70]. Graph Neural Networks
(GNN) have emerged as powerful deep learning methods for graph-structured data. In the
context of Protein-protein interaction networks (PPI), GNNs facilitate tasks such as node
classification for protein function prediction and link prediction for novel PPIs identification
[71], employing methods including GraphSAGE and node2vec [62].

Notable developments include tool such as SWIM (switch miner), which enables identi-
fication of “switch genes” that may regulate major changes during biological transitions or
disease progression [72]. The extensive availability of biological network data hgas facilitated
investigation and prediction of protein function and drug interaction using Drug-Drug in-
teraction network (DDI) [62]. While current applications remain limited to specific datasets
such as TCGA, extensive development of network-based integrative MO approaches presents
promising opportunities for resolving complex disease [73].

To support network-based analyses, the scientific community has developed numerous
specialized databases, allowing for curation and storage of networks obtained from various

experimental sources [62]:

PPI databases STRING: Functional protein association networks, Human Protein Reference

Database (HPRD), IntAct, BioGRID.

Pathways databases KEGG: Molecular pathways and modules, Reactome, WikiPathways:

Community-curated.

Regulatory Network databases TRRUST: Transcriptional regulatory networks, miRTar-

Base: microRNA-target interactions.

Network analysis drives advances in systems biology applications

Network-based methodologies have demonstrated significant utility in prioritizing important
omics features and subnetworks associated with specific phenotypes or disease states, con-
tributing to the discovery of novel biomarkers and disease subtypes [74]. The integration
of networks representing different omics layers enables investigation of the interplay and

crosstalk between these layers. Advanced approaches, such as iOMICSPASS [75], incorporate
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prior knowledge and inference of causal regulatory relationships, facilitating identification of
potential molecular drivers of biological processes such as Transcription factors and target
genes.

MO data integration through network approaches enables capture of temporal and spatial
dynamics of biological systems, advancing understanding of the evolution of cellular states and
molecular mechanisms underlying physiological and disease processes. Networks approaches
provide and intuitive framework for visualizing and interpreting complex omics data by
aligning the experimental results with known and curated molecular interaction networks,
thereby generating mechanistic insights and hypotheses.

The research community has developed numerous specialized tools for various applica-
tions. GWAB tool enhances the detection of weak associations in GWAS data, while Netter
facilitates gene network inference. MetaNetVar provides sophisticated capabilities for ge-
nomic variant analysis, and MUFFINN specializes in identifying cancer genes from somatic
mutation data [70]. These methodological advances have yielded significant mechanistic in-
sights into diseases, as exemplified by MRNETSnapshot’s focus on WNT1-regulated network
in neurodegeneration, GENIE3’s identification of regulators in melanoma invasive cell states,

and GRNBoost2’s application in kidney fibrosis research [76].

Addressing challenges in shaping future systems biology

The field faces significant challenges in managing the heterogeneity and complexity of
generated data. Each data type presents unique characteristics [77] in term of scale, noise
levels, and missing values, complicating direct comparison and integration. Furthermore,
relationships between data layers exhibit intricate complexity due to sophisticated regulatory
mechanisms.

The dynamic nature of the biological networks present another fundamental challenge.
Current collected data represents an incomplete interactome, and most network capture only
static snapshots of inherently dynamic systems. Addressing these limitations requires the
development of more advanced computational models that integrate temporal and spatial
information, such as dynamic Bayesian networks and agent-based models.

Result interpretation and validation constitute significant challenges, particularly due to
the size and complexity of the networks, especially in MO data context where meaningful
pattern prove difficult to identify [78]. Moreover, experimental validation of predicted results

often requires substantial resources [79]. These challenges necessitate the development of
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more experimental validation strategies and enhanced visualization and exploration tools.

To address these challenges, researchers have proposed several strategic directions. The
development of more advanced computational methods for data integration and network
inference, utilizing deep learning and graph neural networks, shows promise in addressing
data heterogeneity and non-linear relationships between omics layers. Another promising
approach involves contextual modeling through the incorporation of prior knowledge into the
network models, potentially reducing false positive results and improving the interpretability
through tissue-specific or disease-specific network analysis.

Finally, the field would benefit from enhanced Collaborative Research initiatives that
bring together interdisciplinary expertise. By fostering collaboration between experimental
and computational biologists, along with for other field, we can accelerate the research and

unlock the full potential of the dataset to understand and treat complex diseases.

1.2 Omics approaches explore one dimension at a time

1.2.1 Omics as a gateway to molecular biology

The field of omics encompasses diverse biological disciplines focused on comprehensively
studying distinct molecular layers within an organism. These disciplines have evolved through
the implementation of high-throughput technologies, as previously discussed in section 1.1.
Each omics field systematically investigates a specific molecular layer, providing unique

insights into biological systems. The primary omics fields include:

Genomics As previously described, genomics investigates genes and the genome to elu-
cidate the relationships between genetic elements and their influence on phenotypic

expression.

Transcriptomics This fields examines the entire set of RNA molecules, including messenger-

RNA, ribosomal-RNA, transfer-RNA and other non-coding-RNAs.

Proteomics This domain investigates proteins to gain insights into their structure, function
and cellular interactions. The proteome represents the complete set of expressed

proteins at a specific time point.
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Metabolomics This filed conducts large-scale studies of small molecules, commonly referred
to as metabolites, within cells, or entire organisms. The metabolome encompasses the

set of metabolites present in a biological system.

Phenomics This discipline examines physical and biochemical traits of the organism, par-
ticularly focusing on their susceptibility to change due to genetic mutation and envi-

ronmental factors.

With continuous advancements in research methodologies and measurement technologies,
the omics landscape has expanded significantly, giving rise to numerous specialized fields.
The following sections will elaborate on specific omics approaches that are related to the

collaborative efforts this PhD project.

1.2.2 Addressing gene variant challenges at cohort scale

Genome-Wide Association Study (GWAS) represent a key methodology related of this PhD
project, with applications discussed in section 5.2. This powerful analytical approach sys-
tematically identifies genetic variants associated with specific traits or diseases across the
genome [80]. GWAS methodology typically involves genotyping numerous SNPs in a popula-
tion cohort and conducting statistical analysis to identify significant associations between
phenotypes of interest and genetic variants.

The typical GWAS workflow includes several critical stages: First, investigators carefully
select individuals with the disease and corresponding controls in “binary condition” [81].
This is followed by DNA isolation, genotyping and rigorous QC procedures. Subsequently,
researchers conduct statistical testing for associations between validated SNPs that meet QC
thresholds and are relevant to the outcome. The final phase requires replication of identi-
fied associations in independent populations and/or experimental validation of functional
implications.

GWAS has demonstrated remarkable success in identifying numerous genetic variants
associated with diverse human diseases and traits, providing crucial insights into the under-
lying biological pathways [80]. The outcomes of theses studies serve multiple applications,
including: estimating heritability, calculating genetic correlations, developing clinical risk pre-
dictions, informing drug development strategies, and inferring potential causal relationships

between risk factors and heath outcomes. GWAS offers several key advantages:
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Unbiased approach GWAS is a hypothesis-free approach, screening millions of genetic
variants without prior assumptions about traits associations. This methodology facili-
tates the discovery of novel associations that might have remained unexplored through

traditional hypothesis-driven research [82].

Gene and Pathway identification The approach helps in identifying genes and biological
pathways involved in complex diseases, thereby providing insights into the disease
mechanisms and potential drug targets, which ultimately enhances understanding of

underlying biological processes and therapeutic interventions possibilities [80].

Statistical Power through scale The substantial patient cohorts in modern GWAS studies
enable robust statistical power to detect associations between genetic variant and
phenotypes, facilitating the identification of smaller effect sizes and rare variants that

might be overlooked in limited studies [83].

Collaborative potential The filed benefits from large-scale collaboration and resource shar-
ing among researcher worldwide, facilitating the pooling of resources and expertise
to address complex research questions. Notable examples include the International
Genomics of Alzheimer’s Project (IGAP) and the Psychiatric Genomics Consortium

(PGC).

Clinical Application GWAS findings contribute to precision medicine through the devel-
opment of Polygenic risk score (PRS), which aggregate the effects of multiple genetic
variants to predict individual disease risk. These scores have demonstrated significant
potential in identifying high-risks individuals for various conditions, including coronary

artery disease and autoimmune diseases [84, 85].

GWAS and its limitations in genetic research

Despite its advantages, GWAS faces several significant challenges. The “missing heritability”
problem persists, as most SNPs demonstrate small effect on disease susceptibility, thereby
limiting improvements in risk prediction through genetic testing [86]. The challenge of
non-causal associations remains significant, as GWAS identifies associations that require

validation through fine mapping and functional studies to establish causations [87].
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A significant constraint lies in the fact that approximately 30 percents of GWAS associa-
tions occur in non-coding regions, complicating the interpretation of their relevance to the
trait of interest. Furthermore, functional consequences require validation through animal
models to gain insight into disease mechanisms [83]. However, the integration of GWAS with
other omics data, particularly epigenetic information, may provide additional insights.

The clinical application of PRS scores faces limitations due to population specificity, with
results often showing limited transferability across different populations [80]. This limitation
is particularly significant given that most GWAS have been conducted primarily in European

populations, restricting the generalization of findings to other ethnic groups.

1.2.3 scRNA-seq for transcriptome decoding

scRNA-seq represent a method for detecting and quantifying mRNA molecules at unprece-
dented resolution, enabling molecular analysis at the individual cell level. This advanced
technique provides granular insights into cellular responses, revealing heterogeneity that
would be masked in bulk RNA sequencing approaches [88]. The analytical framework for

scRNA-seq consists in three primary stages:
1. Raw data processing and QC.
2. Basic data analysis, including clustering and cell type labeling.
3. Advanced data analysis tailored to address specific research objectives.

The exponential growth in scRNA-seq applications has driven the development of spe-
cialized computational approaches designed to handle vast data volumes generated by these
experiments. In the context of cancer research, scRNA-seq has proven particularly valuable
for characterizing cellular heterogeneity, enabling precise molecular discrimination between
“normal” and “malignant” cell populations [89]. This capability provides critical comparative
insights between cell subsets, enhancing our understanding of disease mechanisms.

In the pharmaceutical domain, scRNA-seq has emerged as a powerful tool for informed
decision-making processes. The technology facilitates enhanced biomarker identification
for patient stratification and enables more precise therapeutic targeting strategies [90]. For
comprehensive guidance on methodological best practices in scRNA-seq analysis, readers
are directed to the forthcoming book chapter: Galati et al. 2025, titled “Best practices in

single-cell RNA-seq data analysis”.
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1.2.4 Metabolomics: Mapping metabolic pathways

The metabolome refers to the complete repertoire of small molecule chemicals, known as
metabolites, present within biological sample. These metabolites can be categorized into two
distinct classes: endogenous metabolites, which are produced by the organism itself (including
amino acids, organic acids, nucleic acids, fatty acids, amines, sugars, vitamins, co-factors,
pigments, antibiotics ...), and exogenous metabolites, which originate from external sources

(such as drugs, environmental contaminants, food additives, toxins and other xenobiotics).

The metabolome serves as a crucial interface between an organism’s genome and its
environment, making it an ideal proxy for the phenotype expression. This dynamic field has
found diverse applications across multiple sectors. In pharmaceutical research and healthcare,
metabolomics facilitates biomarker discovery, enables drug safety screening, and advances
Personalized medicine approaches. In agricultural applications, the field contributes to stress
testing, crop protection and genetic engineering initiatives [91]. Within biomedical research,
metabolomics plays a pivotal role in biomarkers identification and elucidation of molecular

mechanisms [92].

Three principal technological platforms dominate metabolite measurement initiatives:
nuclear magnetic resonance (NMR) spectroscopy and two variant of mass spectrometry (LC-
MS and GC-MS) [93]. In the specific context of food allergy and intolerance research, targeted
diagnostic approaches have emerged. For instance, Micro Array Diagnostics (MADx) have
developed diagnostic tools such as ALEX?, an ELISA-based (enzyme-linked immunosorbent
assay) in vitro multiplex allergy test, which enables simultaneous measurements of total
Immunoglobulin E (IgE) and specific IgE against an extensive panel of allergen extracts and
molecular allergens. This is particularly relevant for studying IgE-mediated allergies, where
the immune system produce responses to specific allergens by producing IgE antibodies.
These antibodies subsequently bind to allergens, triggering the release of histamine and other

chemicals mediators responsible for allergic reactions symptoms [94].

Metabolomic data analysis typically employs a combination of statistical approaches,
incorporating both univariate and multivariate methodologies such as ANOVA (analysis of
variance), PCA (Principal Component Analysis) and PLS-DA (Partial Least-Squares Discrimi-
nant Analysis), to identify significant metabolic signature. Subsequent pathway and network
analyses utilize established tools and databases, including KEGG and MetaboAnalyst, with

the latter serving as a comprehensive analytical toolkit [95].

29



1.2.5 Microbiome studies: Investigating host-microorganisms inter-
play

The microbiome constitutes a complex ecological community of microorganism inhabiting a
specific environment, encompassing bacteria, archaea, fungi, algae, small protists and their as-
sociated elements including phages, viruses, plasmids. This dynamic ecosystem demonstrates
remarkable plasticity, responding to various environmental stimuli such as exercise, diet,
medication. The human body hosts distinct and specialized microbial communities across
various anatomical sites, including the skin, gastrointestinal tract, respiratory tract, and oral
cavity [96].

These microbial communities perform essential functions in human physiology, particu-
larly in fundamental processes such as digestion, metabolism, immune system development,
and protection against pathogenic organisms [97]. A healthy microbiome is characterized
by high diversity and optimal balance in symbiotic relationship with the host organism
[98]. Perturbations to this delicate balance have been implicated in numerous pathological
conditions, including Inflammatory Bowel Disease, Irritable Bowel Syndrome, Colorectral
cancer (CRC), obesity and metabolic disorders such as type 2 diabetes [99]. The microbiome
influences through multiple mechanisms, including inflammation modulation, alterion of the
gut barrier function, and complex interactions with the host immune system.

Microbiome research methodologies have been revolutionized by advances in high-
throughput sequencing technologies. Two predominant approaches for investigating micro-
biome composition have emerged: 16S rRNA gene sequencing and Shotgun metagenomic
[100]. Additional insights into microbiome function are gained through complementary omics
approaches, including metatranscriptomics, metaproteomics and metabolomics.

The field has witnessed a substantial development in computational tools and statistical
methods specifically designed to analyze the vast quantities of generated data, addressing
the unique challenges posed by high-dimensionality, sparsity, and compositional nature of
microbiome data. Machine learning approaches are rapidly evolving to facilitate microbiome-
based disease prediction and biomarker discovery [101]. Various experimental models have
been established to investigate host-microbiome interactions, including germ-free mice for
in-vivo testing, and organ-on-chip systems, and anaerobic culturing techniques for in-vitro
testing.

The future of microbiome research holds promising therapeutic strategies, including the

development of targeted probiotics and prebiotics for microbial composition modulation [102],
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implementation of fecal microbiota transplantation protocols for microbiome restoration,
advancement of personalized nutrition strategies based on an individual microbiome profile
[103], creation of engineered microbial systems for specific functions [104], and utilization of
microbiome-derived metabolites and postbiotics as therapeutic agents.

However, the translation of microbiome research findings into clinical applications faces
significant challenges, primarily due to substantial inter-individual variability, the intricate

nature of host-microbe interactions, and the necessity for extensive clinical trials [105].

1.2.6 Barriers to integration in single omics

While individual omics layer provide valuable insights, their true potential lies in their contri-
bution to systems biology through integration of fundamental data layers for comprehensive
understanding. However, the integration of various omics layers presents significant chal-
lenges [106]. Omics datasets are characterized by high-dimensionality, such as described pre-
viously for microbiome data where there are more variables than samples, which complicates
analysis and interpretation. Data quality exhibits considerable variability and heterogene-
ity, with inherent noise potentially obscuring “true” biological signals, necessitating careful
preprocessing and normalization techniques. Furthermore, the diversity of platforms and

technologies generates datasets requiring harmonization for cross-study comparability.

Challenges highlight the need for Multi-Omics approaches

Understanding the limitations and capabilities of single omics approaches provides crucial
foundation for exploring MO integration analyses, which will be discussed in the subsequent
section. These integrative approaches combine diverse omics layers to achieve a comprehen-
sive and holistic view of the biological systems, potentially overcoming some single-omics

limitation and providing more accurate insights into biological complexity.

1.3 Multi-Omics provides holistic biological framework

1.3.1 Multi-Omics integration drives biological understanding

Multi-Omics (MO), also known as integrative omics or pan-omics, represents a comprehen-
sive analytical paradigm that integrates multiple omics datasets. This complex approach

enables researchers to mine complex biological big data, thereby uncovering novel associa-
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tions between biological entities, identifying novel markers, and elucidating the underlying

mechanisms of physiology and diseases.

A principal application of MO lies in the study of human disease, particularly in critical
areas such as cancer, neurodegenerative disorders, aging, and drug target discovery [107].
Through comprehensive characterization of molecular alterations at different levels and their
associations with these conditions, researchers can identify potential therapeutic targets and

develop personalized treatment strategies.

The field of system biology has been instrumental in developing frameworks and compu-
tational tools to combine and analyze large-scale biological data. However, the exponential
growth in data quantity and rapid evolution of technologies present significant challenges
in term of data management, integration, and interpretation. Successfully addressing these
challenges would enhance the power of MO models and improve the accuracy of biological
insights [108]. As the field continues to advance, MO integration holds great promise for PM,

drug development, and understanding disease mechanisms.

1.3.2 Foundational principles highlighting data integration

MO integration facilitates the analysis of heterogeneous datasets, enabling statistical analysis
and the application of machine learning techniques. Notably, unsupervised techniques

predominates in discovering molecular/disease subtypes and different patterns [109].

Current MO methods can be classified into two types: horizontal and vertical integration
[110]. While vertical integration encompasses different and various omics datasets as previ-
ously described, horizontal integration focuses on the integration of diverse datasets within a

single omics type.

1.3.3 Integration techniques in Multi-Omics research

The complexity and dynamic nature of this research field necessitates understanding not
only the statistical foundations of the methods but also their purposes, limitations, and most
crucially, the appropriate use cases for the datasets under investigation. This section aims
to provide comprehensive explanations to enhance understanding of different use case and
methods that are published in the literature that could be considered into a tailored analysis. It

is important to note that tool accessibility varies, with some available as web based service or
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through programming language (primarily R, but also Python and Matlab). While numerous
reviews have thoroughly explained each facet of these tools, this chapter aims to present the
information in an accessible and structured manner.

When implementing an integration analysis, researchers can employ several distinct

strategies to manipulate datasets. The main options include and are described in [111]:
Early integration which involves concatenating datasets into a single matrix.

Mixed integration which requires independent transformation/mapping of each dataset

before combination.

Intermediate integration which transforms datasets into common and omics-specific rep-

resentations.

Late integration where analyses are conducted separately and final predictions are com-

bined.

Hierarchical integration which utilizes prior knowledge (such as regulatory relationships)

to guide the integration process.

Recent literature confirms these MO approaches in the metabolomics context, specifically
addressing the “How and When” aspects within the workflow of dataset integration [112]. Of
particular significance, the research emphasizes the importance of hypothesis-driven research
and delineates different approaches such as multi-staged and meta-dimensional integration.

From a ML perspective, tools can be categorized according to standard statistical frame-

work [113]:

Supervised approaches focus on predicting one or more target associated with a given
sample. This category subdivides into classifier (predicting sample classes such as
pathogenic versus and non-pathogenic samples) and regressors (estimating quantities,
such as pathogenicity risk level). Both methodologies commonly employ support vector

machines (SVM) and artificial neural networks (ANN).

Unsupervised approaches concentrate on exploring the data structure deconstructing its
variation or correlation. These methods primarily fall into association algorithms
(uncovering latent rules or trend in the data) or clustering algorithms (partitioning

samples based on hidden characteristics).
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The reduction and simplification of large MO datasets facilitates interpretation. Principal
Component Analysis stands as one of the widely adopted approaches, reducing datasets
to lower dimensions while preserving maximum of the original variance among variables.
Factor Analysis serves to decompose data using latent relationships that describes correlations
between variables. Matrix factorization functions to 'denoise’ the original dataset, with
Nonnegative Matrix Factorization specifically employed in uncovering ecological interaction
networks from metagenomics samples.

In the context of clustering, k-means and hierarchical clustering remain the most prevalent
methods in Life Sciences [114]. While relatively simplistic in their approaches, they offer
straightforward interpretation and comprehension for collaborators who generated the data
but may not specialized in statistics compared to other more advanced available approaches.

Among academic literature classification proposition, three different classes are distinct

by their approaches to handle datasets:

Concatenation based combining different omics dataset into one matrix as described as

early integration earlier.

Transformation based which is related to the intermediate integration from earlier review

article.

Model based handling multiple omics simultaneously with statistical or ML models, such

as MoGCN [115].

Further classification focused on algorithmic aspects presents four primary categories

[116]:

Network-Free Non-Bayesian encompassing sequential analysis and including sparse
Multi-Block Partial Least Square (sMB-PLS) regression or iPAC which is an unsuper-

vised method of CNV and gene expression data.

Network-Free Bayesian often utilizing prior distributions to model data. For instance,
iCluster uses a Gaussian latent variable model, and Dirichlet Multinomial Allocation

(DMA) uses mixture models.

Network-based Non-Bayesian using molecular interaction networks or correlation-based

networks, through different strategies i.e. similarity network fusion (SNF).
Network-based Bayesian leveraging probabilistic models such as Paradigm tool algorithm.
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1.3.4 Beyond omics: Integrating non-omics data with Multi-Omics

The integration of MO data presents several significant challenges that must be addressed for

successful implementation [117]:

Data heterogeneity needs distinct approaches

A fundamental challenge in MO integration relies on the diversity of data types, standards,
and formats across omics research methods [118]. Each omics technology generates distinct
outputs with specific standards, which significantly complicates the prior integration process.
This heterogeneity introduces additional complexity when scaling, normalizing, and trans-
forming the data to meet the requirements of statistically robust analysis. In this context,

batch effect management becomes increasingly critical.

Leveraging missing data

The challenge of missing values impacts MO analysis for multiple reasons [119]. Current
technological limitations present the measurement of all the bio-molecules, resulting in inher-
ently missing of filtered information. furthermore, the distribution of missing observations
and their proportions often vary substantially among different datasets. While this issue
affects all omics disciplines, it manifests most prominently in metabolomics due to the extent

and complexity of the chemical space and the relative newness of the field [120].

Scalability and computational bottlenecks

The process of merging datasets and applying integration strategies demands substantial com-
putational resources for processing and analysis [121]. This challenge becomes particularly
acute when dealing with big data and numerous features. The computational complexity
increases exponentially as more feature are considered, leading to vast combinations that

must be evaluated [122].

Multi-omics results remains complex

The intricate nature of biological systems manifests in complex MO results that present
significant interpretational challenges [120]. The quality of input data proves crucial, as

substandard data inevitably produces unreliable or disputable results.
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While the subsequent collaboration sections will exemplify strategies and methods in
greater detail, it is important to note that each approach presents its own specific challenges.
For instance, intermediate integration typically necessitates robust pre-processing due to data
heterogeneity, while late integration may fail to capture inter-omics interaction since each

omics is analyzed separately before integration.

1.3.5 Multi-Omics contributes to NCDs studies

Recent advances in MO studies have successfully identified specific biomarkers across various

conditions:

Pancreatic cancer A study of 175 patients from the TCGA database integrated gene mu-
tation expression, methylation level distribution and m RNA expression data [123].
Through weighted correlation network analysis, researchers identified nine hub genes
as prognostic biomarkers: MST1R, TMPRSS4, PTK6, KLF5, CGN, ABHD17C, MUC1,
CAPNS, and B3GNT3.

Colorectal cancer A study revealed elevated metabolic levels of oleic acid and FA (18:2) in
patients compared to healthy controls, suggesting their potential as as plasma biomarker
for early diagnosis [124]. Additional review summarizes recent findings and biomarker

proposed by MO integrations [125].

Cervical cancer A microarray dataset analysis study from GEO identified several Differ-
entially expressed genes as potential biomarkers utilizing MO database validation

approaches: MCM4, NUSAP1, CDCAS5, CDC45, DTL and CDT1 [126].

Toxicology Understanding gene responses to toxicant, and other stressors [127]. This
understanding of individual omics layers proves essential for the construction and

interpretation of biological networks.

1.3.6 Multi-Omics analysis enables future clinical applications

The emergence of single-cell MO technologies has fundamentally transformed molecular cell
biology research [128]. This revolutionary advancement facilitates comprehensive cellular
characterization by integrating data from various cellular layers (i.e. omics) and characterizing

cell states and activities.
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Through the integration of diverse cellular data, researchers can now achieve unprece-
dented insights into cellular function and behavior. This integrated approach provides a more
nuanced understanding of cellular heterogeneity and dynamics, offering valuable insights for

both fundamental research and clinical applications.
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Chapter 2

Translational applications in clinical

research

2.1 Bridging scientific outcomes to clinical value

Translational research represents a critical bridge between fundamental scientific discoveries
and their practical clinical applications, with the ultimate goal of improving human health
and patient well-being. The commonly used “bench-to-bedside” paradigm effectively illus-
trates this process, wherein laboratory discoveries are translated into innovative therapeutic
interventions and clinical recommendations. This research approach operates bidirectionally,
fostering close collaboration among researchers from diverse disciplines across multiple

organizational levels.

2.1.1 Bioinformatics link science and clinical applications

Building upon the foundations established in previous sections, bioinformatics has emerged
as a crucial interdisciplinary field that develops methodologies and tools for analyzing and
interpreting the exponentially growing volume of biological data. The significance of bioin-

formatics can be attributed to several key capabilities:

Data Interpretation Advanced processing of omics data, big data analysis, identification of

potential biomarkers.

Data Integration Integration of heterogeneous datasets (e.g. omics, molecular, clinical,

metadata).
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Predictive analysis Development of disease progression model, prediction of treatment
outcomes, and patient responses assessment in the context of precision medicine, and

“digital twins” development.

Drug Research Simulation of drug-target interactions, thereby significantly reducing the

temporal and financial investments compared to traditional drug discovery approaches.

2.1.2 Translating bioinformatics insights to clinical practice

The translation of bioinformatics research into clinical practice represent a crucial step in
leveraging computational insights for enhanced patient care. This translation manifests across

several critical domains:

Diagnostic tools Development of high-precision diagnostic tests based on validated molec-

ular signature, enabling more accurate and specific disease identification [129].

Therapeutics Enhanced understanding of disease mechanisms facilitates the development

of novel therapeutic agents and enables strategic re-purposing of existing drugs [129].

Personalized medicine personalized treatment optimized for specific subtype/subgroups

of disease/patients [130].

Clinical trials Enhancing statistically robust clinical trial design, facilitating efficient and

meaningful data collection [131].

Public health Population scale analysis enabling the identification of disease risk factors to

inform evidence-based public health policies [132].

2.1.3 Enrichment analysis unlocks new biological insights

Enrichment analysis represent a crucial methodological approach for translating extensive
gene lists, identified through various experimental setups, into meaningful insights about
biological processes, pathways or functions [133]. This analytical approach facilitates the
interpretation and derivation of meaningful biological conclusions.

The reliability and interpretation of enrichment analyses are influenced by multiple factors,
including the choice of the statistical methodology, algorithmic approaches, and the quality

of reference data sources. To ensure robust results, it is imperative to either collaborate with
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domain experts investigator with extensive biological knowledge or utilize carefully cured
database, while adhering to established statistical practices for post-hoc corrections, including
the application of adjusted p-values, Confidence Intervals.

Research has demonstrated that Gene Set Enrichment Analysis (GSEA) effectively ad-
dresses challenges in subjective gene filtering and ineffective gene-to-gene comparisons,
while facilitating the selection of appropriate animal models [134]. Furthermore, enrichment
approaches have demonstrated significant utility in multivariate and MO analyses [135].

Extensive literature reviews reveals numerous successful applications of enrichment
analysis in identifying therapeutic targets and elucidating molecular pathways, leading to

novel strategic approaches in disease intervention.

2.1.4 In silico modeling simulates disease and drug responses

In-silico modeling has emerged as a powerful computational approach for predicting drug
responses and simulating disease progression patterns. Through the integration of in vitro
and in vivo experimental data, researchers can test extensive arrays of parameters and explore
diverse experimental configurations, particularly when considering the organism as a whole.

A comprehensive review of modeling approaches demonstrates their broad application
across various medical conditions, including cancer, immunological disorders, neurological
diseases, and infectious diseases [136]. Notable success has been achieved in drug response
prediction for Glioblastoma, where drug-mutation associations demonstrated 85% accuracy
[137].

The disease Maps Project represents a significant collaborative initiative directed at
enhancing our understanding of disease specific mechanisms [138]. This comprehensive
project involves multidisciplinary experts, including clinicians and biologists who validate
core mechanisms for accurate representation. The project framework extends standards
formats such as SBGN, SBML and BioPAX.

Through open participation and systematic community engagement, the project main-
tains rigorous standards for data curation, representations and accessibility. The initiative
emphasizes a modular approach for representing molecular cascades through interoperable
and reusable sub-maps. Notable implementations include COVID-19, Parkinson disease maps,
and the Atlas of Cancer Signaling Network. Additional modeling frameworks have emerged,
including integration of compound databases for examination target-mediated modulation of

disease pathways [139].
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2.1.5 Navigating challenges and opportunities in translational re-

search
Ensuring reproducibility strengthens bioinformatics workflows

Reproducibility represent a pillar principle in bioinformatics, essential for ensuring the
reliability and verifiability of research findings. While implementing reproducibility in
daily research practices presents significant challenges, the “Five pillars of reproducible
computational research” emphasize the importance of literate programming, code version
control, compute environment control, persistent data sharing and documentation [140].

Despite established guidelines, several factors impede reproducibility, including the com-
plexity of bioinformatics workflows, dependence on specialized software, and absence of
standardized formats for specific analyses.

The analysis and integration of highly heterogeneous datasets present both significant
methodological challenges and unprecedented opportunities for discovery. While numerous
integration strategies exist to address various analytical limitations the inherent complexity
of these approaches often creates barriers to reproducibility and method translation across

different studies and datasets [141].

Increasing complexity in modern drug development

The drug development process represents a substantial investment of time and resources,
characterized by significant uncertainty regarding the probability of successful outcomes
[142]. Research in specific domains, particularly nervous system disorders, manifests more
complexity due to unknown physio pathology in various conditions. The limitations of
animal models in fully replicating disorder characteristics, combined with significant patient
heterogeneity, present substantial challenges in translating preclinical findings to clinical
trials. Furthermore, the absence of standardized, widely-adopted biomarkers and diagnostic
tools for objective disease detection and biological state measurement compounds these

challenges across most disease categories.

Regulatory and administrative barriers challenge progress

Clinical trials frequently encounter significant regulatory and administrative challenges,
particularly manifested in prolonged intervals between protocol approval and trial implemen-

tation in action [143]. Such delays stem not only from regulations requirements but also from
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institutional internal processes and bottlenecks. The Occluded Artery Trial (OAT) exemplifies
these challenges, experiencing a three-year delay between the initial NIH committee meeting
and trial commencement. These prolonged timelines not only escalate research costs but may
also compromise the clinical relevance of trial, as medical practices can evolve significantly

during the delay period.

Target validation presents significant challenges

Early-stage inadequacies in drug target validation have been directly correlated with substan-
tial clinical failures and reduced drug approval rates [144, 145]. The validation of molecular
targets as causal factors in disorders, coupled with confirmation of drug target validity, contin-
ues to present significant challenges. These challenges are exacerbated by inherent biological
disparities observed across in silico, in vitro and in vivo models. The comprehensive validation
of molecular targets often remains incomplete until successful drug development, creating a
circular challenge that particularly impacts first-in-class drug discovery and development

processes.

Ethical considerations in translational bioinformatics

The ethical implementation of translational bioinformatics necessitates careful consideration
of patient data privacy, and security. The inherently sensitive nature of patient data, par-
ticularly genetic information, presents significant privacy implications due to its capacity
to reveal comprehensive insights into individual health status, traits, and potential health
risks. The exponential growth of large-scale genomics databases introduces heightened
privacy vulnerability concerns, particularly regarding personal health information. This
challenge is further complicated by the open-source nature of numerous bioinformatic tools
and databases. Therefore, robust data system security becomes crucial for preserving patient

trust and maintaining the integrity of the biomedical research.

Consent and genomics data utilization [146, 147]. Informed consent defines ethical research,
ensuring comprehensive participant awareness regarding data utilization and facilitat-
ing informed participation decision. Current bioinformatic research present unique
challenges to traditional informed consent frameworks due to its dynamic nature,
where data may be repurposed for multiple future studies and integration analyses not

initially anticipated during data collection. The concept of dynamic consent, enabling
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ongoing patient control over data utilization, has emerged as a potential solution to
these challenges. Furthermore, the sharing of patient genomic datasets introduces addi-
tional privacy concerns, particularly regarding potential re-identification, necessitating
meticulous data processing protocols and comprehensive consents considerations that

align with patients preferences.

Personalized medicine The advent of PM represents a paradigm shift in healthcare delivery,
offering potential for optimizing therapeutic interventions through targeted treatment
approaches and reducing adverse effects [148]. This advancement, while promising,
raises ethical considerations regarding healthcare equity and accessibility. The im-
plementation of PM approaches introduces complex challenges in healthcare delivery
systems, particularly concerning equitable access to advanced therapeutic strategies. A
critical ethical consideration emerges from the potential exacerbation of existing health-
care disparities. This disparity manifests in two primary dimensions: socioeconomic
access and genetic representation. Populations with greater financial resources may
disproportionately benefit from tailored therapeutic approaches, while genetic-based
interventions may preferentially serve demographic groups whose genetic profiles have

been extensively studied in research.

2.2 The i2TRON project links inflammation to Noncomu-

nicable diseases

2.2.1 Mechanisms of inflammation in acute and chronic diseases

The mechanisms of acute inflammation are complex biological responses to various stimuli,
including pathogens, damaged cells or irritants [149]. This intricate cascade of reactions is
initiated when the immune system, particularly macrophages and dendritic cells, recognizes
harmful stimuli through pattern recognition receptors. Subsequently, these sentinel cells
trigger the inflammatory response by releasing inflammatory mediators, including cytokines,
chemokines, and eicosanoids, which triggers a series of vascular changes. These changes
encompass blood vessel dilatation, increases vascular permeability, and enhanced immune

cell recruitment to the inflamed site.
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The acute inflammatory response is characterized by the strategic recruitment of neu-
trophils and monocytes, manifesting in the acute inflammation symptoms: redness, swelling,
heat, pain, and potential loss of function. These cellular and molecular events converge
to eliminate the harmful agent through mechanisms, including phagocytosis, release of
reactive oxygen species, and antibody production. Following the elimination of the treat, anti-
inflammatory mediators initiate the resolution phase, dampening the inflammatory response
and promoting tissue repair to restore homeostasis.

While acute inflammation is self-limiting and protective, its persistence can lead to chronic
inflammation, potentially resulting in tissue damage and contributing to various non, including

diabetes and cancer. Chronic inflammation can arise from multiple sources, including:
« Persistent autoimmune response to self antigens.
« Prolonged exposure to irritants, such as industrial chemicals.
« Inability to eliminate the initial inflammatory agent.

Research has identified several modifiable risk factors associated with chronic inflammation,
including obesity, smoking, stress and sleep deprivation. [150] The chronic inflammatory
response is distinguished from acute inflammation by its distinct cellular composition, pre-
dominantly involving macrophages, ultimately leading to progressive tissue damage and

fibrosis [151].

2.2.2 Aetiology of Colorectal cancer

Chronic inflammation represent on fundamental driver of Colorectral cancer (CRC) develop-
ment, operating through multiple interconnected mechanisms including immune dysfunction,
oxidative stress, DNA damage, and epigenetic modifications [152]. The inflammatory path-
ways implicated in CRC pathogenesis share significant overlap with inflammatory bowel
disease, suggesting common molecular mechanisms underlying these conditions.

The relationship between inflammation and CRC is particularly evident in patients with
IBD, specifically ulcerative colitis and Crohn’s disease, who demonstrate an elevated risk
of CRC development. This association is underpinned by shared inflammatory pathways
including MMP10, LCN2, REG1A, REG3A, DUOX2 [153]. Furthermore, the inflammatory
microenvironnement in CRC is characterized by distinct protein expression pattern in inflam-

matory cells, particularly macrophages and neutrophils [154].
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Recent investigations have highlighted the crucial role of gut microbiome alterations in
CRC pathogenesis. Several bacterial species have been implicated as significant risk factors,
notably Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis, and pks+ E. coli [155].
These microorganisms influence CRC development through multiple mechanism, including
bacterial genotoxicity, biofilm formation, oxidative stress and dysbiosis [156].

As key feature in CRC progression is the epithelial-mesenchymal transition (EMT), where
epithelial cells acquire mesenchymal phenotype, quantifiable through EMT scoring systems.
This transition represents a crucial step in tumor progression and metastasis [157].

Nutritional and life style factors significantly influence CRC development through various
inflammatory pathways. For instance, Fish-derived n-3 polyunsaturated fatty acids (PUFAs)
demonstrate anti-neoplastic effects in CRC by modulating multiple cellular processes, in-
cluding cell proliferation, apoptosis, angiogenesis and metastasis [158]. Additionally, dietary
components such as heme iron have shown to modulate multiple pathways implicated in CRC
aetiology [159]. The gut microbiota further mediates these nutritional influences through
the metabolism of Short-Chain Fatty Acids (SCFA), which can modulate pro-inflammatory
responses and potentially reduce CRC risks [160].

2.2.3 Aetiology of Peanut allergy

Peanut Allergy (PA) represents a significant public health concern, manifesting as immune-
mediated responses ranging from mild symptoms to severe anaphylactic reactions. The
increasing prevalence of PA in developed countries presents a substantial challenge to health-
care systems [161]. The complex aetiology of PA involves intricate interactions between
genetic predisposition, environmental influences including dietary patterns and life style
factors, and skin barrier function [162].

The immunological basis of PA centers on type 1 hypersensitivity reactions. Upon initial
exposure, the immune system generates peanut-specific IgE antibodies, which bind to effector
cells, primarly mast cells and basophils, These cells contain granules rich in histamine and
other inflammatory mediators. Subsequent allergen exposure triggers degranulation, releasing
these inflammatory substances and initiating the allergic cascade.

The molecular complexity of peanut allergens is reflected in their classification into four

major protein families, each with distinct structural and immunological properties [163]:

Cupin superfamilly Arah 1and Arah 3.
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Prolamin superfamily Ara 2, Arah 6, Arah 7 and Arah 9.
Profilin familly Arah 5.

Bet v-1-related poteins Arah 8.

These protein families evolved to serve various plant functions, particularly protein storage
and defense mechanisms. Understanding their molecular implications is crucial for elucidating
cross-reactivity patterns among different allergen sources.

Post-translational modifications of peanut proteins, both enzymatic and non-enzymatic,
significantly inflence their allergenicity. Advanced Glycation End-products (AGEs) modifi-
cations on peanut allergens can activate the receptor for AGE (RAGE), initiating a cascade
that involves dendritic cells activation, T helper 2 (Th2) cell responses, and subsequent IgE
production, ultimately leading to mast cells and eosinophils activation.

The thermal processing of peanut significantly impacts their immunogenicity and al-
lergenicity profiles [164]. Additionally, research has identified associations between IgG-
mediated food intolerance and increased gut permeability, potentially allowing food antigens
to enter circulation. This mechanism may trigger the production of food-specific IgG anti-
bodies, resulting in diverse manifestations including gastrointestinal symptoms, neurological
effects, chronic fatigue and dermatological changes such as hair loss [165]. However, the
presence of food-specific IgG does not necessarily indicate clinical allergy or intolerance, as it

may represent a normal physiological response.

2.2.4 SCFA metabolism and early manifestation of inflammation

SCFA, primarly acetate, propionate and butyrate, are crucial metabolites produced through
the anaerobic fermentation of Dietary fibers (DF) (non-digestible carbohydrates) by the gut
microbiome. The absorption kinetics of these compounds are remarkable, with approximately
95% being rapidly absorbed by the colonocytes, while the remaining 5% are excreted in feces
[166]. Of particular significance is butyrate, which serves as the primary energy sources for
colonocytes, providing 60-70% of their energy requirements. These metabolites participate
in diverse physiological processes, including energy metabolism, intestinal homeostasis
maintenance, and immune system modulation [167].

The molecular mechanisms underlying SCFA function primarily operate through two
major pathways: the activation of G Protein-Coupled Receptors (GPCRs) and inhibition of
Histone Deacetylases (HDAC) [167]:

47



GPCR The pathway involves specific receptors, notably FFAR2 (GPR41), FFAR3 (GPR43)
and GPR109A, which are expressed across various cells types including intestinal
epithelial cells and immune cells such as monocytes, eosinophils and neutrophils [168].
This receptor activation modulates critical leukocyte functions, including cytokine

production, chemotaxis and pathogen clearance capabilities.

HDAC Its inhibition, primarily mediated by butyrate, represents a significant epigenetic
regulatory mechanism. This inhibition results in altered gene expression patterns,
characterized by the suppression of pro-inflammatory cytokines and enhancement of
anti-inflammatory responses. Furthermore, this pathway influences cellular processes

including proliferation, differentiation and apoptosis.

The immunomodulatory effects of SCFAs extend beyond these primary pathways to

encompass several additional mechanisms:

Cytokines Regulation SCFAs demonstrate the capacity to suppress pro-inflammatory cy-
tokines including TNF-¢, IL-2, and IL-6 while simultaneously enhancing the production

of anti-inflammatory IL-10 [169].

Regulatory T-Cell differentiation Through FFAR2 activation, SCFAs promote the devel-

opment of an anti-inflammatory micro-environment [170].

Leucocytes function modulation SCFAs influence monocytes and neutrophil functions
through FFAR2-mediated mechanisms, affecting both chemoaxis and cellular activation

[171, 168].

Pattern recognition receptor modulation SCFAs demonstrate the ability to modulate

Toll-Like Receptor (TLR) signaling [172].

Inflammasome regulation SCFAs influence NLRP3 inflammasome activity through inter-

actions with FFAR3 and GPR109A receptors [172].

Recent investigations have revealed additional interactions between SCFAs and various
immune cell populations, including B cells and innate lymphoid cells, which play crucial roles
in antibody production and immune regulation [173]. These findings further emphasize the

extensive influence of SCFAs on immune system function and inflammatory processes.
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2.2.5 Advancing inflammation research

The overarching objective of this research project, as outlined in table 2.1, centers on exploring
diverse collaborative datasets to advance our understanding of inflammatory mechanisms
in chronic diseases. Through the integration of cohort data and the application of tailored
bioinformatic approaches, this project seeks to elucidate specific inflammatory mechanisms

manifesting in both clinical and experimental contexts.

Our precision medicine approach fundamentally aims to advance the understanding of
patient-specific inflammatory responses through the comprehensive analysis of symptomatic
manifestations, molecular signatures, and genetic factors. This multi-layered investigation of
inflammatory processes has potential to enhance clinical decision-making by providing more

nuanced diagnostic insights.

The research strategy relies on several key objectives:

Integration of MO data The project leverages bioinformatics integration approaches to
analyze complex datasets and experimental design from our collaborators. This com-
prehensive analysis enables the investigation of inflammatory mechanisms at multiple

biological levels, providing a better holistic understanding of disease progression.

Mechanism characterization Through detailed examination of specific inflammatory
mechanisms in various clinical and experimental settings, we aim to identify precursor
events that may contribute to the development of complex diseases. this mechanistic

understanding us crucial for early intervention strategies.

Stratification Analysis In collaborative investigation, we explore analytical methods to
stratify patient populations and identify distinct feature subgroups. This approach
enables the detection of complex relational pathways and potential disease subtypes,

contributing to more personalized therapeutic strategies.

Translation to Clinical practice The ultimate aim is to translate the research findings into
actionable clinical insights. By evaluating inflammation across diverse molecular and
cellular layers, we seek to provide clinicians with more comprehensive diagnostic tools

and improved decision-making frameworks.
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This integrated approach to studying inflammatory processes has the potential to re-
veal novel insights into disease mechanisms and contribute to the development of more
targeted therapeutic interventions. Through careful analysis of patient-specific responses

and molecular signatures, we aim to advance the field of precision medicine in inflammatory

diseases.
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Part 11

Applications, methods and results
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Figure 2.1 Multi-institutional investigation of inflammation and Noncommunicable dis-
eases (NCD). The table outlines collaborative research efforts with three Luxembourg-based collabo-
rators, integrating multi-omics data (e.g. microbiome, cytokines, immune cell types, genetics) to study
inflammation-related mechanisms. Key workflows include exploratory data analysis, network-based
correlation studies, stratification of immune and epithelial cells, and pathway enrichment analysis.
Results contribute to refining patient subtyping, identifying immune-inflammatory signatures, and
developing predictive models, including inflammatory diet-related risk scores.

This part provides an overview of the workflows, methodologies, and results derived from
the collaborative projects forming the backbone of this thesis work. Each chapter elaborates
on specific aspects of these investigations, highlighting how various collaborations have
contributed to advancing the understanding of complex biological conditions.

The figure 2.1 illustrates the interconnected workflows and outputs across three major
research projects: APSIS, CRC, and Luxfico. Each project explores distinct yet complementary

scientific questions, leveraging diverse datasets and analytical frameworks.

APSIS exploration in section 3.2.4 focused on allergic response modeling, while having
microbiome data, the analysis focus was on cytokine profiles and immune cell types
for subtyping and network-based analyses. The results emphasize key temporal and

group-specific differences in allergic responses.
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CRC research in section 4.2.2 utilizing Seurat workflows, this project investigates colorectal
cancer, focusing on cellular stratification (fibroblasts and epithelial cells) and intercel-
lular communication. It identifies specific inflammatory pathways (e.g. WNT5A and

iCAF subtypes), which is then validated by mouse models and literature-based findings.

Luxfico investigation in chapter 5 this study delves into MO data integration, encompassing
microbiome, WGS, and immune profiling. Outputs include SNP identification for
food metabolism, microbiome signatures (aerobic vs anaerobic states), and predictive

modeling for immune responses and inflammatory diet-related risks.

By integrating methodologies such as exploratory data analysis, unsupervised clustering,
and pathway enrichment, these projects collectively push the boundaries of translational
research, particularly in inflammation and immune system regulation. Each contribution

enriches the MO and data science-driven insights central to this thesis.
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Chapter 3

Mechanisms of Peanut allergy

development in early childhood

3.1 Early-life events influence food allergy

Peanut Allergy (PA) represents a significant public health concern, with particularly high
prevalence among pediatric population in Western countries. The epidemiological landscape
of PAdemonstrates notable geographical and demographic variations, with prevalence esti-
mates ranging from 2% to 5% among school-age children in the US [174]. Recent studies have

documented prevalence rates higher in Western nations compared to Asian countries [175].

The diagnostic framework for PAhas multiple approaches. The Skin Prick Test (SPT)
serves as an initial diagnostic tool, characterized by high sensitivity but limited specificity. A
positive SPT result is defined by a wheal diameter exceeding the negative control by >3mm
[176]. Specific IgE (sIgE) testing provides quantitative measurement of allergen-specific
antibodies in serum, with values ranging from <0.35 to >100 kUA/L. A threshold of 15kUA/L

for peanut-specific IgE demonstrates 95% positive predictive value for clinical reactivity [177].

Oral Food challenge (OFC) represents the gold standard diagnostic methodology for
evaluating both IgE and non-IgE mediated food allergies, addressing the limitations inherent
in conventional diagnostic approaches. The procedure uses a systematic protocol of graduated
allergen exposure under controlled clinical conditions, typically requiring 2-3 hours for dose

administration followed by an observation period [178].

The diagnostic utility of OFC extends beyond basic allergy confirmation, encompassing

multiple clinical applications including the monitoring of allergy resolution, determination of
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reaction thresholds, and assessment of cross-reactive potential in sensitized individuals. Re-
cent research has established diagnostic parameters, with optimal testing thresholds identified
at specific IgE levels <2 kU/L and SPT results <5 mm [179].

Clinical outcome data demonstrates favorable success rates across major allergens, with
passage rates ranging from 62% to 88%. However, failed challenges present significant clinical
concerns, with 84% of failures manifesting objective symptoms, 23% producing multisystemic
reactions, and 15% necessitating epinephrine intervention. These safety considerations
underscore the importance of proper clinical infrastructure, including experienced medical
personnel, emergency equipment availability, and standardized protocols [179]. Recent
advances in molecular diagnostics have introduced Component Resolved Diagnostics, enabling
the quantification of IgE antibodies specific to individual peanut protein components. Among
these, Ara h 2 demonstrates the highest predictive value for clinical reactivity, while Ara h 1,
3, 6, and 9 serve as secondary diagnostic indicators [176].

The clinical significance of PAis underscored by its association with severe allergic re-
actions. Studies indicate that 59.2% of peanut-allergic pediatric patients experience severe
reactions [175], with approximately 10% of pediatric anaphylaxis cases occurring at school

[180].

3.2 Methodological challenges in multi-omics integration

3.2.1 Study design considerations

This study was conducted as part of the APSIS project, which aimed to identify molecular
signatures specific to peanut allergy in children. The study design dollowed a systematic inves-
tigation framework integrating multiple high-dimensional immunological datasets collected
during OFC.

The investigation was executed through a collaboration between the Luxembourg Institute
of Health (LIH) and the Luxembourg Center for Systems Biomedicine (LCSB). As referenced
in Klueber et al. [181], this research builds upon previously published analyses of this cohort
data.

The study has a longitudinal observational design with data collection at three distinct

timepoints:

1. TO: Baseline measurements before OFC.
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2. T1: Measurements at the onset of an allergic reaction.
3. T1 + 1 hour: Follow-up measurements one hour after the allergic reaction.
The investigation framework incorporated multiple analytical approaches:

Clinical assessment Comprehensive evaluation of patient history, allergic symptoms, and

reactions patterns.

Biological profiling Analysis of: cytokines levels, microbiome composition, specific IgE

measurements, Basophil Activation Test (BAT) responses, CyTOF cell type analysis.

The design specifically addressed the challenges of data integration across heterogeneous
datasets while accounting for the relatively small sample size inherent in specialized allergy
studies. This approach allowed for a comprehensive investigation of the immunological

signatures associated with PA while maintaining rigorous scientific standards.

3.2.2 Participants selection and cohort characteristics

The study cohort comprised 35 children aged between 3 and 16 years. Participants were
recruited through clinical referral based on suspected peanut allergy, as indicated by their
medical history and positive specific IgE (sIgE) to peanut, confirmed either through SPT or
serum analysis. As described [181], the participant selection process ensured a representative
sample of pediatric peanut allergy cases.

For analytical purposes, participants were stratified into multiple comparison groups
based on their clinical responses and characteristics. The primary stratification distinguished
between patients who demonstrated allergic reactions during the oral food challenge (reactive
group) and those who did not show clinical reactivity (non-reactive group). This classification
was fundamental for subsequent immunological investigations and formed the basis for

comparative analyses.

3.2.3 Data collection strategies

The data collection strategy was designed to capture both broad and specific aspects of the

immune response to peanut allergen exposure. More technical details in [181].

Cytokines Assessed the inflammatory response profile, quantifying IFN-y, IL-10, IL-13,
IL-17A/F, 1IL-22, IL-33, IL-4, IL-5, IL-9, TNF-a.
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Microbiome obtained from 16 allergic participants and 4 adult controls. Shotgun sequenc-
ing provided total count numbers and relative abundances of microbial communities,

resolved to the species level where possible.

IgE profiling Specific IgE levels against 300 allergens were measured using the MADx
platform.

BAT performed to assess cellular reactivity to peanut protein. The analysis measured CD63+
basophil release in response to stimulation with 100ng peanut protein, providing a
functional assessment of cellular response capabilities. This test offered insights into

the immediate hypersensitivity mechanisms involved in peanut allergy.

Cell types conducted using Cytometry by Time of Flight (CyTOF), enabling detailed charac-
terization of cellular populations. The analysis recorded percentages of different cell
types per participant across multiple timepoints, providing dynamic information about

cellular immune responses throughout the challenge protocol.

The temporal organization of data collection followed a structured timeline with three
distinct sampling points. At T0 (before OFC), samples were collected for cell type analysis,
cytokines profiling, microbiome analysis, BAT, and clinical data. At T1 (onset of allergic
reaction), samples were obtained for cell type analysis, cytokines measurement, and metabolite
profiling. The final timepoint, T1 + 1 hour (one hour post-reaction), focused on cytokines
measurements to track the resolution phase of the immune response.

Given the heterogeneous nature and low sample size of the datasets, the study emphasized

the following points. 9 IDs matched across the datasets.
« Microbiome data which is available for 16 allergic participants and 4 controls.
+ Cell types and metabolites data which are collected from 19 participants.

« Clinical data, MADx (allergens), and Cytokines which are available from 35 participants.

3.2.4 Immunological signature investigation

To investigate the complex interplay between immune cell populations and cytokines expres-
sion in peanut-allergic patients, we developed a systematic analytical framework incorporating
multiple statistical approaches. The analysis focused on two distinct timepoints (T0 and T1)

across 19 patients, stratified by their allergic response status (positive or negative reaction).
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Data Preprocessing and Quality Control

Cytokine data underwent center-scaling normalization to achieve a mean of zero and unit
variance, facilitating comparative analyses across different measurement scales. The immune
cell population data, originally expressed as percentages of total cells, were retained in their

native format as they already represented normalized proportions.

Statistical Framework

Our analytical approach had three complementary statistical methods:

Correlation Analysis We employed Spearman’s rank correlation coefficient to assess re-
lationships between immune parameters, chosen for its robustness to non-normal
distributions and outliers. Statistical significance was evaluated at « = 0.05, with cor-
relation coefficients filtered for magnitude (|p| > 0.6) to focus on strong biological

associations.

Bootstrap-Based Inference To address the challenges of small sample sizes, we imple-
mented a bootstrap resampling strategy with 2,500 iterations, determined through
stability analysis. This approach provided robust estimates of correlation coefficients
and their confidence intervals. Correlations were considered reliable only when their
95% confidence intervals did not cross zero, implementing a conservative filter against

potentially weak associations.

Comparative Analysis Framework We developed a structured comparative analysis to
examine: Temporal changes within patient groups (T0 vs T1), Group differences at
each timepoint (positive vs negative reactors), Differential correlation patterns across

conditions using A (Feature2 — Featurel) and fold calculations (Feature2 /Featurel).

Network Visualization of immune interactions

Significant correlations were visualized as network graphs, with nodes representing immune
parameters and edges indicating correlation strength. Edge colors denoted positive (blue) or
negative (red) correlations, with edge thickness proportional to correlation magnitude. This
visualization approach facilitated the identification of immune parameter clusters and key

regulatory relationships.
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Software Implementation

All analyses were performed in R (version 4.3.1), utilizing specialized packages for correlation
analysis (corrplot), network visualization (Cytoscape). Custom functions were developed for
correlation filtering, Bootstrap calculations and comparative analyses, ensuring reproducibility

and systematic evaluation across conditions.

3.3 Immune parameter integration reveals distinct corre-

lation patterns

Our integrative analysis revealed distinct patterns of immune parameter correlations that
varied both in time and between patient response groups. The correlation structures demon-
strated notable differences between positive and negative groups, particularly showing signif-

icant relationships between immune cell types and cytokines parameters.

TO - Positive patients shows Th2-oriented responses to allergy

Based on the correlation analysis at TO for patients exhibiting positive reactions, several
significant immunological relationships emerged, as visualized in both the correlation matrix
heatmap and the network visualization figure 3.1 and figure 3.2. These complementary
visualizations reveal complex immunoregulatory networks, with the heatmap quantifying
correlation strengths (|0.6|, p < 0.05) and the network diagram illustrating the intricate cellular
and molecular cross-talk (ranging from -1 in red to +1 in blue).

Several key immunological relationships emerged from this analysis. Strong coordination
between innate immune components was evident, particularly between Classical Monocytes
and mDC (r = 0.902), and between pDC and CM CD4+ T cells (r = 0.909). These relationships
suggest robust innate-adaptive immune coordination.

The cytokines clustered revealed significant inter-correlations among IFN-y, IL-5, and
IL-22 (r ranging from 0.7 to 0.8), indicating concurrent activation of distinct T helper cell
subsets. A notable antagonistic relationship emerged between Plasma Cells and IL-33 (r =
-0.860), suggesting a potential regulatory mechanism in humoral immunity.

In the context of cellular immunity, we observed several significant relationships. Ba-
sophils demonstrated strong positive correlation with CD4+ Th2 cells (r = 0.832), supporting

their established role in Type 2 immune responses. Conversely, IL-17A/F showed inverse
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Figure 3.1 Correlation analysis of immune cell populations and cytokines in the “T0 Pos”
patient group. The heatmap displays significant correlations between immune cell subsets and
cytokines levels, highlighting key interactions within the immune system architecture. Positive (blue)
and negative (red) correlations reveal potential immunoregulatory patterns, aiding in the identification
of immune signatures associated with inflammatory responses.
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Figure 3.2 Network representation of significant correlations in the “T0 Pos” patient group. The graph visualizes key associations between
immune cell subsets and cytokines, highlighting the complexity of the immunological landscape. Nodes represent immune components (immune cell
types in green and cytokines in pink), while edges indicate significant correlations, with color-coded connections distinguishing positive (blue) and

negative (red) interactions. This network-based approach provides insights into immune system dynamics and potential regulatory mechanisms in
inflammation.
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correlation with CD16+ NK cells (r = -0.637), suggesting potential cross-regulation between
Th17-associated responses and cytotoxic NK cell activity. NK cells also displayed strong
negative correlation with naive Th1 cells (r = -0.839), indicating possible reciprocal regulation.

Notably, we observed unexpected relationships that challenge classical paradigms. The
negative correlation between EM CD4+ Th1 cells and regulatory T cells suggests complex
co-regulatory mechanisms in immune homeostasis. Additionally, the correlation between
Th1 and Th2 responses challenges the traditional Th1/Th2 dichotomy, potentially indicating
a more nuanced immune response than previously appreciated.

These findings provide insights into both established immune mechanisms and novel
relationships that warrant further investigation. The strong correlations observed between
monocyte/mDC and pDC/CM CD4+ T cell populations may indicate promising targets to

validate in the further analysis steps.

T1 - Positive patients exhibit enhanced Th2-mediated immune network activation

Examination of the correlation patterns at the T1 timepoint revealed changes in the rela-
tionships between immune cell populations compared to the baseline TO state. As shown in
figure 3.3 and figure 3.4, the correlation matrix demonstrates a significant reconfiguration
of cellular relationships, characterized by an elaborate and highly interconnected immune
network typical for an active allergic response.

The T cell compartment exhibited strong interactions, with EM CD4+ T cells showing
high positive correlations with both Th1 cells (r = 0.958) and Th2 cells (r = 0.923). Th1 and
Th2 cells displayed strong positive correlation (r = 0.888), challenging the classical paradigm
of Th1/Th2 similarly as the TO observation.

In the innate immune compartment, classical Monocytes maintained strong correlation
with mDC (r = 0.860), indicating preserved innate immune coordination. Basophils demon-
strated significant positive correlations with both Th2 cells (r = 0.867) and pDC (r = 0.853),
further supporting their role in Th2-polarized immune responses and suggesting potential
cross-talk with dendritic cells.

The cytokine network analysis revealed several unexpected relationships. IL-13, typically
associated with Th2 responses, showed strong negative correlation with Th2 cells (r = -
0.870), potentially indicating a novel feedback inhibition mechanism or context-specific
regulation. Similarly, IL-33 exhibited strong negative correlation with ydT cells (r = -0.867).

The anti-inflammatory cytokines IL-10 and IL-22 demonstrated positive correlation (r = 0.748),
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Figure 3.3 Correlation analysis of immune cell populations and cytokines in the “T1 Pos”
patient group. The heatmap displays significant correlations between immune cell subsets and
cytokines levels, highlighting key interactions within the immune system architecture. Positive (blue)
and negative (red) correlations reveal potential immunoregulatory patterns, aiding in the identification
of immune signatures associated with inflammatory responses.
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suggesting coordinated immunoregulatory activity.

Analysis of regulatory T cell dynamics revealed complex patterns of immune homeostasis.
Naive Tregs showed positive correlation with EM CD4+ Th2 cells (r = 0.874) but negative
correlation with Naive CD4+ Th1 cells (r = -0.832), suggesting regulation of Th1/Th2 responses.
An unexpected negative correlation emerged between T cells and TE CD8+ T cells (r = -0.833),
potentially indicating regulatory exhaustion or compartmentalization of the cellular immune
response.

These findings reveal novel interactions within the immune network at T1, particularly
highlighting the complexity of T cell subset relationships, cytokines-mediated regulation, and
innate immune cell cooperation. The paradoxical correlations observed between Th1-Th2
cells and IL-13-Th2 cells warrant further mechanistic investigation, as they challenge current
understanding of allergic response regulation. The maintained strong correlations between
innate immune components (monocytes/mDC) alongside enhanced T cell subset coordination

suggest a highly orchestrated immune response with potential therapeutic implications.

TO - Negative patients demonstrate balanced immune regulation

Analysis of the correlation patterns in T0O negative patients (non-reactors) revealed distinctive
network characteristics that contrasted with those observed in T0 positive patients. The
network structure demonstrated sparser network with reduced Th2-associated connectivity,
suggesting a more balanced immune environment prior to OFC.

In the cellular immune compartment, basophils demonstrated complex interactions with
T cell subsets. A remarkably strong positive correlation emerged between basophils and EM
CD4+ T cells (r = 0.976), suggesting potential basophil involvement in EM T cell maintenance
or function. Conversely, basophils showed equally strong negative correlation with Naive
CD4+ Th1 cells (r = -0.976), indicating potential regulatory cross-talk that may influence naive
Th1 cell differentiation pathways.

The Th1 compartment exhibited distinct coordination patterns. CM CD4+ Th1 cells and
Naive CD4+ Th1 cells demonstrated strong positive correlation (r = 0.952), suggesting synchro-
nized activity or shared differentiation pathways within Th1 subsets. However, IFN-y showed
negative correlation with CM CD4+ Th1 cells (r = -0.857), potentially reflecting differential
cytokines production profiles between central memory and effector Th1 populations.

The focus on cytokines revealed several significant relationships characteristic of balanced

immune regulation. IL-22 and IL-33 exhibited strong positive correlation (r = 0.874), consistent
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with their complementary roles in maintaining mucosal immunity and tissue homeostasis.
IL-17A/F showed strong positive correlation with yé T cells (r = 0.905), aligning with the
established role of y§ T cells as primary IL-17 producers in inflammatory responses. Addi-
tionally, IL-33 and IL-9 demonstrated positive correlation (r = 0.826), suggesting potential
synergistic activity in type 2 immune responses.

Analysis of immunoregulatory relationships revealed notable patterns. Plasma cells
showed strong negative correlation with Tregs (r = -0.905), suggesting potential counterbal-
ance between humoral immunity and immunosuppression. IL-9 exhibited negative correlation
with T cells (r = -0.905), indicating possible inhibitory mechanisms in T cell responses.

Cell-cell interactions revealed additional regulatory complexity. Memory B cells demon-
strated strong negative correlation with CM CD8+ T cells (r = -0.929), suggesting distinct
regulation of memory responses in humoral and cellular immunity. yd T cells emerged as
central coordinators, showing multiple strong associations, including negative correlation
with EM CD4+ T cells and positive correlation with IL-17A/F, highlighting their diverse
regulatory functions.

These findings illuminate a complex network of cellular and molecular interactions
characterizing the immune status of negative responders. The observed patterns suggest
tightly regulated immune homeostasis, with balanced activity between innate cells (basophils,
YO T cells), adaptive immune subsets (Th1 cells, Tregs), and their associated cytokines networks.

This balanced state may contribute to the absence of allergic responses in these individuals.

T1 - Negative patients maintain regulatory network dominance post-challenge

Analysis of the T1 negative cohort revealed a distinctive immunological profile characterized
by maintained network stability and enhanced regulatory features following OFC. Unlike
the other T1 positive network, these patients demonstrated a preserved network architec-
ture without developing extensive Th2-associated correlations, suggesting effective immune
regulation during allergen exposure.

The T helper cell compartment exhibited coordination patterns, particularly within Th1
subsets. CM CD4+ Th1 cells and Naive CD4+ Th1 cells showed strong positive correlation
(r = 0.976), suggesting synchronized differentiation pathways or functional synergy in Th1-
mediated responses. This Th1 axis was further reinforced by significant positive correlation
between CD20+ B cells and CM CD4+ Th1 cells (r = 0.929), indicating potential implication in

antibody class switching or cell-mediated immune coordination.
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Several significant negative correlations emerged, highlighting important regulatory
mechanisms. mDC demonstrated strong negative correlation with Activated CD8+ T cells (r
=-0.952), suggesting potential mDC-mediated regulation of cytotoxic T cell responses. The
relationship between IL-17A/F and Tregs showed strong negative correlation (r = -0.929),
reflecting critical balance between pro-inflammatory and immunosuppressive mechanisms.
Similarly, IL-5 exhibited negative correlation with CD8+ T cells (r = -0.905), suggesting
potential suppression of cytotoxic T cell activity in Th2-skewed environments.

The cytokines focus revealed several unexpected relationships that suggest complex
regulatory mechanisms. IFN-y and IL-10 showed strong positive correlation (r = 0.905),
an unusual association between pro- and anti-inflammatory mediators that may indicate
sophisticated feedback regulation of inflammatory responses. IL-4, despite its canonical role
in Th2 responses, demonstrated negative correlation with Th2 cells (r = -0.805), potentially
reflecting negative feedback mechanisms or context-specific regulation. IL-9 showed negative
correlation with Th1 cells (r = -0.786), supporting its role in antagonizing Th1-mediated
responses.

Notable cell-cell interactions included strong positive correlation between Plasma cells
and NK cells (r = 0.880), suggesting potential synergy between humoral and innate cytotoxic
responses. The negative correlation between IL-5 and CD8+ T cells (r = -0.904) further
supported the hypothesis that Th2-associated environments may suppress cytotoxic T cell
activity.

These findings reveal complex regulatory networks characterized by intricate balance
between innate and adaptive immune components. The maintenance of strong Th1-associated
correlations, coupled with evidence of active immunoregulatory mechanisms, suggests that
negative responders maintain effective immune homeostasis during allergen challenge. The
observed patterns of cytokines-mediated regulation and cellular cross-talk provide insights

into mechanisms that may prevent development of allergic responses in these individuals.

Correlation changes highlight immune responses shifts

To better understand how immune interactions evolve between different clinical groups and
at distinct timepoints, we generated and compared multiple tables of correlation coefficients.

The table 3.1 highlights the most pronounced positive or negative shifts in correlation
values, while the table 3.2 focuses on fold changes, thereby helping distinguish immunological

relationships that are either strengthened or weakened in particular groups over time. While
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Comparison Pos Neg Fold Score

Cluster 1 Cluster 2 TO T1 To T1 Pos Neg To T1
CD20+ B cells Naive CD4+ T cells, Th1 0.74 0.91 1.23

Memory B cells CM CD8+ T cells -0.93 -0.74 0.80

Basophils EM CD4+ T cells 064 080 098 074 124 0.76 0.66 1.08
Basophils Naive CD4+ T cells, Th1 -0.61 -0.98 0.63

IFN-y IL-10 0.59 0.76  0.91 1.19 0.78

IL-13 Th2 cells -0.62 -0.87 1.39

IL-17A/F Yo T cells -0.58 0.91 -0.64

IL-4 Th2 cells 0.73 -0.73 -1.00

mDC Activated CD8+ T cells 0.61 -0.95 -0.64
NK cells EM CD4+ T cells Tht -0.72  -0.59 -0.76  0.82 0.78
CD4+ NKT cells Naive Tregs cells 0.64 0.79 1.23

Not Defined Naive CD4+ T cells -0.64 -0.59 -0.76  0.92 0.77
pDC CD4+ T cells 0.61 0.79 0.77

CM CD4+ T cells, Thi EM CD4+ T cells 0.65 -0.88 -0.86 097 -0.74

CM CD4+ T cells, Thi Naive CD4+ T cells, Th1 0.70 095 0.98 1.02 0.72
EM CD4+ T cells Th1 cells 0.78 0.96 1.23

EM CD4+ T cells Th2 cells 0.62 0.92 0.81 1.48 1.14
Naive CD4+ T cells, Th2  Naive Tregs cells 0.71 0.60 0.81 0.81 085 1.00 0.87 0.74
Yo T cells Th1 cells 0.64 0.81 0.81 1.00 0.80

Table 3.2 Fold change analysis of correlation scores highlighting group-specific immune dynamics. The table displays fold changes in
correlation scores between conditions (T0, T1) and groups for immune cell subsets and cytokines. These results provide insights into differential immune
regulation and potential biomarkers associated with inflammatory responses to the allergy.
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the comprehensive interpretation of these findings necessitates specialized immunological
expertise, my role as a bioinformatician involves also to conducting systematic analyses
deciphering the complexity of these relationships. I have investigated patterns from the target
list, proposing my understanding of the intricate immunological networks complexity and

their temporal dynamics revealed by these results.

The analysis revealed dynamic shifts in immune cell-cytokines interactions, marked by
significant A between time points T0 and T1. Notably, IL-17A/F and y§ T cells exhibited the
largest disruption (A = 1.48), reflecting a sharp decline in negative correlation strength. A
complete polarity reversal was observed for IL-4 and Th2 cells (A = 1.46), suggesting altered
regulatory dynamics. Emergent interactions, such as those between mDC and Activated
CD8+ T cells (A = 1.56), highlighted new associations at T1, while pairs like Basophils and EM
CD4+ T cells demonstrated moderate but consistent strengthening of positive correlations
(A = 0.33). These findings underscore the plasticity of immune cell networks under the
studied conditions, with A scores serving as critical indicators of biologically relevant shifts

in interaction patterns.

Beyond looking at raw changes in correlation coefficients (such as the simple difference
from TO to T1), we evaluated “fold changes” to highlight relationships whose magnitude of
shift may be noteworthy, see table 3.2 By combining these two metrics (Ar from table 3.1
and the fold change from table 3.2), we can better distinguish between modest alterations in
correlation and those that may reflect more biologically significant re-wiring of immune cell

networks.

The focus on fold change reveals dynamic temporal shifts in immune cell-cytokine in-
teractions, characterized by distinct correlation fold scores between time points T0 and T1.
Notably, Basophils exhibited strengthened positive correlations with EM CD4+ T cells (T0:
0.64; T1: 0.80) alongside a significant fold score increase (Pos: 1.24), suggesting early and
sustained pro-inflammatory signaling. Th2-associated cytokines displayed divergent regula-
tion: IL-13 showed amplified positive correlation with Th2 cells (fold score: 1.39), while IL-4
demonstrated a marked reversal (fold score: —1.00), highlighting nuanced regulatory roles.
Persistent negative correlations between Memory B cells and CM CD8* T cells (T0: -0.93; T1:
-0.74) underscored antagonistic cross-talk. These findings emphasize Th1/Th2 axis plasticity
and time-resolved immune coordination, providing mechanistic insights into group-specific

inflammatory and regulatory pathways.
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3.4 Decoding immune system interactions in allergy re-

action

Methodological considerations and analysis limitations

The correlation analysis presented in this study represents a focused examination of immune
system interactions in the context of peanut allergy, specifically highlighting statistically
robust relationships identified through stringent filtering criteria (r > 0.6, p < 0.05). While
this approach enables the identification of strong pairwise relationships, it is essential to
acknowledge several methodological considerations and limitations inherent to this analyt-
ical framework. First, the complexity of the immune system extends far beyond pairwise
interactions. The current analysis captures only direct correlational relationships between
parameters, potentially overlooking higher-order interactions and complex regulatory net-
works. This limitation is particularly relevant in immunology, where cellular and molecular
interactions often involve multiple mediators and feedback loops operating simultaneously.

The statistical power of our analysis is constrained by the cohort size, a common limitation
in clinical immunology studies. While bootstrap analysis helps mitigate the impact of outliers
and provides more robust correlation estimates, as evidenced in table 3.3, the relatively small
sample size may still influence the detection of weaker but biologically relevant correlations.
This limitation particularly affects the interpretation of temporal changes between T0 and
T1 timepoints, where individual variations might have substantial impact on correlation
coefficients. The volume of results generated, even after applying stringent filtering criteria,
necessitated selective presentation focused on the most statistically significant relationships.
The visualization through heatmaps and network diagrams, while informative, represents a
curated view of the immune system’s complexity. This selective approach, while necessary
for interpretability, may inadvertently obscure broader patterns or subtle interactions that

could be biologically relevant.

Integration with primary analysis and future directions

The correlation patterns identified in this study should be interpreted in conjunction with the
primary analysis [181] of pairwise comparisons between patient groups. This integrative per-
spective is crucial for several reasons. The coregulation patterns observed through correlation
analysis may provide mechanistic insights into the differential expression patterns identified

in the primary analysis. However, the relationship between these two analytical approaches
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Comparison r score

Cluster 1 Cluster 2 “Classic” Bootstrap
CD20- B cells Th1 cells -0.64 -0.60
CD20+ B cells Naive CD4+ T cells 0.81 0.78
CD20+ B cells CD45 RO+ Tregs 0.64 -
Memory B cells Memory resting B cells 0.79 0.75
Memory B cells EM CD4+ T cells, Th2 -0.69 -0.64
Memory B cells Naive Treg cells -0.66 -
Memory B cells TNF-a -0.60 -
Memory resting B cells EM CD4+ T cells, Th2 -0.66 -0.63
Memory resting B cells Naive CD4+ T cells, Th2 -0.73 -0.70
Memory resting B cells CM CD8+ T cells -0.65 -0.61
Memory resting B cells CM CD8+ T cells -0.61 -
Memory resting B cells  Naive Treg cells -0.68 -0.66
Memory resting B cells TNF-a -0.73 -0.70
Naive B cells Basophils -0.61 -
Naive B cells IFN-y -0.61 -
Naive B cells IL-33 -0.71 -0.68
Naive B cells EM CD4+ T cells -0.61 -
Naive B cells Naive CD4+ T cells, Th1 -0.82 -0.80
Naive B cells Naive CD4+ T cells, Th2 -0.68 -0.64
Plasma cells IL-13 0.73 -

Table 3.3 Comparative correlation analysis using classical and bootstrap approaches. The
table presents the top 20 correlation pairs between immune cell subsets and cytokines, comparing
results from the classical correlation method and bootstrap validation. Strong positive and negative
correlations highlight key immunological interactions, with bootstrap analysis providing robustness
checks and complementary validation to classical filtering for the interpretation of the targets.

is not always straightforward, necessitating careful interpretation and validation. Several
complementary in silico approaches could enhance our understanding of the observed corre-
lations: Advanced computational approaches could theoretically complement our correlation
analysis to better understand the complex immune system interactions. However, the limited
sample size of our cohort (n < 30) poses significant constraints on the application of such
methods. While traditional pathway analysis tools and databases are limited in the context
of allergy research due to the scarcity of curated allergy-specific pathways, the sample size
further restricts our analytical options. Advanced dimensionality reduction techniques (e.g.
t-SNE, UMAP) or clustering methods, while powerful for larger datasets, may not provide
reliable insights with our current sample size as they typically require larger populations
to establish stable, reproducible patterns. This limitation particularly affects our ability to

identify robust coordinated patterns of immune responses beyond pairwise correlations.
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Given these constraints, our focus on carefully filtered correlation analysis, supported by
bootstrap validation for interpretation, represents a simple but robust analytical strategy for
the available data. Future studies with larger cohorts would be needed to effectively employ
more sophisticated computational approaches for understanding how different immune cell
populations and their associated cytokines form functional modules during allergic responses.
The validation of these findings would ideally require an independent cohort with similar
immunological parameters. In the absence of such validation data, careful literature investiga-
tion becomes crucial for contextualizing our findings within the broader framework of allergic
responses. The bootstrap analysis provides some validation by identifying correlations that
are robust to sampling variation, but external validation remains important for confirming
the biological significance of these findings. Network-based analytical approaches, while
traditionally developed for gene expression analysis, could be adapted for immunological
parameters with careful consideration of the biological context. However, such adaptations
would require methodological innovations to account for the distinct nature of immunological
data, where the relationships between parameters may not follow the same principles as gene

co-expression networks.

Biological complexity and expert knowledge integration

The interpretation of immunological correlations requires careful consideration of biolog-
ical context and expert knowledge. While bioinformatic analysis can identify statistically
significant relationships, the biological relevance of these correlations must be evaluated
within the framework of known immunological mechanisms and potential novel interactions.
The networks and heatmaps presented in this study suggest complex patterns of immune
regulation that extend beyond simple linear relationships. The simultaneous activation of
multiple T helper subsets, as observed in our analysis, challenges traditional paradigms of T
helper cell differentiation and highlights the need for more sophisticated models of immune
regulation. The involvement of innate immune cells, particularly dendritic cells and basophils,
in coordinating adaptive immune responses aligns with current understanding of allergic
mechanisms. However, the specific patterns of correlation observed in our study suggest
potentially novel regulatory relationships that warrant further investigation through targeted
experimental approaches. The bootstrap analysis provides additional confidence in certain
correlations, particularly those maintaining significance across resampled datasets. However,

the biological interpretation of these relationships requires integration of immunological
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expertise to distinguish between correlations that represent known mechanisms and those

that might indicate novel regulatory pathways.

Literature investigation for presented results

The following discussion attempts to interpret the findings presented in the results section
from a bioinformatics and data science perspective, with particular emphasis on the method-
ological approaches employed to analyze this complex dataset. As a bioinformatician, my
expertise focus in developing and implementing computational strategies to explore large-
scale biological data, rather than in specialized immunological interpretation. While I do
not possess the clinical expertise to definitively assess the biological significance of these
findings, I have focused on establishing an comprehensive analytical workflows and applying
appropriate statistical methods to extract meaningful patterns from the data. This method-
ological foundation allows for systematic exploration of the results, while acknowledging that
the biological interpretations offered here should be considered as data-driven hypotheses
requiring validation by domain experts.

For TO Pos, the immunological relationships observed both corroborate and extend current
understanding of immune network dynamics. The strong coordination between classical
monocytes and mDC aligns with their established role in antigen presentation and T cell
priming [182, 183], while the pDC/CM CD4+ T cell axis may reflect their combined role
in maintaining antiviral immunity [182]. The cytokines triad of IFN-y, IL-5 and IL-22 sug-
gests concurrent Th1/Th2/Th22 activation, consistent with recent evidence of helper T cell
plasticity in inflammatory contexts [184, 185]. The inverse Plasma Cell/IL-33 relationship
echoes findings that IL-33 can suppress humoral responses through BAFF regulation [186],
while the Basophil-Th2 correlation supports their recognized role in type 2 immunity [187].
Notably, the observed Th1/Th2 co-activation challenges classical models that Th1 cells would
counterbalance and protect against Th2-mediated allergic responses, potentially reflecting
microenvironment-specific immune adaptations. These network interactions highlight previ-
ously underappreciated crosstalk between innate sensors and adaptive effectors, particularly
the regulatory interplay between NK cell subsets and T helper populations [188], suggesting
new layers of immune homeostasis control that need further mechanistic investigation.

Further analysis on T1 Pos and the immune network dynamics reveals additional complex
interactions that both challenge and refine classical immunological paradigms. The observed

immune network dynamics reveal complex interactions that challenge classical immunological
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paradigms while suggesting novel regulatory mechanisms. The strong positive correlations be-
tween EM CD4+ T cells and both Th1/Th2 subsets, coupled with direct Th1-Th2 coordination,
suggest these lineages may cooperate rather than antagonize in certain contexts, potentially
through transcriptional regulators like STAT5/GATA3 [189, 190]. This aligns with emerging
evidence of hybrid Th1/Th2 states in chronic inflammation [191]. The paradoxical negative
correlation between IL-13 and Th2 cells mirrors findings in cutaneous leishmaniasis where IL-
13 dominates over IL-4 in suppressing Th1 responses, potentially indicating a compensatory
Th2 cell feedback mechanism. Similarly, IL-33’s negative association with yd T cells supports
recent evidence of IL-33-mediated Treg control over innate lymphocyte activation [192]. The
coordinated anti-inflammatory activity of IL-10/IL-22 reflects their shared STAT3 signaling
but highlights underappreciated pro-inflammatory potential in specific microenvironments
[193, 194]. Regulatory T cell dynamics, particularly naive Treg-Th2 coordination versus Th1
opposition, align with models of Treg specialization for subset-specific suppression [195, 196],
while the T cell-TE CD8+ negative correlation may reflect exhaustion mechanisms observed
in chronic antigen exposure [197]. These findings collectively suggest an integrated immune
architecture where innate-adaptive crosstalk (monocyte-mDC) and cytokines feedback loops
maintain homeostasis through non-canonical pathways, warranting mechanistic studies to

elucidate the cellular circuits underlying these network-level phenomena.

The focus on A analysis revealed dynamic temporal shifts in immune cell-cytokines
network interactions, with y§ T cells and IL-17A/F exhibiting high A score, consistent with their
established role in bridging innate/adaptive immunity and driving neutrophilic inflammation
through IL-17-mediated epithelial activation [198, 199]. The complete polarity reversal
between IL-4 and Th2 cells aligns with GATA3-mediated transcriptional regulation of Th2
plasticity and IL-4’s capacity to modulate IgE class-switching in B cells [200, 201]. Emergent
interactions like mDC-Activated CD8+ T cell associations may reflect IL-3/IL-4 crosstalk
enhancing CD8+ effector functions, as demonstrated in basophil-T cell cooperation models
[202]. While moderate strengthening of basophil-EM CD4+ T cell correlations could indicate
YO T cell-mediated IL-4 production influencing Th2 polarization [199, 203]. These A-quantified
interactions underscore the context-dependent plasticity of immune coordination, where

cytokines-mediated cellular crosstalk dynamically reshapes effector responses.

Studies provide insights for the observed temporal dynamics highlighted in by the fold
change comparison. The strengthened basophil-EM CD4+ T cell correlation aligns with
evidence that basophils coordinate early Th2 polarization and Th17/Th1 cytokines expression,
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facilitating sustained pro-inflammatory signaling [204]. The divergent regulation of IL-13
(amplified) versus IL-4 (reversed) reflects functional specialization within Th2 pathways: IL-13
primarily drives alternative macrophage activation and tissue repair, while IL-4 shows tighter
regulatory control through negative feedback loops that prevent excessive IgE responses
[205]. This dichotomy is further reinforced by compensation mechanisms in IL-4/IL-13
double-knockout models, where residual Th1 activity persists through IL-5/eosinophil axes
[206]. The persistent negative correlation between memory B cells and CM CD8+ T cells
reflect on findings that B cell depletion impairs CD8+ T cells memory formation, suggesting
competition for survival signals like IL-15 or TNF-« in lymphoid niches [207]. Notably, the
Th1/Th2 plasticity observed in fold-change dynamics resonates with recent advances that
have challenged the traditional Th1/Th2 paradigm, revealing a more nuanced understanding
of CD4+ T cell biology. Research has demonstrated that helper T cells exhibit remarkable
plasticity, with the ability to dynamically transition between Th1 and Th2 states through
complex transcriptional network modifications [208]. This flexibility is further evidenced
by the identification of hybrid phenotypes, where allergen-specific T cells simultaneously
express both Thl-associated IFN-y and Th2-associated IL-4/IL-13 cytokines [208].

In conclusion, this study conducted a systematic literature analysis of targets identified
from the Positive cohort at both baseline (T0) and allergy manifestation (T1) timepoints.
The integration of delta (A) analysis and fold change metrics enabled the prioritization of
candidates from an extensive dataset into a manageable subset of targets. This computational
approach provides a foundation for future experimental validation. The ongoing collaboration
will facilitate the validation of these predicted targets through appropriate in vitro or in
vivo models. These findings warrant further investigation into the molecular mechanisms

underlying the observed changes in the Positive cohort.
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Chapter 4

WNT5A and fibroblast roles in

colorectal cancer

Abstract

The multifactorial and heterogeneous nature of CRC is characterized by various cellular
populations and molecular interactions contributing to its progression. Despite the growing
research interest over WNT5A, details and significance about its various mechanisms in CRC
remain unclear. This study implemented single-cell RNA sequencing analysis by exploring
clinical CRC samples and characterizing two distinct subpopulations of Cancer-associated
fibroblasts (CAF): inflammatoryCAF (iCAF) and myofibroblastic CAF (myCAF). To gain deeper
insight into cellular interplays and WNT5A expression, we subtyped fibroblasts cells and
explored their enriched pathway. We applied Ligand Interaction Analysis and Network and
NicheNet to investigate the ligand-receptor interactions specific to fibroblasts expressing
WNTS5A in the CRC TME, particularly focusing on the relationship among iCAF, myCAF) and
other cell types. Our outcomes propose a better understanding of the expression of WNT5A
in CAF, highlighting its contribution to the complex cellular mechanism that promotes
cancer growth. The recognition of WNT5A signaling in CAF and its involvement in cellular
interactions within the TME could leverage the possibility of targeting associated molecular

pathways for therapeutic strategies in precision medicine.
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4.1 WNT5A modulates fibroblast activity in colorectal

cancer

4.1.1 Background on Colorectral cancer

CRC ranks as the third most prevalent cancer globally and is the fourth primary cause of
all cancer-related deaths, contributing to 9% of all cases [209]. Despite advances in early
screening programs, surgical procedures, and chemotherapeutic drug development, CRC
is still a significant public health challenge. Smoking, obesity, and red meat consumption
notably increase the risk for CRC incidence [210]. Recent researches target the heterogeneity
of CRC, focusing on the variety of biological behaviors, the genetic modifications, and the

perturbations in signaling pathways.

Germline genetic mutations cause various hereditary CRC syndromes, while somatic mu-
tations accumulated over time lead to the development of sporadic colon cancer. A particular
mutation frequently found among Ashkenazi Jewish individuals could potentially precipitate
familial colon cancer [211]. Lynch syndrome, a recognized hereditary CRC syndrome, results
from DNA mismatch repair gene mutations primarily in MLH1, MSH2, MSH6, PMS2 and
EPCAM, which constitutes approximately 1-4% of all CRC cases [212]. Familial adenoma-
tous polyposis (FAP), as another example of a hereditary CRC syndrome, arises from APC
gene mutations and is characterized by the production of numerous adenomatous polyps
in the colon and rectum [213]. MUTYH-associated polyposis, juvenile polyposis syndrome,
Peutz-Jeghers syndrome, and serrated polyposis syndrome are additional hereditary CRC
syndromes. Identifying specific genetic mutations linked to these hereditary CRC syndromes
carries crucial clinical implications as it enables the implementation of strategies for early

cancer detection and prompts consideration of prophylactic surgery in certain instances [214].

Significant progress in early detection, risk assessment, prevention, and treatment of CRC
has resulted directly from understanding the genetics surrounding it [215]. However, there
remains an urgent need to explore more thoroughly the mechanisms of CRC development and
progression, especially in non-inherited cases. The discovery of new genetic mutations and
signaling pathways has sped up the creation of innovative therapeutic approaches targeted at
these specific molecular changes; this could potentially enhance treatment results for patients
suffering from CRC. Understanding CRC genetics has provided insights for recognizing the

Tumor microenvironment (TME) as a crucial factor in initiating, progressing and responding
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to treatment of CRC. The TME has intricate interactions between various cell types such
as cancer-associated fibroblasts (CAF), immune cells, and epithelial cells, that collectively

contribute towards promoting cancer progression [216].

4.1.2 Role of fibroblasts in the Tumor microenvironment

Primarily, we recognize fibroblasts for their essential roles as components of connective
tissue, with primary responsibility for producing the extracellular matrix and mediating tissue
repair. However, recent advancements in the field redefine our understanding of these cells;
illuminating their intricate involvement in host immunity and defense mechanisms [217].

Fibroblasts functions are context-dependent, often varying based on the tissue localisation.
These cells in different tissues manifest unique roles, especially in their interactions with
lymphocytes, thereby tailoring immunity to the specific tissue context [218]. Specialized
fibroblasts, such as the fibroblastic reticular cells in secondary lymphoid organs, demonstrate
a pronounced impact on immune responses. These cells are important in regulating immune
responses, orchestrating mechanisms that can initiate, modulate, or even suppress immunity
[219].

Fibroblasts play a role in immunity through their ability to identify and react to pathogens
through inflammatory processes [217]. They take roles in the synthesis of antimicrobial
peptides, growth factors, and other immune molecules. Such adaptive strategies modulate
the body’s defense mechanisms, particularly against bacterial and viral pathogens [220].
Moreover, fibroblasts extend their influence by interacting with various immune cells. In
certain pathological contexts, such as Inflammatory Bowel Disease, their modulatory role
on inflammation has serious implications, influencing both defensive mechanisms and thera-
peutic interventions [217]. The expression and activation of Toll-like receptors (TLR) within
fibroblasts contribute significantly to this process. While expressing several TLR (from 1 to
10), they act as the frontline defense for identifying pathogens and initiating the production
of cytokines and chemokines [220].

However, the role of fibroblasts is not limited to healthy states. Pathological fibroblasts
emerge as key players in various diseases as they maintain tissue homeostasis and repair
balance, but can also propel disease progression. For instance, they drive fibrosis and in-
flammation in diseases such as Rheumatoid Arthritis and even in COVID-19. Moreover,
oncologists have highlighted the importance of CAF, which critically influence immune

responses and can dictate the outcome of certain immunotherapies [218]. Recent studies
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indicate that therapeutic targeting of fibroblasts, along with the investigation of their diverse
functional states, not only provides valuable insights but also has the potential to facilitate

precision treatments in diseases such as RA, IBD, and various cancers [219].

CAF’s significant role in the TME emerges from their roles in signaling pathways and
diverse cellular mechanisms [221], which can be attributed to their origins in a variety of
cells such as mesenchymal stem cells (MSCs), mesothelial cells, adipocytes, hematopoietic
stem cells, and fibrocytes [222]. Thus, pointing towards CAF’s crucial participation in the
development of fibrosis and evolution of the TME . CAF are characterized by the presence of
specific markers, namely a-smooth muscle actin («-SMA) and fibroblast activation protein
(FAP), which serve as identification tools and perform various functional roles [222]. The
distinct spatial distributions, characteristics, and functional attributes of the subtypes iCAF
and myCAF exhibit conspicuous heterogeneity within theCAFpopulation. iCAF, classified by
their absence of FAP- and aSMA-, significantly contrast with myCAF that possess FAP+ and
aSMA+ [222, 223]. The varying functional roles in the TME are underscored by their distinct
molecular profiles, highlighting one of the significant functions exhibited by CAF as they
contribute in extracellular matrix (ECM) remodeling. Tumor cell invasion and metastasis are
facilitated by the secretion of ECM components and matrix-degrading enzymes such as matrix
metalloproteinases (MMPs), thus emphasizing the essential role played by the ECM in tumor
progression [224]. CAF are crucial for facilitating angiogenesis, a critical process necessary
for the survival and dissemination of tumors. They fulfill this role by releasing pro-angiogenic
factors, notably vascular endothelial growth factor (VEGF), thereby inducing the formation
of novel blood vessels [225]. CAF significantly influence the immune response within the
TME by creating an immune-suppressive environment through their production of specific
cytokines and chemokines, such as TGF-f. CAF play a crucial role in manipulating the immune
environment within the tumor by recruiting immunosuppressive cells such as regulatory T
cells and myeloid-derived suppressor cells [226]. Moreover, recent revelations have revealed
the presence of antigen-presenting CAF known as apCAF, which are distinguished by their
expression of markers like MHC II and CD74. Elucidating the specific roles and functions
of CAF in CRC could pave the way for developing innovative therapeutic strategies that
target these cells, thereby enhancing cancer treatment outcomes, while emphasizing their
potential involvement in immunomodulation within the TME necessitates distinguishing

between various functionalities of CAF subtypes [222].
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4.1.3 Significance of WNT5A in cancer progression

The Wingless and Int-1 (Wnt) signaling pathway acts as a key controller of diverse cellu-
lar processes, particularly in tissue homeostasis, repair, and tumor development. It has a
noticeable impact in CRC as an overactive pathway [227]. The Wnt pathway’s crucial role
in the development of CRC is firmly established, as around 70% of cases display an APC
gene mutation [228]. This abnormal activation of Wnt signaling has been consistently noted
in various human malignancies, particularly prominent within CRC [229]. The R-spondin
(RSPO) family is involved in gene fusions that accelerate Wnt-dependent tumor initiation in
CRC, an observation of great significance [230].

The Wnt pathway, specifically the Wnt/fS-catenin signaling, plays a fundamental role in
both embryonic development and adult homeostasis. The pathway’s involvement spans a
range of cellular activities, from the expansion of cells to the intricate tasks of cell diversity
and epithelial-mesenchymal transition (EMT), ultimately directing the movement, infiltration,
and spread of cells [231]. Considering its connection with various growth-related processes,
this pathway becomes an interesting focus for therapeutic investigations, particularly in
addressing CRC research [232].

WNT5A expression in CAF has been correlated with more advanced stages of CRC, mark-
ing it as a potential target explaining CRC pathophysiology [233]. WNT5A’s distinguished
characteristic among other members of the Wnt family lies in its unique capability to activate
and inhibit the canonical Wnt pathway, while being one of the major drivers of both the
non-canonical pathways [234, 235, 236]. Its significance is manifested in embryonic develop-
ment where it assumes an indispensable role in coordinating cell polarity and establishing
the axis of the body [237]. WNT5A binds to a variety of receptors such as FZD, ROR, PTK7,
and RYK, resulting in multiple ligand/receptor combinations capable of activating either the
canonical or non-canonical Wnt pathways [238]. WNT5A emerges as an interesting oncology
target, exhibiting a dual-faced role with both anti-tumor and pro-tumor properties. Initially,
CRC experiences WNT5A as a hindering influence that represses the crucial canonical Wnt
pathway necessary for early tumorigenesis. Nevertheless, as CRC advances, augmented
expression of WNT5A becomes a precursor of unfavorable prognostics. WNT5A acts as a
tumor suppressor in liquid tumors and CRC, whereas it exhibits tumorigenic properties in the
majority of solid tumors [239, 238]. In malignancies such as melanoma and ovarian cancer,
heightened levels of WNT5A indicate advanced stages primarily due to its vital role in the
Planar Cell Polarity pathway crucial for metastasis [240, 241]. The intricate role of WNT5A
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in oncology fluctuates depending on the tumor type. WNT5A’s intricate biology could be
linked with its therapeutic potential, highlighting its significance in developmental biology

and as a pivotal aspect of oncology research.

4.1.4 scRNA-seq solutions to investigate immunogenetics

scRNA-seq has emerged as a powerful tool for investigating ligand-receptor interactions
in CRC, providing invaluable insights into TME and the roles of immune cells in cancer
development. By analyzing CCC through ligand-receptor interactions it becomes apparent
that there is a stronger correlation between CRC subtype CMS1 and an abundance of key
players like monocytes and macrophages within TME [242]. Immunotherapies targeting
ligand-receptor interactions (LRIs) have experienced rapid advancements in the treatment of
colorectal cancer. Nevertheless, the patterns of LRIs in CRC, their impact on the TME, and
their clinical significance remain to be fully elucidated [243]. Investigating ligand-receptor
interactions between cells in diseased tissues using scRNA-seq offers valuable insights into
the pathogenesis and progression of the disease [244]. In recent years, there have been several
computational techniques developed for predicting CCC events through ligand-receptor
interactions using scRNA-seq data. Two examples of these methods are NicheNet and LIANA.
NicheNet is a computational approach that utilizes pre-existing knowledge, and it has been
iused in groundbreaking research to evaluate the efficacy and mechanisms of novel cancer
immunotherapies [245]. LIANA (Ligand-receptor Inference by Associating scRNA-seq and
Networks) is a versatile tool offering a unified interface for various CCC analysis resources and
methods. LIANA enables users to access and apply resources and methods in any combination,
presenting a consensus ranking and simplifying the process of analyzing CCC from scRNA-
seq data [246]. Both tools have been developed in response to the ongoing advancements in
scRNA-seq technology, which have shown a growing interest in understanding intercellular

crosstalk and led to the creation of many other tools and resources for investigating CCC.

In this study, our aim is to examine the expression of the WNT5A gene in CAF and predict
its receptor bindings in the context of CRC. We aim to enhance knowledge of fibroblast in-
volvement in the TME by gaining a deeper understanding of the role of WNT5A in fibroblasts,
despite its poorly understood mechanisms and downstream effects on these cells. The devel-
opment of new therapeutic strategies targeting the WNT5A signaling pathway improving

treatment outcomes for CRC patients, may be promoted by this enhanced comprehension.
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4.2 Characterization using scRNA and CCC

4.2.1 Data collection and processing

The dataset used in this analysis is derived from a prior study conducted by [247]. The
demographic characteristic reveals that the age distribution among these patients ranges
from the 50 to 90. Two patients are between the ages of 50-55 years, one patient is in the age
group of 76-80 years, three patients fall within the range of 80-85 years, and one patient is
aged between 86-90 years. The cohort has a gender distribution of four females and three
males. In terms of tumor staging, the cohort showcases a spectrum ranging from stage I to
stage IVA. Two patients exhibit a diagnosis at stage IIA, while two others present with stage
IIIB. Additionally, one patient demonstrates each of stages I, IIB, and IVA. Predominantly,
three patients exhibit tumors situated in the sigmoid region, while two patients have them
positioned specifically in the caecum and one patient has it located within the ascending colon.
Additionally, another patient exhibits a tumor at the left rectosigmoid. As the phenotype
subtype, all tumors are of moderately differentiated adenocarcinomas. However, one tumor is
located in the right caecum and is described as moderately differentiated adenocarcinoma with
an amalgamation of glandular and mucinous growth patterns that are further accompanied
by moderate budding. Six tumors are characterized as Microsatellite Stable from a molecular
standpoint, while one of the two tumors situated in the right caecum displays a profile of

Microsatellite Instability-High.

4.2.2 Computational Analysis

In order to identify fibroblast cells within our dataset, we used the Seurat package in the
R programming language. Initial quality control and filtering measures were implemented
to ensure the integrity and reliability of the obtained data. Specifically, our study only
considered cells with a minimum of 401 unique molecular identifiers (UMIs) and a maximum
of 15% of reads mapping to mitochondrial RNA. Data normalization was carried out using the
logNormalize method with a scale factor of 1°. Subsequently, we selected 2000 highly variable
genes utilizing a feature selection function and scaled the data by regressing on confounding
factors, such as the number of UMIs and the percentage of mitochondrial RNA.

Principal component analysis (PCA) was applied to the dataset across 20 dimensions,
followed by the employment of a clustering algorithm with a resolution of 0.4 and a shared-

nearest neighbor graph between cells to group the cells into distinct clusters. The smart local
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moving (SLM) algorithm and Uniform Manifold Approximation and Projection (UMAP) were
utilized for cluster visualization, while cell types were annotated using the SingleR package

and the BlueprintEncode reference.

To identify subtypes of fibroblast cells, we conducted a clustering analysis on a subset
of the fibroblast cells previously identified. The same preprocessing and analysis steps were
employed with identical parameters. We carried out a Differentially expressed genes (DEG)
analysis using the MAST algorithm and a specific selection of marker genes, allowing us to
identify two subtypes of fibroblast cells: iCAFand myCAF. This procedure was also repeated
for epithelial cells, employing an appropriate list of marker genes to discern the following
cell types: Tumor Cycling Cells (TCC), Revival Stem Cells (RSC), Fetal Stem Cells (FSC),
Paneth, Goblets, Enterocytes, Transit amplifying cells (TA), cycling TA, Tumor Goblet Cells
(TGC), Tuft cells, and Enteroendocrine cells (EE). We explored the expression of various
markers using the feature plot function within the Seurat package, identifying two iCAF
clusters expressing WNT5A (WNTiCAF) and identified them as WNTiCAF1 and WNTiCAF2.
DEG between the WNTICAF against the other cluster of WNTICAF cells and the myCAF
cells, using the MAST algorithm. The selection criteria employed involved stringent filters,
including an average log2 fold change greater than 1.5 or less than -1.5, and an adjusted
p-value threshold of 10732, Additionally, pathway enrichment analysis using org.Hs.eg.db
reference was conducted to pinpoint pathways that were enriched (with an overlap of 7 genes

at least) within the WNTICAF cells.

We used the LIANA (Linking Interactions and Network Analysis) package and the Nich-
eNet package to research potential signaling pathways and interactions among different
cell types, in order to understand the complexities of CCC within our dataset. Our analysis
with the LIANA package primarily focused on Macrophages, CD4+ T-cells, CD8+ T-cells,
Neutrophils, Monocytes, WNTiCAF, iCAF, RSC, HSC, FSC, TCC and myCAF cell types. We
aimed to identify significant interactions based on the highest ranking scores that can be
likened to p-values in terms of their significance. We prioritized WNTICAF cells as the
primary sender cells in order to gain a comprehensive understanding of their involvement in
intercellular communication. Through the NicheNet analysis, we focused our investigation
on examining the interactions between these cells and the aforementioned cell types. We
explored deeper into the ligand-receptor (LR) pairs, with a particular emphasis on WNT5A as
the ligand within our scope of interest. This enabled us to precisely identify distinct potential

regulatory mechanisms activated by WNT5A in the sphere of WNTICAF interactions with
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(b) Dot plot displaying the expression of two key mark-
(a) UMAP visualization of major cell populations, high- ers per cluster, with color intensity indicating average
lighting fibroblasts, epithelial cells, T cells, B cells, and expression levels and dot size representing the percent-
myeloid cells. age of cells expressing each marker.

Figure 4.1 Characterization of global cell types including fibroblasts.

interacting cells.

4.3 Fibroblasts drive inflammation and cancer progres-

sion

4.3.1 Characterization of CAF clusters

In the present study, we investigated the identification and characterization of fibroblast and
epithelial cell subtypes, as well as the analysis of CCC, in the context of cancer development
and progression. Our results provide insights into the cellular heterogeneity as we identified
and characterized two distinct subtypes of fibroblast cells, iCAF and myCAF. These subtypes
displayed unique gene expression profiles and biological properties, which were further
investigated by the Differentially expressed genes (DEG) analysis and extensive enrichment
analysis.

The figure 4.1 illustrates the single-cell transcriptomic landscape of identified cellular
populations in our study, as visualized by a UMAP. On figure 4.1a, each point corresponds to
an individual cell, and they are color-coded based on their assigned cell types, highlighting the
notable cluster of fibroblasts. On figure 4.1b, a dot plot showcases the expression patterns of
two significant marker genes for each identified cell cluster. The size of each dot represents the
proportion of cells within the cluster expressing the respective marker gene, while the color
intensity denotes the averaged expression level. This dot plot facilitates the simultaneous

representation of the marker genes prevalence and abundance across different cell populations,

91



WNTICAF2{ @ @ @ @ o o o [e) ° e o
° WNTCAF1{ @ @ @ o o @ o [5) ° e o
myCAF{ @ o ° ° ° ° [ (6] ) [ ] °
- icAFl @ © @ ®© o e o o o @ o
1 @ © @ ©o o o o [e] L) [e] o @ o

104 - ° o ° o .
Q°’°® ‘2526 @Q‘L < C)49’\@ c,+<’\>b c,+°\’\W \v&\ e"é? choh vgc? \SJ/\& Q\\&v

e Avg. Expression Percent Expressed

- 0 @ 25 50 75
0.0 25 5.0 75 L4 °

(a) UMAP visualization of fibroblast subclusters, high- (b) Dot plot displaying the expression of two key mark-
lighting distinct populations, including two clusters ers per cluster, with color intensity representing aver-
with WNT5A overexpression (WNTICAF1 and WNTi- age expression levels and dot size indicating the per-
CAF2), alongside myCAF and iCAF subtypes. centage of cells expressing each marker.

Figure 4.2 Characterization of stratified fibroblasts

thereby helping in the robust characterization of cellular heterogeneity in the sampled tissue.

The figure 4.2 goes deeper into the fibroblast heterogeneity identified in the preceding
analysis. figure 4.2a presents a UMAP focusing on the stratified fibroblasts, with the two
clusters demonstrating an overexpression of WNT5A explicitly highlighted. The figure 4.2b,
a dot plot, displays two key marker genes associated with each fibroblast sub-cluster. Similar
to figure 4.1, this representation enables the visualization of differential marker expression
across the fibroblast subpopulations, which can hint at their varying functional roles.

The combined visualization provided in figure 4.2 emphasizes the intricate layers of
fibroblasts heterogeneity, with specific attention to the WNT5A-overexpressing clusters. This
detailed stratification underscores the role of distinct fibroblast subsets in the biological
system under our scope, highlighting the importance of single-cell resolution in investigating

the complexity of cellular environments.

The figure 4.3 presents nebula plots, a form of spatial gene expression visualizations, high-
lighting the WNT5A expression across the cells as mapped onto the two UMAPs previously
described. Each nebula plot uses color intensities to denote the expression level of WNT5A,
with lighter shades representing higher expression.

In the left nebula plot, the WNT5A expression pattern is based on the UMAP of the global
cell types from figure 4.1. This plot allows us to gauge the relative WNT5A expression across

all cell types, with a particular focus on the fibroblasts.

The right nebula plot overlays the WNT5A expression onto the stratified fibroblasts
UMAP from figure 4.2. By doing so, it visually emphasizes the two fibroblast clusters that

overexpress WNT5A, as previously identified, providing a clear illustration of their distinct
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Figure 4.3 Nebula plots illustrating WNT5A expression across fibroblast clusters. Density
plots displaying the spatial distribution of WNT5A expression within the dataset, mapped onto the
previously identified UMAP. Higher expression levels (dark blue) indicate regions with enriched
WNTS5A activity, aligning with the stratified fibroblast populations

molecular signature within the broader fibroblast population.

Taken together, the nebula plots in figure 4.3 give context to the WNT5A expression
within our dataset, further illuminating its potential role in shaping the observed cellular

heterogeneity and the functionality of specific fibroblast subtypes.

The figure 4.4 presents volcano plots depicting the results of Differentially expressed
genes (DEG) analysis that involves first all the identified fibroblasts cells (figure 4.4a) and
both WNT5A-overexpressing fibroblast clusters (figure 4.4b).

The figure 4.4a plot, including both WNTiCAF clusters, provides an overview of DEG
from the combined WNTIiCAF clusters as compared with other fibroblasts. Although WNT5A
does not appear among the top 10 labeled genes in this aggregate view, its overexpression is

captured in the underlying data and is a key signature of the WNTIiCAF population.

The figure 4.4b plot breaks down WNTICAF clusters, revealing cluster-specific expression
profiles. In this more focused view, WNT5A is among the upregulated genes that define the
unique transcriptional within each WNTICAF subgroup. This highlights the important role
of WNT5A in driving cluster-specific phenotypes and potentially influencing underlying

mulecular pathways.
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(a) Volcano plot displaying DEG across all fibroblasts, (b) Volcano plot focusing on DEG specific to WNTi-
highlighting the top 10 genes, including both WNTi- CAF clusters, emphasizing the top 10 most significant
CAF clusters. markers.

Figure 44 Comparative volcano plots of Differentially expressed genes in fibroblast popu-
lations. Log2 fold change (x-axis) represents gene expression differences, while the adjusted -log10(p-
value) (y-axis) indicates statistical significance.

4.3.2 Fibroblasts clusters enrichment comprehension
WNTICAF clusters against the other fibroblast cells

The figure 4.2a presents a UMAP that specifically highlights the two WNT5A overexpress-
ing fibroblast clusters (WNTiCAF). This UMAP visualization effectively sets the stage for
the enrichment analysis by emphasizing the spatial distribution and relative density of the
WNTICAF clusters within the broader context of the fibroblasts cells. The distinct clustering
patterns and their separation from other fibroblasts cell populations underscore the unique
transcriptional signatures of these fibroblast subsets, further justifying their selection for
deeper functional exploration through enrichment analysis.

A comprehensive Gene Ontology (GO) enrichment analysis (figure 4.5) was performed on
the 103 DEG identified and revealed several pertinent biological processes, molecular functions,
and cellular components that could potentially be dysregulated within our study. Among
immune-related pathways, we observed enrichment for “Leukocyte migration”, “Leukocyte
chemotaxis”, “Cell chemotaxis”, “Cellular response to molecule of bacterial origin”, “Cellular
response to biotic stimulus”, and “Response to lipopolysaccharide”. These findings suggest an
activated immune microenvironment and possible chronic inflammatory processes in CRC.

Developmental and differentiation pathways were also significantly enriched, including
“Muscle cell differentiation”, “Mesenchyme development”, “Mesenchymal cell differentiation”,
“Regulation of vasculature development”, “Regulation of angiogenesis”, “Cell fate commit-

ment”, “Ossification”, and “Pattern specification process”. This highlights potential disruptions

in cell lineage determination and tissue homeostasis, which could contribute to tumor pro-
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gression.

Additionally, several processes related to tissue architecture and extracellular matrix
remodeling were enriched, such as “Extracellular matrix organization”, “Extracellular structure
organization”, and “Morphogenesis of a branching structure”. These results underscore a
likely remodeling of the TME, which may impact cancer cell invasion and progression.

Overall, our GO enrichment analysis provides a comprehensive insight into the inter-
play between immune activation, developmental dysregulation, and extracellular matrix
remodeling in CRC, reinforcing the complex pathophysiology underlying the disease.

Molecular function (GO | MF) terms enriched in these experimental conditions (figure 4.6)
suggest roles in signal transduction, protein-protein interactions, enzymatic activity, and
receptor binding. Specifically, these include “Signaling receptor binding”, “Enzyme binding”,
“Transmembrane signaling receptor activity”, “Peptidase activity”, “Identical protein binding”,
“Ton binding”, “Heparin binding”, and “Glycosaminoglycan binding”. The enrichment of
these functions highlights potential alterations in extracellular matrix interactions, enzymatic
processing, and receptor-mediated signaling, which may be relevant to the dysregulated
cellular communication observed in CRC.

Moreover, the enriched terms in the Biological Processes (GO | BP) (figure 4.7) further
illustrate the intricate interplay of transcriptional regulation in CRC, particularly through
pathways such as “Negative regulation of transcription by RNA polymerase II” and “Posi-
tive regulation of transcription by RNA polymerase II”. These findings emphasize potential
disruptions in gene expression control that may contribute to tumorigenesis.

Additionally, pathways associated with neuronal development — including “Neuron
projection development”, “Neuron projection morphogenesis”, “Axonogenesis”, and “Axon
development” — suggest a possible role for neurogenic mechanisms in CRC progression,
potentially linked to neural remodeling within the TME.

Finally, the presence of angiogenesis-related terms such as “Regulation of angiogenesis”
and “Positive regulation of angiogenesis” underscores the vascular adaptations crucial for
tumor growth and metastasis. Together, these enriched pathways highlight the multifaceted
nature of CRC pathophysiology, integrating transcriptional control, neural plasticity, and

vascular remodeling as key biological components of tumor progression.

WNTiCAF1 cluster DEG enrichment focus
Another comprehensive GO enrichment analysis was performed on the 74 DEG expressed
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Figure 4.7 Enriched biological processes (BP) in WNTiCAF clusters. he heatmap presents significantly enriched GO biological processes associated
with both WNTiCAF clusters. Rows represent genes, while columns correspond to biological processes. Dark blue cells indicate gene-term associations,
while light gray cells represent absence. Processes are grouped by hierarchical levels (Lv. 11 and Lv. 12), highlighting pathways involved in neuron
projection, axonogenesis, angiogenesis regulation, and transcriptional control.

98



genes identified focusing in this part on the WNTICAF1 cluster (figure 4.2a). The results of
the analysis were insightful, underscoring the broad impact of alterations in the expression

patterns of these genes on biological processes and cellular functionalities

The analysis revealed pertinent GO processes involving morphogenesis and development.
The identified processes (figure 4.8) included “mesenchyme development”, “mesenchymal cell
differentiation”, “connective tissue development”, and “cell fate commitment”, all of which are
relevant to tumorigenesis, particularly in the remodeling of the TME and metastatic dissemi-
nation. Additionally, “wound healing” and “epithelial tube morphogenesis” suggest potential
implications in tissue regeneration and repair mechanisms often co-opted by cancer cells.
“Regulation of cell growth”, “chemotaxis”, and “regulation of apoptotic signaling pathways”
further highlight key aspects of tumor progression, including aberrant proliferation, migra-
tion, and evasion of apoptosis. These findings underscore the dysregulation of developmental

and signaling pathways that may contribute to the aggressive phenotypes observed in CRC.

In terms of molecular function (GO | MF) (figure 4.9), several activities stood out that
could play a role in CRC pathogenesis. The highlighted functions were primarily centered
around receptor signaling, including “signaling receptor binding and activator activity” and
“transmembrane signaling receptor activity”, which are crucial in mediating intercellular
communication and driving cellular responses. Additionally, functions related to protein
binding, such as identical protein binding and enzyme binding, were also found, suggesting
the potential for altered protein-protein interactions within the CRC cellular milieu. Lastly,
the “DNA-binding transcription factor activity, RNA polymerase II-specific”, and “nucleic acid
binding” indicate changes in the transcriptional regulation machinery which could further

contribute to oncogenic transformation.

As for biological processes (GO | BP) (figure 4.10), we observed over representation of genes
implicated in the “regulation of transcription by RNA polymerase II”, including both its positive
and negative regulation. This suggests that transcriptional dysregulation may be an essential
feature of the WNTICAF1 cluster. Additionally, genes associated with “neuron projection
morphogenesis”, “axon development”, and “axonogenesis” were prominently represented.
This enrichment in neuronal processes may indicate a previously unappreciated link between
transcriptional regulation and axonal growth in the context of WNTiCAF1, warranting further

investigation.
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Figure 4.8 GO term enrichment analysis in WNTiCAF1 cluster. The heatmap displays Gene Ontology (GO)GO biological processes significantly
enriched in the WNTICAF1 cluster. Rows represent genes, and columns correspond to enriched GO terms. Dark blue cells indicate gene-term associations,
while light gray cells represent absence. The top bar represent gene count per term, while the color gradient indicates the statistical significance (-log10
adjusted p-value) of enrichment. Key enriched pathways include mesenchymal differentiation, tissue development, wound healing, and epithelial
morphogenesis.
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Figure 4.10 Enriched biological processes (BP) in the WNTICAF1 cluster. The heatmap presents
significantly enriched GO biological processes associated with the WNTICAF1 cluster. Rows represent
genes, and columns correspond to enriched biological processes. Dark blue cells indicate gene-term
associations, while light gray cells represent absence. Key enriched pathways include transcriptional
regulation, neuron projection morphogenesis, axonogenesis, and cell differentiation, highlighting the
functional landscape of WNTICAF1 fibroblasts.
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WNTiIiCAF2 cluster DEG enrichment focus

Our enrichment analysis on WNTICAF?2 (figure 4.2a identified 87 genes and revealed significant
insights into the biological processes, molecular functions, and GO categories linked with
CRC pathology.

Enrichment analysis of GO terms (figure 4.11) revealed a notable over-representation of
categories related to microbial response, including, “response to molecule of bacterial origin”,
“cellular response to lipopolysaccharide”, “cellular response to molecule of bacterial origin”,
and “cellular response to biotic stimulus”. These categories highlight a critical immune re-
sponse to bacterial components, a key factor in the colorectal environment. Additionally, GO
terms associated with leukocyte activity, such as “leukocyte migration”, “leukocyte chemo-
taxis”, “myeloid leukocyte migration”, and “cell chemotaxis”, indicate a dynamic immune cell
movement, which may be instrumental in modulating the inflammatory landscape.

Beyond immune responses, the analysis also revealed an enrichment of GO terms related
to tissue remodeling and structural organization, including “extracellular matrix organization”,
“extracellular structure organization”, and “external encapsulating structure organization”.
These pathways suggest active stromal remodeling processes that may contribute to TME.
Furthermore, the presence of “regulation of inflammatory response” and “developmental
maturation” underscores the interplay between immune activation and tissue differentiation,
potentially influencing disease progression and therapeutic responses.

The molecular function (GO | MF) (figure 4.12) results highlighted functions predominantly
related to binding and enzymatic activity. Identified categories such as “Signaling receptor
binding”, “Nucleoside phosphate binding”, “Heterocyclic compound binding”, “Ribonucleotide
binding”, “Ion binding”, and “Nucleic acid binding” suggest a strong involvement of molecular
interactions and regulatory networks in CRC. Additionally, “Peptidase activity”, “Enzyme
binding”, and “Signaling receptor activator activity” denote potential alterations in enzymatic
functions and proteolytic processes, which may contribute to disease progression and cellular
microenvironment dynamics.

The biological processes (GO | BP) (figure 4.13) unveiled are predominantly centered
around transcriptional regulation and angiogenesis, both of which play crucial roles in tu-
morigenesis and cancer progression. The identified terms, such as “positive regulation of
transcription by RNA polymerase II”, highlight potential transcriptional dysregulation. Addi-
tionally, the processes “regulation of angiogenesis” and “positive regulation of angiogenesis”

emphasize alterations in blood vessel formation, a key factor in tumor growth and metasta-
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GO term enrichment analysis in the WNTiCAF2 cluster. The heatmap presents significantly enriched GO biological processes

associated with the WNTiICAF2 cluster. Rows represent genes, and columns correspond to enriched GO terms. Dark blue cells indicate gene-term
associations, while light gray cells represent absence. The top bar denotes gene count per term, and the color gradient indicates the statistical significance
(-log10 adjusted p-value) of enrichment. Key enriched pathways include immune response regulation, extracellular matrix organization, chemotaxis, and

leukocyte migration, highlighting the inflammatory role of WNTICAF2

fibroblasts.

104



"$1s€[qo1q1y Z4VIILNM Jo saiiadoud Jeuoriouny ay3 SunnysiySiy ‘Suipuiq urejoud pue
‘uoljeAl}oe swAzud ‘AjA1oe Jojdadas SuljeuSis ‘Guipulq ap1303|anu IpN|dul SUOIIDUNY PaYdLIUd AdY| ‘dduasqe Juasaldal s|[ad Aea3 1ySI| 9jIym ‘suoljerdosse
W.I93-2ua8 93eDdIpUl S[[30 9N|q 3}JB( "SUOIJOUNJ Je|Nd3jow 03 puodsalriod suwn|od [iyMm ‘sauag Juasaidal smoy 193sN[d Z4VIILNAA @Y} YHM pajeIdosse suiia}
uollduny Jendasjow OO paydiiua Ajjuedyiusis sjuasaid dewiesy sy 19IsnP Z4VILLNA @Y1 Ul ({W) suoipuny Jeindajow paydriuy g1 24nsi4

uasqy ju3sald .

snels
&
> Q) Fe) ¢
o S0 &, N & SR P (& 3
) > & STV S e QL3P0 o VN T o P > A > N N
RO P NS > O @ S PSS X0 Ve AT & P CF0 P PPN PN Dd LSRo P &
NP N0 W 0P T SN O S L o L QLR AT PSS D LA A PR S
ERIIPLELELEITXE IS EI T LLELE P PP LS SIS EFRFp @GO LI ELUOLLLOLF SRR

P T T T S

Buipuiq Joidadal Buljeubis ..

P T TR TR SR S T T SR TR SR P S S

Ayainoe Jojeande Joydadal Bulleubis AN EEEEEEEEEEEEE
Bulpulq uisjoud [eanusp) 4 . ........... ..
A3noe asepiydad ... ....
Bulpuiq awAzug [ [ | | [ | | [ ] [ | <
Bupuig proe 21310 I I [ | | [ | | [ | I
Buipuiq uoj Al EEEEEEEEEEEEEEEEEEEEEEEEEEEEm
Buipuiq @pRoa|anuoqLy EEEEEEEN
Buipuig punodwod 31]24201933H A . . ..-.....
Buipulq @1eydsoyd apisos|aNN A . ..............

auan

4N | 0D



GO | BP

Gene

I Positive regulation of angiogenesis

I Regulation of angiogenesis

Lv. 11

Positive regulation of transcription by rna polymerase ii

I Positive regulation of angiogenesis

Lv. 12

Status
. Present Absent

Figure 4.13 Enriched biological processes in the WNTiCAF2 cluster. The heatmap presents
significantly enriched GO biological processes associated with the WNTICAF2 cluster. Rows represent
genes, while columns correspond to enriched biological processes. Dark blue cells indicate gene-term
associations, while light gray cells represent absence. Key enriched pathways include the regulation
of angiogenesis and transcriptional control, suggesting a role for WNTICAF2 fibroblasts in vascular
remodeling and gene expression regulation.

sis. Collectively, these results provide insights into the molecular mechanisms potentially

disrupted in CRC and offer a view for further investigations.

4.3.3 Characterization of epithelial cells in the TME

In addition to fibroblast cells, we identified and characterized 13 distinct epithelial cell sub-
types: Tumor Cycling Cells (TCC), Revival Stem Cells (RSC), Fetal Stem Cells (FSC), Paneth,
Goblets, Enterocytes, Transit amplifying cells (TA), Tumor Goblet Cells (TGC), Tuft cells, and
Enteroendocrine cells (EE), shown as a UMAP in figure 4.14. A dot plot displays significant
marker genes that helped in the characterization of these epithelial cells. This provides a

comprehensive view of the gene expression profiles that define each epithelial subpopulation.

4.3.4 TME cellular interactions involving WNT5A-expressing CAFs

Utilizing the LIANA and NicheNet packages, we investigated CCC within the TME. Our
analysis revealed intricate intercellular signaling networks involving multiple ligand-receptor
pairs between fibroblast, epithelial, and myeloid cell populations.

The figure 4.15 showcases a network visualization of predicted cellular interactions among
the global cell types identified in our study, as inferred by the Liana computational framework.

Each node in the network represents a different cell type, and edges between nodes symbolize
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enterocytes, Paneth cells, Goblets, and tuft cells. indicates average expression levels.

Figure 4.14 Characterization of stratified epithelial cell clusters.

Figure 4.15 Predicted cell-cell interaction network across global cell types. Network rep-
resentation of ligand-receptor interactions predicted by Liana, illustrating communication between
cyCAF and other major cell types, including epithelial cells, T cells, B cells, myeloid cells, and mCAF.
Edge thickness and color indicate interaction strength, with red representing strong interactions and
blue indicating weaker ones. This analysis provides insights into the signaling dynamics shaping the
cellular microenvironment.
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predicted cellular interactions, with their thickness and colors corresponding to the total
number of interactions predicted. This network diagram provides a global overview of
potential CCC patterns within the tissue, highlighting the intricate interplay among various
cell types that collectively contribute to tissue function and homeostasis. In the network
diagram of figure 4.15, significant crosstalks between the iCAF cells, epithelial cells, Myeloid
cells, myCAF cells, and WNTIiCAF cells themselves are particularly notable. They represent
potential lines of communication or interactions, suggesting these cell populations may
be involved in coordinated cellular functions or regulatory mechanisms within the tissue

microenvironment.

The figure 4.16 showcases a Circos plot that represents the top 10 ranked interactions (also
filtered by the LIANA consensus rank) where WNTICAF cells serve as ligand-producing cells.
The plot displays these interactions with the following cell types of interest: Macrophages,
CD4+ T-cells, CD8+ T-cells, Neutrophils, Monocytes, WNTICAF, iCAF, myCAF, RSC, HSC,
FSC, and TCC. Each segment on the outer circle of the Circos plot corresponds to one of
these cell types. The inner part of the circle contains colored ribbons (according to the
receptor-producing cell type color), each connecting the two cell types. The width of these
ribbons at each end indicates the strength of the ligand-receptor interaction between the
corresponding cell types, with thicker ribbons denoting stronger interactions. Next to the tip

of each ribbons, a colored box indicates the corresponding LIANA consensus rank.

The resulted circos figure 4.16 Circos plot allows for an efficient and visually intuitive
representation of complex interaction networks. It also provides an insightful overview of the
top interactions involving WNTICAF cells, highlighting their potential role in coordinating
CCC within the studied biological system. This global view of the WNTiCAF cell interactions

can inform future investigations into the functional implications of these cellular crosstalks.

The analysis conducted using NicheNet revealed the following receptors to bind with
WNT5A as a ligand from the identified WNTICAF cluster: LRP6, TFRC, SCARB2, RYK, M6PR,
LRP5, LDLR, IGF2R, FZD7, FZD5, FZD1, FRZB, ANTXR1, DAB2, PTPRK, and EGFR. In contrast,
Liana detected these receptors: FZD1, FZD4, FZD5, FZD7, FZD8, RYK, LRP6, LRP5, PTPRK,
ANTXR1, LDLR, ROR1, ROR2, PTK7, MCAM. A comparative analysis of the results obtained

from both tools was performed to establish a consensus of the detected receptors.

The overlapping receptors identified by both NicheNet and Liana include: FZD1, FZD5,
FZD7, RYK, LRP6, LRP5, PTPRK, ANTXR1, and LDLR. These consensus receptors signify

potential targets for further exploration in the context of proteins of interest.
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Figure 4.16 Circos plot of top-ranked ligand-receptor interactions involving WNTiCAF
cells. The plot visualizes the top 10 ranked ligand-receptor interactions where WNTICAF cells act
as either ligands or receptors, interacting with various immune and stromal cell types, including
macrophages, CD4+ T cells, CD8+ T cells, neutrophils, monocytes, myCAF, iCAF, RSC, HSC, FSC,
and TCC. Edge thickness represents interaction strength, while colors indicate different cell clusters.
This analysis provides insights into the signaling network underlying cellular crosstalk in the Tumor

microenvironment.
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FZD1, FZD5, and FZD7 belong to the Frizzled family of proteins, which serve as 7-
transmembrane receptors in the Wnt signaling pathway [248]. These receptors are crucial
for various cellular activities such as cell differentiation, growth, and migration. Although
the cysteine-rich domains (CRDs) of FZD5, FZD7, and FZD8 have a similar a-helical dimer
structure, their peptide-binding regions display differences in amino acid composition [249].
FZD1, FZD5, and FZD7 are involved in synapse formation and plasticity, and studies have
shown that their expression levels decrease in the hippocampus during the early stages of
Alzheimer’s disease [250]. Researchers have observed FZD5 methylation in the early stages of
acute myeloid leukemia (AML) development. FZD5 antibodies have been employed to inhibit
receptor activity in pancreatic and CRC cell lines, suggesting that targeting FZD5 could be
a potential preventive measure for AML and other cancers [251]. FZD7 has been linked to

potential therapeutic targets for CRC [252].

The RYK gene encodes a receptor-like tyrosine kinase, which functions as a receptor for
Wnt proteins required for cell-fate determination, axon guidance, and neurite outgrowth in
different organisms [253]. While RYK, as a Wnt receptor, has been shown to interact with
noncanonical Wnt ligand Wnt5a in gastric cancer [254], more studies are needed to elucidate
the specific role of the RYK gene and its interactions with the Wnt signaling pathway in the

context of colorectal cancer.

LRP5 and LRP6 are closely related low-density lipoprotein receptor-related proteins,
which are crucial for mediating Wnt signaling pathways [255]. As co-receptors for canonical
Wnt ligands, they both activate the Wnt/f-catenin signaling pathway but exhibit unique
characteristics by interacting with distinct protein partners [255]. In the context of CRC,
LRP5 regulation occurs through promoter methylation, while LRP6 is regulated via post-
translational modifications involving protein ubiquitination and degradation. CRC displaying
high TRAP1 expression are marked by the concurrent upregulation of active f-Catenin, LRP5,
and LRP6 [256]. Additionally, LRP5 has been implicated in the promotion of cancer stem cell
properties and resistance to chemotherapy in CRC [257]. While LRP6 knockdown in CRC
cell lines with mutations in downstream Wnt signaling genes did not significantly impact
Wnt signaling activity, it notably reduced Wnt signaling activity in esophageal squamous
cell carcinoma cell lines lacking Wnt signaling-related mutations [258]. Research has shown
that using single-domain antibody fragments to target LRP5/6 can effectively mitigate the

development of intestinal cancers [259].

Protein tyrosine phosphatase receptor-type kappa (PTPRK) is a tumor suppressor that
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also functions as an inhibitor of Wnt signaling in human cancer cells, as it has been shown
in the Spemann organizer of Xenopus embryos. It operates through the transmembrane E3
ubiquitin ligase ZNRF3, which is a negative regulator of Wnt signaling that facilitates the
degradation of Wnt receptors [260]. PTPRK dephosphorylates and exposes the 4Y motif, which
promotes the internalization and lysosomal targeting of ZNRF3 and Wnt receptors, leading
to a reduction in Wnt signaling. Conversely, an unidentified tyrosine kinase counteracts
PTPRK by phosphorylating the 4Y motif, impairing ZNRF3/Wnt receptor internalization, and
ultimately increasing Wnt signaling [261]. In CRC, the PTPRK-RSPO3 (P:R) fusion is a well-
known structural variation that activates Wnt signaling and promotes tumorigenesis [262].
Active studies investigates therapies targeting the Wnt pathway for tumors with RSPO2/3
fusions. CRC with PTPRK-RSPO3 fusions have demonstrated a response to RSPO3-taxane
treatment [263].

ANTXR1, also known as Anthrax Toxin Receptor 1, is a type I membrane protein that has
a role in maintaining extracellular matrix balance, promoting angiogenesis, and stimulating
cell growth [264]. It has been shown to regulate the reactivation of fetal hemoglobin (HbF) in
various cell types by interacting with LRP6, facilitating the nuclear entry of f-catenin, and
activating the Wnt/f-catenin signaling pathway [265]. Regarding CRC, ANTXR1 has been

investigated as a potential biomarker for the detection and prognosis of this disease [266].

Members of the low-density lipoprotein receptor (LDLR) family, such as LRP5 and LRP6,
are involved in a multitude of physiological processes, including lipid metabolism and oxida-
tion. LRP6, a crucial effector of the canonical Wnt signaling pathway, has been associated
with an array of diseases, including cancer [267]. The extracellular domain of LRP6 has been
demonstrated to interact with Wnt-1 and associate with Frizzled (Fz) in a Wnt-dependent
fashion [268]. Another LDLR family member, LRP1, has been reported to interact with human
frizzled-1 (HFz1) and down-regulate the canonical Wnt signaling pathway. Furthermore,
the LDLR family, including LRP5/6, has been shown to function as Wnt co-receptors by

interacting with Fz receptors [269].

In conclusion, our study presents a thorough characterization of fibroblast and epithelial
cell subtypes and their intercellular communication within the TME. The identified receptors
offer promising therapeutic possibilities for CRC, owing to their involvement in diverse
signaling pathways and cellular processes related to cancer progression. Further research
is needed to validate their potential as effective targets and develop specific inhibitors or

therapeutic agents that can modulate their activity in CRC patients. Our findings contribute to
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a more profound understanding of the complex cellular heterogeneity and signaling networks
in cancer, potentially paving the way for the development of novel therapeutic strategies

targeting specific cell subtypes and intercellular communication pathways.

4.4 Hypothesis generation from Single-cell analysis

As scRNA-seq is a relatively new technology, various decisions must be made by the researcher
during data processing. One crucial aspect is quality control (QC), where the determination
of specific cutoff values for filtering cells with low gene expression can significantly affect
the final results. Additionally, the selection of an appropriate normalization method is critical
in scRNA-seq analysis, as it can greatly impact the findings. In our study, we utilized log
normalization, a classical and reliable approach that stabilizes the variance of expression values
and shapes the data into a Gaussian-like distribution. This method effectively mitigates batch
effects and reduces the impact of technical variability. However, alternative normalization
methods, such as the sctransform method introduced by Hafemeister and Satija [270], could
also be explored. This innovative approach eliminates technical variability and confounded
biological heterogeneity without the need for heuristic steps, stabilizes variance, and enhances
downstream analytical tasks. The choice of normalization method should be tailored to the
specific goals and requirements of the study and the dataset characteristics. In our case, we
opted for log normalization, as it is a reliable, well-established method that met our study’s
needs.

The choice of clustering resolution and algorithm greatly influence the analysis of scRNA-
seq data, playing a crucial role in exploring the diversity of cell types and states within
the dataset. Researchers have proposed various clustering algorithms, including traditional
hierarchical methods and innovative deep learning approaches such as scDeepCluster [271],
to classify cells based on their gene expression patterns. Resolutions in clustering approaches
determine the level of detail for cell clusters, potentially allowing to highlight new cell types
while also presenting a risk of excessive clustering with imbalanced clusters. Finding a
balance here is crucial when some clusters are close together at lower resolutions, thereby
hiding finer differences. The choice of algorithm and resolution directly impacts the resulting
quantity and composition of cell clusters, making it imperative to capture rare cell types in
conditions like cancer where a small population of cells could be responsible for a disease

outcome, while also avoiding artificial division of cell populations into separate biased clusters.

112



These decisions heavily influence the interpretation of results, such as understanding tissue
heterogeneity, identifying novel cell types, due to inherent biases and assumptions in each
algorithm. Benchmarking multiple methods is crucial in determining their strengths and
limitations across various contexts, as exemplified by the scCCESS study which examined 14

different algorithms or resolutions [272].

The rapid evolution of scRNA-seq has highlighted the importance of accurate cell type
labeling. Automation is increasingly used due to the complicated manual annotation, with
tools like ScType and scAnnotate leveraging extensive databases and machine learning

techniques [273, 274, 275].

However, while automation offers speed and general classification, it is worth recognizing
its limitations. For detailed and specific cell type identification, particularly at a fine level,
manual labeling remains indispensable, because subtle distinctions and nuances in cell types
might be overlooked by automated systems. Additionally, every labeling method, automated
or manual, can introduce biases. It is essential to critically assess the accuracy and reliability
of chosen methods. While automation can handle wide annotations and provide an initial
framework, manual validation and refinement are often required to ensure the highest level

of accuracy, especially when exploring novel cell types in context such as cancer research.

LIANA provides a versatile platform for L/R analysis which uses separate methods and
resources. Its efficient implementation facilitates intercellular communication studies by
integrating with many other tools, such as CellPhoneDB, CellChat, and NATMI. In addi-
tion, LIANA’s is a flexible toolbox with customizable resources that enhance its capabilities.
LIANA’s consensus ranking harmonizes prediction scores from these various tools. Fur-
thermore, the integration of OmniPath deepens insights into intercellular communication

complexities and strengthens the outcomes [246].

NicheNet, which specifically analyzes the intracellular implications of CCC, is valuable in
predicting ligand-target associations and evaluating their associated functional activity. Its
well-structured integration with ligand-receptor inference further enhances the applicability
of NicheNet, enriching its CCC predictions. The methodology and documentation is exten-
sive, providing useful guidance on various aspects ranging from Seurat analysis to model
optimization [276].

However, the capabilities of such tools present crucial challenges due to the variation in
methods, scoring, and resources. Such variability frequently complicates direct comparative

analyses. These tools, because of their diverse analytical approaches, establish intricate
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scoring systems that can be complicated to compare. Researchers find frameworks like
LIANA useful for comparing, processing, and achieving consensus results from various tools.
These predictions are of great importance as they are closely connected to the accuracy of the
underlying models and databases. Relying on such predictions requires awareness of their
limitations and possible sources of error. The coverage and accuracy of the databases could be
an origin of errors, therefore caution is necessary in interpreting these results. Remembering
that bioinformatic predictions are only stepping stones in the research framework, further
experimental validations are necessary to confirm both the proposed L/R bindings and validate

the study’s findings.

Our findings offer novel perspectives regarding the expression and functionality of
WNT5A in fibroblast cells, as well as its involvement in CRC. The characterisation of two
distinct subtypes of fibroblasts, iCAF and myCAF, based on gene expression analysis empha-
sizes the importance of investigating fibroblast cells in the context of cancer. Findings on the
enriched pathways in the WNTICAF cells potentially have therapeutic implications and offer
targets for cancer treatment. We highlight the necessity for a more profound exploration into
the functional functions of these cell subtypes, specifically with regards to their interactions
among other cells in the TME. Our identification of iCAF and myCAF, alongside 13 epithelial
cell subtypes, explore the functional diversity inherent in these cells. This finding looks for
mechanistic impact on tumor progression, metastasis, and therapeutic response. Moreover,
our study showcases the potential for innovative therapeutic strategies by targeting distinct
cell subtypes or intercellular communication pathways. Focusing future research on the
development of targeted therapies that use these pathways or the properties of these cell
subtypes might lead to more personalized and effective treatment options for cancer patients,
such as the observed crosstalk between iCAF cells and cancer cells facilitated through WNT5A

targeting [239].

Biomarkers are a key to analyze disease pathophysiology and molecular signatures, thus
directing targeted treatments. KRAS, BRAF, and TP53 mutations are key biomarkers for
prognosis and monitoring cancer states [277]. Our study identified marker genes and molec-
ular signatures that could be further investigated as novel predictive markers. Analyzing
separate cellular subtypes within the TME opens opportunities for early cancer diagnosis,
tracking disease progression, and categorizing patients for personalized precision medicine
approaches. Understanding more of these complex cellular interplays in the TME can be

facilitated by investigating using a different approach such as proteomics [278]. Meanwhile,

114



immunotherapies hold promise in the use of biomarkers allowing for tailored medicinal solu-
tions. Integrating different approaches, interdisciplinary cooperation, and clinical application,
would improve the understanding of cancer biology while proposing innovative therapeutic

approaches that hold promise for patient outcomes.
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Chapter 5

Molecular mechanisms linking Dietary

fibers to gut inflammation

5.1 Dietary fibers, Gut microbiota, and Molecular inflam-

mation

5.1.1 Introduction to Dietary Fiber and Health

Dietary fibers (DF) are plant-derived carbohydrates that are resistant to digestion by human
enzymes. They are two main types [279]: soluble and insoluble fibers. Soluble dissolves in
water and help lower blood cholesterol and glucose levels, which common sources including
oats, beans, and apples. Insoluble fiber which do not dissolve in water, promote the movement
of material through the digestive system and increase stool bulk. These are typically found in
whole-wheat flour, nuts, beans, vegetables such as potatoes.

Additionally, resistant starch [280], a specific type of starch that resists digestion and
reaches the colon, is fermented by the gut microbiota, and functions similarly to soluble fiber.

DF modulates the gut microbiota, impacting overall health. Different types of DF have

distinct effects:
« Soluble fiber:

— Inulin is known to improve metabolic function and regulate intestinal immunity
by being fermentated in the colon, producing SCFA such as acetate, butyrate and
propionate. These SCFAs contribute to regulate immune cell differentiation and

host immunity. Inulin has shown potential benefits in preventing diseases such
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as inflammatory bowel disease, type 2 diabetes and some cancers. [281]

— Pectin helps reducing glucose absorption and cholesterol levels, offering bene-
fits for disease like diabetes. Its anti-inflammatory properties are beneficial for

conditions such as infant regurgitation and diarrhea [282].
+ Insoluble fiber:

— Cellulose supports gut health by promoting intestinal barrier function and provid-

ing anti-inflammatory benefits [283].

— Resistant Starch which is not digested in the small intestine but is fermented
in the colon, promoting the growth of beneficial bacteria and enhancing SCFA

production.

The effects of DF on health vary depending on the type of fiber and individual microbiota
composition. This suggests that personalized dietary interventions may be more effective than
a one-size-fits-all approach. For instance, the mediterranean diet, rich in grains, vegetables
and fruits, provides high levels of DFs and significantly lowers plasma LDL cholesterol levels,

reducing the risk of cardiovascular diseases [284].

5.1.2 Interindividual Variability in Response to Dietary Fibers

The response to DF is limited by interindividual variability, which includes genetic factors,
gut microbial composition and lifestyle factors. Genetic variations can affect the enzymes
involved in the food metabolism, while the microbiome plays a critical role in fermenting the
fiber into SCFA impacting glucose metabolism and inflammation. Lifestyle factors such as
diet and physical activity also contribute to this variability.

Nutrigenetics explores how genetic variants influence individual responses to DF. Specific
Single-nucleotide polymorphism (SNP) can affect the efficiency of fiber metabolism and the
SCFA production by gut bacteria. The Wnt pathways is on example of a genetic component

reviewed in relation to DF metabolism [285].

5.1.3 Interaction between Genetics, Microbiome and Dietary Fibers

The holobiont concept, introduced by Lynn Margulis, redefines organisms as dynamic net-
works comprising a host and its associated microbiota (bacteria, fungi, viruses, and microbial

eukaryotes) [286, 287]. This framework challenges traditional evolutionary models by empha-
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sizing symbiotic relationships as drivers of adaptation and speciation [288]. The hologenome
theory further posits that holobionts act as units of selection, with host-microbiota genetic
covariance influencing evolutionary trajectories [287, 289]. Methodologically, advances in
multi-omics and network analysis have revealed intricate microbial interactions, such as
microalgae shaping phyllosphere communities in plants through biofilm-mediated hubs [290,
289]. However, debates persist about whether holobionts represent true evolutionary indi-
viduals or transient ecological communities, particularly given horizontal gene transfer and
environmental microbial acquisition [288]. Clinically, dysbiosis in human gut microbiomes
has been linked to inflammatory diseases, underscoring the translational potential of holo-
biont research [291]. These insights highlight the holobiont as a critical lens for studying
host-microbe coevolution, ecosystem dynamics, and precision medicine, while emphasiz-
ing the need for integrated computational approaches to analyze heterogeneous biological

datasets [290, 288, 289].

5.1.4 Impact of Dietary Fibers on inflammation and oxidative stress

DF contributes to reducing inflammation and oxidative stress through various mechanisms:
Pectin and Toll-like receptors (TLRs) [292]: Pectin interacts with immune receptors such as
TLR2, inhibiting the pro-inflammatory TLR2-TLR1 pathway while maintaining the tolerogenic
TLR2-TLR6 pathway. Fermentation and SCFA production [293]: Each SCFAs from the gut
microbiota is produced through specific bacterial metabolic pathways, and they play key roles

in reducing the inflammation.

« Acetate is the most abundant SCFA in the colon and is produced through a process
called acetogenesis, which involves a large variety of bacteria. Acetate is formed from
acetyl-CoA, a product of glycolysis, via pathways such as phosphotransacetylase-acetate

kinase.

+ Propionate is primarly produced through the succinate pathway, which is prevalent
in Bacteroidetes and some Firmicutes species, and through the propanediol pathway,

which is characteristic by certain Lachnospiraceae.

« Butyrate is produced by Firmicutes, including specific Clostridium species, and synthe-
sized through the conversion of acetyl-CoA to butyryl-CoA. Butyrate has been shown to

reduce inflammation through several mecanisms such as, promoting the differentiation
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of naive T cells into regulatory T cells (Tregs) by enhancing histone acetylation at
specific gene loci such as Foxp3 [294]. Additionally, Butyrate contribute to the health

of the intestinal barrier as an energy source for colonocytes [295].

SCFAs can also inhibit inflammatory pathways by activating G protein-coupled recep-
tors (GPCRs) such as GPR41 and GPR43 on immune cells. This activation leads to a
reduction in the production of pro-inflammatory cytokines and modulation of immune

cell activity.

Reduction of systemic inflammatory markers: Cytokines, essential small proteins for cell
signaling, are important in the immune response and are classified into several types based
on their specific roles and sources [296]. Interleukins (IL) for example regulate immune and
inflammatory responses: IL-1 promotes inflammation, fever, and the acute phase response.
While IL-2 stimulates T cell proliferation. IL-6 is implicated in fever and acute phase protein
production. Tumor necrosis factor (TNF) such as TNF-¢, produced by macrophages, induce
fever, apoptotic cell death, and inflammation. With TNF-a being particularly involved in sys-
temic inflammation and the death of certain tumor cells. In term of functions and mechanisms,
cytokines bind to specific receptors on target cells, initiating intracellular signaling cascades
that modify gene expression and cellular activity. They are a key player in immune regulation
by balancing humoral and cell-mediated immune responses and influencing immune cell
differentiation and growth. Additionally, they can act both as pro- and anti- inflammatory
agents that can initiate and resolve inflammatory processes.

Interferons (INF) are primarly involved in antiviral responses and immune system modu-
lation, with INF-a and IFN-f inhibiting viral replication and IFN-y activating macrophages
and enhancing antigen presentation.

Chemokines, another type of cytokine type, direct immune cells to sites of infection or
injury. For instance, CCL2 (MCP-1) recruits monocytes to inflammation sites, and CXCL8
(IL-8) attracts neutrophils [297]. Colony-stimulating factors (CSF), like G-CSF and GM-CSF,
stimulate blood cell production, particularly granulocytes and macrophages.

SCFAs exhibit strong anti-inflammatory properties, inhibiting the production of pro-
inflammatory cytokines such as IL-6 and TNF-a. Some studies have shown an inverse re-
lationship between DF intake and inflammatory markers, notably IL-6, TNF-« receptor 2
(TNF-a-R2), and C-reactive protein CRP) [298], eventhough CRP association is less consistent
than the other two markers [299].
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Moreover, the fermentation process reduces gut permeability, which decrease the transloca-
tion of lipopolysaccharides from the gut into the bloodstream, a process that would otherwise
trigger systemic inflammation through cytokines like IL-6.

In adolescents, higher cereal and grain fiber intake is associated with lower leptin levels,
potentially contributing to reduced chronic inflammation [298].

Consumption of DF is associated with improved oxidative stress markers, thus linked
to increased activity of antioxydant enzymes such as glutathione peroxidase (GPx), which
helps maintain cellular redox homeostasis [300]. Genetic variations as SNPs can have both
prooxidant and antioxidant roles [301]. XDH, CYBA, CYP1A1, PTGS2, NOS and MAO have
prooxidant involvment. In contrast to SOD, CAT, GPX, GSS, GLUL, GSR, GSTM1, GSTM5,
GSTP1, TXN and HMOX1 that help to maintain the oxidative balance. Mutations affecting
enzimes or proteins involved in the dietary antioxidant uptake can impact the metabolism
function, such as the MnSOD gene polymorphism (Vall6Ala) that affects mitochondrial
targeting the oxidative stress [302].

Various pathways are involved in oxidative stress. NF-«xB signaling pathway is activated in
response to oxidative stress and regulates cellular proliferation and apoptosis. it can induce the
expresion of antioxidative enzymes such as SOD2 and GPX4. Pi2K/AKT pathway modulates
vascular tone by regulating nitric oxide production through endothelial nitric oxide synthase
(eNOS) phosphorylation. Other pathways involved iclude ferroptotic, apoptotic, FoxO, and
ErbB, which regulate cellular responses to oxidative stress by promoting the expression of

antioxidative enzymes such as SOD2 and GPX1 [301].

5.1.5 Polygenic Risk Score and Personalized Nutrition
PRS for disease prediction and risk assessment

Polygenic risk score (PRS) aggregate genome-wide genetic variants to quantify an individual’s
genetic predisposition to complex diseases, enabling enhanced risk stratification and person-
alized preventive care [303, 304]. By integrating PRS with conventional risk factors, clinicians
can identify high-risk subgroups more accurately as exemplified for prediction of first-onset
cardiovascular disease [305]. This genomic stratification supports tailored interventions,
including dietary modifications, to mitigate disease risk. Evidence highlights the role of
optimal DF intake (25-29g/day) in reducing cardiometabolic and colorectal cancer risks, with

fiber modulating gut microbiota and improving glycemic control [306]. Gene-diet interaction
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studies demonstrate that genetic susceptibility to conditions like obesity can be attenuated by
high-fiber diets, emphasizing the potential for PRS-guided nutritional strategies [307]. For
example, adherence to Mediterranean diets neutralizes diabetes risk in genetically predisposed
individuals [307], while personalized nutrition counseling improves outcomes in chronic
disease cohorts [308]. However, PRS clinical translation faces challenges, including reduced
predictive accuracy in non-European populations and the need for standardized protocols to
integrate genetic, clinical, and environmental data [304]. Despite these limitations, combining
PRS with DF optimization represents a promising avenue for precision prevention, particularly
in multi-omics frameworks that address genetic heterogeneity and lifestyle interactions [309,

310].

Personalized nutrition as a preventive strategy

Personalized medicine and research is centered around stratifying individuals into responders

and non responders to DF involving the different

DF intake plays a significant role in reducing inflammation and oxidative stress, contribut-
ing the health benefits. Reduction of inflammation has been linked with modulation of gut
microbiota with the influence of rich fiber diet, where SCFA like butyrate contribute with their
anti-inflammatory properties. For instance, a study have show these effect using high-fat
diet-fed rats and a diet focused on oats and tartary buckwheat [311]. Increased dietary fiber is
significantly associated with reduced systemic immune and inflammatory biomarkers, such
as SII, SIRI and hs-CRP [312]. The risk of chronic disease can be reduced with high fiber

content by promoting a healthy gut microbiome and providing antioxidants.

5.2 Strategies and multi-omics integration in the Holo-

biont

5.2.1 Methods for preventive inflammation monitoring

The Luxfico study is a randomized, cross-over study including 30 adult individuals. The
cohort’s mean age is 33.83 (range 23 to 46) and BMI is around 23.04 kg/mz. All patients were

free from clinically diagnosed chronic conditions and inflammatory diseases at enrollment.
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The study included two controlled one-week dietary interventions separated by a washout
period to minimize carryover effects. Dietary Interventions consisted of two distinct DF

regimes:
High-DF diet ranging from 33,4 to 51,5 g/day (average intake around 41.17 g/day).
Low-DF diet ranging from 17,3 to 25 g/day (average intake of 20.31 g/day).

Blood, urine, and stool samples were collected at baseline, during, and after each di-
etary intervention period. WGS was performed on polymorphonuclear cells (PBMCs), and
previously identified, from the literature, SNP related to dietary fiberDF metabolism and
SCFA pathways pathways were analyzed. These SNP were examined both individually and
through the construction of Polygenic risk score (PRS) to explore their potential contributions
to inflammatory (e.g. IL-1p, TNF-q, IFN-y, IL-4, IL-6, IL-10, IL-12p70, IL-22) and oxidative
stress markers (e.g. DNA/RNA damage, malondialdehyde (MDA), F2-isoprostanes, and total
antioxidant capacity via FRAP and ABTS assays).

The Luxfico study employs a multi-dimensional approach to investigate the complex

interactions between genetics, nutrition, and gut inflammation.

Genomic analysis The focus is on identifying SNP in molecular transporters such as mono-
carboxylate transporters (MCTs) and sodium-coupled monocarboxylate transporters
(SMCTs), as well as in G-protein-coupled receptors (GPCRs) that influence SCFA
metabolism. PRS scores are constructed to evaluate the cumulative effects of the-
ses targeted SNP on inflammatory markers and oxidative stress biomarkers, including

MDA and F2-isoprostanes.

Immuno-profiling The aim is to model cytokines signature and immune cell profiles to

explore the links between diet, genetic predispositions and inflammation.

Multi-omics integration Building upon the previous analyses, the integration of the mi-
crobiome dataset would allow to investigates how bacterial profiles would influence
the phenotype. It has been reported in the literature that specific microbes are as-
sociated with the metabolism of some SCFA [99], such as Prevotella and propionate
production, and Roseburia with butyrate production. The study considers to investigate
gene-microbiome interactions such as the impact of vitamin D receptor (VDR) variants

on Parabacteroides abundance and lactase (LCT) genes variants on Bifidobacteria levels.
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The different level analyses integrations enable a progressive comprehension of the genetic
interaction with the direct key aspects of the SCFA metabolism. This approach allows for a
stratified investigation which identify and predict genetic-environment interactions and the

manifestation of the phenotype.

The deliverables of the Luxfico study include a predictive inflammatory score that could
be applied in both clinical and research settings. The insights gained could reflect on informed
personalized dietary recommendations tailored to patients genetic, microbiome and dietary
profiles. Which would contribute to more tailored and effective strategies for managing

patient inflammation and oxidative stress before any more complex complications.

5.2.2 Genomic analysis of functional pathways in SCFAs metabolism

The genomic analysis will be conducted on WGS data obtained from peripheral blood mononu-
clear cells (PBMCs), using an Illumina NovaSeq 6000 platform. For this analysis, we selected
PCR-free library preparation to minimize potential amplification biases and ensure better
depth of coverage and genotype quality of distribution. The sequencing will target a mean
coverage around 30x, which is expected to provide more than 99.77% sensitivity for homozy-
gous and more than 99.82% for heterozygous SNP detection, with positive predictive values

exceeding 99.98% and 99.07%, respectively.

The analysis pipeline will consist of several key steps. While analysis is planned, tool
selections are flexible regarding reproducibility and facility to use. Initially, raw sequencing
data (in fastq) will undergo QC assessment and preprocessing, using FastQC [313], and
Cutadapt [314]. Following alignment to the GRCh38 reference genome with Bowtie2 [315],
variant calling will be performed with a focus on previously identified SNP related to DF
metabolism and SCFA pathways, using tools such as GATK’s HaplotypeCaller, FreeBayes
[316]. Of particular interest are variants in genes encoding MCTs, SMCTs, and GPCRs that
influence SCFA metabolism. Detected variants will be filtered based on their quality score,
and interpreted using variant functional predictor tools such as SnpEff [317].

The statistical analysis framework will employ a composed approach of both traditional
genetic association methods and ML such as Random Forest for quantifying feature con-
tribution to the phenotype RF example that finds SNP [318]. This dual analytical strategy
enable both hypothesis testing and discovery of complex genetic patterns that may influence

individual responses to DF interventions.
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Variant Selection and Curation For the construction of PRS, we will employ a systematic
approach to variant selection and weighting. Variants will be curated from established
databases including OMIM, ClinVar, and GWAS catalogs, with a specific focus on SNP
associated with SCFA metabolim, transport genes, SCFA-signaling GPCR and metabolic

disorders, inflammatory pathway.

Scoring system and Weight Assignments A scoring system has been designed to incor-
porate both the presence of variants and their reported effect sizes from previous studies.
We have developed a novel classification scale ranging from -3 to +7, where negative
scores indicate “benign, experimentally verified” variants and positive scores indicate
“potentially verified” variants, with +7 representing the strongest evidence for impact

on metabolic disease.

PRS calculation Several approaches exist for calculation PRS, such as the Classical Clump-
ing and Thresholding (C+T), the Shrinkage methods and Bayesian Approaches. The
equation below represent C+T method which perform relatively well while keeping

algorithmic simplicity simplicity [319].

M
PRSI = Z xi,jﬁi (5'1)
i=0

+ [ effect size for variant i
« x;j: the effect allele count for sample j at variant i

« M: the number of variants

ML Refinement The previously described targeted approach will be complemented by PCA
to capture major axes of genetic variation while maintaining computational integrity.
Additional feature selection will be able to explore additional variants, such as elastic
net regression, which combines L1 and L2 regularization, to identify sparse sets of
predictive variants [320]. Complex genetic interactions will be modeled using gradient
boosted decision trees (XGBoost) and random forests, which can capture non-linear
relationships interactions between variants [321]. These methods will be applied within

a cross-validation framework to ensure robust identification of interaction effects.
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Machine Learning for refining PRS score

To further refine the C+T PRS score and validate these initial SNP effects, we use ML feature

selection and importance metrics.

Running the ML models Train the prediction model (such as gradient boosting machine
such as XGBoost, or a random forest) using the selected variants as input features and

the target phenotype, which include inflammatory marker levels as the output variable.

Extract Features importance From the trained ML model, extract feature importance mea-
sures. Variants with higher importance contribute more to the predictive power of the

model and are likely to be biologically relevant.

Weight adjustment based on ML results If a variant scored +3 (moderate evidence) but
the ML model indicates high importance, its score might be incremented to +4 or
+5. Conversely, a variant initially scored +5 but deemed unimportant by ML feature

importance might be downgraded to +3 or +2.

A possible formula for recalibrating scores could be:

S =S x f() (5.2)

where §; is the original score, and f(I) is a function of ML -derived importance [. For
example, if the model ranks variant i in the top 10% of importance, f(;) could be > 1 to

increase its weight.

Interaction effects and Composite Feature ML methods can highlight interaction effects
between variants. If certain variants only show importance when combined, we can
create composite features. For example, if variants A and B together are more predictive
than either alone, we might create a combined score component S4 g and add it to the

final PRS. This step captures gene-gene interaction effects.

The PRS is not static. We continuously refine it using new data and insights. After

adjusting weights based on ML outputs, we:
1. Recalculate PRS for all individuals.

2. Reassess associations between the updated PRS and the phenotypic measures.
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3. Validate on an independent dataset or through bootstrapping and cross-validation to
ensure that refinements improve predictive performance and are not overfitted to a

single cohort.

Model development will follow a rigorous cross-validation protocol such as k-fold cross-
validation to prevent overfitting and ensure generalization, or leave-one-out cross-validation.
Performance evaluation will utilize multiple metrics such as R?, Mean Squared Error, and
concordance index for continuous traits with particular attention to the stability of predictions
across different cross-validation folds.

This integrated approach ensures that the PRS is biologically relevant, enriched by various
cured databases, and dynamically modeled through data-driven ML insights (immunological
datasets). The result will reflect to a more nuanced and potentially more accurate risk

stratification tool for metabolic and inflammatory phenotypes.

Immuno-profiling for inflammation assessment

The objective is to determine how genetic variation (SNP or PRS), from previous step of the
analysis, modulates the immune and oxidative stress responses measured by the immuno-
profiling aspect of the study. The statistical approaches could start with a first modeling
using mixed-effects models with genetic covariates. However, the large number of variants to
include would represent a significant analysis burden and a large sample size is required to

detect gene-by-environment interactions.

Biomarker;; = yy + y1PRS; + y, Time;; + y3 Treatment;;
+ y4(PRS; x Treatment;;) + ysSequence; (5.3)
+ YePeriod; + (1 + Time | Patient;) + ¢;;

Variables/Terms Explained:

Biomarker;; The level or concentration of a particular inflammatory or oxidative stress
biomarker for individual i at time point j. For example, IL-6 concentration at the second
follow-up visit for participant 12. Data Type would be continuous (often log-transformed

for normality).

Yo The fixed-effect intercept (population-level intercept). It represents the expected biomarker
level when all other predictors (Time, Treatment) are at their reference or baseline

categories (or zero, in the case of continuous predictors).
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11 PRS; A fixed-effect term for the PRS of individual i, calculated previously. y; indicates how
much the biomarker level changes for each unit increase in the PRS, controlling for

time, treatment, and random effects.

yoTime;; represent either a continuous time variable or discrete visits (V1, V2, V3 with V1 as

baseline reference).

ysTreatment;; A fixed effect for the dietary intervention or treatment condition at time j for
patient i. If Treatment is coded as a categorical variable (such as 2 = High Fiber 1 =
Low Fiber 0 = Control), y, represents the difference in expected biomarker level under

the active treatment compared to the reference condition.

Ya(PRS; x Treatment;;) gene-by-diet interaction term, determining whether PRS modifies

dietary response.

ysSequence; which sequence the participant belongs to (High — Low vs Low — High); can
be included as a fixed effect if you want to account for possible systematic differences

in the order participants received diets.

YePeriod; included as a fixed effect to adjust for any systematic difference between the first
and second time a person undergoes an intervention. Distinguishes between the first
time a person receives any intervention (Period 1) vs the second time they receive an

intervention (Period 2).

(1 + Time | Subject;) Random effects structure, indicating that each subject i can have: A
random intercept (such as a subject-specific baseline shift in biomarker level) or a
random slope for Time (i.e. a subject-specific rate of change over time). This accounts
for within-subject correlation of repeated measurements and allows each participant to

have a unique trajectory over time.

€;j Residual error term for individual i at time j. Typically assumed to be independent and

normally distributed with mean 0 and variance o2.

Modeling baseline (V1) as a separate reference time or use baseline-corrected outcomes
(e.g. change from baseline) can be both valid, but typically we include the raw repeated

measures and let the random intercept handle baseline differences.
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Depending on the research focus, Sequence or Period may not be included, as some
experimental designs can handle these via randomization and washout to minimize carryover.
However, for a sensitivity check, it might be good practice to include them as additional fixed
effects.

The model does not explicitly require a “washout” variable, timepoint-based modeling
inherently captures changes after each washout. However, time-since-diet-coded or washout-
coded variables could be encoded if we suspect remaining partial carryover.

With n=40 total and 20 per sequence group, this might constrain power for detecting
gene-by-environment (PRS x Treatment) interactions unless effect sizes are moderate or large.

A Bayesian mixed-effects approach is equally valid and may allow for partial pooling and
better handling of small sample sizes, especially with prior information about PRS effects.

As a conclusion, the PRS model in a Mixed-Effects Framework fits well with the two-
arm, crossover, repeated-measures nature of LUXFICO. It allows to estimate how a genetic
predisposition (in the form of a PRS modifies the response to different fiber diets within
individuals over time, capturing both fixed (treatment, PRS, interactions) and random (subject-
level baseline, subject-level slopes) effects. Minor design-specific adaptations (such as adding
sequence or period effects) may be considered to fully respect the crossover structure, but the

core model structure is accurate for this experimental setup.

Multi-omics integration for inflammation predictive scoring

The integration of genomic, immunological and microbiome datasets will be done through a
systematic multi-layered analytical framework designed to elucidate the complex interactions
between host genetics, dietary intervention and inflammatory responses. This integration
strategy will implement MO largely covered tools such as DIABLO (Data Integration Analysis
for Biomarker discovery using Latent variable approaches for Omics studies)[322] , which
enables the identification of MO signatures while accounting for the inherent relationships
between different data modalities.

The analytical pipeline will begin with appropriate and validated data processing approach
for each layer. Building upon the last 2 previous analyses chapter, microbiome data will be
integrated after appropriate normalization/transformation. The framework will adopt a three

step approach:

Pairwise relationships Canonical correlation analysis will identify strong associations

between features across the different biological layers
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Feature selection sparse partial least squares discriminant analysis (SPLA-DA) will identify
key features from each dataset that contribute to the discrimination between different

dietary responses.

Multi-omics integration Methods such as DIABLO [322] or SNF [323] will help to build
comprehensive models to explain the interactions and associations between the different

biological layers.

To evaluate the relative contributions of different biological components to the observed
phenotypes, we will develop a novel scoring system that incorporates the previous analyses.

The idea is to classify patients into 9 distinct profiles based on the following characteristics:
Consumer status based on DF intake (high DF vs Low DF).

Fermenter status derived from microbiota composition and SCFA production capability

from the DF.

Metabolizer status determined by genetic variants or metabolic markers in relevant path-

ways.

Gut Inflammation = Consumer + Fermenter + Metabolizer (5.4)

The immune landscape of each profile will be characterized using cytokines expression
levels and immune cell compositions, enabling validation of the scoring system’s accuracy in

predicting inflammatory states.

Patient Stratification Model for precision medicine

By considering the three factors in a binary classification (high = +, low = -), we de-
rive nine possible patient profiles, from health-associated (anti-inflammatory) to pro-
inflammatory/metabolic disease-prone states as examplified in table 5.1.

This classification framework provides a structured approach to understanding how diet,
microbiota function, and host metabolism collectively shape inflammatory responses. The
subsequent analyses will assess how immune parameters (e.g. cytokines profiles and immune
cell distributions) align with the predicted inflammatory risk across the nine profiles, refining

the model’s predictive value in stratifying patients based on gut inflammation potential.
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Consumer Fermenter Metabolizer

+ o+ o+ +
healthy —

< unhealthy

Table 5.1 Stratification of patient profiles based on dietary intake, microbiota fermentation,
and metabolic capacity. Patients are classified into nine distinct profiles based on three key factors:
Consumer status (DF intake), Fermenter status (microbiota composition and SCFA production), and
Metabolizer status (genetic or metabolic markers). Each category is assigned a binary value (+ high, -
low), with the first profile representing the most health-associated state and the ninth corresponding
to a pro-inflammatory/metabolic disease profile.
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This work was conducted under the primary supervision of Prof. Dr. Reinhard Schneider
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Research Fund (FNR).

The research was carried out in close collaboration with Dr. Torsten Bohn’s Nutrihealth
group at Luxembourg Institute of Health (LIH). Dr. Guilherme Meyers provided essential
expertise in human biology, particularly in understanding the intricate relationships between
nutrition, biological pathways, and the microbiome. His contributions were instrumental
in refining the modeling design through close collaboration with me, Mathias Galati. The
in-silico experimental framework developed in this thesis was established within the legal
framework agreed upon between LCSB and LIH’s research groups, particularly regarding
data integration and analysis methodologies.

I, Mathias Galati, am developing the computational methods, implementing the analytical
framework, and performing the bioinformatics analyses. The successful integration of nutri-
tional and molecular data is possible through the continuous guidance of Prof. Dr. Schneider
and Dr. Satagopam, who provided strategic direction and ensured the overall scientific quality

of the research.
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Chapter 6

Key findings and implications

6.1 Expanding the scope of translational research

Translational research serves as a bridge between laboratory discoveries and clinical applica-
tions, facilitating the transformation of scientific insights into tangible healthcare solutions.
In the context of MO and big data, adherence to best practices standards ensures research re-
producibility, ethical conduct, and meaningful impact. This section examines the fundamental
concepts of reproducibility, data sharing and integration, and their practical implementation

across research ecosystem.

Ensuring scientific rigor and reproductibility

Scientific rigor is crucial to producing valid and reliable results, particularly in the complex
landscape of MO research. The integration of multiple data types and analytical approaches
demands meticulous attention to methodological detail and validation procedures. Core

aspects of maintaining scientific rigor include:

Robust experimental design In the CRC collaboration utilizing scRNA-seq, meticulous
consideration of cellular heterogeneity and systematic sampling methodologies ensured
accurate representation of the tumor micro-environment’s complexity. However, chal-
lenges such as batch effect and technical variability remain prevalent. Implementation
of strategic approaches, including randomized sample processing protocols and incor-
poration of comprehensive control samples, can effectively mitigate these technical

constraints.
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Data Analysis Advanced computational methods have evolved to address the complexities
of high-dimensional data analysis. While tools like Seurat facilitates scRNA-seq anal-
ysis, they require careful parameter optimization. There exists a significant risk of
model overfitting and bias introduction when using ML approaches. For instance, in
immunological dataset integration on peanut allergyPeanut Allergy, the selection of
appropriate data transformation and normalization methodologies proved crucial for

preventing skewed results and ensuring accurate biological interpretation.

Interpretation of Results Drawing meaningful conclusions necessitates a comprehensive
understanding of both biological context and inherent data limitations. Fostering robust
collaborative relationships and maintaining continuous feedback loops with research
partners facilitates the development of optimized analysis workflows and appropriate

dataset use.

Data Validity Practices First, the implementation of replication studies represents a funda-
mental aspect of scientific validation. While replication across diverse cohorts strength-
ens result validity, resource and founding constrains frequently impose practical limi-
tation. The Luxfico study, characterized by a limited patient population, necessitates
validation of its proof-of-concept findings in larger, more diverse cohorts. The peer
review process serves as another essential component of data validation. Although peer
review aims to ensure quality, current literature reporting practices may sometimes
fail to identify methodological shortcoming. Maintaining transparent reporting and
documentation workflows significantly benefits the broader scientific community by
enabling thorough methodology assessment and result verification [324]. Finally, strict
adherence to established protocols allows for comprehensive data validity. Implemen-
tation of standardized protocols enhances inter-study comparability and facilitates
integration with published biomarker findings. However, the rapid pace of techno-
logical advancement often outpaces protocols development, necessitating continuous
updates and refinements. For instance the scRNA-seq collaboration in section 4.2
and initiated in 2022 exemplifies this challenge, as Seurat has undergone continuous

development and currently operates at version 5 (as of 29 Oct 2024) [325].

Navigating regulatory “pathways” in biomedical research
The translation of research findings into clinical applications represents a complex journey
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through regulatory frameworks that are essential for ensuring patient safety and treatment
efficacy. Understanding and successfully navigating regulatory requirements proves crucial
for revolutionizing medicine through research applications. The process of bringing new
diagnostics and therapeutics to the bedside involves complex approval processes, overseen by
regulatory bodies such as the Food and Drug Administration (FDA) or European Medicines
Agency (EMA). Notably, the FDA has implemented progressive reforms to accelerate therapeu-
tic development while maintaining rigorous safety standards. Their 2019 guidance document
on adaptive trial designs marks a significant advancement in regulatory flexibility, offering
frameworks for pre-planned modifications to ongoing clinical trials based on interim data
analysis. these adaptive approaches enhance statistical efficiency and ethical considerations
across various trial phases, from initial dose-finding studies to confirmatory trials, ultimately

facilitating a more nuanced understanding of treatment effects [326].

Early engagement with regulators authorities constitutes a key strategy for successful
translation. Consulting with these bodies during initial stages of research and development
enables the identification of potential issues before they become significant obstacles. This
proactive approach allows researchers to address regulatory concerns systematically while

maintaining research momentum.

The implementation of Good Clinical Practice (GCP) guidelines represent an important
aspect of regulatory compliance. While adherence to these guidelines facilitates smoother
approval processes, it necessitates comprehensive oversight and documentation systems.
This regulatory framework ensures the protection of human subjects while maintaining data

integrity throughout the research process [327, 328].

Comprehensive reporting of methods and results stands as a cornerstone of regulatory
compliance. While this requirement can present significant administrative challenges, adher-
ence to established standards such as FAIR principles [329] and STAR Methods for publishing
provides a robust framework for documentation. These standardized approaches ensure

transparency and reproducibility while meeting regulatory expectations.

The International Council for Harmonization of Technical Requirements for Pharmaceuti-
cals for Human Use (ICH) plays a pivotal role in standardizing regulatory requirements across
different regions. This harmonization facilitates international collaboration and streamlines
the process of bringing potential new treatments to global markets. The ICH guidelines pro-
vide a comprehensive framework that addresses various aspects of drug development, from

quality control to clinical safety, ensuring consistent standards across different regulatory
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jurisdictions [330].

Strengthening collaborative frameworks in translational science

The inherently interdisciplinary nature of translational research necessitates robust collab-
orative frameworks that facilitates effective integration of diverse expertise and resources.
These frameworks serve as essential foundations for accelerating scientific discoveries and
their practical applications in clinical settings.

Cross-disciplinary collaboration brings successful translational research, integrating exper-
tise from bioinformatics, clinical medicine, and biological sciences. In the projects described
in this manuscript, partnerships with domain experts significantly enhanced the development
of appropriate workflow designs and the identification of meaningful results for reporting.
However, these collaborative efforts often encounter challenges from communication barriers
between disciplines and divergent priorities among research teams. Establishing common
ground and shared objectives becomes crucial for overcoming these obstacles.

The sharing of bioinformatic resources extends beyond mere data exchange, encompassing
tools, methodologies, and analytical frameworks. While open sharing of these resources
promotes innovation and accelerates scientific progress, it raises important considerations
regarding data privacy and intellectual property protection. The delicate balance between
maintaining openness and safeguarding sensitive information becomes particularly challeng-
ing when coordinating between different laboratories and their respective legal departments.

Cloud computing infrastructure has emerged as a critical component in supporting collab-
orative data analysis efforts. These platforms effectively address the computational demands
associated with MO data processing and analysis. However, the implementation of cloud-
based solutions introduces additional complexities related to data security, cost management,
and compliance with regulatory frameworks such as GDPR. High-Performance Computing
(HPC) infrastructure must carefully balance these considerations while maintaining efficient
research operations [331].

Project management and organizational hierarchy shapes collaborative success. While
hierarchical structures provide clear leadership channels and accountability, the need to
foster creativity and innovation in translational research demands flexibility in organizational
approaches. Agile methodologies offer adaptability in project management but may sometimes
lack clear directional focus. Principal Investigators (PIs) serves as key architects in structuring

collaborations that promote meaningful investigations while maintaining project coherence.
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The complexity of translational settings, characterized by cross-disciplinary interactions and
exploratory research paths, requires careful balance between structured oversight and creative

freedom.

Advancing training and education in Translation medicine

The research landscape presents unprecedented challenges for the next generation of scientist,
who must navigate fast paced evolution of technologies, methodologies, and increasingly
complex cross-disciplinary opportunities. This evolution demands innovative approaches to
research education and professional development.

The i2TRON doctoral training program, at the origin of this PhD thesis, exemplifies
structured approaches to research education in the modern era. While such programs provide
essential foundational knowledge and structured learning pathways, they may not fully
encompass all emerging areas of scientific landscape. The program’s framework, although
comprehensive, highlight a crucial need for supplementary educational strategies. Self-
directed learning initiatives and continuous professional development resources have become
essential components in researchers for the dynamic nature of future science. However, these
structured programs, despite their merits in educational frameworks, often face challenges in
effectively fostering cross disciplinary collaborations.

The imperative to maintain current knowledge presents a significant challenge in the
research environments. Researcher must continuously update their understanding of new
tools, methodologies, and theoretical frameworks to remain effective in their fields. This
requirement for constant learning creates a substantial cognitive burden, as the volume of
new volume of information can become overwhelming. Moreover, researchers face the ad-
ditional challenge of distinguishing between reliable and questionable resources in an era
of rapid information dissemination. Success in current research environments requires not
only technical proficiency but also the ability to synthesize knowledge across disciplines.
Educational programs must therefore evolve to foster both specialized expertise and inter-
disciplinary competence, preparing researchers to address complex challenges than span

traditional disciplinary boundaries — as exemplified by the i2TRON DTU initiative.

Enhancing patient-centered research strategies

The success of translational research fundamentally depends on effective partnerships among

divers stakeholders, each contributing unique perspectives and capabilities to the research
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ecosystem. Understanding the roles, responsibilities, and interactions among these stakehold-
ers proves crucial for advancing medical innovations form laboratory discoveries to clinical

applications:

Academic institutions serves as primary drivers of innovation in translational research,
generating novel insights and methodologies. However, these institutions often face
resource limitations that can constrain large-scale implementation of promising discov-
eries. This resource constraint highlights the necessity of strategic partnerships with

other stakeholders in the translational research landscape.

Industry partners plays a vital role by providing essential funding and infrastructure sup-
port. While their involvement accelerates research progress and implementation, their
profit-oriented objectives may sometimes conflict with principles of open sciences.
This tension necessitate careful balance between commercial interest and scientific

transparency.

Healthcare providers contribute invaluable clinical insights derived from direct patient care
experience. However, established clinical practices and institutional inertia can create
resistance to implementing novel approaches. This resistance highlights the importance

of demonstrating clear clinical value and developing effective implementation strategies.

Patients occupy a central position in translational research, yet their involvement in decision-
making processes has historically been limited. Recent initiatives, such as Patient and
Public Involvement (PPI), represent significant progress toward more inclusive research
practices. These programs actively incorporate patient perspectives into study design,
implementation, and evaluation, ensuring research outcomes align patient needs and

preferences.

The alignment of stakeholder goals remain challenging in translational research. Conflict-
ing objectives can impede effective collaboration and slow research progress. To address this
challenge, transparent and regular communication among all parties has become essential.
Communication media, including patient associations and social networks, facilitate more
inclusive and effective dialogue among all stakeholders.

Intellectual property (IP) considerations are center in stakeholder relationships. While
necessary to incentivize innovation and investment, negotiations regarding IP rights often
involve complex and time-consuming processes. These negotiations must balance protecting

commercial interests with ensuring research findings benefit the broader medical community.
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The evolution of partnerships in translational research reflects a growing recognition
of the need for more integrated approaches to medical innovation. Success in this domain
increasingly depends on developing frameworks that align diverse stakeholder interests while
maintaining focus on improving patient outcomes. these frameworks must accommodate

both the practical needs of implementation and the ethical imperatives of medical research.

Ethical standards in translational applications

The implementation of robust ethical considerations standards throughout the research life
cycle represent a significant consideration in translational research, particularly when working
with human patients and their sensitive data. These considerations must be integrated from
the initial project design phase through to completion, ensuring responsible research practices

at every stage.

Informed consent present unique challenges in the context of biomedical research. data
The complexity of data reuse and biobanking creates significant hurdles in obtaining
truly informed consent, as patients may struggle to fully comprehend the potential
future applications of their data. Recent studies indicate varying levels of patient
willingness to participate in research. Additionally, patients may give partial consent,
creating added complexities for the downstream analyses. While approximately 60%
of patients express willingness to share their genomic data data internationally, 44%
express concerns about potential re-identification risks. This disparity highlights the
delicate balance between advancing research objectives and protecting patient privacy

[332].

Data security measures are critical in maintaining ethical research practices. While robust
security protocols are essential for protecting patient information from unauthorized
access or breaches, their implementation often introduces operational complexities
that can impede research progress. Nevertheless, adherence to stringent security stan-
dards remains necessary for maintaining research credibility and protecting participant

privacy.

Management of critical findings presents complex ethical challenge in translational re-
search. The discovery of unexpected results necessitates careful consideration of when
and how to communicate such findings to patients. This consideration becomes par-

ticularly relevant in different research contexts: for patients with existing diagnoses,
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participation often stems hope for innovative treatments, while in exploratory studies
like the fiber diet collaboration, genetic analyses may reveal previously unknown risk
factors for complex diseases. Clear policies and careful evaluation of potential impacts

on patients must guide these decisions.

Ethical committees Institutional review boards and ethics committees provide essential
oversight. However, these bodies may face limitations when evaluating novel in-
silico approaches, particularly in the context of rapid development of ML tools. This
knowledge gap can result in delayed research approvals and potentially restrict the

applications to cutting-edge modeling strategies.

The evolution of ethical considerations in translational research reflects the growing
complexity of biomedical investigation. Success in this domain requires careful balance
between advancing scientific knowledge and protecting participant interests. This balance
demands continuous refinement of ethical frameworks to addresses emerging challenges

while maintaining rigorous standards for patient protection.

The application of ethical standards must adapt to technological advancement while
maintaining core principles of patient protection. This adaptation requires ongoing dialogue
among researchers, ethics committees, and patients to develop frameworks that adequately

address both traditional and emerging ethical challenges.

Data-Driven Approaches and Challenges

The reproducibility crisis in scientific research has highlighted critical needs for more stringent
practices in data management and analysis methodologies [333]. This challenge becomes
particularly acute in the context of MO research, where the complexity of integrated data

layers amplifies potential reproducibility issues [121].

Multiple factors contribute to the current reproducibility crises in scientific research.
Selective reporting of results, inadequate data sharing practices, and methodological short-
comings represent primary challenges that must be addressed [334, 335]. In MO research
settings, these challenges are inevitable by the inherent complexity of integrating multiple
data types. Each additional data layer introduces new opportunities for methodological errors

and increases the difficulty of ensuring reproducible results.
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The FAIR principles (Findable, Accessible, Interoperable, and Reusable) enhances research
reproducibility [336]. However, the practical application of these principles presents chal-
lenges in MO research. The vast diversity of data types encountered in integrated studies
necessitates tailored approaches to data standardization. This standardization must address
not only the primary data but also the associated metadata, such as health records, ensuring
continuity in the comprehensive documentation of experimental conditions and analytical
methods [337].

The development of workflows and pipeline systems offers promising solutions to repro-
ducibility challenges. these tools can help ensure consistent application of analytical methods
across different studies and research groups. However, their implementation requires careful
consideration of documentation requirements and version control to maintain reproducibility
over time.

Success in addressing reproducibility challenges requires a coordinated effort across re-
search community. This effort must encompass improvements in methodological transparency,
data sharing practices, and standardization of analytical approaches, while maintaining the
flexibility necessary for scientific innovation. The goal is to establish a research ecosystem

that promotes both scientific rigor and creative exploration.

Critical Reflections and Future Directions

While established best practices provide essential frameworks for conducting high-quality
research, significant challenges persist in translational research that warrant careful con-
sideration and innovative solutions. These challenges span multiple domains and require
thoughtful approaches to balance competing demands while maintaining research quality

and impact.

Standardization vs Innovation While adherence to standardized methods ensures consis-
tency and reproducibility, overly rigid protocols can constrain scientific creativity and
limit the exploration of novel approaches. Researchers leaders must carefully balance
these competing needs, establishing framework that promote methodological rigor

while maintaining sufficient flexibility to explore emerging technologies.

Data integration Challenges The inherent MO complexity of combining diverse data types,
each with distinct scales and noise characteristics, demands considerations. Compu-

tational methods for integration are under constant evolution, reflecting the dynamic
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nature of the field. However, the absence of “well-rounded” solution, or simplified
analysis tools underscores the need for careful consideration of methodological choices

in each research context.

Ethical dilemmas in data sharing While open data policies promote transparency and
scientific progress, they must be balanced against privacy concerns, especially regarding
genomic data’s inherently identifiable nature. Recent research has highlighted the
unique challenges of genomic data privacy, demonstrating that these data can have
implications not only for individual participants but also for their biological relatives.
This situation necessitates careful consideration of privacy protections that extend

beyond individual participants [338].

Educational gaps The filed increasingly demands professionals who possess expertise in
both computational and biological sciences [339]. Current evidence suggest that in-
terdisciplinary training programs require enhancement, with particular emphasis on
practical applications and research experience. Programs must evolve to prepare future

researchers for effectively bridge the educational gaps [340].

Regulatory lag Development costs for new therapeutics continue to rise, with recent es-
timates suggesting expenses exceeding 2 billon dollars per drug [341]. The extended
timeline from discovery to patient access, often spanning up to 15 years, highlights
the need for more efficient regulatory processes that maintain safety standards while

accelerating therapeutic development.

6.2 Multi-omics integration for identifying new therapeu-

tic targets

In this thesis, three primary collaborative studies have been conducted to elucidate the com-
plex interplay between immunology responses on cellular, molecular, genetic and nutrition
levels. Investigations leveraged various aspects of MO integration, advanced computational
analyses and cross-disease approach in oncology, allergology and nutritional medicine con-
texts. The different conditions and methodology have provided multi-layered insights on
complex inflammatory processes in chronic diseases, which underscore the significance of

data integration in life sciences for a better development of translational research.
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Cell-Cell Communication in CRC To explore the complex interplay between immunol-
ogy responses at the cellular level, we collaborated with Dr. Rubens Begaj and Dr.
Elisabeth Letellier, to develop a scRNA-seq approach for focusing on the role of WNT5A
signaling in colorectal cancer. Extending the research through CCC analysis using
LIANA and NicheNet, we identified two fibroblast subtypes (iCAF and myCAF) charac-
terized by high WNT5A expression. This work suggests potential for targeted strategies
aiming to disrupt WNT5A-mediated signaling and boost anti-tumor immune responses.
The scRNA-seq and CCC analyses were central for uncovering these novel therapeutic

targets.

Immunological data integration during Allergy Building upon the immunology in-
sights from CCC analysis in CRC, we shifted our focus to explore the complex
immunological mechanisms of Peanut Allergy. In collaboration with Dr. Rebecca Czolk
(NextImmune DTU), Theresa-Maria Bohm (PhD student Nextimmune2 DTU), we used
different approaches, including cytokine and cell type analysis, to identify distinct
immune signatures differentiating PA patients between their reactions manifestation,

particularly during Oral Food challenge.

Genetic and Dietary contributions to inflammation risk To further expand our under-
standing of the factors contributing to inflammation, we collaborate with Dr. Guilherme
Meyers and Dr. Torsten Bohn to investigate the interplay between genetic variants, DF
intake, and inflammatory markers. This study aims to bridge the gap between genetic
predispositions and environmental factors, such as diet, in modulating inflammatory re-
sponses. By integrating genetic, microbiome, and dietary data, we developed a strategy
to establish an inflammatory risk score that stratify patients based on their potential
for personalized dietary recommendations to mitigate inflammation, particularly in

individuals with genetic predispositions affecting fiber metabolism.

Cross-Disease insights and translational relevance A recurring pathway target across
these initiatives is the central role of inflammation in driving disease progression. De-
spite the distinct contexts of colorectal cancer, food allergy, and dietary interventions,
we explored noteworthy inflammatory pathways, underscoring the interconnected
nature of these processes. A MO integration, as P-integration, comparing different

cohorts would facilitate the understanding of cellular and molecular interactions essen-
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tial and shared for cross-disease therapeutic strategies. These insights contribute to
developing the broader field of translational medicine, supporting the development of

more precise and personalized healthcare interventions.

6.2.1 Multi-omics in perspective of the research collaborations

This section critically examines the techniques used, highlights their strengths and limitations,

and discusses the broader implications of these approaches for translational research.

Strengths

Data integration allowed us to capture the complex interactions of biological processes.
Correlation networks helped to visualize long lists of interactions. Dimension reduction
methods such as PCA, or UMAP were able to capture meaningful biological signals
despite the heterogeneity and high dimensionality of the data.

Machine learning models such as Random Forest enabled the identification of key
features in the group identified by unsupervised approaches over diverse datasets.
Feature selection methods hold great promise for building predictive models, such as
the inflammatory risk score described in this manuscript, and incorporating genetic,

dietary and microbiome data.

Challenges

The data heterogeneity among the different datasets posed significant challenge. As
secondary usage, some dataset are not raw and already processed by the primary study,
thus limiting the possibilities for modeling.

For the correlation based network, even though bootstrapping , some limitation remain
such for difficulties to detect non-linear interactions, or small sample size limit the

detection of complex dependencies.

Generalization

One of the advantages of the integrative approaches in this thesis are their transferability.
Aslong as data meets assumption of a model, they can be adapted. In P-integration, same
data layers would unravel shared mechanisms which could be relevant. For example,
APSIS and Luxfico cohorts immunological and microbiome data integration would be
interesting to explore the possible shared inflammatory and metabolic pathways.

Predictive models such as the inflammation risk score from Luxfico cohort can be
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flexible, allowing for the incorporation of additional data types or features as they
become available. The modularity of data-driven models supports potential extension
to other cohorts, including those with different genetic backgrounds or environmental

exposures, either for refinement and enrichment.

Reproducibility
The integrative analyses were designed with a focus on reproducibility, employing
standardized methods for data processing, statistical testing and visualization. For some
case, bootstrapping and cross-validation techniques further enhanced the robustness of
the findings. However, reproducibility remains a challenge, particularly in the complex

of MO datasets.

Computational consideration
The diffterent ML method proved effective in revealing interesting biological insights
but they required careful tuning of parameters to avoid over-fitting or loss of biological
information. For instance in scRNA-seq, the resolution parameter in clustering step
significantly influenced the identification of subpopulations, thus impacting the CCC

analysis.

6.3 Cross-diseaseresearch advances personalized medicine

Building on the integrative bioinformatics and MO analyses conducted, several procedures
and future directions can be proposed to enhance disease stratification, patient monitoring,
and early intervention strategies. This section outlines the further steps and explores the

implications for PM and precision healthcare.

The findings from this thesis highlight the potential for stratifying patients based on their
inflammatory profiles, starting from cytokines signatures, cellular interactions to molecular

and genetic markers:

Early disease monitoring scRNA-seq and CCC analysis identified several patterns and
signature that could be associated in tumor development and inflammatory responses.
Validating these communication pathways, a diagnostic panel could be build with

clinical datasets for monitoring patients in early stages of CRC.
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Risk Stratification The development of a predictive risk score, incorporating genetic data
(SNP), microbiome composition and dietary factors, offers a novel approach for strat-
ifying patients based on their predisposition to inflammation. This model could be
applied in clinical settings to identify individuals at high risk of developing severe
inflammatory responses, enabling early intervention, such as dietary modifications or

anti-inflammatory therapies, designed for the patients specific profile.

Longitudinal monitoring By leveraging MO integration, a dynamic monitoring system
could be established to track changes in a patient’s inflammatory profile over time. For
example, serial measurement of cytokines levels combined with single-cell transcrip-
tomics data could provide multi-modal insights into the development of inflammation,

guiding treatment and life style adjustments and improving patient outcomes.

6.3.1 Expanding the scope of personalized medicine

Given the results on the three diseases investigated in this manuscript, it would be beneficial
to apply these approaches to additional disease contexts to investigate the inflammatory
responses. Potential other disease models could include chronic inflammatory conditions
such as rheumatoid arthritis or inflammatory bowel disease, where cytokines signaling could
express similar patterns or microbiome interactions could influence the disease progression.
Expanding the investigation scope to include these diseases could help identify relevant
pathogenic and common inflammatory signatures and further elucidate the early development
of chronic disease.

While several biomarkers have been identified, further validation is required to translate
these hypotheses. The next logical step would involve wet-lab validation using appropriate
techniques such as ELISA for cytokines quantification, flow cytometry for cell profiling,
and knockouts to assess the functional impact of specific genes. Additionally, the ultimate
validation would involve prospective cohort studies to assess the predictive value of these
biomarkers in diverse patient population.

From the diet collaboration, to establish the clinical utility of the identified biomarkers and
predictive models, clinical trials would be preferred. For instance, a randomized controlled
trial could be designed to evaluate the effectiveness of personalized dietary intervention based
on the inflammatory risk score developed in the thesis. Patients could be stratified based on

their genetic and microbiome profiles, and the impact of tailored fiber intake on inflammatory
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biomarker quantification and body responses could be assessed.

Suggestions and improvements for such investigations would include different aspects
improving the quality and rapidity of the hypotheses driven analyses. One of the main chal-
lenges in MO integration is the variability in data quality across different datasets. Developing
an automated QC platform that standardizes quality control metrics and integrates them into
an unified report would streamline the analysis process and reduce the risk of batch effects
and data inconsistencies. In a similar way, a complete pipeline that facilitates the assessment
of statistical tests (such as differential expression, correlation analysis) and integrates robust
methodologies such as bootstrapping and cross-validation would enhance the reliability of
the findings and the comparability to other studies. This pipeline could be designed to auto-
matically suggest the most appropriate tests based on the data characteristics, simplifying
the workflow for researchers. Another idea would be to design enhanced interpretation
tools to facilitate decision-making, developing user-friendly tools that provide integrated
explanations and reports of the results. For example, interactive visualizations highlighting
key features and offer context specific interpretations (based on pathway enrichment analysis
for example) with interactive selections, could make the results more accessible and dynamic

in collaborations, improving the decision flow and follow up interventions.

Challenges and limitations

The integration of MO data in this thesis revealed several significant challenges that are
particularly pertinent to immunology and allergy research. A fundamental limitation emerged
from the initial experimental design of collaborative projects, which were primarily conceived
for classical A/B testing rather than comprehensive MO modeling. This constraint exemplifies
a common challenge in the field: the re-purposing of existing datasets for advanced integrative

analyses often faces inherent limitations based on their original design parameters.

In the context of allergy studies, we encountered specific challenges related to the relative
scarcity of reference datasets compared to more extensively studied diseases such as cancer.
This limitation significantly impacted our ability to perform comprehensive enrichment
analyses and validate findings through external data sources. While technical aspects of
Single-cell RNA sequencing (scRNA-seq) analysis were well-supported through established
workflows like Seurat, the primary challenge lay in developing novel, biologically relevant

signatures for characterizing cell types and identifying significant targets.
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Legal and administrative constraints posed another significant challenge, particularly
evident in the fiber diet collaboration. These barriers resulted in limited access to detailed
dataset information and original publication results, significantly impacting the pace of
development and validation of our findings. This experience highlights a broader challenge in
MO research: the balance between data protection requirements and the need for transparent,
reproducible science.

The economic aspects of MO studies emerged as a fundamental limiting factor. While
reusing existing datasets represents a cost-effective approach, the limitations inherent in their
original design often restrict the application of advanced MO methodologies. Furthermore,
the scientific community’s skepticism towards complex MO analyses necessitates extensive
validation of findings. Traditional enrichment analyses, while useful as filtering tools, are
often not considered sufficient validation, creating a requirement for additional experimental

verification that may be beyond the scope or resources of many studies.
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Chapter 7

Future directions in inflammation and

multi-omics research

7.1 Integrated research shapes the future of personalize

medicine

The integration of MO approaches in clinical practice presents transformative potential
for healthcare delivery, particularly in disease prevention and PM. Our research suggests
that the primary impact of these integrative approaches will manifest in enhanced disease
screening capabilities and the development of comprehensive molecular footprinting. This
advancement enables earlier disease detection and more precise mechanistic understanding
of pathological processes, fundamentally shifting healthcare paradigms from reactive to
preventive approaches.

The translation of MO research into clinical applications necessitates significant techno-
logical and methodological adaptations. While current research primarily focuses on target
identification and pharmaceutical collaborations, the future implementation demands the
development of practitioner-friendly analytical tools. These tools must bridge the complexity
of MO analysis with the practical constraints of clinical settings, enabling healthcare providers
to effectively utilize sophisticated molecular data in patient care.

A significant paradigm shift is anticipated in therapeutic approaches, moving beyond tradi-
tional pharmaceutical interventions toward more personalized and preventive strategies. This
evolution encompasses tailored dietary modifications, targeted metabolite supplementation,

and lifestyle interventions based on individual molecular profiles. However, the widespread
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implementation of comprehensive molecular profiling, such as full microbiome sequencing,
remains constrained by cost considerations. Nevertheless, signature-based analyses offer

promising intermediate solutions for patient monitoring and lifestyle optimization.

The advancement of digital technologies, particularly the widespread use of smartphones,
presents opportunities for patient data collection and monitoring. However, this potential is
tempered by significant challenges in data security and accessibility for healthcare providers.
The development of robust clinical decision support systems capable of processing and

interpreting large-scale patient data remains a critical need.

Recent advances in Large Language Models show promise in facilitating communication
between various stakeholders in translational science, particularly in summarizing complex
reports and explaining intricate molecular concepts. However, the current limitations of these
models, including their susceptibility to hallucinations and potential for false statements,

preclude their direct application in clinical decision-making processes.

The evolution of MO research necessitates the development of comprehensive infrastruc-
ture and analytical tools to support clinical implementation. A crucial advancement would
be the establishment of integrated disease databases incorporating multiple molecular data
layers, enabling researchers and clinicians to identify and analyze specific patient subgroups
within large cohorts. These databases would facilitate the development of robust MO signa-
tures for distinct disease phenotypes, significantly enhancing our understanding of disease

heterogeneity and treatment response patterns.

The field requires standardized analytical frameworks comparable to established tools
like Seurat for Single-cell RNA sequencing (scRNA-seq). Such frameworks would need to
accommodate various MO integration methodologies while maintaining user accessibility
and computational efficiency. The development of a unified analytical platform would enable
systematic comparison of different integration approaches, fostering reproducibility and

methodological standardization across the field.

A critical step toward clinical implementation is the development of automated, user-
friendly pipelines suitable for deployment in healthcare settings. These systems must
balance sophisticated analytical capabilities with operational simplicity, enabling non-
bioinformaticians to effectively utilize MO approaches in clinical decision-making. Initial
implementation of such systems would likely focus on well-funded disease areas, such as
oncology, where existing infrastructure and resources can support the substantial computa-

tional and technical requirements. This staged approach would provide valuable insights
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for broader implementation across other disease domains, while allowing for refinement of

analytical protocols and user interfaces based on real-world clinical feedback.

7.2 Advancing inflammation treatment through contin-

ued investigation

The continuation of comprehensive insights into inflammatory mechanisms necessitated the
exploration of multiple analytical strategies, many of which faced limitations inherent to data
complexity, experimental design, and translational feasibility. Below, the challenges encoun-
tered in alternative approaches are discussed, also the barriers to multi-omics integration,

and the indispensable role of biological expertise in navigating these complexities.

Leveraging Big Data for allergy research

While A/B testing (e.g. case/control comparisons) remains a gold standard for identifying
statistically significant differences in clinical studies (e.g. cytokines levels between cohorts),
its utility is confined to surface-level insights (mean/variance shifts). For instance, group
differences highlight disease-associated trends but failed to explain whether these shifts were
drivers of pathology or secondary effects of confounding factors (e.g. medication use). This
limitation underscores the need for more hypothesis-driven, focused mechanistic studies to
complement exploratory analyses.

Correlation isn’t Causality. Correlation analyses between cytokines and immune cell
populations revealed co-regulation patterns in section 3.3. While causal inference approaches
(e.g. Mendelian randomization, for investigating gene causality) can be considered, they
required genetic or longitudinal data unavailable in our cohort. This exemplifies a broader
challenge: clinical datasets can lack the temporal resolution or multi-modal layers needed for
causal modeling.

Manual subgrouping based on delayed treatment response was explored to stratify patients
(e.g. “early” vs “late” responders). However, the binary design of our primary dataset lacked
granular temporal metadata, rendering such stratification statistically underpowered. Future
studies incorporating continuous monitoring (e.g. consistent cytokines profiling over the
experience) could enable these hypotheses, bridging gaps between clinical phenotypes and

mechanistic drivers.
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Unsupervised clustering (e.g. k-means on cytokines profiles) aimed to identify patient
subtypes with distinct immune signatures. However, the limited cohort size (n = 40) and high
dimensionality of features led to unstable clusters. Even when clusters emerged, biological
interpretation relied heavily on manual metadata scrutiny (e.g. correlating clusters with

comorbidities), emphasizing that algorithmic outputs alone cannot replace domain expertise.

The integration of multi-omics data (e.g. immune, microbiome, metabolomic layers) holds
theoretical promise for unraveling systemic drivers of inflammation. However, practical
implementation faced difficulties in the framework of this thesis. Only a small number of
patients had complete multi-omics profiles due to sample collection times and inconsistent
biomarker panels. Subgroup analyses in small cohorts then produced unreliable effect sizes,

rendering the possible approaches — such as Bayesian ones — speculative at best.

These challenges highlight a translational paradox: while multi-omics frameworks are
biologically compelling, their success hinges on harmonized and consistent large-scale data

infrastructure.

As exemplified in section 3.4, statistical outputs is requiring rigorous biological validation
to distinguish signal from noise. An iterative dialogue between data and domain knowledge is
not a limitation but a necessity, ensuring findings are mechanistically plausible and clinically

actionable.

Future research directions should address several key barriers identified in this work.
First, establishing prospective cohorts with embedded multi-omics analyses will be crucial.
These cohorts should implement standardized collection protocols, including fixed timepoints
and centralized laboratory processing, to minimize technical and biological heterogeneity

across samples.

To move beyond correlative findings, future studies should incorporate causal inference
frameworks that integrate genetic and interventional data. This approach will strengthen our
ability to identify true mechanistic relationships within the complex inflammatory networks
we have observed.

Additionally, the development of collaborative data repositories represents a critical step
forward. Such shared infrastructure would enable the harmonization of currently fragmented
datasets across institutions, facilitating meta-analyses with sufficient statistical power to
detect subtle biological signals.

While this thesis has highlighted the inherent challenges in studying complex inflam-

matory processes, it ultimately reinforces a fundamental principle in inflammation research:
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breakthrough discoveries emerge from the synergistic application of analytical rigor and deep
biological expertise. This combination remains essential for advancing our understanding of

inflammatory mechanisms and their therapeutic implications.

High-Resolution genetic studies in CRC

Single-cell RNA sequencing (scRNA-seq) has fundamentally transformed our ability to charac-
terize tumor heterogeneity, enabling unprecedented resolution in identifying rare cancer cell
subtypes and complex cell-cell communication networks. The field continues to evolve with
the integration of complementary multi-omics approaches, including ATAC-seq for chromatin
accessibility profiling, RNA velocity analysis, and spatial transcriptomics, which collectively
provide deeper insights into tumor evolution and microenvironmental interactions. These
advanced techniques offer powerful analytical capabilities — pseudotime analysis can now
elucidate developmental trajectories connecting progenitor — such as states to metastatic
phenotypes, while gene regulatory network analysis helps identify master transcription
factors driving colorectal cancer progression.

In our investigation of cross-disease mechanisms, we employed Harmony-based integra-
tion to compare CRC and pancreatic ductal adenocarcinoma (PDAC) profiles. However, this
approach revealed a fundamental challenge: while cross-disease comparisons can illuminate
universal oncogenic pathways, they risk obscuring context-specific biological mechanisms.
Moving forward, we propose that studies should prioritize intra-cancer integrative analyses,
such as harmonizing colorectal cancer datasets across different stages or molecular sub-
types (CMS1-4), with particular attention to rigorous batch correction and careful metadata
alignment, especially regarding treatment history.

A crucial consideration in Single-cell RNA sequencing is the impact of analytical parameter
selection on results interpretation. For instance, modifications to clustering resolution or
choice of dimensionality reduction methods (UMAP versus t-SNE) can significantly alter
the identified cell populations. While our initial analysis pipeline adhered to established
best practices through the Seurat toolset, we recognize that addressing new hypotheses may
necessitate parameter adjustments. This presents a methodological dilemma: strict adherence
to original workflows ensures reproducibility but potentially overlooks biologically significant
subpopulations. We advocate for a balanced approach of principled flexibility, emphasizing
transparent documentation of parameter choices and validation against orthogonal datasets

such as spatial transcriptomics.
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Fiber Diet and immunology modulation: A roadmap for future work

Current Progress and Anticipated Single-nucleotide polymorphism (SNP) analyses presented
in section 5.2 remains in development, preliminary work establishes a pipeline for linking
dietary patterns to immunologic outcomes via genetic profiling. By mid-2025, we aim to :
Identify SNP associated with immune responses to high-fiber diets. And benchmark these
genetic signatures against public genetic reports in databases such as OMIM, ClinVar.

A core objective of this work is to evaluate how predictive models of fiber-mediated
immunologic responses align with existing public health nutrition guidelines. For instance,
the European Food Safety Authority recommends a daily fiber intake 25 g for adults [342],
while regional guidelines could emphasize fiber sources (e.g. whole grains vs legumes). Our
models will assess whether genetic subpopulations require tailored thresholds, challenging
one-size-fits-all recommendations. To draft our guidelines, it is expected to be partnering
with public local organizations, and integrate the outcomes — such as SNP profiles — into
electronic health records to flag at-risk patients during dietary counseling.

Looking ahead, several critical research directions emerge for advancing our understanding
of Dietary fibers’s impact on health outcomes. Longitudinal studies spanning 5-10 years
will be essential to track the relationships between fiber intake, microbiome composition
shifts, and immune markers, providing robust validation of causal relationships. Additionally,
intervention trials present an opportunity to test personalized fiber prescriptions in controlled
clinical settings. Perhaps most importantly, expanding our dietary fiber study to include
SNP-diet database aggregations from underrepresented populations, particularly African and
Indigenous cohorts, represents a crucial step toward addressing nutritional health disparities

on a global scale.
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