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S1 Elaborated constraint systems

S1.1 Incremental construction of resource-balanced models
Enzyme-balanced FBA construction

FBA models are composed of a stoichiometric matrix, S, enforcing mass balance on a vector of
the modeled fluxes, v, which are usually directionally constrained through lower bounds vip and
upper bounds vyp. A typical FBA representation is shown in Supplementary System [l The system
is formulated as an optimization problem that maximizes the biomass objective function (u); the
optimum is then the highest-yield solution [1].

Enzyme kinetics computation requires a ‘unidirectional’ view of the reactions in the model; we
therefore split the (possibly bidirectional) variables in the model into their unidirectional counterparts
using Supplementary System

Enzyme-constrained FBA (ec-FBA) models extend Supplementary System [2] with enzyme kinetics,
derived mainly from turnover numbers (kcatS) and proteome capacity limitations [2, [3, 4]. ec-FBA
models explicitly account for the protein cost, associated with a metabolic flux. A complete ec-FBA
formulation is shown as Supplementary System

In Supplementary System |3| we explicitly make room multiple capacity bounds F1 ., where the
enzymes are selected and weighted by corresponding vectors m; . .

Simplified RBA

Resource balance analysis (RBA) seeks to extend ec-FBA models by incorporating gene expression
(transcription and translation) into the model formulation [5[6]. Simplified RBA (sRBA), as presented
in Supplementary System [5| partially shares this goal, but only accounts for translation (ribosomes),
energy costs associated with protein synthesis, and biomass component growth dilution.

Since we are interested in a chemostat-like simulation, we fix ;+ and minimize the resource parsimony
objective: 37, e; - mj + my - 3o, v (which is equivalent to minimizing the L1 norm of the protein
content of the model). Implementation of Supplementary System [5{in COBREXA 2.0 is available in
the supplementary code repository at https://gitlab.lcsb.uni.lu/lcsb-biocore/publications/
kratochvil24-cobrexa?2, file scripts/03_srba. j1, function with_srba_constraints, totaling 90
lines of commented code.
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max f4 maximize growth

u=v'c objective function
S-v=0 mass balance
viB <V lower flux bounds
VUB > V upper flux bounds

Supplementary System 1: Flux balance analysis as a linear program. The variables in this program are the fluxes,
v and the biomass objective function, . In COBREXA, this system is generated via flux_balance_constraints.

ut >0 forward fluxes

u >0 reverse fluxes

ut < vup forward flux bounds

u < -vip reverse flux bounds
ut—u =v directionality balance

Supplementary System 2: Unidirectional reaction variable system as an extension of Supplementary System
The additional variables here are the unidirectional fluxes in the forward, and reverse directions, u™, u~. Notably,
the system allows the reactions to ‘run’ in both forward and reverse direction at once. In COBREXA, this system is
generated via sign_split_constraints and several related functions.

e>0 isozyme amounts
Z Keat - € > [uf| (Vr € Re) forward catalysis capability of isozymes
t€Fwbplsos(r)
Z Keat i - € > |u, | (Vr € R.) reverse catalysis capability of isozymes
1€REVISOS(r)
(Vi) e™m; < E; capacity limitations

Supplementary System 3: ec-FBA as constraints that extend the FBA with unidirectional reactions (Supplementary
System . The new variables stand for enzyme concentrations e, and the grouped enzyme capacity bounds E; (each ¢
thus specifies a group of enzymes to be bounded). In COBREXA, this system is generated via enzyme_constraints.

Frnem =0.2- Z E; membrane-to-total protein mass ratio
i

Supplementary System 4: Additional ec-FBA constraint to keep the membrane protein capacity in biologically
expectable range. In COBREXA, this system is generated via equal_value_constraint and adding and scaling of
values in constraint trees. (Index of Epem labels one of the general indices i of E in Supplementary System .
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! . .
max f4 maximize resource-based growth

/
0= (S’ b) . (:,) metabolite and biomass balance
- (Z] ej - Ni(ej) + Ek 7 - Nj (rk)) if 4 € amino acids
ATP
ADP
bi - Si,biomass + v (ZJ €j - N (6]) + Zk Tk - N (Tk)) ifie HQO biomass composition
H+
Pi
S, biomass otherwise
k
w e = T (Vi € proteins) enzyme translation
N (e:)
/ Er . .
w- r; = e ribosome translation
2. N
T
Emem 2> Z mg - € enzyme mass on membrane
i
Etotal 2 Z m; - e; + Z mi - Ty total protein capacity
i i

Supplementary System 5: sRBA as constraints that extend the ec-FBA (Supplementary System . In the system,
the biomass function decomposition to components (b;) ensures that non-amino acid and energy metabolites are
produced at the same rate as the ec-FBA model, and that the energy and amino-acid cost of the transcription scales
with the amount of enzymes required to catalyze the metabolic flux. The total number of amino acids in a molecule
x is counted by Nx (z), and the number of amino acids of type y in a molecule z is counted by Ny (z). P is the
ATP cost of polymerization of an amino acid into a protein (by default, P = 4.2). k.. is the ribosome translation rate
is (by default, k. = 12). The ATP requirement for growth is adjusted according to the amount of ATP is needed to
produce the enzymes, e, and the ribosomes, r. The ATP hydrolysis equation is used to modify the amount of energy
currency metabolites in the original biomass function, ATP + HyO — ADP + PO4 + H™ — here, v; marks the
stoichiometry of the metabolites in this reaction. Notably, the SRBA model is bilinear in 1 and (e,r,v). Enough
ribosomes must be made to produce all the enzymes, as well as the ribosomes necessary to produce the enzymes.
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S1.2 Constraint systems for enzyme-constrained communities

Supplementary Figure [S1]is provided as an illustration of the situation in a co-culture of auxotrophic
organisms.

ec-cFBA models used in the manuscript are illustrated in Supplementary Figure The formula-
tion of the ec-cFBA problem is listed in Supplementary System [6]
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AmetA

isoleucine

AilvA

methionine

Figure S1: lllustration of mutually auxotrophic E. coli co-culture. AmetA cannot produce methionine, AilvA cannot
produce isoleucine. The strains can grow only when co-cultured.

max ¢ maximize the community growth
a; >0 (Vi) individual community member abundances
Z a; =1 abundances sum to 1
7
Z VigQi = Veg (Vx € X) community exchange balance
i
Wi =c¢ (Vi) community growth balance

Supplementary System 6: Enzyme-constrained 2-member community FBA (ec-cFBA) as a linear program. The
problem includes several instances of Supplementary System [3 with all variables indexed by the community member
index i (i.e., stoichiometry of the i-th member is S; and the internal flux in i-th member is v;). For simplicity,
we assume that the set of exchange reaction indexes X is the same in all community members; realistic software
implementations will instead select the reactions by a pre-established shared identifier scheme. In addition to the
variables defined previously, a; represents the abundance of species i. Environmental exchange is modeled by v, , for
metabolite . In COBREXA, this system is generated via interface_constraints; suitable interfaces are obtained
from flux_balance_constraints.
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S2 Construction and interpretation of use-case models

S2.1 Incremental construction of an iML1515 resource-balanced model

To demonstrate the construction of complex models from simple building blocks, we incrementally
constructed an example genome-scale enzyme- and translation-constrained model of E. coli. Our
construction is based on a conventional FBA model of a mass-balanced reaction system, iML1515 [7].
Initially, we created a system of unidirectional reactions atop the original model, and added constraints
that incorporate enzyme turnover numbers (kcats), and proteome capacity limitations [2, 3], which
explicitly account for the protein cost of a given metabolic flux. Crucially, since modeling overflow
metabolism requires at least two active bounds [§], we added both a membrane bound, and a total
proteome density bound to the model. The exact form of the model is elaborated in Section For
the parametrization of enzymatic constraints, we used in silico-estimated enzyme turnover numbers [9)
for all presented experiments, together with a total enzyme capacity bound of 0.55$, and membrane
enzyme capacity bound 0.11& (i.e., the amount of membrane enzymes is bounded to 20% of the
total enzyme amount).

Because protein synthesis is a major biosynthetic cost in bacteria that outweighs both transcription
and translation energy requirements [10], we reasoned that a simplified variant of Resource Balance
Analysis (RBA) [5) 6], only taking into account ribosomes, ATP, and amino acid requirements of
protein synthesis, would be sufficient to mechanistically model overflow metabolism. Through the
text, we label this simplified RBA as sRBA. For sRBA models in this work, we set the ribosome
translation rate to 12 amino acids per second, and the polymerization cost to 4.2 ATP per amino
acid. Additionally, the L1 norm of proteins and ribosomes is minimized at each growth rate, in order
to ensure a sufficiently unique solution from the possibly under-determined constraint system.

In this formulation, sSRBA is an straightforward extension of enzyme constrained FBA (ec-FBA)
models. We note that the full RBA problem formulation that simulates the transcription and
replication machinery may be constructed as another extension of this model. As a major benefit
compared to full RBA, the parameters required for sSRBA model construction are relatively well-
determined and easy to collect from public databases. The exact definition of the sSRBA model is

provided in Section

Discussion of results obtained from iML1515 sRBA model

The protein fraction of cellular dry mass varies by less than 10% across a range of growth conditions
(Supplementary Figure [11]. This density constraint has been used to provide a mechanistic
explanation for overflow metabolism [12]. In essence, the density limitation forces the cell into a
trade-off between devoting resources to catabolism and anabolism: During slower growth regimes, the
cells favor higher yield but proteomically costlier respiration (with kinetically slower, bigger enzymes),
while at higher growth rates, fermentation metabolism is also used (in the case of E. coli, this results
in aerobic acetate production). Fermentative ATP generation is kinetically faster, requires smaller
enzymes, but ATP yield is lower than from respiration. Additionally, since ribosomes are needed to
produce both enzymes and the ribosomes themselves, and their translation rate is limited, increased
ribosome concentrations are required to support higher growth rates [13|, [14]. In turn, this leaves
even less space for large enzymes, and forms the basis for the resource partition trade-off observed in
bacteria, which leads to overflow metabolism [15].

Expectably, we encode the constant density observation into ec-FBA models via a single constraint
that restricts the total proteome density to a chosen constant. Additionally, we use a secondary
membrane capacity bound to reflect the physical constraint of limited membrane space. Assuming
this bound structure causes the onset of overflow metabolism to be controlled by the membrane
capacity bound [17, [18], which is in contrast to simpler resource allocation models that only posit a
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Figure S2: Protein density across a range of culturing conditions of E. coli. Dots represent individual experimental
measurements [11]. Mean value with 10% relative tolerance is highlighted in green on the right side.
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Figure S3: Fraction of cytosolic and membrane-bound proteins measured in different growing conditions of E. col.

Points represent experimental measurements [16], lines represent least-squares regression in each compartment.
Slope of either of the regression fits is not significantly different from 0.
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total capacity bound [2, [19]. This assumption is further supported by recent quantitative proteomics
measurements, which revealed the mass ratio between cytosolic and membrane-bound proteins as
relatively constant over a wide range of growth conditions (Supplementary Figure [16]. In total,
we use these assumptions to set two capacity bounds in the ec-FBA models: a total protein (0.55$),
and a membrane capacity bound (20% of the total protein capacity).

Simulations of the constructed E. coli ec-FBA model in COBREXA 2 (Supplementary Figure [S6))
show that when a membrane protein that is ‘useless’ in the context of glucose-driven growth (e.g.
WT lacY or the engineered proton-leaking lacY) is over-expressed, less space remains for transporters
and respiratory membrane-bound complexes, causing the earlier onset of overflow metabolism. On
the contrary, over-expressing a ‘useless’ cytosolic protein (lacZ) shows no effect. That contradicts
recent experimental results, which showed that over-expressing either of lacZ and the proton-leaking
lacY caused the earlier onset of overflow metabolism.

Naturally, we hypothesized that extending the ec-FBA model with further resource allocation
constraints would capture the observed phenotypic behavior, and extended the ec-FBA model with
sRBA constraints that account for ribosomes that occupy additional cytosolic space, and for the
amino-acid and ATP cost of protein polymerization.

The E. coli sSRBA model improved the predictive accuracy of our simulations over ec-FBA, showing
that over-expression of lacZ also leads to the earlier onset of overflow metabolism. We additionally
observed that the membrane bound is still a driver of this result, as an over-expression of lacZ requires
more ATP to be produced (due to protein polymerization costs), which increases the amount of
energy generating membrane proteins at each growth rate relative to the WT simulation. Thus, the
earlier onset of the overflow metabolism is caused indirectly by hitting the capacity limitation at the
membrane.

Possible interpretations of the results from sRBA simulations

Basan et al. [15] did not find evidence that membrane capacity would determine the switch to the
overflow metabolism when attempting to over-express WT lacY, which contradicts our results, where
WT lacY causes the switch. At the same time, Wagner et al. [20] found evidence of this effect for
several other (GFP-fused, WT) membrane proteins. We hypothesize that this apparent contradiction
could be explained by the difficulties of over-expressing membrane proteins.

Further experiments might thus be necessary to elucidate the effect: mainly, the fraction of the
proteome taken by the over-expressed lacY should be determined experimentally (these measurements
were not reported by Basan et al. [15]). On the other hand, over-expressed lacZ was measured
at more than 8% of the proteome, representing substantial metabolic stress (even in terms of
ATP polymerization costs). This way, our simulations lend support to the ‘membrane real estate
hypothesis’ [17, [18] for explaining overflow metabolism, but the results are not dispositive.

S2.2 Parameter choices for the sRBA model

To parameterize each example model, we gathered the enzyme turnover numbers directly from [9], the
enzyme sub-unit stoichiometry from Uniprot [21] and the Complex Portal [22], and the translation
rate from [23].

We opted to use representative values for parameters that have growth rate dependent effects (e.g.
translation rate of 12 amino acids per second), and average values specific constants like the ribosome
molar mass (2700 kD, amino acid composition of the ribosome (7459 amino acids per ribosom,

"https://bionumbers.hms.harvard.edu/bionumber.aspx?id=100118&ver=10&trm=e+coli+ribosome+molar+
nass¥org=
“https://bionumbers.hms.harvard.edu/bionumber.aspx?id=101175
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ATP protein polymerization cost (4.2 ATP per amino acidﬂ), etc. Links to all data sources together
with cleaned extracted data files are reported in the source code repository. The parameters were
used as gathered, with no parameter fitting procedure involved.

We additionally summarize the sensitivity of the constructed model to the translation rate
parameter (k,), which seemed to be the most sensitive to perturbations: In Figure 1C in main text,
we compare of the ribosome mass fractions using the translation rate of 12 amino acids per second (a
representative average value) against 9 and 17 amino acids per seconds (the minimum and maximum
measured value reported by Dai et al.) [23]. Notably, the average value recapitulates the experimental
data well, and the mass fractions seem to differ between the average and extreme parametrization only
by a constant relative factor. We did not observe any substantial impact of changing the translation
rate on the metabolic flux (Supplementary Figure .

S2.3 Construction of enzyme-constrained communities

To further demonstrate the versatility of COBREXA 2, we constructed enzyme-constrained community
models of interacting F. coli mutants.

These mutants were modeled as auxotrophic for 14 specific amino acids, using single-gene deletions
in the relevant biosynthetic pathways, as has been done experimentally [24, 25]. The auxotrophic
models were additionally constrained by enzyme kinetic and capacity constraints (analogous to the
E. coli extension specified in Section but only with the total enzyme capacity bound). Individual
models were connected via their exchange reactions, with exchange fluxes weighted by the abundance
of the mutant, and the biomass production rates of each mutant model was constrained to the same
value, effectively creating a community growth rate as in the cFBA method [26]. Additionally, the
mutants were allowed to share the knocked-out amino acids with each other. To avoid the bilinearity
of the cFBA model (in abundances and fluxes), we solved the problem multiple times over a uniform
sample of possible abundances, and picked the solution with the maximum growth rate. The complete
constraint system construction is laid out in Section

Discussion of results obtained from iML1515 enzyme-constrained auxotrophe community

Thus far, ec-FBA models have been mostly applied to single organisms [27], raising a question:
would adding enzyme constraints to community flux balance analysis (cFBA) models improve their
predictive accuracy? Previous attempts to answer this question made use of ad hoc constraints, e.g.
flux balance analysis with molecular crowding (FBAwMC) [28] was incorporated into a community
scale model of interacting bacteria, but this approach lacks the mechanistic details available when
using full enzyme constrained models (e.g. protein concentration predictions cannot be made [2]).
This drawback reflects the lack of parameters endemic to the field when FBAwMC was introduced
(circa 2007). More recently, quasi-resource allocation type constraints were added to community flux
balance models through the incorporation of an L1 bound on total reaction flux in each community
member [29]. This approach also eschews important details, like enzyme speed and size, which are
both physiologically important attributes, figuring prominently in ec-FBA.

Community-simulating extensions of FBA [30, 31] typically assume that each community member
grows at the same rate (otherwise the system is not at steady state), and metabolite flux exchange be-
tween members and their environments is weighted by the abundance of each microbe [26]. Previously,
data scarcity prevented adding enzyme bounds to genome-scale metabolic models, but this problem
has been attenuated by new in silico estimators, including machine learning [32], and omics-driven
parameter estimation techniques [33], allowing for the parametrization of ec-FBA models at community
scale.

3https://bionumbers.hms.harvard.edu/bionumber.aspx'?id=114971&ver=1&trm=ribosome+amino+acid&org=
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Figure S4: Comparison of growth predictions obtained for different compositions of AmetA-AilvA auxotroph E. coli
community, using cFBA and ec-cFBA. In both simulations, the members were only allowed to exchange methionine
and isoleucine. The vertical gray bar indicates the experimentally measured abundance [25].

We simulated mutually auxotrophic E. coli communities that were previously constructed experi-
mentally by co-culturing mutants with complementary knockouts [24], 25]. Since each auxotrophic
mutant lacks an essential gene for biosynthesis of a different amino acid [25], it is unable to grow
in isolation, but may be rescued in a community where the amino acids may be exchanged with
different mutants. However, the fundamental factors that determine the composition of the resultant
communities are not well understood. Here, we hypothesize that each coupled community will adjust
its abundance to grow as fast as possible, and investigate whether this optimality assumption holds
by comparing measured abundance data to simulations using a classic cFBA, and enzyme-constrained
cFBA (ec-cFBA).

First, we simulated a co-culture of AmetA (auxotrophic for methionine) and AilvA (auxotrophic for
isoleucine) E. coli mutants. This pairing exhibits robust growth with a steady-state abundance of 20%
AmetA, as established experimentally [25]. Supplementary Figure compares the results obtained
from ec-cFBA to conventional cFBA. Notably, with conventional cFBA the abundance of each member
has only negligible effect on the community growth rate (up to extreme values), which is caused by
the virtually identical metabolism of both members that can complement each other via zero-cost
exchanges. This effect was previously prevented in simulations by incorporating non-mechanistic
assumptions (i.e. a community MOMA-type simulation) that results in more realistic behavior [24].
In contrast, results from ec-cFBA clearly show two distinct growth regimes as the abundance of
AmetA changes, with a better defined optimum at the intersection of the regimes. Each regime
corresponded to a specific partner limiting the growth of the community. In this particular case, the
biosynthesis cost of the biomass of each mutant differ because of both the knockout and the necessity
to supply amino acids to other community members at a rate that satiates the abundance-controlled
demand, which ultimately determines the optimal community composition.

Fascinatingly, when we extended the same analysis to all co-culture communities that demonstrated
significant growth (Figure 1D in main text), we observed that ec-cFBA offers substantially improved
predictions over cFBA. The comparison included only amino-acid pairings that exhibit significant
growth in experimental conditions (over 10-fold biomass increase over inoculum) [25]. ec-cFBA
provided better predictions than cFBA in all cases (measured via centered-log-ratio-transformed
compositional distance), improving the correlation with experimental data from 0.197 (cFBA) to
0.453 (ec-cFBA). The ec-cFBA prediction compares well to the non-mechanistic (and non-steady
state) approach used by Wintermute&Silver [24], who found a correlation of 0.42 across their dataset.
Despite this, it is clear that both approaches are missing an important physiological constraint, since
the predictive accuracy is relatively low. To improve, it might be necessary to incorporate either more
precise regulatory effects or RBA-style constraints.
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S3 Supporting results

Results from the simulation of 4-member community of E. coli mutants are summarized in Supple-

mentary Figure
Full results obtained from comparison of ec-FBA and sRBA are shown in Supplementary Figure [S6|

The reported results are a superset of ones in Figure 1B in main text.
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Figure S5: Enzyme kinetics constraints are not sufficient to robustly reproduce the composition of a 4-member
auxotrophic community of E. coli mutants. The plot is organized as slices of a 3-dimensional Aitchison simplex of
the community compositions [34]. Simulation of AmetA-AlysA-AilvA-AthrC community shows high variability in
community compositions at near-optimal growth rates. The star represents the experimentally observed composition

(AmetA 27%, AlysA 38%, AilvA 21%, AthrC 14%) [25].
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Figure S6: Comparison of results obtained from ec-FBA and sRBA models. The figure interpretation is the same
as for Figure 1B in the main text, but includes results from additional simulations from a model where lacY is
over-expressed but not leaking protons (labeled lacY+) and sRBA models where translation rate is changed from
12 to 9 and 17 amino acids per second (labeled respectively WT+slow and WT+fast, corresponding to the same
labels in Figure 1C in the main text). Results for WT and lacZ+ almost completely overlap in the ec-FBA models;
the WT model is able to grow approximately 5% faster. Similarly, results for WT, WT—+slow and WT+fast almost
completely overlap in the SRBA models; as the main difference, WT+fast is able to grow approximately 2% faster
than WT, which itself grows around 2% faster than WT+-slow.
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S4 Constraint trees

ConstraintTrees.jl is available as a separate package that we implemented to provide the constraint-
system representation for COBREXA 2. ConstraintTrees.jl is available from https://github.com/
COBREXA/ConstraintTrees. i1l and from Julia package repositories. Stand-alone tutorial documenta-
tion for ConstraintTrees.jl is available from https://cobrexa.github.io/ConstraintTrees.jl/\

Supplementary Table[S1|provides an overview of the “grammar” of constraint system manipulations
as implemented by ConstraintTrees.jl and COBREXA 2.

Constraint trees store a nested hierarchical structure of labeled constraints, organized into labeled
directories. Each constraint consists of a value part and an optional bound part. Semantically, the
value part defines a combination of variables in the system (typically a linear or quadratic one), and
the bound part describes a condition that the value must satisfy (typically that the value of the
combination of variables lies within a given interval). The labeled hierarchy carries no semantics in
the constraint system, and serves only for manipulation convenience.

Shown in the Supplementary Table the labeling and selection operations provide a systematic
way to logically group any constraints, avoiding the need for name mangling (e.g., the oxygen exchange
in organism 2, seen in the extension operation example, does not need to be labeled with unstructured
identifier such as "member2_R_EX_o02_e" as common in other systems), and providing easy hierarchical
access to all system constituents. Intersection and extension are the central operations, respectively
representing intersection of feasible spaces of both constraint systems, and Cartesian product of the
feasible spaces of constraint systems. The extension operation prevents any intersection of the variable
sets of the given constraints, typically re-numbering the variable indexes of some of the operands,
yielding a system where both original systems coexist independently. The interfacing operation is
similar to extension, but additionally requires specification of the “module interfaces” (highlighted by
arrows in the figure) which are used to connect the modules together (i.e., the systems are no longer
independent in the result), and create an interface for the result that may be used for connecting more
systems. Optimizing the system w.r.t. a given objective produces a “value tree” where constraints
from the constraint tree are replaced by the evaluated combinations of the solved variables.

Notably, from the user perspective there is no difference between manipulating a constraint that
holds a variable and a constraint that holds a linear combination (a “derived value”) of the variables.
This property has two main implications:

e It abstracts the user from having to manage variable vector allocations, instead the variables
are typically allocated by using the extension (operator +) and interfacing (join_interfaces)
operations.

o It enables transparent interfacing of constraint systems: For example, a system that represents a
L2-parsimonious constraint can be built equivalently from the usual vector of flux-representing
variables, and from a vector of variable combinations that derive the values from other contents
of the model (such as sums of positive and negative reaction fluxes, and gene product capacity
vectors in enzyme-constrained models).

Internally, the variable objects in the constraint solver are allocated implicitly, based on the presence
of a referring index in the given constraint tree.
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Operation name
julia operation

Example use

Example result

Constraining values

xz1 >0

Constraint Constraint( #1 , =20) _
Labeling
- reactions™PFK~ #1 =0 = reactions
PFK xz; >0
Selection
[1 exchanges .exchanges.02 = @23 € [~10,10]

02 x93 € [—10,10]

Intersection
*

stoichiometry x  ex

02_e z33 — zg5 = 0]

changes _
02 zg5 > —10

stoichiometry
02_e

exchanges
02 zg5 > —10

z23 —x85 =0

Extension
+

organisml +
02_e
CO2_e =15 —xzeg =0

z23 —xg5 = 0

organism2 _
02_e x93 — x85 =
CO2_e z15 —xgg =0

organism1l
02_e x93 — xg85 =
CO2_e z15 —xzgg =0

organism2
02_e
CO2_e z145 —x198 =0

z153 — w215 =0

Module interfacing
interface_constraints

organism1l organism2
interf..( stoichiometry , stoichiometry ) _
02 e x23 — 285 =0 02 e 33 — 285 =0

PFKKO z; =0
exchanges (— interface
02 zg5 > —10

ACALD KO x5 =0
exchanges(— interface
02 zg5 > —10

organisml
stoichiometry

02_e x23 —xg5 =0

PFKKO z; =0
exchanges
02 zg5 > —10

organism2
stoichiometry

02_e x143 —x205 =0

ACALD KO 2122 =0
exchanges
02 z905 > —10

interface_connection
02 zg5 + 205 — z251 =0

exchanges €= interface

02 x2571
Optimization organism organism
optimized_values optimized_values( exchanges ) - exchanges
02 zg5 <0 02
CO2 zgg >0 CO2
25 >0 biomass

biomass o5

Table S1: Main operations on constraint trees illustrated on examples.
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