

Supplementary information for: COBREXA 2

Authors of COBREXA 2

¹ **S1 Elaborated constraint systems**

² **S1.1 Incremental construction of resource-balanced models**

³ **Enzyme-balanced FBA construction**

⁴ FBA models are composed of a stoichiometric matrix, \mathbf{S} , enforcing mass balance on a vector of
⁵ the modeled fluxes, v , which are usually directionally constrained through lower bounds \mathbf{v}_{LB} and
⁶ upper bounds \mathbf{v}_{UB} . A typical FBA representation is shown in Supplementary System 1: The system
⁷ is formulated as an optimization problem that maximizes the biomass objective function (μ); the
⁸ optimum is then the highest-yield solution [1].

⁹ Enzyme kinetics computation requires a ‘unidirectional’ view of the reactions in the model; we
¹⁰ therefore split the (possibly bidirectional) variables in the model into their unidirectional counterparts
¹¹ using Supplementary System 2.

¹² Enzyme-constrained FBA (ec-FBA) models extend Supplementary System 2 with enzyme kinetics,
¹³ derived mainly from turnover numbers (k_{cats}) and proteome capacity limitations [2, 3, 4]. ec-FBA
¹⁴ models explicitly account for the protein cost, associated with a metabolic flux. A complete ec-FBA
¹⁵ formulation is shown as Supplementary System 3.

¹⁶ In Supplementary System 3 we explicitly make room multiple capacity bounds $E_{1,\dots,n}$ where the
¹⁷ enzymes are selected and weighted by corresponding vectors $m_{1,\dots,n}$.

¹⁸ **Simplified RBA**

¹⁹ Resource balance analysis (RBA) seeks to extend ec-FBA models by incorporating gene expression
²⁰ (transcription and translation) into the model formulation [5, 6]. Simplified RBA (sRBA), as presented
²¹ in Supplementary System 5 partially shares this goal, but only accounts for translation (ribosomes),
²² energy costs associated with protein synthesis, and biomass component growth dilution.

²³ Since we are interested in a chemostat-like simulation, we fix μ and minimize the resource parsimony
²⁴ objective: $\sum_j e_j \cdot m_j + m_k \cdot \sum_k r_k$ (which is equivalent to minimizing the L1 norm of the protein
²⁵ content of the model). Implementation of Supplementary System 5 in COBREXA 2.0 is available in
²⁶ the supplementary code repository at <https://gitlab.lcsb.uni.lu/lcsb-biocore/publications/>
²⁷ `kratochvil24-cobrexa2`, file `scripts/03_srba.jl`, function `with_srba_constraints`, totaling 90
²⁸ lines of commented code.

$\max \mu$	maximize growth
$\mu = \mathbf{v}^\top \mathbf{c}$	objective function
$\mathbf{S} \cdot \mathbf{v} = \mathbf{0}$	mass balance
$\mathbf{v}_{LB} \leq \mathbf{v}$	lower flux bounds
$\mathbf{v}_{UB} \geq \mathbf{v}$	upper flux bounds

Supplementary System 1: Flux balance analysis as a linear program. The variables in this program are the fluxes, \mathbf{v} and the biomass objective function, μ . In COBREXA, this system is generated via `flux_balance_constraints`.

$\mathbf{u}^+ \geq 0$	forward fluxes
$\mathbf{u}^- \geq 0$	reverse fluxes
$\mathbf{u}^+ \leq \mathbf{v}_{UB}$	forward flux bounds
$\mathbf{u}^- \leq -\mathbf{v}_{LB}$	reverse flux bounds
$\mathbf{u}^+ - \mathbf{u}^- = \mathbf{v}$	directionality balance

Supplementary System 2: Unidirectional reaction variable system as an extension of Supplementary System 1. The additional variables here are the unidirectional fluxes in the forward, and reverse directions, \mathbf{u}^+ , \mathbf{u}^- . Notably, the system allows the reactions to 'run' in both forward and reverse direction at once. In COBREXA, this system is generated via `sign_split_constraints` and several related functions.

$\mathbf{e} \geq 0$	isozyme amounts
$\sum_{i \in \text{FWDIsos}(r)} \mathbf{k}_{\text{cat } i} \cdot \mathbf{e}_i \geq \mathbf{u}_r^+ \quad (\forall r \in R_e)$	forward catalysis capability of isozymes
$\sum_{i \in \text{REVisos}(r)} \mathbf{k}_{\text{cat } i} \cdot \mathbf{e}_i \geq \mathbf{u}_r^- \quad (\forall r \in R_e)$	reverse catalysis capability of isozymes
$(\forall i) \quad \mathbf{e}^\top \mathbf{m}_i \leq E_i$	capacity limitations

Supplementary System 3: ec-FBA as constraints that extend the FBA with unidirectional reactions (Supplementary System 2). The new variables stand for enzyme concentrations \mathbf{e} , and the grouped enzyme capacity bounds E_i (each i thus specifies a group of enzymes to be bounded). In COBREXA, this system is generated via `enzyme_constraints`.

$$E_{\text{mem}} = 0.2 \cdot \sum_i E_i \quad \text{membrane-to-total protein mass ratio}$$

Supplementary System 4: Additional ec-FBA constraint to keep the membrane protein capacity in biologically expectable range. In COBREXA, this system is generated via `equal_value_constraint` and adding and scaling of values in constraint trees. (Index of E_{mem} labels one of the general indices i of E in Supplementary System 3).

$\max \mu'$	maximize resource-based growth
$\mathbf{0} = (\mathbf{S}' - \mathbf{b}) \cdot (\mathbf{v}' \mu')$	metabolite and biomass balance
$\mathbf{b}_i = \begin{cases} - \left(\sum_j e_j \cdot N_i(e_j) + \sum_k r_k \cdot N_i(r_k) \right) & \text{if } i \in \text{amino acids} \\ \mathbf{S}_{i,\text{biomass}} + \nu_i \left(\sum_j e_j \cdot N_*(e_j) + \sum_k r_k \cdot N_*(r_k) \right) & \text{if } i \in \begin{cases} \text{ATP} \\ \text{ADP} \\ \text{H}_2\text{O} \\ \text{H}^+ \\ \text{Pi} \end{cases} \\ \mathbf{S}_{i,\text{biomass}} & \text{otherwise} \end{cases}$	biomass composition
$\mu' \cdot e_i = \frac{k_r}{N_*(e_i)} \cdot r_i$	$(\forall i \in \text{proteins})$ enzyme translation
$\mu' \cdot \sum_i r_i = \frac{k_r}{N_*(r_r)} \cdot r_r$	ribosome translation
$E_{\text{mem}} \geq \sum_i m_i \cdot e_i$	enzyme mass on membrane
$E_{\text{total}} \geq \sum_i m_i \cdot e_i + \sum_i m_i \cdot r_i$	total protein capacity

Supplementary System 5: sRBA as constraints that extend the ec-FBA (Supplementary System 3). In the system, the biomass function decomposition to components (\mathbf{b}_i) ensures that non-amino acid and energy metabolites are produced at the same rate as the ec-FBA model, and that the energy and amino-acid cost of the transcription scales with the amount of enzymes required to catalyze the metabolic flux. The total number of amino acids in a molecule x is counted by $N_*(x)$, and the number of amino acids of type y in a molecule x is counted by $N_y(x)$. P is the ATP cost of polymerization of an amino acid into a protein (by default, $P = 4.2$). k_r is the ribosome translation rate is (by default, $k_r = 12$). The ATP requirement for growth is adjusted according to the amount of ATP is needed to produce the enzymes, e , and the ribosomes, r . The ATP hydrolysis equation is used to modify the amount of energy currency metabolites in the original biomass function, $\text{ATP} + \text{H}_2\text{O} \rightarrow \text{ADP} + \text{PO}_4 + \text{H}^+$ — here, ν_i marks the stoichiometry of the metabolites in this reaction. Notably, the sRBA model is bilinear in μ and (e, r, v) . Enough ribosomes must be made to produce all the enzymes, as well as the ribosomes necessary to produce the enzymes.

²⁹ **S1.2 Constraint systems for enzyme-constrained communities**

³⁰ Supplementary Figure S1 is provided as an illustration of the situation in a co-culture of auxotrophic
³¹ organisms.

³² ec-cFBA models used in the manuscript are illustrated in Supplementary Figure S1. The formula-
³³ tion of the ec-cFBA problem is listed in Supplementary System 6.

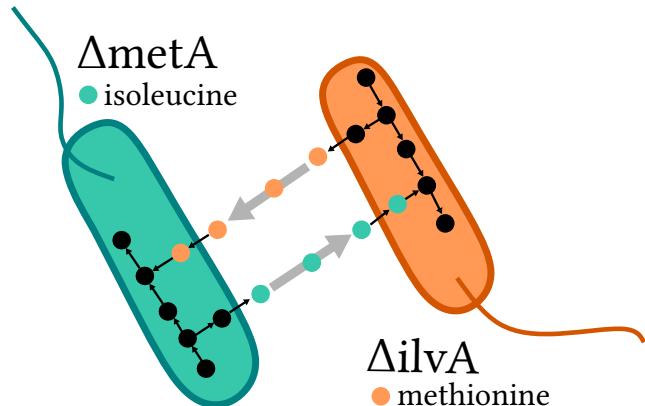


Figure S1: Illustration of mutually auxotrophic *E. coli* co-culture. ΔmetA cannot produce methionine, ΔilvA cannot produce isoleucine. The strains can grow only when co-cultured.

$\max c$	maximize the community growth
$\mathbf{a}_i \geq 0$	($\forall i$) individual community member abundances
$\sum_i \mathbf{a}_i = 1$	abundances sum to 1
$\sum_i \mathbf{v}_{i,x} a_i = \mathbf{v}_{c,x}$	($\forall x \in X$) community exchange balance
$\mu_i = c$	($\forall i$) community growth balance

Supplementary System 6: Enzyme-constrained 2-member community FBA (ec-cFBA) as a linear program. The problem includes several instances of Supplementary System 3 with all variables indexed by the community member index i (i.e., stoichiometry of the i -th member is \mathbf{S}_i and the internal flux in i -th member is \mathbf{v}_i). For simplicity, we assume that the set of exchange reaction indexes X is the same in all community members; realistic software implementations will instead select the reactions by a pre-established shared identifier scheme. In addition to the variables defined previously, a_i represents the abundance of species i . Environmental exchange is modeled by $v_{c,x}$ for metabolite x . In COBREXA, this system is generated via `interface_constraints`; suitable interfaces are obtained from `flux_balance_constraints`.

34 **S2 Construction and interpretation of use-case models**

35 **S2.1 Incremental construction of an iML1515 resource-balanced model**

36 To demonstrate the construction of complex models from simple building blocks, we incrementally
37 constructed an example genome-scale enzyme- and translation-constrained model of *E. coli*. Our
38 construction is based on a conventional FBA model of a mass-balanced reaction system, iML1515 [7].
39 Initially, we created a system of unidirectional reactions atop the original model, and added constraints
40 that incorporate enzyme turnover numbers (k_{cats}), and proteome capacity limitations [2, 3], which
41 explicitly account for the protein cost of a given metabolic flux. Crucially, since modeling overflow
42 metabolism requires at least two active bounds [8], we added both a membrane bound, and a total
43 proteome density bound to the model. The exact form of the model is elaborated in Section S1.1. For
44 the parametrization of enzymatic constraints, we used *in silico*-estimated enzyme turnover numbers [9]
45 for all presented experiments, together with a total enzyme capacity bound of $0.55 \frac{g}{g_{DW}}$, and membrane
46 enzyme capacity bound $0.11 \frac{g}{g_{DW}}$ (i.e., the amount of membrane enzymes is bounded to 20% of the
47 total enzyme amount).

48 Because protein synthesis is a major biosynthetic cost in bacteria that outweighs both transcription
49 and translation energy requirements [10], we reasoned that a simplified variant of Resource Balance
50 Analysis (RBA) [5, 6], only taking into account ribosomes, ATP, and amino acid requirements of
51 protein synthesis, would be sufficient to mechanistically model overflow metabolism. Through the
52 text, we label this simplified RBA as sRBA. For sRBA models in this work, we set the ribosome
53 translation rate to 12 amino acids per second, and the polymerization cost to 4.2 ATP per amino
54 acid. Additionally, the L1 norm of proteins and ribosomes is minimized at each growth rate, in order
55 to ensure a sufficiently unique solution from the possibly under-determined constraint system.

56 In this formulation, sRBA is an straightforward extension of enzyme constrained FBA (ec-FBA)
57 models. We note that the full RBA problem formulation that simulates the transcription and
58 replication machinery may be constructed as another extension of this model. As a major benefit
59 compared to full RBA, the parameters required for sRBA model construction are relatively well-
60 determined and easy to collect from public databases. The exact definition of the sRBA model is
61 provided in Section S1.1.

62 **Discussion of results obtained from iML1515 sRBA model**

63 The protein fraction of cellular dry mass varies by less than 10% across a range of growth conditions
64 (Supplementary Figure S2) [11]. This density constraint has been used to provide a mechanistic
65 explanation for overflow metabolism [12]. In essence, the density limitation forces the cell into a
66 trade-off between devoting resources to catabolism and anabolism: During slower growth regimes, the
67 cells favor higher yield but proteomically costlier respiration (with kinetically slower, bigger enzymes),
68 while at higher growth rates, fermentation metabolism is also used (in the case of *E. coli*, this results
69 in aerobic acetate production). Fermentative ATP generation is kinetically faster, requires smaller
70 enzymes, but ATP yield is lower than from respiration. Additionally, since ribosomes are needed to
71 produce both enzymes *and* the ribosomes themselves, and their translation rate is limited, increased
72 ribosome concentrations are required to support higher growth rates [13, 14]. In turn, this leaves
73 even less space for large enzymes, and forms the basis for the resource partition trade-off observed in
74 bacteria, which leads to overflow metabolism [15].

75 Expectably, we encode the constant density observation into ec-FBA models via a single constraint
76 that restricts the total proteome density to a chosen constant. Additionally, we use a secondary
77 membrane capacity bound to reflect the physical constraint of limited membrane space. Assuming
78 this bound structure causes the onset of overflow metabolism to be controlled by the membrane
79 capacity bound [17, 18], which is in contrast to simpler resource allocation models that only posit a

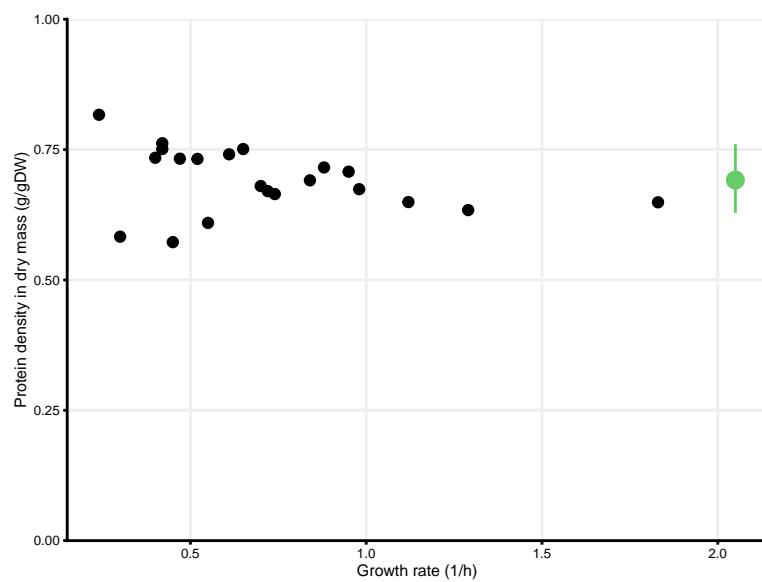


Figure S2: Protein density across a range of culturing conditions of *E. coli*. Dots represent individual experimental measurements [11]. Mean value with 10% relative tolerance is highlighted in green on the right side.

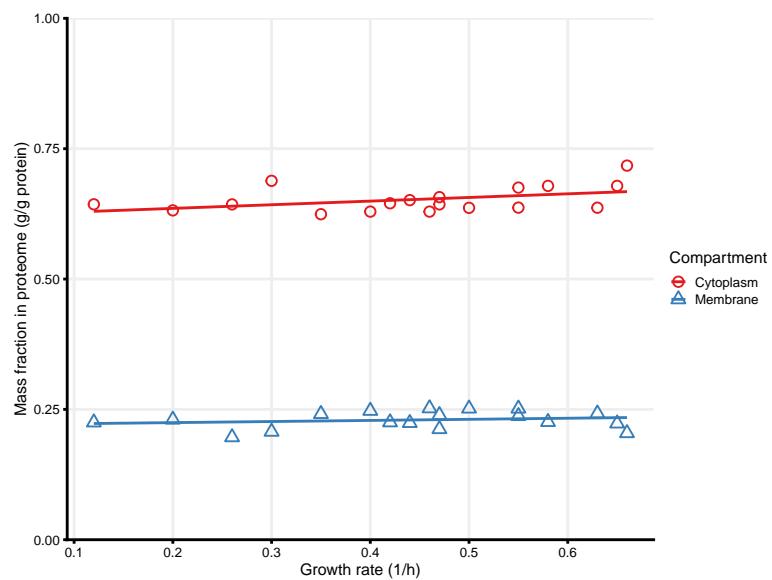


Figure S3: Fraction of cytosolic and membrane-bound proteins measured in different growing conditions of *E. coli*. Points represent experimental measurements [16], lines represent least-squares regression in each compartment. Slope of either of the regression fits is not significantly different from 0.

80 total capacity bound [2, 19]. This assumption is further supported by recent quantitative proteomics
81 measurements, which revealed the mass ratio between cytosolic and membrane-bound proteins as
82 relatively constant over a wide range of growth conditions (Supplementary Figure S3) [16]. In total,
83 we use these assumptions to set two capacity bounds in the ec-FBA models: a total protein ($0.55 \frac{g}{g_{DW}}$),
84 and a membrane capacity bound (20% of the total protein capacity).

85 Simulations of the constructed *E. coli* ec-FBA model in COBREXA 2 (Supplementary Figure S6)
86 show that when a membrane protein that is ‘useless’ in the context of glucose-driven growth (e.g.
87 WT lacY or the engineered proton-leaking lacY) is over-expressed, less space remains for transporters
88 and respiratory membrane-bound complexes, causing the earlier onset of overflow metabolism. On
89 the contrary, over-expressing a ‘useless’ cytosolic protein (lacZ) shows no effect. That contradicts
90 recent experimental results, which showed that over-expressing either of lacZ and the proton-leaking
91 lacY caused the earlier onset of overflow metabolism.

92 Naturally, we hypothesized that extending the ec-FBA model with further resource allocation
93 constraints would capture the observed phenotypic behavior, and extended the ec-FBA model with
94 sRBA constraints that account for ribosomes that occupy additional cytosolic space, and for the
95 amino-acid and ATP cost of protein polymerization.

96 The *E. coli* sRBA model improved the predictive accuracy of our simulations over ec-FBA, showing
97 that over-expression of lacZ also leads to the earlier onset of overflow metabolism. We additionally
98 observed that the membrane bound is still a driver of this result, as an over-expression of lacZ requires
99 more ATP to be produced (due to protein polymerization costs), which increases the amount of
100 energy generating membrane proteins at each growth rate relative to the WT simulation. Thus, the
101 earlier onset of the overflow metabolism is caused indirectly by hitting the capacity limitation at the
102 membrane.

103 Possible interpretations of the results from sRBA simulations

104 Basan et al. [15] did not find evidence that membrane capacity would determine the switch to the
105 overflow metabolism when attempting to over-express WT lacY, which contradicts our results, where
106 WT lacY causes the switch. At the same time, Wagner et al. [20] found evidence of this effect for
107 several other (GFP-fused, WT) membrane proteins. We hypothesize that this apparent contradiction
108 could be explained by the difficulties of over-expressing membrane proteins.

109 Further experiments might thus be necessary to elucidate the effect: mainly, the fraction of the
110 proteome taken by the over-expressed lacY should be determined experimentally (these measurements
111 were not reported by Basan et al. [15]). On the other hand, over-expressed lacZ was measured
112 at more than 8% of the proteome, representing substantial metabolic stress (even in terms of
113 ATP polymerization costs). This way, our simulations lend support to the ‘membrane real estate
114 hypothesis’ [17, 18] for explaining overflow metabolism, but the results are not dispositive.

115 S2.2 Parameter choices for the sRBA model

116 To parameterize each example model, we gathered the enzyme turnover numbers directly from [9], the
117 enzyme sub-unit stoichiometry from Uniprot [21] and the Complex Portal [22], and the translation
118 rate from [23].

119 We opted to use representative values for parameters that have growth rate dependent effects (e.g.
120 translation rate of 12 amino acids per second), and average values specific constants like the ribosome
121 molar mass (2700 kDa^1), amino acid composition of the ribosome (7459 amino acids per ribosome²),

¹<https://bionumbers.hms.harvard.edu/bionumber.aspx?id=100118&ver=10&trm=e+coli+ribosome+molar+mass&org=>

²<https://bionumbers.hms.harvard.edu/bionumber.aspx?id=101175>

122 ATP protein polymerization cost (4.2 ATP per amino acid³), etc. Links to all data sources together
123 with cleaned extracted data files are reported in the source code repository. The parameters were
124 used as gathered, with no parameter fitting procedure involved.

125 We additionally summarize the sensitivity of the constructed model to the translation rate
126 parameter (k_r), which seemed to be the most sensitive to perturbations: In Figure 1C in main text,
127 we compare of the ribosome mass fractions using the translation rate of 12 amino acids per second (a
128 representative average value) against 9 and 17 amino acids per seconds (the minimum and maximum
129 measured value reported by Dai et al.) [23]. Notably, the average value recapitulates the experimental
130 data well, and the mass fractions seem to differ between the average and extreme parametrization only
131 by a constant relative factor. We did not observe any substantial impact of changing the translation
132 rate on the metabolic flux (Supplementary Figure S6).

133 **S2.3 Construction of enzyme-constrained communities**

134 To further demonstrate the versatility of COBREXA 2, we constructed enzyme-constrained community
135 models of interacting *E. coli* mutants.

136 These mutants were modeled as auxotrophic for 14 specific amino acids, using single-gene deletions
137 in the relevant biosynthetic pathways, as has been done experimentally [24, 25]. The auxotrophic
138 models were additionally constrained by enzyme kinetic and capacity constraints (analogous to the
139 *E. coli* extension specified in Section S1.1, but only with the total enzyme capacity bound). Individual
140 models were connected via their exchange reactions, with exchange fluxes weighted by the abundance
141 of the mutant, and the biomass production rates of each mutant model was constrained to the same
142 value, effectively creating a community growth rate as in the cFBA method [26]. Additionally, the
143 mutants were allowed to share the knocked-out amino acids with each other. To avoid the bilinearity
144 of the cFBA model (in abundances and fluxes), we solved the problem multiple times over a uniform
145 sample of possible abundances, and picked the solution with the maximum growth rate. The complete
146 constraint system construction is laid out in Section S1.2.

147 **Discussion of results obtained from iML1515 enzyme-constrained auxotrophe community**

148 Thus far, ec-FBA models have been mostly applied to single organisms [27], raising a question:
149 would adding enzyme constraints to community flux balance analysis (cFBA) models improve their
150 predictive accuracy? Previous attempts to answer this question made use of *ad hoc* constraints, e.g.
151 flux balance analysis with molecular crowding (FBAwMC) [28] was incorporated into a community
152 scale model of interacting bacteria, but this approach lacks the mechanistic details available when
153 using full enzyme constrained models (e.g. protein concentration predictions cannot be made [2]).
154 This drawback reflects the lack of parameters endemic to the field when FBAwMC was introduced
155 (*circa* 2007). More recently, quasi-resource allocation type constraints were added to community flux
156 balance models through the incorporation of an L1 bound on total reaction flux in each community
157 member [29]. This approach also eschews important details, like enzyme speed and size, which are
158 both physiologically important attributes, figuring prominently in ec-FBA.

159 Community-simulating extensions of FBA [30, 31] typically assume that each community member
160 grows at the same rate (otherwise the system is not at steady state), and metabolite flux exchange be-
161 tween members and their environments is weighted by the abundance of each microbe [26]. Previously,
162 data scarcity prevented adding enzyme bounds to genome-scale metabolic models, but this problem
163 has been attenuated by new *in silico* estimators, including machine learning [32], and omics-driven
164 parameter estimation techniques [33], allowing for the parametrization of ec-FBA models at community
165 scale.

³<https://bionumbers.hms.harvard.edu/bionumber.aspx?id=114971&ver=1&trm=ribosome+amino+acid&org=>

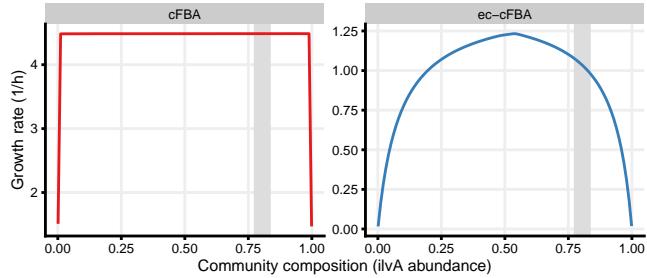


Figure S4: Comparison of growth predictions obtained for different compositions of ΔmetA – ΔilvA auxotroph *E. coli* community, using cFBA and ec-cFBA. In both simulations, the members were only allowed to exchange methionine and isoleucine. The vertical gray bar indicates the experimentally measured abundance [25].

166 We simulated mutually auxotrophic *E. coli* communities that were previously constructed exper-
 167 mentally by co-culturing mutants with complementary knockouts [24, 25]. Since each auxotrophic
 168 mutant lacks an essential gene for biosynthesis of a different amino acid [25], it is unable to grow
 169 in isolation, but may be rescued in a community where the amino acids may be exchanged with
 170 different mutants. However, the fundamental factors that determine the composition of the resultant
 171 communities are not well understood. Here, we hypothesize that each coupled community will adjust
 172 its abundance to grow as fast as possible, and investigate whether this optimality assumption holds
 173 by comparing measured abundance data to simulations using a classic cFBA, and enzyme-constrained
 174 cFBA (ec-cFBA).

175 First, we simulated a co-culture of ΔmetA (auxotrophic for methionine) and ΔilvA (auxotrophic for
 176 isoleucine) *E. coli* mutants. This pairing exhibits robust growth with a steady-state abundance of 20%
 177 ΔmetA , as established experimentally [25]. Supplementary Figure S4 compares the results obtained
 178 from ec-cFBA to conventional cFBA. Notably, with conventional cFBA the abundance of each member
 179 has only negligible effect on the community growth rate (up to extreme values), which is caused by
 180 the virtually identical metabolism of both members that can complement each other via zero-cost
 181 exchanges. This effect was previously prevented in simulations by incorporating non-mechanistic
 182 assumptions (i.e. a community MOMA-type simulation) that results in more realistic behavior [24].
 183 In contrast, results from ec-cFBA clearly show two distinct growth regimes as the abundance of
 184 ΔmetA changes, with a better defined optimum at the intersection of the regimes. Each regime
 185 corresponded to a specific partner limiting the growth of the community. In this particular case, the
 186 biosynthesis cost of the biomass of each mutant differ because of both the knockout and the necessity
 187 to supply amino acids to other community members at a rate that satiates the abundance-controlled
 188 demand, which ultimately determines the optimal community composition.

189 Fascinatingly, when we extended the same analysis to all co-culture communities that demonstrated
 190 significant growth (Figure 1D in main text), we observed that ec-cFBA offers substantially improved
 191 predictions over cFBA. The comparison included only amino-acid pairings that exhibit significant
 192 growth in experimental conditions (over 10-fold biomass increase over inoculum) [25]. ec-cFBA
 193 provided better predictions than cFBA in all cases (measured via centered-log-ratio-transformed
 194 compositional distance), improving the correlation with experimental data from 0.197 (cFBA) to
 195 0.453 (ec-cFBA). The ec-cFBA prediction compares well to the non-mechanistic (and non-steady
 196 state) approach used by Wintermute&Silver [24], who found a correlation of 0.42 across their dataset.
 197 Despite this, it is clear that both approaches are missing an important physiological constraint, since
 198 the predictive accuracy is relatively low. To improve, it might be necessary to incorporate either more
 199 precise regulatory effects or RBA-style constraints.

200 **S3 Supporting results**

201 Results from the simulation of 4-member community of *E. coli* mutants are summarized in Supple-
202 mentary Figure S5.

203 Full results obtained from comparison of ec-FBA and sRBA are shown in Supplementary Figure S6.

204 The reported results are a superset of ones in Figure 1B in main text.

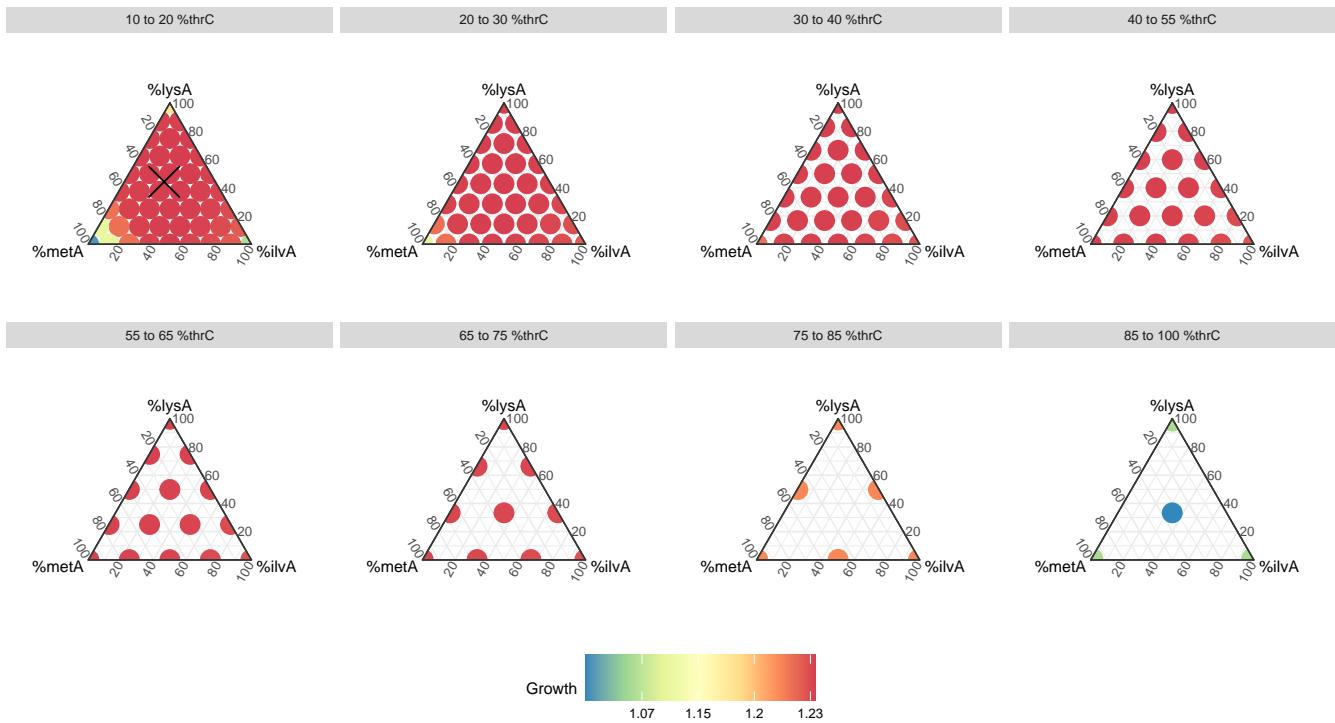


Figure S5: Enzyme kinetics constraints are not sufficient to robustly reproduce the composition of a 4-member auxotrophic community of *E. coli* mutants. The plot is organized as slices of a 3-dimensional Aitchison simplex of the community compositions [34]. Simulation of ΔmetA - ΔlysA - ΔilvA - ΔthrC community shows high variability in community compositions at near-optimal growth rates. The star represents the experimentally observed composition (ΔmetA 27%, ΔlysA 38%, ΔilvA 21%, ΔthrC 14%) [25].

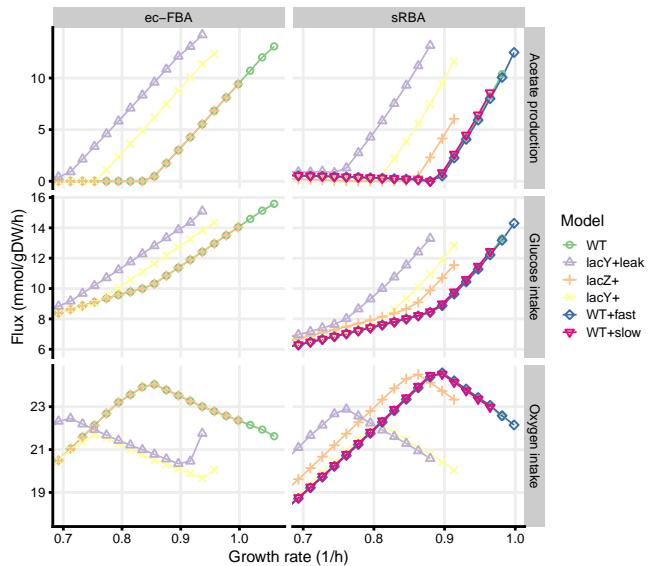


Figure S6: Comparison of results obtained from ec-FBA and sRBA models. The figure interpretation is the same as for Figure 1B in the main text, but includes results from additional simulations from a model where lacY is over-expressed but not leaking protons (labeled lacY+) and sRBA models where translation rate is changed from 12 to 9 and 17 amino acids per second (labeled respectively WT+slow and WT+fast, corresponding to the same labels in Figure 1C in the main text). Results for WT and lacZ+ almost completely overlap in the ec-FBA models; the WT model is able to grow approximately 5% faster. Similarly, results for WT, WT+slow and WT+fast almost completely overlap in the sRBA models; as the main difference, WT+fast is able to grow approximately 2% faster than WT+slow, which itself grows around 2% faster than WT+slow.

205 **S4 Constraint trees**

206 ConstraintTrees.jl is available as a separate package that we implemented to provide the constraint-
207 system representation for COBREXA 2. ConstraintTrees.jl is available from <https://github.com/>
208 COBREXA/ConstraintTrees.jl and from Julia package repositories. Stand-alone tutorial documentation
209 for ConstraintTrees.jl is available from <https://cobrex.github.io/ConstraintTrees.jl/>.

210 Supplementary Table S1 provides an overview of the “grammar” of constraint system manipulations
211 as implemented by ConstraintTrees.jl and COBREXA 2.

212 Constraint trees store a nested hierarchical structure of labeled constraints, organized into labeled
213 directories. Each constraint consists of a value part and an optional bound part. Semantically, the
214 value part defines a combination of variables in the system (typically a linear or quadratic one), and
215 the bound part describes a condition that the value must satisfy (typically that the value of the
216 combination of variables lies within a given interval). The labeled hierarchy carries no semantics in
217 the constraint system, and serves only for manipulation convenience.

218 Shown in the Supplementary Table S1, the labeling and selection operations provide a systematic
219 way to logically group any constraints, avoiding the need for name mangling (e.g., the oxygen exchange
220 in organism 2, seen in the extension operation example, does not need to be labeled with unstructured
221 identifier such as "member2_R_EX_o2_e" as common in other systems), and providing easy hierarchical
222 access to all system constituents. Intersection and extension are the central operations, respectively
223 representing intersection of feasible spaces of both constraint systems, and Cartesian product of the
224 feasible spaces of constraint systems. The extension operation prevents any intersection of the variable
225 sets of the given constraints, typically re-numbering the variable indexes of some of the operands,
226 yielding a system where both original systems coexist independently. The interfacing operation is
227 similar to extension, but additionally requires specification of the “module interfaces” (highlighted by
228 arrows in the figure) which are used to connect the modules together (i.e., the systems are no longer
229 independent in the result), and create an interface for the result that may be used for connecting more
230 systems. Optimizing the system w.r.t. a given objective produces a “value tree” where constraints
231 from the constraint tree are replaced by the evaluated combinations of the solved variables.

232 Notably, from the user perspective there is no difference between manipulating a constraint that
233 holds a variable and a constraint that holds a linear combination (a “derived value”) of the variables.
234 This property has two main implications:

235 • It abstracts the user from having to manage variable vector allocations, instead the variables
236 are typically allocated by using the extension (operator +) and interfacing (join_interfaces)
237 operations.

238 • It enables transparent interfacing of constraint systems: For example, a system that represents a
239 L2-parsimonious constraint can be built equivalently from the usual vector of flux-representing
240 variables, and from a vector of variable combinations that derive the values from other contents
241 of the model (such as sums of positive and negative reaction fluxes, and gene product capacity
242 vectors in enzyme-constrained models).

243 Internally, the variable objects in the constraint solver are allocated implicitly, based on the presence
244 of a referring index in the given constraint tree.

Operation name julia operation	Example use	Example result
Constraining values Constraint	<code>Constraint(x_1 , ≥ 0)</code>	$x_1 \geq 0$
Labeling ~	<code>reactions^PFK^ ~ $x_1 \geq 0$</code>	<code>reactions^PFK~ $x_1 \geq 0$</code>
Selection . []	<code>exchanges[O2] . exchanges[O2] . exchanges[O2]</code> $x_{23} \in [-10, 10]$	$x_{23} \in [-10, 10]$
Intersection *	<code>stoichiometry(O2_e) * exchanges(O2)</code> $x_{23} - x_{85} = 0$ $x_{85} \geq -10$	<code>stoichiometry(O2_e)</code> $x_{23} - x_{85} = 0$ <code>exchanges(O2)</code> $x_{85} \geq -10$
Extension +	<code>organism1 + organism2</code> $x_{23} - x_{85} = 0$ $x_{15} - x_{68} = 0$	<code>organism1</code> $x_{23} - x_{85} = 0$ $x_{15} - x_{68} = 0$ <code>organism2</code> $x_{153} - x_{215} = 0$ $x_{145} - x_{198} = 0$
Module interfacing interface_constraints	<code>interf...((organism1 stoichiometry(O2_e) ... , PFK KO $x_1 = 0$, exchanges(interface) O2 $x_{85} \geq -10$) , organism2 stoichiometry(O2_e) ... , ACALD KO $x_2 = 0$, exchanges(interface) O2 $x_{85} \geq -10$))</code>	<code>organism1</code> $x_{23} - x_{85} = 0$ <code>organism2</code> $x_{23} - x_{85} = 0$ $x_2 = 0$ $x_{85} \geq -10$ <code>organism2</code> $x_{143} - x_{205} = 0$ $x_{122} = 0$ <code>exchanges</code> $x_{205} \geq -10$ <code>interface_connection</code> $x_{85} + x_{205} - x_{251} = 0$ <code>exchanges(interface)</code> $x_{251} \geq 0$
Optimization optimized_values	<code>optimized_values(organism exchanges(O2) ...)</code> $x_{85} \leq 0$ $x_{68} \geq 0$ $x_{25} \geq 0$	<code>organism</code> $x_{85} \leq 0$ $x_{68} \geq 0$ $x_{25} \geq 0$ <code>biomass</code> 5.2573 7.3622 0.873922

Table S1: Main operations on constraint trees illustrated on examples.

245 Bibliography

- 246 [1] Timo R Maarleveld, Meike T Wortel, Brett G Olivier, Bas Teusink, and Frank J Bruggeman.
247 Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models.
248 *PLoS computational biology*, 11(4):e1004166, 2015.
- 249 [2] Benjamín J Sánchez, Cheng Zhang, Avlant Nilsson, Petri-Jaan Lahtvee, Eduard J Kerkhoven,
250 and Jens Nielsen. Improving the phenotype predictions of a yeast genome-scale metabolic model
251 by incorporating enzymatic constraints. *Molecular systems biology*, 13(8):935, 2017.
- 252 [3] Roi Adadi, Benjamin Volkmer, Ron Milo, Matthias Heinemann, and Tomer Shlomi. Prediction
253 of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
254 *PLoS computational biology*, 8(7):e1002575, 2012.
- 255 [4] Pavlos Stephanos Bekiaris and Steffen Klamt. Automatic construction of metabolic models with
256 enzyme constraints. *BMC bioinformatics*, 21:1–13, 2020.
- 257 [5] Douwe Molenaar, Rogier Van Berlo, Dick De Ridder, and Bas Teusink. Shifts in growth strategies
258 reflect tradeoffs in cellular economics. *Molecular systems biology*, 5(1):323, 2009.
- 259 [6] Anne Goelzer, Vincent Fromion, and Gérard Scorletti. Cell design in bacteria as a convex
260 optimization problem. *Automatica*, 47(6):1210–1218, 2011.
- 261 [7] Jonathan M Monk, Colton J Lloyd, Elizabeth Brunk, Nathan Mih, Anand Sastry, Zachary King,
262 Rikiya Takeuchi, Wataru Nomura, Zhen Zhang, Hirotada Mori, et al. i ml1515, a knowledgebase
263 that computes escherichia coli traits. *Nature biotechnology*, 35(10):904–908, 2017.
- 264 [8] Daan H De Groot, Julia Lischke, Riccardo Muolo, Robert Planqué, Frank J Bruggeman, and Bas
265 Teusink. The common message of constraint-based optimization approaches: overflow metabolism
266 is caused by two growth-limiting constraints. *Cellular and Molecular Life Sciences*, 77(3):441–453,
267 2020.
- 268 [9] David Heckmann, Anaamika Campeau, Colton J Lloyd, Patrick V Phaneuf, Ying Hefner, Marvic
269 Carrillo-Terrazas, Adam M Feist, David J Gonzalez, and Bernhard O Palsson. Kinetic profiling of
270 metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers.
271 *Proceedings of the National Academy of Sciences*, 117(37):23182–23190, 2020.
- 272 [10] Michael Lynch and Georgi K Marinov. The bioenergetic costs of a gene. *Proceedings of the
273 National Academy of Sciences*, 112(51):15690–15695, 2015.
- 274 [11] Markus Basan, Manlu Zhu, Xiongfeng Dai, Mya Warren, Daniel Sévin, Yi-Ping Wang, and
275 Terence Hwa. Inflating bacterial cells by increased protein synthesis. *Molecular systems biology*,
276 11(10):836, 2015.
- 277 [12] Matthew Scott, Carl W Gunderson, Eduard M Mateescu, Zhongge Zhang, and Terence Hwa.
278 Interdependence of cell growth and gene expression: origins and consequences. *Science*,
279 330(6007):1099–1102, 2010.

- 280 [13] Ron Milo. What is the total number of protein molecules per cell volume? a call to rethink some
281 published values. *Bioessays*, 35(12):1050–1055, 2013.
- 282 [14] Evert Bosdriesz, Douwe Molenaar, Bas Teusink, and Frank J Bruggeman. How fast-growing
283 bacteria robustly tune their ribosome concentration to approximate growth-rate maximization.
284 *The FEBS journal*, 282(10):2029–2044, 2015.
- 285 [15] Markus Basan, Sheng Hui, Hiroyuki Okano, Zhongge Zhang, Yang Shen, James R Williamson,
286 and Terence Hwa. Overflow metabolism in escherichia coli results from efficient proteome
287 allocation. *Nature*, 528(7580):99–104, 2015.
- 288 [16] Alexander Schmidt, Karl Kochanowski, Silke Vedelaar, Erik Ahrné, Benjamin Volkmer, Luciano
289 Callipo, Kevin Knoops, Manuel Bauer, Ruedi Aebersold, and Matthias Heinemann. The quanti-
290 tative and condition-dependent escherichia coli proteome. *Nature biotechnology*, 34(1):104–110,
291 2016.
- 292 [17] Kai Zhuang, Goutham N Vemuri, and Radhakrishnan Mahadevan. Economics of membrane
293 occupancy and respiro-fermentation. *Molecular systems biology*, 7(1):500, 2011.
- 294 [18] Mariola Szenk, Ken A Dill, and Adam MR de Graff. Why do fast-growing bacteria enter overflow
295 metabolism? testing the membrane real estate hypothesis. *Cell systems*, 5(2):95–104, 2017.
- 296 [19] Matteo Mori, Terence Hwa, Olivier C Martin, Andrea De Martino, and Enzo Marinari. Con-
297 strained allocation flux balance analysis. *PLoS computational biology*, 12(6):e1004913, 2016.
- 298 [20] Samuel Wagner, Louise Baars, A Jimmy Ytterberg, Anja Klussmeier, Claudia S Wagner, Olof
299 Nord, Per-Åke Nygren, Klaas J van Wijk, and Jan-Willem de Gier. Consequences of membrane
300 protein overexpression in escherichia coli. *Molecular & Cellular Proteomics*, 6(9):1527–1550,
301 2007.
- 302 [21] UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. *Nucleic acids research*,
303 47(D1):D506–D515, 2019.
- 304 [22] Birgit HM Meldal, Livia Perfetto, Colin Combe, Tiago Lubiana, João Vitor Ferreira Cavalcante,
305 Hema Bye-A-Jee, Andra Waagmeester, Noemi Del-Toro, Anjali Shrivastava, Elisabeth Barrera,
306 et al. Complex portal 2022: new curation frontiers. *Nucleic acids research*, 50(D1):D578–D586,
307 2022.
- 308 [23] Xiongfeng Dai, Manlu Zhu, Mya Warren, Rohan Balakrishnan, Vadim Patsalo, Hiroyuki Okano,
309 James R Williamson, Kurt Fredrick, Yi-Ping Wang, and Terence Hwa. Reduction of translating
310 ribosomes enables escherichia coli to maintain elongation rates during slow growth. *Nature
microbiology*, 2(2):1–9, 2016.
- 312 [24] Edwin H Wintermute and Pamela A Silver. Emergent cooperation in microbial metabolism.
313 *Molecular systems biology*, 6(1):407, 2010.
- 314 [25] Michael T Mee, James J Collins, George M Church, and Harris H Wang. Syntrophic ex-
315 change in synthetic microbial communities. *Proceedings of the National Academy of Sciences*,
316 111(20):E2149–E2156, 2014.
- 317 [26] Willi Gottstein, Brett G Olivier, Frank J Bruggeman, and Bas Teusink. Constraint-based
318 stoichiometric modelling from single organisms to microbial communities. *Journal of the Royal
Society Interface*, 13(124):20160627, 2016.

- 320 [27] Iván Domenzain, Benjamín Sánchez, Mihail Anton, Eduard J Kerkhoven, Aarón Millán-Oropeza,
321 Céline Henry, Verena Siewers, John P Morrissey, Nikolaus Sonnenschein, and Jens Nielsen.
322 Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using
323 gecko 2.0. *Nature communications*, 13(1):3766, 2022.
- 324 [28] Qasim K Beg, Alexei Vazquez, Jason Ernst, Marcio A de Menezes, Ziv Bar-Joseph, A-L Barabási,
325 and Zoltán N Oltvai. Intracellular crowding defines the mode and sequence of substrate uptake
326 by *Escherichia coli* and constrains its metabolic activity. *Proceedings of the National Academy of
327 Sciences*, 104(31):12663–12668, 2007.
- 328 [29] Minsuk Kim, Jaeyun Sung, and Nicholas Chia. Resource-allocation constraint governs structure
329 and function of microbial communities in metabolic modeling. *Metabolic Engineering*, 70:12–22,
330 2022.
- 331 [30] Siu Hung Joshua Chan, Margaret N Simons, and Costas D Maranas. Steadycom: predicting
332 microbial abundances while ensuring community stability. *PLoS computational biology*,
333 13(5):e1005539, 2017.
- 334 [31] Ruchir A Khandelwal, Brett G Olivier, Wilfred FM Röling, Bas Teusink, and Frank J Bruggeman.
335 Community flux balance analysis for microbial consortia at balanced growth. *PloS one*,
336 8(5):e64567, 2013.
- 337 [32] Alexander Kroll, Yvan Rousset, Xiao-Pan Hu, Nina A Liebrand, and Martin J Lercher. Turnover
338 number predictions for kinetically uncharacterized enzymes using machine and deep learning.
339 *Nature Communications*, 14(1):4139, 2023.
- 340 [33] St Elmo Wilken, Mathieu Besancon, Miroslav Kratochvíl, Chilperic Armel Foko Kuate, Christophe
341 Trefois, Wei Gu, and Oliver Ebenhöh. Interrogating the effect of enzyme kinetics on metabolism
342 using differentiable constraint-based models. *Metabolic engineering*, 74:72–82, 2022.
- 343 [34] Nicholas E. Hamilton and Michael Ferry. ggtern: Ternary diagrams using ggplot2. *Journal of
344 Statistical Software, Code Snippets*, 87(3):1–17, 2018.