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S1 Elaborated constraint systems1

S1.1 Incremental construction of resource-balanced models2

Enzyme-balanced FBA construction3

FBA models are composed of a stoichiometric matrix, S, enforcing mass balance on a vector of4

the modeled fluxes, v, which are usually directionally constrained through lower bounds vLB and5

upper bounds vUB. A typical FBA representation is shown in Supplementary System 1: The system6

is formulated as an optimization problem that maximizes the biomass objective function (µ); the7

optimum is then the highest-yield solution [1].8

Enzyme kinetics computation requires a ‘unidirectional’ view of the reactions in the model; we9

therefore split the (possibly bidirectional) variables in the model into their unidirectional counterparts10

using Supplementary System 2.11

Enzyme-constrained FBA (ec-FBA) models extend Supplementary System 2 with enzyme kinetics,12

derived mainly from turnover numbers (kcats) and proteome capacity limitations [2, 3, 4]. ec-FBA13

models explicitly account for the protein cost, associated with a metabolic flux. A complete ec-FBA14

formulation is shown as Supplementary System 3.15

In Supplementary System 3 we explicitly make room multiple capacity bounds E1,...,n where the16

enzymes are selected and weighted by corresponding vectors m1,...,n.17

Simplified RBA18

Resource balance analysis (RBA) seeks to extend ec-FBA models by incorporating gene expression19

(transcription and translation) into the model formulation [5, 6]. Simplified RBA (sRBA), as presented20

in Supplementary System 5 partially shares this goal, but only accounts for translation (ribosomes),21

energy costs associated with protein synthesis, and biomass component growth dilution.22

Since we are interested in a chemostat-like simulation, we fix µ and minimize the resource parsimony23

objective:
∑

j ej · mj + mk ·
∑

k rk (which is equivalent to minimizing the L1 norm of the protein24

content of the model). Implementation of Supplementary System 5 in COBREXA 2.0 is available in25

the supplementary code repository at https://gitlab.lcsb.uni.lu/lcsb-biocore/publications/26

kratochvil24-cobrexa2, file scripts/03_srba.jl, function with_srba_constraints, totaling 9027

lines of commented code.28
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max µ maximize growth
µ = vᵀc objective function

S · v = 0 mass balance
vLB ≤ v lower flux bounds
vUB ≥ v upper flux bounds

Supplementary System 1: Flux balance analysis as a linear program. The variables in this program are the fluxes,
v and the biomass objective function, µ. In COBREXA, this system is generated via flux_balance_constraints.

u+ ≥ 0 forward fluxes
u− ≥ 0 reverse fluxes
u+ ≤ vUB forward flux bounds
u− ≤ −vLB reverse flux bounds

u+ − u− = v directionality balance

Supplementary System 2: Unidirectional reaction variable system as an extension of Supplementary System 1.
The additional variables here are the unidirectional fluxes in the forward, and reverse directions, u+, u−. Notably,
the system allows the reactions to ‘run’ in both forward and reverse direction at once. In COBREXA, this system is
generated via sign_split_constraints and several related functions.

e ≥ 0 isozyme amounts∑
i∈FwdIsos(r)

kcat i · ei ≥ |u+
r | (∀r ∈ Re) forward catalysis capability of isozymes

∑
i∈RevIsos(r)

kcat i · ei ≥ |u−
r | (∀r ∈ Re) reverse catalysis capability of isozymes

(∀i) eᵀmi ≤ Ei capacity limitations

Supplementary System 3: ec-FBA as constraints that extend the FBA with unidirectional reactions (Supplementary
System 2). The new variables stand for enzyme concentrations e, and the grouped enzyme capacity bounds Ei (each i
thus specifies a group of enzymes to be bounded). In COBREXA, this system is generated via enzyme_constraints.

Emem = 0.2 ·
∑

i

Ei membrane-to-total protein mass ratio

Supplementary System 4: Additional ec-FBA constraint to keep the membrane protein capacity in biologically
expectable range. In COBREXA, this system is generated via equal_value_constraint and adding and scaling of
values in constraint trees. (Index of Emem labels one of the general indices i of E in Supplementary System 3).
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max µ′ maximize resource-based growth

0 =
(

S′ b
)

·
(

v′

µ′

)
metabolite and biomass balance

bi =



−
(∑

j
ej · Ni (ej) +

∑
k

rk · Ni (rk)
)

if i ∈ amino acids

Si,biomass + νi

(∑
j

ej · N∗ (ej) +
∑

k
rk · N∗ (rk)

)
if i ∈


ATP
ADP
H2O
H+

Pi
Si,biomass otherwise

biomass composition

µ′ · ei =
kr

N∗ (ei)
· ri (∀i ∈ proteins) enzyme translation

µ′ ·
∑

i

ri =
kr

N∗ (rr)
· rr ribosome translation

Emem ≥
∑

i

mi · ei enzyme mass on membrane

Etotal ≥
∑

i

mi · ei +
∑

i

mi · ri total protein capacity

Supplementary System 5: sRBA as constraints that extend the ec-FBA (Supplementary System 3). In the system,
the biomass function decomposition to components (bi) ensures that non-amino acid and energy metabolites are
produced at the same rate as the ec-FBA model, and that the energy and amino-acid cost of the transcription scales
with the amount of enzymes required to catalyze the metabolic flux. The total number of amino acids in a molecule
x is counted by N∗ (x), and the number of amino acids of type y in a molecule x is counted by Ny (x). P is the
ATP cost of polymerization of an amino acid into a protein (by default, P = 4.2). kr is the ribosome translation rate
is (by default, kr = 12). The ATP requirement for growth is adjusted according to the amount of ATP is needed to
produce the enzymes, e, and the ribosomes, r. The ATP hydrolysis equation is used to modify the amount of energy
currency metabolites in the original biomass function, ATP + H2O −→ ADP + PO4 + H+ — here, νi marks the
stoichiometry of the metabolites in this reaction. Notably, the sRBA model is bilinear in µ and (e, r, v). Enough
ribosomes must be made to produce all the enzymes, as well as the ribosomes necessary to produce the enzymes.
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S1.2 Constraint systems for enzyme-constrained communities29

Supplementary Figure S1 is provided as an illustration of the situation in a co-culture of auxotrophic30

organisms.31

ec-cFBA models used in the manuscript are illustrated in Supplementary Figure S1. The formula-32

tion of the ec-cFBA problem is listed in Supplementary System 6.33
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 ΔmetA
isoleucine

 ΔilvA
methionine

Figure S1: Illustration of mutually auxotrophic E. coli co-culture. ∆metA cannot produce methionine, ∆ilvA cannot
produce isoleucine. The strains can grow only when co-cultured.

max c maximize the community growth
ai ≥ 0 (∀i) individual community member abundances∑

i

ai = 1 abundances sum to 1∑
i

vi xai = vc,x (∀x ∈ X) community exchange balance

µi = c (∀i) community growth balance

Supplementary System 6: Enzyme-constrained 2-member community FBA (ec-cFBA) as a linear program. The
problem includes several instances of Supplementary System 3 with all variables indexed by the community member
index i (i.e., stoichiometry of the i-th member is Si and the internal flux in i-th member is vi). For simplicity,
we assume that the set of exchange reaction indexes X is the same in all community members; realistic software
implementations will instead select the reactions by a pre-established shared identifier scheme. In addition to the
variables defined previously, ai represents the abundance of species i. Environmental exchange is modeled by vc,x for
metabolite x. In COBREXA, this system is generated via interface_constraints; suitable interfaces are obtained
from flux_balance_constraints.
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S2 Construction and interpretation of use-case models34

S2.1 Incremental construction of an iML1515 resource-balanced model35

To demonstrate the construction of complex models from simple building blocks, we incrementally36

constructed an example genome-scale enzyme- and translation-constrained model of E. coli. Our37

construction is based on a conventional FBA model of a mass-balanced reaction system, iML1515 [7].38

Initially, we created a system of unidirectional reactions atop the original model, and added constraints39

that incorporate enzyme turnover numbers (kcats), and proteome capacity limitations [2, 3], which40

explicitly account for the protein cost of a given metabolic flux. Crucially, since modeling overflow41

metabolism requires at least two active bounds [8], we added both a membrane bound, and a total42

proteome density bound to the model. The exact form of the model is elaborated in Section S1.1. For43

the parametrization of enzymatic constraints, we used in silico-estimated enzyme turnover numbers [9]44

for all presented experiments, together with a total enzyme capacity bound of 0.55 g
gDW

, and membrane45

enzyme capacity bound 0.11 g
gDW

(i.e., the amount of membrane enzymes is bounded to 20% of the46

total enzyme amount).47

Because protein synthesis is a major biosynthetic cost in bacteria that outweighs both transcription48

and translation energy requirements [10], we reasoned that a simplified variant of Resource Balance49

Analysis (RBA) [5, 6], only taking into account ribosomes, ATP, and amino acid requirements of50

protein synthesis, would be sufficient to mechanistically model overflow metabolism. Through the51

text, we label this simplified RBA as sRBA. For sRBA models in this work, we set the ribosome52

translation rate to 12 amino acids per second, and the polymerization cost to 4.2 ATP per amino53

acid. Additionally, the L1 norm of proteins and ribosomes is minimized at each growth rate, in order54

to ensure a sufficiently unique solution from the possibly under-determined constraint system.55

In this formulation, sRBA is an straightforward extension of enzyme constrained FBA (ec-FBA)56

models. We note that the full RBA problem formulation that simulates the transcription and57

replication machinery may be constructed as another extension of this model. As a major benefit58

compared to full RBA, the parameters required for sRBA model construction are relatively well-59

determined and easy to collect from public databases. The exact definition of the sRBA model is60

provided in Section S1.1.61

Discussion of results obtained from iML1515 sRBA model62

The protein fraction of cellular dry mass varies by less than 10% across a range of growth conditions63

(Supplementary Figure S2) [11]. This density constraint has been used to provide a mechanistic64

explanation for overflow metabolism [12]. In essence, the density limitation forces the cell into a65

trade-off between devoting resources to catabolism and anabolism: During slower growth regimes, the66

cells favor higher yield but proteomically costlier respiration (with kinetically slower, bigger enzymes),67

while at higher growth rates, fermentation metabolism is also used (in the case of E. coli, this results68

in aerobic acetate production). Fermentative ATP generation is kinetically faster, requires smaller69

enzymes, but ATP yield is lower than from respiration. Additionally, since ribosomes are needed to70

produce both enzymes and the ribosomes themselves, and their translation rate is limited, increased71

ribosome concentrations are required to support higher growth rates [13, 14]. In turn, this leaves72

even less space for large enzymes, and forms the basis for the resource partition trade-off observed in73

bacteria, which leads to overflow metabolism [15].74

Expectably, we encode the constant density observation into ec-FBA models via a single constraint75

that restricts the total proteome density to a chosen constant. Additionally, we use a secondary76

membrane capacity bound to reflect the physical constraint of limited membrane space. Assuming77

this bound structure causes the onset of overflow metabolism to be controlled by the membrane78

capacity bound [17, 18], which is in contrast to simpler resource allocation models that only posit a79

S6



0.00

0.25

0.50

0.75

1.00

0.5 1.0 1.5 2.0
Growth rate (1/h)

P
ro

te
in

 d
en

si
ty

 in
 d

ry
 m

as
s 

(g
/g

D
W

)

Figure S2: Protein density across a range of culturing conditions of E. coli. Dots represent individual experimental
measurements [11]. Mean value with 10% relative tolerance is highlighted in green on the right side.
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Figure S3: Fraction of cytosolic and membrane-bound proteins measured in different growing conditions of E. coli.
Points represent experimental measurements [16], lines represent least-squares regression in each compartment.
Slope of either of the regression fits is not significantly different from 0.
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total capacity bound [2, 19]. This assumption is further supported by recent quantitative proteomics80

measurements, which revealed the mass ratio between cytosolic and membrane-bound proteins as81

relatively constant over a wide range of growth conditions (Supplementary Figure S3) [16]. In total,82

we use these assumptions to set two capacity bounds in the ec-FBA models: a total protein (0.55 g
gDW

),83

and a membrane capacity bound (20% of the total protein capacity).84

Simulations of the constructed E. coli ec-FBA model in COBREXA 2 (Supplementary Figure S6)85

show that when a membrane protein that is ‘useless’ in the context of glucose-driven growth (e.g.86

WT lacY or the engineered proton-leaking lacY) is over-expressed, less space remains for transporters87

and respiratory membrane-bound complexes, causing the earlier onset of overflow metabolism. On88

the contrary, over-expressing a ‘useless’ cytosolic protein (lacZ) shows no effect. That contradicts89

recent experimental results, which showed that over-expressing either of lacZ and the proton-leaking90

lacY caused the earlier onset of overflow metabolism.91

Naturally, we hypothesized that extending the ec-FBA model with further resource allocation92

constraints would capture the observed phenotypic behavior, and extended the ec-FBA model with93

sRBA constraints that account for ribosomes that occupy additional cytosolic space, and for the94

amino-acid and ATP cost of protein polymerization.95

The E. coli sRBA model improved the predictive accuracy of our simulations over ec-FBA, showing96

that over-expression of lacZ also leads to the earlier onset of overflow metabolism. We additionally97

observed that the membrane bound is still a driver of this result, as an over-expression of lacZ requires98

more ATP to be produced (due to protein polymerization costs), which increases the amount of99

energy generating membrane proteins at each growth rate relative to the WT simulation. Thus, the100

earlier onset of the overflow metabolism is caused indirectly by hitting the capacity limitation at the101

membrane.102

Possible interpretations of the results from sRBA simulations103

Basan et al. [15] did not find evidence that membrane capacity would determine the switch to the104

overflow metabolism when attempting to over-express WT lacY, which contradicts our results, where105

WT lacY causes the switch. At the same time, Wagner et al. [20] found evidence of this effect for106

several other (GFP-fused, WT) membrane proteins. We hypothesize that this apparent contradiction107

could be explained by the difficulties of over-expressing membrane proteins.108

Further experiments might thus be necessary to elucidate the effect: mainly, the fraction of the109

proteome taken by the over-expressed lacY should be determined experimentally (these measurements110

were not reported by Basan et al. [15]). On the other hand, over-expressed lacZ was measured111

at more than 8% of the proteome, representing substantial metabolic stress (even in terms of112

ATP polymerization costs). This way, our simulations lend support to the ‘membrane real estate113

hypothesis’ [17, 18] for explaining overflow metabolism, but the results are not dispositive.114

S2.2 Parameter choices for the sRBA model115

To parameterize each example model, we gathered the enzyme turnover numbers directly from [9], the116

enzyme sub-unit stoichiometry from Uniprot [21] and the Complex Portal [22], and the translation117

rate from [23].118

We opted to use representative values for parameters that have growth rate dependent effects (e.g.119

translation rate of 12 amino acids per second), and average values specific constants like the ribosome120

molar mass (2700 kDa1), amino acid composition of the ribosome (7459 amino acids per ribosome2),121

1https://bionumbers.hms.harvard.edu/bionumber.aspx?id=100118&ver=10&trm=e+coli+ribosome+molar+
mass&org=

2https://bionumbers.hms.harvard.edu/bionumber.aspx?id=101175
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ATP protein polymerization cost (4.2 ATP per amino acid3), etc. Links to all data sources together122

with cleaned extracted data files are reported in the source code repository. The parameters were123

used as gathered, with no parameter fitting procedure involved.124

We additionally summarize the sensitivity of the constructed model to the translation rate125

parameter (kr), which seemed to be the most sensitive to perturbations: In Figure 1C in main text,126

we compare of the ribosome mass fractions using the translation rate of 12 amino acids per second (a127

representative average value) against 9 and 17 amino acids per seconds (the minimum and maximum128

measured value reported by Dai et al.) [23]. Notably, the average value recapitulates the experimental129

data well, and the mass fractions seem to differ between the average and extreme parametrization only130

by a constant relative factor. We did not observe any substantial impact of changing the translation131

rate on the metabolic flux (Supplementary Figure S6).132

S2.3 Construction of enzyme-constrained communities133

To further demonstrate the versatility of COBREXA 2, we constructed enzyme-constrained community134

models of interacting E. coli mutants.135

These mutants were modeled as auxotrophic for 14 specific amino acids, using single-gene deletions136

in the relevant biosynthetic pathways, as has been done experimentally [24, 25]. The auxotrophic137

models were additionally constrained by enzyme kinetic and capacity constraints (analogous to the138

E. coli extension specified in Section S1.1, but only with the total enzyme capacity bound). Individual139

models were connected via their exchange reactions, with exchange fluxes weighted by the abundance140

of the mutant, and the biomass production rates of each mutant model was constrained to the same141

value, effectively creating a community growth rate as in the cFBA method [26]. Additionally, the142

mutants were allowed to share the knocked-out amino acids with each other. To avoid the bilinearity143

of the cFBA model (in abundances and fluxes), we solved the problem multiple times over a uniform144

sample of possible abundances, and picked the solution with the maximum growth rate. The complete145

constraint system construction is laid out in Section S1.2.146

Discussion of results obtained from iML1515 enzyme-constrained auxotrophe community147

Thus far, ec-FBA models have been mostly applied to single organisms [27], raising a question:148

would adding enzyme constraints to community flux balance analysis (cFBA) models improve their149

predictive accuracy? Previous attempts to answer this question made use of ad hoc constraints, e.g.150

flux balance analysis with molecular crowding (FBAwMC) [28] was incorporated into a community151

scale model of interacting bacteria, but this approach lacks the mechanistic details available when152

using full enzyme constrained models (e.g. protein concentration predictions cannot be made [2]).153

This drawback reflects the lack of parameters endemic to the field when FBAwMC was introduced154

(circa 2007). More recently, quasi-resource allocation type constraints were added to community flux155

balance models through the incorporation of an L1 bound on total reaction flux in each community156

member [29]. This approach also eschews important details, like enzyme speed and size, which are157

both physiologically important attributes, figuring prominently in ec-FBA.158

Community-simulating extensions of FBA [30, 31] typically assume that each community member159

grows at the same rate (otherwise the system is not at steady state), and metabolite flux exchange be-160

tween members and their environments is weighted by the abundance of each microbe [26]. Previously,161

data scarcity prevented adding enzyme bounds to genome-scale metabolic models, but this problem162

has been attenuated by new in silico estimators, including machine learning [32], and omics-driven163

parameter estimation techniques [33], allowing for the parametrization of ec-FBA models at community164

scale.165

3https://bionumbers.hms.harvard.edu/bionumber.aspx?id=114971&ver=1&trm=ribosome+amino+acid&org=
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Figure S4: Comparison of growth predictions obtained for different compositions of ∆metA–∆ilvA auxotroph E. coli
community, using cFBA and ec-cFBA. In both simulations, the members were only allowed to exchange methionine
and isoleucine. The vertical gray bar indicates the experimentally measured abundance [25].

We simulated mutually auxotrophic E. coli communities that were previously constructed experi-166

mentally by co-culturing mutants with complementary knockouts [24, 25]. Since each auxotrophic167

mutant lacks an essential gene for biosynthesis of a different amino acid [25], it is unable to grow168

in isolation, but may be rescued in a community where the amino acids may be exchanged with169

different mutants. However, the fundamental factors that determine the composition of the resultant170

communities are not well understood. Here, we hypothesize that each coupled community will adjust171

its abundance to grow as fast as possible, and investigate whether this optimality assumption holds172

by comparing measured abundance data to simulations using a classic cFBA, and enzyme-constrained173

cFBA (ec-cFBA).174

First, we simulated a co-culture of ∆metA (auxotrophic for methionine) and ∆ilvA (auxotrophic for175

isoleucine) E. coli mutants. This pairing exhibits robust growth with a steady-state abundance of 20%176

∆metA, as established experimentally [25]. Supplementary Figure S4 compares the results obtained177

from ec-cFBA to conventional cFBA. Notably, with conventional cFBA the abundance of each member178

has only negligible effect on the community growth rate (up to extreme values), which is caused by179

the virtually identical metabolism of both members that can complement each other via zero-cost180

exchanges. This effect was previously prevented in simulations by incorporating non-mechanistic181

assumptions (i.e. a community MOMA-type simulation) that results in more realistic behavior [24].182

In contrast, results from ec-cFBA clearly show two distinct growth regimes as the abundance of183

∆metA changes, with a better defined optimum at the intersection of the regimes. Each regime184

corresponded to a specific partner limiting the growth of the community. In this particular case, the185

biosynthesis cost of the biomass of each mutant differ because of both the knockout and the necessity186

to supply amino acids to other community members at a rate that satiates the abundance-controlled187

demand, which ultimately determines the optimal community composition.188

Fascinatingly, when we extended the same analysis to all co-culture communities that demonstrated189

significant growth (Figure 1D in main text), we observed that ec-cFBA offers substantially improved190

predictions over cFBA. The comparison included only amino-acid pairings that exhibit significant191

growth in experimental conditions (over 10-fold biomass increase over inoculum) [25]. ec-cFBA192

provided better predictions than cFBA in all cases (measured via centered-log-ratio-transformed193

compositional distance), improving the correlation with experimental data from 0.197 (cFBA) to194

0.453 (ec-cFBA). The ec-cFBA prediction compares well to the non-mechanistic (and non-steady195

state) approach used by Wintermute&Silver [24], who found a correlation of 0.42 across their dataset.196

Despite this, it is clear that both approaches are missing an important physiological constraint, since197

the predictive accuracy is relatively low. To improve, it might be necessary to incorporate either more198

precise regulatory effects or RBA-style constraints.199
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S3 Supporting results200

Results from the simulation of 4-member community of E. coli mutants are summarized in Supple-201

mentary Figure S5.202

Full results obtained from comparison of ec-FBA and sRBA are shown in Supplementary Figure S6.203

The reported results are a superset of ones in Figure 1B in main text.204
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Figure S5: Enzyme kinetics constraints are not sufficient to robustly reproduce the composition of a 4-member
auxotrophic community of E. coli mutants. The plot is organized as slices of a 3-dimensional Aitchison simplex of
the community compositions [34]. Simulation of ∆metA–∆lysA–∆ilvA–∆thrC community shows high variability in
community compositions at near-optimal growth rates. The star represents the experimentally observed composition
(∆metA 27%, ∆lysA 38%, ∆ilvA 21%, ∆thrC 14%) [25].

S12



ec−FBA sRBA

A
cetate production

G
lucose intake

O
xygen intake

0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

0

5

10

6

8

10

12

14

16

19

21

23

Growth rate (1/h)

F
lu

x 
(m

m
ol

/g
D

W
/h

)

Model

WT
lacY+leak
lacZ+
lacY+
WT+fast
WT+slow

Figure S6: Comparison of results obtained from ec-FBA and sRBA models. The figure interpretation is the same
as for Figure 1B in the main text, but includes results from additional simulations from a model where lacY is
over-expressed but not leaking protons (labeled lacY+) and sRBA models where translation rate is changed from
12 to 9 and 17 amino acids per second (labeled respectively WT+slow and WT+fast, corresponding to the same
labels in Figure 1C in the main text). Results for WT and lacZ+ almost completely overlap in the ec-FBA models;
the WT model is able to grow approximately 5% faster. Similarly, results for WT, WT+slow and WT+fast almost
completely overlap in the sRBA models; as the main difference, WT+fast is able to grow approximately 2% faster
than WT, which itself grows around 2% faster than WT+slow.
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S4 Constraint trees205

ConstraintTrees.jl is available as a separate package that we implemented to provide the constraint-206

system representation for COBREXA 2. ConstraintTrees.jl is available from https://github.com/207

COBREXA/ConstraintTrees.jl and from Julia package repositories. Stand-alone tutorial documenta-208

tion for ConstraintTrees.jl is available from https://cobrexa.github.io/ConstraintTrees.jl/.209

Supplementary Table S1 provides an overview of the “grammar” of constraint system manipulations210

as implemented by ConstraintTrees.jl and COBREXA 2.211

Constraint trees store a nested hierarchical structure of labeled constraints, organized into labeled212

directories. Each constraint consists of a value part and an optional bound part. Semantically, the213

value part defines a combination of variables in the system (typically a linear or quadratic one), and214

the bound part describes a condition that the value must satisfy (typically that the value of the215

combination of variables lies within a given interval). The labeled hierarchy carries no semantics in216

the constraint system, and serves only for manipulation convenience.217

Shown in the Supplementary Table S1, the labeling and selection operations provide a systematic218

way to logically group any constraints, avoiding the need for name mangling (e.g., the oxygen exchange219

in organism 2, seen in the extension operation example, does not need to be labeled with unstructured220

identifier such as "member2_R_EX_o2_e" as common in other systems), and providing easy hierarchical221

access to all system constituents. Intersection and extension are the central operations, respectively222

representing intersection of feasible spaces of both constraint systems, and Cartesian product of the223

feasible spaces of constraint systems. The extension operation prevents any intersection of the variable224

sets of the given constraints, typically re-numbering the variable indexes of some of the operands,225

yielding a system where both original systems coexist independently. The interfacing operation is226

similar to extension, but additionally requires specification of the “module interfaces” (highlighted by227

arrows in the figure) which are used to connect the modules together (i.e., the systems are no longer228

independent in the result), and create an interface for the result that may be used for connecting more229

systems. Optimizing the system w.r.t. a given objective produces a “value tree” where constraints230

from the constraint tree are replaced by the evaluated combinations of the solved variables.231

Notably, from the user perspective there is no difference between manipulating a constraint that232

holds a variable and a constraint that holds a linear combination (a “derived value”) of the variables.233

This property has two main implications:234

• It abstracts the user from having to manage variable vector allocations, instead the variables235

are typically allocated by using the extension (operator +) and interfacing (join_interfaces)236

operations.237

• It enables transparent interfacing of constraint systems: For example, a system that represents a238

L2-parsimonious constraint can be built equivalently from the usual vector of flux-representing239

variables, and from a vector of variable combinations that derive the values from other contents240

of the model (such as sums of positive and negative reaction fluxes, and gene product capacity241

vectors in enzyme-constrained models).242

Internally, the variable objects in the constraint solver are allocated implicitly, based on the presence243

of a referring index in the given constraint tree.244
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Operation name
julia operation Example use Example result

Constraining values
Constraint Constraint( x1 , ≥ 0 ) = x1 ≥ 0

Labeling
^ reactions^PFK^ x1 ≥ 0 = reactions

PFK x1 ≥ 0

Selection
. [] exchanges

O2 x23 ∈ [−10, 10]
.exchanges.O2 = x23 ∈ [−10, 10]

Intersection
* stoichiometry

O2_e x23 − x85 = 0]
* exchanges

O2 x85 ≥ −10
= stoichiometry

O2_e x23 − x85 = 0
exchanges

O2 x85 ≥ −10

Extension
+ organism1

O2_e x23 − x85 = 0
CO2_e x15 − x68 = 0
…

+ organism2
O2_e x23 − x85 = 0
CO2_e x15 − x68 = 0
…

= organism1
O2_e x23 − x85 = 0
CO2_e x15 − x68 = 0
…

organism2
O2_e x153 − x215 = 0
CO2_e x145 − x198 = 0
…

Module interfacing
interface_constraints interf…(

organism1
stoichiometry

O2_e x23 − x85 = 0
…

PFK KO x1 = 0
exchanges

O2 x85 ≥ −10
…

interface

,
organism2

stoichiometry
O2_e x23 − x85 = 0
…

ACALD KO x2 = 0
exchanges

O2 x85 ≥ −10
…

interface

) =
organism1

stoichiometry
O2_e x23 − x85 = 0
…

PFK KO x1 = 0
exchanges

O2 x85 ≥ −10
…

organism2
stoichiometry

O2_e x143 − x205 = 0
…

ACALD KO x122 = 0
exchanges

O2 x205 ≥ −10
…

interface_connection
O2 x85 + x205 − x251 = 0
…

exchanges
O2 x251
…

interface

Optimization
optimized_values optimized_values(

organism
exchanges

O2 x85 ≤ 0
CO2 x68 ≥ 0

biomass x25 ≥ 0
…

maximize

) =
organism

exchanges
O2 −5.2573
CO2 7.3622

biomass 0.873922
…

Table S1: Main operations on constraint trees illustrated on examples.
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