TWO NATURAL VARIANTS OF THE LANG-TROTTER CONJECTURE
ON PRIMITIVE POINTS FOR ELLIPTIC CURVES

ALEXANDRE BENOIST AND ANTONELLA PERUCCA

ABSTRACT. The Lang-Trotter conjecture on primitive points is the analogue for elliptic curves
of Artin’s conjecture on primitive roots. Indeed, if we have an elliptic curve E over Q with a
rational point P of infinite order, we may count the primes p of good reduction for which
(P mod p) generates E(F,). In this work, we formulate and investigate two natural variants of
the Lang-Trotter conjecture. For one of them, we require that the group E/(F,) and its subgroup
((P mod p)) have the same exponent, namely the cyclic subgroup is as large as possible. We
conjecture that the set of primes p such that this condition holds admits a natural density, whose
value is a rational multiple of the product over all primes ¢ of the natural densities (which we
prove to exist and be rational) of those p such that the exponents of E(FF,) and ((P mod p))
have the same ¢-adic valuation. Numerical examples support the validity of our conjectures.

1. INTRODUCTION

1.1. The Lang-Trotter conjecture. Let S be a set of primes, and call P the set of all primes.
The natural density of S is defined, provided that the limit exists, as

. #p<a:pe S}
dens(S) := wlglgo <z pePl

Artin’s conjecture on primitive roots predicts the natural density of the set of primes p for
which a given integer a is a primitive root (which means that (@ mod p) generates IF). It has
been proven by Hooley in 1967 under the Generalized Riemann Hypothesis (GRH). In 1976,
Lang and Trotter [LT77] formulated an elliptic-curve analogue of Artin’s conjecture. Let E/Q
be an elliptic curve and let P € E(Q) be a point of infinite order. The Lang-Trotter conjecture
on primitive points predicts the natural density of the set of primes p (of good reduction for F)
such that P is primitive modulo p: this condition means that (P mod p) generates the group
E(F,) and in particular it requires E(IF,,) to be cyclic.

Let m > 1 be a square-free integer. We define densj,gex(m) as the natural density of the set
of primes p of good reduction for E such that, for all primes ¢ | m, the following holds:

(1) the index of the subgroup ((P mod p)) in E(IF,) is not divisible by £.

We observe that this natural density exists by the Chebotarev density theorem because we may
study the condition via the modm torsion-Kummer representation for £//Q and P.

Conjecture (Lang-Trotter). The set of primes p of good reduction for E such that (P mod p)
generates £/(IF,)) admits a natural density. Moreover, there exists a square-free integer m > 1
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such that this natural density is the convergent product

densmdex(m) . H densindex (E) .
ltm

Contrarily to Artin’s conjecture, the Lang-Trotter conjecture is not proven conditionally under
GRH. However, for example, adapting the method by Hooley for Artin’s conjecture, Gupta
and Murty proved in [GRMS86] that if £/Q has CM by the ring of integers of an imaginary
quadratic field K, then under GRH the natural density in question exists, and it is positive
if 2 and 3 are inert in K, or K = Q(v/—11). Moreover, there are unconditional results if
the point P is replaced by a subgroup of E(Q) of sufficiently large rank, see for example
[Mell5]] (also for elliptic curves without CM). For one point P, the natural density is positive
only if there is a positive natural density of primes p such that the group E(IF,,) is cyclic. The
related problem of cyclicity was studied by several authors: Serre [Ser78|] showed under GRH
that the natural density of cyclic reductions (namely, of those p such that E(FF,) is cyclic)
exists, and it is positive if and only if not all 2-torsion points are defined over Q (and Murty
in [Mur83] proved the result unconditionally for curves with CM). We remark that Meleleo in
[Mell5]| also considers the alternative condition that the quotient of E(IF,,) by ((P mod p)) is
cyclic. Moreover, Jones, Pappalardi and Stevenhagen [JPS23|| recently proved that there are
elliptic curves E/Q and points P € E(Q) of infinite order such that for every prime p of good
reduction the point (P mod p) doesn’t generate E(IF,) (beyond the trivial examples where
e.g. E(Q) contains a point of order 2 and a point whose double is P). Given the oncoming
book about Artin’s conjecture and the Lang-Trotter conjecture [MPe27]] we have opted for not
presenting a complete historical account on them.

1.2. The Exponent LT conjecture and the Indivisibility LT conjecture. We formulate and
investigate two natural variants of the Lang-Trotter conjecture. Firstly, we require the cyc-
lic group generated by (P mod p) to be as large as possible, which means that the order of
(P mod p) equals the exponent of E(IF,,). This is equivalent to requiring for all primes ¢, de-
noting by ordy (respectively, exp,) the ¢-adic valuation of the order (respectively, exponent),
that we have

() ordy (P mod p) = expy(E(Fp)) .

Secondly, we require the possibly weaker condition that the point (P mod p) is indivisible,
meaning that it is not an /-multiple in E(IF,) for the prime numbers ¢ that divide # E(F),):

3) C|#EF,) = (Pmodp) ¢ [(]EF,).
Our two conditions are equivalent to Condition (I) if E(IF)) is cyclic.

Call Sg the set of primes of good reduction for E. For any finite non-empty set L of prime
numbers, the set of primes p € Sg such that Condition (2)) (respectively, (3))) holds for every
¢ € L admits a natural density (see Theorems [3| and |I| respectively), that we call densexp, (L)
(respectively, densipgiv(L)). For a square-free integer, we define

densexp(m) = densexp ({£: £ | m})

(respectively, densingiv(m) := densingiy({€ : £ | m})). If S is a (not necessarily finite) non-
empty set of prime numbers, we similarly define the natural density denscyp(.S) (respectively,
densipqiv(S)) — provided that this natural density exists. In the spirit of the Lang-Trotter
conjecture, we state:
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Conjecture (Exponent LT conjecture). Let S be a non-empty set of prime numbers. The
natural density denseyp, (.5) exists and it is the infimum, by varying L over the finite non-empty
subsets of S, of densexp(L).

Conjecture (Indivisibility LT conjecture). Let .S be a non-empty set of prime numbers. The
natural density densi,qiy (S) exists and it is the infimum, by varying L over the finite non-empty
subsets of S, of densi,qiy (L).

We point out that the existence of the natural density is part of the conjectures, as it is not clear
why the given set of primes should admit a density in case .S is not finite: we would expect the
argument to involve deep results from analytic number theory.

We may take in particular S = P in the above conjectures. Notice that the upper natural
density (with the limit superior in place of the limit) is clearly bounded from above by the
given infimum. As Conditions (I)), (2), and (3) go from strongest to weakest, we have

densindex (L) < densexp (L) < densingiv (L)

for every finite non-empty set L of primes (and, provided that the densities exist, the same
holds for an infinite set of primes).

Our results are based on an investigation of the ¢-adic (respectively, adelic) torsion-Kummer
representation of E, considering the Galois action on the division points over P.

For the Indivisibility LT conjecture we prove the following:

Theorem 1. For any finite non-empty set L of primes, the natural density densiyqiy (L) exists
and it is a rational number. If £ is a sufficiently large prime, then the following holds: if E is
without complex multiplication,

=202 — 0 +1
B —1)2(0+1)
while if E has CM by an order contained in the imaginary quadratic field of discriminant — D,
then for € big enough we have

densipqiv(¢) =1

302 — 50+ 1 (=D
T if(57) =1
et

22— 1)+ 1)

densipqiv(¢) =
1

If m is a positive integer, we denote by %P the set of preimages of P in E(Q) under the
multiplication by m. Relying on the open image theorem for the adelic torsion-Kummer rep-
resentation (see Proposition[7)), we have:

Theorem 2. Let E be without complex multiplication and let B be a positive integer such
that for every prime ¢ t B the following holds: the extension Q(%P) is linearly disjoint from

@(%P) for all positive square-free integers m coprime to {. Then, assuming the Indivisibility
LT conjecture, we can write

densingiv(P) = densinaiv({¢ : £ | B}) - H densingiv (£) -
0t B
Moreover, there exists a rational number () such that

=202 — (41
denspaie (P) = Q- T] (1 - BU—12(+ 1)> '
lep
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We also have a similar result if £ has CM after extending the base field, see Theorems [22]
and 24

Our main result on the Exponent LT conjecture (which builds on the results in Section [5 and
on Proposition [28|by Hormann and Lombardo) is the following:

Theorem 3. For any finite non-empty set L of primes, densexy, (L) exists and it is a rational
number.

The proof of this result stems from explicit matrix counts in the image of the modulo ¢" torsion-
Kummer representation of £//Q and P by varying n > 1. The intuition that certain quantities
stabilize or have a regular growth in n for n > 0 is correct, and indeed we prove rationality
by showing that the natural density is a finite sum of rational terms and geometric series with
rational ratios. The matrix counts are of independent interest and, in particular, they can be
useful to understand the minimal denominator of the natural density (leading to a positive
lower bound for a non-zero natural density, and to the possibility of identifying the natural
density with great certainty by numerical experiments). Notice that it may be difficult to tell
whether a natural density is rational or not: for example, the generic natural density in Artin’s
conjecture is the Artin constant [ [, (1 — p—l_é) and it is not known whether this is rational.

The natural density densexp(¢) for a prime ¢ is computed explicitly for certain images of the
¢-adic torsion-Kummer representation of £/Q and P, see Appendix If m is a positive
integer, we denote by Q(— P) the union of all fields Q(- P) for n > 1. We then have the
analogue of Theorem [2}

Theorem 4. Let E be without complex multiplication and let B be a positive integer such that
for every prime ¢ 1 B the following holds: the extension Q(K%P) is linearly disjoint from
@(m%P) for all positive square-free integers m coprime to . Then, assuming the Exponent
LT conjecture, we can write

densexp (P) = densexp({€: ¢ | BY}) - H densexp (¢) .

LB
Moreover, there exists a rational number () such that
ATy gy |
densexp(P) = Q - H <1 S T +£2) .

LeP

We also have a similar result if E has CM after extending the base field, see Theorems [50]
and [32

Similarly to the original Lang-Trotter conjecture, our two conjectures have been stated over QQ
for concreteness, but they are meant for any number field. Moreover, they can also be con-
sidered for abelian varieties. In any case, we prove our results more generally for any number
field in place of Q.

The above conjectures and results also have an analogue if P is replaced by a subgroup I'
of E(Q). Indeed, Condition can be generalized by considering exp,(I" mod p), while
Condition (3] can be generalized as follows: a point in (I' mod p) is an ¢-multiple in E(IF,)
only if it is an /-multiple in (I mod p).

Moreover, as observed by Baril Boudreau, many of the arguments work equally well for global
function fields and similar conclusions are expected to hold (given an analogue of [Ber88,
Theorem 1]).
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The overview of the paper is as follows: In Section [2] we give the necessary background on
torsion-Kummer representations. Of independent interest is our investigation in Section [2.6]of
the notion of ¢Z-rank for a matrix with entries modulo ¢ (for which we only accept linear
combinations of the columns with coefficients not all divisible by £). We then provide some
counts of matrices with a given ¢Z-rank, considering the possible generic images of the torsion
representation modulo ¢". In Section [3] we investigate Condition (3) and prove Theorems
and 2] Theorems [3] and [4] are proven in Sections ] and [5] More precisely, in Section 4] we
prove the existence of densexp(L) while in Section |5/ we show that this is rational, relying
on results from the first appendix. In Appendix |[A| we count lifts from modulo ¢" to mod-
ulo /"1 of matrices in GLo, Cartan groups and their normalizers, according to their ¢Z-rank.
In Appendixwe compute densexp, (£) for some possible images of the /-adic torsion-Kummer
representation and we give numerical examples supporting the validity of our conjectures. Fi-
nally, in Appendix |C| (building on Lemmas [82] and [83| by Hérmann) we prove two results on
the torsion-Kummer extensions of elliptic curves, which are of independent interest and that
we have applied to investigate our examples.
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Pieter Moree for helpful discussions and especially for Proposition [28]and Lemmas [82]and [83]
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this submission.
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2. PRELIMINARIES (TORSION AND KUMMER REPRESENTATIONS)

In this section we introduce the general notation of the paper and then describe the theoretical
framework of the torsion-Kummer representations. We have opted to focus on elliptic curves
for concreteness: the definitions and results which do not rely on the explicit description of
the image (up to a finite index) of the torsion representation also hold for abelian varieties,
straight-forwardly generalized and with the same proof.

2.1. Notation. The general notation that we make use of is collected here — grouping related
notions — for the convenience of the reader.

e We let K be a number field, and we fix an algebraic closure K. We denote by p a
prime of K, and we write k;, for the residue field at p (fixing an algebraic closure Ep).
All densities of primes of K mentioned in this paper are natural densities. For a set S
of primes of K, the natural density of S is defined, provided that the limit exists, as

. #{p €S : Ngjglp) <z}
d =1
eSS ) = e e N o(p) <

where N /q is the norm from K to Q. If /K is a finite Galois extension of K and p
does not ramify in L, then we write Frob, for the conjugacy class of the Frobenius
elements at p.
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e We let ¢ be a prime number. We write Z, for the ring of ¢-adic integers and Z/¢"Z for
the ring of the integers modulo ¢" (for some positive integer n). We denote by vy the
(-adic valuation defined for non-zero elements of Z; or Z/¢"7Z. If G is a group we let
expy(G) (respectively, ord,(G)) be the ¢-adic valuation of the exponent (respectively,
the order) of G. We do not distinguish between the order of an element and the order
of the cyclic subgroup that it generates.

e We let /K be an elliptic curve defined over K and we denote by S the set of primes
of K that are of good reduction for E. We let P € E(K) be a point of infinite order.
Then, if L is a non-empty set of prime numbers, we write densi,qex (L) (respectively,
densexp (L) and densinqiv(L)) to mean the natural density — provided it exists — of
the subset of Sg consisting of the primes p of K which, for every { € L, satisfy
Condition (respectively, and (3))), expressed similarly in the setting of prime
ideals. Moreover, if £ is fixed, we write Sey, for the subset of Sg consisting of the
primes p for which exp,(F(ky)) = ordy(P mod p) and also define its subset Sexp,n
with the condition exp,(E(ky)) = ordy(P mod p) = n.

e We denote the semi-direct product of groups with the symbol x. We denote by 7 the
projection onto the former group and 7o the projection onto the latter group.

e We denote by p the normalized Haar measure.

e If R is a ring, we denote by GLo(R) the group of 2 x 2 invertible matrices with
coefficients in R (and we similarly define GL3(R)). If M is a matrix with entries in
Z./0"Z, we denote by rkez (M) the {Z-rank of the matrix M (see Definition[13). If £ is
fixed, the identity matrix of GLy(Z/¢"Z) is denoted by Id,,.

e We usually denote by G a subgroup of GLa(Zy) x Z? (for example, the image of the
¢-adic torsion-Kummer representation attached to £ and P). We then write G(n) for
the reduction of G' modulo ¢".

2.2. Torsion-Kummer representations of elliptic curves. We fix a number field K and an
elliptic curve E/K. We suppose that the Mordell-Weil group E(K) contains a point P of
infinite order, as this is necessary to formulate the Lang-Trotter conjecture and to consider
similar problems.

Fix some prime number ¢. For every n > 1 we choose an ordered basis for E[¢"] such that
if N > n then the basis of E[¢"] is the image of the basis of E[¢"] under multiplication
by ¢V —". By taking the projective limit of these bases, we get an ordered Z,-basis of the Tate
module 7y(E). After having chosen an ordered basis for E[¢"] we can identify this group with
(Z/¢"Z)?. Then we can identify the group of automorphisms of E[¢("] with GLy(Z/("Z).
Similarly, we can identify the group of Z,;-module automorphisms of T;(E) with GLy(Z,).

Definition 5 (torsion representations). For every o € Gal(K/K) the restriction of o to E[¢"]
is, with the above identifications, a matrix M,, € GLy(Z/¢"Z). The group homomorphism
o — M, is the torsion representation modulo ™. Similarly, by considering the Galois action
on Ty(E), we obtain the ¢-adic torsion representation.

For every positive integer n we denote by ZL"P the set of points P’ € E(K) such that[("|P' = P
and by K (E%P) the field obtained by adding the coordinates of the points of Z%P to K. For
every positive integer n we fix a point @), € Z%P such that [/N""]Qx = @, holds for all
N >n.

We now describe the torsion-Kummer representations (also called arboreal representations),
referring to [JR10] and [LP21] for a more detailed introduction to these representations.
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Definition 6 (torsion-Kummer representation modulo ¢™). The torsion-Kummer representa-
tion modulo " is a group homomorphism that maps o € Gal(K/K) to the matrix M), in

GL3 (Z/EnZ) which is
/L M, vy,
e (M

where M,, € GLo(Z/¢™7Z) is the image of o under the mod ¢" torsion representation, 0 is the
zero row vector with two entries and v, is the column vector with two entries whose coordin-
ates are the coordinates of the torsion point o(Q,,) — @, in the chosen ordered basis of E[("].

The image of the torsion-Kummer representation modulo ¢”, by definition, is contained in a
group isomorphic to the semi-direct product

GLy(Z/0"Z) x (Z)0"7)? .

Considering the projective limit of the torsion-Kummer representations modulo ¢" we obtain
the ¢-adic torsion-Kummer representation, whose image is a subgroup of

GLo(Zy) % (Zyg)?.

2.3. On the image of the torsion representation. We first consider the possible images of
the ¢-adic torsion representation for a prime number ¢. We say that E// K doesn’t have com-
plex multiplication (abbreviated CM) if the endomorphism ring End - (E) is isomorphic to Z.
Before considering the CM case, we recall some facts on the Cartan subgroups of GLo(Zy).
They are groups C(, 4) described by two suitably chosen parameters c,d € Zy, see [LP17,
Propositions 10 and 11]. We have

Cleay = {(g N iﬂcﬁ) Lo, B € Zy, ve(a(a+cB) —dB?) = 0}

and

Cleay(n) = {<%: andfz@) L, B € ZJT (a4 ¢Bp) — dB> ¢ EZ/Z"Z} .

For ¢ odd, we can take ¢ = 0 and the Cartan group is said to be ramified if ¢ | d (and unramified
otherwise). If £ { d, then the Cartan subgroup is said to be split if d is a square in Z/, otherwise
it is said to be nonsplit. For £ = 2, we can take ¢ € {0, 1}. If ¢ = 0 the Cartan group is ramified

while if ¢ = 1 the Cartan group is unramified (it is either split or nonsplit; in the former case
we may take d = 0 and in the latter case we may take d odd). If d # 0, we call v := vy(d).

If C'is a Cartan group, the normalizer N of C'is the disjoint union of C' and C” := <(1) _Cl> -C.

If C is split, we will use the diagonal model: it is isomorphic to

(6 8)mses}

The normalizer N of C is the disjoint union of C' and C” := <(1) é) -C.

If £ has CM by an order contained in the imaginary quadratic field of discriminant — D, then
for every £ > 0 the image of the /-adic torsion representation is isomorphic to a Cartan sub-
group of GL2(Zy) if the CM field of E is defined over K and to the normalizer of a Cartan
subgroup of GL2(Zy) if the CM field is not defined over K. The underlying Cartan subgroup
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is split if (=2) = 1 and nonsplit if (=2) = —1, see [Ser78| Section 4.5] and the proof of
[Zyw15, Lemma 7.3].

2.4. On the image of the torsion-Kummer representation. Call p,, (respectively, p!,) the
torsion (respectively, the torsion-Kummer) representation modulo 7.

Proposition 7. There exists a positive integer N such that for every n > 1 we have
[Wn X (Z/T"Z)2 : Im(p;)] = [Wgcd(n,N) X (Z/ gcd(n, N)Z)2 : Im(ﬁ;cd(n,N))}
where the group W, is as follows:

o if E is without CM, W,, = GLa(Z/nZ);

e if E has CM defined over K, then W, = C(Z/nZ) for some Cartan subgroup scheme
C of GLg defined over 7 and independent of n;

e if I has CM not defined over K, we may take

Wy, = (C(Z/nZ), (M mod n))
where (M mod n) is the reduction modulo n of a specific matrix M € GLo(Z) such
that M? is the identity, and C' is as above.

Thus Tm(pl,) is the preimage in W, x (Z/nZ)? of Im(ﬂ; cd(n N)) under the reduction modulo
ged(n, N).

Proof. The result can be obtained by combining a result by Ribet [Rib79] (see [Ber88| Theorem
1]) with an appropriate open image theorem on the adelic torsion representation, as explained
in [PP24]. If E is without CM, we rely on Serre’s open image theorem [Ser72, Théoréme 3].
If & has CM defined over K, the open image theorem is a Corollary in [Ser72) Section 4.5].
If £ has CM not defined over K, references for the open image theorem are [CP22b, Lemma
2.2] and [LR22, Theorem 1.1]. ]

Corollary 8. With the notation of Proposition[]} for all positive integers n coprime to N (in
particular, for all primes n > 0) we have

[K(E[n)) : K] = #W,  and [K(—P) :K(E[n])] —nZ.

Moreover, for every n > 1, the positive integer

divides f(N).

Proof. If ged(n, N) = 1, by the above theorem Im(p},) is the preimage of Im(p] ) hence
Im(pl,) = Wy, x (Z/nZ)?.

The image of the torsion representation is then W), and hence [K(E[n]) : K| = #W,.
Moreover, the degree of K (1 P)/K(E[n]) equals n? because it is the size of the intersec-
tion of Im(p/,) with the subgroup of W,, x (Z/nZ)? consisting of the elements whose first
component is the identity.

For the last assertion, we may suppose without loss of generality that n is a multiple of N
(because f(m) divides f(n) if m divides n), and we apply the above theorem to conclude. [
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2.5. Reduction maps. We keep the notation from Section Let L/K be an extension of
number fields. If p € Sg and q is a prime of L lying over p, then q is a prime of good reduction
for the elliptic curve E @ L, and (choosing k4 C k,) we identify E(k,) with the subgroup
of E(kq) consisting of the points that are defined over k,,. If p does not ramify in L, E(ky) is
the subgroup consisting of the elements that are fixed by the Frobenius element of Gal(kq/k).

Remark 9. Consider some prime p € Sg that is not over £. The reduction modulo p is in-
jective on the torsion points of order a power of ¢, see [HS00, Theorem C.1.4]. Fix a positive
integer n. The prime p does not ramify in the Galois extension K (Z%P) /K by [HS0O, Pro-
position C.1.5]. Let o be in the conjugacy class Frob, of the Frobenius at p for the extension
K(#&P)/K, and let M, be the image of o under the mod¢™ torsion representation. Then
with the reduction map modulo p we can identify E[¢"](k;,) with ker(M,, —Id,,) (which is the
subgroup of E[("](K) consisting of the points fixed by ¢). In particular, the group structure of
ker(M,, — Id,,) does not depend on the choice of ¢ inside Froby.

In the following result we let T ,,, T5 ,, be the chosen ordered basis of E[¢"]. Notice that the
statement does not depend on the choice of o in the conjugacy class of the Frobenius at p in
Gal(K (4 P)/K), nor on the choice of the point @Qy,.

Lemma 10. Fix p € Sg not over { and let 0 € Froby, with respect to the Galois extension
K (4 P)/K. The following conditions are equivalent:

(1) The point (P mod p) is £"-divisible in E(kj).

(2) There is Q € = P such that (o —1d)(Q) = 0.

(3) We have (o —1d)(Qr) € (o — Id)(E[¢"]).

(4) The last column of M), removing the last entry, is in the column space of M,, — 1d,,.

(5) Forall N > n, the (N~ multiple of the last column of MY, removing the last entry,
is in the column space of My — Id .

Proof. (1) < (2). Suppose that there is R € E(ky) such that [("|R = (P mod p). Let q
be a prime of K ( E%P) lying over p such that o is the Frobenius automorphism for q. Let
Qo € 7 P. We have [("](Qo mod q) = (P mod p). Let T = R — (Qo mod q) € E(kq).
Then, [("]T = 0so T € E[("](k,). Since the reduction map red, : E[(")(K) — E[("](kq)
is bijective (see Remark |§I) we can lift T'in S € E[¢("](K). We define Q = Qo + S, which
is an element of %P such that (Q mod q) = R. Since R is defined over kj, it is fixed by the
Frobenius element of Gal(k,/ky) and we deduce that o(Q)) = Q. Conversely, if Q as in (2)
exists, then (Q mod q) € E(ky) and it satisfies [("](Q mod q) = (P mod p).

(2) & (3). If Q exists, then we write Q = Q,, — T for some T' € E[{"], so the condition
(0 —1d)(Q) = 0is equivalent to (¢ — Id)(Qy) = (0 — Id)(T"). Conversely, if @, satisfies
this last condition for some 7' € E[¢"], then the point Q := Q,, — T is in 7 P and satisfies
(o —1d)(Q) = 0.

(3) & (4). Call ¢; (for 7 = 1, 2) the column vectors of M,, — Id,,, and let ¥ be the last column
of M), removing the last entry. We can identify these column vectors with the corresponding
torsion points (choosing the torsion point that, written in the basis 74 ,,, 75 5, has the vector
components as coordinates). So we have ¢; = (T} ,) — Ti, and ¥ = 0(Qr) — Q.

Suppose that we can write 7 = ), o;¢; for some integers «;. Consider the torsion point
T =), oT; . Then we have

o(Qn) = Qu=7=3 aifi =) aio(Tin) = Tin) = o(T) =T
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and hence (3) holds. Conversely, if T" € E[¢"] is such that o(T) — T = o(Qy) — Qn, then we
can write T := ZZ o;T; ,, for some integers «; and we deduce that

U= U(Qn) —Qn= U(T) -T= Zaz(a(Tz,n) - E,n) = Z a;Cj .

(5) = (4). This is immediate by setting N = n.

(1) and (4) = (5). We know that the point P = [¢NN="] P is such that (P mod p) is £~ -divisible
in E(ky,). Applying (4)to P and N (letting MY, be the analogue of M}, for P) we deduce that
the last column of M > removing the last entry, is in the column space of My — Id . We may
conclude because (removing the last entries) the last column of M zlv is the ¢N—7 multiple of
the last column of M. U]

We will be interested in the points in (k) that are indivisible in this group, namely that are
not /-multiples for any prime ¢ dividing #E (k).

Remark 11. The prime ¢ divides # E (k) if and only if det(A; — Id;) = 0 in Fy, see Re-
mark 9] Moreover, if there is no X € E(ky) such that [("]X = (P mod p), then the map
[0"] : E(ky) — E(ky) is not surjective: in particular, ¢ | #E(k,). This explains why the
notion of (-divisibility is relevant only for primes dividing #E (k).

Remark 12. We describe some special cases related to Lemma[I0}]

e Suppose that M,, = Id,, (which means that E(k,) contains E[¢"](k)). In this case, the
point Q,, is fixed by o if and only if the last column of M), without the last entry, is zero.
Thus, (P mod p) is £"-divisible in E(ky) if and only if M, is the identity matrix.

e Suppose that M,, — Id,, is invertible. Then the last column of M, removing the last entry,
is of the form ¢ = ), a;C; for some integers o;, where the ¢;’s are the columns of M,, — Id,,.
Thus, the point Q,, — >, a;T; 5, is fixed by o and hence (P mod p) is £"-divisible in E(ky).

e Suppose that the finite abelian group ker(M,, — Id,,) has one cyclic component of order ("
and possibly one additional component of strictly lower order. For a suitable choice of the
basis of E[¢("] we have

0 al b1
M;l — Idn = 0 a9 b2
0 0 O

Thus (P mod p) is £"-divisible in F(k,) if and only if <z;> is a multiple of (Z;) .

2.6. The (Z-rank of matrices modulo /. We fix a prime number ¢ and, if N > n are positive
integers, we occasionally identify Z/¢"Z with the subgroup ¢N~"7Z/(N7 of 7./¢N 7.

Fix positive integers m and d. We say that the elements 1, . .. , 7, € (Z/("7Z)% are (Z-linearly
dependent if there are integers a1, . . ., a,, not all divisible by £ such that

airy +agra -+ aprm = 0.
Definition 13 (¢/Z-rank). The ¢Z-rank of a matrix M € Mat gy, (Z/¢"7Z), denoted by rkyz (M),
is the maximal number of columns of M that are ¢Z-independent in (Z/¢"Z)<.
For example, the ¢Z-rank of a matrix M is 0 if and only if M is the zero matrix.

We identify M € Matgx,,(Z/¢"Z) with a Z /¢"Z-linear transformation (Z/¢"Z)™ — (Z/"Z)¢
thus its kernel ker(M ) is a subgroup of (Z/("7Z)™.
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Lemma 14. Let M € Matgyxq(Z/("7Z).

(1) The number of cyclic components of ker(M ) having size ™ is d — rkyz(M). In partic-
ular, the exponent of ker(M) equals ™ if and only if rkey (M) < d.
(2) The group structure of ker(M) determines and it is determined by the numbers

rkez (M mod ") h=1,...,n.
Indeed, for 1 < h < n the number of cyclic components of size {" is
rng(M mod fh—H) — rng(M mod fh) s

while the number of cyclic components of size (" is d — rkgz,(M).

Proof. Proof of (1). Let ¢, ..., ¢y be the columns of M and set r := rkyz(M ). We consider
the matrices E that act as the following elementary column operations when multiplied on the
right: swapping two columns, multiplying a column by an integer coprime to ¢, or adding to a
column the multiple of another column. Then M and M E have the same ¢Z-rank, so we can
perform the above elementary column operations without changing the ¢Z-rank. Moreover,
if 7 is a column vector in (Z/¢"7Z)?, then E~'& has the same order as  hence we can perform
the above elementary column operations without changing the number of cyclic components
of size ¢" of the kernel.

Consider a column vector & € (Z/¢"Z)? with components z; to z4. We have ¥ € ker(M) if
andonly if x1¢1+. .. +x4C; = 0. If » = d, this condition implies that ¢ divides all components
of & hence ker(M) has no element of order ¢". Now suppose that r < d. With elementary
columnn operations as above, we may replace M by

(bl -+ [b|0] - -+ 10),

where the columns 51, cees E} are {7Z-linearly independent columns from the original matrix M.
Then Z € ker(M ) implies that ; to z, are divisible by ¢ and there is no condition on the last
d — r components. We deduce that ker(M ) has precisely d — r cyclic components of size (.

Proof of (2). We can apply (1) to M, := (M mod ¢*) for 1 < h < n. Thus ker(M}) has
d — rp components of size ", where 1), 1= rkgz(Mp,). To conclude, it suffices to prove that
d — rj, equals the number of cyclic components of ker(M) of size at least /. We may equi-
valently show that ker(M) and ker(Mj) have the same number of vectors of order ¢". Let
7 € (Z/¢"Z)? have order ¢, namely all entries of i are divisible by ¢"~" but they are not all
divisible by ¢*~(»=1)_Then & can be identified with a vector z}, € (Z/¢"Z)? of order ¢" (divid-
ing by "~ integer representatives for the components of ). Conversely, starting with a vector
7, € (Z/0"Z)¢ of order ¢ (multiplying by £"~" integer representatives for the components of
},) we obtain a vector & € (Z/¢"7)? of order ¢". We conclude because we have Z € ker(M)
if and only if 27}, € ker(M},). Indeed, using integer representatives, we have M# = M(™ "4,
and hence this vector is zero modulo ¢" if and only if M4}, is zero modulo ¢*. O

For M € Matgxq(Z/("Z), the image of M is the column space of M and it is isomorphic to
(Z./0"7)? ] ker(M), hence its group structure can be determined thanks to Lemma

Remark 15. The ¢Z-rank of a matrix M = (¢1|¢2) € Matayo(Z/€"Z) can only be 0, 1, or 2.
We have rkgz (M) = 1 if and only if M is not the zero matrix and there is some k € Z /("7
such that ¢; = kcs or ¢ = kci. By Lemma (2), ker(M) contains a point of order ¢" if and
only if rkyz (M) < 1.
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Remark 16. Let A = 61 le and By = (lg UlB> be elements of Maty1xq+1(Z/0"7Z)
with A, B € Matgxq(Z/{"7Z), U4 and U column vectors, and 0 denoting the zero matrix in
Mat g1 (Z/€"Z). Suppose that B is invertible, thus B is invertible with inverse

_ B! —Bly;
1_ B
s (5 0

The matrices A and B~ AB have isomorphic kernels and hence by Lemmafor alll <h<n
the matrices (A mod ¢*) and (B~' AB mod ¢") have the same ¢Z-rank. We have

-1 —’
B'A.B; = (B OAB 11“> with W= B (A —1d)ig + B 'v4.

We deduce that 74 € Im(A—1d) if and only if & € Im(B~'AB —1d). Indeed, if #'is a vector,
then ¥4 = A¥ — ¥ implies @ = (B~'AB — 1d)(B~'vp + B~'%) while & = B~*ABv — @
implies U4 = (A — Id)(Bv — Up).

We remark that the effect on A, of a base change in (Z/¢"7Z)? is the conjugation with an

invertible matrix B such that v = 0. Moreover, replacing U4 by adding to it an element in
Im(A — Id) does not affect whether ¥4 € Im(A — Id).

2.7. Matrix-counting. We fix a prime number ¢: the densities densipgiy(¢) and denseyp(¢)
will be computed thanks to the Chebotarev density theorem by counting suitable matrices in
the image of the mod/ (respectively, mod¢™ for n > 1) torsion-Kummer representations. We
introduce the notation and present some preliminary results.

Let G C GLa(Zyg) x (Z¢)?. We define G to be one of the following groups: GLa(Zy), a
Cartan subgroup of GLgy(Z) or the normalizer of a Cartan subgroup of GL2(Z,). We suppose
that the first projection 71 (G) is a finite index subgroup of Gy. We also suppose that G has
finite index in Gy x (Z¢)?. We let ng be a positive integer such that the index of G(ng) in
Go(no) x (Z/0™7Z)? is the same as the index of G in Gy x (Z;)?. Moreover, we let dg = 4
if 71(G) has finite index in GL(Z/), and dg = 2 otherwise.

We equip G with its normalized Haar measure p. For an element (M, v) € G and a positive
integer n, we set (M, v,) := (M,v) mod ¢™ € G(n). Similarly, for a positive integer N > n
and an element (My,vy) € G(N) we set (M, vy,) := (My,vy) mod . Then we call
(MN, UN) a lift of (Mn, ’Un).
Definition 17. We define R(n) = #G(n), R1(n) = #m1(G)(n) and

Ri(n) = #{M,, € m(G)(n) : tkez(M,, —1d,,) = 1}
If n > 2, we also define

RY(n) = #{M, € m1(G)(n) : tkyz(M,, —1d,,) = 1 and M,, = Id,,_; mod (™1},

Proposition 18. The quantities R1(1) and R)(1) are as follows in the special case where
s 1(G) = Gg.‘
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[ m(G) | Ri(1) O
GL2(Zy) =1+ B —-20—-1
Split Cartan (¢ —1)? 20— 4
Nonsplit Cartan ? -1 0
Normalizer of a split Cartan 2(0 —1)? 30 —5
Normalizer of a nonsplit Cartan 2(0% - 1) l+1
Ramified Cartan (¢ odd) L0e—1) (-1
Normalizer of a ramified Cartan (¢ odd) 2000 —1) 30 —1
(Normalizer of a) ramified Cartan ({ = 2) 2 1

Proof. The quantities R1(1) are well known or clear from the description of the Cartan sub-
groups provided in Section As we are working modulo /, the notion of /Z-rank coincides
with the usual notion of rank.

The case of GLa(Zy). For My € GLo(Z/VZ), one has det(M; —1dy) = 1—tr(M;)+det(My),
so the condition det(M; — Id;) = 0 is equivalent to d = ¢ — 1 where ¢t = tr()M;) and
d = det(M;). By [CERMO0S, Lemma 2.7], one has

2 _
The condition ¢ = d + 1 gives t2 — 4d = (d — 1)2, so

21l d£1

#{Ml € GLQ(Z@) : det(Ml) =d, tI‘(M1) = t} = {€2 d—1
Summing over d € F;* and excluding the identity matrix from this count, one obtains

R()=-2)(P+ 0+ —1=03—20-1.

0 A

C(1) has a 1-eigenvector if and only if «; = 1 or #; = 1. There are 2(¢ — 2) such matrices M;
different from the identity. If M; = <o(4) %) € C'(1), then det(M; —1d;) = 0 if and only if
1

The (normalizer of a) split Cartan. We use the diagonal model. A matrix M; = <a1 0 ) in

1—a3 81 = 0, so there are £ — 1 matrices M7 in C’(1) such that rkyz(M; —Id;) = 1. Summing
the contributions from C'(1) and C’(1) gives R/ (1) for the normalizer of a split Cartan.

The (normalizer of a) nonsplit Cartan. The case ¢ = 2 is a small calculation, so suppose that £ is

odd. For M; = <%i %f) € C(1), as d is not a square modulo ¢, we have rk(M; —Id;) = 2

except for the identity matrix. The matrices in C’(1) are obtained by multiplying the matrices

in C(1) by (é _01> so they are of the form M| = (_aél floi

the rank of M —Id; equals 1if and only if 82d = a2 —1. For a; = +1 this gives 41 = 0. Else,
2_
this equation has solutions if and only if (al 7 1) = —1. We know from [PP18|, Theorem 1] that

. As M is not the identity,

a’~1) _ —1, so the number of «’s such that of-1 = —11is &1, Each value of oq
Y4 l 2

a€Z/Z
gives two possibilities for 31, so the number of elements of C’(1) such that rk(M; —Id;) =1

isf+ 1.
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The (normalizer of a) ramified Cartan. The case ¢ = 2 is a small calculation (in that case,

N(1) = C(1)), so suppose that ¢ is odd. For M; = <a1 0> € C(1), M; admits

B ar
a l-eigenvector if and only if @y = 1 (and then 8; = 0 gives the identity matrix). For
M, = ( aﬂl (c)x ) € C’'(1), My admits a 1-eigenvector if and only if «; = +1 (and
b o
the matrix is not the identity). So R/ (1) is ¢ — 1 for the Cartan subgroup and (¢ — 1) + 2¢ for
its normalizer. U

3. THE INDIVISIBILITY LT CONJECTURE

In this section we collect results related to the Indivisibility LT conjecture, which is based on
Condition (3).

Proposition 19. Let L be a finite and non-empty set of prime numbers, and call m the product
of the elements of L. The set of primes p € Sg such that Condition holds for all £ €
L admits a natural density densingiv(L). This natural density is the proportion of Galois
automorphisms o € Gal(K (%P) /K) satisfying the following condition for each { € L: o
does not fix any torsion point of order ¢, or o does not fix any point in %P. In particular,
densinaiv (L) is a rational number whose minimal denominator divides m? - #GLo(Z/mZ).

Proof. The last assertion is because the degree of K (1 P)/K divides m?-#GLo(Z/mZ). For
each prime ¢ € L, Condition (3) is equivalent to the condition

(1 #E(ky) or (P mod p) ¢ [(]E(ky) -

We consider the primes p € Sg that are not over the primes in L and do not ramify in
K (£ P)/K (we are excluding only finitely many primes of K). We let o € Gal(K (L P)/K).
If o € Froby, then we have ¢ { #E(k,) if and only if o doesn’t fix any torsion point of or-
der £ in E(K). Moreover, by Lemma |10 we have (P mod p) ¢ [(]E(k,) if and only if o
does not fix any point in %P. The statement then follows from the Chebotarev density theorem
because the suitable primes p correspond (up to the finite set of excluded primes) to suitable
automorphisms o. ([l

We are now going to prove Theorem [I] In fact, we will prove the following result for a gen-
eral number field K. For every sufficiently large prime ¢ the natural density densi,qiy(¢) is
a rational function in ¢ (where the polynomials in both the numerator and the denominator
have degree 4 (resp. 6) if £ has CM (resp. non-CM). We deduce that the Euler product
[ 150 densingiv (¢) is strictly positive.

Theorem 20. The natural density densinqiy (€) is the Haar measure of the set

{(M,v) € G :rkez(M; —1d;) =2o0r vy & Im(M; —1d;)}

R (1)6+1
Ri(1)¢% -

and, if [K(E(+P)) : K(E[(])] = (%, we also have densi,aiy(£) = 1 —
If E is without complex multiplication, then for every £ > 0 we have

-2 — 041
Be—-1)02-1)

densindiv (5) =1-
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If E has complex multiplication by an order contained in the imaginary quadratic field of
discriminant — D, then for every £ > 0 we have

2 —5041
- M if the CM is not over K and

2
1-— 25 A iftheCMisnotoverKand(
densingiv (£) = 202(04+1)(¢ — 1)
CMSindiv 22— A0+ 1
(- 1)2
( N

+) =
)=

1

| N‘u

if the CM is over K and (%
if the CM is over K and (%

)
)

Proof. The fact that densi,qiy(¢) is the Haar measure of the given set follows from Propos-
ition Now we may suppose that the degree of K (E(3P))/K(E[(]) is maximal, which
holds in partlcular for all £ > 0 by Corollary [§] Then, w1th the notation of Section and
letting G be the image of the /-adic torsion-Kummer representation, we have R(1) = Ry (1)¢2.
The number of matrices M; € m1(G)(1) such that rkyz(M; — Id;) equals 1 (respectively, 2)
is R} (1) (respectively, R (1) — R} (1) — 1). So the number of elements (M;,v;) € G(1) such
that v & Im (M — Idy) is the sum of 2 — 1 (for M7 = Idy) and (¢2 — ¢) R} (1) (for M — Id;
with ¢Z-rank 1). The number of elements (M;,v1) € G(1) such that rkyz(M; — Id;) = 2 is
(2(Ry(1) — R{(1) — 1). The natural density dens;,q;y (£) is then by Proposition

(z? 1+ (2= ORL(1) + 2(Ry(1) — (1) — 1))

—1.

2+ 1)(0-1)

2Ry(1)
For ¢ > 0 the fields K(E[(])/K have maximal degree hence the explicit expressions for
densiydiv (¢) follow from Proposition 18] O

Remark 21. Recall Proposition [19/and Lemma |10} and let M; vary in the image of the mod/
torsion representation of E. If for some M; we have rkyz(M; — Id;) = 2, then (as no point in
E[{](K) of order / is fixed by M7) we have dens;yqiy (¢) > 0. Else, all matrices M; fix at least
one point of order £ in E[¢](K). Then we have densiyqiv(¢) = 0 if and only if E(K) N {P
is non-empty: the latter condition is clearly sufficient, and it is necessary by the results on the
local-global principle for divisibility, see [Won00, Theorem 1].

Notice that, in the following result, the integer B exists by Proposition[7] Moreover, the rational
number () could be zero, even if dens;pgiy(¢) > 0 holds for every £ € P. This is due to the so-
called entanglement between the torsion-Kummer extensions K (4 P)/K at different primes £.
To showcase such entanglement phenomena we refer the reader to the related example by
Nathan Jones mentioned by Zywina in [Zyw11] Section 1].

We are now going to prove Theorem 2] In fact, we will prove the following result for a general
number field K. We call SplitCM (respectively, Inert CM) the set of prime numbers that split
(respectively, are inert) in the CM field.

Theorem 22. Suppose that E is without CM, or that it has CM defined over K. We assume
the Indivisibility LT conjecture for S = P. Let B be a positive integer such that for every
prime { { B the following holds: the extension K (%P) is linearly disjoint from K (%P) for
all positive square-free integers m coprime to {. Calling Lp the set of prime divisors of B we
have

“) densindiv (7)) denslndlv LB H denslndlv
¢eP\Lp
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Moreover, there exists a rational number () such that the following holds: if E is without CM,
then

=207 — (41
densinaiv(P) = Q - H (1 - B0 —1)2(0 + 1))

Lep
while if E/ has CM defined over K, then we have

202 — 40+ 1 1
densinaiv (P) = Q- [] (1—m)' 11 (1_52(“1)(5—1))'

£eSplitCM £€InertCM

Proof. By our assumption on B and Proposition [19] for any finite set L’ of prime numbers that
do not divide B we have

densindiV(LB U L/) = densindiV(LB) . H densindiv(é) .
Lel’
By the Indivisibility LT conjecture with S = P, taking the infimum of both sides (by enlarging
L") we obtain ().

We observe that densi,giv(Lp) is a rational multiple of [, L, denSindiv (¢). Indeed, by Pro-
positionwe are comparing two rational numbers and densi,qiv (L) is zero if densiygiy (£) is
zero for some ¢ € L. We may then conclude because the rational number dens;p iy (¢) is a ra-
tional multiple of and (by the description of the torsion-Kummer representations in Section
for ¢ > 0 is equal to the non-zero generic natural density described in Theorem 20} g

In the following result we write dens;,qiv, i to specify the base field K ’. Moreover, we write
densingiv,split (respectively, densiydiv,nert) if We restrict to the primes of K that split (respect-
ively, are inert) in K.

Lemma 23. Suppose that EE has CM that is not defined over K but over a quadratic extension
K' of K. Let S be a non-empty set of prime numbers and assume the Indivisibility LT conjec-
ture for S over K and over K'. The set of primes p of K that split (respectively, are inert) in
K’ and that satisfy Condition (3) for all £ € S has a natural density and we have

densingiv(S) = densingiv,split (S) + densindiv,mert (5) -
Moreover, we have
1
densindiv,split () = 3 densindiv, 57 (5)

and the existence of one of these two densities implies the existence of the other.

Proof. Consider a prime p of K that splits in K’ and a prime q of K’ over p. Since the residue
fields at p and at q are the same, Condition (3)) holds for p if and only if it holds for g. The last
assertion then follows by combining the following observations: the ideals p and q have the
same norm; there are precisely two primes of K’ over p; the set of primes of K’ that lie over
the primes of K that split completely in K’ has natural density 1.

We may ignore the finitely many primes of K that ramify in K and hence partition the primes
of K according to whether they are split or inert in K’. We observe that if two sets 7/ C T of
primes of K both have a natural density, then the complement 7"\ 7" also has a natural density
and we have dens(7'\ T7") = dens(T') — dens(7T”). The existence of dens;,qiy (S) follows from
the Indivisibility LT Conjecture over K. Thus we are left to prove that densingiv split(.5) is
well-defined: this is a consequence of the last assertion because densiyqiv, k7 (S) exists by the
Indivisibility LT Conjecture over K. O



TWO NATURAL VARIANTS OF THE LANG-TROTTER CONJECTURE 17

Theorem 24. Suppose that E has CM that is not defined over K but over a quadratic extension
K' of K. We assume the Indivisibility LT conjecture for S = P over K and over K'. Then
there exist two rational numbers ()1 and Qo such that

densiniv spie(P) = Q1+ [] (1 - %2_4“_1) il (1 B ;)

2 _ 2 4 __ 2
£eSplitCM ¢ (6 1) £€InertCM ¢ ¢
and
20 —1 {41
denSindiv,Inert (P) =Q2- H (1 - m) : H (1 - m) .
£eSplitCM L€InertCM

Proof. The assertion for densipqiy,split follows by combining Lemma@ for S = P and The-
orem over K'. Now we consider densindiv,Inert, Which means that we have to restrict to
the Galois automorphisms o € Gal(K /K) that are not the identity on K’. The analogue of
Proposition consists then in replacing W), by the complement of the Cartan group C(Z/nZ)
in W,,. This adelic open image theorem then guarantees that, for all £ > 0, these restricted
mod / representations are independent and their images are as large as possible. We conclude
(similarly as in the proof of Theorem [22)) thanks to the explicit counts in Theorem 20} noticing
that suitable elements stemming from the complement of the Cartan subgroup in the normal-
izer can be computed as a difference, comparing the Cartan and its normalizer. For the case
where / is split in the CM field we have

(20%(0—1)* — (36 =504+ 1)) — (P(L—1)> — (> — 4L+ 1)) = 2(¢ — 1)> — (20*> — 0)
suitable elements out of #2(¢ — 1)2, and in the respective case
(2002 —1) — (P 4+0+1) = (PP -1)—1) =22 —1)— (2 +0)

suitable elements out of £2(¢? — 1). The condition of splitting (respectively, being inert) in K’
is independent of ¢ and for this reason we count for each ¢ the proportion of elements con-
sidering the Cartan group (respectively, its complement) and not the normalizer of the Cartan.
In other words, we should consider one single factor 1/2 as done in Lemma as the mod/
representations are not independent (this factor is included in )1 and @) respectively). U

4. THE EXISTENCE OF THE NATURAL DENSITY FOR CONDITION (2)

We fix some prime £ and study the set Sy, of primes in Sg, not over £, such that Condition
holds. We consider the partition Sexp = Up>05xp,n, Where

Sexpn = {p € S : ordy(P mod p) = expy(E(kp)) =n}.
Recall that py» is the torsion representation mod¢™.

Remark 25. The set Sexp,o consists of the primes p € Sg, not over ¢, such that £ { #FE (k).
This set has a natural density dens(Sexp,0) which is a rational number because this is the
proportion of the matrices that do not fix any point in E[¢] of order ¢ (see Remark @]) As
already given in [Coj03, Theorem 1], we have

B #{Ml € Im(pg) : I'kgz(Ml — Idl) = 2}
dens{Sempo) = (M € m(p0)}

Remark 26. For n > 1, the set Seyp, admits a natural density which is a rational num-
ber because, as we now explain, this set can be described in terms of the mod¢"*1 torsion-
Kummer representation. Let M, 11 € Im(pgpn+1) and write M,, := M, mod ¢". Let
o€ Gal(K(M%P)/K) vary in the preimage of M, under pynt1. If p € Sg is not over ¢
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and it is such that o € Froby, then by Lemma(I4]the condition exp,(E(ky)) = n is equivalent
to the following:

I‘kgz(Mn — Idn) <2 and I'kgz(MnJrl — Idn+1) =2.

Moreover, if exp,(E(ky)) = n, then the condition ord,(P mod p) = n is equivalent to
[¢"~1(P mod p) being not ¢"-divisible in E(k,). By applying Lemma [10]to [¢"~!] P, this
is equivalent to

[gnil](U(Qn) — Qn) ¢ Im(M,, — 1d,)

where we here extend o to a Galois automorphism of K (4 P)/K. Notice that the choice of
o € Froby is irrelevant, see also Remark

Consider the primes in SE not over ¢, and fix a positive integer n. The set
{p : expy E(ky) <n}
and hence its complement
{p: expy(E(ky)) = n}
can be described in terms of the mod/¢™ torsion representation of £/ K and it admits a natural

density that is a rational number. the natural density is non-decreasing (for the complement,
non-increasing) with n.

Lemma 27 (Hérmann and Lombardo). Fix a prime number ¢ and positive integers n and d. A
monic polynomial f(x) of degree d with coefficients in 7./¢"Z can have at most

d.mi=q)
roots in /" 7.

Proof. Fix a monic polynomial g(z) € Zg[x] that is congruent to f(z) modulo ¢". Let K
be a splitting field of g(x) over Q and write O for the ring of integers of K and 7 for a
uniformiser. We consider the valuation v, and also the ¢-adic valuation vy. By construction,
g(x) factors in O [x] as Hle(x — x;) for certain x; € Ok. Note that every o € Z/("Z
such that f(a) = 0 lifts to g € {0,1,...,¢" — 1} C Ok with vz(g(B)) > v=({") = ne,
where e := v, (¢) is the ramification index of K over QQ;. For each « we consider the lift 5 and
the index ¢ such that v, (8 — z;) is maximal (selecting the smallest possible index) and hence
vr(B —xi) > 7. If two distinct roots o and o/ give the same index 4, then we have

V(B = B') = v ((B — i) — (B' — i) > min{vr (8 — 2), v (8" — 24)} > %-

Since 3, ' are in Z, we have v (3 — ') = e - v(8 — ') and hence 8 = ' (mod ¢/™/4).
In particular, there are at most ¢"~ /41 < gn(1-1/d) roots o corresponding to a given index i.
We conclude because there are at most d possible values for 4. ([l

The following result can be generalized to abelian varieties with a similar proof:
Proposition 28 (Hormann-Lombardo). The natural density of the set
{p € Sp:expy(E(ky)) = n}

goes to 0 when n goes to infinity.
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Proof. We may suppose that p is not over . By Remark [9] and by the Chebotarev density
theorem, we may equivalently show that # H,, /#G,, goes to 0 when n goes to infinity, where
Gy = Gal(K(E[¢("])/K) and

H,:={0c€G,|3T c EW"|\E[(" ] :0(T)=T}.

We identify G,, as usual with a subgroup of GL2(Z/¢"Z) and we call G, the subgroup of
(&, consisting of the scalar matrices. By a result of Serre and Wintenberger (see the proof of
[LP21, Lemma 31]) we have #G) > c™, where c is a positive constant that depends only
on E/K. We claim that in each coset of G,, modulo G’ there are at most 2 - £*/2 elements M
for which there exists a primitive vector v € (Z/¢"Z)?\ (¢Z/¢"Z)* (corresponding to a torsion
point T' € E[("] \ E[¢"~!]) such that Mv = v. Summing over the cosets, we may conclude
because we have

HHy < (HGn/#C) 22 < HGy - 2 472,

To prove the claim, let M, be a representative of the coset, and write M = «aMj for some
a € (Z/"Z)*. So the equation Mv = v becomes Mov = (a)v. As v is primitive, this
implies that a~! is a root of the characteristic polynomial of My (see [Bro93} 17.3]), which is
monic and of degree 2. So we may conclude by Lemma [27] g

Remark 29. From Proposition 28/ we deduce that the natural density dens(Sexp) exists and
that we have

dens(Sexp) = Z dens(Sexpn) -

n>0
If we consider Condition (2 for a finite non-empty set of primes L we similarly have that the
natural density densex, (L) exists. Moreover, calling ¢; fori = 1, ..., r the elements of L and

letting n; vary in the set of the non-negative integers we have that denseyp, (L) is the sum of the
natural densities of the sets

{p € Sg : ordy, (P mod p) = expy, E(ky) = n; forall i} .

5. THE RATIONALITY OF THE NATURAL DENSITY FOR CONDITION @

The aim of this section is proving Theorem[3] To do so, we fix a prime number ¢ and show that
the natural density densey,(¢) is a finite sum of rational numbers and geometric series with
rational ratios.

5.1. Setup. We fix a prime number /4, and we call G the image of the ¢-adic torsion-Kummer
representation. We define

Ey = {(M,’U) eG: I‘kgz(Ml - Idl) = 2}
and, for n > 1, we define
E, ={(M,v) € G : tkyz,(My41—1dp+1) = 2, rkyz(M,—1d,) < 1, [E”_l]vn ¢ Im(M,,—1d,,)}.

By Remarks [25| and for every n > 0 the natural density of Sexp,, equals p(Ey), so by

Remark 29 we have
densexy (€) = > u(Ey) .

n>0
We make use of the notation introduced in Section[2.7} We let n be a positive integer such that
the index of G'(ng) in G¢(ng) x (Z/"°7Z)? is the same as the index of G in Gy x (Z;)?, where
Gy = GLa(Zy) if E is without CM, and Gy is a Cartan subgroup of GLa(Z) (respectively,
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the normalizer thereof) if ¥ has CM that is defined (respectively, not defined) over K. We let
dg = 4 if E is without CM and do = 2 otherwise.

Remark 30. We have
Ri(1)+1
B)=1--"27"°
M( 0) Rl(l)
as the number of M; € 71 (G)(1) such that tkpz (M, — Id;) = 21is R1(1) — Rj(1) — 1.

Proposition 31. If we have [K (75 P) : K(E[("])] = (2™, then for any n > ng we have

(Ry(n)t%s — Ry(n+ 1)) + (9 — RY(n+1) — 1)551

N(En) = Rl(n + 1) =

Proof. By the definition of ng we deduce that [K (4 P) : K(E[("])] = ¢*" holds for all
n > ng. The number of matrices M,, 1 € m1(G)(n + 1) such that tkyz(Mp+1 — Idp41) = 2
and rkyz (M,, — Id,,) = 1is R} (n)¢% — R (n + 1), for which the proportion of vectors v,, €
mo(my 1 (M,,)) such that [(" v, & Im(M,, —1d,) = 1is 5. There are (%6 — R}(n+1) -1
matrices M,,+1 € 71(G)(n+ 1) such that rkyz (M1 — Idy4+1) = 2 and M,, = Id,,, for which

the proportion of vectors v, € ma(m; ' (M,,)) such that [(" v, ¢ Tm(M,, —Id,) is @—gl. O

Definition 32. For n > ng and for M,,, € 71(G)(ng), we define
5) EnM,, = {(M,v) € E, : M, = My, mod £} .

With the above notation, for n > ny we have

6) wWE) = > u(En,,)-

Mpyem (G)(no)

Remark 33. If rkoz (My, — Idy,) = 2, then pu(Ep pr, ) = 0 for n > ng.

5.2. General strategy for computing p(Ey ar, ). Let us fix a matrix My, € m1(G)(no)
such that rkez(My, — Idn,) < 1. In the next subsections, we will show that (4(En, ) is
a geometric sequence or the sum of two geometric sequences with rational ratios for n large
enough.

As a preliminary result, in Section [5.3] we show that for n > ng the proportion of vectors
vy, € mo(my 1 (M,,)) such that [¢"1],, ¢ Tm(M, — Id,) doesn’t depend on n nor on M,, =
M,,, mod £ if M,, # Id,,. Indeed, if n > ny, the structure of [("~mo(n; 1 (M,)) is
known from the group [¢"0 |y (7; ! (M,,)) and the proportion of suitable Kummer vectors
only depends on the structure of this group. A similar result is established for M,,, = Idy,.

Then, starting from M,,,, we only have to count the matrices M, 11 € 71 (G)(n + 1) such that
M1 = My, mod M, tkyz(Mp+1 — Idp+1) = 2 and rkyz (M, — Id,,) < 1. Since n > no,
the matrices M, 11 = M, mod ¢™ are in 71 (G)(n + 1).

o For GLg and (normalizers) of unramified Cartan subgroups. For k > ng and rkyz (M}, —
Idg) = 1, we define L; as the number of lifts My of M} modulo ¢5+1 quch that
rkez (M1 — Idg+1) = 1 (see Section [5.4). If tkyz (M, — Id,,) = 1, we obtain the
number of suitable matrices M,, 1 in terms of L;. Itis crucial that L; does not depend
on Mj, nor on k. For the case M, = 1d,,, we partition over the firstindex ng < k < n
such that rkyyz (M, — Idy) = 1 if it exists.
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e For ramified Cartan subgroups. The reasoning is more involved, because L; is not
well-defined: for instance, if C'(n) is the reduction modulo ¢" of a ramified Cartan
subgroup C(g q) and if M, = <%n df") in C(n) satisfy rkpz(M,, — Id,,) = 1,
n n
then the number of lifts M,, 11 of M, such that rkyz(M,+1 — Id,,41) = 1 depends
on vy(S3,) and vy(c,, — 1). Choosing a lift M, involves lifting a square root of d:
lifting square roots is more convenient if n is large enough, and we may assume this
condition without loss of generality. The case / = 2 is different because we have
different numbers of lifts of the square roots (compare Remarks[@3|and[47)) and because
for ¢ = 2 it may not hold that ¢ divides the parameter d of the Cartan subgroup.

5.3. Counting Kummer vectors. Let (), v,) be in the image of the torsion-Kummer rep-
resentation modulo ¢". Fixing the matrix M,,, we count the vectors v,, as such which are in the
image of M,, — Id,,.

Lemma 34. Let (M, 11,vn41) € GLo(Z/I"T1Z) x (Z/0"17)? be such that M,, # 1d,, and
rkoz(Mp+1 — Idy41) = 1. Then we have

[Mvne1 € Im(Myiq —Idpy1) <= [(" Yo, € Im(M,, — 1d,,).

Proof. Let ¢,41 be a column of M,,y; — Id,11 that generates the column space, and call ¢,
its reduction modulo ¢". If [("]v,+1 = aép41 holds for some integer v, then ¢ divides «
(else &, is zero, contradicting that M,, # Id,) and hence [(" 1|v, = 7 Cn. Conversely, if
["~Yv,, = BE, holds for some integer 3, then we have [("]v,, .1 = £BCp1. O

Lemma 35. Let n > ng and let M,, € m(G)(n) be such that rkez (M, — 1d,) = 1 and
My, = Idy,. Call Cyy, the proportion, in the set ma(m] 1(Mn)) of the elements vy, such
that [(" v, ¢ Im(M, — Idy). Then Cyy, is either 0 or 1 — }. Considering the group
H := [0 Yry(ry H(Idy, ) we have:

e if H is trivial (for example, if mo (71 *(Idy)) is trivial), then Cyr, = 0;

e if H has two cyclic components, then Cpy, =1 — %;

e if H has one cyclic component, then we have Cy;, = 0 if and only if H = Im(M}, — 1dy,),
where h > ny is the smallest integer such that rkgz (M, — 1dy,) = 1.

If N > nand My € m1(G)(N) is a lift of My, such that rkyz,( My — Idy) = 1, then we have

Cuy =Cum,.

Proof. Recall the identification of (¢™~1Z/¢™7)? with (Z/¢Z)? for any m > 2. We know that
mo(n] }(M,,)) is the preimage under the multiplication by "0 of 7o (7; ! (Id,,,)). Moreover,
(0"~ Ymo(n; H(M,,)) and H are contained in (7, * (Id;)). By the assumption on the ¢/Z-rank,
the group
W, = Im(M,, — Id,) N (Z/(Z,)?

has ¢ elements. The ratio #(H N Way,)/#H is either 1 or §, leading to Cpz, = 0 or
Cum, = 1 — % respectively. If H is trivial (respectively, H = (Z/(Z)?), the ratio is 1 (respect-
ively, %). If H has ¢ elements, we conclude by observing that Wy, = Wy, = Im(Mj, —1dp,).

Finally, the last assertion follows from Wy, = Wy,,. ]

Remark 36. Fix a subgroup H of (Z/¢Z)? with ¢ elements and, for an integer t > ng + 1,
consider the set H' of all M; € m1(G)(t) such that

Mt—l = Idt—l’ I'kgz<Mt — Idt) =1 and Im(Mt — Idt) =H.
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If 71(G) has finite index in GLa(Zy), then #H' = (? — 1. If 71(G) has finite index in the
normalizer of a split Cartan subgroup, then #H' = ¢ — 1 or #H' = 0 (and we are in the
former case if and only if H is the group generated by one of the two vectors of the basis
diagonalizing the Cartan). As we will see in Proposition there is no matrix M; above the
identity such that rkyz (M; — Id;) = 1 for the normalizer of a nonsplit Cartan subgroup.

Remark 37. Let n > ng and set H := [("'|mo(77 ! (Id,,)). Call Ciq the proportion in the
set mo(m; 1 (Id,,)) of the elements v,, such that (" 'Jv, # 0. If H is trivial, then Cq = 0.
If H has two components, then Ciq = 52551. If H has one component, then C1q = 5771. This is

because the set 7o (7, *(Id,,)) is the preimage in (Z/¢"Z)? of (71 ' (Id,,)) under [(""0].

Definition 38. Let M,,, € m1(G)(no) be such that tkyz (M, — Id,,) = 1, and consider the
elements in 77 ' (M,,) € G(ng). We call cM,, the proportion of the elements (Mp,, vn,)
satisfying

[fno_l]vno Q Im(Mno - Idno) :

Let M, be as in the above definition. If n > ng and M,, € 7 (G) is a lift of M,,, such
that rkyz (M, — Id,,) = 1, then by Lemma the number CMp, is also the proportion of the

elements (M, v,) in 7, '(M,,) € G(n) satisfying
(" v, € Im(M,, —1d,,).

5.4. Lifts of matrices with a given /Z-rank. Letn > ng. We consider M,, € Matayo(Z/("7Z)
and its lifts M,, 11 € Matoyo(Z/¢" 7). The ¢Z-rank of (M, 1 — Id,11) is at least that of
(M,, —1d,,). As the ¢Z-rank is invariant under conjugation (see Remark , we may suppose
that the Cartan groups have a specific form. In particular, the split Cartan group will be the
group of invertible diagonal matrices.

Definition 39. Suppose that 7 (G) has finite index in GL2(Z), in an unramified Cartan sub-
group of GLy(Zy) or a normalizer thereof. If n > ng and M,, € m1(G)(n) is such that
tkez (M, — Id,) = 1, we define L (respectively, Lo) as the number of lifts M,, 1 of M, to
m1(G)(n + 1) such that rkyz (M, 11 — Id,+1) equals 1 (respectively, 2). If M,, = Id,, we
similarly define Liq ; (respectively, Liq 2) as the number of lifts M, 41 of Id,, to w1 (G)(n+ 1)
such that rkyz (My+1 — Id,,4+1) equals 1 (respectively, 2).

Proposition 40. With the notation of Definition 39, the numbers L1, Ly do not depend on n
nor on M, while Liq1, Liq 2 do not depend on n. They are as follows:

] Ambient group H Lig \ Ligp \ Ly \ Lo ‘
GL2(Zy) C+1D20—-1D) [+ -1 B2 -0
(Normalizer of) split Cartan 20 -1) (0 —1)? 0] F—v
(Normalizer of) nonsplit Cartan 0 ? -1 02—

Proof. The proof is based on the explicit computations for each case, which are collected in
Appendix[A] and on the following observation: the total number of lifts is

(7 1+ Lig;1 + Ligp and Li+ Lo respectively .

This number is £4 for GLo(Z,), while in the other cases it is the cardinality of the tangent space
from [LP17]], namely ¢2. ]
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5.5. Computation of /i(E,, Mo, ) for GL, and normalizers of unramified Cartan subgroups.

In this section, we suppose that 71 (G) has finite index in GL2(Z,) or in the normalizer of an un-
ramified Cartan subgroup of GLg(Z) and we consider the group H := [£™0~|my (77! (Id,, ).
We make use of the rational number ¢y, from Definition @ We compute the Haar measure
of the set E, nr,, defined in (3).

Lemma 41. If H is cyclic, then for n > ng we have

0 ifrng(MnO — Idno) =
eny, Ly "OL —den .
H(Bntg) =\ foiets =g+ (La%0) if oz (M, — Idp,) =
Dy - (07%6)" + Dy - (LT (6796 Ly)™ — (0796)™)  if rkyz(Mpy — Idp,) =
1 _1 _ /
Wlth D1 — (1_4)L1d,2 and D2 — (1 [)(le,l #H )L2

Ry (no)¢(t—m0)dg Ri(ng)¢(1—"0)4G (L1 —1)"

Proof. The first case follows from Remark In the second case, the number of lifts M,
in m(G)(n + 1) of M,, such that tkyz (M, +1 — Id,1+1) = 2 and rkyz(M,, — Id,) = 1 is
L7 . Ly. Moreover, #m1 (G)(n 4 1) = Ry(ng)¢"+17m0)4¢ 50 we may conclude. Finally,
suppose that M, = Id,,.

If H is trivial, we conclude because (Ey, Mno) = O for all n > ng by Remark Now sup-
pose that H has ¢ elements. We partition En,Ian = E;L Tdn, U E;l’ Tdng where the former subset
consists of the elements (M, v) such that M = Id,, mod¢™. The set Wl(E;L’Ian )(n + 1) has
L1q,2 elements and by Remark [37|the proportion of v,, € ma (7] 1 (Id,,)) such that [~ v, # 0
is1— %, so we have

W(Bgan,) = D2 (e _ . (deye
n,Idn Ry (no)f(l—no)dc 1 ’
Now we study E/ | dng and partition this set according to the largest r € {ng,...,n — 1} such

that M = Id, mod¢". The number of lifts of Id, to a matrix M, such that rkyz (M, —
Idy41) = 1 and Im(M, 11 — Idy41) # H is Lig — #H', where H' was introduced in
Remark The number of lifts M,,+1 of M, 1 such that tkyz(M,+1 — Id,41) = 2 and
tkez (M, — Id,) = 11is L;L_(T—i_l)LQ. In the set mo(7; * (M,,)), the proportion of elements vy,
that satisty [(" v, & Im(M,, —Id,) is 1 — } by Lemrna (recall that for elements such
that Im(M, 41 — Id,41) = H, this proportion is 0). We may conclude because we have
n—1
(1=7) 3 (Laaa = #H)LT 1y

" _ T=no _ —no [ p—d n __ (p—dg\n
M(En,ldno)_ Ry (ng) (0 1m0} = Do(Ly™ (7% L))" — (£~ %)),

Lemma 42. If H is not cyclic, then for n > ng we have
0 lfrkgz(Mno — Idno) =2
1

£—1 7 —mo
==L Lo —d .
¢ 71 s G\n M _ _
M(En,Mno) =\ Ri(no)tt—m0)da (L1t ) if rkez (Mo — Idny) =
2 n—n,
LId,QLeglJFLId,lLQL;l(Ll 0-1)/(L1-1)

Ry (no)(fdG)"7n0+l

if rkyz,(My, — 1dp,) =0

2

1
0,
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and, for every h > 0, we have
Lia2 S5t + Ry (no) Ly G LY + Liaa La A (L — 1)/ (Ly — 1)

E = .
w( no+h) Rl(no)(gdG)h'H
Proof. The case rkyz(My,, — Id,,) = 2 still follows from Remark For My, such that
tkez (M, — Idy,) = 1, we may argue as in the previous lemma with CMy, = eigz = %.

Now suppose that M,, = Id,. There are Liq2 lifts M1 € 71 (G)(n + 1) such that
tkez,(Mp+1 — Idp4+1) = 2 and M,, = Id,. In the set wz(ﬁfl(ldn)), the proportion of ele-
ments v,, such that [E”_l]vn #0is 32651 by Remark Now fix ng < r < n. The number of
matrices M, 11 € m1(G)(n + 1) such that r is the largest integer such that M, = Id, mod¢"
is L1q1 L7 "Ly (observe that Zf;lm Ly = (L7 —1)/(L; — 1)). For these ele-

ments M, 1, the proportion of v,, € 7r2(7r1_1(Mn)) such that [(" v, & Im(M,, — Id,,) is
Z_Tl by Lemma

To obtain yi(Epg+n), we sum fi(Engih1d,,) and p(En,n,m,,) by varying My, such that
kez(Mp, — 1d,,,) = 1, the number of such matrices being R} (no). O

5.6. Computation of /i(E,, M"o) for normalizers of ramified Cartan subgroups, ¢ odd. In
this section ¢ is odd, and 71 (G) has finite index in the normalizer of a ramified Cartan subgroup.

Let
o~ {(5 4):e-am-1

be a ramified Cartan subgroup of GLg(Z) with £ | d. As in Section 2.3 we call v := vy(d).
Let C’ be the complement of C' in its normalizer N. We recall that C'(n) and C’(n) are defined
as the reductions of C' and C" modulo ¢". We let M,,, € 71(G)(ng).

Remark 43. Write d = d'¢? for some positive integer v and let m > 2v. Suppose that d’
mod £ is a non-zero square. Let £k mod ¢"* be a square root of d mod ¢"™. Let +s be the two

+oo .
square roots of d’ in Z; and write s = Y s;¢*. With the correct sign choice we may write
i=0
m—2v—1 m—v—1
k=1 ( doosili+ Y a,ﬂ>
=0 i=m—2v

where the coefficients a; can be arbitrarily chosen (because k2 is a multiple of £?¥). Suppose
that there is m — 2v <t < m — v — 1 such that a; # s; and suppose that ¢ is minimal. Then
all lifts of k modulo #/*2¥ are square roots of d mod ¢/*2?" while no lift of k modulo ¢*+2+1
is a square root of d mod //*2*1 Let N > m + v. If k = /s mod /™ then the amount of
lifts of & modulo ¢V such that k2 = d mod ¢~ equals £“ (choosing a lift consists in choosing
coefficients a; for N — 2v < i < N — v — 1). Among those, there are 1 lifts that can be
lifted modulo ¢V +1 keeping this property (because this amounts to the coefficient ay_o, being
SN—20)

Lemma 44. Suppose that rkez( My, — Id,,) = 1, and write

_fomy =1 dBy,
Mno - Idno - < Bno Qny — 1) :

There is a rational constant Dy, such that p(En, Myy) = D, - £7" for all n > ng such
that n. > vg(Bn,) + 0.
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Proof. If M,, € C'(ng), then for all n > ng we have

A Gt I (cmo (2 — e)zna?)

N(E”ano) = CMng #m(G)(n+1) Ri(no)

This is because for ng < n’ < n the number of lifts M, ; € C’(n’) of an element M, in
C’(n’) such that rkyz (M, 11 — Id,11) = tkez (M, — Id,y) = 1 is equal to ¢ (see Proposi-
tion [58).

If M,, € C(ng), setb := vy(Sn,) < mo. Let n; be such that b < n; — v (in particular,
d # 0 mod £™~°). Then, E,, M,, is the disjoint union of Ej, r7, by varying My, in the finite
set of lifts of M,,, modulo ¢"* when n > n;. We can write

M,, —1d,, = (O‘"ﬁln: L aff’"_l 1) with vg(B,) = b.

Letn > n; and consider a lift M,, € C(n) of M,,, (obtained with lifts a,, 5y, of a,, B, ) such
that rkyz(M,, — Id,,) = 1. By comparing the valuations of the elements, its second column
must be (k, mod ¢") times the first for some suitable choice of k,. Remark that knowing
(Ctn, Bn) is equivalent to knowing (k,, mod ¢"~%, 3,) and we must have k2 = d mod £* .

We now investigate how to lift M,, to M,,+1 € C(n + 1) such that tkyz (M, 11 — Id,y1) = 1.
We choose arbitrarily a lift 5,41 of 3, and choose (if it exists) a lift k,41 of k,, such that
k2., =dmod (170

Set m := n — b and m; := n; — b, which are positive by the choice of n;. We apply
Remarkto lift k,,, mod ¢™'. With the notation of this remark, if a; # s; holds for some i,
then p(E,, M”l) = 0 holds for all sufficiently large n. Now we may suppose that k,, =
¥s mod £M1.

We can lift 3, to 8,41 in £~ "1 possible ways while we can lift &y, in (¢ — 1)¢*~! ways
such that tkyz (M,, — Id,,) = 1 and rkyz (M +1 — Id, 1) = 2 (in other words, the lift of &,
is suitable modulo ¢™ but not modulo ¢*1). We deduce that u(E,, M,,) = D§V1n1£_n for a

rational constant D§\Jn1 which doesn’t depend on n. We may conclude because

(B, ) = > 1(Enpr,,) = 3 Dy, |-

My, =My, mod £m0 My, =My, mod €70

0

Lemma 45. There are two rational constants Dq,,, and D1y such that for every n > ng we
70
have
-2 / —
1(Entd,,) = Did,, - € + Dyg,, - 7.

Proof. Consider the matrices M,, € 71(G)(n) such that M,, = Id,, mod¢™. If rkez (M, —
Id,,) = 1, then there is a smallest integer n’ < n such that we have

M, —1d, = < ﬁo 8) mod ¢" for some B,y # 0

and the proportion (that we call ¢) of v, € mo(n; '(M,)) such that [("~!|v, ¢ Tm(M,, —
Id,,) does not depend on n > ng and does not depend on M,,. The former property follows
from Lemma [34] the latter then is because the vectors v, such that [(*' ~v,, € Tm(M,, —
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Id,) are the preimage under the multiplication by £ ~"0 of the vectors <£;) € (Z)t7)?

while 7o (71 (M,,)) is the preimage under the multiplication by £ ~"0 of 7y (77 ! (Id,,,)) (the
dependency on n’ disappears in the ratio).

For the case M,, = Id,, the proportion (that we call ¢iq) of v, € ma(m] 1(Idn)) such that
[¢"~ v, # 0 does not depend on n > ny.

Then it remains to study the set of elements M,, 1 € m1(G)(n + 1) such that
I‘kgz(MnJrl — Idn+1) = 2, I'kgz(Mn — Idn) S 1, Mno = Idno .

Write My, 11 = (g:i doiff) and set b := vy(B,+1). The number of matrices M, 1

as requested such that M, = Id,, (which means b = n) is #2 — /. Now we suppose that
tkez (M, — Id,) = 1 and we count the matrices M,y such that b = ng + h for 0 < h <
n—ng— L.

Define S(n) as the number of matrices A,, € m1(G)(n) such that rkyz (A4, — Id,) = 1

and A,, = Id,,. The number of matrices M, 11 € 71(G)(n + 1) such that tkyz(M,4+1 —
Id, 1) = 2, tkez (M, — 1d,,) = 1 and M,,, = Id,, is then equal to S(n) - £2 — S(n + 1).

We first fix b < n — v. If v is odd or d¢~¥ mod ¢ is not a square, then there are no matrices
as requested. Else, we are in the Case (3) of Lemma [60| (where a = v/2 + ng + h), so there
are 2(v/2tn=n0=h=1(y _ 1) matrices. Summing over all b < n — v (which means 0 < h <
n — v — ng) gives the quantity Ss(n), where

S3(n) € {0,2¢m V2o (1 — gmntvino))
Now consider all b > n — v (which means n — v — ng < h < n —ng). The number of matrices

that fall in Case (1) of Lemmal[60]is then S (n) = ¢¥ — 1. The matrices that fall in Case (2) of
Lemma 60l are then

n—1—ng n—1 v
Son)= S ettt )2 = N B g
h=n—v—no a=[(n+no+h)/2] =1

We deduce that S(n) = S1(n) + S2(n) 4+ S3(n) is either a rational number independent of n
or it is of the form ¢; + ¢o¢™ for some fixed rational numbers ¢; and g2. We also know that
#71(G)(n + 1) = #11(G)(ng) - £2(+1-70) We may then conclude because

(B g, #T1(G)(10)) L2010 (L (S () — S(n+ 1)) + ena (£ — ).

0

5.7. Computation of /i(Ey, v, ) for normalizers of ramified Cartan subgroups, £ = 2. In
this section, we let 71 (G) be a finite index subgroup in the normalizer of a ramified Cartan
subgroup C with ¢ = 2. The parameter d from Section[2.3|can be even or odd. If d is even, we
can mimic some arguments of Lemma [44]

Lemma 46. There are two rational constants DIan and Didno such that for n > ng + 3 we
have
—92 _
W(End,,) = Dia,, 27" + Didno 27"
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Proof. Suppose first that d is even. We may reason as for Lemma 43} applying Lemma [62]in
place of Lemma[60} the only quantity that changes is

Sg(n) _ 2n—no+v/2+3 _ 23v/2+w = {3’4’ 5}

because Case (3) of Lemma [60]is replaced by Cases (3.1), (3.2), and (3.3) of Lemma[62](and
the last two cases may occur or not depending on d).

Now suppose that d is odd. Consider the matrices M,, € m1(G)(n) such that M,, = Id,,.
The contribution to u(Ey, 14,,,) given by M,, = Id, is c1q - 2/#m1(G)(n + 1), where ciq is as
in the proof of Lemma and #m1(G)(n + 1) = #m1(G)(ng) - 22"*+1=m0) Now we may
suppose that rkoz (M,, — Id,,) = 1. By inspecting the four lifts of Id,;,_; modulo 2" there is
a smallest integer n’ < n such that we have

2n’—1 2n’—1d
My —1Idy = <2n’—1 gn'—1 )

Since the matrices M,,, — Id,,s are of the same form by varying n/, as in Lemmawe deduce
that, fixing M,, the proportion of (M,,v,) € G(n) such that [2" v, ¢ Im(M, — 1d,)

is a constant ¢ independent of n and M,,. We let EannO be the set of elements M, €
7m1(G)(n + 1) such that

I'kgz(Mn_;,_l — Idn+1) = 2, I'kgz(Mn — Idn) =1 and Mno = Idno .

We have #En,ldno = 45(n) — S(n + 1), where S(n) is as in the proof of Lemma (with
the notation of that lemma, we partition the matrices according to b := v9([3,)). Moreover, we
have

1(Entd,g) = (11(G)(ng)) ™t - 2720 Hmm0) (¢ B g+ 2614).

From the proof of Lemmal65] the number of matrices M,, such that rkoz (M, — Id,) = 1 and
va(Bn) = bislifn—b=1,is4ifn —b=2and d = 1 mod 4, and is 2" **1ifn —b > 3
and d = 1 mod 8. So we have, with a case distinction depending only on d and on whether
n —mngis 0, 1, 2, or at least 3,

S(?’L) € {O, 1, 5, 54+ 2n+2(2—n0 _ 2—n+2)} '

We may conclude because for n > ng + 3 the number S(n) is of the form ¢; + g2 - 2 where
q1, q2 are rational numbers that are independent of n. ]

Remark 47. Suppose that d = 2% d’, where d’ = 1 mod 8 and v > 0 is an integer. Let d},
be one of the two 2-adic square roots of d’. For every m > 3, 1 admits four square roots
modulo 2™ (namely, 1 and 1 + 2™~ modulo 2™) and only +1 can be lifted to square roots
of 1 modulo 2"+1,

If v = 0, the four square roots of d modulo 2™ are +dj mod 2™, (djy mod 2™)(£1 + 2™~ 1).

Only the first two can be lifted to square roots modulo 2 +!. If v > 1 and m — 2v > 2, the
square roots d of d modulo 2™ are of the form

m—v—1
d = +2"d, (1 temo 12" Y ai22'> mod 2™
i=m—2v
where &,,—2,—1 € {0, 1} and the coefficients a; € {0, 1} can be chosen arbitrarily. We deduce
that d can be lifted to a square root modulo 2™ if and only if €,,,_2,_1 = 0. Suppose that
this last condition holds and that there is some minimal integer t withm —2v <t <m—-v—1
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such that a; = 1. Then, all lifts of d modulo 20+2+1 are square roots of d mod 2!72"+1 while
no lift of d modulo 2/72V*2 is a square root of d mod 2¢+2+2,

Lemma 48. If d is even and My, # Idy,, there is a rational constant Dy, —such that for
n > 0 we have p(En n,,) = D, - 27"

Proof. Suppose first that M,,, € C'(ng). We refer to the proof of Lemma [64]
If va(fpy) < v2(am, + 1), then there is k,, such that

1+k’72md 2kn,
(Oéno?ﬁno) - <1 _ k%Od’ 1— kj%od)

and the lifts M,, of M,,, such that rkoz (M, — Id,,) = 1 correspond to lifts &, of k. So there
are 21710 matrices M,, 1 € 71(G)(n + 1) lifting M,,, such that rkoz(M,, — Id,,) = 1 and
tkoz (Mp41 — Idyy1) = 2.

If v3(Bn,) = 0, then o = 1+ dB72 and, for n > no, alift M,, of My, satisfies rkoz (M, —
Id,) = 1if and only if a2 = 1+ dB2. Set n; := max(3,n0) and take M, such that
tkoz (M, — Id,,) = 1 (if there is no such M,,, then M(En,MnO) = 0 for n > ny). For
n > ny, if a2 = 14 dp2, then o2, = 1+ dB2%,, for all lifts (41, Bnt1) Of (an, Bn)
or for none of them. If o2 | # 1+ dB2 ., for all lifts of (au,, Bn, ), then (B, ) =0
for every n > ny + 1. Assume that o |, = 1+ dj3 . for all lifts of (av,,, Bn,) (Which
implies that d = 0 mod 8). Then, first choosing a lift 3,,, 41 of /3,,,, there is exactly one way to
lift vy, such that of o = 14 dB; |, for all lifts (an, 12, Bny+2) Of (0,41, By 4+1). Indeed,
as d = 0 mod 8, the value of 1 + dﬁ?“_k2 is independent of the lift 3,42 of B,,. Call D a
square root of 1 + d572u+2- Then, for n = ny,ny + 1,y + 2, the four square roots of 1 + dﬁ%
are D mod 2", —D mod 2", (D mod 2") - (1 + 2" 1), (=D mod 2") - (1 4+ 2"~1) and for
n = ni,ni + 1, only the two first ones are liftable to a square root of 1 4 dﬁg 11 modulo on+l
(and the sign is determined by «,,,). Repeating this argument, for n > n; the number of

elements M, above M,,, such that rkoz (M, 1 — Id,+1) = 2 and tkey (M, — 1d,) = 1
is 27—,

If 0 < v2(Bny) < v2(0r, + 1), then (with the notation of the proof of Lemma[64) a matrix M,
above M,,, has 2Z-rank equal to 1 if and only if a”> — @/ = db’®> mod 2"~!. To choose
a lift My, 41 of M, of 2Z-rank equal to 1, one might first lift b’ to b;, , ;, which fixes a], |,
through the condition a/?,; — a,,; = db/?,; mod 2" (and we can check that a/, ,; is a lift

of a’). So the number of elements M, above M,,, such that rkoz(M;,+1 — Id,,4+1) = 2 and
tkoz (M, —1d,,) = 1 is 2nF1="n0,

Now suppose that M,,, € C(no) and write

opy — 1 dfy,
/877,0 ano - ]-

M,, — 1d,, = ( ) and b :=va(5n,) < no.

We may restrict to consider n > nj and ,u(En,Mn1 ), where n; > ng is such that b < n; — 2v,
ny — 2v > 2 and M,,, varies in the finitely many lifts of M,,, modulo ¢"'. We write

an, — 1 dBn,
/Bnl an1 - 1

As in the proof of Theorem knowing the entries («,, 3,) of M, is equivalent to knowing
(k, mod 2"°, 3,) where k, is a square root of d modulo 2", We may suppose that d =

M,, —1d,, = < > with  va(Bn,) =b.
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22vd’ with 2 1 d'. This is because, if vo(d) is odd or d # 1 mod 8, then d is not a square
modulo 2"~ if n — b — 2v > 3 and hence (B, ) = 0 foreveryn > b+ 5+ 2v.

We apply Remark 47| to lift k,, mod 2m—b. with its notation, if Eni—b—2v—1 = lora; =1
for some i, then p1(Ep ar,, ) = 0 holds for n > 0 and we conclude. Now we may suppose that
kp, = £2Yd) mod 2™~

We can lift 8,, to fB,41 in 27~™*! possible ways. We can lift (k,, mod 2"'~?) modulo
27410 jn 2v+1 ways: by Remark [47| we can write the lift as

n—b—v
:tZVd6<1 _|_2n—b—21/—1 + Z aZ2’L>

i=n—b—2v

with arbitrary a;’s because it must be a square root of d modulo 2"~° but not modulo 2"+, In
this way, rkoz (M, —1d,,) = 1 and rkoz (M, +1 —Id,+1) = 2. Making use of the constant CM,,,
from Definition 38 we deduce that /1(E,, My, ) is a constant times 27" and we conclude. [

Lemma 49. If d is odd and My, # 1dy,, there is a rational constant Dy, such that for
n > 0 we have p(En n,,) = D, - 27"

Proof. We first consider the case M,, € C(ng). With the notation from Section we
suppose that oy, is even and 3, is odd (the other case «,,, odd and [3,,, even being analogous).
We refer to the proof of Lemma For n > 3, we can have rkoz(M,, — Id,) = 1 only if
d = 1 mod 8 (because d = k2 mod 2") so suppose that this is the case. Moreover, choosing
a lift of M,, amounts to choosing a lift of 3, and, if it exists, a suitable lift of k,, mod 2.
By Remark k,, mod 2" cannot be lifted to a square root of d modulo 2"+ if and only if
ky, mod 2" = £d{(1 + 2"~ ') mod 2" and the sign is determined by ky,, (this corresponds to
rkoz (M, — 1d,) = 1 and rkoz(Mp+1 — Idp41) = 2). We deduce that the number of matrices
My+1 € C(n + 1) above M, with rkez(M,, — 1d,) = 1 and rkoz(Mp4+1 — Idps1) = 2
is 2711770 namely the number of lifts of 3,,, modulo 2",

Now we consider the case M,,, € C’(ng) and refer to the proof of Lemma and the corres-
ponding notation. If «, is odd and (3,, is even, these numbers are parametrized by k,, (and for
two out of the four lifts of k,, we preserve the property that the 2Z-rank is 1). We deduce that
there are 2" 170 matrices M,,,1 € C’(n + 1) above M, such that rkoz (M, — Id,) = 1
and rkoz(My+1 — Idy41) = 2. If o, is even and 3, is odd, rkoz(M,, — Id,,) = 1 if and only
if %‘l*l = (1 + 2b')? mod 2". This congruence holds modulo 2" either for all lifts of a’
and O’ or for none of them and we may reason as in Lemma ([l

5.8. The rationality of the natural density for Condition (2). We can finally prove that for
any finite non-empty set L of primes, denscp(L) is a rational number. We keep the above
notation.

Proof of Theorem 3| (where the base field can be any number field K ). By Remark [29] the ex-
istence of the density is guaranteed. It therefore suffices to prove that this density is rational.

Suppose first that L = {¢}. The sets E,, are pairwise disjoint, each of them admits a Haar
measure which is a rational number (because they are the preimage in G of a subset of G(n+1))
and we have 1(Up>n Ep,) — 0 for n — oo by Proposition 28] So we have

densexp (£) = Z w(Ey) .

n>1
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Forevery 1 < n < ng, u(E,) is a rational number, so we may restrict to n > ng. In turn, by (6)
it suffices to show that for every My, € m1(G)(no) the sum > p(Ep a1, ) is rational. This is
n>ng
the case because by Lemmas (for 7 (G) having finite index in GLs2 or in an unramified
Cartan) by Lemmas (for 71 (G) having finite index in a ramified Cartan with ¢ odd) and
by Lemmas (for 71 (G) having finite index in a ramified Cartan with ¢ = 2), up to
a finite number of rational terms, this is a sum of finitely many geometric series with rational
ratios.

Now let L = {/1,...,¢,} and set m = [[;_, ¢;. By Proposition [7| we may select ng such
that the image of the m-adic torsion-Kummer representation is the preimage of the image of
the modm™ torsion-Kummer representation. We then partition the primes p according to the
modm™® torsion representation. This is a finite partition, so it suffices to fix a matrix A in
the image of the modm™© torsion representation and prove the existence and rationality of the
restricted natural density. Calling A; the image of A in the mod/; torsion representation,
the restricted natural density considering only the prime ¢; (and the matrix A;) exists and it is
rational by the first part of the proof. We conclude because (by the definition of ng) we are
asking for the existence and rationality of the Haar measure of a set that is the product of its
projections, each of which admits a rational Haar measure with respect to the ambient group
of the projection. (|

Theorem 50. Suppose that E is without CM, or that it has CM defined over K. We assume
the Exponential LT conjecture for S = P. Let B be a positive integer such that for every
prime { 1 B the following holds: the extension K (K%P) is linearly disjoint from K (m%P) for
all positive square-free integers m coprime to {. Calling Lp the set of prime divisors of B we
have

) densexp (P) = densexp(LB) - H densexp (€) -
LeP\Lp

Moreover, there exists a rational number Q) such that the following holds: if E is without CM,
then

03?21
denSexp(P) =Q- H (1 YT _ 6 _ 3 +€2>
LepP

while if E has CM defined over K, then we have

205 — 20> —( — 1 1
densexp(P) — Q . H 1 — ) H 1_ ).
£€SplitCM ( (C+1)(e-1)% ) ¢€InertCM ( (£+1)(¢—-1)¢ )

Proof. The proof is analogous to the one of Theorem [22] making use of Theorem [3]in place of
Proposition [I9] The local densities are computed in Examples [66] [67] and [68] in Appendix [B]
O

Proof of Theoremd] This is a special case of Theorem [50] O

In the following result we write denseyp, - to specify the base field K. Moreover, we write
densexp split (respectively, denseyp, mert) if We restrict to the primes of K that split (respect-
ively, are inert) in K.

Lemma 51. Suppose that E has CM that is not defined over K but over a quadratic extension
K' of K. Let S be a non-empty set of prime numbers and assume the Exponent LT conjecture
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for S over K and over K'. The set of primes p of K that split (respectively, are inert) in K’
and that satisfy Condition [2)) for all ¢ € S has a natural density and we have

denSeXP(S) = densexp,Spht (S) + densexp,lnert(s) .
Moreover, we have
1
densexp,Split (S) == 5 densepr/ (S)

and the existence of one of these two densities implies the existence of the other.

Proof. The argument is similar to that of Lemma 23] O

Theorem 52. Suppose that E has CM that is not defined over K but over a quadratic extension
K' of K. We assume the Exponent LT conjecture for S = P over K and over K'. Then there
exist two rational numbers Q1 and Q5 such that

203 — 202 — 0 — 1 1
densexpspin(P) = Q1= [] (1~ I (- 2
£eSplitCM ( (f * 1)(6 N 1) ¢ ) £€InertCM ( (f + 1)(£ - 1)‘6 )

and

densexp mert(P) = Q2+ [] (1 - 5(51—1)) - 11 (1 - 5(51—1)) :

£eSplitCM L€InertCM

Proof. The argument is similar to that of Theorem For denseyp spiit We can make use of
Theorem@] and Lemma We now explain how to compute the factors for densexp inert.- We
work in GL2(Zy). Recall from Section [2.3|that for £ > 0 the image of the /-adic torsion rep-
resentation is the normalizer of a Cartan subgroup C' of GLy(Z;). We call C’ the complement
of the Cartan subgroup C in its normalizer, see Section [2.3]

Assume that C' is split. By Proposition[I8] the number of elements M in the normalizer of the
Cartan such that rkyz (M7 — Idy) is 3¢ — 5 and the number of elements M; € C(1) such that
tkez(My —1dy) = 11is 20 — 4, so My € C'(1) such that tkyz(M; — Idy) = 11is £ — 1. Then,
the number of elements M; € C’(1) such that rkyz(M; — Idy) = 21is (£ — 1)?2 — (¢ — 1). So,
with the notation of Section [4] (but measuring only the Galois automorphisms stemming from
the complement of the Cartan and also restricting the ambient space to this complement) we
have

_1)2 _ _
oSy = L=
1
===

The number of elements M,, 1 € C’'(n+1) such that rkyz (M, 11 —1Id,,+1) = 2 and rkyz (M, —
Id,) =1is (¢ — 1)L’1‘*1L2, and hence forn > 1,

(=1L Ly

dens(Sexp,n) = @172




TWO NATURAL VARIANTS OF THE LANG-TROTTER CONJECTURE 32

Summing the above contributions gives

dens(Sexp) = dens(Sexp,0) + Z dens(Sexp,n)
n>1
1 n /-1 1
/-1 /¢ -1
1

-1y

—1-

When C'is nonsplit, Proposition gives that the number of M; € C’(1) such that rkyz (M; —
Id;) =2is /2 — 1 — (£ + 1), so we have

2 —1-(+1)
2 -1
_ 1
R
The number of M,, 1 € C'(n+1) such that rkyz (M, 11 —1d,+1) = 2 and tkez (M, —1d,,) = 1
is (¢ + 1)L}y Ly so for n > 1 we have

dens(Sexp0) =

S0+ 1)L L
(2 —1)- 2
(-1 1

dens(Sexpn) =

—~
Summing the above contributions gives dens(Sexp) = 1 — ﬁ

APPENDIX A. ON THE ¢Z-RANK OF MATRICES IN GLy(Z/("Z)

In this appendix, we prove Proposition@} Let Gy be GL2(Zy), an unramified Cartan subgroup
of GL2(Z) or the normalizer of an unramified Cartan subgroup of GLy(Zy). Given a matrix
M, € Gy mod (" with rkyz (M, — 1Id,) = 1, fori = 1,2 we let L; be the number of its
lifts My, 11 € Gy mod £"+! such that rkyz(M,, 11 — Id,+1) = i. Moreover, if M,, = Id,, we
similarly define Liq ;, see Definition @}

We remark that L; can be obtained from L2 and conversely (respectively, Liq 1 can be obtained
from Liq 2 and conversely) by (7).

For ramified Cartan subgroups, the quantities L1, La, L1q,1, L1q,2 are not well-defined, but we
give the counts to calculate the quantities

Rll(n) = #{Mn € WI(G)(TL) : rkZZ(Mn - Idn) = 1}
and
R{(n) = #{M,, € m(G)(n) : tkez(M,, —1d,,) = 1 and M,, = Id,,_1 mod¢™ '}

which can be used to compute p(E,,) through Proposition We also give ingredients to
prove some of the lemmas of Section [3]

The following remark will be very useful for the case of ramified Cartan subgroups (para-

graphs[A.5|and[A.6).
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Remark 53. Let ¢ be a prime, m a positive integer and d a non-zero square modulo ¢, Setting
2v 1= vy(d), we can write d = ¢?d’ mod (™, where d’ is a square modulo {™~2 not divisible
by ¢. The number of square roots of d in Z /{7 is as follows:

20Y  if £ is odd

2¥ iff=2andm—-2v=1
vl if ¢ =2andm — 2v = 2
¥t2 if¢=2andm —2v > 3.

Indeed, let £“k be a square-root of d with ¢ { k. We have to determine k£ mod ¢"™~" and the
defining condition is k? = d’ mod ¢™~2". There are 2 square roots of d’ mod ¢™~2" if / is
odd. If £ = 2, the number of square roots is as follows: 1, if m —2v = 1; 2, if m — 2v = 2; 4,
otherwise. We conclude because we can lift these square roots in £” ways to obtain k.

A.1. Lifts in GLs.
Lemma 54. If G, = GLo(Zy), then Ly = (0 + 1)(¢ — 1)* and Ly = 3.

Proof. We have Ligo = £(£ + 1)(£ — 1)2. Indeed, to have a lift M, of the identity such that
tkyz (M1 — Idy41) = 2, we can choose the first column of M, 1 — Id, 41 to be non-zero in
¢? — 1 ways, and then we can choose the second column in a way that is not a multiple of the
first, namely in /> — ¢ ways.

I+ ap, Bn
Tn 1+ 0p
) = ky <§”> and that vy(3,) < v(d,,). Then

we must have vy(3,) < n. Remark that k,, is uniquely determined modulo ¢" "¢ (Br). We
may arbitrarily lift ov,, and 3, modulo ¢"*!, which determines k,,,; modulo ¢"+1=v¢(5) We
conclude because we can also lift d,, arbitrarily and then ~,,41 is determined. g

We now prove that L; = ¢3. Take M,, = < > such that rkyz (M, — Id,,) = 1.

. . o
Assume, without loss of generality, that < "

Tn

A.2. Lifts in (the normalizer of) a split Cartan.

Lemma 55. If Gy is a split Cartan subgroup C of GLa(Zy) or the normalizer N = C' U C' of
a split Cartan subgroup of GLa(Zy), then Liqs = ({ — 1)? and Ly = /.

Proof. We have Liq o = (£ — 1)? because choosing a lift M, 1 € C(n + 1) above the identity
modulo ¢" such that rkyz(My+1 — Id,+1) = 2 amounts to choosing independently two non-
zero numbers modulo ¢. We now prove that L; = ¢. Let M,, € C(n) such that rkyz (M, —
Id,) = 1. Up to swapping the elements of the basis, we may assume that the first column

of M, is (1> . The lifts of M,, — Id,, are then of the form

0
a'tm 0
0 b+vem
where b Z 0 mod ¢" and o/, b’ are taken modulo ¢. There is a linear combination of the

columns where not both coefficients are divisible by ¢ if and only if o’/ = 0, so the number

of suitable lifts is ¢. Finally, consider M,, = (2 g) € C'(n) such that tkyz(M,, — Id,,) = 1.
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A lift of M,, — 1d,, is of the form

-1 a-+al?
M1 = Idnia = <b+b’€” 1 ) :

The condition for this lift to have ¢Z-rank equal to 1 is that there exists some invertible £ such

-1 a+adt"
that <b Ly gn) =k ( 1 > So a'¢™ can be chosen in any way (¢ possibilities). Then, k

is determined by —1 = k(a+ a'¢™), which determines '/ = —Fk, so the number of lifts M,, 1
with tkez (M — Idpi1) = 1is £, O

A.3. Lifts in (the normalizer of) a nonsplit Cartan, for / odd.

Lemma 56. Let { be an odd prime, and C' = C|q q) be a nonsplit Cartan subgroup of GLa(Zy)
(then, d is not a square in ;). If Gy = C or Gy = N = C U C" is the normalizer of C, then
L1d72 = 52 — 1 and Ll =/

We prove that Liq 2 = 02 — 1. Consider the identity matrix modulo ¢". Its 22 lifts modulo ¢!
that are in C'(n + 1) are matrices M, such that

o vemd
MnJrl - IdnJrl = (Z/gn a/en)

where o',V are taken from Fy. If o’ = V' = 0, then rkyz(M,+1 — Id,41) = 0. We prove
that for all the remaining lifts we have rkyz(M,,+1 — Id,41) = 2. This is clear if precisely
one between a’¢" and b'¢™ is zero. Now suppose that a’¢™ and b'¢" are both non-zero. If the

. . 1 X a'tm b'erd
(Z-rank is less than 2, then there is some k € (Z/¢"""7Z)* such that yon | = k e
and we deduce that k2d = 1 mod /, contradicting that d is not a square modulo /.
We now prove that L; = ¢. From Proposition all the matrices M,, € N(n) such that
tkez (M, —1d,,) = 1 are in C'(n).
oy, — 1 Bnd

Let M,, € C'(n) and write M,, — Id,, = ( 5 oy
B, —ay —

>. Since ¢ is odd, o, + 1 and
o, — 1 cannot be both invertible.

Let us assume that o, + 1 is invertible. Then we have rkyz(M,, — Id,,) = 1 if and only if there
is some k,, € Z/¢"Z such that

an — 1= knfnd
—Bn = —kn(an +1).

If such a k,, exists, then k2 = é : gz: and k2d — 1 is invertible (as d is not a square modulo £).
We deduce that
—1—k2d —2k
9 = ° =
©) (@) = (G o)

for some k,, € Z/{"Z. If (cu,, By,) are as in (9)), the corresponding matrix ( an B"d> is an

_5n —Qp
element of C’(n) because its determinant is non-zero modulo ¢. Hence, rkyz (M, — Id,,) = 1
if and only if (ay,, f,) satisfy () for some k,, € Z/¢"7Z. Replacing in (9) k,, by a different
value k!, leads to a different pair (av,, 8,,). Indeed, if k,, and k], give the same «,, we deduce
that k2 = k/? mod ¢™. Then, if they give the same /3,,, we deduce that k,, = k!, mod ¢™. This
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shows that lifting M,, to M,, 1 such that rkyz(M,,+1 — Id,+1) = 1 consists in choosing a lift
knt1 €7/ +17, of k,, and, for different choices of kyn41, the lifts of M, are distinct.

If o, 4+ 1 is not invertible, then a,, — 1 must be invertible and a similar same argument applies:
we have rkyz(M,, — Id,,) = 1 if and only if there is some k,, € Z/¢"Z such that

Bnd = kn(an - 1)
—(an+1)=—k,5,.

Then we have k2 = dg:—ﬂ and hence the pairs (o, 8,) whose corresponding matrix M, is
such that rkyyz (M,, — Id,,) = 1 are those of the form

d+ k2 2k,

We may conclude as above because a different value for k, leads to a different value for

(o, Bn)-

A.4. Lifts in (the normalizer of) a nonsplit Cartan, for / = 2.

Lemma 57. Let C = C(.q) be a nonsplit Cartan subgroup of GLa(Zz). If Go = C or
G2 = N = C U is the normalizer of C, then Lig 2 = 3 and L = 2.

Proof. The parameters of C are ¢ = 1 and d is odd according to [LP17, Proposition 11]. The
elements of C' and C” are respectively of the form

a dp a+f (d+1)B+«
(5 OH—B) and (_5 —a -8 >

The four lifts of Id,, in C'(n + 1) and N(n + 1) are

14 1427 0 1 2"d 1+2" 2%d
ntls 0 14+2m)7\2" 142™)° 2" 1
and in particular Ly 2 = 3. We deduce that a matrix M,, € N(n) such that M,, = Id; mod2
is either Id,, or satisfies rkoz (M, — Id,,) = 2. Thus, the elements M,, € N(n) such that

rkoz (M, — 1d,,) = 1 are in C’(n) because C’(1) consists of the elements M; € N(1) such
that I'kgz(Ml — Idl) =1.

Choose
o Oén‘i‘ﬁn (d+1)ﬁn+0¢n ’
Mn = ( —PBn —o — Bn €c (n)
such that rkoy (M, — 1d,) = 1.

Remark that we cannot have vy (cv,) > 1and va(3,,) > 1 because in that case ve (ay,+5,—1) =
va(—ay, — Bn — 1) = 0. Therefore, we cannot have a suitable relation between the columns of
M, — 1d,, because

v2(an + ﬁn - 1) < UQ((d + 1)/8n + an) and UQ(_Bn) > 'U2(_05n - 511 - 1) .

We prove that L; = 2.

The case va(ay,) = 0. Since d is odd, we have va((d+ 1) 5, + ) = 0, s0 va(ay + fn — 1) >
v2((d + 1)By, + o). There is some k,, € Z/2"Z such that

_Bn o _(an‘i‘ﬁn)_l '



TWO NATURAL VARIANTS OF THE LANG-TROTTER CONJECTURE 36

If vo(53,) = 0, k,, must be invertible. The second row gives a,, = [, (ﬁ — 1) — 1 and we
deduce that

1— 2k, +k2(d+1) 2k, — k2
(anv /BTL) — 2 9 2 .
11—k, —kid 11—k, —kid
Similarly to the case ¢ odd, these pairs correspond to the matrices M,, € C’(n) such that
tkoz (M, — Id,,) = 1 and different values of k,, correspond to different pairs. Indeed, if

1— 2k, +k2(d+1) 11— 2K, +K,*(d+1)
1—ky—k2d  1—k —k32d

we deduce that k,, = k], because we have
(kp — k) (=1 — kyp — kI, — (3d + 1)kpkl) =0
and the second factor has 2-adic valuation zero.

We deduce that there are 2 lifts M,, 1 of M, such that rkoz(M,,+1—1d,,+1) = 1, corresponding
to the two possible lifts of k,,.

If v2(B,) > 0, then k,, must not be invertible. The first row gives
an(l —ky) = Bn(knd+k, —1)+1

so we also deduce that

1—2k, +k2(d+1) 2k, — k2
(@, Bn) = < 1—ky—k2d '1—k, — k2d
and we can conclude as in the case va(/3,,) = 0. The case va(,) > 1 and v2(53,) = 0. Since
va(—Bn) < vo(—ay, — Bn — 1), there is k,, € Z/2™Z (not invertible) such that

k an""ﬁn_l _ (d+1)16n+an
" _5n N —0p — /Bn -1 '
We deduce that

(o, ) = (kgk—Q 2k:,;€+ d; 1, k22knk— 1 d) .
2 ke — 2k —
Different values of k,, correspond to different pairs: this is because, as above, if
2k, —1 2k, — 1
k2 —k,—d K2k —d

then we have
(k! — kp)(2knk), +2d +1 -k, — k) = 0.
Then, as in the previous case, there are 2 lifts M,, 1 of M, such that tkez (M, 11 —Id,41) = 1.
]

A.5. (Normalizer of) a ramified Cartan with parameters (0, d) for ¢ odd. Let ¢ be odd
and consider a ramified Cartan subgroup C' with parameters (0, d) such that ¢ | d. For every
positive integer n, the group C'(n) consists of the matrices of the form

Bn an
such that vy(ay,) = 0. We first look at elements of C’(n).

Proposition 58. Let M, be an element of C'(n) such that rkgz, (M, —1d,,) = 1. The matrix M,
has precisely ¢ lifts M, 11 € C'(n + 1) such that rkyz,(My 11 — Idp41) = 1
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Proof. Write M,, — Id,, = <a”ﬁ_ 1 Oiw” 1) Since £ is odd, o, + 1 and «;, — 1 cannot
n —Wn

be both invertible. Let us assume that o, + 1 is invertible. Then, rkyz(M,, — Id,,) = 1 if and

only if there is some k,, € Z/{"Z such that
ap—1 =k,ds

1 1 n n n

an { By = —kn(an+ 1),

Then we have de = 3";% We deduce that (v, 3,) are such that the corresponding mat-

rix M, is in C'(n) and rkyz(M,, — 1d,,) = 1 if and only if they are of the form

1+ k2d 2k,

for some k,, € Z/¢™Z (notice that v, is invertible). We notice that a different value k!, leads
to a different value for (o, 8,,). Indeed, if k,, and k!, give the same «,, we deduce that dk?2 =
dk{f mod ¢" hence if they also give the same 3,, we must have k,, = k/,. Therefore, choosing
a lift M,, 11 of M, such that rkyz(M, 1 — Id,4+1) = 1 consists in choosing a lift k, 1 €
7./0"1 7 of ky,, different choices of k,, 1 giving different lifts of M,,.

If o, + 1 is not invertible, then oy, — 1 must be invertible. Then, rkyz(M,, — Id,,) = 1 if and
only if there is some k,, € Z/¢"Z such that

kn(a, —1) =dp,
_knﬂn = _<an + 1)
/Bn

Since k,, = 7 this system amounts to the equation a? = 1+dpB2. Supposing that (o, B,)
satisfy this equatlon lifting M, to a matrix M,,; whose parameters (41, 3n+1) satisfy
a2y = 1+dB2%, | amounts to lifting 3, freely, and then oy, 41 is determined. Indeed, 1+d32, |
is a square in Z/¢"*17Z. By Hensel’s lemma c, 1 € Z/{"T'Z is a square in Z/¢""'Z if and
only if ¢,4+1 mod ¢ is a square in Z/¢Z. Moreover, the sign choice for a4 is determined
by a,. ([l

Remark 59. As seen in the proof of Proposition the number of matrices My, € C’'(1)
such that rkyz (M7 — Id;) = 1 is 2¢. Then from Proposition we deduce that the number of

matrices M,, € C’(n) such that rkyz (M, — Id,,) = 1is 2¢™.
Now assume that M,, = <%n Cf") is in C(n). If ay, — 1 is invertible we deduce that
n n
tkyz (M, — 1d,,) = 2 because the determinant of M,, — Id,, is non-zero modulo ¢. Now
suppose that ay, — 1is not invertible. If ay, — 1 = 0, then rkyz(M,, — Id,,) < 1 if and only if
dB, = 0. If a,, — 1 # 0, then rkyz(M,, — Id,,) = 1 if and only if there is some k,, € Z/("7Z
such that
Bnd = kn(a, — 1)
12
(12) {an_l :knﬁn

We may replace the first equation by 3,d = k23, and notice that k,,3, # 0. We must have
ve(ky) > 0 because £ | d.

In Lemma. 43| to count the matrices above Id,,,, it is useful to know the number of M,, € C(n)
that satisfy rkyz(M,, — Id,,) = 1 such that vy(cw,, — 1) > ng and v¢(3,) > ng, so we rely on
the following result

Lemma 60. Let v := vy(d) > 0. Fixing a := vg(a, — 1) and b := vy(py,), the number of
matrices M, € C(n), such that rkyz,(M,, — 1d,,) = 1 is as follows:
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(1) =271 — 1), fora=nandn —v <b<n;

(2) 12=2=(0t0)(p —1)2 forn —v <b<nand (n+b)/2 < a < n,

(3) 20210 — 1), forb < n —vand a = v/2 + b, v is even and d¢~" mod { is a
square;

(4) O, otherwise.

Moreover, for n > 2 there are { — 1 matrices M, such that rkez(M, — 1d,,) = 1 and
M, =1d,_1 mod/™ %, so RY(n) = ¢ — 1.

Proof. Notice that, if a > 0, the necessary condition vy(cv,) = 0 is satisfied and the element

<%” df”) isin C(n).

The proof consists in counting the number of solutions of the system (12)) imposing the valu-
ations.

Suppose first that a = n (which implies (,, # 0 to avoid M,, = Id,,). The requested condition
then amounts to df3,, = 0, so 3, can be chosen anyway as long as b > n — v and we easily
conclude. Remark that, for n > 2, £ — 1 of these matrices are congruent to the identity
modulo /"1,

Now suppose that a < n. We have a = vy(ky,) + b (as £ | ky, we deduce that a > 0). We
cannot have ¢« = n — 1 and b > n — 1 and hence the last assertion of the statement follows
(M,, = Id,,_; mod¢™ ! means a,b > n — 1).

Now suppose that @ < n and b > n — v. The equation k23, = S,d is equivalent to

ve(kn) > (n—0)/2. We deduce that (12)) is solvable if and only if a > (n+b)/2 (in particular
we must have b < n) and we find the requested expression fixing a and b.

Finally suppose that ¢ < n and b < n — v. If k23, = B,d is solvable, then d mod ¢"~°
is a square (which means d¢~" mod ¢ is a square) and k, mod "~ can be any of its 2¢v/2
square-roots (see Remark [53)). These values, according to (12) and fixing 3, lead to distinct
values for v, (and a = v/2 + b follows from a = vy(k;,) + b) and we conclude. ]

Remark 61. Let X; (for i = 1,2, 3) be the total number of matrices M,, € C(n) such that
tkez (M,, — Id,,) = 1 from Case (i) of the previous lemma, summed over all possible values
of a and b. The total number of matrices M,, € C'(n) such that rkyz (M, — Id,,) = 1 is then
X1+ X3 + X3. Call m := min(n, v).

n—1
Wehave X1 = > ¢ *"1({/—1) = ¢™—1 and this quantity does not depend on n provided
b=n—m
that n > v. The quantity X5 also does not depend on n for n > v because we have

n—1 n—1
Xy = £2n72(£ - 1)2 Z ( Z Efa7b>
b=n—m a=[(n+b)/2]

_ EQn—l(g —1) nz_:l (_ b 4 g—[(n—i—b)/ﬂ—b)

b=n—m

=104 (0—1)e ) el
=1
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We have X3 = 0 if v is not even or d¢~¥ mod ¢ is not a square or n < v. In the remaining

case, we have
n— 1

m—
X _2€v/2+n 1 Z 0~ b 261)/2 i Em)
b=0
By Remark[59] there are 2¢" elements M,, € C’(n) such that rkz(M,, —Id,) = 1, so we have
R/( ) X1+ Xo + X3+ 20™.

A.6. (Normalizer of) a ramified Cartan for / = 2. Suppose that / = 2. Consider the
normalizer N = C U C’ of a ramified Cartan subgroup C' noticing that C'(1) = C’(1) if
the parameter c is zero. The parameter d can be even or odd (which means that an integer
representative for (d mod 2") has this parity for all n > 1).

Lemma 62. Assume that d is even, and call v := va(d). The number of matrices M, € C(n),

fixing a and b, such that rkoz (M, — 1d,) = 1 is as follows, where the parameters a and b are
defined as in Lemma 60}

(1) 2"_b_1,f0ra =nandn—v<b<n;
(2) 2207270040 forn —v<b<nand (n+b)/2<a<n;
(3.1) 2%+”7671,f0rb =n—v—1landa=v/2+0b viseven;
(3.2) 2%+”_b, forb=n—v—2anda=v/2+b, visevenand 2~"d mod 4 is a square;
(3.3) 22T forb<n—v—3anda = v/2+b, v is even and 2~"d mod 8 is a square;
(4) 0, otherwise.

Moreover, for n > 2 there is only one matrix M, such that rkoz(M, — 1d,) = 1 and
M, = 1d,, mod2" 1, so R} (n) = 1 for C.

Proof. We may proceed as in Lemma [60] applying Remark [53 while taking square roots. [

Remark 63. Asin Remark we can compute the quantities X1, X, X3, which are defined
similarly (here, X3 is the total number of matrices M,, € C'(n) such that rkez (M, —Id,) =1

m .
from cases (3.1), (3.2) and (3.3)). We have X; = 2™ — land X = 1 — 2™ + 1 3~ 2l3/2],

We have X3 = 0if n — b — 3 < 0 or if v is not even or 27d mod 8 is not a square, else
X3 = 2v/2+n+2(1 _ 2—(n—v—2)).

Lemma 64. Assume that d is even and consider the matrices M,, € C'(n) such that rkoz (M, —
Id,)) = 1. Forn = 1 we have C'(n) = C(n) and there is 1 matrix. For n = 2, there are 8
matrices if 4 | d and 4 matrices otherwise. For n > 3 the number of matrices is 3 - 2" if 8 | d
and 2" otherwise.

Proof. The two cases n = 1 and n = 2 can be checked by hand, so suppose that n > 3.
_671 —Qp
Suppose first that vy (5,,) > va(ay, + 1). In that case, rkoz (M, — Id,,) = 1 if and only if there
is some ky, € Z/2"Z such that the system (I1]) holds, and we can write

1+ k2d 2k,

Distinct values of (av,, 3,) correspond to distinct values of (k, mod 2"~!), so we find 2!
matrices.

Write M, = < > and notice that «,, must be odd.
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Now suppose that va(3,) < ve(ay, + 1). We have rtkoz(M,, — Id,,) = 1 if and only if there is
dpy, an —1
n —
k, € Z/2"Z such that (an + 1> =k, ( 3, > .

Assume that va(3,) = 0. Since k), = O‘%H the system is equivalent to a2 = 1 + dj32. Since

1+ dB2 =1+ d mod 8, there are solutions only if 8 | d. In this case one can choose 3, freely
(2"~ possibilities), and there are 4 possible values for a,, giving 2"*! matrices.

Assume that v2(8,,) > 0 and set 3,, := 20’ and v, + 1 := 2a’. We have to count the solutions
(a’,v’) mod 2"~ ! of the system

A = kn(a' — 1)
a =kpb.

We have n — 1 > wo(a’) > vo(V'). Since k,, = adb 7 mod 2"~ ! this system is equivalent to

a”? —a' = db’? mod 2”1, We choose b’ (2"~ ! possibilities), which uniquely determines a’
(because a’ — a’?>—a’ is a bijection on 27 /2"~ 17 that preserves the valuation) so we find 2" !
matrices. O

The formulas of Lemmas and allow us to compute R} (n) when d is even. We now take d
odd.

Lemma 65. Assume that d is odd, and consider the matrices M,, € N (n) such that rkay (M, —
Id,) < 1. For n = 1 there are 2 matrices. For n = 2, there are 8 matrices. For n > 3, the
number of matrices is

e 9.-2""1 _10,ifd=1mod 8,
e 2"l 16, ifd=5mod 8,
e 3271 4 2 otherwise.

Moreover, forn > 3, R](n) = 1 and we have R{(2) = 3.

Proof. For n < 2, one may compute the number of matrices by hand, so now suppose that

n > 3. Consider first M,, € C'(n) and write M,, — Id,, = (a”ﬁ_ 1 adﬂ " 1). Suppose first
n n -

that o, is even (hence (3, is odd) and write
(1424 d(1+2V)
M”_Id”<1+2b’ —1+42d #0.

The requested condition means that there is k (invertible) such that
1 —1+2d"\  [d(1+2b)
1+20 )\ —-1+2d )’
so k must satisfy k? = d mod 2". There are no solutions if d # 1 mod 8. If d = 1 mod 8,

then there are 4 square roots of d modulo 2. We choose such a square root and 2b’ (there are
4 - 2"~1 possibilities) and the value of 2a’ is determined, giving 2" ! matrices.

/ /
Now suppose that o, is odd (hence 3, is even) and write M,, — Id,, = (ZZ, 22633 >
There is precisely one matrix M, = Id,,_; mod2"~ 1 such that tkoz (M, — 1d,) = 1, namely
n—1 n—1
M, —1d, = <;n_1 22n_1d> Furthermore, rkoz(M,, — Id,) < 1 if and only if there is k

(invertible) such that k2a’ = 2db’ and k220’ = d2b'. If M,, # Id,,, we may choose 3, of
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a given 2-adic valuation 1 < b < n (2"~?~! possibilities). Then we consider k mod 2"°
such that k2 = d mod 2"~?, the number of possibilities being as follows: 1, if n — b = 1; 2
(respectively, 0), if n — b = 2 and d = 1 mod 4 (respectively, d # 1 mod 4); 4 (respectively,
0)if n — b > 3 and d = 1 mod 8 (respectively, d Z 1 mod 8). The total number of matrices
as requested is then as follows: 2, if d # 1 mod 4; 6, if d = 5 mod 8; 6 + 16(2" 3 — 1), if
d =1 mod 8.

Now consider M,, € C'(n) and write M,, = on By )
—Bn —an
. : . 2a’ 24
Suppose first that o, is odd (hence 3, is even) and write M,, — Id,, = oy —9_ 94
The requested condition means that there exists &k such that

i 2a"\ 2db’ 2a’ . 2db’
—2r ) T \—2—2d or o) T P\—2—24) -

Suppose first that va(a’) = 0. We are in the former case and we remark that k mod 2"~!

must be even. The system is then equivalent to @’ = —* : mod 2"~ and ¥ = sa’ , with
B2

k mod 2"~ ! even. There are 2”2 possible choices for k mod 2"~! and such choices lead to
distinct values for (a’,b") because va(a’) = 0. Thus, there are 2"~ 2 matrices M, such that
rkoz (M, — Id,,) = 1 and vo(a’) = 0.

Now suppose that vo(a’) > 1. We are in the latter case and again k mod 2"~ must be even.

The system is then equivalent to @’ = 1%’;22 mod 2" 1 and b = k(1 + a’), with k mod 2"~}

even. Different choices of k£ mod 2"~ ! lead to distinct values for (a’,b') because vo(1 +
a’) = 0. Thus, there are 2"~2 matrices M,, such that rkoz(M,, — Id,,) = 1 and vo(a’) > 1.

Finally suppose that o, is even (hence (3, is odd). We write

_(—1+2d d(1+2v')
M"_Id”_(—1—25’ -1-2d )~

We have rkoz(M,, — Id,,) = 1 if and only if there is some invertible k € Z/2"Z such that

. I ’ ,
(_i t gz,> =k <Cﬁ11 t 32)) . Since k = iigz, the system is equivalent to the equation

021 — (14 20')2

By Hensel’s lemma (and studying this equation modulo 8) this equation is solvable modulo 2"
if and only if either d = 3 mod 8 and 2t a’ ord = 7 mod 8 and 2 | d/.

In both cases, the number of choices for (2a’ mod 2") is 2”2 and there are 4 choices for the
4a/?—1
d

square-root of ( mod 2™). So in both cases we find 2" (respectively, 0) matrices whose
2Z-rank is 1 if d = 3 mod 4 (respectively, d = 1 mod 4). U

APPENDIX B. EXAMPLES

B.1. Examples concerning the Exponent LT condition. Considering Remark [30] to com-
pute 1(Ey) and Proposition [40] and Lemma 42| to compute ;(E,,) for n > 1, we can evaluate
densexp (¢) if the image of the ¢-adic torsion-Kummer representation is Gy X (Z;)? where G
is one of the following groups: GLa(Zy), an unramified Cartan subgroup of GLo(Z) or the
normalizer of an unramified Cartan subgroup of GLa(Zy).
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Split Nonsplit | Nor. split | Nor. non-
G, GLa(Z) P p P .
Cartan Cartan Cartan split Cartan
_ ) _ 203 _ 1 _ 34 __0+2
#(Eo) R =S R (=l B =l el (=l B 25y
21
Lia2 =7 211 211 |21 1| 21 1| -1 1
Rl(l)(zdc)}wrl 6 " p4n ZEr 27 204 " p2h 204 T p2h
Ri(1) L2 L} (3—20-1) 1 | 20—4 1 0 30-5 1 -1 1
Ry (1)(£9G)h+1 B+1) ok A 202 " ¢k 202 ¢h
LId,lLQ%L}f (+1)-1) 1 2 1 0 11 0
(L1—1)R1 (1) (¢dG )h+1 B3(B3-1)  h 2 gh 2 gk
LiaaL2" 7t @+ne=1) 1 | 2 1 0 1.1 0
(L1—1)R1 (1) (¢ )h+1 (B-1)3  ¢4h 02 2R 02 2R
02—
3 Lia2 =~ 1 1 1 1 1
1S Bu(ede)h C(P+1) e e 202 202
> Ry ()L 5 LY 03_20—1 20—4 0 30-5 1
S Ba()ede)h £(-1)(+1) £e-1) 20(¢—1) 2t
T LuaaL2 IR
% (e TG i 0 - 0
1= Li=DR(1)(e%6) (2-1) (1) (1)
le,1Lze_71 ¢ 2 1
50 (L1—1)Ry (1) (¢dc )h+1 (3-1)(€2+1) 22-1 0 2-1 0

Example 66. If the image of the /-adic torsion-Kummer representation is GLa(Zy) x (Zg)?,
we have

o () 1 - 2 _9 ) 2_1 . 3201 N (+1
€NSexp = (E— 1)2(£+1) £2(€4_1) 62(£—1)(€+1) €2<€3_1)
14
INGENGCES)
_1_55—53—52—1
TS =32

Example 67. If the image of the /-adic torsion-Kummer representation is C' x (Z;)?, where C
is a split Cartan subgroup of GL2(Zy), we have

dens (5)21—725_3+l+2€_4+ 2 — 2
P (—1)2 2 -1 (-1 2-1

203 — 202 — 0 —1

(L+1)(0—1)202"

—1-

Example 68. If the image of the /-adic torsion-Kummer representation is C' x (Z;)?, where C
is a nonsplit Cartan subgroup of GLy(Z,), we have

1 1 1
densen(t) =1 =+ p =1~ Grnu-ne-
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Example 69. If the image of the (-adic torsion-Kummer representation is N x (Z;)?, where N
is the normalizer of a split Cartan subgroup of GL2(Zy), we have

dens (E)—l—igg_4 —i—i—i- 365 + ! _
GPYTT (0 —1)2 202 200 —1) Ll —1) 2—1
303 —202 201

=l - i am o

Example 70. If the image of the ¢-adic torsion-Kummer representation is N x (Z;)?, where N
is the normalizer of a nonsplit Cartan subgroup of GLo(Zy), we have

{42 1 1
densexp(f)—l_m+272+2—g—l

_£2+£+1
204 — 902"

Consider an elliptic curve £//QQ and a point P € E(Q) of infinite order. We compute densexp (¢)
in some specific examples. The rational densities (computed exactly) have been tested with
SageMath [Sag24] by computing the proportion of the suitable primes up to 10°.

Example 71. Let £/Q be y? = 23 — 22 — 62 (LMFDB label 480.b3). The point P = (—1,2)
is not divisible in F(Q). For any odd prime ¢ the ¢-adic torsion-Kummer representation is
surjective (the f-adic torsion representation is surjective according to [LMF25] and we can
apply [JRI0, Theorem 5.2]). the natural density computed in Example [66]is compared to the
experimental natural density considering the primes of good reduction p up to 10°:

¢ | densexp(¢) rounded | experimental
3 0.85694 0.85734
5 0.95234 0.95818
7 0.97674 0.97810
11 0.99099 0.99197

Example 72. Let E/Q be y? = 23 — 22 (LMFDB label 256.b1). The point P = (2,2) is not
divisible in £(Q). The CM field is Q(7). For every odd prime /¢, according to [LMF25], the
image of the /-adic representation is the normalizer of a split (respectively, nonsplit) Cartan
if £ = 1 mod 4 (respectively, { = 3 mod 4). Then by [JR10, Theorem 5.8] the extension
Q(#P)/Q(E[¢"]) has maximal degree ¢*" for every n > 1. the natural density computed in
Examples|[69] (respectively, is compared to the experimental natural density considering the
primes of good reduction p up to 10:

¢ | densexp(¢) rounded | experimental || ¢ | densexp(¢) rounded | experimental
0.93458 0.93755 3 0.90972 091117

13 0.99086 0.99228 7 0.98788 0.98822

17 0.99470 0.99531 11 0.99542 0.99468

Example 73. Let £/Q be > +y = 23 — 34 (LMFDB label 225.c1) and let P = (6, 13).
According to [LMFE25], the image of the 2-adic representation is the normalizer of a nonsplit
Cartan subgroup of GLs(Zs) hence by [JR10, Theorem 5.8] the extension Q(5x P)/Q(E[2"])
has maximal degree 22" for every n > 1. By Example [70| we have densey,(2) = 17/24 =~
0.70833. The experimental natural density considering the primes of good reduction p up to
10° is 0.70938.


https://www.lmfdb.org/EllipticCurve/Q/480/b/3
https://www.lmfdb.org/EllipticCurve/Q/256/b/1
https://www.lmfdb.org/EllipticCurve/Q/225/c/1
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Remark 74. Consider a CM elliptic curve FE defined over a number field K, and a point
P € E(K) of infinite order. Let ¢ be an odd prime number such that

[K(-P): K(E[))] = [K(E[{*)) : K(E[{])] = ¢* and [K(lP,E[KZ]) cK(E[*)] = ¢,

¢
This implies [K (5 P) : K(E[(*])] = ¢* because a subgroup H of (Z/(*Z)? such that [(|H =
[0)(Z/0?Z)? must be (Z/0?Z)? (preimages for (1,0) and (0, 1) are independent modulo ¢?).
We then have [K (2 =P): K(}P)] = ¢* hence by [LP21] Theorem 1.4(ii)] for n > 1 we have
(K (& P) s K(E[])] = .

Example 75. Let £/Q be y? = 2% — 7352z — 7546 (LMFDB label 1764.¢2) and let P =
(—17,6). The image of the 3-adic representation is the normalizer of the ramified Cartan
subgroup with parameters (¢, d) = (0, —3) (see [GILRY25] Table 4]). In particular we have
[K(E[9]) : K(E[3])] = 9. We have checked with [BCP97] that Q(3 P, E[9])/Q(E[9]) has
degree 9 (the polynomial defining the x-coordinates of éP has degree 9 also over Q(E[9])).
Then by Remark [74|the extension Q( P)/Q(E[3"]) has maximal degree 3% for every n > 1.
By Proposition|18| Lemma.and Remark. we have Rl( )=12-9""1 R{(n) =2+2-3"
forn > 1 and R} (n) = 2 for n > 2. We have ;(Ey) = 1 and for n > 0 by Proposition 31{we
have
((2+2-3")-9)—(2+2-3""1)2 4+ (9-3)8

12.97 .

N(En) =

Then densexp(3) = D _,,50 #(En) = 3,

Finally, the following example supports the Exponent LT conjecture:

Example 76. Let E/Q be the Serre curve 42 = 23 + 5z + 10 (LMFDB label 400h1) and let
P = (1,4). For every odd prime ¢, the /-adic torsion representation is surjective, so is the
£-adic torsion-Kummer representation by [JR10, Theorem 5.8]. Moreover, the 2-adic Kummer
map is surjective because Q(5P) Z Q(E[4]).

We can apply Theorem [84] with ¢ odd and B = 5: if m is an odd integer, by Proposition
the modm torsion-Kummer representation is surjective.

We impose that ordy (P mod p) = exp,(E(F,)) for every prime ¢ # 2: the conjectural density
is
N A |
H <1 ~ R _€3+£2> ~ 0.772.
{ prime
042
The experimental density considering the primes p < 10% (and p # 2, 5) is 0.769.

B.2. Examples concerning the Indivisibility LT condition. The following examples support
the validity of the Indivisibility LT conjecture. We consider an elliptic curve £/Q and a point
P € E(Q) of infinite order.

Example 77. Let E/Q be y? = 2% + 22 — 92 + 7 (LMFDB label 128.al) and consider the
point P = (3,4). Let m be an odd positive squarefree integer. We know that the image of
the modm torsion representation is GLy(Z/mZ). So for any odd prime ¢ the mod/¢ torsion-
Kummer representation is surjective by [JR10, Theorem 5.8]. For any prime divisor £ of m
we can apply Theorem [84] (with B = 1) to £ and m/{. Then by Proposition [85] the modm
torsion-Kummer representation is surjective.


https://www.lmfdb.org/EllipticCurve/Q/1764/e/2
https://www.lmfdb.org/EllipticCurve/Q/400/a/1
https://www.lmfdb.org/EllipticCurve/Q/128/a/1
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We impose Condition (3]) for £ # 2: the conjectural density is

=202 -0 +1
H densindiv(é) = H (1 — eg(g — 1)(62 — 1)> ~ 0.773
¢ prime ¢ prime

(42 042
while the experimental density by considering the primes p < 104 (and p # 2) is 0.790.

Example 78. Let £/Q be y?> = 23 — 92 — 12 (LMFDB label 7776.m1) and consider the
point P = (4,4). With [BCP97], we found the following (see also [BBP23]): the image of
the mod2 and of the mod3 torsion-Kummer representations are surjective; the field Q(%P)
is contained in Q(E[3]); the image of the mod6 torsion-Kummer representation has index 24
in GLy(Z/6Z) x (Z/6Z)%; up to choosing a suitable basis of E[6], Gal(Q(¢P)/Q) is the
subgroup of index 24 of GLy(Z/67Z) x (Z/6Z)* generated by the matrices

1 00\ /102 (500\ (/500\/1 30\ /343 1 40
01 4),lo 1 4|, {o5 0],[5 101 40],[230],{45 3
o001/ \oo1/ \oo1/ \oo1/\oo1/ \oo1/ \o o1

In this subgroup, there are 282 elements (M, v) satisfying rkyz (M — Id) = 2 or v ¢ Im(M —
Id) for ¢ € {2, 3}, so densjnqiv(6) = %. For any odd positive integer m the modm torsion
representation is surjective and by [JR10, Theorem 5.8], the mod¢ torsion-Kummer repres-

entation is surjective for any prime ¢ > 5.

We can apply Theorem (84| with B = 3: if m is a positive integer coprime to 6, by Pro-
position [85| the modm torsion-Kummer representation is surjective. We prove that the mod6
torsion-Kummer representation is independent from the modm torsion-Kummer representa-
tion by showing that Q(X P) and Q(3 P) = Q(% P) are linearly disjoint over Q. Considering
that the degree of Q(3P)/Q divides a power of 6, we have

1 1
-P|n —P ) CQF .
o(37) ne(+P) cam)
Applying Theoremwith ¢ =3 and n = m (hence gcd(B,n) = 1) we deduce that

a(3P) nQEBEm) = Q)

and we conclude because Q(E[3]) N Q(E[m]) = Q.
Thus, the Indivisible LT conjecture predicts

282 r—202 — 41
£>5

while the experimental natural density considering the primes p < 10* (and p # 2, 3) is 0.606.

In this last example the elliptic curve is not defined over Q so that the CM is defined over the
base field:

Example 79. Let £/Q(i) be y? = 2% — 22, which is a curve with CM defined over Q(¢). The
image of the mod/ torsion representation is a split (respectively, nonsplit) Cartan subgroup of
GL2(Z/07Z) for £ = 1 mod 4 (respectively, £ = 3 mod 4). For the point P = (2, 2), by [JR10,
Theorem 5.8], we have [Q(3P) : Q(E[(])] = ¢* for all odd primes ¢. The images of the

mod ¢ representations for the odd primes ¢ are linearly disjoint over K by Remark 80| and by
[CP22a, Theorem 1.1] (to apply this result, observe that 2 is the only prime of good reduction


https://www.lmfdb.org/EllipticCurve/Q/7776/m/1
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and that ' has complex multiplication by Z][i] as the map (x,y) — (—=,iy) has order 4). We
then impose Condition (3)) for ¢ # 2: the conjectural natural density is

20— 20 (1 1
H densindiv(g) = H <1 - (5_}_ 1)(2 _ 1)262) ' H <1 B (E + 1)(f — 1)f2>

£ prime £ prime ¢ prime
0#2 /=1 mod 4 ¢=3 mod 4
~ (0.881.

The experimental density, considering the primes in Q(%) above the rational odd primes p < 3000,
is 0.878.

Remark 80. Let K be a number field, and £/ K be an elliptic curve with CM defined over K.
Let P € E(K) be a point of infinite order and ¢ an odd prime number such that ;, ¢ K. Then
for any odd squarefree integer n coprime to ¢ we have

K(%P) N K (E[nd]) = K(B[).

Indeed, the degree of K (§P)/K(E[(]) is a power of ¢, K(E[n{])/K is abelian, and ¢, €
K (E[(]): we conclude because by Schinzel’s theorem on abelian radical extensions [Sch77|
Theorem 2] there cannot be a cyclic extension of K ((;) of degree ¢ which is abelian over K.

APPENDIX C. ONE RESULT ON ENTANGLEMENT
We prove a result on the entanglement of Kummer extensions that we apply in our examples.

Lemma 81. Let ¢ be a prime number, and let e be a positive integer. Let m be a positive
integer, which is odd if £ = 2. Then any normal subgroup of index (¢ of GLo(Z/mZ) contains

Proof. By the Chinese remainder theorem, we may suppose without loss of generality that
m = p" is a prime power. If the assertion does not hold (by restricting the quotient map with
respect to the given subgroup) SLo(Z/p"7Z) would have a quotient of order a power of ¢. Since
this last quotient is solvable by Burnside’s theorem, we deduce that SLo(Z/p"Z) would have
a cyclic quotient of order ¢. By Lemma [83| we deduce that p = ¢ € {2,3} so by assumption
we are left with the case p = ¢ = 3, which is handled by Lemma t

The following two lemmas have been communicated to us by Hérmann:
Lemma 82. For n > 1, a normal subgroup of GL2(Z/3"7Z) whose index is a prime power

contains SLa(Z/3"Z).

Proof. Call N the normal subgroup, let H be the group of 2 x 2 matrices over Z/3Z and set
H' :=1d+3""'H < GLy(Z/3"Z). We reason by induction on n, the case n = 1 following
by a direct inspection. Let n > 1 and consider the following diagram in which we let IN,,_; be
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the reduction modulo 3"~ 1 of N:

NNHC N Np_1

| | £

H' > GLy(Z/3"Z) —— GL2(Z /3" '7)

| | |

H'/(N N H'Y > GLy(Z/3"Z) /N — GLay(Z/3"'Z) /Ny,

The group SL2(Z/3"7Z) acts on H' by conjugation: this action consists in the conjugation by
the matrix modulo 3 on H. It also acts on N N H' by conjugation. We can identify N N H’ with
a subgroup G of H: the action of SLy(Z/3Z) on G is then a subrepresentation with respect
to the action on H. So, if GG is a non-trivial proper subgroup of H, it consists of the scalar
matrices or of the matrices with trace 0.

By induction hypothesis, we have SL2(Z/3"!Z) C N,,_1.

If N N H' contains Id +3"~! Hj, we may conclude because of the exact sequence
Id +3" 1 Hy“——= SLy(Z/3"Z) — SLa(Z/3"17Z) .

Now suppose that N N H' is contained in the subgroup of the scalar matrices, which implies
that the intersection of this group with Id +3"~! Hj is trivial. We get

{Id mod3"}“——= N N SLy(Z/3"Z) — s SLo(Z /3" 17)

Id +3" L HyC— > SL,(Z/3"Z) — SLo(Z/3"17Z)

Thus the quotient map SLo(Z/3"Z) — SL(Z/3"'Z) would have a section, which is im-

possible because the element <(1) i) modulo 37! has order 3"~! while modulo 3", even

multiplied with an element in Id +3"~! Hy, it has order 3". O

Lemma 83. Let ¢ be a prime, and n > 1. If there is a normal subgroup of SLa(Z /0" 7)) whose
quotient is cyclic of prime order p, we must have p = { € {2, 3}.

Proof. Call N the normal subgroup. If £ > 5 thereisa o € (Z/¢"Z)* such that & # 1 mod /.
For any 5 € (Z/("Z) we have

G665 6D -6 )

Thus the matrix <(1) }) and similarly <1 ?) are commutators. Thus SLo(Z/("Z) is gen-

erated by commutators hence does not have any abelian non-trivial quotient. If £ € {2,3} we
proceed by induction on n. The case n = 1 follows by direct inspection. If n > 1, let Hy be
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the group of 2 x 2 matrices modulo ¢ with trace zero and consider

N'cC N Np_1

| | |

1+ Hy—— > SLy(Z/"Z) —— SLy(Z/0"~17)

| i i

(1 + "' Hy) /N'— SLy(Z/"Z) /N —> SLo(Z/"Z) /N,

where N’ = NN(1+¢""1Hy). By induction hypothesis, SLo(Z/¢"17Z)/N,,_1 is either Z /{7
or trivial. Moreover, the group Id +¢"~!Hy is isomorphic to (Z/¢Z)3 so the only possible
prime divisor for the order of SLo(Z/¢"Z)/N is ¢. O

In the following result, by ¢-part of an abelian extension we mean the largest subextension
which has degree a power of /.

Theorem 84. Let K be a number field and let E/K be an elliptic curve. Let P € E(K)
be a point of infinite order. Let ¢ be a prime, ¢ > 1 and n a positive integer coprime to (.
Suppose that the image of the modn'l torsion representation is GLo(Z/n'C7), where n/ is the
square-free part of n. Then we have

K (;P> NK(E[°n]) C Fyeaqn,p)(E[(])

where B is the product of the odd primes of bad reduction for E and Fyeq(n, py/ K is the {-part
of K(Cged(n,m))/ K. In particular, if additionally £ 1 p(ged(n, B)), we have

K (;ep) N K (El*n)) = K(E[]).

Proof. The second assertion is an immediate consequence of the first. Write K’ := K (E[(¢]).
The extension K (E%P) /K’ is Kummer of exponent dividing ¢¢. Hence, any subextension
is the compositum of finitely many cyclic extensions of degree dividing ¢°. Considering that
K (#£P) N K(E[t*n]) C K’ and that the degree of K (E[(°n])/K (E[¢*n]) is coprime to £,
we may suppose that n is square-free (and that n # 1, because the result is evident in that
case).

We know that K (K%P) /K’ is unramified at the primes that are not over ¢ nor the primes of
bad reduction for £ by [HSOO, Proposition C.1.5]. We claim that we have

K (ép) NK(E[°n)) C K'(¢)

with » = n. Then, if r is even, we may replace it by r/2, which is odd; if p is an odd prime
divisor of  and p 1 B, as Q((p)/Q is totally ramified at p, we may replace = by r/p. By
iteration, we obtain = gcd(n, B) and we conclude.

We are left to prove the claim. The Galois group of K (E[¢n])/ K’ is GL2(Z/nZ). By Lemma
a normal subgroup of index dividing ¢¢ of GL2(Z/nZ) contains SLy(Z/nZ) and hence (as
the determinant of a scalar matrix is related to the cyclotomic character) hence the claim holds
by the Galois correspondence. (Il



TWO NATURAL VARIANTS OF THE LANG-TROTTER CONJECTURE 49

Proposition 85. Let n be a positive integer, and suppose that for every prime { | n we have

K(E[[Uz(n)]) ﬂK(E[n/gW(n)]) =K and K <€Wl(n)P> NK(E[n]) = K(E[EW(”)])-

Then the image of the modn torsion-Kummer representation is the product of the images of
the mod¢*"™) torsion-Kummer representations.

Proof. By the coprimality of the degrees of the Kummer extensions and by assumption, we
have

K (Wl(mp) NK (MP) =K (@P) NK(E[n])) = K(E[™)).

Since this holds for every ¢ we deduce that the fields K (ﬁP) are linearly disjoint over K

if the same holds for the fields K (E[¢**("™]), which is true by assumption. O
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