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ABSTRACT. The Lang-Trotter conjecture on primitive points is the analogue for elliptic curves
of Artin’s conjecture on primitive roots. Indeed, if we have an elliptic curve E over Q with a
rational point P of infinite order, we may count the primes p of good reduction for which
(P mod p) generates E(Fp). In this work, we formulate and investigate two natural variants of
the Lang-Trotter conjecture. For one of them, we require that the group E(Fp) and its subgroup
⟨(P mod p)⟩ have the same exponent, namely the cyclic subgroup is as large as possible. We
conjecture that the set of primes p such that this condition holds admits a natural density, whose
value is a rational multiple of the product over all primes ℓ of the natural densities (which we
prove to exist and be rational) of those p such that the exponents of E(Fp) and ⟨(P mod p)⟩
have the same ℓ-adic valuation. Numerical examples support the validity of our conjectures.

1. INTRODUCTION

1.1. The Lang-Trotter conjecture. Let S be a set of primes, and call P the set of all primes.
The natural density of S is defined, provided that the limit exists, as

dens(S) := lim
x→∞

#{p ≤ x : p ∈ S}
#{p ≤ x : p ∈ P}

.

Artin’s conjecture on primitive roots predicts the natural density of the set of primes p for
which a given integer a is a primitive root (which means that (a mod p) generates F×

p ). It has
been proven by Hooley in 1967 under the Generalized Riemann Hypothesis (GRH). In 1976,
Lang and Trotter [LT77] formulated an elliptic-curve analogue of Artin’s conjecture. Let E/Q
be an elliptic curve and let P ∈ E(Q) be a point of infinite order. The Lang-Trotter conjecture
on primitive points predicts the natural density of the set of primes p (of good reduction for E)
such that P is primitive modulo p: this condition means that (P mod p) generates the group
E(Fp) and in particular it requires E(Fp) to be cyclic.

Let m > 1 be a square-free integer. We define densindex(m) as the natural density of the set
of primes p of good reduction for E such that, for all primes ℓ | m, the following holds:

(1) the index of the subgroup ⟨(P mod p)⟩ in E(Fp) is not divisible by ℓ .

We observe that this natural density exists by the Chebotarev density theorem because we may
study the condition via the modm torsion-Kummer representation for E/Q and P .

Conjecture (Lang-Trotter). The set of primes p of good reduction for E such that (P mod p)
generates E(Fp) admits a natural density. Moreover, there exists a square-free integer m > 1
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such that this natural density is the convergent product

densindex(m) ·
∏
ℓ ∤ m

densindex(ℓ).

Contrarily to Artin’s conjecture, the Lang-Trotter conjecture is not proven conditionally under
GRH. However, for example, adapting the method by Hooley for Artin’s conjecture, Gupta
and Murty proved in [GRM86] that if E/Q has CM by the ring of integers of an imaginary
quadratic field K, then under GRH the natural density in question exists, and it is positive
if 2 and 3 are inert in K, or K = Q(

√
−11). Moreover, there are unconditional results if

the point P is replaced by a subgroup of E(Q) of sufficiently large rank, see for example
[Mel15] (also for elliptic curves without CM). For one point P , the natural density is positive
only if there is a positive natural density of primes p such that the group E(Fp) is cyclic. The
related problem of cyclicity was studied by several authors: Serre [Ser78] showed under GRH
that the natural density of cyclic reductions (namely, of those p such that E(Fp) is cyclic)
exists, and it is positive if and only if not all 2-torsion points are defined over Q (and Murty
in [Mur83] proved the result unconditionally for curves with CM). We remark that Meleleo in
[Mel15] also considers the alternative condition that the quotient of E(Fp) by ⟨(P mod p)⟩ is
cyclic. Moreover, Jones, Pappalardi and Stevenhagen [JPS23] recently proved that there are
elliptic curves E/Q and points P ∈ E(Q) of infinite order such that for every prime p of good
reduction the point (P mod p) doesn’t generate E(Fp) (beyond the trivial examples where
e.g. E(Q) contains a point of order 2 and a point whose double is P ). Given the oncoming
book about Artin’s conjecture and the Lang-Trotter conjecture [MPe27] we have opted for not
presenting a complete historical account on them.

1.2. The Exponent LT conjecture and the Indivisibility LT conjecture. We formulate and
investigate two natural variants of the Lang-Trotter conjecture. Firstly, we require the cyc-
lic group generated by (P mod p) to be as large as possible, which means that the order of
(P mod p) equals the exponent of E(Fp). This is equivalent to requiring for all primes ℓ, de-
noting by ordℓ (respectively, expℓ) the ℓ-adic valuation of the order (respectively, exponent),
that we have

(2) ordℓ
(
P mod p

)
= expℓ(E(Fp)) .

Secondly, we require the possibly weaker condition that the point (P mod p) is indivisible,
meaning that it is not an ℓ-multiple in E(Fp) for the prime numbers ℓ that divide #E(Fp):

(3) ℓ | #E(Fp) ⇒ (P mod p) /∈ [ℓ]E(Fp) .

Our two conditions are equivalent to Condition (1) if E(Fp) is cyclic.

Call SE the set of primes of good reduction for E. For any finite non-empty set L of prime
numbers, the set of primes p ∈ SE such that Condition (2) (respectively, (3)) holds for every
ℓ ∈ L admits a natural density (see Theorems 3 and 1 respectively), that we call densexp(L)
(respectively, densindiv(L)). For a square-free integer, we define

densexp(m) := densexp({ℓ : ℓ | m})

(respectively, densindiv(m) := densindiv({ℓ : ℓ | m})). If S is a (not necessarily finite) non-
empty set of prime numbers, we similarly define the natural density densexp(S) (respectively,
densindiv(S)) — provided that this natural density exists. In the spirit of the Lang-Trotter
conjecture, we state:
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Conjecture (Exponent LT conjecture). Let S be a non-empty set of prime numbers. The
natural density densexp(S) exists and it is the infimum, by varying L over the finite non-empty
subsets of S, of densexp(L).

Conjecture (Indivisibility LT conjecture). Let S be a non-empty set of prime numbers. The
natural density densindiv(S) exists and it is the infimum, by varying L over the finite non-empty
subsets of S, of densindiv(L).

We point out that the existence of the natural density is part of the conjectures, as it is not clear
why the given set of primes should admit a density in case S is not finite: we would expect the
argument to involve deep results from analytic number theory.

We may take in particular S = P in the above conjectures. Notice that the upper natural
density (with the limit superior in place of the limit) is clearly bounded from above by the
given infimum. As Conditions (1), (2), and (3) go from strongest to weakest, we have

densindex(L) ≤ densexp(L) ≤ densindiv(L)

for every finite non-empty set L of primes (and, provided that the densities exist, the same
holds for an infinite set of primes).

Our results are based on an investigation of the ℓ-adic (respectively, adelic) torsion-Kummer
representation of E, considering the Galois action on the division points over P .

For the Indivisibility LT conjecture we prove the following:

Theorem 1. For any finite non-empty set L of primes, the natural density densindiv(L) exists
and it is a rational number. If ℓ is a sufficiently large prime, then the following holds: if E is
without complex multiplication,

densindiv(ℓ) = 1− ℓ4 − 2ℓ2 − ℓ+ 1

ℓ3(ℓ− 1)2(ℓ+ 1)

while if E has CM by an order contained in the imaginary quadratic field of discriminant −D,
then for ℓ big enough we have

densindiv(ℓ) =


1− 3ℓ2 − 5ℓ+ 1

2ℓ2(ℓ− 1)2
if
(−D

ℓ

)
= 1

1− ℓ2 + ℓ+ 1

2ℓ2(ℓ− 1)(ℓ+ 1)
if
(−D

ℓ

)
= −1.

If m is a positive integer, we denote by 1
mP the set of preimages of P in E(Q̄) under the

multiplication by m. Relying on the open image theorem for the adelic torsion-Kummer rep-
resentation (see Proposition 7), we have:

Theorem 2. Let E be without complex multiplication and let B be a positive integer such
that for every prime ℓ ∤ B the following holds: the extension Q(1ℓP ) is linearly disjoint from
Q( 1

mP ) for all positive square-free integers m coprime to ℓ. Then, assuming the Indivisibility
LT conjecture, we can write

densindiv(P) = densindiv({ℓ : ℓ | B}) ·
∏
ℓ ∤ B

densindiv(ℓ) .

Moreover, there exists a rational number Q such that

densindiv(P) = Q ·
∏
ℓ∈P

(
1− ℓ4 − 2ℓ2 − ℓ+ 1

ℓ3(ℓ− 1)2(ℓ+ 1)

)
.
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We also have a similar result if E has CM after extending the base field, see Theorems 22
and 24.

Our main result on the Exponent LT conjecture (which builds on the results in Section 5 and
on Proposition 28 by Hörmann and Lombardo) is the following:

Theorem 3. For any finite non-empty set L of primes, densexp(L) exists and it is a rational
number.

The proof of this result stems from explicit matrix counts in the image of the modulo ℓn torsion-
Kummer representation of E/Q and P by varying n ≥ 1. The intuition that certain quantities
stabilize or have a regular growth in n for n ≫ 0 is correct, and indeed we prove rationality
by showing that the natural density is a finite sum of rational terms and geometric series with
rational ratios. The matrix counts are of independent interest and, in particular, they can be
useful to understand the minimal denominator of the natural density (leading to a positive
lower bound for a non-zero natural density, and to the possibility of identifying the natural
density with great certainty by numerical experiments). Notice that it may be difficult to tell
whether a natural density is rational or not: for example, the generic natural density in Artin’s
conjecture is the Artin constant

∏
ℓ∈P(1−

1
ℓ2−ℓ

) and it is not known whether this is rational.

The natural density densexp(ℓ) for a prime ℓ is computed explicitly for certain images of the
ℓ-adic torsion-Kummer representation of E/Q and P , see Appendix B.1. If m is a positive
integer, we denote by Q( 1

m∞P ) the union of all fields Q( 1
mnP ) for n ≥ 1. We then have the

analogue of Theorem 2:

Theorem 4. Let E be without complex multiplication and let B be a positive integer such that
for every prime ℓ ∤ B the following holds: the extension Q( 1

ℓ∞P ) is linearly disjoint from
Q( 1

m∞P ) for all positive square-free integers m coprime to ℓ. Then, assuming the Exponent
LT conjecture, we can write

densexp(P) = densexp({ℓ : ℓ | B}) ·
∏
ℓ ∤ B

densexp(ℓ) .

Moreover, there exists a rational number Q such that

densexp(P) = Q ·
∏
ℓ∈P

(
1− ℓ5 − ℓ3 − ℓ2 − 1

ℓ7 − ℓ6 − ℓ3 + ℓ2

)
.

We also have a similar result if E has CM after extending the base field, see Theorems 50
and 52.

Similarly to the original Lang-Trotter conjecture, our two conjectures have been stated over Q
for concreteness, but they are meant for any number field. Moreover, they can also be con-
sidered for abelian varieties. In any case, we prove our results more generally for any number
field in place of Q.

The above conjectures and results also have an analogue if P is replaced by a subgroup Γ
of E(Q). Indeed, Condition (2) can be generalized by considering expℓ(Γ mod p), while
Condition (3) can be generalized as follows: a point in (Γ mod p) is an ℓ-multiple in E(Fp)
only if it is an ℓ-multiple in (Γ mod p).

Moreover, as observed by Baril Boudreau, many of the arguments work equally well for global
function fields and similar conclusions are expected to hold (given an analogue of [Ber88,
Theorem 1]).
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The overview of the paper is as follows: In Section 2, we give the necessary background on
torsion-Kummer representations. Of independent interest is our investigation in Section 2.6 of
the notion of ℓZ-rank for a matrix with entries modulo ℓn (for which we only accept linear
combinations of the columns with coefficients not all divisible by ℓ). We then provide some
counts of matrices with a given ℓZ-rank, considering the possible generic images of the torsion
representation modulo ℓn. In Section 3, we investigate Condition (3) and prove Theorems 1
and 2. Theorems 3 and 4 are proven in Sections 4 and 5. More precisely, in Section 4 we
prove the existence of densexp(L) while in Section 5 we show that this is rational, relying
on results from the first appendix. In Appendix A we count lifts from modulo ℓn to mod-
ulo ℓn+1 of matrices in GL2, Cartan groups and their normalizers, according to their ℓZ-rank.
In Appendix B we compute densexp(ℓ) for some possible images of the ℓ-adic torsion-Kummer
representation and we give numerical examples supporting the validity of our conjectures. Fi-
nally, in Appendix C (building on Lemmas 82 and 83 by Hörmann) we prove two results on
the torsion-Kummer extensions of elliptic curves, which are of independent interest and that
we have applied to investigate our examples.

Acknowledgements. We thank Félix Baril Boudreau, Fritz Hörmann, Davide Lombardo and
Pieter Moree for helpful discussions and especially for Proposition 28 and Lemmas 82 and 83.
This research was funded in part by the Luxembourg National Research Fund (FNR), grant
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4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from
this submission.
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2. PRELIMINARIES (TORSION AND KUMMER REPRESENTATIONS)

In this section we introduce the general notation of the paper and then describe the theoretical
framework of the torsion-Kummer representations. We have opted to focus on elliptic curves
for concreteness: the definitions and results which do not rely on the explicit description of
the image (up to a finite index) of the torsion representation also hold for abelian varieties,
straight-forwardly generalized and with the same proof.

2.1. Notation. The general notation that we make use of is collected here — grouping related
notions — for the convenience of the reader.

• We let K be a number field, and we fix an algebraic closure K̄. We denote by p a
prime of K, and we write kp for the residue field at p (fixing an algebraic closure k̄p).
All densities of primes of K mentioned in this paper are natural densities. For a set S
of primes of K, the natural density of S is defined, provided that the limit exists, as

dens(S) := lim
x→∞

#{p ∈ S : NK/Q(p) ≤ x}
#{p : NK/Q(p) ≤ x}

,

where NK/Q is the norm from K to Q. If L/K is a finite Galois extension of K and p
does not ramify in L, then we write Frobp for the conjugacy class of the Frobenius
elements at p.

https://alexandrebenoist.github.io
https://alexandrebenoist.github.io
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• We let ℓ be a prime number. We write Zℓ for the ring of ℓ-adic integers and Z/ℓnZ for
the ring of the integers modulo ℓn (for some positive integer n). We denote by vℓ the
ℓ-adic valuation defined for non-zero elements of Zℓ or Z/ℓnZ. If G is a group we let
expℓ(G) (respectively, ordℓ(G)) be the ℓ-adic valuation of the exponent (respectively,
the order) of G. We do not distinguish between the order of an element and the order
of the cyclic subgroup that it generates.

• We let E/K be an elliptic curve defined over K and we denote by SE the set of primes
of K that are of good reduction for E. We let P ∈ E(K) be a point of infinite order.
Then, if L is a non-empty set of prime numbers, we write densindex(L) (respectively,
densexp(L) and densindiv(L)) to mean the natural density – provided it exists – of
the subset of SE consisting of the primes p of K which, for every ℓ ∈ L, satisfy
Condition (1) (respectively, (2) and (3)), expressed similarly in the setting of prime
ideals. Moreover, if ℓ is fixed, we write Sexp for the subset of SE consisting of the
primes p for which expℓ(E(kp)) = ordℓ(P mod p) and also define its subset Sexp,n

with the condition expℓ(E(kp)) = ordℓ(P mod p) = n.
• We denote the semi-direct product of groups with the symbol ⋉. We denote by π1 the

projection onto the former group and π2 the projection onto the latter group.
• We denote by µ the normalized Haar measure.
• If R is a ring, we denote by GL2(R) the group of 2 × 2 invertible matrices with

coefficients in R (and we similarly define GL3(R)). If M is a matrix with entries in
Z/ℓnZ, we denote by rkℓZ(M) the ℓZ-rank of the matrix M (see Definition 13). If ℓ is
fixed, the identity matrix of GL2(Z/ℓnZ) is denoted by Idn.

• We usually denote by G a subgroup of GL2(Zℓ) ⋉ Z2
ℓ (for example, the image of the

ℓ-adic torsion-Kummer representation attached to E and P ). We then write G(n) for
the reduction of G modulo ℓn.

2.2. Torsion-Kummer representations of elliptic curves. We fix a number field K and an
elliptic curve E/K. We suppose that the Mordell-Weil group E(K) contains a point P of
infinite order, as this is necessary to formulate the Lang-Trotter conjecture and to consider
similar problems.

Fix some prime number ℓ. For every n ≥ 1 we choose an ordered basis for E[ℓn] such that
if N > n then the basis of E[ℓn] is the image of the basis of E[ℓN ] under multiplication
by ℓN−n. By taking the projective limit of these bases, we get an ordered Zℓ-basis of the Tate
module Tℓ(E). After having chosen an ordered basis for E[ℓn] we can identify this group with
(Z/ℓnZ)2. Then we can identify the group of automorphisms of E[ℓn] with GL2(Z/ℓnZ).
Similarly, we can identify the group of Zℓ-module automorphisms of Tℓ(E) with GL2(Zℓ).

Definition 5 (torsion representations). For every σ ∈ Gal(K̄/K) the restriction of σ to E[ℓn]
is, with the above identifications, a matrix Mn ∈ GL2(Z/ℓnZ). The group homomorphism
σ 7→ Mn is the torsion representation modulo ℓn. Similarly, by considering the Galois action
on Tℓ(E), we obtain the ℓ-adic torsion representation.

For every positive integer n we denote by 1
ℓnP the set of points P ′ ∈ E(K̄) such that[ℓn]P ′ = P

and by K( 1
ℓnP ) the field obtained by adding the coordinates of the points of 1

ℓnP to K. For
every positive integer n we fix a point Qn ∈ 1

ℓnP such that [ℓN−n]QN = Qn holds for all
N > n.

We now describe the torsion-Kummer representations (also called arboreal representations),
referring to [JR10] and [LP21] for a more detailed introduction to these representations.
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Definition 6 (torsion-Kummer representation modulo ℓn). The torsion-Kummer representa-
tion modulo ℓn is a group homomorphism that maps σ ∈ Gal(K̄/K) to the matrix M ′

n in
GL3(Z/ℓnZ) which is

M ′
n :=

(
Mn v⃗n
0 1

)
where Mn ∈ GL2(Z/ℓnZ) is the image of σ under the mod ℓn torsion representation, 0 is the
zero row vector with two entries and v⃗n is the column vector with two entries whose coordin-
ates are the coordinates of the torsion point σ(Qn)−Qn in the chosen ordered basis of E[ℓn].

The image of the torsion-Kummer representation modulo ℓn, by definition, is contained in a
group isomorphic to the semi-direct product

GL2(Z/ℓnZ)⋉ (Z/ℓnZ)2 .

Considering the projective limit of the torsion-Kummer representations modulo ℓn we obtain
the ℓ-adic torsion-Kummer representation, whose image is a subgroup of

GL2(Zℓ)⋉ (Zℓ)
2 .

2.3. On the image of the torsion representation. We first consider the possible images of
the ℓ-adic torsion representation for a prime number ℓ. We say that E/K doesn’t have com-
plex multiplication (abbreviated CM) if the endomorphism ring EndK̄(E) is isomorphic to Z.
Before considering the CM case, we recall some facts on the Cartan subgroups of GL2(Zℓ).
They are groups C(c,d) described by two suitably chosen parameters c, d ∈ Zℓ, see [LP17,
Propositions 10 and 11]. We have

C(c,d) =

{(
α dβ
β α+ cβ

)
: α, β ∈ Zℓ, vℓ(α(α+ cβ)− dβ2) = 0

}
and

C(c,d)(n) =

{(
αn dβn
βn αn + cβn

)
: αn, βn ∈ Z/ℓnZ, αn(αn + cβn)− dβ2

n /∈ ℓZ/ℓnZ
}

.

For ℓ odd, we can take c = 0 and the Cartan group is said to be ramified if ℓ | d (and unramified
otherwise). If ℓ ∤ d, then the Cartan subgroup is said to be split if d is a square in Z×

ℓ , otherwise
it is said to be nonsplit. For ℓ = 2, we can take c ∈ {0, 1}. If c = 0 the Cartan group is ramified
while if c = 1 the Cartan group is unramified (it is either split or nonsplit; in the former case
we may take d = 0 and in the latter case we may take d odd). If d ̸= 0, we call v := vℓ(d).

If C is a Cartan group, the normalizer N of C is the disjoint union of C and C ′ :=

(
1 c
0 −1

)
·C.

If C is split, we will use the diagonal model: it is isomorphic to{(
α 0
0 β

)
: α, β ∈ Z×

ℓ

}
.

The normalizer N of C is the disjoint union of C and C ′ :=

(
0 1
1 0

)
· C.

If E has CM by an order contained in the imaginary quadratic field of discriminant −D, then
for every ℓ ≫ 0 the image of the ℓ-adic torsion representation is isomorphic to a Cartan sub-
group of GL2(Zℓ) if the CM field of E is defined over K and to the normalizer of a Cartan
subgroup of GL2(Zℓ) if the CM field is not defined over K. The underlying Cartan subgroup
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is split if
(−D

ℓ

)
= 1 and nonsplit if

(−D
ℓ

)
= −1, see [Ser78, Section 4.5] and the proof of

[Zyw15, Lemma 7.3].

2.4. On the image of the torsion-Kummer representation. Call ρn (respectively, ρ′n) the
torsion (respectively, the torsion-Kummer) representation modulo n.

Proposition 7. There exists a positive integer N such that for every n ≥ 1 we have

[Wn ⋉ (Z/nZ)2 : Im(ρ′n)] = [Wgcd(n,N) ⋉ (Z/ gcd(n,N)Z)2 : Im(ρ′gcd(n,N))]

where the group Wn is as follows:

• if E is without CM, Wn = GL2(Z/nZ);
• if E has CM defined over K, then Wn = C(Z/nZ) for some Cartan subgroup scheme
C of GL2 defined over Z and independent of n;

• if E has CM not defined over K, we may take

Wn = ⟨C(Z/nZ), (M mod n)⟩
where (M mod n) is the reduction modulo n of a specific matrix M ∈ GL2(Z) such
that M2 is the identity, and C is as above.

Thus Im(ρ′n) is the preimage in Wn ⋉ (Z/nZ)2 of Im(ρ′gcd(n,N)) under the reduction modulo
gcd(n,N).

Proof. The result can be obtained by combining a result by Ribet [Rib79] (see [Ber88, Theorem
1]) with an appropriate open image theorem on the adelic torsion representation, as explained
in [PP24]. If E is without CM, we rely on Serre’s open image theorem [Ser72, Théorème 3].
If E has CM defined over K, the open image theorem is a Corollary in [Ser72, Section 4.5].
If E has CM not defined over K, references for the open image theorem are [CP22b, Lemma
2.2] and [LR22, Theorem 1.1]. □

Corollary 8. With the notation of Proposition 7, for all positive integers n coprime to N (in
particular, for all primes n ≫ 0) we have

[K(E[n]) : K] = #Wn and
[
K
( 1
n
P
)
: K(E[n])

]
= n2 .

Moreover, for every n ≥ 1, the positive integer

f(n) :=
n2[

K
(
1
nP
)
: K(E[n])

]
divides f(N).

Proof. If gcd(n,N) = 1, by the above theorem Im(ρ′n) is the preimage of Im(ρ′1) hence

Im(ρ′n) = Wn ⋉ (Z/nZ)2 .

The image of the torsion representation is then Wn and hence [K(E[n]) : K] = #Wn.
Moreover, the degree of K

(
1
nP
)
/K(E[n]) equals n2 because it is the size of the intersec-

tion of Im(ρ′n) with the subgroup of Wn ⋉ (Z/nZ)2 consisting of the elements whose first
component is the identity.

For the last assertion, we may suppose without loss of generality that n is a multiple of N
(because f(m) divides f(n) if m divides n), and we apply the above theorem to conclude. □
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2.5. Reduction maps. We keep the notation from Section 2.2. Let L/K be an extension of
number fields. If p ∈ SE and q is a prime of L lying over p, then q is a prime of good reduction
for the elliptic curve E ⊗K L, and (choosing kq ⊆ k̄p) we identify E(kp) with the subgroup
of E(kq) consisting of the points that are defined over kp. If p does not ramify in L, E(kp) is
the subgroup consisting of the elements that are fixed by the Frobenius element of Gal(kq/kp).

Remark 9. Consider some prime p ∈ SE that is not over ℓ. The reduction modulo p is in-
jective on the torsion points of order a power of ℓ, see [HS00, Theorem C.1.4]. Fix a positive
integer n. The prime p does not ramify in the Galois extension K( 1

ℓnP )/K by [HS00, Pro-
position C.1.5]. Let σ be in the conjugacy class Frobp of the Frobenius at p for the extension
K( 1

ℓnP )/K, and let Mn be the image of σ under the modℓn torsion representation. Then
with the reduction map modulo p we can identify E[ℓn](kp) with ker(Mn − Idn) (which is the
subgroup of E[ℓn](K̄) consisting of the points fixed by σ). In particular, the group structure of
ker(Mn − Idn) does not depend on the choice of σ inside Frobp.

In the following result we let T1,n, T2,n be the chosen ordered basis of E[ℓn]. Notice that the
statement does not depend on the choice of σ in the conjugacy class of the Frobenius at p in
Gal(K( 1

ℓnP )/K), nor on the choice of the point Qn.

Lemma 10. Fix p ∈ SE not over ℓ and let σ ∈ Frobp with respect to the Galois extension
K( 1

ℓnP )/K. The following conditions are equivalent:

(1) The point (P mod p) is ℓn-divisible in E(kp).
(2) There is Q ∈ 1

ℓnP such that (σ − Id)(Q) = 0.
(3) We have (σ − Id)(Qn) ∈ (σ − Id)(E[ℓn]).
(4) The last column of M ′

n, removing the last entry, is in the column space of Mn − Idn.
(5) For all N ≥ n, the ℓN−n multiple of the last column of M ′

N , removing the last entry,
is in the column space of MN − IdN .

Proof. (1) ⇔ (2). Suppose that there is R ∈ E(kp) such that [ℓn]R = (P mod p). Let q
be a prime of K( 1

ℓnP ) lying over p such that σ is the Frobenius automorphism for q. Let
Q0 ∈ 1

ℓnP . We have [ℓn](Q0 mod q) = (P mod p). Let T = R − (Q0 mod q) ∈ E(kq).
Then, [ℓn]T = 0 so T ∈ E[ℓn](kq). Since the reduction map redq : E[ℓn](K) → E[ℓn](kq)

is bijective (see Remark 9), we can lift T in S ∈ E[ℓn](K). We define Q = Q0 + S, which
is an element of 1

ℓnP such that (Q mod q) = R. Since R is defined over kp, it is fixed by the
Frobenius element of Gal(kq/kp) and we deduce that σ(Q) = Q. Conversely, if Q as in (2)
exists, then (Q mod q) ∈ E(kp) and it satisfies [ℓn](Q mod q) = (P mod p).

(2) ⇔ (3). If Q exists, then we write Q = Qn − T for some T ∈ E[ℓn], so the condition
(σ − Id)(Q) = 0 is equivalent to (σ − Id)(Qn) = (σ − Id)(T ). Conversely, if Qn satisfies
this last condition for some T ∈ E[ℓn], then the point Q := Qn − T is in 1

ℓnP and satisfies
(σ − Id)(Q) = 0.

(3) ⇔ (4). Call c⃗i (for i = 1, 2) the column vectors of Mn − Idn, and let v⃗ be the last column
of M ′

n, removing the last entry. We can identify these column vectors with the corresponding
torsion points (choosing the torsion point that, written in the basis T1,n, T2,n, has the vector
components as coordinates). So we have c⃗i = σ(Ti,n)− Ti,n and v⃗ = σ(Qn)−Qn.

Suppose that we can write v⃗ =
∑

i αic⃗i for some integers αi. Consider the torsion point
T :=

∑
i αiTi,n. Then we have

σ(Qn)−Qn = v⃗ =
∑
i

αic⃗i =
∑
i

αi(σ(Ti,n)− Ti,n) = σ(T )− T
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and hence (3) holds. Conversely, if T ∈ E[ℓn] is such that σ(T )− T = σ(Qn)−Qn, then we
can write T :=

∑
i αiTi,n for some integers αi and we deduce that

v⃗ = σ(Qn)−Qn = σ(T )− T =
∑
i

αi(σ(Ti,n)− Ti,n) =
∑
i

αic⃗i .

(5) ⇒ (4). This is immediate by setting N = n.

(1) and (4) ⇒ (5). We know that the point P̃ = [ℓN−n]P is such that (P̃ mod p) is ℓN -divisible
in E(kp). Applying (4) to P̃ and N (letting M̃ ′

N be the analogue of M ′
N for P̃ ) we deduce that

the last column of M̃ ′
N , removing the last entry, is in the column space of MN − IdN . We may

conclude because (removing the last entries) the last column of M̃ ′
N is the ℓN−n multiple of

the last column of M ′
N . □

We will be interested in the points in E(kp) that are indivisible in this group, namely that are
not ℓ-multiples for any prime ℓ dividing #E(kp).

Remark 11. The prime ℓ divides #E(kp) if and only if det(M1 − Id1) = 0 in Fℓ, see Re-
mark 9. Moreover, if there is no X ∈ E(kp) such that [ℓn]X = (P mod p), then the map
[ℓn] : E(kp) → E(kp) is not surjective: in particular, ℓ | #E(kp). This explains why the
notion of ℓ-divisibility is relevant only for primes dividing #E(kp).

Remark 12. We describe some special cases related to Lemma 10.

• Suppose that Mn = Idn (which means that E(kp) contains E[ℓn](k̄p)). In this case, the
point Qn is fixed by σ if and only if the last column of M ′

n, without the last entry, is zero.
Thus, (P mod p) is ℓn-divisible in E(kp) if and only if M ′

n is the identity matrix.

• Suppose that Mn − Idn is invertible. Then the last column of M ′
n, removing the last entry,

is of the form c⃗ =
∑

i αic⃗i for some integers αi, where the c⃗i’s are the columns of Mn − Idn.
Thus, the point Qn −

∑
i αiTi,n is fixed by σ and hence (P mod p) is ℓn-divisible in E(kp).

• Suppose that the finite abelian group ker(Mn − Idn) has one cyclic component of order ℓn

and possibly one additional component of strictly lower order. For a suitable choice of the
basis of E[ℓn] we have

M ′
n − Idn =

0 a1 b1
0 a2 b2
0 0 0

 .

Thus (P mod p) is ℓn-divisible in E(kp) if and only if
(
b1
b2

)
is a multiple of

(
a1
a2

)
.

2.6. The ℓZ-rank of matrices modulo ℓn. We fix a prime number ℓ and, if N > n are positive
integers, we occasionally identify Z/ℓnZ with the subgroup ℓN−nZ/ℓNZ of Z/ℓNZ.

Fix positive integers m and d. We say that the elements r1, . . . , rm ∈ (Z/ℓnZ)d are ℓZ-linearly
dependent if there are integers a1, . . . , am not all divisible by ℓ such that

a1r1 + a2r2 · · ·+ amrm = 0 .

Definition 13 (ℓZ-rank). The ℓZ-rank of a matrix M ∈ Matd×m(Z/ℓnZ), denoted by rkℓZ(M),
is the maximal number of columns of M that are ℓZ-independent in (Z/ℓnZ)d.

For example, the ℓZ-rank of a matrix M is 0 if and only if M is the zero matrix.

We identify M ∈ Matd×m(Z/ℓnZ) with a Z/ℓnZ-linear transformation (Z/ℓnZ)m → (Z/ℓnZ)d,
thus its kernel ker(M) is a subgroup of (Z/ℓnZ)m.
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Lemma 14. Let M ∈ Matd×d(Z/ℓnZ).

(1) The number of cyclic components of ker(M) having size ℓn is d− rkℓZ(M). In partic-
ular, the exponent of ker(M) equals ℓn if and only if rkℓZ(M) < d.

(2) The group structure of ker(M) determines and it is determined by the numbers

rkℓZ(M mod ℓh) h = 1, . . . , n .

Indeed, for 1 ≤ h < n the number of cyclic components of size ℓh is

rkℓZ(M mod ℓh+1)− rkℓZ(M mod ℓh) ,

while the number of cyclic components of size ℓn is d− rkℓZ(M).

Proof. Proof of (1). Let c⃗1, . . . , c⃗d be the columns of M and set r := rkℓZ(M). We consider
the matrices E that act as the following elementary column operations when multiplied on the
right: swapping two columns, multiplying a column by an integer coprime to ℓ, or adding to a
column the multiple of another column. Then M and ME have the same ℓZ-rank, so we can
perform the above elementary column operations without changing the ℓZ-rank. Moreover,
if x⃗ is a column vector in (Z/ℓnZ)d, then E−1x⃗ has the same order as x⃗ hence we can perform
the above elementary column operations without changing the number of cyclic components
of size ℓn of the kernel.

Consider a column vector x⃗ ∈ (Z/ℓnZ)d with components x1 to xd. We have x⃗ ∈ ker(M) if
and only if x1c⃗1+. . .+xdc⃗d = 0⃗. If r = d, this condition implies that ℓ divides all components
of x⃗ hence ker(M) has no element of order ℓn. Now suppose that r < d. With elementary
columnn operations as above, we may replace M by

(⃗b1| · · · |⃗br |⃗0| · · · |⃗0),

where the columns b⃗1, . . . , b⃗r are ℓZ-linearly independent columns from the original matrix M .
Then x⃗ ∈ ker(M) implies that x1 to xr are divisible by ℓ and there is no condition on the last
d− r components. We deduce that ker(M) has precisely d− r cyclic components of size ℓn.

Proof of (2). We can apply (1) to Mh := (M mod ℓh) for 1 ≤ h < n. Thus ker(Mh) has
d − rh components of size ℓh, where rh := rkℓZ(Mh). To conclude, it suffices to prove that
d − rh equals the number of cyclic components of ker(M) of size at least ℓh. We may equi-
valently show that ker(M) and ker(Mh) have the same number of vectors of order ℓh. Let
x⃗ ∈ (Z/ℓnZ)d have order ℓh, namely all entries of x⃗ are divisible by ℓn−h but they are not all
divisible by ℓn−(h−1). Then x⃗ can be identified with a vector x⃗h ∈ (Z/ℓhZ)d of order ℓh (divid-
ing by ℓn−h integer representatives for the components of x⃗). Conversely, starting with a vector
x⃗h ∈ (Z/ℓhZ)d of order ℓh (multiplying by ℓn−h integer representatives for the components of
x⃗h) we obtain a vector x⃗ ∈ (Z/ℓnZ)d of order ℓh. We conclude because we have x⃗ ∈ ker(M)
if and only if x⃗h ∈ ker(Mh). Indeed, using integer representatives, we have Mx⃗ = Mℓn−hx⃗h
and hence this vector is zero modulo ℓn if and only if Mx⃗h is zero modulo ℓh. □

For M ∈ Matd×d(Z/ℓnZ), the image of M is the column space of M and it is isomorphic to
(Z/ℓnZ)d/ ker(M), hence its group structure can be determined thanks to Lemma 14.

Remark 15. The ℓZ-rank of a matrix M = (c⃗1 |⃗c2) ∈ Mat2×2(Z/ℓnZ) can only be 0, 1, or 2.
We have rkℓZ(M) = 1 if and only if M is not the zero matrix and there is some k ∈ Z/ℓnZ
such that c⃗1 = kc⃗2 or c⃗2 = kc⃗1. By Lemma 14 (2), ker(M) contains a point of order ℓn if and
only if rkℓZ(M) ≤ 1.
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Remark 16. Let A+ =

(
A v⃗A
0 1

)
and B+ =

(
B v⃗B
0 1

)
be elements of Matd+1×d+1(Z/ℓnZ)

with A,B ∈ Matd×d(Z/ℓnZ), v⃗A and v⃗B column vectors, and 0 denoting the zero matrix in
Matd×1(Z/ℓnZ). Suppose that B is invertible, thus B+ is invertible with inverse

B−1
+ =

(
B−1 −B−1v⃗B
0 1

)
.

The matrices A and B−1AB have isomorphic kernels and hence by Lemma 14 for all 1 ≤ h ≤ n
the matrices (A mod ℓh) and (B−1AB mod ℓh) have the same ℓZ-rank. We have

B−1
+ A+B+ =

(
B−1AB w⃗

0 1

)
with w⃗ = B−1(A− Id)v⃗B +B−1v⃗A .

We deduce that v⃗A ∈ Im(A− Id) if and only if w⃗ ∈ Im(B−1AB− Id). Indeed, if v⃗ is a vector,
then v⃗A = Av⃗ − v⃗ implies w⃗ = (B−1AB − Id)(B−1v⃗B + B−1v⃗) while w⃗ = B−1ABv⃗ − v⃗
implies v⃗A = (A− Id)(Bv⃗ − v⃗B).

We remark that the effect on A+ of a base change in (Z/ℓnZ)d is the conjugation with an
invertible matrix B+ such that v⃗B = 0⃗. Moreover, replacing v⃗A by adding to it an element in
Im(A− Id) does not affect whether v⃗A ∈ Im(A− Id).

2.7. Matrix-counting. We fix a prime number ℓ: the densities densindiv(ℓ) and densexp(ℓ)
will be computed thanks to the Chebotarev density theorem by counting suitable matrices in
the image of the modℓ (respectively, modℓn for n ≥ 1) torsion-Kummer representations. We
introduce the notation and present some preliminary results.

Let G ⊆ GL2(Zℓ) ⋉ (Zℓ)
2. We define Gℓ to be one of the following groups: GL2(Zℓ), a

Cartan subgroup of GL2(Zℓ) or the normalizer of a Cartan subgroup of GL2(Zℓ). We suppose
that the first projection π1(G) is a finite index subgroup of Gℓ. We also suppose that G has
finite index in Gℓ ⋉ (Zℓ)

2. We let n0 be a positive integer such that the index of G(n0) in
Gℓ(n0) ⋉ (Z/ℓn0Z)2 is the same as the index of G in Gℓ ⋉ (Zℓ)

2. Moreover, we let dG = 4
if π1(G) has finite index in GL(Zℓ), and dG = 2 otherwise.

We equip G with its normalized Haar measure µ. For an element (M, v) ∈ G and a positive
integer n, we set (Mn, vn) := (M, v) mod ℓn ∈ G(n). Similarly, for a positive integer N ≥ n
and an element (MN , vN ) ∈ G(N) we set (Mn, vn) := (MN , vN ) mod ℓn. Then we call
(MN , vN ) a lift of (Mn, vn).

Definition 17. We define R(n) = #G(n), R1(n) = #π1(G)(n) and

R′
1(n) = #{Mn ∈ π1(G)(n) : rkℓZ(Mn − Idn) = 1}.

If n ≥ 2, we also define

R′′
1(n) = #{Mn ∈ π1(G)(n) : rkℓZ(Mn − Idn) = 1 and Mn ≡ Idn−1 modℓn−1}.

Proposition 18. The quantities R1(1) and R′
1(1) are as follows in the special case where

π1(G) = Gℓ:
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π1(G) R1(1) R′
1(1)

GL2(Zℓ) ℓ(ℓ− 1)2(ℓ+ 1) ℓ3 − 2ℓ− 1
Split Cartan (ℓ− 1)2 2ℓ− 4
Nonsplit Cartan ℓ2 − 1 0
Normalizer of a split Cartan 2(ℓ− 1)2 3ℓ− 5
Normalizer of a nonsplit Cartan 2(ℓ2 − 1) ℓ+ 1
Ramified Cartan (ℓ odd) ℓ(ℓ− 1) ℓ− 1
Normalizer of a ramified Cartan (ℓ odd) 2ℓ(ℓ− 1) 3ℓ− 1
(Normalizer of a) ramified Cartan (ℓ = 2) 2 1

Proof. The quantities R1(1) are well known or clear from the description of the Cartan sub-
groups provided in Section 2.3. As we are working modulo ℓ, the notion of ℓZ-rank coincides
with the usual notion of rank.

The case of GL2(Zℓ). For M1 ∈ GL2(Z/ℓZ), one has det(M1−Id1) = 1−tr(M1)+det(M1),
so the condition det(M1 − Id1) = 0 is equivalent to d = t − 1 where t = tr(M1) and
d = det(M1). By [CFRM05, Lemma 2.7], one has

#{M1 ∈ GL2(Z/ℓZ) : det(M1) = d, tr(M1) = t} = ℓ2 + ℓ

(
t2 − 4d

ℓ

)
.

The condition t = d+ 1 gives t2 − 4d = (d− 1)2, so

#{M1 ∈ GL2(Zℓ) : det(M1) = d, tr(M1) = t} =

{
ℓ2 + ℓ, d ̸= 1

ℓ2, d = 1.

Summing over d ∈ F×
ℓ and excluding the identity matrix from this count, one obtains

R′
1(1) = (ℓ− 2)(ℓ2 + ℓ) + ℓ2 − 1 = ℓ3 − 2ℓ− 1.

The (normalizer of a) split Cartan. We use the diagonal model. A matrix M1 =

(
α1 0
0 β1

)
in

C(1) has a 1-eigenvector if and only if α1 = 1 or β1 = 1. There are 2(ℓ−2) such matrices M1

different from the identity. If M1 =

(
0 β1
α1 0

)
∈ C ′(1), then det(M1−Id1) = 0 if and only if

1−α1β1 = 0, so there are ℓ−1 matrices M1 in C ′(1) such that rkℓZ(M1−Id1) = 1. Summing
the contributions from C(1) and C ′(1) gives R′

1(1) for the normalizer of a split Cartan.

The (normalizer of a) nonsplit Cartan. The case ℓ = 2 is a small calculation, so suppose that ℓ is

odd. For M1 =

(
α1 β1d
β1 α1

)
∈ C(1), as d is not a square modulo ℓ, we have rk(M1− Id1) = 2

except for the identity matrix. The matrices in C ′(1) are obtained by multiplying the matrices

in C(1) by
(
1 0
0 −1

)
so they are of the form M ′

1 =

(
α1 β1d
−β1 −α1

)
. As M ′

1 is not the identity,

the rank of M ′
1−Id1 equals 1 if and only if β2

1d = α2
1−1. For α1 = ±1 this gives β1 = 0. Else,

this equation has solutions if and only if
(
α2
1−1
ℓ

)
= −1. We know from [PP18, Theorem 1] that∑

a∈Z/ℓZ

(
a2−1

ℓ

)
= −1, so the number of α1’s such that

(
α2
1−1
ℓ

)
= −1 is ℓ−1

2 . Each value of α1

gives two possibilities for β1, so the number of elements of C ′(1) such that rk(M1 − Id1) = 1
is ℓ+ 1.



TWO NATURAL VARIANTS OF THE LANG-TROTTER CONJECTURE 14

The (normalizer of a) ramified Cartan. The case ℓ = 2 is a small calculation (in that case,

N(1) = C(1)), so suppose that ℓ is odd. For M1 =

(
α1 0
β1 α1

)
∈ C(1), M1 admits

a 1-eigenvector if and only if α1 = 1 (and then β1 = 0 gives the identity matrix). For

M1 =

(
α1 0
−β1 −α1

)
∈ C ′(1), M1 admits a 1-eigenvector if and only if α1 = ±1 (and

the matrix is not the identity). So R′
1(1) is ℓ− 1 for the Cartan subgroup and (ℓ− 1) + 2ℓ for

its normalizer. □

3. THE INDIVISIBILITY LT CONJECTURE

In this section we collect results related to the Indivisibility LT conjecture, which is based on
Condition (3).

Proposition 19. Let L be a finite and non-empty set of prime numbers, and call m the product
of the elements of L. The set of primes p ∈ SE such that Condition (3) holds for all ℓ ∈
L admits a natural density densindiv(L). This natural density is the proportion of Galois
automorphisms σ ∈ Gal(K( 1

mP )/K) satisfying the following condition for each ℓ ∈ L: σ

does not fix any torsion point of order ℓ, or σ does not fix any point in 1
ℓP . In particular,

densindiv(L) is a rational number whose minimal denominator divides m2 ·#GL2(Z/mZ).

Proof. The last assertion is because the degree of K( 1
mP )/K divides m2 ·#GL2(Z/mZ). For

each prime ℓ ∈ L, Condition (3) is equivalent to the condition

ℓ ∤ #E(kp) or (P mod p) /∈ [ℓ]E(kp) .

We consider the primes p ∈ SE that are not over the primes in L and do not ramify in
K( 1

mP )/K (we are excluding only finitely many primes of K). We let σ ∈ Gal(K( 1
mP )/K).

If σ ∈ Frobp, then we have ℓ ∤ #E(kp) if and only if σ doesn’t fix any torsion point of or-
der ℓ in E(K̄). Moreover, by Lemma 10 we have (P mod p) /∈ [ℓ]E(kp) if and only if σ
does not fix any point in 1

ℓP . The statement then follows from the Chebotarev density theorem
because the suitable primes p correspond (up to the finite set of excluded primes) to suitable
automorphisms σ. □

We are now going to prove Theorem 1. In fact, we will prove the following result for a gen-
eral number field K. For every sufficiently large prime ℓ the natural density densindiv(ℓ) is
a rational function in ℓ (where the polynomials in both the numerator and the denominator
have degree 4 (resp. 6) if E has CM (resp. non-CM). We deduce that the Euler product∏

ℓ≫0 densindiv(ℓ) is strictly positive.

Theorem 20. The natural density densindiv(ℓ) is the Haar measure of the set

{(M,v) ∈ G : rkℓZ(M1 − Id1) = 2 or v1 ̸∈ Im(M1 − Id1)}

and, if [K(E(1ℓP )) : K(E[ℓ])] = ℓ2, we also have densindiv(ℓ) = 1− R′
1(1)ℓ+1
R1(1)ℓ2

.

If E is without complex multiplication, then for every ℓ ≫ 0 we have

densindiv(ℓ) = 1− ℓ4 − 2ℓ2 − ℓ+ 1

ℓ3(ℓ− 1)(ℓ2 − 1)
.
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If E has complex multiplication by an order contained in the imaginary quadratic field of
discriminant −D, then for every ℓ ≫ 0 we have

densindiv(ℓ) =



1− 3ℓ2 − 5ℓ+ 1

2ℓ2(ℓ− 1)2
if the CM is not over K and

(−D
ℓ

)
= 1

1− ℓ2 + ℓ+ 1

2ℓ2(ℓ+ 1)(ℓ− 1)
if the CM is not over K and

(−D
ℓ

)
= −1

1− 2ℓ2 − 4ℓ+ 1

ℓ2(ℓ− 1)2
if the CM is over K and

(−D
ℓ

)
= 1

1− 1

ℓ2(ℓ+ 1)(ℓ− 1)
if the CM is over K and

(−D
ℓ

)
= −1 .

Proof. The fact that densindiv(ℓ) is the Haar measure of the given set follows from Propos-
ition 19. Now we may suppose that the degree of K(E(1ℓP ))/K(E[ℓ]) is maximal, which
holds in particular for all ℓ ≫ 0 by Corollary 8. Then, with the notation of Section 2.7 and
letting G be the image of the ℓ-adic torsion-Kummer representation, we have R(1) = R1(1)ℓ

2.
The number of matrices M1 ∈ π1(G)(1) such that rkℓZ(M1 − Id1) equals 1 (respectively, 2)
is R′

1(1) (respectively, R1(1)−R′
1(1)− 1). So the number of elements (M1, v1) ∈ G(1) such

that v1 ̸∈ Im(M1 − Id1) is the sum of ℓ2 − 1 (for M1 = Id1) and (ℓ2 − ℓ)R′
1(1) (for M1 − Id1

with ℓZ-rank 1). The number of elements (M1, v1) ∈ G(1) such that rkℓZ(M1 − Id1) = 2 is
ℓ2(R1(1)−R′

1(1)− 1). The natural density densindiv(ℓ) is then by Proposition 19(
ℓ2 − 1 + (ℓ2 − ℓ)R′

1(1) + ℓ2(R1(1)−R′
1(1)− 1)

)
ℓ2R1(1)

.

For ℓ ≫ 0 the fields K(E[ℓ])/K have maximal degree hence the explicit expressions for
densindiv(ℓ) follow from Proposition 18. □

Remark 21. Recall Proposition 19 and Lemma 10, and let M1 vary in the image of the modℓ
torsion representation of E. If for some M1 we have rkℓZ(M1 − Id1) = 2, then (as no point in
E[ℓ](K̄) of order ℓ is fixed by M1) we have densindiv(ℓ) > 0. Else, all matrices M1 fix at least
one point of order ℓ in E[ℓ](K̄). Then we have densindiv(ℓ) = 0 if and only if E(K) ∩ 1

ℓP
is non-empty: the latter condition is clearly sufficient, and it is necessary by the results on the
local-global principle for divisibility, see [Won00, Theorem 1].

Notice that, in the following result, the integer B exists by Proposition 7. Moreover, the rational
number Q could be zero, even if densindiv(ℓ) > 0 holds for every ℓ ∈ P . This is due to the so-
called entanglement between the torsion-Kummer extensions K(1ℓP )/K at different primes ℓ.
To showcase such entanglement phenomena we refer the reader to the related example by
Nathan Jones mentioned by Zywina in [Zyw11, Section 1].

We are now going to prove Theorem 2. In fact, we will prove the following result for a general
number field K. We call SplitCM (respectively, InertCM) the set of prime numbers that split
(respectively, are inert) in the CM field.

Theorem 22. Suppose that E is without CM, or that it has CM defined over K. We assume
the Indivisibility LT conjecture for S = P . Let B be a positive integer such that for every
prime ℓ ∤ B the following holds: the extension K(1ℓP ) is linearly disjoint from K( 1

mP ) for
all positive square-free integers m coprime to ℓ. Calling LB the set of prime divisors of B we
have

(4) densindiv(P) = densindiv(LB) ·
∏

ℓ∈P\LB

densindiv(ℓ) .
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Moreover, there exists a rational number Q such that the following holds: if E is without CM,
then

densindiv(P) = Q ·
∏
ℓ∈P

(
1− ℓ4 − 2ℓ2 − ℓ+ 1

ℓ3(ℓ− 1)2(ℓ+ 1)

)
while if E has CM defined over K, then we have

densindiv(P) = Q ·
∏

ℓ∈SplitCM

(
1− 2ℓ2 − 4ℓ+ 1

ℓ2(ℓ− 1)2

)
·

∏
ℓ∈InertCM

(
1− 1

ℓ2(ℓ+ 1)(ℓ− 1)

)
.

Proof. By our assumption on B and Proposition 19, for any finite set L′ of prime numbers that
do not divide B we have

densindiv(LB ∪ L′) = densindiv(LB) ·
∏
ℓ∈L′

densindiv(ℓ) .

By the Indivisibility LT conjecture with S = P , taking the infimum of both sides (by enlarging
L′) we obtain (4).

We observe that densindiv(LB) is a rational multiple of
∏

ℓ∈LB
densindiv(ℓ). Indeed, by Pro-

position 19 we are comparing two rational numbers and densindiv(LB) is zero if densindiv(ℓ) is
zero for some ℓ ∈ LB . We may then conclude because the rational number densindiv(ℓ) is a ra-
tional multiple of and (by the description of the torsion-Kummer representations in Section 2)
for ℓ ≫ 0 is equal to the non-zero generic natural density described in Theorem 20. □

In the following result we write densindiv,K′ to specify the base field K ′. Moreover, we write
densindiv,Split (respectively, densindiv,Inert) if we restrict to the primes of K that split (respect-
ively, are inert) in K ′.

Lemma 23. Suppose that E has CM that is not defined over K but over a quadratic extension
K ′ of K. Let S be a non-empty set of prime numbers and assume the Indivisibility LT conjec-
ture for S over K and over K ′. The set of primes p of K that split (respectively, are inert) in
K ′ and that satisfy Condition (3) for all ℓ ∈ S has a natural density and we have

densindiv(S) = densindiv,Split(S) + densindiv,Inert(S) .

Moreover, we have

densindiv,Split(S) =
1

2
densindiv,K′(S)

and the existence of one of these two densities implies the existence of the other.

Proof. Consider a prime p of K that splits in K ′ and a prime q of K ′ over p. Since the residue
fields at p and at q are the same, Condition (3) holds for p if and only if it holds for q. The last
assertion then follows by combining the following observations: the ideals p and q have the
same norm; there are precisely two primes of K ′ over p; the set of primes of K ′ that lie over
the primes of K that split completely in K ′ has natural density 1.

We may ignore the finitely many primes of K that ramify in K and hence partition the primes
of K according to whether they are split or inert in K ′. We observe that if two sets T ′ ⊆ T of
primes of K both have a natural density, then the complement T \T ′ also has a natural density
and we have dens(T \T ′) = dens(T )−dens(T ′). The existence of densindiv(S) follows from
the Indivisibility LT Conjecture over K. Thus we are left to prove that densindiv,Split(S) is
well-defined: this is a consequence of the last assertion because densindiv,K′(S) exists by the
Indivisibility LT Conjecture over K ′. □
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Theorem 24. Suppose that E has CM that is not defined over K but over a quadratic extension
K ′ of K. We assume the Indivisibility LT conjecture for S = P over K and over K ′. Then
there exist two rational numbers Q1 and Q2 such that

densindiv,Split(P) = Q1 ·
∏

ℓ∈SplitCM

(
1− 2ℓ2 − 4ℓ+ 1

ℓ2(ℓ− 1)2

)
·

∏
ℓ∈InertCM

(
1− 1

ℓ4 − ℓ2

)
and

densindiv,Inert(P) = Q2 ·
∏

ℓ∈SplitCM

(
1− 2ℓ− 1

ℓ(ℓ− 1)2

)
·

∏
ℓ∈InertCM

(
1− ℓ+ 1

ℓ(ℓ2 − 1)

)
.

Proof. The assertion for densindiv,Split follows by combining Lemma 23 for S = P and The-
orem 22 over K ′. Now we consider densindiv,Inert, which means that we have to restrict to
the Galois automorphisms σ ∈ Gal(K̄/K) that are not the identity on K ′. The analogue of
Proposition 7 consists then in replacing Wn by the complement of the Cartan group C(Z/nZ)
in Wn. This adelic open image theorem then guarantees that, for all ℓ ≫ 0, these restricted
mod ℓ representations are independent and their images are as large as possible. We conclude
(similarly as in the proof of Theorem 22) thanks to the explicit counts in Theorem 20, noticing
that suitable elements stemming from the complement of the Cartan subgroup in the normal-
izer can be computed as a difference, comparing the Cartan and its normalizer. For the case
where ℓ is split in the CM field we have(

2ℓ2(ℓ− 1)2 − (3ℓ2 − 5ℓ+ 1)
)
−
(
ℓ2(ℓ− 1)2 − (ℓ2 − 4ℓ+ 1)

)
= ℓ2(ℓ− 1)2 − (2ℓ2 − ℓ)

suitable elements out of ℓ2(ℓ− 1)2, and in the respective case

(2ℓ2(ℓ2 − 1)− (ℓ2 + ℓ+ 1))− (ℓ2(ℓ2 − 1)− 1) = ℓ2(ℓ2 − 1)− (ℓ2 + ℓ)

suitable elements out of ℓ2(ℓ2 − 1). The condition of splitting (respectively, being inert) in K ′

is independent of ℓ and for this reason we count for each ℓ the proportion of elements con-
sidering the Cartan group (respectively, its complement) and not the normalizer of the Cartan.
In other words, we should consider one single factor 1/2 as done in Lemma 23, as the modℓ
representations are not independent (this factor is included in Q1 and Q2 respectively). □

4. THE EXISTENCE OF THE NATURAL DENSITY FOR CONDITION (2)

We fix some prime ℓ and study the set Sexp of primes in SE , not over ℓ, such that Condition (2)
holds. We consider the partition Sexp = ∪n≥0Sexp,n, where

Sexp,n := {p ∈ S : ordℓ(P mod p) = expℓ(E(kp)) = n} .
Recall that ρℓn is the torsion representation modℓn.

Remark 25. The set Sexp,0 consists of the primes p ∈ SE , not over ℓ, such that ℓ ∤ #E(kp).
This set has a natural density dens(Sexp,0) which is a rational number because this is the
proportion of the matrices that do not fix any point in E[ℓ] of order ℓ (see Remark 9). As
already given in [Coj03, Theorem 1], we have

dens(Sexp,0) =
#{M1 ∈ Im(ρℓ) : rkℓZ(M1 − Id1) = 2}

#{M1 ∈ Im(ρℓ)}
.

Remark 26. For n ≥ 1, the set Sexp,n admits a natural density which is a rational num-
ber because, as we now explain, this set can be described in terms of the modℓn+1 torsion-
Kummer representation. Let Mn+1 ∈ Im(ρℓn+1) and write Mn := Mn+1 mod ℓn. Let
σ ∈ Gal(K( 1

ℓn+1P )/K) vary in the preimage of Mn+1 under ρℓn+1 . If p ∈ SE is not over ℓ
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and it is such that σ ∈ Frobp, then by Lemma 14 the condition expℓ(E(kp)) = n is equivalent
to the following:

rkℓZ(Mn − Idn) < 2 and rkℓZ(Mn+1 − Idn+1) = 2 .

Moreover, if expℓ(E(kp)) = n, then the condition ordℓ(P mod p) = n is equivalent to
[ℓn−1](P mod p) being not ℓn-divisible in E(kp). By applying Lemma 10 to [ℓn−1]P , this
is equivalent to

[ℓn−1](σ(Qn)−Qn) /∈ Im(Mn − Idn)

where we here extend σ to a Galois automorphism of K( 1
ℓnP )/K. Notice that the choice of

σ ∈ Frobp is irrelevant, see also Remark 16.

Consider the primes in SE not over ℓ, and fix a positive integer n. The set

{p : expℓE(kp) < n}

and hence its complement
{p : expℓ(E(kp)) ≥ n}

can be described in terms of the modℓn torsion representation of E/K and it admits a natural
density that is a rational number. the natural density is non-decreasing (for the complement,
non-increasing) with n.

Lemma 27 (Hörmann and Lombardo). Fix a prime number ℓ and positive integers n and d. A
monic polynomial f(x) of degree d with coefficients in Z/ℓnZ can have at most

d · ℓn(1−
1
d
)

roots in Z/ℓnZ.

Proof. Fix a monic polynomial g(x) ∈ Zℓ[x] that is congruent to f(x) modulo ℓn. Let K
be a splitting field of g(x) over Qℓ and write OK for the ring of integers of K and π for a
uniformiser. We consider the valuation vπ and also the ℓ-adic valuation vℓ. By construction,
g(x) factors in OK [x] as

∏d
i=1(x − xi) for certain xi ∈ OK . Note that every α ∈ Z/ℓnZ

such that f(α) = 0 lifts to β ∈ {0, 1, . . . , ℓn − 1} ⊂ OK with vπ(g(β)) ≥ vπ(ℓ
n) = ne,

where e := vπ(ℓ) is the ramification index of K over Qℓ. For each α we consider the lift β and
the index i such that vπ(β − xi) is maximal (selecting the smallest possible index) and hence
vπ(β − xi) ≥ ne

d . If two distinct roots α and α′ give the same index i, then we have

vπ(β − β′) = vπ((β − xi)− (β′ − xi)) ≥ min{vπ(β − xi), vπ(β
′ − xi)} ≥ ne

d
.

Since β, β′ are in Z, we have vπ(β − β′) = e · vℓ(β − β′) and hence β ≡ β′ (mod ℓ⌈n/d⌉).
In particular, there are at most ℓn−⌈n/d⌉ ≤ ℓn(1−1/d) roots α corresponding to a given index i.
We conclude because there are at most d possible values for i. □

The following result can be generalized to abelian varieties with a similar proof:

Proposition 28 (Hörmann-Lombardo). The natural density of the set

{p ∈ SE : expℓ(E(kp)) ≥ n}

goes to 0 when n goes to infinity.
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Proof. We may suppose that p is not over ℓ. By Remark 9 and by the Chebotarev density
theorem, we may equivalently show that #Hn/#Gn goes to 0 when n goes to infinity, where
Gn := Gal(K(E[ℓn])/K) and

Hn := {σ ∈ Gn | ∃T ∈ E[ℓn] \ E[ℓn−1] : σ(T ) = T} .
We identify Gn as usual with a subgroup of GL2(Z/ℓnZ) and we call G′

n the subgroup of
Gn consisting of the scalar matrices. By a result of Serre and Wintenberger (see the proof of
[LP21, Lemma 31]) we have #G′

n ≥ cℓn, where c is a positive constant that depends only
on E/K. We claim that in each coset of Gn modulo G′

n there are at most 2 · ℓn/2 elements M
for which there exists a primitive vector v ∈ (Z/ℓnZ)2\(ℓZ/ℓnZ)2 (corresponding to a torsion
point T ∈ E[ℓn] \ E[ℓn−1]) such that Mv = v. Summing over the cosets, we may conclude
because we have

#Hn ≤ (#Gn/#G′
n) · 2ℓn/2 ≤ #Gn · 2

c
· ℓ−n/2 .

To prove the claim, let M0 be a representative of the coset, and write M = αM0 for some
α ∈ (Z/ℓnZ)×. So the equation Mv = v becomes M0v = (α−1)v. As v is primitive, this
implies that α−1 is a root of the characteristic polynomial of M0 (see [Bro93, 17.3]), which is
monic and of degree 2. So we may conclude by Lemma 27. □

Remark 29. From Proposition 28 we deduce that the natural density dens(Sexp) exists and
that we have

dens(Sexp) =
∑
n≥0

dens(Sexp,n) .

If we consider Condition (2) for a finite non-empty set of primes L we similarly have that the
natural density densexp(L) exists. Moreover, calling ℓi for i = 1, . . . , r the elements of L and
letting ni vary in the set of the non-negative integers we have that densexp(L) is the sum of the
natural densities of the sets

{p ∈ SE : ordℓi(P mod p) = expℓi E(kp) = ni for all i} .

5. THE RATIONALITY OF THE NATURAL DENSITY FOR CONDITION (2)

The aim of this section is proving Theorem 3. To do so, we fix a prime number ℓ and show that
the natural density densexp(ℓ) is a finite sum of rational numbers and geometric series with
rational ratios.

5.1. Setup. We fix a prime number ℓ, and we call G the image of the ℓ-adic torsion-Kummer
representation. We define

E0 = {(M, v) ∈ G : rkℓZ(M1 − Id1) = 2}
and, for n ≥ 1, we define

En = {(M,v) ∈ G : rkℓZ(Mn+1−Idn+1) = 2, rkℓZ(Mn−Idn) ≤ 1, [ℓn−1]vn ̸∈ Im(Mn−Idn)}.

By Remarks 25 and 26, for every n ≥ 0 the natural density of Sexp,n equals µ(En), so by
Remark 29 we have

densexp(ℓ) =
∑
n≥0

µ(En) .

We make use of the notation introduced in Section 2.7. We let n0 be a positive integer such that
the index of G(n0) in Gℓ(n0)⋉ (Z/ℓn0Z)2 is the same as the index of G in Gℓ⋉ (Zℓ)

2, where
Gℓ = GL2(Zℓ) if E is without CM, and Gℓ is a Cartan subgroup of GL2(Zℓ) (respectively,
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the normalizer thereof) if E has CM that is defined (respectively, not defined) over K. We let
dG = 4 if E is without CM and dG = 2 otherwise.

Remark 30. We have

µ(E0) = 1− R′
1(1) + 1

R1(1)

as the number of M1 ∈ π1(G)(1) such that rkℓZ(M1 − Id1) = 2 is R1(1)−R′
1(1)− 1.

Proposition 31. If we have [K( 1
ℓn0 P ) : K(E[ℓn0 ])] = ℓ2n0 , then for any n ≥ n0 we have

µ(En) =
(R′

1(n)ℓ
dG −R′

1(n+ 1)) ℓ−1
ℓ + (ℓdG −R′′

1(n+ 1)− 1) ℓ
2−1
ℓ2

R1(n+ 1)
.

Proof. By the definition of n0 we deduce that [K( 1
ℓnP ) : K(E[ℓn])] = ℓ2n holds for all

n ≥ n0. The number of matrices Mn+1 ∈ π1(G)(n + 1) such that rkℓZ(Mn+1 − Idn+1) = 2
and rkℓZ(Mn − Idn) = 1 is R′

1(n)ℓ
dG −R′

1(n+ 1), for which the proportion of vectors vn ∈
π2(π

−1
1 (Mn)) such that [ℓn−1]vn ̸∈ Im(Mn− Idn) = 1 is ℓ−1

ℓ . There are ℓdG −R′′
1(n+1)−1

matrices Mn+1 ∈ π1(G)(n+1) such that rkℓZ(Mn+1− Idn+1) = 2 and Mn = Idn, for which
the proportion of vectors vn ∈ π2(π

−1
1 (Mn)) such that [ℓn−1]vn ̸∈ Im(Mn− Idn) is ℓ2−1

ℓ2
. □

Definition 32. For n ≥ n0 and for Mn0 ∈ π1(G)(n0), we define

(5) En,Mn0
= {(M, v) ∈ En : Mn ≡ Mn0 mod ℓn0} .

With the above notation, for n ≥ n0 we have

(6) µ(En) =
∑

Mn0∈π1(G)(n0)

µ(En,Mn0
).

Remark 33. If rkℓZ(Mn0 − Idn0) = 2, then µ(En,Mn0
) = 0 for n ≥ n0.

5.2. General strategy for computing µ(En,Mn0
). Let us fix a matrix Mn0 ∈ π1(G)(n0)

such that rkℓZ(Mn0 − Idn0) ≤ 1. In the next subsections, we will show that (µ(En,Mn0
)) is

a geometric sequence or the sum of two geometric sequences with rational ratios for n large
enough.

As a preliminary result, in Section 5.3 we show that for n ≥ n0 the proportion of vectors
vn ∈ π2(π

−1
1 (Mn)) such that [ℓn−1]n /∈ Im(Mn − Idn) doesn’t depend on n nor on Mn ≡

Mn0 mod ℓn0 if Mn0 ̸= Idn0 . Indeed, if n ≥ n0, the structure of [ℓn−1]π2(π
−1
1 (Mn)) is

known from the group [ℓn0−1]π2(π
−1
1 (Mn0)) and the proportion of suitable Kummer vectors

only depends on the structure of this group. A similar result is established for Mn0 = Idn0 .

Then, starting from Mn0 , we only have to count the matrices Mn+1 ∈ π1(G)(n+ 1) such that
Mn+1 ≡ Mn0 mod ℓn0 , rkℓZ(Mn+1 − Idn+1) = 2 and rkℓZ(Mn − Idn) ≤ 1. Since n ≥ n0,
the matrices Mn+1 ≡ Mn0 mod ℓn0 are in π1(G)(n+ 1).

• For GL2 and (normalizers) of unramified Cartan subgroups. For k ≥ n0 and rkℓZ(Mk−
Idk) = 1, we define L1 as the number of lifts Mk+1 of Mk modulo ℓk+1 such that
rkℓZ(Mk+1 − Idk+1) = 1 (see Section 5.4). If rkℓZ(Mn0 − Idn0) = 1, we obtain the
number of suitable matrices Mn+1 in terms of L1. It is crucial that L1 does not depend
on Mk nor on k. For the case Mn0 = Idn0 we partition over the first index n0 < k ≤ n
such that rkℓZ(Mk − Idk) = 1 if it exists.
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• For ramified Cartan subgroups. The reasoning is more involved, because L1 is not
well-defined: for instance, if C(n) is the reduction modulo ℓn of a ramified Cartan

subgroup C(0,d) and if Mn =

(
αn dβn
βn αn

)
in C(n) satisfy rkℓZ(Mn − Idn) = 1,

then the number of lifts Mn+1 of Mn such that rkℓZ(Mn+1 − Idn+1) = 1 depends
on vℓ(βn) and vℓ(αn − 1). Choosing a lift Mn+1 involves lifting a square root of d:
lifting square roots is more convenient if n is large enough, and we may assume this
condition without loss of generality. The case ℓ = 2 is different because we have
different numbers of lifts of the square roots (compare Remarks 43 and 47) and because
for ℓ = 2 it may not hold that ℓ divides the parameter d of the Cartan subgroup.

5.3. Counting Kummer vectors. Let (Mn, vn) be in the image of the torsion-Kummer rep-
resentation modulo ℓn. Fixing the matrix Mn, we count the vectors vn as such which are in the
image of Mn − Idn.

Lemma 34. Let (Mn+1, vn+1) ∈ GL2(Z/ℓn+1Z)⋉ (Z/ℓn+1Z)2 be such that Mn ̸= Idn and
rkℓZ(Mn+1 − Idn+1) = 1. Then we have

[ℓn]vn+1 ∈ Im(Mn+1 − Idn+1) ⇐⇒ [ℓn−1]vn ∈ Im(Mn − Idn).

Proof. Let c⃗n+1 be a column of Mn+1 − Idn+1 that generates the column space, and call c⃗n
its reduction modulo ℓn. If [ℓn]vn+1 = αc⃗n+1 holds for some integer α, then ℓ divides α
(else c⃗n is zero, contradicting that Mn ̸= Idn) and hence [ℓn−1]vn = α

ℓ c⃗n. Conversely, if
[ℓn−1]vn = βc⃗n holds for some integer β, then we have [ℓn]vn+1 = ℓβc⃗n+1. □

Lemma 35. Let n > n0 and let Mn ∈ π1(G)(n) be such that rkℓZ(Mn − Idn) = 1 and
Mn0 = Idn0 . Call CMn the proportion, in the set π2(π−1

1 (Mn)), of the elements vn such
that [ℓn−1]vn /∈ Im(Mn − Idn). Then CMn is either 0 or 1 − 1

ℓ . Considering the group
H := [ℓn0−1]π2(π

−1
1 (Idn0)) we have:

• if H is trivial (for example, if π2(π−1
1 (Id1)) is trivial), then CMn = 0;

• if H has two cyclic components, then CMn = 1− 1
ℓ ;

• if H has one cyclic component, then we have CMn = 0 if and only if H = Im(Mh − Idh),
where h > n0 is the smallest integer such that rkℓZ(Mh − Idh) = 1.
If N ≥ n and MN ∈ π1(G)(N) is a lift of Mn such that rkℓZ(MN − IdN ) = 1, then we have
CMN

= CMn .

Proof. Recall the identification of (ℓm−1Z/ℓmZ)2 with (Z/ℓZ)2 for any m ≥ 2. We know that
π2(π

−1
1 (Mn)) is the preimage under the multiplication by ℓn−n0 of π2(π−1

1 (Idn0)). Moreover,
[ℓn−1]π2(π

−1
1 (Mn)) and H are contained in π2(π

−1
1 (Id1)). By the assumption on the ℓZ-rank,

the group
WMn := Im(Mn − Idn) ∩ (Z/ℓZ)2

has ℓ elements. The ratio #(H ∩WMn)/#H is either 1 or 1
ℓ , leading to CMn = 0 or

CMn = 1− 1
ℓ respectively. If H is trivial (respectively, H = (Z/ℓZ)2), the ratio is 1 (respect-

ively, 1
ℓ ). If H has ℓ elements, we conclude by observing that WMn = WMh

= Im(Mh− Idh).

Finally, the last assertion follows from WMN
= WMn . □

Remark 36. Fix a subgroup H of (Z/ℓZ)2 with ℓ elements and, for an integer t ≥ n0 + 1,
consider the set H ′ of all Mt ∈ π1(G)(t) such that

Mt−1 = Idt−1, rkℓZ(Mt − Idt) = 1 and Im(Mt − Idt) = H .
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If π1(G) has finite index in GL2(Zℓ), then #H ′ = ℓ2 − 1. If π1(G) has finite index in the
normalizer of a split Cartan subgroup, then #H ′ = ℓ − 1 or #H ′ = 0 (and we are in the
former case if and only if H is the group generated by one of the two vectors of the basis
diagonalizing the Cartan). As we will see in Proposition 40, there is no matrix Mt above the
identity such that rkℓZ(Mt − Idt) = 1 for the normalizer of a nonsplit Cartan subgroup.

Remark 37. Let n ≥ n0 and set H := [ℓn0−1]π2(π
−1
1 (Idn0)). Call CId the proportion in the

set π2(π−1
1 (Idn)) of the elements vn such that [ℓn−1]vn ̸= 0. If H is trivial, then CId = 0.

If H has two components, then CId = ℓ2−1
ℓ2

. If H has one component, then CId = ℓ−1
ℓ . This is

because the set π2(π−1
1 (Idn)) is the preimage in (Z/ℓnZ)2 of π2(π−1

1 (Idn0)) under [ℓn−n0 ].

Definition 38. Let Mn0 ∈ π1(G)(n0) be such that rkℓZ(Mn0 − Idn0) = 1, and consider the
elements in π−1

1 (Mn0) ⊆ G(n0). We call cMn0
the proportion of the elements (Mn0 , vn0)

satisfying
[ℓn0−1]vn0 ̸∈ Im(Mn0 − Idn0) .

Let Mn0 be as in the above definition. If n > n0 and Mn ∈ π1(G) is a lift of Mn0 such
that rkℓZ(Mn − Idn) = 1, then by Lemma 34 the number cMn0

is also the proportion of the
elements (Mn, vn) in π−1

1 (Mn) ⊆ G(n) satisfying

[ℓn−1]vn ̸∈ Im(Mn − Idn) .

5.4. Lifts of matrices with a given ℓZ-rank. Let n ≥ n0. We consider Mn ∈ Mat2×2(Z/ℓnZ)
and its lifts Mn+1 ∈ Mat2×2(Z/ℓn+1Z). The ℓZ-rank of (Mn+1 − Idn+1) is at least that of
(Mn − Idn). As the ℓZ-rank is invariant under conjugation (see Remark 16), we may suppose
that the Cartan groups have a specific form. In particular, the split Cartan group will be the
group of invertible diagonal matrices.

Definition 39. Suppose that π1(G) has finite index in GL2(Zℓ), in an unramified Cartan sub-
group of GL2(Zℓ) or a normalizer thereof. If n ≥ n0 and Mn ∈ π1(G)(n) is such that
rkℓZ(Mn − Idn) = 1, we define L1 (respectively, L2) as the number of lifts Mn+1 of Mn to
π1(G)(n + 1) such that rkℓZ(Mn+1 − Idn+1) equals 1 (respectively, 2). If Mn = Idn, we
similarly define LId,1 (respectively, LId,2) as the number of lifts Mn+1 of Idn to π1(G)(n+1)
such that rkℓZ(Mn+1 − Idn+1) equals 1 (respectively, 2).

Proposition 40. With the notation of Definition 39, the numbers L1, L2 do not depend on n
nor on Mn, while LId,1, LId,2 do not depend on n. They are as follows:

Ambient group LId,1 LId,2 L1 L2

GL2(Zℓ) (ℓ+ 1)2(ℓ− 1) ℓ(ℓ+ 1)(ℓ− 1)2 ℓ3 ℓ4 − ℓ3

(Normalizer of) split Cartan 2(ℓ− 1) (ℓ− 1)2 ℓ ℓ2 − ℓ
(Normalizer of) nonsplit Cartan 0 ℓ2 − 1 ℓ ℓ2 − ℓ

Proof. The proof is based on the explicit computations for each case, which are collected in
Appendix A, and on the following observation: the total number of lifts is

(7) 1 + LId,1 + LId,2 and L1 + L2 respectively .

This number is ℓ4 for GL2(Zℓ), while in the other cases it is the cardinality of the tangent space
from [LP17], namely ℓ2. □
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5.5. Computation of µ(En,Mn0
) for GL2 and normalizers of unramified Cartan subgroups.

In this section, we suppose that π1(G) has finite index in GL2(Zℓ) or in the normalizer of an un-
ramified Cartan subgroup of GL2(Zℓ) and we consider the group H := [ℓn0−1]π2(π

−1
1 (Idn0)).

We make use of the rational number cMn0
from Definition 38. We compute the Haar measure

of the set En,Mn0
defined in (5).

Lemma 41. If H is cyclic, then for n ≥ n0 we have

µ(En,Mn0
) =


0 if rkℓZ(Mn0 − Idn0) = 2
cMn0

·L−n0
1 L2

R1(n0)ℓ
(1−n0)dG

· (L1ℓ
−dG)n if rkℓZ(Mn0 − Idn0) = 1

D1 · (ℓ−dG)n +D2 · (L−n0
1 (ℓ−dGL1)

n − (ℓ−dG)n) if rkℓZ(Mn0 − Idn0) = 0,

with D1 =
(1− 1

ℓ
)LId,2

R1(n0)ℓ
(1−n0)dG

and D2 =
(1− 1

ℓ
)(LId,1−#H′)L2

R1(n0)ℓ
(1−n0)dG (L1−1)

.

Proof. The first case follows from Remark 33. In the second case, the number of lifts Mn+1

in π1(G)(n + 1) of Mn0 such that rkℓZ(Mn+1 − Idn+1) = 2 and rkℓZ(Mn − Idn) = 1 is
Ln−n0
1 · L2. Moreover, #π1(G)(n+ 1) = R1(n0)ℓ

(n+1−n0)dG , so we may conclude. Finally,
suppose that Mn0 = Idn0 .

If H is trivial, we conclude because µ(En,Mn0
) = 0 for all n ≥ n0 by Remark 37. Now sup-

pose that H has ℓ elements. We partition En,Idn0
= E′

n,Idn0
∪E′′

n,Idn0
where the former subset

consists of the elements (M,v) such that M ≡ Idn modℓn. The set π1(E′
n,Idn0

)(n + 1) has

LId,2 elements and by Remark 37 the proportion of vn ∈ π2(π
−1
1 (Idn)) such that [ℓn−1]vn ̸= 0

is 1− 1
ℓ , so we have

µ(E′
n,Idn0

) =
(1− 1

ℓ )LId,2

R1(n0)ℓ(1−n0)dG
· (ℓ−dG)n = D1 · (ℓ−dG)n .

Now we study E′′
n,Idn0

and partition this set according to the largest r ∈ {n0, . . . , n− 1} such
that M ≡ Idr modℓr. The number of lifts of Idr to a matrix Mr+1 such that rkℓZ(Mr+1 −
Idr+1) = 1 and Im(Mr+1 − Idr+1) ̸= H is LId,1 − #H ′, where H ′ was introduced in
Remark 36. The number of lifts Mn+1 of Mr+1 such that rkℓZ(Mn+1 − Idn+1) = 2 and
rkℓZ(Mn − Idn) = 1 is Ln−(r+1)

1 L2. In the set π2(π−1
1 (Mn)), the proportion of elements vn

that satisfy [ℓn−1]vn ̸∈ Im(Mn − Idn) is 1 − 1
ℓ by Lemma 35 (recall that for elements such

that Im(Mr+1 − Idr+1) = H , this proportion is 0). We may conclude because we have

µ(E′′
n,Idn0

) =

(1− 1
ℓ )

n−1∑
r=n0

(LId,1 −#H ′)L
n−(r+1)
1 L2

R1(n0)ℓ(n+1−n0)dG
= D2(L

−n0
1 (ℓ−dGL1)

n − (ℓ−dG)n).

□

Lemma 42. If H is not cyclic, then for n ≥ n0 we have

µ(En,Mn0
) =


0 if rkℓZ(Mn0 − Idn0) = 2

ℓ−1
ℓ

·L−n0
1 L2

R1(n0)ℓ
(1−n0)dG

· (L1ℓ
−dG)n if rkℓZ(Mn0 − Idn0) = 1

LId,2
ℓ2−1

ℓ2
+LId,1L2

ℓ−1
ℓ

(L
n−n0
1 −1)/(L1−1)

R1(n0)(ℓ
dG )n−n0+1 if rkℓZ(Mn0 − Idn0) = 0
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and, for every h ≥ 0, we have

µ(En0+h) =
LId,2

ℓ2−1
ℓ2

+R′
1(n0)L2

ℓ−1
ℓ Lh

1 + LId,1L2
ℓ−1
ℓ (Lh

1 − 1)/(L1 − 1)

R1(n0)(ℓdG)h+1
.

Proof. The case rkℓZ(Mn0 − Idn0) = 2 still follows from Remark 33. For Mn0 such that
rkℓZ(Mn0 − Idn0) = 1, we may argue as in the previous lemma with cMn0

= ℓ2−ℓ
ℓ2

= ℓ−1
ℓ .

Now suppose that Mn0 = Idn0 . There are LId,2 lifts Mn+1 ∈ π1(G)(n + 1) such that
rkℓZ(Mn+1 − Idn+1) = 2 and Mn = Idn. In the set π2(π−1

1 (Idn)), the proportion of ele-
ments vn such that [ℓn−1]vn ̸= 0 is ℓ2−1

ℓ2
by Remark 37. Now fix n0 ≤ r < n. The number of

matrices Mn+1 ∈ π1(G)(n + 1) such that r is the largest integer such that Mr ≡ Idr modℓr

is LId,1L
n−r−1
1 L2 (observe that

∑n−1
r=n0

Ln−r−1
1 = (Ln−n0

1 − 1)/(L1 − 1)). For these ele-
ments Mn+1, the proportion of vn ∈ π2(π

−1
1 (Mn)) such that [ℓn−1]vn ̸∈ Im(Mn − Idn) is

ℓ−1
ℓ by Lemma 35.

To obtain µ(En0+h), we sum µ(En0+h,Idn0
) and µ(En0+h,Mn0

) by varying Mn0 such that
rkℓZ(Mn0 − Idn0) = 1, the number of such matrices being R′

1(n0). □

5.6. Computation of µ(En,Mn0
) for normalizers of ramified Cartan subgroups, ℓ odd. In

this section ℓ is odd, and π1(G) has finite index in the normalizer of a ramified Cartan subgroup.
Let

C =

{(
α dβ
β α

)
: vℓ(α

2 − dβ2) = 0

}
be a ramified Cartan subgroup of GL2(Zℓ) with ℓ | d. As in Section 2.3, we call v := vℓ(d).
Let C ′ be the complement of C in its normalizer N . We recall that C(n) and C ′(n) are defined
as the reductions of C and C ′ modulo ℓn. We let Mn0 ∈ π1(G)(n0).

Remark 43. Write d = d′ℓ2ν for some positive integer ν and let m > 2ν. Suppose that d′

mod ℓ is a non-zero square. Let k mod ℓm be a square root of d mod ℓm. Let ±s be the two

square roots of d′ in Zℓ and write s =
+∞∑
i=0

siℓ
i. With the correct sign choice we may write

k = ℓν

(
m−2ν−1∑

i=0

siℓ
i +

m−ν−1∑
i=m−2ν

aiℓ
i

)
where the coefficients ai can be arbitrarily chosen (because k2 is a multiple of ℓ2ν). Suppose
that there is m− 2ν ≤ t ≤ m− ν − 1 such that at ̸= st and suppose that t is minimal. Then
all lifts of k modulo ℓt+2ν are square roots of d mod ℓt+2ν while no lift of k modulo ℓt+2ν+1

is a square root of d mod ℓt+2ν+1. Let N > m + ν. If k ≡ ℓνs mod ℓm then the amount of
lifts of k modulo ℓN such that k2 ≡ d mod ℓN equals ℓν (choosing a lift consists in choosing
coefficients ai for N − 2ν ≤ i ≤ N − ν − 1). Among those, there are ℓν−1 lifts that can be
lifted modulo ℓN+1 keeping this property (because this amounts to the coefficient aN−2ν being
sN−2ν).

Lemma 44. Suppose that rkℓZ(Mn0 − Idn0) = 1, and write

Mn0 − Idn0 =

(
αn0 − 1 dβn0

βn0 αn0 − 1

)
.

There is a rational constant DMn0
such that µ(En,Mn0

) = DMn0
· ℓ−n for all n ≥ n0 such

that n > vℓ(βn0) + v.
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Proof. If Mn0 ∈ C ′(n0), then for all n ≥ n0 we have

µ(En,Mn0
) = cMn0

ℓn−n0(ℓ2 − ℓ)

#π1(G)(n+ 1)
=

(
cMn0

(ℓ2 − ℓ)ℓn0−2

R1(n0)

)
ℓ−n .

This is because for n0 ≤ n′ ≤ n the number of lifts Mn′+1 ∈ C ′(n′) of an element Mn′ in
C ′(n′) such that rkℓZ(Mn′+1 − Idn′+1) = rkℓZ(Mn′ − Idn′) = 1 is equal to ℓ (see Proposi-
tion 58).

If Mn0 ∈ C(n0), set b := vℓ(βn0) < n0. Let n1 be such that b < n1 − v (in particular,
d ̸≡ 0 mod ℓn1−b). Then, En,Mn0

is the disjoint union of En,Mn1
by varying Mn1 in the finite

set of lifts of Mn0 modulo ℓn1 when n ≥ n1. We can write

Mn1 − Idn1 =

(
αn1 − 1 dβn1

βn1 αn1 − 1

)
with vℓ(βn1) = b .

Let n ≥ n1 and consider a lift Mn ∈ C(n) of Mn1 (obtained with lifts αn, βn of αn1 , βn1) such
that rkℓZ(Mn − Idn) = 1. By comparing the valuations of the elements, its second column
must be (kn mod ℓn) times the first for some suitable choice of kn. Remark that knowing
(αn, βn) is equivalent to knowing (kn mod ℓn−b, βn) and we must have k2n ≡ d mod ℓn−b.

We now investigate how to lift Mn to Mn+1 ∈ C(n+ 1) such that rkℓZ(Mn+1 − Idn+1) = 1.
We choose arbitrarily a lift βn+1 of βn and choose (if it exists) a lift kn+1 of kn such that
k2n+1 ≡ d mod ℓn+1−b .

Set m := n − b and m1 := n1 − b, which are positive by the choice of n1. We apply
Remark 43 to lift kn1 mod ℓm1 . With the notation of this remark, if ai ̸= si holds for some i,
then µ(En,Mn1

) = 0 holds for all sufficiently large n. Now we may suppose that kn1 ≡
ℓνs mod ℓm1 .

We can lift βn1 to βn+1 in ℓn−n1+1 possible ways while we can lift kn1 in (ℓ − 1)ℓν−1 ways
such that rkℓZ(Mn − Idn) = 1 and rkℓZ(Mn+1 − Idn+1) = 2 (in other words, the lift of kn1

is suitable modulo ℓm but not modulo ℓm+1). We deduce that µ(En,Mn1
) = D′

Mn1
ℓ−n for a

rational constant D′
Mn1

which doesn’t depend on n. We may conclude because

µ(En,Mn0
) =

∑
Mn1≡Mn0 mod ℓn0

µ(En,Mn1
) =

 ∑
Mn1≡Mn0 mod ℓn0

D′
Mn1

 · ℓ−n .

□

Lemma 45. There are two rational constants DIdn0
and D′

Idn0
such that for every n ≥ n0 we

have
µ(En,Idn0

) = DIdn0
· ℓ−2n +D′

Idn0
· ℓ−n .

Proof. Consider the matrices Mn ∈ π1(G)(n) such that Mn ≡ Idn0 modℓn0 . If rkℓZ(Mn −
Idn) = 1, then there is a smallest integer n′ ≤ n such that we have

Mn − Idn ≡
(

0 0
βn′ 0

)
mod ℓn

′
for some βn′ ̸= 0

and the proportion (that we call c′) of vn ∈ π2(π
−1
1 (Mn)) such that [ℓn−1]vn /∈ Im(Mn −

Idn) does not depend on n ≥ n0 and does not depend on Mn. The former property follows
from Lemma 34, the latter then is because the vectors vn′ such that [ℓn

′−1]vn′ ∈ Im(Mn′ −
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Idn′) are the preimage under the multiplication by ℓn
′−n0 of the vectors

(
ℓx
y

)
∈ (Z/ℓn0Z)2

while π2(π−1
1 (Mn′)) is the preimage under the multiplication by ℓn

′−n0 of π2(π−1
1 (Idn0)) (the

dependency on n′ disappears in the ratio).

For the case Mn = Idn, the proportion (that we call cId) of vn ∈ π2(π
−1
1 (Idn)) such that

[ℓn−1]vn ̸= 0 does not depend on n ≥ n0.

Then it remains to study the set of elements Mn+1 ∈ π1(G)(n+ 1) such that

rkℓZ(Mn+1 − Idn+1) = 2, rkℓZ(Mn − Idn) ≤ 1, Mn0 = Idn0 .

Write Mn+1 =

(
αn+1 dβn+1

βn+1 αn+1

)
and set b := vℓ(βn+1). The number of matrices Mn+1

as requested such that Mn = Idn (which means b = n) is ℓ2 − ℓ. Now we suppose that
rkℓZ(Mn − Idn) = 1 and we count the matrices Mn+1 such that b = n0 + h for 0 ≤ h ≤
n− n0 − 1.

Define S(n) as the number of matrices An ∈ π1(G)(n) such that rkℓZ(An − Idn) = 1
and An0 = Idn0 . The number of matrices Mn+1 ∈ π1(G)(n + 1) such that rkℓZ(Mn+1 −
Idn+1) = 2, rkℓZ(Mn − Idn) = 1 and Mn0 = Idn0 is then equal to S(n) · ℓ2 − S(n+ 1).

We first fix b < n − v. If v is odd or dℓ−v mod ℓ is not a square, then there are no matrices
as requested. Else, we are in the Case (3) of Lemma 60 (where a = v/2 + n0 + h), so there
are 2ℓv/2+n−n0−h−1(ℓ − 1) matrices. Summing over all b < n − v (which means 0 ≤ h <
n− v − n0) gives the quantity S3(n), where

S3(n) ∈ {0, 2ℓn+v/2−n0(1− ℓ−n+v+n0)} .

Now consider all b ≥ n− v (which means n− v−n0 ≤ h < n−n0). The number of matrices
that fall in Case (1) of Lemma 60 is then S1(n) = ℓv − 1. The matrices that fall in Case (2) of
Lemma 60 are then

S2(n) =

n−1−n0∑
h=n−v−n0

n−1∑
a=⌈(n+n0+h)/2⌉

ℓ2n−2−(a+n0+h)(ℓ− 1)2 =
v∑

i=1

(ℓ− 1)ℓ⌊3i/2⌋−1 + 1− ℓv .

We deduce that S(n) = S1(n) + S2(n) + S3(n) is either a rational number independent of n
or it is of the form q1 + q2ℓ

n for some fixed rational numbers q1 and q2. We also know that
#π1(G)(n+ 1) = #π1(G)(n0) · ℓ2(n+1−n0). We may then conclude because

µ(En,Idn0
)(#π1(G)(n0))

−1ℓ−2(n+1−n0) · (c′(S(n)ℓ2 − S(n+ 1)) + cId(ℓ
2 − ℓ)) .

□

5.7. Computation of µ(En,Mn0
) for normalizers of ramified Cartan subgroups, ℓ = 2. In

this section, we let π1(G) be a finite index subgroup in the normalizer of a ramified Cartan
subgroup C with ℓ = 2. The parameter d from Section 2.3 can be even or odd. If d is even, we
can mimic some arguments of Lemma 44.

Lemma 46. There are two rational constants DIdn0
and D′

Idn0
such that for n ≥ n0 + 3 we

have
µ(En,Idn0

) = DIdn0
· 2−2n +D′

Idn0
· 2−n .
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Proof. Suppose first that d is even. We may reason as for Lemma 45, applying Lemma 62 in
place of Lemma 60: the only quantity that changes is

S3(n) = 2n−n0+v/2+3 − 23v/2+w w ∈ {3, 4, 5}

because Case (3) of Lemma 60 is replaced by Cases (3.1), (3.2), and (3.3) of Lemma 62 (and
the last two cases may occur or not depending on d).

Now suppose that d is odd. Consider the matrices Mn ∈ π1(G)(n) such that Mn0 = Idn0 .
The contribution to µ(En,Idn0

) given by Mn = Idn is cId · 2/#π1(G)(n+ 1), where cId is as
in the proof of Lemma 45 and #π1(G)(n + 1) = #π1(G)(n0) · 22(n+1−n0). Now we may
suppose that rk2Z(Mn − Idn) = 1. By inspecting the four lifts of Idn′−1 modulo 2n

′
, there is

a smallest integer n′ ≤ n such that we have

Mn′ − Idn′ =

(
2n

′−1 2n
′−1d

2n
′−1 2n

′−1

)
.

Since the matrices Mn′ − Idn′ are of the same form by varying n′, as in Lemma 45 we deduce
that, fixing Mn, the proportion of (Mn, vn) ∈ G(n) such that [2n−1]vn ̸∈ Im(Mn − Idn)

is a constant c′ independent of n and Mn. We let Ẽn,Idn0
be the set of elements Mn+1 ∈

π1(G)(n+ 1) such that

rk2Z(Mn+1 − Idn+1) = 2, rk2Z(Mn − Idn) = 1 and Mn0 = Idn0 .

We have #Ẽn,Idn0
= 4S(n) − S(n + 1), where S(n) is as in the proof of Lemma 45 (with

the notation of that lemma, we partition the matrices according to b := v2(βn)). Moreover, we
have

µ(En,Idn0
) = (π1(G)(n0))

−1 · 2−2(n+1−n0) · (c′ ·#Ẽn,Idn0
+ 2cId).

From the proof of Lemma 65, the number of matrices Mn such that rk2Z(Mn − Idn) = 1 and
v2(βn) = b is 1 if n − b = 1, is 4 if n − b = 2 and d ≡ 1 mod 4, and is 2n−b+1 if n − b ≥ 3
and d ≡ 1 mod 8. So we have, with a case distinction depending only on d and on whether
n− n0 is 0, 1, 2, or at least 3,

S(n) ∈ {0, 1, 5, 5 + 2n+2(2−n0 − 2−n+2)} .

We may conclude because for n ≥ n0 + 3 the number S(n) is of the form q1 + q2 · 2n where
q1, q2 are rational numbers that are independent of n. □

Remark 47. Suppose that d = 22νd′, where d′ ≡ 1 mod 8 and ν ≥ 0 is an integer. Let d′0
be one of the two 2-adic square roots of d′. For every m ≥ 3, 1 admits four square roots
modulo 2m (namely, ±1 and ±1+2m−1 modulo 2m) and only ±1 can be lifted to square roots
of 1 modulo 2m+1.

If ν = 0, the four square roots of d modulo 2m are ±d′0 mod 2m, (d′0 mod 2m)(±1 + 2m−1).
Only the first two can be lifted to square roots modulo 2m+1. If ν ≥ 1 and m − 2ν ≥ 2, the
square roots d̂ of d modulo 2m are of the form

d̂ = ±2νd′0

(
1 + εm−2ν−12

m−2ν−1 +
m−ν−1∑
i=m−2ν

ai2
i

)
mod 2m

where εm−2ν−1 ∈ {0, 1} and the coefficients ai ∈ {0, 1} can be chosen arbitrarily. We deduce
that d̂ can be lifted to a square root modulo 2m+1 if and only if εm−2ν−1 = 0. Suppose that
this last condition holds and that there is some minimal integer t with m−2ν ≤ t ≤ m−ν−1
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such that at = 1. Then, all lifts of d̂ modulo 2t+2ν+1 are square roots of d mod 2t+2ν+1 while
no lift of d̂ modulo 2t+2ν+2 is a square root of d mod 2t+2ν+2.

Lemma 48. If d is even and Mn0 ̸= Idn0 , there is a rational constant DMn0
such that for

n ≫ 0 we have µ(En,Mn0
) = DMn0

· 2−n.

Proof. Suppose first that Mn0 ∈ C ′(n0). We refer to the proof of Lemma 64.

If v2(βn0) < v2(αn0 + 1), then there is kn0 such that

(αn0 , βn0) =

(
1 + k2n0

d

1− k2n0
d
,

2kn0

1− k2n0
d

)
and the lifts Mn of Mn0 such that rk2Z(Mn − Idn) = 1 correspond to lifts kn of kn0 . So there
are 2n+1−n0 matrices Mn+1 ∈ π1(G)(n + 1) lifting Mn0 such that rk2Z(Mn − Idn) = 1 and
rk2Z(Mn+1 − Idn+1) = 2.

If v2(βn0) = 0, then α2
n0

= 1 + dβ2
n0

and, for n ≥ n0, a lift Mn of Mn0 satisfies rk2Z(Mn −
Idn) = 1 if and only if α2

n = 1 + dβ2
n. Set n1 := max(3, n0) and take Mn1 such that

rk2Z(Mn1 − Idn1) = 1 (if there is no such Mn1 , then µ(En,Mn0
) = 0 for n ≥ n1). For

n ≥ n1, if α2
n = 1 + dβ2

n, then α2
n+1 = 1 + dβ2

n+1 for all lifts (αn+1, βn+1) of (αn, βn)

or for none of them. If α2
n1+1 ̸= 1 + dβ2

n1+1 for all lifts of (αn1 , βn1), then µ(En,Mn1
) = 0

for every n > n1 + 1. Assume that α2
n1+1 = 1 + dβ2

n1+1 for all lifts of (αn1 , βn1) (which
implies that d ≡ 0 mod 8). Then, first choosing a lift βn1+1 of βn1 , there is exactly one way to
lift αn1 such that α2

n1+2 = 1 + dβ2
n1+2 for all lifts (αn1+2, βn1+2) of (αn1+1, βn1+1). Indeed,

as d ≡ 0 mod 8, the value of 1 + dβ2
n1+2 is independent of the lift βn1+2 of βn1 . Call D a

square root of 1 + dβ2
n1+2. Then, for n = n1, n1 + 1, n1 + 2, the four square roots of 1 + dβ2

n

are D mod 2n, −D mod 2n, (D mod 2n) · (1 + 2n−1), (−D mod 2n) · (1 + 2n−1) and for
n = n1, n1 + 1, only the two first ones are liftable to a square root of 1 + dβ2

n+1 modulo 2n+1

(and the sign is determined by αn1). Repeating this argument, for n > n1 the number of
elements Mn+1 above Mn1 such that rk2Z(Mn+1 − Idn+1) = 2 and rk2Z(Mn − Idn) = 1
is 2n+1−n1 .

If 0 < v2(βn0) < v2(αn0 +1), then (with the notation of the proof of Lemma 64) a matrix Mn

above Mn0 has 2Z-rank equal to 1 if and only if a′2 − a′ ≡ db′2 mod 2n−1. To choose
a lift Mn+1 of Mn of 2Z-rank equal to 1, one might first lift b′ to b′n+1, which fixes a′n+1

through the condition a′2n+1 − a′n+1 ≡ db′2n+1 mod 2n (and we can check that a′n+1 is a lift
of a′). So the number of elements Mn+1 above Mn1 such that rk2Z(Mn+1 − Idn+1) = 2 and
rk2Z(Mn − Idn) = 1 is 2n+1−n0 .

Now suppose that Mn0 ∈ C(n0) and write

Mn0 − Idn0 =

(
αn0 − 1 dβn0

βn0 αn0 − 1

)
and b := v2(βn0) < n0.

We may restrict to consider n > n1 and µ(En,Mn1
), where n1 ≥ n0 is such that b < n1 − 2ν,

n1 − 2ν ≥ 2 and Mn1 varies in the finitely many lifts of Mn0 modulo ℓn1 . We write

Mn1 − Idn1 =

(
αn1 − 1 dβn1

βn1 αn1 − 1

)
with v2(βn1) = b .

As in the proof of Theorem 44, knowing the entries (αn, βn) of Mn is equivalent to knowing
(kn mod 2n−b, βn) where kn is a square root of d modulo 2n−b. We may suppose that d =
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22νd′ with 2 ∤ d′. This is because, if v2(d) is odd or d′ ̸≡ 1 mod 8, then d is not a square
modulo 2n−b if n− b− 2ν ≥ 3 and hence µ(En,Mn1

) = 0 for every n ≥ b+ 5 + 2ν.

We apply Remark 47 to lift kn1 mod 2n1−b: with its notation, if εn1−b−2ν−1 = 1 or ai = 1
for some i, then µ(En,Mn1

) = 0 holds for n ≫ 0 and we conclude. Now we may suppose that
kn1 = ±2νd′0 mod 2n1−b.

We can lift βn1 to βn+1 in 2n−n1+1 possible ways. We can lift (kn1 mod 2n1−b) modulo
2n+1−b in 2ν+1 ways: by Remark 47 we can write the lift as

±2νd′0

(
1 + 2n−b−2ν−1 +

n−b−ν∑
i=n−b−2ν

ai2
i
)

with arbitrary ai’s because it must be a square root of d modulo 2n−b but not modulo 2n+1−b. In
this way, rk2Z(Mn−Idn) = 1 and rk2Z(Mn+1−Idn+1) = 2. Making use of the constant cMn1

from Definition 38, we deduce that µ(En,Mn1
) is a constant times 2−n and we conclude. □

Lemma 49. If d is odd and Mn0 ̸= Idn0 , there is a rational constant DMn0
such that for

n ≫ 0 we have µ(En,Mn0
) = DMn0

· 2−n.

Proof. We first consider the case Mn0 ∈ C(n0). With the notation from Section 2.3, we
suppose that αn0 is even and βn0 is odd (the other case αn0 odd and βn0 even being analogous).
We refer to the proof of Lemma 65. For n ≥ 3, we can have rk2Z(Mn − Idn) = 1 only if
d ≡ 1 mod 8 (because d ≡ k2n mod 2n) so suppose that this is the case. Moreover, choosing
a lift of Mn amounts to choosing a lift of βn and, if it exists, a suitable lift of kn mod 2n.
By Remark 47, kn mod 2n cannot be lifted to a square root of d modulo 2n+1 if and only if
kn mod 2n = ±d′0(1 + 2n−1) mod 2n and the sign is determined by kn0 (this corresponds to
rk2Z(Mn − Idn) = 1 and rk2Z(Mn+1 − Idn+1) = 2). We deduce that the number of matrices
Mn+1 ∈ C(n + 1) above Mn0 with rk2Z(Mn − Idn) = 1 and rk2Z(Mn+1 − Idn+1) = 2
is 2n+1−n0 , namely the number of lifts of βn0 modulo 2n+1.

Now we consider the case Mn0 ∈ C ′(n0) and refer to the proof of Lemma 65 and the corres-
ponding notation. If αn is odd and βn is even, these numbers are parametrized by kn (and for
two out of the four lifts of kn we preserve the property that the 2Z-rank is 1). We deduce that
there are 2n+1−n0 matrices Mn+1 ∈ C ′(n + 1) above Mn0 such that rk2Z(Mn − Idn) = 1
and rk2Z(Mn+1 − Idn+1) = 2. If αn is even and βn is odd, rk2Z(Mn − Idn) = 1 if and only
if 4a′2−1

d ≡ (1 + 2b′)2 mod 2n. This congruence holds modulo 2n+1 either for all lifts of a′

and b′ or for none of them and we may reason as in Lemma 48. □

5.8. The rationality of the natural density for Condition (2). We can finally prove that for
any finite non-empty set L of primes, densexp(L) is a rational number. We keep the above
notation.

Proof of Theorem 3 (where the base field can be any number field K). By Remark 29, the ex-
istence of the density is guaranteed. It therefore suffices to prove that this density is rational.

Suppose first that L = {ℓ}. The sets En are pairwise disjoint, each of them admits a Haar
measure which is a rational number (because they are the preimage in G of a subset of G(n+1))
and we have µ(∪m≥nEm) → 0 for n → ∞ by Proposition 28. So we have

densexp(ℓ) =
∑
n≥1

µ(En) .
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For every 1 ≤ n < n0, µ(En) is a rational number, so we may restrict to n ≥ n0. In turn, by (6)
it suffices to show that for every Mn0 ∈ π1(G)(n0) the sum

∑
n≥n0

µ(En,Mn0
) is rational. This is

the case because by Lemmas 41, 42 (for π1(G) having finite index in GL2 or in an unramified
Cartan) by Lemmas 44, 45 (for π1(G) having finite index in a ramified Cartan with ℓ odd) and
by Lemmas 46, 48, 49 (for π1(G) having finite index in a ramified Cartan with ℓ = 2), up to
a finite number of rational terms, this is a sum of finitely many geometric series with rational
ratios.

Now let L = {ℓ1, . . . , ℓr} and set m =
∏r

i=1 ℓi. By Proposition 7 we may select n0 such
that the image of the m-adic torsion-Kummer representation is the preimage of the image of
the modmn0 torsion-Kummer representation. We then partition the primes p according to the
modmn0 torsion representation. This is a finite partition, so it suffices to fix a matrix A in
the image of the modmn0 torsion representation and prove the existence and rationality of the
restricted natural density. Calling Ai the image of A in the modℓn0

i torsion representation,
the restricted natural density considering only the prime ℓi (and the matrix Ai) exists and it is
rational by the first part of the proof. We conclude because (by the definition of n0) we are
asking for the existence and rationality of the Haar measure of a set that is the product of its
projections, each of which admits a rational Haar measure with respect to the ambient group
of the projection. □

Theorem 50. Suppose that E is without CM, or that it has CM defined over K. We assume
the Exponential LT conjecture for S = P . Let B be a positive integer such that for every
prime ℓ ∤ B the following holds: the extension K( 1

ℓ∞P ) is linearly disjoint from K( 1
m∞P ) for

all positive square-free integers m coprime to ℓ. Calling LB the set of prime divisors of B we
have

(8) densexp(P) = densexp(LB) ·
∏

ℓ∈P\LB

densexp(ℓ) .

Moreover, there exists a rational number Q such that the following holds: if E is without CM,
then

densexp(P) = Q ·
∏
ℓ∈P

(
1− ℓ5 − ℓ3 − ℓ2 − 1

ℓ7 − ℓ6 − ℓ3 + ℓ2

)
while if E has CM defined over K, then we have

densexp(P) = Q ·
∏

ℓ∈SplitCM

(
1− 2ℓ3 − 2ℓ2 − ℓ− 1

(ℓ+ 1)(ℓ− 1)2ℓ2

)
·

∏
ℓ∈InertCM

(
1− 1

(ℓ+ 1)(ℓ− 1)ℓ2

)
.

Proof. The proof is analogous to the one of Theorem 22, making use of Theorem 3 in place of
Proposition 19. The local densities are computed in Examples 66, 67 and 68 in Appendix B.

□

Proof of Theorem 4. This is a special case of Theorem 50. □

In the following result we write densexp,K′ to specify the base field K ′. Moreover, we write
densexp,Split (respectively, densexp,Inert) if we restrict to the primes of K that split (respect-
ively, are inert) in K ′.

Lemma 51. Suppose that E has CM that is not defined over K but over a quadratic extension
K ′ of K. Let S be a non-empty set of prime numbers and assume the Exponent LT conjecture
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for S over K and over K ′. The set of primes p of K that split (respectively, are inert) in K ′

and that satisfy Condition (2) for all ℓ ∈ S has a natural density and we have

densexp(S) = densexp,Split(S) + densexp,Inert(S) .

Moreover, we have

densexp,Split(S) =
1

2
densexp,K′(S)

and the existence of one of these two densities implies the existence of the other.

Proof. The argument is similar to that of Lemma 23. □

Theorem 52. Suppose that E has CM that is not defined over K but over a quadratic extension
K ′ of K. We assume the Exponent LT conjecture for S = P over K and over K ′. Then there
exist two rational numbers Q1 and Q2 such that

densexp,Split(P) = Q1 ·
∏

ℓ∈SplitCM

(
1− 2ℓ3 − 2ℓ2 − ℓ− 1

(ℓ+ 1)(ℓ− 1)2ℓ2

)
·

∏
ℓ∈InertCM

(
1− 1

(ℓ+ 1)(ℓ− 1)ℓ2

)
and

densexp,Inert(P) = Q2 ·
∏

ℓ∈SplitCM

(
1− 1

ℓ(ℓ− 1)

)
·

∏
ℓ∈InertCM

(
1− 1

ℓ(ℓ− 1)

)
.

Proof. The argument is similar to that of Theorem 24. For densexp,Split we can make use of
Theorem 50 and Lemma 51. We now explain how to compute the factors for densexp,Inert. We
work in GL2(Zℓ). Recall from Section 2.3 that for ℓ ≫ 0 the image of the ℓ-adic torsion rep-
resentation is the normalizer of a Cartan subgroup C of GL2(Zℓ). We call C ′ the complement
of the Cartan subgroup C in its normalizer, see Section 2.3.

Assume that C is split. By Proposition 18, the number of elements M1 in the normalizer of the
Cartan such that rkℓZ(M1 − Id1) is 3ℓ − 5 and the number of elements M1 ∈ C(1) such that
rkℓZ(M1 − Id1) = 1 is 2ℓ− 4, so M1 ∈ C ′(1) such that rkℓZ(M1 − Id1) = 1 is ℓ− 1. Then,
the number of elements M1 ∈ C ′(1) such that rkℓZ(M1 − Id1) = 2 is (ℓ− 1)2 − (ℓ− 1). So,
with the notation of Section 4 (but measuring only the Galois automorphisms stemming from
the complement of the Cartan and also restricting the ambient space to this complement) we
have

dens(Sexp,0) =
(ℓ− 1)2 − (ℓ− 1)

(ℓ− 1)2

= 1− 1

ℓ− 1
.

The number of elements Mn+1 ∈ C ′(n+1) such that rkℓZ(Mn+1−Idn+1) = 2 and rkℓZ(Mn−
Idn) = 1 is (ℓ− 1)Ln−1

1 L2, and hence for n ≥ 1,

dens(Sexp,n) =
ℓ−1
ℓ · (ℓ− 1)Ln−1

1 L2

(ℓ− 1)2 · ℓ2n

=
ℓ− 1

ℓ
· 1

ℓn
.
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Summing the above contributions gives

dens(Sexp) = dens(Sexp,0) +
∑
n≥1

dens(Sexp,n)

= 1− 1

ℓ− 1
+

ℓ− 1

ℓ
· 1

ℓ− 1

= 1− 1

ℓ(ℓ− 1)
.

When C is nonsplit, Proposition 18 gives that the number of M1 ∈ C ′(1) such that rkℓZ(M1 −
Id1) = 2 is ℓ2 − 1− (ℓ+ 1), so we have

dens(Sexp,0) =
ℓ2 − 1− (ℓ+ 1)

ℓ2 − 1

= 1− 1

ℓ− 1

The number of Mn+1 ∈ C ′(n+1) such that rkℓZ(Mn+1−Idn+1) = 2 and rkℓZ(Mn−Idn) = 1
is (ℓ+ 1)Ln−1

1 L2 so for n ≥ 1 we have

dens(Sexp,n) =
ℓ−1
ℓ · (ℓ+ 1)Ln−1

1 L2

(ℓ2 − 1) · ℓ2n

=
ℓ− 1

ℓ
· 1

ℓn
.

Summing the above contributions gives dens(Sexp) = 1− 1
ℓ(ℓ−1) .

□

APPENDIX A. ON THE ℓZ-RANK OF MATRICES IN GL2(Z/ℓnZ)

In this appendix, we prove Proposition 40. Let Gℓ be GL2(Zℓ), an unramified Cartan subgroup
of GL2(Zℓ) or the normalizer of an unramified Cartan subgroup of GL2(Zℓ). Given a matrix
Mn ∈ Gℓ mod ℓn with rkℓZ(Mn − Idn) = 1, for i = 1, 2 we let Li be the number of its
lifts Mn+1 ∈ Gℓ mod ℓn+1 such that rkℓZ(Mn+1 − Idn+1) = i. Moreover, if Mn = Idn we
similarly define LId,i, see Definition 39.

We remark that L1 can be obtained from L2 and conversely (respectively, LId,1 can be obtained
from LId,2 and conversely) by (7).

For ramified Cartan subgroups, the quantities L1, L2, LId,1, LId,2 are not well-defined, but we
give the counts to calculate the quantities

R′
1(n) = #{Mn ∈ π1(G)(n) : rkℓZ(Mn − Idn) = 1}

and

R′′
1(n) = #{Mn ∈ π1(G)(n) : rkℓZ(Mn − Idn) = 1 and Mn ≡ Idn−1 modℓn−1}

which can be used to compute µ(En) through Proposition 31. We also give ingredients to
prove some of the lemmas of Section 5.

The following remark will be very useful for the case of ramified Cartan subgroups (para-
graphs A.5 and A.6).
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Remark 53. Let ℓ be a prime, m a positive integer and d a non-zero square modulo ℓm. Setting
2ν := vℓ(d), we can write d ≡ ℓ2νd′ mod ℓm, where d′ is a square modulo ℓm−2ν not divisible
by ℓ. The number of square roots of d in Z/ℓmZ is as follows:

2ℓν if ℓ is odd
2ν if ℓ = 2 and m− 2ν = 1

2ν+1 if ℓ = 2 and m− 2ν = 2

2ν+2 if ℓ = 2 and m− 2ν ≥ 3 .

Indeed, let ℓνk be a square-root of d with ℓ ∤ k. We have to determine k mod ℓm−ν and the
defining condition is k2 ≡ d′ mod ℓm−2ν . There are 2 square roots of d′ mod ℓm−2ν if ℓ is
odd. If ℓ = 2, the number of square roots is as follows: 1, if m− 2ν = 1; 2, if m− 2ν = 2; 4,
otherwise. We conclude because we can lift these square roots in ℓν ways to obtain k.

A.1. Lifts in GL2.

Lemma 54. If Gℓ = GL2(Zℓ), then LId,2 = ℓ(ℓ+ 1)(ℓ− 1)2 and L1 = ℓ3.

Proof. We have LId,2 = ℓ(ℓ+ 1)(ℓ− 1)2. Indeed, to have a lift Mn+1 of the identity such that
rkℓZ(Mn+1 − Idn+1) = 2, we can choose the first column of Mn+1 − Idn+1 to be non-zero in
ℓ2 − 1 ways, and then we can choose the second column in a way that is not a multiple of the
first, namely in ℓ2 − ℓ ways.

We now prove that L1 = ℓ3. Take Mn =

(
1 + αn βn
γn 1 + δn

)
such that rkℓZ(Mn − Idn) = 1.

Assume, without loss of generality, that
(
αn

γn

)
= kn

(
βn
δn

)
and that vℓ(βn) ≤ vℓ(δn). Then

we must have vℓ(βn) < n. Remark that kn is uniquely determined modulo ℓn−vℓ(βn). We
may arbitrarily lift αn and βn modulo ℓn+1, which determines kn+1 modulo ℓn+1−vℓ(βn). We
conclude because we can also lift δn arbitrarily and then γn+1 is determined. □

A.2. Lifts in (the normalizer of) a split Cartan.

Lemma 55. If Gℓ is a split Cartan subgroup C of GL2(Zℓ) or the normalizer N = C ∪ C ′ of
a split Cartan subgroup of GL2(Zℓ), then LId,2 = (ℓ− 1)2 and L1 = ℓ.

Proof. We have LId,2 = (ℓ− 1)2 because choosing a lift Mn+1 ∈ C(n+1) above the identity
modulo ℓn such that rkℓZ(Mn+1 − Idn+1) = 2 amounts to choosing independently two non-
zero numbers modulo ℓ. We now prove that L1 = ℓ. Let Mn ∈ C(n) such that rkℓZ(Mn −
Idn) = 1. Up to swapping the elements of the basis, we may assume that the first column

of Mn is
(
1
0

)
. The lifts of Mn − Idn are then of the form(

a′ℓn 0
0 b+ b′ℓn

)
where b ̸≡ 0 mod ℓn and a′, b′ are taken modulo ℓ. There is a linear combination of the
columns where not both coefficients are divisible by ℓ if and only if a′ℓn = 0, so the number

of suitable lifts is ℓ. Finally, consider Mn =

(
0 a
b 0

)
∈ C ′(n) such that rkℓZ(Mn − Idn) = 1.
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A lift of Mn − Idn is of the form

Mn+1 − Idn+1 =

(
−1 a+ a′ℓn

b+ b′ℓn −1

)
.

The condition for this lift to have ℓZ-rank equal to 1 is that there exists some invertible k such

that
(

−1
b+ b′ℓn

)
= k

(
a+ a′ℓn

−1

)
. So a′ℓn can be chosen in any way (ℓ possibilities). Then, k

is determined by −1 = k(a+a′ℓn), which determines b′ℓn = −k, so the number of lifts Mn+1

with rkℓZ(Mn+1 − Idn+1) = 1 is ℓ. □

A.3. Lifts in (the normalizer of) a nonsplit Cartan, for ℓ odd.

Lemma 56. Let ℓ be an odd prime, and C = C(0,d) be a nonsplit Cartan subgroup of GL2(Zℓ)

(then, d is not a square in Z×
ℓ ). If Gℓ = C or Gℓ = N = C ∪ C ′ is the normalizer of C, then

LId,2 = ℓ2 − 1 and L1 = ℓ.

We prove that LId,2 = ℓ2− 1. Consider the identity matrix modulo ℓn. Its ℓ2 lifts modulo ℓn+1

that are in C(n+ 1) are matrices Mn+1 such that

Mn+1 − Idn+1 =

(
a′ℓn b′ℓnd
b′ℓn a′ℓn

)
where a′, b′ are taken from Fℓ. If a′ = b′ = 0, then rkℓZ(Mn+1 − Idn+1) = 0. We prove
that for all the remaining lifts we have rkℓZ(Mn+1 − Idn+1) = 2. This is clear if precisely
one between a′ℓn and b′ℓn is zero. Now suppose that a′ℓn and b′ℓn are both non-zero. If the

ℓZ-rank is less than 2, then there is some k ∈ (Z/ℓn+1Z)× such that
(
a′ℓn

b′ℓn

)
= k

(
b′ℓnd
a′ℓn

)
and we deduce that k2d ≡ 1 mod ℓ, contradicting that d is not a square modulo ℓ.

We now prove that L1 = ℓ. From Proposition 18, all the matrices Mn ∈ N(n) such that
rkℓZ(Mn − Idn) = 1 are in C ′(n).

Let Mn ∈ C ′(n) and write Mn − Idn =

(
αn − 1 βnd
−βn −αn − 1

)
. Since ℓ is odd, αn + 1 and

αn − 1 cannot be both invertible.

Let us assume that αn +1 is invertible. Then we have rkℓZ(Mn − Idn) = 1 if and only if there
is some kn ∈ Z/ℓnZ such that

αn − 1 = knβnd

−βn = −kn(αn + 1).

If such a kn exists, then k2n = 1
d ·

αn−1
αn+1 and k2nd−1 is invertible (as d is not a square modulo ℓ).

We deduce that

(9) (αn, βn) =

(
−1− k2nd

k2nd− 1
,

−2kn
k2nd− 1

)
for some kn ∈ Z/ℓnZ. If (αn, βn) are as in (9), the corresponding matrix

(
αn βnd
−βn −αn

)
is an

element of C ′(n) because its determinant is non-zero modulo ℓ. Hence, rkℓZ(Mn − Idn) = 1
if and only if (αn, βn) satisfy (9) for some kn ∈ Z/ℓnZ. Replacing in (9) kn by a different
value k′n leads to a different pair (αn, βn). Indeed, if kn and k′n give the same αn, we deduce
that k2n ≡ k′2n mod ℓn. Then, if they give the same βn, we deduce that kn ≡ k′n mod ℓn. This
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shows that lifting Mn to Mn+1 such that rkℓZ(Mn+1 − Idn+1) = 1 consists in choosing a lift
kn+1 ∈ Z/ℓn+1Z of kn and, for different choices of kn+1, the lifts of Mn are distinct.

If αn+1 is not invertible, then αn− 1 must be invertible and a similar same argument applies:
we have rkℓZ(Mn − Idn) = 1 if and only if there is some kn ∈ Z/ℓnZ such that

βnd = kn(αn − 1)

−(αn + 1) = −knβn .

Then we have k2n = dαn+1
αn−1 and hence the pairs (αn, βn) whose corresponding matrix Mn is

such that rkℓZ(Mn − Idn) = 1 are those of the form

(10) (αn, βn) =

(
d+ k2n
k2n − d

,
2kn

k2n − d

)
.

We may conclude as above because a different value for kn leads to a different value for
(αn, βn).

A.4. Lifts in (the normalizer of) a nonsplit Cartan, for ℓ = 2.

Lemma 57. Let C = C(c,d) be a nonsplit Cartan subgroup of GL2(Z2). If G2 = C or
G2 = N = C ∪ C ′ is the normalizer of C, then LId,2 = 3 and L1 = 2.

Proof. The parameters of C are c = 1 and d is odd according to [LP17, Proposition 11]. The
elements of C and C ′ are respectively of the form(

α dβ
β α+ β

)
and

(
α+ β (d+ 1)β + α
−β −α− β

)
.

The four lifts of Idn in C(n+ 1) and N(n+ 1) are

Idn+1,

(
1 + 2n 0

0 1 + 2n

)
,

(
1 2nd
2n 1 + 2n

)
,

(
1 + 2n 2nd
2n 1

)
and in particular LId,2 = 3. We deduce that a matrix Mn ∈ N(n) such that Mn ≡ Id1 mod2
is either Idn or satisfies rk2Z(Mn − Idn) = 2. Thus, the elements Mn ∈ N(n) such that
rk2Z(Mn − Idn) = 1 are in C ′(n) because C ′(1) consists of the elements M1 ∈ N(1) such
that rk2Z(M1 − Id1) = 1.

Choose

Mn =

(
αn + βn (d+ 1)βn + αn

−βn −αn − βn

)
∈ C ′(n)

such that rk2Z(Mn − Idn) = 1.

Remark that we cannot have v2(αn) ≥ 1 and v2(βn) ≥ 1 because in that case v2(αn+βn−1) =
v2(−αn − βn − 1) = 0. Therefore, we cannot have a suitable relation between the columns of
Mn − Idn because

v2(αn + βn − 1) < v2((d+ 1)βn + αn) and v2(−βn) > v2(−αn − βn − 1) .

We prove that L1 = 2.

The case v2(αn) = 0. Since d is odd, we have v2((d+1)βn+αn) = 0, so v2(αn+βn− 1) ≥
v2((d+ 1)βn + αn). There is some kn ∈ Z/2nZ such that(

αn + βn − 1
−βn

)
= kn

(
(d+ 1)βn + αn

−(αn + βn)− 1

)
.
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If v2(βn) = 0, kn must be invertible. The second row gives αn = βn

(
1
kn

− 1
)
− 1 and we

deduce that

(αn, βn) =

(
1− 2kn + k2n(d+ 1)

1− kn − k2nd
,

2kn − k2n
1− kn − k2nd

)
.

Similarly to the case ℓ odd, these pairs correspond to the matrices Mn ∈ C ′(n) such that
rk2Z(Mn − Idn) = 1 and different values of kn correspond to different pairs. Indeed, if

1− 2kn + k2n(d+ 1)

1− kn − k2nd
=

1− 2k′n + k′n
2(d+ 1)

1− k′n − k′n
2d

,

we deduce that kn = k′n because we have

(kn − k′n)(−1− kn − k′n − (3d+ 1)knk
′
n) = 0

and the second factor has 2-adic valuation zero.

We deduce that there are 2 lifts Mn+1 of Mn such that rk2Z(Mn+1−Idn+1) = 1, corresponding
to the two possible lifts of kn.

If v2(βn) > 0, then kn must not be invertible. The first row gives

αn(1− kn) = βn(knd+ kn − 1) + 1

so we also deduce that

(αn, βn) =

(
1− 2kn + k2n(d+ 1)

1− kn − k2nd
,

2kn − k2n
1− kn − k2nd

)
and we can conclude as in the case v2(βn) = 0. The case v2(αn) ≥ 1 and v2(βn) = 0. Since
v2(−βn) < v2(−αn − βn − 1), there is kn ∈ Z/2nZ (not invertible) such that

kn

(
αn + βn − 1

−βn

)
=

(
(d+ 1)βn + αn

−αn − βn − 1

)
.

We deduce that

(αn, βn) =

(
k2n − 2kn + d+ 1

k2n − kn − d
,

2kn − 1

k2n − kn − d

)
.

Different values of kn correspond to different pairs: this is because, as above, if

2kn − 1

k2n − kn − d
=

2k′n − 1

k′2n − k′n − d
,

then we have
(k′n − kn)(2knk

′
n + 2d+ 1− kn − k′n) = 0.

Then, as in the previous case, there are 2 lifts Mn+1 of Mn such that rk2Z(Mn+1−Idn+1) = 1.
□

A.5. (Normalizer of) a ramified Cartan with parameters (0, d) for ℓ odd. Let ℓ be odd
and consider a ramified Cartan subgroup C with parameters (0, d) such that ℓ | d. For every
positive integer n, the group C(n) consists of the matrices of the form(

αn dβn
βn αn

)
such that vℓ(αn) = 0. We first look at elements of C ′(n).

Proposition 58. Let Mn be an element of C ′(n) such that rkℓZ(Mn−Idn) = 1. The matrix Mn

has precisely ℓ lifts Mn+1 ∈ C ′(n+ 1) such that rkℓZ(Mn+1 − Idn+1) = 1.
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Proof. Write Mn − Idn =

(
αn − 1 dβn
−βn −αn − 1

)
. Since ℓ is odd, αn + 1 and αn − 1 cannot

be both invertible. Let us assume that αn + 1 is invertible. Then, rkℓZ(Mn − Idn) = 1 if and
only if there is some kn ∈ Z/ℓnZ such that

(11)
{

αn − 1 = kndβn
−βn = −kn(αn + 1).

Then we have k2nd = αn−1
αn+1 . We deduce that (αn, βn) are such that the corresponding mat-

rix Mn is in C ′(n) and rkℓZ(Mn − Idn) = 1 if and only if they are of the form

(αn, βn) =

(
1 + k2nd

1− k2nd
,

2kn
1− k2nd

)
for some kn ∈ Z/ℓnZ (notice that αn is invertible). We notice that a different value k′n leads
to a different value for (αn, βn). Indeed, if kn and k′n give the same αn we deduce that dk2n ≡
dk′n

2 mod ℓn hence if they also give the same βn we must have kn = k′n. Therefore, choosing
a lift Mn+1 of Mn such that rkℓZ(Mn+1 − Idn+1) = 1 consists in choosing a lift kn+1 ∈
Z/ℓn+1Z of kn, different choices of kn+1 giving different lifts of Mn.

If αn + 1 is not invertible, then αn − 1 must be invertible. Then, rkℓZ(Mn − Idn) = 1 if and
only if there is some kn ∈ Z/ℓnZ such that{

kn(αn − 1) = dβn
−knβn = −(αn + 1).

Since kn = βnd
αn−1 , this system amounts to the equation α2

n = 1+dβ2
n. Supposing that (αn, βn)

satisfy this equation, lifting Mn to a matrix Mn+1 whose parameters (αn+1, βn+1) satisfy
α2
n+1 = 1+dβ2

n+1 amounts to lifting βn freely, and then αn+1 is determined. Indeed, 1+dβ2
n+1

is a square in Z/ℓn+1Z. By Hensel’s lemma cn+1 ∈ Z/ℓn+1Z is a square in Z/ℓn+1Z if and
only if cn+1 mod ℓ is a square in Z/ℓZ. Moreover, the sign choice for αn+1 is determined
by αn. □

Remark 59. As seen in the proof of Proposition 18, the number of matrices M1 ∈ C ′(1)
such that rkℓZ(M1 − Id1) = 1 is 2ℓ. Then from Proposition 58 we deduce that the number of
matrices Mn ∈ C ′(n) such that rkℓZ(Mn − Idn) = 1 is 2ℓn.

Now assume that Mn =

(
αn dβn
βn αn

)
is in C(n). If αn − 1 is invertible we deduce that

rkℓZ(Mn − Idn) = 2 because the determinant of Mn − Idn is non-zero modulo ℓ. Now
suppose that αn − 1 is not invertible. If αn − 1 = 0, then rkℓZ(Mn − Idn) ≤ 1 if and only if
dβn = 0. If αn − 1 ̸= 0, then rkℓZ(Mn − Idn) = 1 if and only if there is some kn ∈ Z/ℓnZ
such that

(12)
{

βnd = kn(αn − 1)
αn − 1 = knβn .

We may replace the first equation by βnd = k2nβn, and notice that knβn ̸= 0. We must have
vℓ(kn) > 0 because ℓ | d.

In Lemma 45, to count the matrices above Idn0 , it is useful to know the number of Mn ∈ C(n)
that satisfy rkℓZ(Mn − Idn) = 1 such that vℓ(αn − 1) ≥ n0 and vℓ(βn) ≥ n0, so we rely on
the following result:

Lemma 60. Let v := vℓ(d) > 0. Fixing a := vℓ(αn − 1) and b := vℓ(βn), the number of
matrices Mn ∈ C(n), such that rkℓZ(Mn − Idn) = 1 is as follows:
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(1) ℓn−b−1(ℓ− 1), for a = n and n− v ≤ b < n;
(2) ℓ2n−2−(a+b)(ℓ− 1)2, for n− v ≤ b < n and (n+ b)/2 ≤ a < n;
(3) 2ℓ

v
2
+n−b−1(ℓ − 1), for b < n − v and a = v/2 + b, v is even and dℓ−v mod ℓ is a

square;
(4) 0, otherwise.

Moreover, for n ≥ 2 there are ℓ − 1 matrices Mn such that rkℓZ(Mn − Idn) = 1 and
Mn ≡ Idn−1 modℓn−1, so R′′

1(n) = ℓ− 1.

Proof. Notice that, if a > 0, the necessary condition vℓ(αn) = 0 is satisfied and the element(
αn dβn
βn αn

)
is in C(n).

The proof consists in counting the number of solutions of the system (12) imposing the valu-
ations.

Suppose first that a = n (which implies βn ̸= 0 to avoid Mn = Idn). The requested condition
then amounts to dβn = 0, so βn can be chosen anyway as long as b ≥ n − v and we easily
conclude. Remark that, for n ≥ 2, ℓ − 1 of these matrices are congruent to the identity
modulo ℓn−1.

Now suppose that a < n. We have a = vℓ(kn) + b (as ℓ | kn, we deduce that a > 0). We
cannot have a = n − 1 and b ≥ n − 1 and hence the last assertion of the statement follows
(Mn ≡ Idn−1 modℓn−1 means a, b ≥ n− 1).

Now suppose that a < n and b ≥ n − v. The equation k2nβn = βnd is equivalent to
vℓ(kn) ≥ (n− b)/2. We deduce that (12) is solvable if and only if a ≥ (n+ b)/2 (in particular
we must have b < n) and we find the requested expression fixing a and b.

Finally suppose that a < n and b < n − v. If k2nβn = βnd is solvable, then d mod ℓn−b

is a square (which means dℓ−v mod ℓ is a square) and kn mod ℓn−b can be any of its 2ℓv/2

square-roots (see Remark 53). These values, according to (12) and fixing βn, lead to distinct
values for αn (and a = v/2 + b follows from a = vℓ(kn) + b) and we conclude. □

Remark 61. Let Xi (for i = 1, 2, 3) be the total number of matrices Mn ∈ C(n) such that
rkℓZ(Mn − Idn) = 1 from Case (i) of the previous lemma, summed over all possible values
of a and b. The total number of matrices Mn ∈ C(n) such that rkℓZ(Mn − Idn) = 1 is then
X1 +X2 +X3. Call m := min(n, v).

We have X1 =
n−1∑

b=n−m

ℓn−b−1(ℓ−1) = ℓm−1 and this quantity does not depend on n provided

that n ≥ v. The quantity X2 also does not depend on n for n ≥ v because we have

X2 = ℓ2n−2(ℓ− 1)2
n−1∑

b=n−m

( n−1∑
a=⌈(n+b)/2⌉

ℓ−a−b
)

= ℓ2n−1(ℓ− 1)
n−1∑

b=n−m

(
− ℓ−n−b + ℓ−⌈(n+b)/2⌉−b

)
= 1− ℓm + (ℓ− 1)ℓ−1

m∑
i=1

ℓ⌊3i/2⌋ .
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We have X3 = 0 if v is not even or dℓ−v mod ℓ is not a square or n ≤ v. In the remaining
case, we have

X3 = 2ℓv/2+n−1(ℓ− 1)

n−m−1∑
b=0

ℓ−b = 2ℓv/2(ℓn − ℓm) .

By Remark 59, there are 2ℓn elements Mn ∈ C ′(n) such that rkℓZ(Mn− Idn) = 1, so we have
R′

1(n) = X1 +X2 +X3 + 2ℓn.

A.6. (Normalizer of) a ramified Cartan for ℓ = 2. Suppose that ℓ = 2. Consider the
normalizer N = C ∪ C ′ of a ramified Cartan subgroup C noticing that C(1) = C ′(1) if
the parameter c is zero. The parameter d can be even or odd (which means that an integer
representative for (d mod 2n) has this parity for all n ≥ 1).

Lemma 62. Assume that d is even, and call v := v2(d). The number of matrices Mn ∈ C(n),
fixing a and b, such that rk2Z(Mn − Idn) = 1 is as follows, where the parameters a and b are
defined as in Lemma 60:

(1) 2n−b−1, for a = n and n− v ≤ b < n;
(2) 22n−2−(a+b), for n− v ≤ b < n and (n+ b)/2 ≤ a < n;

(3.1) 2
v
2
+n−b−1, for b = n− v − 1 and a = v/2 + b, v is even;

(3.2) 2
v
2
+n−b, for b = n− v − 2 and a = v/2 + b, v is even and 2−vd mod 4 is a square;

(3.3) 2
v
2
+n−b+1, for b ≤ n− v− 3 and a = v/2+ b, v is even and 2−vd mod 8 is a square;

(4) 0, otherwise.

Moreover, for n ≥ 2 there is only one matrix Mn such that rk2Z(Mn − Idn) = 1 and
Mn ≡ Idn mod2n−1, so R′′

1(n) = 1 for C.

Proof. We may proceed as in Lemma 60, applying Remark 53 while taking square roots. □

Remark 63. As in Remark 61, we can compute the quantities X1, X2, X3, which are defined
similarly (here, X3 is the total number of matrices Mn ∈ C(n) such that rk2Z(Mn − Idn) = 1

from cases (3.1), (3.2) and (3.3)). We have X1 = 2m − 1 and X2 = 1 − 2m + 1
2

m∑
i=1

2⌊3i/2⌋.

We have X3 = 0 if n − b − 3 < 0 or if v is not even or 2−vd mod 8 is not a square, else
X3 = 2v/2+n+2(1− 2−(n−v−2)).

Lemma 64. Assume that d is even and consider the matrices Mn ∈ C ′(n) such that rk2Z(Mn−
Idn) = 1. For n = 1 we have C ′(n) = C(n) and there is 1 matrix. For n = 2, there are 8
matrices if 4 | d and 4 matrices otherwise. For n ≥ 3 the number of matrices is 3 · 2n if 8 | d
and 2n otherwise.

Proof. The two cases n = 1 and n = 2 can be checked by hand, so suppose that n ≥ 3.

Write Mn =

(
αn dβn
−βn −αn

)
and notice that αn must be odd.

Suppose first that v2(βn) ≥ v2(αn + 1). In that case, rk2Z(Mn − Idn) = 1 if and only if there
is some kn ∈ Z/2nZ such that the system (11) holds, and we can write

(αn, βn) =

(
1 + k2nd

1− k2nd
,

2kn
1− k2nd

)
.

Distinct values of (αn, βn) correspond to distinct values of (kn mod 2n−1), so we find 2n−1

matrices.
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Now suppose that v2(βn) < v2(αn + 1). We have rk2Z(Mn − Idn) = 1 if and only if there is

kn ∈ Z/2nZ such that
(

dβn
αn + 1

)
= kn

(
αn − 1
βn

)
.

Assume that v2(βn) = 0. Since kn = αn+1
βn

, the system is equivalent to α2
n = 1 + dβ2

n. Since
1+ dβ2

n ≡ 1+ d mod 8, there are solutions only if 8 | d. In this case one can choose βn freely
(2n−1 possibilities), and there are 4 possible values for αn, giving 2n+1 matrices.

Assume that v2(βn) > 0 and set βn := 2b′ and αn + 1 := 2a′. We have to count the solutions
(a′, b′) mod 2n−1 of the system {

db′ = kn(a
′ − 1)

a′ = knb
′.

We have n − 1 ≥ v2(a
′) > v2(b

′). Since kn ≡ db′

a′−1 mod 2n−1 this system is equivalent to
a′2 − a′ ≡ db′2 mod 2n−1. We choose b′ (2n−1 possibilities), which uniquely determines a′

(because a′ 7→ a′2−a′ is a bijection on 2Z/2n−1Z that preserves the valuation) so we find 2n−1

matrices. □

The formulas of Lemmas 62 and 64 allow us to compute R′
1(n) when d is even. We now take d

odd.

Lemma 65. Assume that d is odd, and consider the matrices Mn ∈ N(n) such that rk2Z(Mn−
Idn) ≤ 1. For n = 1 there are 2 matrices. For n = 2, there are 8 matrices. For n ≥ 3, the
number of matrices is

• 9 · 2n−1 − 10, if d ≡ 1 mod 8,
• 2n−1 + 6, if d ≡ 5 mod 8,
• 3 · 2n−1 + 2 otherwise .

Moreover, for n ≥ 3, R′′
1(n) = 1 and we have R′′

1(2) = 3.

Proof. For n ≤ 2, one may compute the number of matrices by hand, so now suppose that

n ≥ 3. Consider first Mn ∈ C(n) and write Mn − Idn =

(
αn − 1 dβn
βn αn − 1

)
. Suppose first

that αn is even (hence βn is odd) and write

Mn − Idn =

(
−1 + 2a′ d(1 + 2b′)
1 + 2b′ −1 + 2a′

)
̸= 0 .

The requested condition means that there is k (invertible) such that

k

(
−1 + 2a′

1 + 2b′

)
=

(
d(1 + 2b′)
−1 + 2a′

)
,

so k must satisfy k2 ≡ d mod 2n. There are no solutions if d ̸≡ 1 mod 8. If d ≡ 1 mod 8,
then there are 4 square roots of d modulo 2n. We choose such a square root and 2b′ (there are
4 · 2n−1 possibilities) and the value of 2a′ is determined, giving 2n+1 matrices.

Now suppose that αn is odd (hence βn is even) and write Mn − Idn =

(
2a′ 2db′

2b′ 2a′

)
.

There is precisely one matrix Mn ≡ Idn−1 mod2n−1 such that rk2Z(Mn − Idn) = 1, namely

Mn − Idn =

(
2n−1 2n−1d
2n−1 2n−1

)
. Furthermore, rk2Z(Mn − Idn) ≤ 1 if and only if there is k

(invertible) such that k2a′ = 2db′ and k22b′ = d2b′. If Mn ̸= Idn, we may choose βn of
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a given 2-adic valuation 1 ≤ b < n (2n−b−1 possibilities). Then we consider k mod 2n−b

such that k2 ≡ d mod 2n−b, the number of possibilities being as follows: 1, if n − b = 1; 2
(respectively, 0), if n − b = 2 and d ≡ 1 mod 4 (respectively, d ̸≡ 1 mod 4); 4 (respectively,
0) if n − b ≥ 3 and d ≡ 1 mod 8 (respectively, d ̸≡ 1 mod 8). The total number of matrices
as requested is then as follows: 2, if d ̸≡ 1 mod 4; 6, if d ≡ 5 mod 8; 6 + 16(2n−3 − 1), if
d ≡ 1 mod 8.

Now consider Mn ∈ C ′(n) and write Mn =

(
αn dβn
−βn −αn

)
.

Suppose first that αn is odd (hence βn is even) and write Mn − Idn =

(
2a′ 2db′

−2b′ −2− 2a′

)
.

The requested condition means that there exists k such that

k

(
2a′

−2b′

)
=

(
2db′

−2− 2a′

)
or

(
2a′

−2b′

)
= k

(
2db′

−2− 2a′

)
.

Suppose first that v2(a′) = 0. We are in the former case and we remark that k mod 2n−1

must be even. The system is then equivalent to a′ ≡ 1
k2

d
−1

mod 2n−1 and b′ = k
da

′, with

k mod 2n−1 even. There are 2n−2 possible choices for k mod 2n−1 and such choices lead to
distinct values for (a′, b′) because v2(a

′) = 0. Thus, there are 2n−2 matrices Mn such that
rk2Z(Mn − Idn) = 1 and v2(a

′) = 0.

Now suppose that v2(a′) ≥ 1. We are in the latter case and again k mod 2n−1 must be even.
The system is then equivalent to a′ ≡ dk2

1−dk2
mod 2n−1 and b′ = k(1 + a′), with k mod 2n−1

even. Different choices of k mod 2n−1 lead to distinct values for (a′, b′) because v2(1 +
a′) = 0. Thus, there are 2n−2 matrices Mn such that rk2Z(Mn − Idn) = 1 and v2(a

′) ≥ 1.

Finally suppose that αn is even (hence βn is odd). We write

Mn − Idn =

(
−1 + 2a′ d(1 + 2b′)
−1− 2b′ −1− 2a′

)
.

We have rk2Z(Mn − Idn) = 1 if and only if there is some invertible k ∈ Z/2nZ such that(
−1 + 2a′

−1− 2b′

)
= k

(
d(1 + 2b′)
−1− 2a′

)
. Since k = 1+2b′

1+2a′ , the system is equivalent to the equation

4a′2−1
d = (1 + 2b′)2.

By Hensel’s lemma (and studying this equation modulo 8) this equation is solvable modulo 2n

if and only if either d ≡ 3 mod 8 and 2 ∤ a′ or d ≡ 7 mod 8 and 2 | a′.
In both cases, the number of choices for (2a′ mod 2n) is 2n−2 and there are 4 choices for the
square-root of (4a

′2−1
d mod 2n). So in both cases we find 2n (respectively, 0) matrices whose

2Z-rank is 1 if d ≡ 3 mod 4 (respectively, d ≡ 1 mod 4). □

APPENDIX B. EXAMPLES

B.1. Examples concerning the Exponent LT condition. Considering Remark 30 to com-
pute µ(E0) and Proposition 40 and Lemma 42 to compute µ(En) for n ≥ 1, we can evaluate
densexp(ℓ) if the image of the ℓ-adic torsion-Kummer representation is Gℓ ⋉ (Zℓ)

2 where Gℓ

is one of the following groups: GL2(Zℓ), an unramified Cartan subgroup of GL2(Zℓ) or the
normalizer of an unramified Cartan subgroup of GL2(Zℓ).
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Gℓ GL2(Zℓ)
Split

Cartan
Nonsplit
Cartan

Nor. split
Cartan

Nor. non-
split Cartan

µ(E0) 1− ℓ2−2
(ℓ−1)2(ℓ+1)

1− 2ℓ−3
(ℓ−1)2

1− 1
ℓ2−1

1− 3ℓ−4
2(ℓ−1)2

1− ℓ+2
2(ℓ2−1)

LId,2
ℓ2−1

ℓ2

R1(1)(ℓ
dG )h+1

ℓ2−1
ℓ6

· 1
ℓ4h

ℓ2−1
ℓ4

· 1
ℓ2h

ℓ2−1
ℓ4

· 1
ℓ2h

ℓ2−1
2ℓ4

· 1
ℓ2h

ℓ2−1
2ℓ4

· 1
ℓ2h

R′
1(1)L2

ℓ−1
ℓ

Lh
1

R1(1)(ℓ
dG )h+1

(ℓ3−2ℓ−1)
ℓ3(ℓ+1)

· 1
ℓh

2ℓ−4
ℓ2

· 1
ℓh

0 3ℓ−5
2ℓ2

· 1
ℓh

ℓ−1
2ℓ2

· 1
ℓh

LId,1L2
ℓ−1
ℓ

Lh
1

(L1−1)R1(1)(ℓ
dG )h+1

(ℓ+1)(ℓ−1)
ℓ3(ℓ3−1)

· 1
ℓh

2
ℓ2

· 1
ℓh

0 1
ℓ2

· 1
ℓh

0
LId,1L2

ℓ−1
ℓ

(L1−1)R1(1)(ℓ
dG )h+1

(ℓ+1)(ℓ−1)
(ℓ3−1)ℓ3

· 1
ℓ4h

2
ℓ2

· 1
ℓ2h

0 1
ℓ2

· 1
ℓ2h

0∑
h≥0

LId,2
ℓ2−1

ℓ2

R1(1)(ℓ
dG )h+1

1
ℓ2(ℓ2+1)

1
ℓ2

1
ℓ2

1
2ℓ2

1
2ℓ2∑

h≥0

R′
1(1)L2

ℓ−1
ℓ

Lh
1

R1(1)(ℓ
dG )h+1

ℓ3−2ℓ−1
ℓ2(ℓ−1)(ℓ+1)

2ℓ−4
ℓ(ℓ−1) 0 3ℓ−5

2ℓ(ℓ−1)
1
2ℓ∑

h≥0

LId,1L2
ℓ−1
ℓ

Lh
1

(L1−1)R1(1)(ℓ
dG )h+1

ℓ+1
ℓ2(ℓ3−1)

2
ℓ(ℓ−1) 0 1

ℓ(ℓ−1) 0∑
h≥0

LId,1L2
ℓ−1
ℓ

(L1−1)R1(1)(ℓ
dG )h+1

ℓ
(ℓ3−1)(ℓ2+1)

2
ℓ2−1

0 1
ℓ2−1

0

Example 66. If the image of the ℓ-adic torsion-Kummer representation is GL2(Zℓ) ⋉ (Zℓ)
2,

we have

densexp(ℓ) = 1− ℓ2 − 2

(ℓ− 1)2(ℓ+ 1)
+

ℓ2 − 1

ℓ2(ℓ4 − 1)
+

ℓ3 − 2ℓ− 1

ℓ2(ℓ− 1)(ℓ+ 1)
+

ℓ+ 1

ℓ2(ℓ3 − 1)

− ℓ

(ℓ3 − 1)(ℓ2 + 1)

= 1− ℓ5 − ℓ3 − ℓ2 − 1

ℓ7 − ℓ6 − ℓ3 + ℓ2
.

Example 67. If the image of the ℓ-adic torsion-Kummer representation is C⋉ (Zℓ)
2, where C

is a split Cartan subgroup of GL2(Zℓ), we have

densexp(ℓ) = 1− 2ℓ− 3

(ℓ− 1)2
+

1

ℓ2
+

2ℓ− 4

ℓ(ℓ− 1)
+

2

(ℓ− 1)ℓ
− 2

ℓ2 − 1

= 1− 2ℓ3 − 2ℓ2 − ℓ− 1

(ℓ+ 1)(ℓ− 1)2ℓ2
.

Example 68. If the image of the ℓ-adic torsion-Kummer representation is C⋉ (Zℓ)
2, where C

is a nonsplit Cartan subgroup of GL2(Zℓ), we have

densexp(ℓ) = 1− 1

ℓ2 − 1
+

1

ℓ2
= 1− 1

(ℓ+ 1)(ℓ− 1)ℓ2
.
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Example 69. If the image of the ℓ-adic torsion-Kummer representation is N⋉(Zℓ)
2, where N

is the normalizer of a split Cartan subgroup of GL2(Zℓ), we have

densexp(ℓ) = 1− 3ℓ− 4

2(ℓ− 1)2
+

1

2ℓ2
+

3ℓ− 5

2ℓ(ℓ− 1)
+

1

ℓ(ℓ− 1)
− 1

ℓ2 − 1

= 1− 3ℓ3 − 2ℓ2 − 2ℓ− 1

2ℓ5 − 2ℓ4 − 2ℓ3 + 2ℓ2
.

Example 70. If the image of the ℓ-adic torsion-Kummer representation is N⋉(Zℓ)
2, where N

is the normalizer of a nonsplit Cartan subgroup of GL2(Zℓ), we have

densexp(ℓ) = 1− ℓ+ 2

2(ℓ2 − 1)
+

1

2ℓ2
+

1

2ℓ
= 1− ℓ2 + ℓ+ 1

2ℓ4 − 2ℓ2
.

Consider an elliptic curve E/Q and a point P ∈ E(Q) of infinite order. We compute densexp(ℓ)
in some specific examples. The rational densities (computed exactly) have been tested with
SageMath [Sag24] by computing the proportion of the suitable primes up to 105.

Example 71. Let E/Q be y2 = x3−x2− 6x (LMFDB label 480.b3). The point P = (−1, 2)
is not divisible in E(Q). For any odd prime ℓ the ℓ-adic torsion-Kummer representation is
surjective (the ℓ-adic torsion representation is surjective according to [LMF25] and we can
apply [JR10, Theorem 5.2]). the natural density computed in Example 66 is compared to the
experimental natural density considering the primes of good reduction p up to 105:

ℓ densexp(ℓ) rounded experimental
3 0.85694 0.85734
5 0.95234 0.95818
7 0.97674 0.97810
11 0.99099 0.99197

Example 72. Let E/Q be y2 = x3 − 2x (LMFDB label 256.b1). The point P = (2, 2) is not
divisible in E(Q). The CM field is Q(i). For every odd prime ℓ, according to [LMF25], the
image of the ℓ-adic representation is the normalizer of a split (respectively, nonsplit) Cartan
if ℓ ≡ 1 mod 4 (respectively, ℓ ≡ 3 mod 4). Then by [JR10, Theorem 5.8] the extension
Q( 1

ℓnP )/Q(E[ℓn]) has maximal degree ℓ2n for every n ≥ 1. the natural density computed in
Examples 69 (respectively, 70) is compared to the experimental natural density considering the
primes of good reduction p up to 105:

ℓ densexp(ℓ) rounded experimental
5 0.93458 0.93755
13 0.99086 0.99228
17 0.99470 0.99531

ℓ densexp(ℓ) rounded experimental
3 0.90972 0.91117
7 0.98788 0.98822
11 0.99542 0.99468

Example 73. Let E/Q be y2 + y = x3 − 34 (LMFDB label 225.c1) and let P = (6, 13).
According to [LMF25], the image of the 2-adic representation is the normalizer of a nonsplit
Cartan subgroup of GL2(Z2) hence by [JR10, Theorem 5.8] the extension Q( 1

2nP )/Q(E[2n])

has maximal degree 22n for every n ≥ 1. By Example 70 we have densexp(2) = 17/24 ≈
0.70833. The experimental natural density considering the primes of good reduction p up to
105 is 0.70938.

https://www.lmfdb.org/EllipticCurve/Q/480/b/3
https://www.lmfdb.org/EllipticCurve/Q/256/b/1
https://www.lmfdb.org/EllipticCurve/Q/225/c/1
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Remark 74. Consider a CM elliptic curve E defined over a number field K, and a point
P ∈ E(K) of infinite order. Let ℓ be an odd prime number such that

[K(
1

ℓ
P ) : K(E[ℓ])] = [K(E[ℓ2]) : K(E[ℓ])] = ℓ2 and [K

(1
ℓ
P,E[ℓ2]

)
: K(E[ℓ2])] = ℓ2 .

This implies [K( 1
ℓ2
P ) : K(E[ℓ2])] = ℓ4 because a subgroup H of (Z/ℓ2Z)2 such that [ℓ]H =

[ℓ](Z/ℓ2Z)2 must be (Z/ℓ2Z)2 (preimages for (1, 0) and (0, 1) are independent modulo ℓ2).
We then have [K( 1

ℓ2
P ) : K(1ℓP )] = ℓ4 hence by [LP21, Theorem 1.4(ii)] for n ≥ 1 we have

[K( 1
ℓnP ) : K(E[ℓn])] = ℓ2n.

Example 75. Let E/Q be y2 = x3 − 735x − 7546 (LMFDB label 1764.e2) and let P =
(−17, 6). The image of the 3-adic representation is the normalizer of the ramified Cartan
subgroup with parameters (c, d) = (0,−3) (see [GJLRY25, Table 4]). In particular we have
[K(E[9]) : K(E[3])] = 9. We have checked with [BCP97] that Q(13P,E[9])/Q(E[9]) has
degree 9 (the polynomial defining the x-coordinates of 1

3P has degree 9 also over Q(E[9])).
Then by Remark 74 the extension Q( 1

3nP )/Q(E[3n]) has maximal degree 32n for every n ≥ 1.
By Proposition 18, Lemma 60 and Remark 61, we have R1(n) = 12 ·9n−1, R′

1(n) = 2+2 ·3n
for n ≥ 1 and R′′

1(n) = 2 for n ≥ 2. We have µ(E0) =
1
4 and for n > 0 by Proposition 31 we

have

µ(En) =
((2 + 2 · 3n) · 9)− (2 + 2 · 3n+1))23 + (9− 3)89

12 · 9n
.

Then densexp(3) =
∑

n≥0 µ(En) =
3
4 .

Finally, the following example supports the Exponent LT conjecture:

Example 76. Let E/Q be the Serre curve y2 = x3 + 5x + 10 (LMFDB label 400h1) and let
P = (1, 4). For every odd prime ℓ, the ℓ-adic torsion representation is surjective, so is the
ℓ-adic torsion-Kummer representation by [JR10, Theorem 5.8]. Moreover, the 2-adic Kummer
map is surjective because Q(12P ) ̸⊆ Q(E[4]).

We can apply Theorem 84 with ℓ odd and B = 5: if m is an odd integer, by Proposition 85,
the modm torsion-Kummer representation is surjective.

We impose that ordℓ
(
P mod p

)
= expℓ(E(Fp)) for every prime ℓ ̸= 2: the conjectural density

is ∏
ℓ prime
ℓ̸=2

(
1− ℓ5 − ℓ3 − ℓ2 − 1

ℓ7 − ℓ6 − ℓ3 + ℓ2

)
≈ 0.772.

The experimental density considering the primes p < 104 (and p ̸= 2, 5) is 0.769.

B.2. Examples concerning the Indivisibility LT condition. The following examples support
the validity of the Indivisibility LT conjecture. We consider an elliptic curve E/Q and a point
P ∈ E(Q) of infinite order.

Example 77. Let E/Q be y2 = x3 + x2 − 9x + 7 (LMFDB label 128.a1) and consider the
point P = (3, 4). Let m be an odd positive squarefree integer. We know that the image of
the modm torsion representation is GL2(Z/mZ). So for any odd prime ℓ the modℓ torsion-
Kummer representation is surjective by [JR10, Theorem 5.8]. For any prime divisor ℓ of m
we can apply Theorem 84 (with B = 1) to ℓ and m/ℓ. Then by Proposition 85 the modm
torsion-Kummer representation is surjective.

https://www.lmfdb.org/EllipticCurve/Q/1764/e/2
https://www.lmfdb.org/EllipticCurve/Q/400/a/1
https://www.lmfdb.org/EllipticCurve/Q/128/a/1


TWO NATURAL VARIANTS OF THE LANG-TROTTER CONJECTURE 45

We impose Condition (3) for ℓ ̸= 2: the conjectural density is∏
ℓ prime
ℓ̸=2

densindiv(ℓ) =
∏

ℓ prime
ℓ̸=2

(
1− ℓ4 − 2ℓ2 − ℓ+ 1

ℓ3(ℓ− 1)(ℓ2 − 1)

)
≈ 0.773

while the experimental density by considering the primes p < 104 (and p ̸= 2) is 0.790.

Example 78. Let E/Q be y2 = x3 − 9x − 12 (LMFDB label 7776.m1) and consider the
point P = (4, 4). With [BCP97], we found the following (see also [BBP25]): the image of
the mod2 and of the mod3 torsion-Kummer representations are surjective; the field Q(12P )
is contained in Q(E[3]); the image of the mod6 torsion-Kummer representation has index 24
in GL2(Z/6Z) ⋉ (Z/6Z)2; up to choosing a suitable basis of E[6], Gal(Q(16P )/Q) is the
subgroup of index 24 of GL2(Z/6Z)⋉ (Z/6Z)2 generated by the matrices1 0 0
0 1 4
0 0 1

 ,

1 0 2
0 1 4
0 0 1

 ,

5 0 0
0 5 0
0 0 1

 ,

5 0 0
5 1 0
0 0 1

1 3 0
1 4 0
0 0 1

 ,

3 4 3
2 3 0
0 0 1

 ,

1 4 0
4 5 3
0 0 1

 .

In this subgroup, there are 282 elements (M,v) satisfying rkℓZ(M − Id) = 2 or v /∈ Im(M −
Id) for ℓ ∈ {2, 3}, so densindiv(6) =

282
432 . For any odd positive integer m the modm torsion

representation is surjective and by [JR10, Theorem 5.8], the modℓ torsion-Kummer repres-
entation is surjective for any prime ℓ ≥ 5.

We can apply Theorem 84 with B = 3: if m is a positive integer coprime to 6, by Pro-
position 85 the modm torsion-Kummer representation is surjective. We prove that the mod6
torsion-Kummer representation is independent from the modm torsion-Kummer representa-
tion by showing that Q( 1

mP ) and Q(16P ) = Q(13P ) are linearly disjoint over Q. Considering
that the degree of Q(13P )/Q divides a power of 6, we have

Q
(
1

3
P

)
∩Q

(
1

m
P

)
⊆ Q(E[m]) .

Applying Theorem 84 with ℓ = 3 and n = m (hence gcd(B,n) = 1) we deduce that

Q
(1
3
P
)
∩Q(E[3m]) = Q(E[3])

and we conclude because Q(E[3]) ∩Q(E[m]) = Q.

Thus, the Indivisible LT conjecture predicts

densindiv(P) =
282

432
·
∏

ℓ prime
ℓ≥5

(
1− ℓ4 − 2ℓ2 − ℓ+ 1

ℓ3(ℓ− 1)(ℓ2 − 1)

)
≈ 0.588

while the experimental natural density considering the primes p < 104 (and p ̸= 2, 3) is 0.606.

In this last example the elliptic curve is not defined over Q so that the CM is defined over the
base field:

Example 79. Let E/Q(i) be y2 = x3 − 2x, which is a curve with CM defined over Q(i). The
image of the modℓ torsion representation is a split (respectively, nonsplit) Cartan subgroup of
GL2(Z/ℓZ) for ℓ ≡ 1 mod 4 (respectively, ℓ ≡ 3 mod 4). For the point P = (2, 2), by [JR10,
Theorem 5.8], we have [Q(1ℓP ) : Q(E[ℓ])] = ℓ2 for all odd primes ℓ. The images of the
mod ℓ representations for the odd primes ℓ are linearly disjoint over K by Remark 80 and by
[CP22a, Theorem 1.1] (to apply this result, observe that 2 is the only prime of good reduction

https://www.lmfdb.org/EllipticCurve/Q/7776/m/1
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and that E has complex multiplication by Z[i] as the map (x, y) → (−x, iy) has order 4). We
then impose Condition (3) for ℓ ̸= 2: the conjectural natural density is

∏
ℓ prime
ℓ̸=2

densindiv(ℓ) =
∏

ℓ prime
ℓ≡1 mod 4

(
1− 2ℓ3 − 2ℓ2 − ℓ− 1

(ℓ+ 1)(ℓ− 1)2ℓ2

)
·

∏
ℓ prime

ℓ≡3 mod 4

(
1− 1

(ℓ+ 1)(ℓ− 1)ℓ2

)

≈ 0.881 .

The experimental density, considering the primes in Q(i) above the rational odd primes p < 3000,
is 0.878.

Remark 80. Let K be a number field, and E/K be an elliptic curve with CM defined over K.
Let P ∈ E(K) be a point of infinite order and ℓ an odd prime number such that ζℓ /∈ K. Then
for any odd squarefree integer n coprime to ℓ we have

K
(1
ℓ
P
)
∩K(E[nℓ]) = K(E[ℓ]) .

Indeed, the degree of K(1ℓP )/K(E[ℓ]) is a power of ℓ, K(E[nℓ])/K is abelian, and ζℓ ∈
K(E[ℓ]): we conclude because by Schinzel’s theorem on abelian radical extensions [Sch77,
Theorem 2] there cannot be a cyclic extension of K(ζℓ) of degree ℓ which is abelian over K.

APPENDIX C. ONE RESULT ON ENTANGLEMENT

We prove a result on the entanglement of Kummer extensions that we apply in our examples.

Lemma 81. Let ℓ be a prime number, and let e be a positive integer. Let m be a positive
integer, which is odd if ℓ = 2. Then any normal subgroup of index ℓe of GL2(Z/mZ) contains
SL2(Z/mZ).

Proof. By the Chinese remainder theorem, we may suppose without loss of generality that
m = pn is a prime power. If the assertion does not hold (by restricting the quotient map with
respect to the given subgroup) SL2(Z/pnZ) would have a quotient of order a power of ℓ. Since
this last quotient is solvable by Burnside’s theorem, we deduce that SL2(Z/pnZ) would have
a cyclic quotient of order ℓ. By Lemma 83 we deduce that p = ℓ ∈ {2, 3} so by assumption
we are left with the case p = ℓ = 3, which is handled by Lemma 82. □

The following two lemmas have been communicated to us by Hörmann:

Lemma 82. For n ≥ 1, a normal subgroup of GL2(Z/3nZ) whose index is a prime power
contains SL2(Z/3nZ).

Proof. Call N the normal subgroup, let H be the group of 2 × 2 matrices over Z/3Z and set
H ′ := Id+3n−1H < GL2(Z/3nZ). We reason by induction on n, the case n = 1 following
by a direct inspection. Let n > 1 and consider the following diagram in which we let Nn−1 be
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the reduction modulo 3n−1 of N :

N ∩H ′
� _

��

� � // N // //� _

��

Nn−1� _

��
H ′ � � //

����

GL2(Z/3nZ) // //

����

GL2(Z/3n−1Z)

����
H ′/(N ∩H ′) �

� // GL2(Z/3nZ)/N // // GL2(Z/3n−1Z)/Nn−1

The group SL2(Z/3nZ) acts on H ′ by conjugation: this action consists in the conjugation by
the matrix modulo 3 on H . It also acts on N ∩H ′ by conjugation. We can identify N ∩H ′ with
a subgroup G of H: the action of SL2(Z/3Z) on G is then a subrepresentation with respect
to the action on H . So, if G is a non-trivial proper subgroup of H , it consists of the scalar
matrices or of the matrices with trace 0.

By induction hypothesis, we have SL2(Z/3n−1Z) ⊆ Nn−1.

If N ∩H ′ contains Id+3n−1H0, we may conclude because of the exact sequence

Id+3n−1H0
� � // SL2(Z/3nZ) // // SL2(Z/3n−1Z) .

Now suppose that N ∩ H ′ is contained in the subgroup of the scalar matrices, which implies
that the intersection of this group with Id+3n−1H0 is trivial. We get

{Id mod3n}� _

��

� � // N ∩ SL2(Z/3nZ)
∼ // //

� _

��

SL2(Z/3n−1Z)

Id+3n−1H0
� � // SL2(Z/3nZ) // // SL2(Z/3n−1Z)

Thus the quotient map SL2(Z/3nZ) → SL2(Z/3n−1Z) would have a section, which is im-

possible because the element
(
1 1
0 1

)
modulo 3n−1 has order 3n−1 while modulo 3n, even

multiplied with an element in Id+3n−1H0, it has order 3n. □

Lemma 83. Let ℓ be a prime, and n ≥ 1. If there is a normal subgroup of SL2(Z/ℓnZ) whose
quotient is cyclic of prime order p, we must have p = ℓ ∈ {2, 3}.

Proof. Call N the normal subgroup. If ℓ ≥ 5 there is a α ∈ (Z/ℓnZ)× such that α2 ̸= 1 mod ℓ.
For any β ∈ (Z/ℓnZ) we have(

α 0
0 α−1

)(
1 β
0 1

)(
α 0
0 α−1

)−1(
1 β
0 1

)−1

=

(
1 (α2 − 1)β
0 1

)
.

Thus the matrix
(
1 1
0 1

)
and similarly

(
1 0
1 1

)
are commutators. Thus SL2(Z/ℓnZ) is gen-

erated by commutators hence does not have any abelian non-trivial quotient. If ℓ ∈ {2, 3} we
proceed by induction on n. The case n = 1 follows by direct inspection. If n > 1, let H0 be
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the group of 2× 2 matrices modulo ℓ with trace zero and consider

N ′
� _

��

� � // N // //� _

��

Nn−1� _

��
1 + ℓn−1H0

� � //

����

SL2(Z/ℓnZ) // //

����

SL2(Z/ℓn−1Z)

����
(1 + ℓn−1H0)/N

′ � � // SL2(Z/ℓnZ)/N // // SL2(Z/ℓn−1Z)/Nn−1

where N ′ = N∩(1+ℓn−1H0). By induction hypothesis, SL2(Z/ℓn−1Z)/Nn−1 is either Z/ℓZ
or trivial. Moreover, the group Id+ℓn−1H0 is isomorphic to (Z/ℓZ)3 so the only possible
prime divisor for the order of SL2(Z/ℓnZ)/N is ℓ. □

In the following result, by ℓ-part of an abelian extension we mean the largest subextension
which has degree a power of ℓ.

Theorem 84. Let K be a number field and let E/K be an elliptic curve. Let P ∈ E(K)
be a point of infinite order. Let ℓ be a prime, e ≥ 1 and n a positive integer coprime to ℓ.
Suppose that the image of the modn′ℓ torsion representation is GL2(Z/n′ℓZ), where n′ is the
square-free part of n. Then we have

K

(
1

ℓe
P

)
∩K(E[ℓen]) ⊆ Fgcd(n,B)(E[ℓe])

where B is the product of the odd primes of bad reduction for E and Fgcd(n,B)/K is the ℓ-part
of K(ζgcd(n,B))/K. In particular, if additionally ℓ ∤ φ(gcd(n,B)), we have

K

(
1

ℓe
P

)
∩K(E[ℓen]) = K(E[ℓe]) .

Proof. The second assertion is an immediate consequence of the first. Write K ′ := K(E[ℓe]).
The extension K

(
1
ℓeP
)
/K ′ is Kummer of exponent dividing ℓe. Hence, any subextension

is the compositum of finitely many cyclic extensions of degree dividing ℓe. Considering that
K
(
1
ℓeP
)
∩ K(E[ℓen]) ⊆ K ′ and that the degree of K(E[ℓen])/K(E[ℓen′]) is coprime to ℓ,

we may suppose that n is square-free (and that n ̸= 1, because the result is evident in that
case).

We know that K
(
1
ℓeP
)
/K ′ is unramified at the primes that are not over ℓ nor the primes of

bad reduction for E by [HS00, Proposition C.1.5]. We claim that we have

K

(
1

ℓe
P

)
∩K(E[ℓen]) ⊆ K ′(ζr)

with r = n. Then, if r is even, we may replace it by r/2, which is odd; if p is an odd prime
divisor of r and p ∤ B, as Q(ζp)/Q is totally ramified at p, we may replace r by r/p. By
iteration, we obtain r = gcd(n,B) and we conclude.

We are left to prove the claim. The Galois group of K(E[ℓen])/K ′ is GL2(Z/nZ). By Lemma
81, a normal subgroup of index dividing ℓe of GL2(Z/nZ) contains SL2(Z/nZ) and hence (as
the determinant of a scalar matrix is related to the cyclotomic character) hence the claim holds
by the Galois correspondence. □
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Proposition 85. Let n be a positive integer, and suppose that for every prime ℓ | n we have

K(E[ℓvℓ(n)]) ∩K(E[n/ℓvℓ(n)]) = K and K

(
1

ℓvℓ(n)
P

)
∩K(E[n]) = K(E[ℓvℓ(n)]) .

Then the image of the modn torsion-Kummer representation is the product of the images of
the modℓvℓ(n) torsion-Kummer representations.

Proof. By the coprimality of the degrees of the Kummer extensions and by assumption, we
have

K

(
1

ℓvℓ(n)
P

)
∩K

(
1

n/ℓvℓ(n)
P

)
= K

(
1

ℓvℓ(n)
P

)
∩K(E[n]) = K(E[ℓvℓ(n)]) .

Since this holds for every ℓ we deduce that the fields K
(

1
ℓvℓ(n)P

)
are linearly disjoint over K

if the same holds for the fields K(E[ℓvℓ(n)]), which is true by assumption. □
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