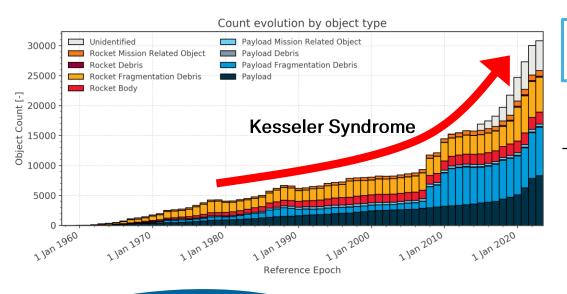


Impact Behaviour Analysis of a Passive Compliant Unit for Active Space Debris Removal

2024 IEEE 20th International Conference on Automation Science and Engineering
August 28 – September 1, 2024, Bari, Italy

Maxime Hubert Delisle¹, X. Li¹, B. Yalcin¹, M. Olivares-Mendez¹, C. Martinez¹

¹Space Robotics Research Group – SpaceR University of Luxembourg


- 1. Context
- 2. The Passive Compliant Unit
- 3. The Impact Behaviour Simulation Model
- 4. Experimental Validation
- 5. Correlation Results
- 6. Conclusions and Future Studies

- 1. Context
- 2. The Passive Compliant Unit
- 3. The Impact Behaviour Simulation Model
- 4. Experimental Validation
- 5. Correlation Results
- 6. Conclusions and Future Studies

The Problem of Space Debris

- More than 130 Million, estimated number of debris objects, based on statistical models to be in orbit, June 2024^[1]
- The Kesseler Syndrome denotes the exponential increase of space debris around Earth^[2]
- Active and Passive Debris Removal are needed^[3]

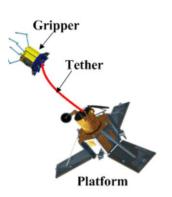
Nearly half of trackable small lobjects in LEO¹ are shaped as a box

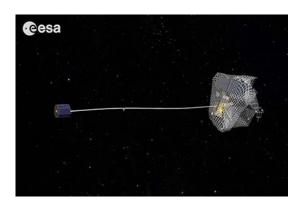
1. LEO less than 2000km, and less than 100kg trackable objects. ESA DISCOS Database, June 2024

[1] ESA DISCOS, consulted in September 2022. (sdup.esoc.esa.int/discosweb/statistics/)

[2] Drmola, J. & Hubik, T. Kessler Syndrome: System Dynamics Model. In:Space Policy. pp. 29-39 (2018)

[3] Liou, J. Active Debris Removal and the Challenges for Environment Remediation. (2012)


Active Debris Removal State of the Art


2

- Companies tend to focus on one-to-one solutions
- Those solutions lack of reliability,
 compactness and may harm the debris
- Capturing harmlessly a range of small satellites requires compliance, reliability and versatility

Critical requirements

- Control on the first impact with a flat surface
- No damage, soft approach
- Securely attach the debris and the servicer together

Tether

Nets

Robotic Arms
On-ground test stabilizer
Crushable cartridge
Tip

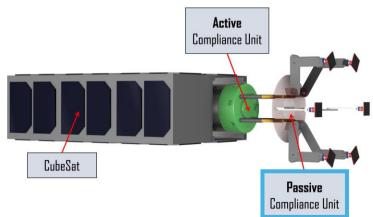
<u>Harpoons</u>

A 2-Step Hybrid Compliant System^[1]

Focus on Soft Capture

Pre-Capture

Guidance & Control


Impact
Soft Capture

Passive Compliance

Cube

Active Compliance

- Active and Passive Compliance allow a one-to-many solution
- Target uncooperative space debris
- Approach on flat surfaces
- CubeSat integration

Concept of Operations

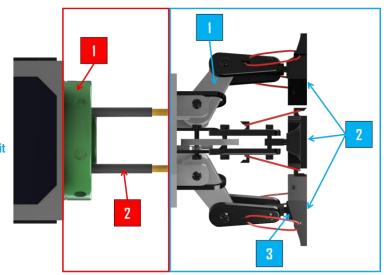
Hard Capture

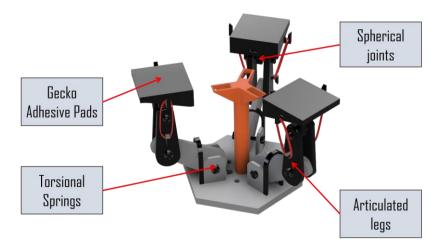
Early Concept Sketch

[1] Hubert Delisle, M., Christidi-Loumpasefski, O., Yalc, In, B., Li, X., Olivares-Mendez, M. & Martinez, C. Hybrid-Compliant System for Soft Capture of Uncooperative Space Debris. Applied Sciences. 13 (2023), https://www.mdpi.com/2076-3417/13/13/7968

Exit

- 1. Context
- 2. The Passive Compliant Unit
- 3. The Impact Behaviour Simulation Model
- 4. Experimental Validation
- 5. Correlation Results
- 6. Conclusions and Future Studies

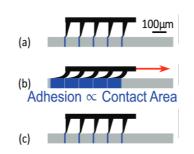



Active Compliance Unit (ACU):

- 1. F/T Sensor
- 2. EM Linear Actuators

Passive Compliance Unit (PCU):

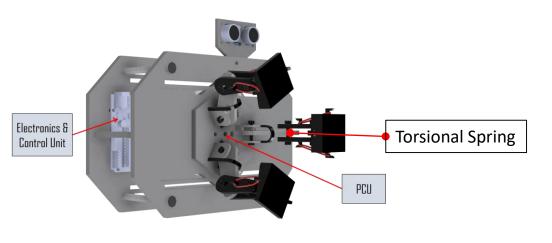
- 1. Articulated Legs
- 2. Gecko Adhesive Pads
- 3. Spherical Joints



Passive Compliant Unit Composition

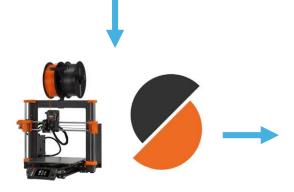
Soft Capture Unit Composition

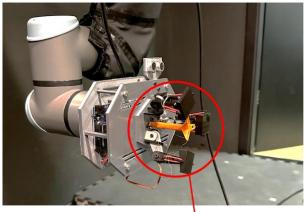
Gecko-inspired Dry Adhesive [1]


- Reliability Use a bio-inspired dry adhesive to prevent motion-reaction
- Robustness Constant stiffness coefficient with torsional springs to prevent hard shocks
- Versatility Tunable stiffness coefficient with EM linear actuators to change the overall equivalent stiffness

^[1] Hawkes, E., Jiang, H. & Cutkosky, M. Three-dimensional dynamic surface grasping with dry adhesion. The International Journal Of Robotics Research. pp. 1-16 (2015)

Early Stage Prototype

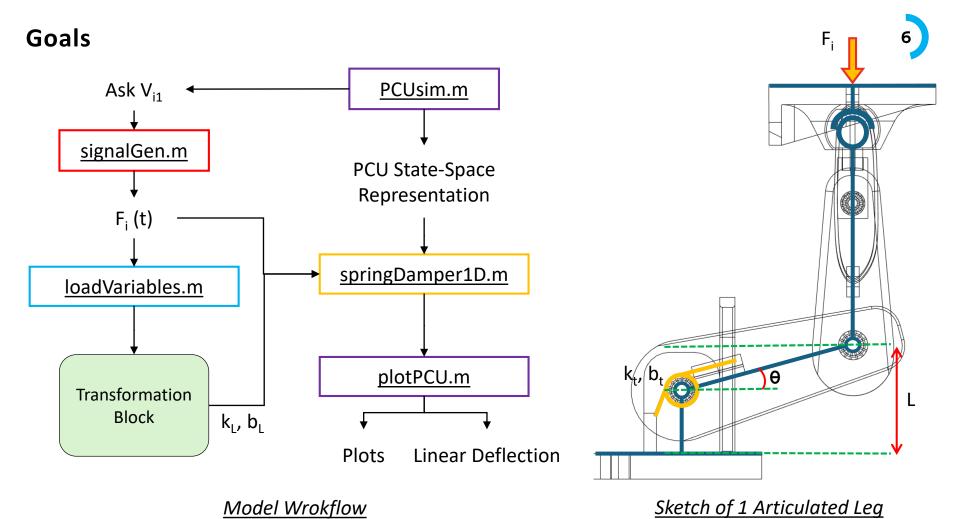



Torsional Spring Specifications							
Sign	Value	Description					
$D_m \\ d \\ E \\ N_a$	$6.0 \times 10^{-3} \text{ m}$ $0.8 \times 10^{-3} \text{ m}$ $200 \times 10^{9} \text{ Pa}$ 4	Mean Coil Diameter Wire Diameter Young's Modulus Number of Active Turns					
	$k_T = \frac{1}{6}$	$\frac{d^4E}{4D_mN_a}^{[1]}$					

 $k_T = 0.053 \,\mathrm{N} \,\mathrm{m} \,\mathrm{rad}^{-1}$

CAD Model

3D Printing & Assembly


https://www.omnicalculator.com/physics/torsional-spring.

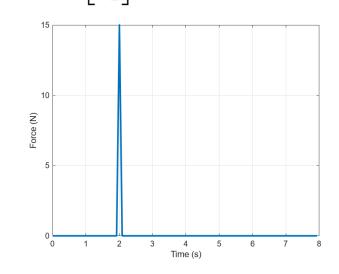
[1] Borchia, D. Torsion Spring Calculator.,

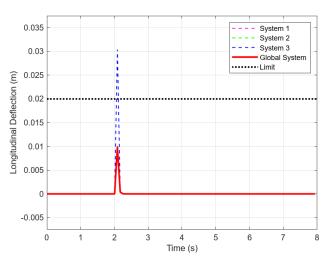
PCU Prototype

- 1. Context
- 2. The Passive Compliant Unit
- 3. The Impact Behaviour Simulation Model
- 4. Experimental Validation
- 5. Correlation Results
- 6. Conclusions and Future Studies

- Assess the system's safety by measuring the longitudinal deflection L
- ➤ Get knowledge on the proposed concept

State-Space Model

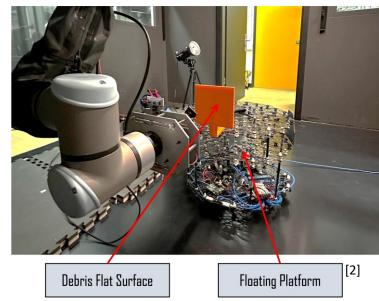



$$\begin{array}{c|c} \underline{\text{Dynamic Equation}} & m_{PCU}\ddot{y}(t) = u(t) - b_{eq,PCU}\dot{y}(t) - k_{eq,PCU}y(t) \\ \\ \underline{\text{State-Space Model}} & \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + B \begin{bmatrix} u \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ -\frac{k_{\text{eq,PCU}}}{m_{\text{PCU}}} & -\frac{b_{\text{eq,PCU}}}{m_{\text{PCU}}} \end{bmatrix} \quad k_{eq,PCU} = k_{1,PCU} + k_{2,PCU} + k_{3,PCU} \\ \\ \hat{x} \end{bmatrix}$$

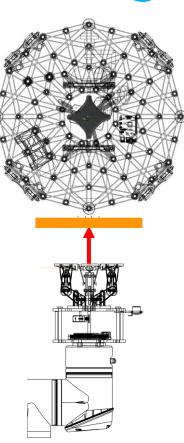
Computing \hat{L} over time

Plotting the results

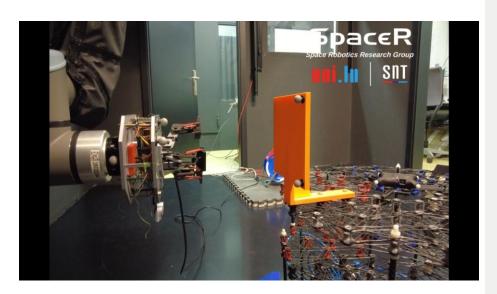
Assessing the results

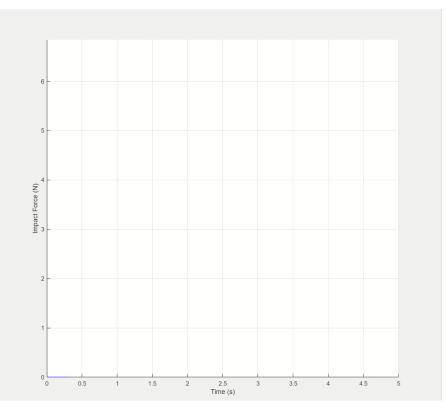


- 1. Context
- 2. The Passive Compliant Unit
- 3. The Impact Behaviour Simulation Model
- 4. Experimental Validation
- 5. Correlation Results
- 6. Conclusions and Future Studies



Zero-G Lab^[1]


Test Set-Up


Test Procedure

[1] Al, M. Zero-G Lab: A multi-purpose facility for emulating space operations. Journal Of Space Safety Engineering. pp. 509 - 521 (2023)

^[2] Al., B. Lightweight Floating Platform for Ground-Based Emulation of On-Orbit Scenarios. IEEE Access. pp. 94575 - 94588 (2023)

Test Video Example

Impact Force Profile

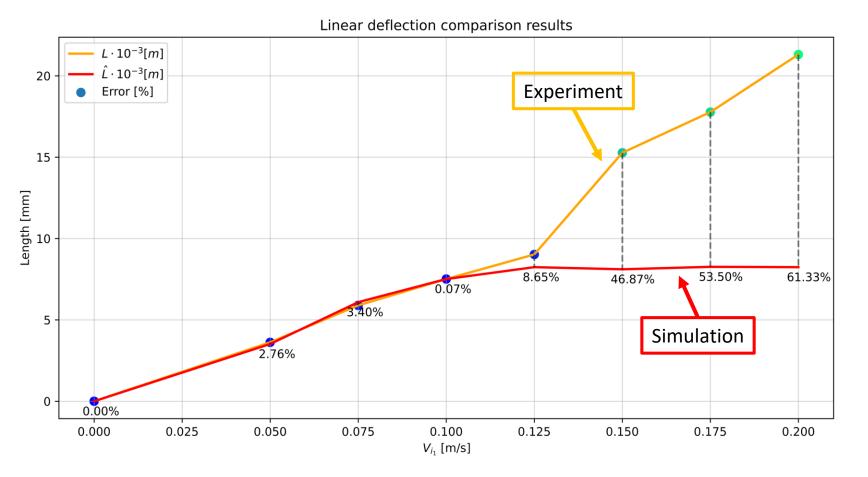
Video link:

https://drive.google.com/file/d/1mqD3aHUhTSBcY6L2q3NYvQAEmXD1Ryjy/view?pli=1

- 1. Context
- 2. The Passive Compliant Unit
- 3. The Impact Behaviour Simulation Model
- 4. Experimental Validation
- 5. Correlation Results
- 6. Conclusions and Future Studies

Table of Results

				Deflection <u>Experiment</u>	Deflection <u>Simulation</u>	
V_i	$[m s^{-1}]$	$F_{i,Peak}$ [N]	t_c [s]	$L \cdot 10^{-3}$ [m]	$\hat{L} \cdot 10^{-3}$ [m]	<i>ϵ</i> [%]
	0.050	3.83	0.320	3.62	3.52	2.76
	$0.075 \\ 0.100$	$4.65 \\ 6.11$	$0.302 \\ 0.327$	$5.89 \\ 7.51$	$6.09 \\ 7.51$	$\begin{bmatrix} 3.40 \\ 0.07 \end{bmatrix}$
	0.125	6.84	0.380	9.02	8.24	8.65
	0.150	6.69	0.393	15.27	8.11	46.87
	0.175	6.87	0.373	17.77	8.26	53.50
	0.200	6.85	0.367	21.31	8.24	61.33


Good Correlation between Simulations and Experimental Tests

Wrong Correlation between Simulations and Experimental Tests

Comparison Graph

- 50 20 - 10

Similar Impact Force Profile

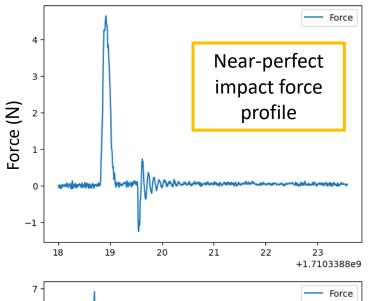
Average of 3.72% error

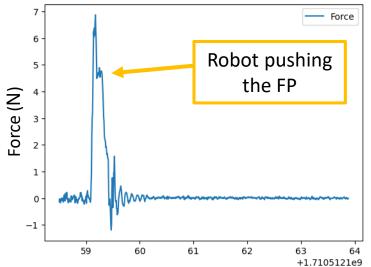
Different Impact Force Profile

Average of 42.59% error

- 1. Context
- 2. The Passive Compliant Unit
- 3. The Impact Behaviour Simulation Model
- 4. Experimental Validation
- 5. Correlation Results
- 6. Conclusions and Future Studies

Conclusions




What's been proposed: The mechanical behaviour of the PCU has been translated mathematically in MATLAB to simulate it under different impact force profiles

<u>What's the goal:</u> Simulate its behaviour under different impact force profiles based on its mechanical properties, bringing further the knowledge on the system to safely target a range of flat-surfaced debris

<u>Core Work:</u> Code the simulation in MATLAB environment; Prototyping the PCU and making it undergo a series of tests in the Zero-G Lab of the University of Luxembourg

<u>Main remarks:</u> The model built recreates nicely the dynamic properties of the PCU when the impact force profile matches the constructed pulse of the model; However, for higher velocities of approach, the robotic arm pushes the FP by continuing on its programmed path, making the impact force profile too different to the one in the model.

Future Studies

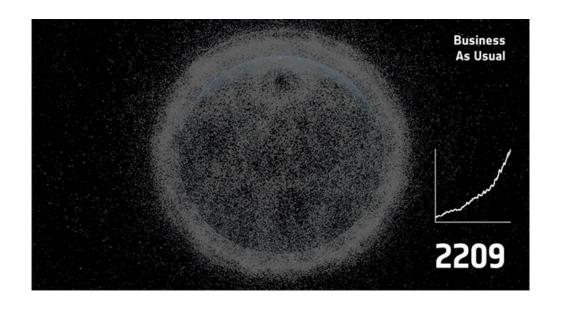
- Model improvements and upgrades to recreate the proposed design of the ADR Hybrid-Compliant system with the addition of the ACU.
- ➤ The Coefficient Of Restitution between the two entities can be investigated. The coefficients of the ACU could be fine-tuned to reduce the COR.
- Finally, an experimental validation of the SCU prototype with the dry adhesive is planned in the Zero-G Lab of the University of Luxembourg.

Better knowledge on the impact behaviour and the novel concept for ADR makes research come closer to autonomously capture a range of small debris in orbit

Let's keep Earth AND Space clean!

Thank you!

Q&A Session


Let's keep in touch!

Maxime Hubert Delisle

+33 6 24 45 12 41

maxime.hubertdelisle@uni.lu

in <u>LinkedIn</u>

