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Abstract—The growing use of the web has led to a rise
in cyber attacks exploiting software vulnerabilities, thereby
causing significant damage to companies and individuals. Static
analysis tools can assist programmers in identifying vulnera-
bilities within their code. However, these tools are prone to
producing false positives and lack precision, which relegates
them to a somewhat marginalised role in software development.
This paper proposes a new and more effective static analysis
approach for assessing and evaluating web applications against
vulnerabilities by using a knowledge-based multi-agent system
web vulnerability detector called KAVE. The multi-agent system
performs static taint analysis over a specially designed multi-layer
knowledge graph, whereas this graph aggregates diverse inter-
connected representations of the lexical and semantic features
of the application’s source code, their data and control flows,
and function calls. Additionally, this graph integrates security
properties associated with vulnerabilities. The evaluation results
of KAVE and comparison with existing tools showed that KAVE
employs an effective and efficient method to detect vulnerabilities
in web applications, finding 235 vulnerabilities with a precision
of 95.9% over 12 open-source PHP web applications.

Index Terms—Web Application Vulnerabilities, Static Analysis,
Multi-Layer Knowledge Graph, Multi-Agent System, Software
Security

I. INTRODUCTION

The digital transformation and increased accessibility to
devices (e.g., computers, smartphones, and tablets) have lever-
aged the World Wide Web’s endless growth. However, the urge
for innovation has led developers to adopt automatic code-
generation platforms to create program functionalities, result-
ing in a shortfall in pre-release software testing, thus causing
a decline in overall quality [1]. These factors compromise
the integrity of the released software and amplify the risk of
potential attacks [2]. A higher number of insecure web appli-
cations represents a greater risk of vulnerability exploitation,
and inadequate testing makes them an easy target [3]. Despite
the prevalence of insecure software, the lack of knowledge on
detecting and effectively solving its vulnerabilities continues
to be a topic of much discussion [4]–[7]. In web applications,
the two most common and exploited vulnerabilities are SQL
injection (SQLi) and Cross-site scripting (XSS) [3], [8]. Their
exploitation can cause huge harm to users and organisations,
depending on the attacker’s experience, the vulnerability’s
severity [9], and the application’s business value. PHP is the
most widely used language in building such applications [10].

Moreover, it is a loosely-typed language, meaning variables are
not explicitly declared with a specific data type and assume
the data type of their value. All these factors make PHP web
applications particularly attractive to attacks, thereby needing
rigorous validation before market release.

Static analysis systematically scans for vulnerabilities in
applications, offering developers the advantage of identifying
code vulnerabilities without executing the code or requiring
a complete application version. This allows the integration of
static analysis tools (SASTs) into the development lifecycle,
aiding in creating secure software. By analysing source code
representations, SASTs facilitate the detection of potential se-
curity issues. However, the challenge of false positives, where
non-issues are mistakenly flagged as vulnerabilities, can hinder
their effective use and adoption by developers despite their
potential benefits [11]. Most SASTs perform taint analysis re-
lying on the Abstract Syntax Tree (AST) [6], [12]–[15], while
others rely on the Control Flow Graph (CFG) [16], [17]. These
code representation structures have limitations for program
analysis. While ASTs, though complete, result in substantial
complexity and size, CFGs do not reveal data dependencies,
which is fundamental for vulnerability detection. To overcome
these issues, Yamaguchi et al. [7] introduced the Code Property
Graph (CPG), a combination of AST, CFG, and PDG (Program
Dependence Graph [18]–[21], which by itself combines CFG
and Dependence Variable Graph (DVG) [18]) to enhance the
analysis’s precision of C programs. This is achieved by making
graph traversals considering the underlying structures’ code
properties. The CPG relies on a PDG with nodes representing
statements and predicates, and connected by the data and
control flow dependencies between them. Each PDG’s node is
defined by its AST, which allows the breakdown of statements
and predicates in code elements.

Based on the CPG concept, SAST approaches for web
applications have emerged [21]–[24], but most of them do not
indicate whether vulnerabilities have been found; instead, they
present the resulting traversals found (i.e. the data flow paths),
and the user must analyse them, looking for vulnerabilities.
Furthermore, they do not consider the Function Call Graph
(FCG) [18], [21], determinant for the inter-procedure analysis
and propagation of taint analysis in vulnerability discovery.

This paper presents a new, more effective static analysis
approach for assessing web applications against vulnerabili-
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ties using a Knowledge-based multi-Agent system web Vul-
nerability detector (KAVE). Inspired by the Code Property
Graph concept and the Multi-Agent System (MAS) domain,
we propose, respectively, (i) a Multi-Layer Knowledge Graph
(MLKG) to represent the program’s code properties, with
different code structure representations (FCG, CFG, DVG
and PDG), and enriched with security properties of vulner-
abilities, thus enclosing knowledge about all the code and
vulnerabilities, and (ii) a MAS to perform static taint anal-
ysis over the MLKG to detect potential vulnerabilities more
effectively. The approach also integrates a pruning method to
strategically discard irrelevant MLKG’s nodes for vulnerability
analysis purposes effectively and efficiently, and minimising
the false positive occurrence. A MAS [25], [26] consists of
multiple autonomous agents interacting or working with their
fellow agents and the surrounding environment. Each agent
is capable of autonomous problem-solving, which operates
asynchronously concerning other agents and influences differ-
ent parts of the environment, depending on the relationships
between agents [27]. In turn, static taint analysis [6], [16],
[28] is a technique used to track input data (i.e., entry
points like $_POST in PHP) in a program and so identify
potentially dangerous code places (i.e., sensitive sinks like
echo in PHP) where this data is used. In our context, our
MAS comprises different agents that operate in the MLKG’s
nodes autonomously but depend on the other agents to make
decisions about taint propagation and discover vulnerabilities.

We implemented the approach in the KAVE tool. KAVE
creates the MLKG, connecting the FCG, CFG, DVG, and PDG
graphs to each other, representing the lexical and semantic
features, data and control flows, and function calls in the
application’s source code. Then, it enriches the graph with
security properties associated with vulnerabilities (e.g., entry
points and sensitive sinks) not present in these structures
as such, and applies the pruning method. Afterwards, the
MAS traverses the MLKG to look for potential vulnerabilities
in a computational effort-saving way. We evaluated KAVE’s
effectiveness for SQLi and XSS vulnerabilities with synthetic
and real applications and compared its results with standard
SAST and CPG tools. The results showed that KAVE was able
to detect vulnerabilities in web applications efficiently, finding
235 vulnerabilities in 12 open-source PHP web applications,
with a precision of 95.9%.

The main contributions of the paper are: (1) a new static
analysis approach for improving web application security. The
approach relies on i) an MLKG graph combining the strengths
of different code representations for vulnerability detection,
ii) a pruning method eliminating from the MLKG irrelevant
information for vulnerability detection, resulting in a more
manageable graph enhancing the analysis, minimising false
positives, and iii) a MAS that identifies potential vulnerabili-
ties by coordinating MLKG traversals and validations; (2) the
KAVE tool that implements the approach and an experimental
evaluation for XSS and SQLi detection in PHP applications.
The tool is open source and available at [29].

II. BACKGROUND

This section presents the background on web vulnerabilities
in this work and provides an overview of code representation
graphs, multi-agent systems, and multi-layer graphs.

A. Web Vulnerabilities

Vulnerabilities primarily arise from errors in software de-
sign, implementation, or configuration. When attackers find
them, they can exploit them to breach the application’s security
and cause harm. Organisations like OWASP [8], WASC [30],
and CWE [9] have been established to help identify and
mitigate vulnerabilities, being OWASP the most well-known
for web applications.

1 function gymEntrance(int $age, bool $ismember){
2 if (hasError()){ //function error
3 return;
4 }
5 $fee = $_GET[’fee’];
6 if(htmlentities($age) <= 18){ //is junior
7 if($ismember){
8 return;
9 }

10 $fee = $fee - 10; //discount 10
11 }
12 else if($age >= 60){ //is senior
13 $fee = $fee - 5; //discount 5
14 }
15 echo $fee;
16 $fee = 2;
17 setFee(htmlentities($fee)); //set entrance fee
18 setTimer(1); //set time inside
19 if($ismember){
20 setTimer(2);
21 login();
22 }
23 return;
24 }

Listing 1. A user function definition in PHP for the graph generation and that
contains an XSS vulnerability.

The two most prevalent vulnerabilities present in web appli-
cations are SQLi and XSS. SQLi [31], [32] is a vulnerability
where an attacker can manipulate the data input sent to
a web application to execute unauthorised SQL commands
in the database. This can allow the attacker to access or
modify sensitive and private data stored in the database, such
as user passwords or financial data. XSS [33], [34] allows
an attacker to inject malicious scripts (e.g., JavaScript) into
a web page viewed by other users. These scripts can be
used to steal sensitive data, such as user cookies or session
tokens, or to perform actions on behalf of the user without
their knowledge or consent. The PHP code in Listing 1
contains an XSS vulnerability in line 15. If the entry point
$_GET[’fee’] (in line 5) receives a malicious script (e.g.,
<script>alert("XSS")</script>) when the $fee vari-
able is used in the echo sensitive sink (in line 15), the script
will be executed in the victim’s browser.

B. Code Representation Graphs

Function Call Graph. A FCG [18], [21] represents the rela-
tionships between the functions in a program, showing how
functions are called and how they call other functions, creating
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a hierarchy of function calls. Each node in the graph represents
a function, and the edges represent the data flow between the
functions. An FCG can be used to understand the program’s
structure, identify areas prone to errors or performance issues,
and enhance code efficiency by recognising frequently invoked
or resource-intensive functions.
Control Flow Graph. A CFG [21], [35], [36] represents
a program’s execution sequence or a code snippet (e.g., a
function). It depicts the order in which the instructions of
a program are executed and how they are related to each
other, considering the predicates existing in the program. The
CFG’s nodes represent individual or blocks of (sequential)
instructions, and the edges represent the possible execution
paths between them. The edges are usually labelled with the
predicate or statement determining the flow direction.
Dependence Variable Graph. A DVG [18] is a directed graph
representing the causal relationships (edges depict dependen-
cies) between a program’s variables (represented by nodes).
Program Dependence Graph. A PDG [18]–[21] is a directed
graph representing the dependencies between statements and
predicates in a program (or function), as well as data and
control dependencies. Nodes depict statements, variables, and
predicates, while arcs represent the control and data flow
between the elements in the nodes. Generally, one can see a
PDG as a merging of the CFG and DVG into a single graph.
The PDG is very useful in program analysis and optimisation,
as it provides a structured way to understand the interactions
between different program parts.

C. Multi-Layer Graphs
Multi-layer graphs [37] represent relationships of hetero-

geneous objects, going beyond traditional graphs into a richer
framework capable of hosting objects and relations of different
types. Thus, a multi-layer graph can be seen as a multi-layer
object in which each layer encloses a uni-dimensional graph.
Each node in a given layer can connect to any other node or
sub-graph of a graph in a different layer.

D. Multi-Agent Systems
A Multi-Agent System (MAS) [25] consists of several

agents, each capable of perceiving and interacting dynami-
cally with their surroundings to make decisions and execute
actions towards fulfilling their individual objectives. Within
this framework, agents typically operate with a degree of
independence, driven by their interests, which might diverge or
converge with those of their peers. The definition of an agent
is contingent on its operational context and application domain
[38]–[41], embodying a computational unit that autonomously
functions within a bounded setting, potentially alongside other
agents possessing similar or distinct attributes. The intelligence
embedded in each agent within a MAS is tailored to meet
the system’s needs and their specific roles, ranging from
straightforward, rule-based algorithms to complex adaptive
systems. This diversity is crucial for the MAS’s ability to
efficiently meet its overarching objectives while maintaining
operational effectiveness in its designated environment.

III. KAVE SYSTEM APPROACH

Our approach relies on a MAS system that, in an intelligent
manner, navigates an MLKG graph to effectively and effi-
ciently discover vulnerabilities in web applications. To obtain
such effectiveness, the approach extracts diverse essential code
representation graphs (FCG, CFG, DVG, and PDG) to depict
code, control and flows in interconnected ways, which are
enriched with properties associated with vulnerabilities (e.g.,
entry points, sanitisation and sink information). These enriched
graphs are merged into an MLKG. The MLKG settles in
an FCG (the first MLKG layer), where the nodes represent
user functions and the edges represent calls between these
functions. As a second layer, the FCG’s nodes link to the
PDG of the function they represent. In essence, each PDG
encapsulates and connects both the CFG and DVG for its
corresponding function. The security properties are reflected in
the third layer of the MLKG, which segregates the properties
existing in the PDGs and are transmitted and aggregated to
the nodes of the FCG.
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Fig. 1. KAVE system architecture.

We propose a MAS to navigate the MLKG to detect
vulnerabilities, thus creating an intelligent and guided system
that performs static taint analysis to locate vulnerabilities
dynamically and autonomously. Unlike traditional SASTs that
inspect the entire application code, following all application
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entry points, regardless of where in the application point they
end (i.e. a sensitive sink or any other unrelated vulnerability
point), our MAS analyses the first layer of the MLKG and,
together with information from the third layer, decides whether
an in-depth inspection of the second layer is necessary. This
approach saves computational effort by streamlining the anal-
ysis process and focusing only on relevant parts of the code.
Moreover, this hierarchical layer organisation allows us to
subsequently prune the MLKG, reducing the traversal effort
and enabling the exclusion of MLKG sub-graphs that do not
require analysis. This strategy reduces the overall search space,
hence improving efficiency.

Figure 1 depicts the approach architecture, which com-
prises three modules: Code Tokenizer, MLKG Generator, and
Vulnerability Detector. The following sections describe these
modules: Section IV, the first two, and Section V, the last.

IV. MULTI-LAYER KNOWLEDGE GRAPH GENERATOR

To create the MLKG, the code must first be split into tokens,
and the Code Tokenizer module is responsible for this action.
Using a Lexer & Parser, it breaks the code into tokens based
on language syntax (e.g., PHP syntax), cleans irrelevant data
(e.g., comments, semi-colons), and then creates an abstract
syntax tree (AST). In the AST, each code instruction is an
AST’s branch, which is expressed as a list containing the
relevant code needed to construct the graphs. For example,
the instruction $fee = $_GET[’fee’]; (line 5 of Listing 1)
is broken into three tokens and results in the following list in
the AST: [$fee, =, $_GET[’fee’]].

Contrary to SASTs [6], [12], [14] that resort to an AST
to search for bugs, the purpose of AST in our approach is to
extract the essential graphs needed to build the MLKG. Hence,
once the AST has been obtained, the MLKG Generator module
processes it to obtain these graphs. The module employs a
five-step pipeline that we describe in the next sections.

A. User Function Identification
As the MLKG’s first layer relies on an FCG, one uses

the AST to identify the user functions’ definitions and where
they are called. While the latter allows for the construction
of the FCG, the former gives place to the building of the
PDG of each user function identified and called. To identify
user function definitions, this step searches for function as
the initial token in the AST’s branches (i.e., lists), retrieves
the sub-AST associated with each function found (i.e., the
lists that represent the instructions of the function), for then
to be delivered to the Enriched PDG Creation step (see
Section IV-B). On the other hand, to identify user function
calls, for each call function found in the AST, this step
checks whether it is a user function whose definition has been
previously identified. Later, these function calls are delivered
to the Enriched FCG Construction step (see Section IV-C).

B. Enriched PDG Creation
We inspect each function’s sub-AST to extract its Depen-

dency Variable Graph (DVG) and Control Flow Graph (CFG),
and then the Program Dependence Graph (PDG).

DVG construction. The DVG is created by tracking all the
variable dependencies in a function and defining which vari-
ables depend on others. A DVG is created for each variable.
For example, if a function has three variables, three DVGs
are created. Each DVG is a digraph, whose nodes represent
lines of code and edges represent the variable dependency
between those lines. Afterwards, the DVG’s nodes are en-
riched with security properties associated with vulnerability
information and useful for its discovery, such as whether
the node (statement) contains an entry point (e.g., $_GET),
sensitive sink (e.g., echo), and a sanitisation function (e.g.,
htmlentities). Each node of the resulting enriched-DVG
(DVGe) is defined by a tuple <i, d, v, b, l>, where:

• i is the code line corresponding to that node;
• d is the relative depth of the statement within this

function, indicating its nesting level relative to the func-
tion’s top-level scope. It increases as the control flow
enters nested structures (conditional clauses or loops), and
decreases upon exiting these structures;

• v is an abstract version of the represented variable; it
increases each time the variable is redefined and thus
loses its dependency (except for when it uses its own
value for the new definition);

• b determines the branch of a sequential conditional clause
in which the code line is;

• l is a label resulting from the statement evaluation con-
cerning the node’s security properties (e.g., entry point,
sensitive sink, and sanitisation function).

CFG construction. The CFG contains the control flow in-
formation of a function, describing all the possible paths that
might be traversed via the program’s execution, considering its
conditional instructions and branches. The CFG is a digraph
whose nodes and edges represent lines of code and control
flow between them. We also enrich the CFG’s nodes with se-
curity properties, thus resulting in an enriched-CFG (CFGe),
in which each node is a tuple <i, d, r, c, l>, where:

• i is the code line corresponding to that node;
• d is the relative depth of the corresponding statement in

the function (as parameter d in the DVGe);
• r is True if the node contains a return statement, and

False, otherwise;
• c is True if the node contains a conditional statement, and

False, otherwise;
• l is a label enclosing the node security properties, simi-

larly to l in the DVGe.

PDGe construction. We merge the DVG and CFG graphs
generated for each function into a PDG. The PDG is a
comprehensive graph combining control and data dependen-
cies between statements and predicates. The PDGe generator
combines the DVGe of each variable in a function with the
single corresponding CFGe. To do so, it uses the CFGe

as a basis. It adds the edges of each DVGe to the CFGe,
differentiating them as either data edges or control edges and
labelling the data edges with the variables they represent.
As illustrated in the top-right of Figure 2, the PDG shows
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only one DVG for the variable $fee. If more variables
existed, additional DVGs would be attached to the CFG,
each with its corresponding label. As both types of edges
contain information about vulnerabilities, the final graph is
also enriched, called enriched-PDG (PDGe), in which a node
corresponds to merging the nodes in the CFGes and DVGes
so that <(i, d, r, c, v, b, l)>= <(i, d, r, c, l)> ∪ <(i, d, v, b, l)>,
having the characters representing the same meaning as the
latter kinds of graphs. The variables i, d, and l, being familiar
with CFGe and DVGe, will be the glue points between the
nodes to assemble the new one.

Differently from the DVGe and CFGe, the PDGe has two
distinct types of edges that are represented as tuples:

• Control flow dependency defined as Ef = (Ni, Nk),
where Nk represents a node reachable from the Ni node;

• Data dependency defined as Ed = (Ni, Nk, V ), where
Nk is a node having at least one variable instantiated for
the last time on Ni node, and V is the set of variables
associated with this dependency.

Figure 2 shows the PDGe of the gymEntrance function
of Listing 1. There, one can see the edges for variable
$fee throughout the control flow. Also, nodes 5 and 15 are
tagged with security properties that represent, respectively,
variable $fee receiving the entry point $_GET and reaching
the sensitive sink echo.

C. Enriched MLKG Creation

FCG and FCGe construction. Based on the information
provided by the User Function Identification step, namely
the user functions calls, this step generates the Enriched-
FCG (FCGe). First, it creates the FCG of each file the web
application contains, comprising thus the user functions called
in each file and provided by the AST. The FCG nodes represent
functions and its edges the function calls, of the form (Fi, Fk),
being Fk a function called at least once inside function Fi

(the callee). Next, its nodes are enriched with the security
properties found in the PDGe they represent, thus resulting
in an FCGe whose nodes are tuples <i, f, ll >, where i is
the code line corresponding to that node; f is the function it
represents; and ll is the set of security properties presented
in its corresponding PDGe. To obtain this set, the PDGe is
analysed to collect its security properties and aggregate them
into ll.

Note that the Security Properties Enricher is used in two
distinct moments: i) when the DVGe and CGFe are gener-
ated, their nodes are compared against an established database
of security properties to know if they are associated with data
about vulnerabilities; ii) to aggregate into FCG’s nodes the
security properties already determined in PDGe. The upper
half of Figure 2 shows the FCGe containing ii), and the
diverse PDGe reflecting i).

MLKGe construction. While the FCG alone may not con-
tain enough information to support any analysis, it can be
combined with other data structures, such as PDGs, enabling
inter-procedural analysis and, therefore, identifying potential

vulnerabilities in the code. To accomplish this, our approach
builds an MLKGe which integrates (1) the FCGe as its foun-
dational structure with (2) the previously generated PDGes,
which constitute its second layer, and (3) the security prop-
erties they contain, constituting its third layer. Therefore,
after creating the FCGes and PDGes, the next step is to
merge them to generate the MLKGe. This involves extending
the nodes of the FCGe with pointers (p) that link to the
corresponding functions’ PDGes, resulting in tuples <i, f,
p, ll >. The resulting MLKGe is a more suitable structure
for vulnerability detection, as it gives us clues as to where
the vulnerabilities might or might not exist and, thus, allows
for a more oriented analysis and pruning of the graph at a
superficial layer (explained next).

The upper half of Figure 2 shows the MLKGe of the
defined gymEntrance user function in Listing 1. The FCGe

begins with the main node that denotes the beginning of the
program, and then it calls the function gymEntrance. In turn,
that function calls other user functions that will be connected
to it, meaning that they are called by it. Each function links
to its PDGe, and close to each of them, we can observe the
security properties collected from PDGes. For instance, we
can see that the FCGe’s node of gymEntrance inherits the
security property from its PDGe. Also, assuming that the code
for the login function is that of Listing 2, where its PDGe’s
nodes corresponding to lines 2 and 3 are tagged as entry, and
line 5 as sink, the login node in FCGe aggregates these
security properties.

1 function login(){
2 $u = $_POST[’username’];
3 $p = $_POST[’password’];
4 $q = "SELECT * FROM users WHERE user=’$u’ AND

pass=’$p’";
5 $r = mysqli_query($con, $q); // sink of SQLi
6 }

Listing 2. The login user function definition with a SQLi vulnerability.

D. Pruning

The Pruning step evaluates each node in the MLKGe and
determines whether it can be trimmed, turned into a connector,
or kept. To do this evaluation, we take into consideration
several factors, such as whether the node is a Void function
(that does not call any other functions and does not return any
value) and whether the node contains any security properties
or function entry parameters that would intuitively come from
another region of the program. Table I resumes the combina-
tion of these factors and their resulting pruning outcomes.

If a node meets the criteria for being trimmed, it is entirely
removed from the graph, i.e., its FCGe node and PDGe.
On the other hand, if it meets the criteria for being turned
into a connector, its PDGe is trimmed; however, its FCGe

node remains in the graph but as a passage node, where only
the entry and returned parameters are considered. Lastly, if
a node does not meet either of these criteria, it is deemed
necessary for the vulnerability analysis and is kept intact.
The bottom half of Figure 2 depicts the MLKGe of the
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Fig. 2. Enriched Multi-Layer Knowledge Graph (MLKGe) representation
(top) and MLKGep after pruning (bottom).

gymEntrance function after applying the pruning step. For
example, as the setFee and the setTimer functions do not
have any of those factors associated, they are entirely trimmed.
In contrast, for instance, supposing the gymEntrance only
contained an Entry, calls other functions, and was not the
void type, it would be turned into a Connector. By evaluating
all nodes in the MLKGe and determining which ones can
be trimmed or turned into connectors, our pruning method
produces a much lighter version of the graph, which will allow
for saving running time and minimising false positive and

TABLE I
TABLE OF DECISIONS FOR PRUNING.

Type of Function Security Properties Pruning Outcome
Function Parameters Entry Sanitisation Sink Trim Connector Keep

Not Void

✓
✓ ✓

✓ ✓
✓ ✓ ✓

✓ ✓
✓ ✓

Other Combinations ✓

Void

✓ ✓
✓ ✓

✓ ✓
✓ ✓

✓ ✓ ✓
✓ ✓ ✓

✓ ✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓ ✓
✓ ✓

✓
Other Combinations ✓

negative production. This is especially important in scenarios
where multiple passages through the graph are required for a
complete analysis, as the efficiency gains from pruning can
add up over time. As a result of the pruning method, we
have MLKGep, an enriched and pruned graph. However, for
simplicity, we call it MLKG from now on.

V. VULNERABILITY DETECTOR

The vulnerability detection approach we propose is a multi-
agent system (MAS) designed to enhance navigation over the
MLKG, emphasising computational efficiency and vulnerabil-
ity detection robustness. Our MAS introduces a novel perspec-
tive in web application security, drawing from characteristics
such as partial independence, self-awareness, and autonomy,
which enable the effective utilisation of the MLKG.

Each agent operates with a localised view and does not
possess a global perspective of the entire system, but all
together have it. Consequently, agent communication becomes
vital for cooperation, ultimately contributing to the system’s
overall effectiveness. The MAS empowers the vulnerability
assessment with a layered approach that excels at handling
web application’s intricate, multi-layered structures. With the
capacity to allocate distinct agents to specific layers, the MAS
fosters a level of granularity and context-aware analysis that
is invaluable in uncovering vulnerabilities. In contrast to tra-
ditional SASTs that analyse the entire application code, which
may be unnecessary and may lead to an ineffective detection,
the MAS, together with the MLKG, enables the analysis in
PDGes and communication between layers when such is
required. Additionally, MAS aims to reduce the incidence of
false positives and negatives through cross-verification and
consensus mechanisms among agents. This will bolster the
reliability of vulnerability assessments, providing actionable
results that security teams can confidently address. Moreover,
the customisation capabilities inherent in MAS bring a tailored
and precise dimension to vulnerability assessment. Each agent
can be fine-tuned for specific testing scenarios or requirements,
ensuring the assessment aligns closely with the application’s
unique architecture and potential vulnerabilities.

Figure 3 overviews our MAS for vulnerability detection.
In MAS, different types of agents are carefully designed, each
assigned a distinct task and specialised focus. These categories
include Travel Agents (TA) responsible for discovering paths
comprising security properties throughout the FCGe nodes,
Verification Agents (VA) focused on scrutinising code for
vulnerabilities from the paths provided by the former agents,
single Translation Agents (TrA) adept at translating data and
information across the MLKG’s layers, Control Flow Agents
(FA) and Data Agents (DA) responsible for into PDGe,
respectively, handle and inspect control and data flows. Next,
we detail each agent.
Travel Agent. The Travel Agent (TA) is responsible for
discovering possible vulnerability paths over the first layer of
MLKG. Each FCGe’s node has its TA, and it operates by
traversing the FCGe starting from entry points existing in its
node and looking for paths that end in a sensitive sink, either
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Set(Entry)

Set((Entry, Sink, Path))

for each (entry, sink, path)

for each entry

search sinks

[found sink] 
add((entry, sink, path))

FCGe Level PDGe Level

[!found sink]

[while i < n]
call TA[i+1]

TA[i..n]

VA[i..n-1] TrA[i][k..m]

[while i < n] entry search path[0]

[!found path[0]]
call TrA[i][k+1] 

[found path[0] & entry in path[0]]
call VA[i+1](translate(entry), sink, tail(path))

VA[n]

FA[n][k..m]

DA[n][k..m]

[translate(entry) in sink]
call VA[n](translate(entry) , sink, tail(path))

checkData(entry, sink)

while [!reach sink]

while [!reach sink]

[data dependent]call DA[n][k+1]

[flow dependent]call FA[n][k+1]

dependency_status

dependency_status

checkFlow(entry, sink)

[!flow dependent]

[!data dependent]

Set(Vulnerabilities)

[flow&data dependent]
add(Vulnerability)

Fig. 3. Multi-Agent System (MAS) for vulnerability detection.

existing in its node or another. During its search, an agent can
communicate with other TAs below it to check if any FCGe’s
nodes have sensitive sinks in their labels. If a sensitive sink
is found, the agent saves the path it took to get there,
signalising that a possible vulnerability may be in that path.
For instance, considering the MLKG of Figure 2 and the
TA of Main node, it will find two paths P1:[<$age,

echo>, <Main, gymEntrance>], P2:[<$age,

mysql_query>, <Main, gymEntrance, login>]. In
contrast, the TA of gymEntrance will also find two paths
P3:[<$fee, echo>, <gymEntrance>], P4:[<$fee,

mysql_query>, <gymEntrance, login>]. Later, all
other types of agents use this information to conduct a
directed search, avoiding unnecessary paths and making the
analysis more efficient, since it identifies all the possible
vulnerabilities and the function paths we should check to
verify whether it represents a real vulnerability or not.
Verification Agent. The Verification Agent (VA) is responsible
for inferring whether a data and control flow pathway exists
between identified pairs of entry points and sinks, which the
TA has flagged as potentially vulnerable. Analogous to the
functionality of TAs, the VA operates exclusively at the FCGe

level, with each node possessing its own dedicated VA.
This agent traverses the MLKG, deploying Translation

Agents for each identified potential vulnerability. This process
examines how variables linked to entry points are referenced
in subsequent functions along the path leading to a sensitive
sink. The VA collaborates with other VAs within the path,
sharing insights gleaned from the analysis. Upon reaching the
path’s terminal function node, it initiates the Control Flow &
Data Agents, which are elaborated upon later — to assess the
existence of an actual vulnerability.

Translation Agent. The Translation Agent’s (TrA) job is to
figure out how a variable that comes from a specific entry point
is translated in the subsequent functions along the designed
path. This is done for each FCGe node in the path, which is
fed to the TrA from the VA.

The TrA takes into account the entry point passed from the
VA[i] and navigates through the PGDe of the corresponding
i function starting at TrA[i][k] where k corresponds to the
node’s index of the entry point location. It then communicates
with each successor TrA[i][k..m] that is both data and flow
depending on the entry point, ensuring there is a flow con-
nection and the variable still exists in that path. This happens
until it reaches the TrA[i][m] where m corresponds to the
index of the node where the desired function is called (which
also corresponds to the function in path[0] in Figure 3, as being
the following function on the path). At this point, translation is
performed, and the translated entry is passed along to VA[i+1].
However, if the agent reaches a sanitisation function instead,
it checks if the entry corresponds to the sanitised variable.
If it does, the agent stops calling and immediately informs
the verification agent that the variable is untainted (i.e., not
compromised). Taking the P1 path as an example, the VA
of Main node triggers the TrA to verify in the PDGe of the
function Main if the $age entry point has any interactions and
changes. The result is back to the VA, which forwards it to
the VA of the gymEntrance node (according to the following
function in P1). The process repeats unless the final element
in the path is a sink. The VA triggers the Control Flow &
Data Agents in such a case.

Control Flow & Data Agents. The Control Flow & Data
Agents (FA & DA) are very similar in function but differ in
their objective. They are responsible for evaluating flow and
data dependencies accordingly in the last step of the evaluation
process. They operate on the last PDGe in the path identified
previously by TA and are triggered by VA[n], corresponding to
function n where the sensitive sink is located. They communi-
cate with flow-dependent and data-dependent node successors
from FA[n][k]/DA[n][k] (k being the index where the entry
point is located), until they reach FA[n][m]/DA[n][m] where
the sensitive sink is located. Suppose the entry point matches
the one in the sink. In that case, they give feedback to the
VA[n] that the pair is flow/data-dependent, so it can conclude
that a vulnerability exists. For instance, P3 fits in this case. In
contrast, if a sanitisation function is reached, similarly to the
TrA, they give feedback that the variable is not compromised.

495

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on January 06,2025 at 12:44:03 UTC from IEEE Xplore.  Restrictions apply. 



VI. IMPLEMENTATION

We implemented the approach in the KAVE tool [29],
using Python. The tool comprises six modules (all built from
scratch), each responsible for generating specific types of
code representation graphs: FCG & FCGe Creator, CFG
Creator, DVG Creator, and PDGe Generator. Additionally,
there is a module dedicated to assembling the MLKG (MLKG
assembler), which also encompasses the pruning logic, and
one designated for MAS, the MAS Vulnerability Detector.

We used the NetworkX package [42] as the backbone
for our graph structure implementation due to its versatility
in managing complex networks, offering capabilities beyond
basic graphs. Its flexibility of node representation allows
seamless association of diverse data formats, while its edge
attributes enable precise differentiation between flow and data
dependencies, which is pivotal for our PDG Generator.

VII. EXPERIMENTAL EVALUATION

To conduct an evaluation of our approach and KAVE, we
composed a ground truth of 3,205 PHP code snippets from
SARD [43], already labelled as vulnerable and not-vulnerable,
and selected 12 open-source PHP web applications that are
known as being vulnerable, assessed them with the KAVE
and other tools, and wanted to answer the following questions:
(1) Is KAVE capable of generating code representations and
MLKGs correctly? (2) Can KAVE detect potential vulnerabil-
ities? (3) Is KAVE effective in the vulnerabilities it reports,
not generating false positives? (4) Is KAVE more precise than
standard SASTs? (5) Is KAVE more effective than tools that
resort to standard code property graphs?

A. Assessment with Real Web Applications

1) Web Applications Characterisation:
Our goal drove the selection of applications to compare our
model’s results against other SASTs. To ensure an equitable
comparison, we worked with applications already tested by
other vulnerability detection tools. The final selection of
applications and their characterisation is detailed in Table II.

KAVE analysed a total of 12 applications with more than
26,000 lines of code (LoC) distributed in 160 files. This proce-
dure resulted in 160 MLKGs (one for each file) representing
257 functions with 1,834 distinct variables and assembling
2,497 graphs (DVGs, CFGs, and FCGs) with 9,518 nodes and
80,487 edges. The tool took 51 seconds to process and analyse
the software packages, which comprised the time spent in the

TABLE II
MLKG WEB APPLICATIONS CHARACTERISATION.

Web Application Files LoC Time(s) #Functions #Variables #Graphs #Nodes #Edges
Butterfly insecure 16 2,364 6 25 214 279 1,264 2,905
Butterfly secure 15 2,678 7 25 226 291 1,437 3,113
currentcost 3 270 1 5 67 80 163 319
Ghost 14 398 1 14 34 76 339 422
gilbitron-PIP 14 328 1 14 28 70 171 168
Measureit 1.14 2 967 5 51 266 370 736 2,249
Mfm 0.13 7 5,859 11 20 387 434 2,020 61,585
OWASP Vicnum 22 814 2 22 109 175 310 579
Peruggia 10 988 2 10 87 117 673 967
PHP X Template 0.4 10 3,009 8 10 124 154 663 5,811
Webchess 1.0 37 7,704 5 49 216 343 1351 1,501
ZiPEC 0.32 10 765 2 12 76 108 391 868

Total 160 26,144 51 257 1,834 2,497 9,518 80,487

TABLE III
REAL APPLICATION ANALYSIS RESULTS COMPARISON BETWEEN KAVE,

WAP, PIXY AND PHPCORRECTOR.
Web application KAVE WAP Pixy PHPCorrector

SQLi XSS FP FN SQLi XSS FP FN SQLi XSS FP FN SQLi XSS FP FN

Butterfly insecure 0 8 0 2 0 10 0 0 0 6 3 4 0 6 0 4
Butterfly secure 0 5 0 0 0 4 0 1 0 5 11 0 - - - -
currentcost 3 6 0 0 3 4 2 2 3 5 3 1 0 0 0 9
Ghost 1 17 0 1 0 3 0 16 2 15 3 2 1 4 0 19
gilbitron-PIP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Measureit 1.14 0 37 2 1 1 7 7 30 1 16 16 21 - - - -
Mfm 0.13 0 6 0 4 0 8 3 2 0 10 8 0 0 4 0 6
OWASP Vicnum 1 42 3 2 3 1 3 41 3 1 3 41 3 27 3 15
Peruggia 18 8 0 14 0 22 0 18 12 21 10 7 5 10 2 25
PHP X Template 0.4 0 0 0 0 0 0 0 0 - - - - 0 0 0 0
Webchess 1.0 20 59 5 27 0 13 0 93 28 78 403 0 1 42 8 63
ZiPEC 0.32 4 0 0 7 3 0 1 8 2 7 8 2 0 0 0 13

Total 47 188 10 58 10 72 16 211 51 164 468 78 10 93 13 154

generation of the code representation graphs, the MLKG, and
the detection of vulnerabilities. We can notice that the number
of LoC does not directly impact the analysis time. Instead,
there is a strong correlation between time and the number
of nodes and edges, which was expected since the number
of agents needed for the system to operate correlates with
the size of the MLKG in terms of nodes. In addition, the
number of paths those agents are required to traverse also
grows accordingly. It is also noticeable that a higher number
of variables relates to a larger MLKG (in terms of nodes and
edges), but it does not correlate with the number of files,
functions, or graphs.

2) Vulnerability Detection with KAVE:
We conducted a manual review of KAVE outcomes to cat-
egorise the findings as either XSS or SQLi vulnerabilities
in case the predictions were correct or as false positives
(FP) if the predictions were incorrect. False negatives (FN)
were determined by comparing the vulnerabilities identified by
KAVE with those detected by other tools that KAVE failed to
find, and likewise for the discrepancies in the findings of these
tools compared to each other and KAVE. Columns 2 to 5 of
Table III show the evaluation results. KAVE detected a total of
235 vulnerabilities. Among these, 47 were classified as SQLi,
while 188 were identified as XSS. Remarkably, a mere 10
FPs were generated in our analysis, a statistically insignificant
figure, allowing us to effectively address the question (3).

Demonstrating the tool’s ability to identify application
vulnerabilities constituted a pivotal milestone for our MAS.
This takes us to affirm the tool indeed exhibits proficiency
in vulnerability detection (question (2)). Additionally, the
MAS’s ability to uncover vulnerabilities relies on the MLKG
comprising multiple code graphs. Thus, we ascertain the tool’s
competence in generating and amalgamating these graphs into
the MLKG, satisfactorily addressing the question (1).

Derived from our tool’s execution, we inferred a precision
rate of 95.9%. These statistics illustrate well the potential of
our solution. Coupled with the tool’s commendable perfor-
mance in execution time, quantifiable in seconds, we confi-
dently assert that our multi-agent system adeptly traverses the
MLKG. This substantiates the tool’s capacity to swiftly and
precisely identify vulnerabilities within the applications.

B. Effectiveness Comparison

Concerning effectiveness, our initial comparison involves
evaluating KAVE against WAP [6], Pixy [12], and PHPCor-
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rector [15] standard SAST tools. This assessment hinges on
outcomes derived from both real application analyses and
testing results conducted across the SARD database [43]. Sub-
sequently, we juxtapose KAVE with NAVEX-f [23], [44], an
analogous framework leveraging code property graph analysis,
to further reinforce our methodology.

1) Comparison with Standard Static Analysis Tools:
We pursued two distinct directions in our comparative analysis
of KAVE against other SASTs. Initially, we tested these
tools using the ground truth we composed from SARD. This
approach established a benchmark for evaluation since SARD
labels the examples as Safe or Unsafe. Subsequently, we
evaluated and compared the results obtained by running these
tools over real applications, recognising that this practical
application remains the primary focus of such tools.

Synthetic Ground-Truth dataset. The synthetic ground-truth
dataset comprises a total of 3,205 code snippets, with 1,569 la-
belled as Unsafe and 1,636 as Safe. Among these, only KAVE
and WAP successfully tested all the examples, while Pixy and
PHPCorrector generated 477 and 148 errors, respectively.

Comprehensive results are collated in Table IV along with
the corresponding metrics in Table V. These results show that
PHPCorrector exhibited subpar performance, labelling only 28
cases as Unsafe. Despite its reported accuracy of 0.53 (0.5
with error cases) and precision of 0.86, these values lack
significance due to the unbalanced predictions, resulting in
a meagre 0.03 F1-score. Pixy, on the other hand, seemingly
performed well by correctly identifying approximately twice
as many examples as KAVE and WAP as Unsafe. However, it
tends to have a higher FP rate, which could be attributed to its
higher inclination toward labelling code as Unsafe. Yet, when
considering true negatives, KAVE demonstrated a capability
of correctly labelling around 500 more cases. Moreover, if
considered, the substantial number of error cases implies that
Pixy’s accuracy would diminish from 0.66 to 0.56, aligning
more closely with KAVE’s performance.

WAP and KAVE, while predicting a similar number of Un-
safe cases accurately, showcased disparities. KAVE produced
less than half the number of FP, evident from its FP rate
of 0.17 compared to WAP’s 0.44 (also applicable to Pixy).
Additionally, KAVE outperformed WAP in terms of predicting

TABLE IV
CONFUSION MATRIX FROM SARD SAMPLES ANALYSIS BY KAVE, WAP,

PIXY, AND PHPCORRECTOR.

SARD Label KAVE WAP Pixy PHPCorrector
Unsafe Safe Unsafe Safe Unsafe Safe Unsafe Safe

Unsafe 429 1140 452 1117 984 357 24 1437
Safe 286 1350 719 917 566 821 4 1592

TABLE V
METRICS FROM SARD SAMPLES ANALYSIS BY KAVE, WAP, PIXY, AND

PHPCORRECTOR.
Metric KAVE WAP Pixy PHPCorrector
Accuracy (acc) 0.56 0.43 0.66 0.53
Recall (rec) 0.27 0.29 0.73 0.02
Precision (pr) 0.60 0.37 0.64 0.86
F1-score 0.38 0.33 0.68 0.03
FP rate (fpr) 0.17 0.44 0.41 0.00
FN rate (fnr) 0.73 0.71 0.27 0.98

TABLE VI
METRICS FROM REAL APPLICATION ANALYSIS BY KAVE, WAP, PIXY,

AND PHPCORRECTOR.
Metric KAVE WAP Pixy PHPCorrector
Precision (pr) 0.96 0.84 0.32 0.89
Recall (rec) 0.80 0.28 0.73 0.40
F1-score 0.87 0.42 0.44 0.55

true negatives, having an accuracy of 0.56 against WAP’s 0.43,
along with a precision of 0.6 compared to WAP’s 0.37.

While the benchmark methodology offers a valuable in-
dication of the tools’ validity, it is crucial to acknowledge
that most of this benchmark comprises synthetic examples
that frequently do not align with real-world vulnerabilities.
Additionally, numerous examples exhibit subtle nuances, im-
plying that a tool inclined to mislabel one example as Safe
will likely repeat this error across similar instances, creating
bias. Conversely, if it mislabels an example as Unsafe, it may
propagate this misclassification, potentially amplifying bias in
the opposite direction.

Real Applications. With the real application, only KAVE and
WAP were executed without encountering errors. Pixy failed
to process one application entirely and reported errors across
15 files within other applications. Similarly, PHPCorrector had
issues processing two applications and reported 7 additional
file errors. Indeed, in contrast to the synthetic dataset anal-
ysis, where the focus was on categorising code as Safe or
Unsafe, this evaluation goes beyond mere labelling. Here, the
emphasis lies in accurately quantifying the actual number of
vulnerabilities within the applications and precisely identifying
their specific locations. This approach enables a more granular
understanding of the vulnerabilities present, facilitating their
targeted resolution and enhancing the overall effectiveness
of the assessment process. The summarised outcomes are
presented in Table III and corresponding metrics in Table VI.

This analysis reveals that KAVE identified the highest num-
ber of vulnerabilities, totalling 235 compared to WAP’s 82,
Pixy’s 215, and PHPCorrector’s 103. Despite Pixy’s seemingly
substantial vulnerability identification, it is linked to a notably
higher number of FP, underscoring its tendency to label code
as Unsafe, as observed in the Synthetic Ground-Truth. This
characteristic renders Pixy unsuitable for real-world scenarios,
notably being the only tool falling below the 0.8 precision
threshold. KAVE, WAP, and PHPCorrector exhibited a similar
number of FP, thereby reflecting comparable precision levels.
However, KAVE was still superior and surpassed the others
by not only identifying more than double the number of
vulnerabilities but also exhibiting notably fewer FN. Conse-
quently, KAVE achieved better recall, resulting in a better f1-
score when compared to the others. This allows us to answer
question (4) affirmatively.

2) Comparison with Code Property Graphs:
In our final comparison, we sought to validate the effectiveness
of KAVE by contrasting it NAVEX-f, a tool that uses code
property graphs for static analysis. To facilitate this compari-
son, we selected 6 real applications previously scrutinised by
NAVEX-f. The analysis results, combined with findings from
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TABLE VII
REAL APPLICATION ANALYSIS RESULTS IN COMPARISON BETWEEN KAVE

AND NAVEX-F.
Web application KAVE NAVEX-f

SQLI XSS FP FN SQLI XSS FP FN
60CycleCMS 5 18 2 0 1 5 3 17
AMSS++ 1323 2476 62 0 - - - 3799
CandidatATS 0 140 5 15 15 35 10 105
eLection 12 26 10 0 0 0 20 38
GUnet OpenEclass E-learning 1 716 14 0 0 0 1 717
Persian VIP Download Script 21 7 0 1 15 8 3 6
rConfig 2 32 3 0 0 11 7 23
Total 1364 3415 96 16 31 59 44 4705

[45], are consolidated and presented in Table VII.
As anticipated, by analysing prior NAVEX-f results com-

parisons [45], KAVE showcased superior performance over
NAVEX-f in identifying vulnerabilities, which allows us to
answer affirmatively to question (5). Despite having twice
as many FP, this was largely influenced by NAVEX-f’s in-
ability to process AMSS+, the application housing the most
vulnerabilities, thereby increasing the likelihood of generating
FP. NAVEX-f exhibited superiority solely in detecting SQL
injection in CandidatATS and discovering one additional XSS
in Persian. However, in the broader context of results, these
instances appear relatively inconsequential.

VIII. RELATED WORK

This section contains some related works, and although
there are several research works on detecting web vulnerabil-
ities, we only present the ones that are more related to ours.

SASTs are critical in identifying vulnerabilities in source
code that can make it susceptible to attacks. These tools have
been developed over the years to help programmers identify
potential security risks in their code. One such tool (the
pioneer) is the bounded model checking method developed
by Huang et al. [4], [5], which uses a lattice-based algorithm
approach that taints code through type systems and typestate.
The approach is sound and provides counter-examples, making
it useful in identifying potential vulnerabilities. Another work
in the field of SASTs is the development of the dependence
analysis method proposed by [18]. The method evaluates
program operations to produce execution order constraints
that control whether an operation data depends on another
operation and should be executed only after the previous
one. The author takes advantage of merging PDGs from
single application procedures within a call graph, generating
a System Dependence Graph (SDG) [46] representing the
entire program structure. This method is useful in identifying
potential vulnerabilities in dynamic languages such as PHP.
Pixy [12], PHPCorrector [15], RIPS [14], and WAP [6] are
SASTs for web application vulnerability discovery based on
AST and taint analysis. PHPCorrector and WAP also remove
the vulnerabilities by fixing the application code. SKYPORT
[47] also patches web applications that contain injection
vulnerabilities, but first, searches the code looking for them.

Other tools resort to different techniques for web vulnerabil-
ity detection. FuzzOrigin [48] is a black-box to detect universal
XSS (UXSS) in web browsers. PIDGIN [20] aims to find
security guarantees in legacy programs to create new or adjust

existing policies with application development and develop
policies based on known vulnerabilities. Leopard [24] also
identifies vulnerabilities in program code but through metrics
that allow measuring program code elements. Kassar et al. [49]
and Medeiros et al. [50], [51] study the impact of coding style
on SASTs ability to discover vulnerabilities in PHP.

Backes et al. [21] used inter-procedural analysis techniques
on code property graphs (introduced by [7], [22]) to efficiently
analyse large amounts of code, storing them in highly efficient
graph databases that allow users to query for vulnerabilities.
On the other hand, MERLIN [16] is a tool that detects vulner-
abilities in web applications by combining data flow analysis
over intermediate code parsed from Java Bytecode generated
from multiple high-level languages. It uses taint analysis and
machine learning to automatically discover vulnerabilities by
classifying code as vulnerable or not. BEACON [52] is a
new method for grey-box fuzzing that aims to improve the
effectiveness of fuzz testing in web applications by com-
bining symbolic execution, machine learning, and provable
path pruning. FUGIO [53] is an automatic exploit generation
tool designed to exploit PHP Object Injection vulnerabilities.
After finding the vulnerabilities, the tool generates exploits
and executes them to confirm its findings. VulEye [54] is
a novel Graph Neural Network (GNN) based approach for
automatically detecting vulnerabilities in PHP applications.
The approach uses a Program Dependence Graph (PDG) to
represent PHP code, slices the PDG with sensitive functions
contained in the source code into sub-graphs called Sub-
Dependence Graphs, and uses these as input for a GNN model.

IX. CONCLUSIONS

This paper presented the KAVE system approach to detect
web vulnerabilities based on multi-layer knowledge graphs
(MLKGs) constructed from diverse code representation graphs
and on a multi-agent system (MAS) to discover vulnerabilities
over these MLKGs. This research has added to the existing
knowledge in the field by providing KAVE that implements
the presented approach and has demonstrated the capability of
effectively finding vulnerabilities in PHP coded applications.
The findings from KAVE provide valuable insights that can
inform programmers and entities if their web applications are
vulnerable and where in their code, which can contribute to
improving code quality and software security. Moreover, the
results reveal that, in many situations, KAVE obtained results
better or at least comparable to the ones of other existing tools
for vulnerability detection.
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