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Abstract

Understanding the asymptotic behavior of statistics based on high frequency ob-
servations has gained considerable attention in the recent years, notably due to
the ever-growing availability of datas. We think of the numerous applications in
economics and econometrics, among others. This thesis explores the limit theory
of realized quadratic variation and related functionals for two important classes of
processes, namely semimartingales and ambit fields.

Chapter I is an introductory chapter to the main mathematical concepts en-
countered in the thesis. We preface the classes of semimartingales and of ambit
fields and introduce the commom problematic to all the following chapters, that
is the establishment of the asymptotic theory for functionals of increments of the
processes of interest. We finally present the different methodologies to answer this
problematic in the various chapters of the sequel.

Chapter II contains the paper [44]: ”Limit theorems for general functionals of
Brownian local times”, in collaboration with Simon Campese and Mark Podolskij.
Electronic Journal of Probability, 29:1–18, 2024. We prove a stable central limit
theorem for a class of integrated functionals of increments of the local time of a
Brownian motion. This result generalizes a number of prior works in the unified
framework of semimartingales’ limit theory.

Chapter III contains the preprint: ”Limit theorems for asynchronously observed
bivariate pure jump semimartingales”, in collaboration with Mark Podolskij, 2024.
In this chapter we prove a non-central limit theorem for the Hayashi-Yoshida es-
timator of the quadratic covariation process of an asynchronously observed stable
process. This result is one of the first to establish the asymptotic theory for non-
synchronous high-frequency statistics of pure jump processes.

Chapter IV contains the preprint: ”Limit theorems for two dimensional am-
bit fields observed along curves”, in collaboration with Mikko S. Pakkanen, Mark
Podolskij and Bezirgen Veliyev, work in progress. The main result is a stable central
limit theorem for the power variation of increments of a two-dimensional ambit field,
observed with high frequency along some curve embedded in the field. This result
is a direct extension of the univariate case.

Finally, the appendix contains technical results that complement the various
concepts covered in the introduction.
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Notations

• N, Z, Q, R and C denotes respectively the set of positive integers, integers,
rational numbers, real numbers and complex numbers.

• N≥q denotes the set of positive integers greater or equal than q.

• R+, Rd denotes the set of real positive real numbers, resp. the d-fold cartesian
product of the set of real numbers.

• B(K), Bb(K) denotes the Borel σ-algebra containing all borel sets of K, resp.
all bounded borel sets of K.

• x⊺ denotes the transpose of x.

• If x, y ∈ Rd, then x⊙ y = xy⊺ + yx⊺ denotes the symmetric tensor product of
x and y.

• x∨ y and x∧ y denote the maximum of x and y, resp. the minimum of x and
y.

• ∥x∥ denotes the Euclidean norm of x ∈ Rd.

• a.s. stands for almost surely.

• d
= denotes equality in distribution.

• u.c.−→ denotes the uniform convergence on compact sets.

• d−→,
dst−→,

P−→,
u.c.p.−→,

Lp

−→ and
a.s.−→ denote respectively convergence in distribu-

tion (or in law), stable convergence, convergence in probability, uniform con-
vergence in probability on compact sets, convergence in Lp and convergence
almost sure.
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Chapter I

Introduction

For nearly three decades the field of high-frequency statistics for stochastic pro-
cesses has grown in popularity and expanded quickly, partially due to the numerous
applications. We can notably think of the countless applications in economics and
financial econometrics.

In this thesis we focus on deriving estimators for the quadratic and power varia-
tions for different classes of processes, and then establish in a loose sense generalized
central and non central limit theorem for the proposed estimator. The quadratic
variation is a stochastic quantity that measures broadly speaking the noisiness of a
typical trajectory of a stochastic process.

In the high-frequency framework, we investigate first the asymptotic theory for
quadratic variation and other functionals of increments of Itô semimartingales, in
the Gaussian and pure jump case. Second, we establish the limit theory for power
variations for a class of spatiotemporal ambit process driven by a Gaussian white
noise.

In this chapter we introduce the high-frequency framework, shared in all chapters
in the sequel, and the main mathematical objects and tools of the dissertation.
We provide a brief summary of past findings and techniques linked to the results
presented in this thesis. More specifically, in Section I.1 we define the high-frequency
framework, the cornerstone of this dissertation. In Section I.2 we introduce the main
mathematical objects of the thesis. In Section I.3 we provide the methods used in
the different chapter of this dissertation: for Chapter II in Section I.3.1, for Chapter
III in Section I.3.2 and for Chapter IV in Section I.3.3. We present our results in
Section I.4.

I.1 High-frequency framework

In this section we introduce the high-frequency framework for statistics of stochastic
processes. This asymptotic regime will be commom to Chapter III and Chapter IV
and ”hidden” in the statistic of interest of Chapter II.

Let X = (Xt)t≥0 be a stochastic process and assume that we observe one path Xt(ω)

3



4 Chapter I. Introduction

discretely over a finite and fixed time interval [0, T ]. More precisely, we assume that
we are given discrete observations Xtni

, 1 ≤ i ≤ n over a time grid (tni )1≤i≤n with
0 ≤ tni ≤ T for all 1 ≤ i ≤ n. We consider then a statistic of the form

Sn((Xtni
)1≤i≤n) := Sn(X),

using our discrete observations. The goal is to establish the asymptotic behavior
of the statistic Sn(X) when n goes to infinity, or equivalenty when the mesh of the
partition (tni )1≤i≤n tends to zero. In the sequel we call this partition the observation
scheme or sampling scheme. From this limiting behavior of the statistic, we can
deduce features of the continuous-time process (Xt)t≥0.

This asymptotic framework is very useful in pratice, especially for financial applica-
tions where quantities of interest, e.g. transactions, price movements, are observed
with a high frequency (e.g. every hours, minutes or seconds) or even ultra-high
frequency (when all possible transactions on some market are being recorded).

Within this framework we distinguish different observation schemes:

• If for all i, tni := i∆n with ∆n a deterministic sequence of real numbers going
to zero, we say that the sampling scheme is regularly spaced or that the
datas are regularly spaced.

• Suppose that we observe discretely d processes Xj, 1 ≤ j ≤ d, over a sampling
scheme (tni (j))1≤i≤n,1≤j≤d.

– If tni (j) = tni for all j, then the sampling scheme is called synchronous.

– If there exists j, k such that tni (j) ̸= tni (k), then the sampling scheme is
called asynchronous.

Chapter IV uses synchronous and regularly spaced datas for the statistic whereas
Chapter III uses asynchronous and irregularly spaced datas.

I.2 Mathematical objects

In this section we introduce the two main objects of this thesis. In Section I.2.1 we
introduce the class of semimartingales, with a particular attention to the subclass of
Lévy processes. Section I.2.2 presents a class of spatiotemporal ambit field, driven
by a Gaussian white noise. Before delving into the properties of specific classes of
processes, we give two important definitions for the sequel.

Throughout this section, all processes are defined on a probability space (Ω,F ,P),
equipped with a filtration (Ft)t≥0, i.e. a family of sub σ-fields of F such that Fs ⊆ Ft

for s ≤ t (the family is said to be increasing) and we assume that
⋂

s>t Fs = Ft (the
family is said to be right-continuous). We call the quadruplet (Ω,F , (Ft)t≥0,P) a
filtered probability space or a stochastic basis.

Let (Xt)t≥0 be a stochastic process. The quadratic variation process can be defined
as the limit in probability of the sum of squared increments of X over a sequence of
partitions with mesh going to zero, if it exists. Formally:
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Definition I.2.1. Let (Xt)t≥0, (Yt)t≥0 be two real-valued stochastic processes. We
define the quadratic variation of X over [0, t], resp. the quadratic covariation
of X and Y over [0, t], as the limit under covergence in probability, if it exists

[X]t = lim
|πn|→0

n∑
i=1

(Xti −Xti−1
)2, (I.2.1)

[X, Y ]t = lim
|πn|→0

n∑
i=1

(Xti −Xti−1
)(Yti − Yti−1

), (I.2.2)

where the limit is taken over all partitions πn of [0, t] with 0 = t0 < t1 < ... < tn = t
and |πn| = max1≤i≤n |ti − ti−1|.

Informally, the quadratic variation of some process X ”accumulates” in some sense
the randomness of the process X and measures the variability of its path.

These definitions can be extended directly to the multivariate case. We finish the
introduction of this section with a last definition.

Definition I.2.2. Let (Xt)t≥0 be a càdlàg stochastic process. The process X is
called a finite variation process if the paths X(ω) are of finite variation on each
compact set of R+ almost surely.

Remark I.2.3. One can prove that the quadratic variation exists for any càdlàg
finite variation process and that the quadratic variation of a continuous finite vari-
ation process is identically 0.

Assume that X is a càdlàg pure jump finite variation process. Denote by Xs−
the left limit of X with respect to s. This limit exists due to the càdlàg assumption
on X. Denote by ∆sX := Xs−Xs− the jump of X at time s. The quadratic variation
of X over [0, t] is given by the sum of the squared jumps of X up to time t, i.e.

[X]t =
∑
0≤s≤t

(∆sX)2 .

I.2.1 Semimartingales and Lévy processes

We start with the definition of a semimartingale.

Definition I.2.4. A real-valued stochastic process Y = (Yt)t≥0, defined on a filtered
probability space (Ω,F , (Ft)t≥0,P), is called a semimartingale if

(i) Y is adapted to the filtration (Ft)t≥0, i.e. for every t ≥ 0, Yt is Ft-measurable.

(ii) For all ω ∈ Ω, Yt(ω) is càdlàg.

(iii) Y can be decomposed as:

Yt = Y0 +Mt + At

where Y0 is finite-valued and F0-measurable, M is a local martingale and A is
a finite variation process.
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Definition I.2.5. A Rd-valued stochastic process Y = (Y 1, ..., Y d) is a semimartin-
gale if Y i is a R-valued semimartingale, for all 1 ≤ i ≤ d.

Remark I.2.6. The decomposition in (iii) is not unique for any semimartingale. In
particular, if Y is a continuous semimartingale, then we can decompose uniquely

Yt = Mt + At

where M is a continuous local martingale and A is a continuous finite variation
process (see [138]).

Most of the usual stochastic processes are semimartingales. Such examples include
(the list is not exhaustive):

• Càdlàg martingales and local martingales;

• Lévy processes, including Brownian motion and Poisson processes;

• Itô processes;

• Hawkes processes;

• Local time of a Brownian motion.

Apart from including many useful examples of stochastic processes, the class of
semimartingales is the largest (in the sense of inclusion) class of stochastic inte-
grators: for any left continuous, locally bounded and adapted process H and any
semimartingale Y the stochastic Itô integral of H with respect to Y exists [38, 39].
Such integral is defined as a stochastic extension of the Riemann-Stieljes integral

Xt =

∫ t

0

HsdYs = lim
n→∞

∑
ti,ti+1∈πn

Hti(Yti+1
− Yti)

where πn is a sequence of finite random partition of [0, t] with mesh going to zero
and the sum converges in probability. This property can be used to define the class
of semimartingales. The Bichteler-Dellacherie theorem (see [133, Theorem 47])
ensures the equivalence of the two definitions.

For any semimartingale X one can show that the quadratic variation of X exists.
Similarly, for any two semimartingales X and Y one can show that the quadratic
covariation of the processes X and Y exists. In the semimartingale framework, we
have another definition for the quadratic (co)variation, equivalent to the one given
in Definition I.2.1.

Definition I.2.7. Let X, Y be semimartingales. Then the quadratic variation
process ([X]t)t≥0 of X is defined by

[X] := X2 − 2

∫
X−dX (I.2.3)
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where Xt−(ω) := lim
s→t,s<t

Xs(ω) (see I.2.1). Similarly, the quadratic covariation

process ([X, Y ])t≥0 of X and Y is defined by

[X, Y ] := XY −
∫
X−dY −

∫
Y−dX. (I.2.4)

Note that the map (X, Y ) 7→ [X, Y ] is bilinear and symmetric. From the definition
we deduce an integration by part formula:

XY =

∫
X−dY +

∫
Y−dX + [X, Y ]. (I.2.5)

This process is of the utmost interest as it is a key element of the Itô isometry
and Itô’s lemma (see e.g. [133, Theorem 32]), a lemma useful notably for statistical
inference: when we need to evaluate statistics on the process f(X) for X a semi-
martingale, Itô’s Lemma ensures that we can compute the dynamic df(Xt) under
mild conditions on the regularity of f .

The definition (I.2.1) is more convenient for statistical purpose. Indeed, assume that
we observe a semimartingale Y over a synchronous sampling scheme (tni )1≤i≤n on
some time interval [0, t] (see Section I.1). Then Definition I.2.1 provides us a way
to define a statistic for the quadratic variation (resp. covariation). Let X, Y be
real-valued semimartingale. Then by Definition I.2.1

V n(X, 2)t : =
∑
i

(Xtni
−Xtni−1

)2
P−→ [X]t, (I.2.6)

V n(2, X, Y )t : =
∑
i

(Xtni
−Xtni−1

)(Ytni − Ytni−1
)

P−→ [X, Y ]t. (I.2.7)

In other words, V n(X, 2)t, resp. V n(2, X, Y )t, is a consistent estimator of the
quadratic variation [X]t, resp. the quadratric covariation [X, Y ]t. We call this es-
timator the realized variance, resp. the realized covariance. We can define
the same estimators for two d-dimensional semimartingales X = (X1, ..., Xd) and
Y = (Y 1, ..., Y d) observed on the sampling scheme defined above:

V n(X, 2)t : =
∑
i

(Xtni
−Xtni−1

)(Xtni
−Xtni−1

)⊺
P−→ [X]t, (I.2.8)

V n(2, X, Y )t : =
∑
i

(Xtni
−Xtni−1

)(Ytni − Ytni−1
)⊺

P−→ [X, Y ]t, (I.2.9)

where x⊺ is the transpose of the vector x. Estimation of the quadratic covariation
and the second order limit associated is the main subject of Chapter III.

Remark I.2.8. Let Y be a real-valued semimartingale. Let (πn)n be a sequence
of randoms partitions over the time interval [0, t] with mesh going to zero. Let
p ≥ 0. We can define another important quantity when studying the behavior of
semimartingales, the so called power variation of order p or p-variation, denoted
[Y ]

[p]
t with the special case [Y ]

[2]
t = [Y ]t. We define it as the limit, if it exists:

[Y ]
[p]
t := lim

n→∞

∑
Tn
i ∈πn

|YTn
i
− YTn

i−1
|p
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where the convergence holds in probability. We can correspondingly define a con-
sistent estimator of the power variation, called the realized power variation as

V n(Y, p)t :=
∑
i

|Ytni − Ytni−1
|p.

Althought we consider ambit processes instead of semimartingales, Chapter IV is
devoted to the estimation of the p-variation. Note that contrary to the quadratic
variation, depending on the value of p, this quantity may not be defined for any
semimartingale [100].

Coming back to the main properties of a semimartingale, one can characterize en-
tirely the distribution of a semimartingale by a triplet, called characteristics of a
semimartingale. We observe first the following theorem [92, Theorem 23.14]:

Theorem I.2.9. Let Y be a semimartingale. Then almost surely X has an unique
decomposition

Y = Y0 + Y c + Y d,

where Y c is a continuous local martingale satisfying Y c
0 = 0 and Y d is a purely

discontinuous semimartingale. Denote by [Y ]c, resp. [Y ]d the continous part, resp.
the purely discontinuous part of the quadratic variation [Y ]. Then, almost surely,

[Y c] = [Y ]c and [Y d] = [Y ]d.

In the decomposition of Theorem I.2.9, Y d is a purely discontinuous semimartingale,
therefore we can decompose Y d as a sum of a local martingale and a finite variation
process.

Let h : Rd → Rd be a compactly supported function, bounded and such that
h(x) = x in a neighborhood of 0. We can for example consider the function h(x; ϵ) =
1{∥x∥≤ϵ} for some ϵ > 0 fixed. We use this cutoff function h to further decompose
the semimartingale Y , depending on the size of the jumps. We use the notation
∆Yt = Yt − Yt−. Define{

Y ′(h)t :=
∑

s≤t (∆Ys − h(∆Ys)) ,

Y (h) := Y − Y ′(h).
(I.2.10)

We observe that Y ′(h) is a finite variation process and Y (h) is a semimartingale
with canonical decomposition

Y (h) := Y0 +M(h) +B(h),

with M(h) a semimartingale and B(h) a predictable finite variation process. To
sum up, we have

Y = Y0 +B(h) +M(h) + Y ′(h) = Y0 +B(h) +M(h)c +M(h)d + Y ′(h)

where M(h)c and M(h)d denote respectively the continuous and purely discontinu-
ous part of the local martingale M(h). Finally, denote by µ(ω, dt, dx) the random
jump measure of Y , defined as

µ(ω, (0, t], A) :=
∑
0<s≤t

1A(∆Ys), A ∈ B(Rd \ {0}).
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Observe that Y (h) has bounded jump, hence it is locally integrable and its com-
pensator A(h) exists, i.e. an increasing process such that Y (h) − A(h) is a local
martingale. Denote by ν the compensator of the random jump measure µ. We have
the following definition:

Definition I.2.10. Let h be some fixed cutoff function, let Y be a d-dimensional
semimartingale. We call characteristics of Y (associated with h) the triplet
(B,C, ν) where

(i) B = B(h) is a d-dimensional predictable process of locally bounded variation.

(ii) C = Ci,j, 1 ≤ i, j ≤ d is a d×d-dimensional predictable increasing continuous
process defined as

Ci,j = ⟨Y i,c, Y j,c⟩

where Y c is the continuous martingale part of Y .

(iii) µ is the compensator of the random measure ν associated to the jumps of Y.

Remark I.2.11. If the characteristics of the semimartingale Y are absolutely con-
tinuous with respect to the Lebesgue measure, we call Y an Itô semimartingale.
This assumption on the characteristics is crucial for statistical purpose [7].

The characteristics of a semimartingale are uniquely determined, due to Theorem
I.2.9. This unicity is crucial to define a method to prove the weak convergence:

Y n d−→ Y (I.2.11)

where (Y n)n≥0 is a sequence of semimartingales with characteristics (Bn, Cn, νn)
and Y is a semimartingale with characteristics (B,C, ν). Indeed, to prove (I.2.11)
one only need to show the tightness of the sequence (Y n)n≥0 and the convergence of
the sequence of characteristics ((Bn, Cn, νn))n≥0 towards (B,C, ν). This method is
the main tool used to prove Theorem III.2.3 of Chapter III.

We turn our attention to another class of stochastic processes called Lévy pro-
cesses. We will see in the sequel that Lévy processes is a subclass of semimartingales
with deterministic characteristics, ensuring for statistical purpose the identifiability
of the characteristics. We begin with the definition of such processes.

Definition I.2.12. Let Y = (Yt)t≥0 be a stochastic process defined on a filtered
probability space (Ω,F , (Ft)t≥0,P). Y is called a Lévy process if it satisfies each
of the following properties:

(i) Y0 = 0 almost surely.

(ii) Y has independent increments, i.e. for any 0 ≤ t1 < t2 < ... < tn < ∞ the
random variables (Yti+1

− Yti)1≤i≤n−1 are mutually independent.

(iii) Y has stationary increments, i.e. for any s < t, Yt − Ys
d
= Yt−s.
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(iv) Y is stochastically continuous, i.e. for any ε > 0 and any t ≥ 0,

lim
h→0

P (|Yt+h − Yt| > ε) −→ 0.

If Y is a Lévy process, there exists a version Ỹ of Y with càdlàg paths, meaning
that P(Yt = Ỹt) = 1 for all t and for any ω ∈ Ω, Ỹ·(ω) is càdlàg.

Some example of Lévy processes include Brownian motion, (compound) Poisson
processes, β-stable processes.

An important property is that the distribution of any Lévy process is infinitely
divisible: let Y be a Lévy process. Then for any t ≥ 0 and any n ∈ N, there exists
n i.i.d. random vectors X1, ..., Xn such that

Yt
d
= X1 + ...+Xn.

Due to (ii) and (iii), we can chose Xi = Yit/n − Y(i−1)t/n for any 1 ≤ i ≤ n.

The characteristic function of any infinite divisible distribution is given by the Lévy-
Khintchine formula (see inter alia [143, Theorem 8.1] for a proof):

Theorem I.2.13. Let X be a random vector on Rd with distribution µ. Assume
that µ is infinitely divisible. Then the characteristic function of X is given by the
Lévy-Khintchine formula:

E
[
ei⟨u,X⟩] = exp(ψX(u)) with

ψX(u) = − 1

2
⟨u,Au⟩ + i⟨γ, u⟩

+

∫
Rd

(
ei⟨u,x⟩ − 1 − i⟨u, x⟩1{∥x∥≤1}

)
ν(dx), (I.2.12)

where A is a symmetric nonnegative definite d × d matrix called the Gaussian
covariance matrix, γ ∈ Rd and ν is a measure on Rd, called the Lévy measure,
satisfying

ν({0}) = 0 and

∫
Rd

(∥x∥2 ∧ 1)ν(dx) <∞.

The vector γ appearing in the drift term depends on the choice of the cut-off func-
tion. The triplet (γ,A, ν) is called the generating triplet of the distribution µ
and is unique. Conversely we can associate to any generating triplet (γ,A, ν) a
corresponding infinitely divisible distribution.

Let X = (Xt)t≤0 be a Rd-valued Lévy process. As we have seen in the prequel,
the distribution of Xt is infinitely divisible for any t ≥ 0. We then have a Lévy-
Khintchine formula for Lévy processes:

Theorem I.2.14. Let X be a Rd-valued Lévy process. Then, for all t ≥ 0, for all
u ∈ Rd, there exists a triplet (γ,A, ν), called Lévy triplet, such that

E
[
ei⟨u,Xt⟩

]
= exp(tψX(u))

with ψX(u) defined in (I.2.12).
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Definition I.2.15. Let X be a Rd-valued Lévy process with Lévy triplet (γ,A, ν).
If A = 0, then X is called a pure jump Lévy process.

We recall that the characteristic function of the sum of independent random vectors
is the product of the characteristic function of each random vectors. Using this
property and the formula (I.2.12) we can prove the Lévy-Itô decomposition:
every Lévy process can be decomposed as the independent sum of a deterministic
drift, a Brownian motion and a jump process. Formally (see [143, Theorems 19.2,
19.3]):

Theorem I.2.16. Let X be a d-dimensional Lévy process with characteristic ex-
ponent define in (I.2.12). Then there exists three independent Lévy processes X(1),
X(2) and X(3) such that

Xt = X
(1)
t +X

(2)
t +X

(3)
t (I.2.13)

where X(1) is a Brownian motion with drift, X(2) is a compound Poisson process with
intensity ν(Rd \ {∥x∥ ≤ 1}) and child distribution ν1{Rd\{∥x∥≤1}}/ν(Rd \ {∥x∥ ≤ 1}).
Its characteristic exponent is given by

ψX(2)(u) =

∫
Rd\{∥x∥≤1}

(ei⟨u,x⟩ − 1)ν(dx).

X(3) is a compensated generalized Poisson process with characteristic exponent given
by

ψX(3)(u) =

∫
{∥x∥≤1}\{0}

(ei⟨u,x⟩ − 1 − i⟨u, x⟩)ν(dx).

We can show that X(3) is a martingale and X(2) is a finite variation process. Adding
the fact that X(1) minus its drift is a martingale, we get that X is a semimartingale
by definition. In particular, X is a semimartingale with deterministic characteristics
(γ,A, ν). Therefore, for any sequence of Lévy processes Xn with characteristics
(γn, An, νn), we can prove the weak convergence

Xn d−→ X (I.2.14)

by using the methodology presented in (I.2.11): provided that the sequence (Xn)n≥0

is tight, one can show (I.2.14) by proving the convergence of the characteristics
(γn, An, νn) towards the characteristics of X.

In the following we focus on two subclasses of Lévy processes. The sequel is divided
into two subsections: in Section I.2.1.1 we introduce the notion of local time of a
Brownian motion, the main mathematical object of study of Chapter II. In Section
I.2.1.2, we define the class of β-stable processes, which is the core subject of Chapter
III.

I.2.1.1 Local time of a Brownian motion

The local time of a semimartingale X at a level x is a continuous increasing process
that measures the amount of time that the semimartingale spends at the given level.
We denote it Lx

t or Lx if t = 1.
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In this section we focus on the special case of the local time of a Brownian motion,
or Brownian local time. Following Section I.2,we recall that a real-valued Brow-
nian motion W = (Wt)t≥0 is a Lévy process (and therefore a semimartingale) with
characteristic exponent

ψW (u) = −σ
2

2
.

It is the only Lévy process with almost surely continuous paths.

We define the Brownian local time via the following theorem, called the Tanaka
formula (see a proof in e.g. [136, Theorem VI.1.2]):

Theorem I.2.17. Let (Wt)t≥0 be a real-valued Brownian motion. For any x ∈ R
there exists an increasing continuous process (Lx

t ), called the local time of W at
level x such that

|Wt − x| = |W0 − x| +

∫ t

0

sgn(Ws − x)dWs + Lx
t (I.2.15)

where sgn(x) :=

{
x/|x|, x ̸= 0

0 else
is the sign function.

The proof of this theorem relies essentially on a generalisation of the Itô formula for
convex function.

Remark I.2.18. There exists another approach to define the Brownian local time.
Let A ∈ B(R) be a borel set and define the occupation time of W in the set A up
to time t by the measure Ot(A) defined as

Ot(A) :=

∫ t

0

1A(Ws)d[W ]s =

∫ t

0

1A(Ws)ds.

We can show that the occupation time is absolutely continuous with respect to the
Lebesgue measure λ(·). Then we define the Brownian local time as the Radon-
Nikodym derivative

Lx
t =

Ot(dx)

λ(dx)
.

From Theorem I.2.17 we deduce the following corollary which will be our definition
of reference for the Brownian local time in the sequel.

Corollary I.2.19. Let (Wt)t≥0 be a real-valued Brownian motion. Then Lx
t is de-

fined as the almost sure limit:

Lx
t := lim

ε↓0

1

2ε

∫ 1

0

1(x−ε,x+ε)(Ws)ds. (I.2.16)

We refer to [50,61,110,126] for some initial applications of the Brownian local time.
A key application of Brownian local time in probability theory is the possibility
to extend the Itô formula to non-differentiable function. It can be used to study
stochastic differential equations and their solutions, we refer to the book of Ikeda
and Watanabe [74] for a general presentation of such application and e.g. the articles
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[59,127,150] or more recently [63,99] for more complex applications of the local time
related to the study of SDE. We can also think of financial application, notably for
options pricing, see e.g. [71, 97, 111, 125]. There are also applications in physics,
when modeling self-interacting particles, see e.g. [1] or [112].

We finish this section by mentioning the following result of Perkins [124] (see also
[88]), crucial to prove the main result of Chapter II.

Theorem I.2.20. Let (Wt)t≥0 be a real-valued Brownian motion and (Lx)x∈R the
associated local time up to time 1. Then there exists a real-valued Brownian motion
(Bt)t∈R such that the following representation holds:

Lx = Lz +

∫ x

z

2
√
LydBy +

∫ x

z

aydy, x ≥ z, (I.2.17)

where a is a predictable, locally bounded process. It follows that Lx is a semimartin-
gale.

Observe that the diffusion coefficient σy := 2
√
Ly is not differentiable around 0 and

therefore is not a semimartingale in itself. This will prove to add another layer
of difficulty when dealing with statistics involving the Brownian local time, as the
classical techniques in the study of semimartingales cannot be applied (see Section
II.3 of Chapter II). We think in particular of the Itô formula that does not hold for
the volality.

I.2.1.2 β-stable processes

In this section we define the object of study of Chapter III: the class of stable pro-
cesses. Many books have studied extensively these processes and their properties,
in particular let us acknowledge the amazing books of Sato [143], Applebaum [4]
and Samorodnitsky and Taqqu [142]. We also invite the reader to refer to the books
of Zolotarev [153] and Nolan [113] for a comprehensive study of (univariate) stable
distributions.

Informally, a (β-)stable process is a Lévy process that satisfies the self-similarity
property:

Xt
d
= t1/βX1 for all t ≥ 0. (I.2.18)

The coefficient β is called the exponent of the stable process X. One can show
(see [143, Chapter 3]) that β ∈ (0, 2], β = 2 implies that the distribution of X1

is Gaussian and β = 1 implies that the distribution of X1 is Cauchy. We exclude
the Gaussian case in our study and focus on β-stable process with β ∈ (0, 2). We
will see in the sequel that such process is a pure jump process. We will denote by
(γ,A,G) instead of the usual notation (γ,A, ν) its Lévy triplet to be closer to the
notation used in Chapter III. We have the following result [143, Theorem 14.3] on
the characteristic exponent of a β-stable process.

Theorem I.2.21. Let X = (Xt)t≥0 be a Rd-valued Lévy process satisfying the
property (I.2.18) for some β ∈ (0, 2). Let (γ,A,G) be its Lévy triplet. Then

(i) A = 0, implying that X is a pure jump process.
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(ii) There exists a finite measure H on the d-dimensional unit sphere Sd, called
the spherical part of the Lévy measure G, such that

ψX(u) = i⟨γ, u⟩ +

∫
Rd

(
ei⟨u,x⟩ − 1 − i⟨u, x⟩1{∥x∥≤1}

)
G(dx) (I.2.19)

with

G(A) =

∫
Sd
H(dθ)

∫ ∞

0

1A(ρθ)ρ−1−βdρ, A ∈ B(Rd). (I.2.20)

Equivalently,

G(dx) =
1

ρ1+β
dρH(dθ) with x = (ρ, θ) ∈ Sd × R+.

Remark I.2.22. One can show that β-stable processes with β ∈ (0, 1] have no first
moment. When β ∈ (1, 2) they have no second moment.

Stable processes with exponent β ∈ (0, 2) have heavy-tailed distribution. This
explains partially their gain in popularity in the last two decades due to their ability
to model with more accuracy financial phenomenons that empirically exhibit greater
deviations from the mean or produce many outliers. We refer to the books [52, 91,
134] and the survey [109] for a large exposition of the different financial applications.

Althought pure jump stable processes are better at modeling some financial phe-
nomenon than Gaussian processes, contrary to the latter they are difficultly tractable,
partly due to the fact that there is no closed form for their marginal probability dis-
tributions, except for a handful of value of the exponent β. Numerous papers try to
adress this issue, e.g. [5, 51,132,137] to name a few.

I.2.2 Ambit fields

This section is devoted to the presentation of ambit field, the mathematical object
studied in Chapter IV. Ambit fields is a class of random fields used to model the
dynamics of a given system along curves embedded in that field.

It was introduced by Ole E. Barndorff-Nielsen and Jürgen Schmiegel in 2005
to model turbulence (see [19, 20]), but since then, ambit fields have be used to
model many different stochastic phenomenons, with notably applications in finance
(e.g. [8, 9]), in biology to model the growth of a tumor e.g. [17], in physics [18].

Informally, ambit fields are defined by a stochastic integral that incorporate
additional stochastic inputs and model the sphere of influence around a given point
in space-time.

We present first the definition of an independently scattered random measure:

Definition I.2.23. Let (Ω,F ,P) be a probability space, E a set and E a σ-field on
E . A random measure L on (E, E) is a collection of random variables (L(B))B∈E
such that

(i) L(∅) = 0,
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(ii) Let A,B ∈ E . If A ∩B = ∅ then

L(A ∪B) = L(A) + L(B).

L is said to be independently scattered if the following property holds:

(iii) Let A1, ..., An ∈ E be mutually disjoint sets. Then the random variables
L(A1), ..., L(An) are mutually independent.

(iv) Assume that W is a random measure satisfying (i), (ii) and (iii). If for all
A ∈ E , W (A) < ∞ and W (A) is normally distributed, then W is called a
white noise.

Remark I.2.24. Let us mention that an independently scattered random measure
such that for all A ∈ E the random variable L(A) is infinitely divisible (and therefore
can be characterize by a Lévy-Khintchine formula) is called a Lévy basis.

We define in a very general way the class of spatio-temporal ambit fields:

Definition I.2.25. Consider a stochastic field Y = {Yt(x)}t∈R,x∈X over a d-dimensional
space-time R×X taking values in R. Define

Yt(x) =µ+

∫
At(x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ) +

∫
Dt(x)

q(t, s, x, ξ)as(ξ)dsdξ, (I.2.21)

where µ is a constant, At(x) and Dt(x) are ambit sets in R×X (defined later on),
g and q are deterministic weight (or kernel) functions, a is a stochastic drift field, σ
is a volatility (or intermittency in the context of turbulence modeling) field and L
is a independently scattered random measure. Then Y is called an spatio-temporal
ambit field.

Remark I.2.26.

1. The volatility field σ is in general of stochastic nature and can be define notably
as an ambit field itself.

2. We can define ambit field over some d-dimensional space without making the
distinction between time and space, depending on the definition chosen for the
stochastic integral in the formula (I.2.21).

3. The stochastic integral in (I.2.21) is defined in the Walsh sense (we refer to [149]
or the survey [129]). Section A.1 of the appendix contains a precise definition
and basic properties of such integral. Under some midly restrictive moment
assumptions on the stochastic integrator L(·) the Walsh approach remarkably
allows us to integrate stochastic integrands. On the downside, the Walsh
integral is not defined for β-stable random measures with β ∈ (0, 2).

4. It is possible to consider different definition of the stochastic integral, such as
the Rajput and Rosinski approach (we refer to [135] or the survey [129]). We
don’t need anymore conditions on the moments of the stochastic integrator
L(·), which allows us to integrate with respect to β-stable random measures
for any β ∈ (0, 2]. On the other hand, we can only define the stochastic integral
in (I.2.21) for deterministic integrands.
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5. The approach of Chong and Klüpperlberg [47] defines the stochastic integral
for any finite L0-valued random measures, following the idea from [41] and us-
ing the correspondance between the class of semimartingales and the class of
finite L0-valued random measures. Their definition of the stochastic integral
(I.2.21) allows to integrate stochastic integrands without moment conditions
on the L0-valued random measure. Provided that we have a Lévy-Khintchine
formula (see Remark I.2.24), we can characterize L0-random measures by a
characteristic triplet. Under tractable integrability conditions on this triplet,
we can ensure the integrability (or non-integrability) of the stochastic inte-
grand.

For the sequel, we only need to keep in mind that the stochastic integral is well
defined in the Walsh sense if and only if the process (Lt(A))t∈R,A∈B(X ), defined as

Lt(A) := L((0, t] × A), A ∈ B(X ),

is a square integrable martingale with respect to some filtration to be defined in
Section A.1.

Under this assumption, the stochastic integral behaves roughly speaking like an
Itô integral. In particular we have an L2 isometry similar to the Itô isometry. We
also have Burkholder-Davis-Gundy (BDG) type inequality.

We state the definition of ambit set. Note that the name ambit comes from the latin
ambitus which can mean sphere of influence, boundary or neighborhood.

Definition I.2.27. For any given point (t, x) ∈ R × X we define two sets, At(x)
and Dt(x), called ambit sets, which represent the region of influence around (t, x).
In other words, At(x) and Dt(x) are the only regions in space-time which affect the
value of Y at (t, x). In the sequel, we consider ambit sets of the form A + (t, x),
D + (t, x) where A,D ⊂ R×X are fixed.

Ambit fields are not per se the object of study: we are more interested in under-
standing the behavior of an ambit field along a curve embedded in the space-time
R×X . This lead to the following definition:

Definition I.2.28. Let τ(θ) = (t(θ), x(θ)) be a curve in R×X . Define

Xθ = Yt(θ)(x(θ)).

Then X is called an ambit process.

In Section I.4 and Chapter IV we restrict the scope of our study to the subclass of
spatio-temporal 2-dimensional ambit fields driven by a white noise. Set the notation
t := (t1, t2) ∈ R2. We consider 2-dimensional ambit fields defined as

Xt =

∫ t

−∞
g(t− s)σsW (ds) (I.2.22)

=

∫ t1

−∞

∫ t2

−∞
g(t1 − s1, t2 − s2)σs1,s2W (ds1, ds2)

where W is a white noise process on R2, g : R2
+ → R is a deterministic weight

function and σ is a continuous volatility process, ensuring that the stochastic integral
(I.2.22) is well-defined in the Walsh sense (see Section A.1).
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I.3 Methodology for high-frequency statistics

This section is devoted to the presentation of the shared problematic of Chapter II,
Chapter III and Chapter IV. We then present the methods and tools used to answer
this problematic.

In the sequel we denote by
dst−→ or

L−s−→ the stable convergence. We refer to Section
A.2 of the appendix for a presentation of this mode of convergence and some of its
properties.

Let X be a d-dimensional process defined on some stochastic basis (Ω,F , (Ft)t≥0,P).
Assume for simplicity of exposition that the process X is observed discretely over the
interval over time [0, t], following a synchronous and regularly spaced high-frequency
sampling scheme. More precisely, for ∆n a sequence of positive real numbers going
to 0, we observe the process X at time i∆n for 1 ≤ i ≤ ⌊t/∆n⌋. Define the increment

∆n
iX := Xi∆n −X(i−1)∆n . (I.3.1)

Let f be a Rd-valued function with some assumptions on its regularity to be defined.
Define the functional (or statistic, depending on the context):

V n(X, f)t :=

⌊t/∆n⌋∑
i=1

f(∆n
iX), (I.3.2)

with the convention that if f(x) = |x|p, we write V n(X, p)t and V n(X, 2)t := [X]nt .

Remark I.3.1. To get a limit for the functional (I.3.2), understanding the behavior
of f around the origin is crucial. In certain situations it could be necessary to
introduce a normalizing sequence an to rescale either the increment ∆n

iX or the
function of the increment f(∆n

iX).
When X is a Lévy process with Lévy triplet (γ,A, 0), i.e. a Brownian motion

with drift γ, it could be easier to work with the normalized functional

V n(X, f)t = ∆n

⌊t/∆n⌋∑
i=1

f

(
∆n

iX√
∆n

)
.

We would like to prove a law of large numbers for the functional (I.3.2), i.e. find a
stochastic process V (X, f) such that the following functional convergence holds:

V n(X, f)t
u.c.p.−→ V (X, f)t as n→ ∞. (I.3.3)

We also call this result first order limit (of the functional/statistic). In a second
step, we would like to find a normalizing sequence δn → and establish a central or
non central limit theorem for the error process Un

t defined as

Un
t := δn (V n(X, f)t − V (X, f)t) . (I.3.4)

More precisely, under some assumptions on the process X, we want to find a stochas-
tic process U such that the following functional stable convergence holds:

Un dst−→ U, (I.3.5)
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where U is defined on an extension (Ω,F , (F t)t≥0,P) of the original filtered proba-
bility space (Ω,F , (Ft)t≥0,P) (we refer again to Section A.2 of the appendix). We
also denote this result as second order limit.

Finding first and second order limits for statistics like (I.3.2) is a key part of today’s
research in mathematical statistics, especially since high-frequency datas are more
and more available. We provide examples of such result in Section I.4. An thorough
study of the theory supporting these asymptotic results can be found in the books
of Jacod and Shiryaev [84] and Jacod and Protter [83], among others. We also
recommend [65] for a compendium on high-frequency based applications.

I.3.1 Limit theory for Lévy processes: the Gaussian case

In this subsection we introduce the main mathematical tool to prove the convergence
(I.3.5) when X is a d-dimensional semimartingale with a non-vanishing Gaussian
part: Jacod’s stable central limit theorem. Although there exists different versions
of this theorem (see e.g. [84, Chapter IX]), we choose to only provide the version
ensuring the convergence towards a semimartingale [84, Chapter IX.7.28].

We start with some prerequisite hypothesis. Let (Ω,F , (Ft)t≥0,P) be a filtered
probability space and let Z be a d-dimensional continuous local (Ft)t≥0-martingale,
called the reference martingale. Define the set Mb(Z

⊥) by

Mb(Z
⊥) := {N bounded martingales such that ⟨N,Z⟩ = 0} ,

where ⟨N,Z⟩ is the continuous part of the quadratic covariation [N,Z]. If ⟨N,Z⟩ = 0
we say that N is orthogonal to Z. Let

Xn
t :=

⌊t/∆n⌋∑
i=1

χn
i

be a q-dimensional semimartingale with respect to the discretized filtration (Fi∆n)1≤i≤⌊t/∆n⌋.
Then we observe the following theorem [84, Chapter IX.7.28]:

Theorem I.3.2. Assume that Z is square integrable and assume that each χn
i is

square integrable. Let B be a Rq-valued continuous finite variation process, F a
Rq×q-valued continuous process and G a Rq×d-valued continuous process. Assume
that B, F and G are adapted to the filtered probability space (Ω,F , (Ft)t≥0,P). If for
all t > 0, ε > 0 and all N ∈ Mb(Z

⊥), we have

⌊t/∆n⌋∑
i=1

E
[
χn
i |F(i−1)∆n

] u.c.p.−→ Bt, (I.3.6)

⌊t/∆n⌊∑
i=1

(
E
[
χn
i (χn

i )⊺|F(i−1)∆n

]
− E

[
χn
i |F(i−1)∆n

]
E
[
χn
i |F(i−1)∆n

]⊺)
P−→ Ft =

∫ t

0

(vsusu
⊺
sv

⊺
s + wsw

⊺
s) ds, (I.3.7)
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⌊t/∆n⌋∑
i=1

E
[
χn
i (∆n

i Z)⊺|F(i−1)∆n

] P−→ Gt =

∫ t

0

vsusu
⊺
sds, (I.3.8)

⌊t/∆n⌋∑
i=1

E
[
∥χn

i ∥21{∥χn
i ∥>ε}|F(i−1)∆n

] P−→ 0, (I.3.9)

⌊t/∆n⌋∑
i=1

E
[
χn
i (∆n

iN)⊺|F(i−1)∆n

] P−→ 0, (I.3.10)

then we obtain the following functional stable convergence

Xn dst−→ X = B +

∫ •

0

vsdZs +

∫ •

0

wsdW
′
s (I.3.11)

whereW ′ is a q-dimensional Brownian motion defined on an extension (Ω,F , (F t)t≥0,P)
of the original filtered probability space (Ω,F , (Ft)t≥0,P) and is independent of F .
The proof of this theorem relies partly on the method defined to study (I.2.11), i.e.
by showing the convergence of the characteristics of the semimartingale Xn towards
the characteristics of X. However in practice these five conditions are rather easy
to verify, whereas the method using characteristics triplet is not very tractable,
as computing the characteristics of Xn

t define above can be challenging or even
impossible.

Jacod proved a version of his stable central limit theorem in the context of continuous
conditional Gaussian martingale already in 1997 in the paper [77], building upon
numerous articles paving the way towards this powerful theorem. We refer to [76,
79,81,82] to cite a few.

We observe that in condition (I.3.6) we compute the limit of the conditional mean of
Xn

t , which converges towards a drift process B of finite variation. Condition (I.3.7)
asks us to study the limit of the conditional variance of the empirical process Xn

t .
Condition (I.3.9) is a Lindeberg type condition to ensure that there is no χn

i having
a too big contribution to the limit. Condition (I.3.10) is easy to verify in pratice by
applying a martingale representation theorem.

Coming back to the result (I.3.11) of Theorem I.3.2, we observe that X is define as
the sum of three independent components: a finite variation process, a local mar-
tingale and a Brownian motion. Since the sum of two independent local martingale
is a local martingale, by definition, X is a semimartingle.

For statistical purpose, as it is presented in the theorem, (I.3.11) is useless due
the F -conditional biais appearing in the limit, as we cannot jointly estimate the
distribution of ∫ •

0

vsdZs +

∫ •

0

wsdW
′
s.

However, when conditions (I.3.8) is verified with G = 0, then the conclusion (I.3.11)
reads as

Xn
t

dst−→ Bt +

∫ t

0

wsdW
′
s. (I.3.12)
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Since W ′ is independent of the original σ-algebra F , we can construct estimators
for its distribution. In pratice, it is common to verify (I.3.8) with G = 0.

In Chapter II, we want to derive a law of large numbers and a stable central limit
theorem for an integrated functional of scaled increments of a Brownian local time.
After a discretization of the integral and using the semimartingale represention of the
Brownian local time, we can make profit of Jacod’s theorem. In that case we will see
that condition (I.3.8) is satisfied with a non-trivial limit. However, and surprisingly,
when we let the time t→ ∞, the drift part compensates the second term in (I.3.11),
hence the usability of the associated central limit theorem for statistical purpose.

I.3.2 Limit theory for Lévy processes: the β-stable case

In the sequel all processes are defined on a filtered probability space (Ω,F , (Ft)t≥0,P).
This section is devoted to the introduction of the methodology used to derived, for X
a symmetric Rd-valued β-stable process with β ∈ (0, 2) and δn a suitable normalizing
sequence, the functional stable convergence:

δn
(
[X]nt − [X]∆n⌊t/∆n⌋

)
:= Un

t
dst−→ Ut (I.3.13)

when U is a symmetric Rd-valued β-stable process with the same exponent β ∈ (0, 2),
defined on an extension (Ω,F , (F t)t≥0,P) of the original space and is independent
of the σ-algebra F . Note that we introduced a discretization of the true quadratic
variation [X]t.

Indeed, following the results of Section A.2 of the appendix, to prove the stable
convergence above it is sufficient to show the joint convergence in distribution

([X]∆n⌊t/∆n⌋, U
n
t )

d−→ ([X]t, Ut).

Let X be a Rd-valued symmetric β-stable process without drift. Using the results
presented in Section I.2.1, X is describe by the Lévy triplet (0, 0, G) with G a
symmetric Lévy measure satisfying

G(A) =

∫
Sd
H(dθ)

∫ ∞

0

1A(ρθ)ρ−1−βdρ, A ∈ B(Rd), (I.3.14)∫
Rd

(∥x∥2 ∧ 1)G(dx) <∞ (I.3.15)

and H the spherical part of G is a symmetric measure on Sd. The characteristic
exponent of X can be written as

ψX(u) =

∫
Rd

(
exp(i⟨x, u⟩) − 1 − i⟨x, u⟩1{∥x∥≤1}

)
G(dx).

In this setting, we cannot use Theorem I.3.2 to prove the functional stable conver-
gence as β-stable processes have infinite second moment.

Assume that we are given high-frequency datas (Xi∆n)1≤i≤⌊t/∆n⌋ of the process X
define above over some time interval [0, t] and let f be some Rd-valued function.
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Denote by Γn the functional

Γn
t = Γn(f)t :=

⌊t/∆n⌋∑
i=1

f(∆n
iX). (I.3.16)

Observe that the random vectors (f(∆n
iX))1≤i≤⌊t/∆n⌊ are i.i.d.

We use the following criterion to show the functional stable convergence of Γn to-
wards a symmetric stable process Γ with Lévy triplet (0, 0, ν) and exponent β ∈ (0, 2)
(see [58, Lemma 6.8]): let u ∈ Rd. Then the convergence

⌊t/∆n⌋∏
i=1

E
[
ei⟨u,f(∆

n
i X)⟩] u.c.−→



exp

{
t

∫ {
ei⟨u,x⟩ − 1 − i⟨u, x⟩

}
ν(dx)

}
if β ∈ (1, 2)

exp

{
t

∫ {
ei⟨u,x⟩ − 1

}
ν(dx)

}
if β ∈ (0, 1)

exp

{
t

∫ {
ei⟨u,x⟩ − 1 − i⟨u, x⟩1{0<∥x∥≤1}

}
ν(dx)

}
if β = 1

(I.3.17)

implies the functional stable convergence

Γn dst−→ Γ.

This result is an application of the method for semimartingale sketched to solve the
problem (I.2.11). This criterion is the core of the proof of the main result in Chapter
III. It was used to prove second order limit, notably in [58] for the realized quadratic
variation of a 1-dimensional stochastic integral with respect to a non-homogeneous
pure jump Lévy process that behaves locally like a β-stable process. We can also
think of the result of [70], where the authors considered a d-dimensional extension
of the previous setting. We present in detail this two results in Section I.4.

I.3.3 Limit theory for Ambit fields driven by Gaussian white
noise

In this last subsection, we present the main tools used in Chapter IV. As we no
longer deal with semimartingales but with ambit processes, we use a more classical
approach: to get limit theorem on some statistic, we prove the tightness and the
finite dimensional weak convergence of this statistic.

Let (Xt)t∈R2 be a 2-dimensional ambit field driven by a Gaussian white noise, defined
as in (I.2.22). Assume that we observe X along a curve z : t 7→ (z1(t), z2(t))
discretely in a high frequency regime over [0, t]. We denote these observations

Yi∆n := Xz1(i∆n),z2(i∆n), 1 ≤ i ≤ ⌊t/∆n⌋

and the associated increment

∆n
i Y = Yi∆n − Y(i−1)∆n .
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We want to study the asymptotic behavior of the statistic

V n(Y, p)t := ∆nτ
−p
n

⌊t/∆n⌋∑
i=1

|∆n
i Y |p

with p > 0 and τn a normalizing sequence. We will see in Chapter IV that we
can prove a law of large numbers for this quantity, using classical techniques. The
difficulty comes from the non-stationarity of the increments. Denote by V (Y, p) the
functional limit of the statistic V n(Y, p). Define the error process:

Un
t = ∆−1/2

n (V n(Y, p)t − V (Y, p)t) .

We would like to prove a second order theorem, using Malliavin calculus techniques.
Let 0 ≤ t1 < t2 < ... < td with d ∈ N. the goal is to show the weak convergence:(

Un
t1
, ..., Un

td

) dst−→ (Ut1 , ..., Utd) . (I.3.18)

We proceed in four steps.

(i) We prove first that the increments (∆n
i Y )1≤i≤⌊t/∆n⌋ can be approximated by

increments of some Gaussian process Ỹ . We denote these new increments ∆n
i Ỹ ,

1 ≤ i ≤ ⌊t/∆n⌋.

(ii) We expand f in a basis of polynomial functions, orthogonals with respect to
the Gaussian distribution. These polynomials are the Hermite polynomials,
denoted (Hk)k≥0. We get that

f(x) =
∞∑
k=0

akHk(x).

(iii) Using its chaotic decomposition, we rewrite the error process in terms of iter-
ated Wiener-Itô integrals.

(iv) From the asymptotic behavior of the iterated Wiener-Itô integrals we deduce
the weak convergence presented in (I.3.18).

We refer to Section A.3 of the appendix for an introduction to Malliavin calculus
and more specifically to all the mathematical concepts and tools appearing in the
four steps above.

I.4 Contributions of the thesis

In this final section we present the three primary results of this thesis, contained in
Chapter II, Chapter III and Chapter IV, and contrast them with the state of the
art in each related field.
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I.4.1 Chapter II: Limit theorems for general functionals of
Brownian local times

In this subsection we present the main result of Chapter II, based on the paper [44]:

• ”Limit theorems for general functionals of Brownian local times”, in collabo-
ration with Simon Campese and Mark Podolskij. Electronic Journal of Prob-
ability, 29:1–18, 2024.

Understanding the probabilistic and statistical characteristics of local times have
attracted a lot of attention in the mathematical literature. The asymptotic be-
havior of functionals of Brownian local time has been recently studied, notably
when considering integrated moments in space of increments of Brownian local time
(see [43, 45,72,73,139,140]).

The framework is the following: let (Wt)t∈[0,1] be a standard Brownian motion and
denote by (Lx)x∈R the local time ofW over [0, 1] (see Section I.2.1.1). Let f : R → R
be a smooth function with f(0) = 0. We give later assumptions on the regularity of
f . We consider statistics of the form

V (f)hR :=

∫
R
f(h−1/2(Lx+h − Lx))dx, h > 0. (I.4.1)

We want to establish a law of large numbers for the statistic V (f)hR and derive a
central limit theorem for the error process U(f)hR := h−1/2

(
V (f)hR − V (f)R

)
.

The case where f is a power function has be established, in [45,72,140] when f(x) =
x2, in [73, 139] when f(x) = x3 and more generally in [43] when f(x) = xq with
q ∈ N≥2. Let us mention this last result:

Theorem I.4.1. Let Z be a standard Gaussian random variable independent of the
local time (Lx

t )x∈R. Let f(x) = xq with q ∈ N≥2. Then the following weak convergence
holds:

1

h
q+1
2

(∫
R
(Lx+h

t − Lx
t )qdx+Rq,h

)
d−→ cq

√∫
R
(Lx

t )qdx× Z

where the random variable Rq,h is given by

Rq,h :=

⌊q/2⌋∑
k=1

aq,k

∫
R
(Lx+h − Lx)q−2k

(
4

∫ x+h

x

Ludu

)k

dx,

and the constants aq,k and ck are defined as

aq,k =
(−1)kq!

2kk!(q − 2k)!
and cq =

√
22q+1q!

q + 1
.

There is no clear methodology to prove the weak convergence presented above. The
quadratic case, when f(x) = x2 has been proven by Rosen in [140] using the method
of moments and by Hu and Nualart in [72] where the authors used Malliavin Calculus
techniques and asymptotic Ray-Knight type theorem to get their result.
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Rosen extended his result to the cubic case with f(x) = x3 in [139], using again
the method of moments. Hu and Nualart in [73] also managed to use Malliavin
calculus techniques to obtain the asymptotic theory in the cubic case. However, the
method of moments cannot be extended to integer power higher than 3.

Campese in [43] achieved a spectacular leap in the theory by establishing the
limit theory for any positive integer powers, see Theorem I.4.1 above. Denote by

V (L, q)hR :=

∫
R
(Lx+h − Lx)qdx

the statistic of interest. His methodology consists of using the semimartingale de-
composition presented in Theorem I.2.20. From this, he deduces a semimartingale
decomposition of the statistic of interest into a local martingale M and a finite vari-
ation process A and proceeds to show that the asymptotic behavior of the statistic
on the local time is driven by the asymptotic behavior of the statistic on its local
martingale part, that is to say

V (L, q)hR ≈ V (M, q)hR.

He then expresses, using the Kailath-Segall formula [144], the statistic V (M, q)hR as
an iterated integral with respect to M. In a last step he obtain the limit of this
iterated integral using an asymptotic Ray-Knight theorem [128]. Unfortunately, we
cannot extend his result with the same methodology to a wider class of function f.

Our contribution is to extend the result of Theorem I.4.1 to C1 function f where f
and f ′ have polynomial growth. Our methodology follows the first idea of Campese:
to make use of the semimartingale representation of the Brownian local time, al-
lowing us to handle the statistic V (f)hR using semimartingale techniques. More
precisely, we would like to use Jacod’s stable central limit theorem I.3.2. To do so,
we consider in a first step a functional version of the statistic V (f)hR: let T > 0 fixed
and t ∈ [0, T ]. We define

V (f)ht :=

∫ t

0

f
(
h−1/2(Lx+h − Lx)

)
dx.

Since the increments Lx+h−Lx and Ly+h−Ly are asymptotically correlated whenever
|x − y| < h, we use Bernstein blocking technique [35] to break this correlation and
discretize the functional statistic V (f)ht . We split the interval [0, t] into big and small
blocks, where the small blocks ensure the asymptotic independence between the big
blocks and are sufficiently small to not contribute to the limit. Roughly speaking,
we obtain a functional of the form

V (f)ht ≈
∑
i

∫
Ai

f(h−1/2(Lx+h − Lx))dx

where Ai denote big blocks. Then, using Jacod’s stable central limit theorem, we
establish the limit theory for the functional statistic V (f)ht . In a final step, we
let t → ∞ and deduce the limit theory for the statistic V (f)hR. Our result is the
following:
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Theorem I.4.2. Let f ∈ C(R) be a function with polynomial growth satisfying
f(0) = 0. Define the quantity

ρu(f) := E[f(N (0, u2))] for u ∈ R. (I.4.2)

Then it holds that

V (f)hR
P−→ V (f)R :=

∫
R
ρσu(f)du where σu := 2

√
Lu (I.4.3)

as h → 0. If moreover f ∈ C1(R) and f, f ′ have polynomial growth we deduce the
stable convergence

U(f)hR := h−1/2
(
V (f)hR − V (f)R

) dst−→ U(f)R :=

∫
R

√
v2σu

− σ2
uρ

2
σu

(f ′) dW ′
u, (I.4.4)

where W ′ is a Brownian motion defined on an extended probability space and inde-
pendent of F . The quantity vx is defined as

v2x := 2

∫ 1

0

cov (f(xB1), f(x(Bs+1 −Bs))) ds (I.4.5)

with B being a standard Brownian motion.

Remark I.4.3. In the stable central limit theorem for the functional statistic V (f)ht ,
the limit obtained exhibits an F -conditional biais, rendering the result useless for
statistical application. Indeed, condition (I.3.8) in Jacod’s stable central limit the-
orem I.3.2 is verified with a non-zero limit. Moreover, a non-vanising drift term is
also added to this limit, and is due to an approximation of the increments of L made
during the proof. However, when letting t→ ∞, these two terms cancel each others
and we obtain the statistically usable limit (I.4.4).

I.4.2 Chapter III: Limit theorems for asynchronously ob-
served bivariate pure jump semimartingales

In this subsection we present the main result of Chapter III, based on the preprint:

• ”Limit theorems for asynchronously observed bivariate pure jump semimartin-
gales”, in collaboration with Mark Podolskij, 2024.

In this paper we delve into the asymptotic theory for the realized quadratic covari-
ation of a bivariate β-stable process. We are given high-frequency observations of
both components of the process, with the specificity that each component has a
different and non-regularly spaced sampling scheme. We start by introducing the
framework and prior works.

Let X = (Xt)t≥0 be an d-dimensional Itô semimartingale and assume that we have
synchronous and regularly spaced observations of X over some time interval [0, t],
i.e. we have observations (Xi∆n)1≤i≤⌊t/∆n⌋ with ∆n a sequence of real numbers going
to 0. A big part of the literature on asymptotic theory for semimartingales was
focused on obtaining first and second order limit theorems for the realized quadratic
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variation of the semimartingale X, based on the high-frequency observations that
we presented above. We recall that the realized quadratic variation was defined in
(I.2.6) as:

V n(X, 2)t := [X]nt =

⌊t/∆n⌋∑
i=1

(∆n
iX)(∆n

iX)⊺ with ∆n
i := Xi∆n −X(i−1)∆n .

By definition, [X]nt is a consistent estimator for the quadratic variation [X]t. We
recall to the reader the definition of the error process, also sometimes called realized
volatility error:

Un
t := δn ([X]nt − [X]t)

with δn a normalizing sequence.

Some of the first asymptotic results on the realized volatility error were obtained by
Barndorff-Nielsen and Shephard in 2002 in [22,23] in the one dimensional continuous
case: assume that X is a semimartingale of the form

Xt = at +

∫ t

0

σsdWs,

where σ > 0 and a are processes pathwise of local bounded variation and indepen-
dent of the Brownian motion W . Assume that the process X is observed M + 1
times over some fixed time interval [t1, t2] with 0 ≤ t1 < t2 fixed and that the ob-
servations are regularly space, i.e. we have datas (Xt1+(t2−t1)j/M)0≤j≤M . Denote by
∆M

j X = Xt1+(t2−t1)j/M −Xt1+(t2−t1)(j−1)/M . Then they obtained the following weak
convergence:

Theorem I.4.4. Under some mild regularity assumptions on the drift process, as
M → ∞: ∑M

j=1(∆
M
j X)2 −

∫ t2
t1
σ2
sds√

2
3

∑M
j=1(∆

M
j X)4

d−→ N (0, 1).

In particular, the asymptotic distribution of
M∑
j=1

(∆M
j X)2−

∫ t2

t1

σ2
sds is a mixed nor-

mal distribution.

An extension of this result to the d-dimensional has been proven in 2006 by Barndorff-
Nielsen et al. [15, 16], where the authors not only consider the realized quadratic
variation but also the realized power and bipower variations, again in the continu-
ous case. Let X be a continuous d-dimensional Itô semimartingales, defined on a
filtered probability space (Ω,F , (Ft)t≥0,P), of the form

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs,

where a is a predictable locally bounded d-dimensional drift, σ is a Rd×d-valued
càdlàg volatility process and W a d-dimensional Brownian motion. Assume that
we are given synchronous and regularly spaced observations (Xi∆n)1≤i≤⌊t/∆n⌋ of the
semimartingale X. Assume furthermore than σ is an Itô semimartingale. They
obtain the following stable central limit theorem:
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Theorem I.4.5. Under previous assumptions on a and σ we obtain the following
stable convergence

∆1/2
n ([X]nt − [X]t)

dst−→Mt,

where, conditionally on F , (Mt)t≥0 is a Gaussian martingale with mean zero and
conditional covariance function

E
[
M jk

t M
j
′
k
′

t |F
]

= cjj
′

t ckk
′

t + cjk
′

t ckj
′

t with ct = σtσ
T
t .

The asymptotic theory when considering semimartingales with non-vanishing Gaus-
sian part has been widely studied. We refer inter alia to the work of Barndorff-
Nielsen et al. [25] where they adjoin to the Gaussian semimartingale X a jump
process with finite and/or infinite activities. Other authors considered similar semi-
martingales but assumed that the datas were perturbed by a (Gaussian) noise, for
example Podolskij and Vetter [130] or Jacod et al. [80].

Finally, some authors started to work with non-synchronous datas: each co-
ordinates of the multivariate process is observed with high-frequency and non-
synchronously, see e.g. [49] among others for multivariate continuous Itô semimartin-
gales or the papers [6,37,48,66] where the authors considered at the same time noisy
and non-synchronous datas. In all these results, the second order limit is always con-
ditionally Gaussian, due to the non-vanishing Gaussian part of the semimartingale
of interest.

When we consider a pure-jump semimartingale, the asymptotic theory has been
much less developed. The univariate case has been establish Jacod et al. [58] when
the authors consider general assumptions on the semimartingale of interest. The
model is the following

Xt =

∫ t

0

σs−dZs + Yt

with Z a non-homogeneous Lévy process that behaves like a locally β-stable pro-
cess, σ an Itô semimartingale and X an Itô semimartingale without Gaussian part.
Provided that the process X is observed on a synchronous and regularly spaced
high-frequency sampling scheme, the authors managed to prove a stable central
limit theorem for the realized quadratic variation. Their proof relies on the semi-
martingale representation of the process Z, noticing that the local martingale part
of Z, that is the compensated sum of the ”small” jumps (smaller than some thresh-
old to be determined), is driving the limit theory when β ∈ (1, 2) whereas the finite
variation part, that is the sum of the ”big” jumps is driving the limit theory when
β ∈ (0, 1].

This result was extend to the multivariate case by Heiny and Podolskij [70], in
particular for a d-dimensional symmetric β-stable process with β ∈ (0, 2), observed
synchronously and regularly in a high-frequency setting. They proved a stable con-
vergence result for the error process related to the realized quadratic variation and
showed that the limit is a d×d matrix-valued β-stable process. Denote by x⊙y the
symmetric tensor product between two vectors. We have the following theorem:

Theorem I.4.6. Let δn = (∆n log(1/∆n))−1/β, n ≥ 1. For any β ∈ (0, 2) we obtain
the functional stable convergence

Un
t := δn

(
[L]nt − [L]∆n⌊t/∆n⌋

) dst−→ Ut,
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where (Ut)t≥0 is an Rd×d-valued Lévy process with characteristic triplet (0, 0, νU) with
νU the Lévy measure given by

νU(B) =
1

2β

∫
Sd×d

µ(dz)

∫
R+

1B(ρz)ρ−1−βdρ, B ∈ B(Rd ⊙ Rd),

and

µ(z) =

∫
S2d

1z

(
θ1 ⊙ θ2

||θ1 ⊙ θ2||

)
||θ1 ⊙ θ2||βH(dθ1)H(dθ2), z ∈ B (Sd×d)

with B bounded away from 0. The process U is defined on an extension (Ω,F , (F t)t≥0,P)
of the original space (Ω,F , (Ft)t≥0,P) and is independent of the σ-algebra F .

Futher work on high-frequency observations of a pure jump process includes [146–
148], investigating the estimation of the jump activity and the non-parametric esti-
mation of the spectral density. We also refer to [89,90] where the authors developed
a statistical test to discrimate whereas we should model financial datas by pure
jump processes or not. We finally refer to the recent preprint [33] where the authors
worked on joint estimation of the drift, the scaling and the jump activity index for
a pure-jump stable Cox-Ingersoll-Ross process.

To the best of our knowledge, the limit theory for the approximate quadratic
variation of a pure jump semimartingale when considering high-frequency non-
synchronous and irregularly spaced datas has not been established. This is the
main contribution of Chapter III.

Consider a bivariate β-stable Lévy process (Lt)t≥0 = (L1
t , L

2
t )t≥0 with Lévy triplet

(0, 0, G) and denote by H the spherical part of the Lévy measure G. We would like
to establish a weak limit theorem for the error process associated to an estimator of
the quadratic covariation process [L1, L2], over the time interval [0, 1]. Assume the
following: we have two sets of datas, (L1

t1i
)1≤i≤n1 and (L2

t2i
)1≤i≤n2 and the sampling

schemes (t1i )1≤i≤n1 and (t2i )1≤i≤n2 satisfies the conditions :

1. There exist strictly monotonic (deterministic) C2 functions fk : [0, 1] −→
[0, 1] with non-zero right and left derivative in 0 and 1 respectively and with
fk(0) = 0, fk(1) = 1 such that

tki = fk

(
i

nk

)
, 0 ≤ i ≤ nk, k = 1, 2.

2. There exists a natural number M > 0 such that

1

M
< inf

x∈[0,1]
f

′

k(x) < sup
x∈[0,1]

f
′

k(x) < M, k = 1, 2.

3. Set n = n1 + n2. It holds that

nk

n
−→ mk ∈ (0, 1], k = 1, 2.
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As we deal with non-synchronous data, we cannot approximate the quadratic co-
variation process [L1, L2] by the usual realized quadratic covariation. Instead, we
use the Hayashi-Yoshida estimator [67], defined as:

̂[L1, L2]
HY

1 =

n1∑
i=1

n2∑
j=1

∆t1i
L1∆t2j

L21{(t1i−1,t
1
i ]∩(t2j−1,t

2
j ]̸=∅},

where ∆t1i
L1 = L1

t1i
− L1

t1i−1
and ∆t2j

L2 = L2
t2j
− L2

t2j−1
. We obtain the following stable

weak convergence theorem:

Theorem I.4.7. For any β ∈ (0, 2), we obtain the functional stable convergence

Un
1 = δn

(
̂[L1, L2]

HY

1 − [L1, L2]⌊1/t1n1
⌋

)
dst−→ U1

where (Ut)t≥0 is an R-valued symmetric β-stable process with U1
d
= Sβ(c, 0, 0) a

symmetric β-stable distribution with characteristic exponent

φSβ(c,0,0)(t; β, c, 0, 0) = exp(−c|t|β).

The scaling parameter c is defined as

c :=
σ0
β

m1

∫ 1

0

(f ′
1(t))

2dt+
2σ1

β

m2

∫ 1

0

f ′
1(t)f

′
2(t)dt

with

σ0
β :=


−Γ(−β) cos

(
πβ
2

)
2β

∫
S22

∣∣θ11θ22 + θ21θ
1
2

∣∣β H(dθ1)H(dθ2) if β ∈ (0, 1) ∪ (1, 2),

π

4

∫
S22

∣∣θ11θ22 + θ21θ
1
2

∣∣H(dθ1)H(dθ2) if β = 1,

σ1
β :=


−Γ(−β) cos

(
πβ
2

)
2β

∫
S22

∣∣θ21θ12∣∣β H(dθ1)H(dθ2) if β ∈ (0, 1) ∪ (1, 2),

π

4

∫
S22

∣∣θ21θ12∣∣H(dθ1)H(dθ2) if β = 1.

S2 denotes the unit sphere on R2 with respect to the Euclidean norm and θi = (θ1i , θ
2
i ),

i = 1, 2. Moreover, the process U is defined on an extension (Ω,F , (F t)t≥0,P) of the
original space (Ω,F , (Ft)t≥1,P) and is independent of the σ-algebra F .

We would like to apply the criterion (I.3.17), presented in Section I.3.2. However we
cannot apply it directly due to the dependency appearing in the Hayashi-Yoshida
estimator: increments of L1 overlap with increments of L2. To deal with this struc-
tural dependency, we use an approximation of the characteristic function of the error
process (see [69]) and then apply the criterion (I.3.17).

Remark I.4.8. Using the same techniques of proof that we used in Chapter III,
we cannot extend our result to a d-dimensional β-stable process. Indeed, contrary
to the Gaussian case where we can obtain the limit by computing component-wise
the covariance matrix of the limiting process, in the pure jump setting we cannot
recover the multidimensional quadratic variation of the process from the quadratic
covariation between two coordinates of the process.
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I.4.3 Chapter IV: Limit theorems for two dimensional ambit
fields observed along curves

This subsection is devoted to the presentation of the main result of Chapter IV,
based on the paper:

• ”Limit theorems for two dimensional ambit fields observed along curves”, in
collaboration with Mikko S. Pakkanen, Mark Podolskij and Bezirgen Veliyev,
work in progress.

This work is an extension of the univariate case. We start by presenting this case
and then delve into our result.

Define on a filtered probability space (Ω,F , (Ft)t∈R,P) a subclass of purely temporal
ambit fields, called Brownian semi-stationary process, by

Yt = µ+

∫ t

−∞
g(t− s)σsW (ds)

where W is an (Ft)t∈R-adapted white noise on R, g : R → R is a deterministic
weight function such that g(t) = 0 for t ≤ 0 and g ∈ L2(R). The volatility σ is an
(Ft)t∈R-adapted càdlàg process.

Define the power variation of Y as

V (Y, p)nt := ∆nτ
−p
n

⌊t/∆n⌋∑
i=1

|∆n
i Y |p, t ∈ [0, T ], p > 0, ∆n → 0,

where ∆n
i Y = Yi∆n − Y(i−1)∆n and τ 2n = E[(∆n

iG)2]. The process G is a zero-mean
stationary Gaussian process defined by

Gt :=

∫ t

−∞
g(t− s)W (ds), t ∈ R

called the Gaussian core. The limit theory for the power variation hinges particu-
larly on the behavior of the function g around the origin. Note that if g′ ∈ L2(R+),
one can prove that the process Y is a semimartingale. In that case, one can use
all the techniques for high-frequency statistics of semimartingales to obtain central
limit theorem for the error process associated to the realized quadratic variation.
Therefore in the following, we exclude from our assumptions this case.

We would like to have a kernel g that explodes around 0, verifying g′ /∈ L2(R+)
and that such that the behavior of g outside the origin is controlled: g(x) converges
fast enough to 0 when x→ ∞ and is as smooth as we need outside of a neighborhood
of the origin. A prototype example of a kernel satisfying these conditions is the
Gamma kernel:

g(x) = |x|αe−λx, α ∈ (−1/2, 0).

The following law of large numbers and stable central limit theorem for the realized
power variation has been proven in [12,54]:
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Theorem I.4.9. Assume that the process Y is defined on a probability space (Ω,F ,P).
Further assume that g(x) ∼ cxα as x → 0 with α ∈ (−1/2, 1/2). Then, under con-
ditions of [54, Theorem 3.1], we deduce the uniform convergence in probability

sup
t∈[0,T ]

|V (X, p)nt − V (X, p)t|
P−→ 0 with V (X, p)t := mp

∫ t

0

|σs|pds,

where mp := E[|N (0, 1)|p]. When further α ∈ (−1/2, 0) and conditions of [54,
Theorem 3.2] are satisfied, we obtain the stable convergence in law:

∆−1/2
n (V (X, p)nt − V (X, p)t)

st−→ λp

∫ t

0

|σs|pB(ds),

where B is a new Brownian motion independent of the initial σ-algebra F , and the
constant λp is defined in [54, Eq. (3.3)].

We want to extend this result to the two-dimensional case. Few results exists on
the asymptotic behavior of spatio-temporal ambit fields. We note the paper from
Pakkanen [120] where he established a law of large numbers and the associated stable
central limit theorem for the normalized power variations over rectangle on the
space-time called rectangular increment. We mention also the two papers [34, 121]
where the authors consider trawl processes: a class of ambit fields where g ≡ 1 and
σ ≡ 1 and the ambit sets At(x) are translation of a fixed borel set A. We refer
to [10, Chapter 8] for a detailled presentation of trawl processes.

We recall the setting presented in (I.2.22): We consider a 2-dimensional ambit field
defined as

Xt =

∫ t

−∞
g(t− s)σsW (ds)

=

∫ t1

−∞

∫ t2

−∞
g(t1 − s1, t2 − s2)σs1,s2W (ds1, ds2)

where W is a white noise process on R2, g : R2
+ → R is a deterministic weight

function such that g ∈ L2(R2
+) with g(s1, s2) = 0 if s1 < 0 or s2 < 0 and σ

is a continuous volatility field. The stochastic integral is to be understood in the
Walsh sense (see Section A.1 of the appendix). To ensure the necessary integrability
condition: ∫ t

−∞
g2(t− s)σ2

sds <∞,

we assume that supt∈R2 E[σ2
t ] <∞.

We are not interested in the probabilistic and statistic properties of the ambit
field X but rather on its probabilistic characteristics when observed along a curve.
From this, the field X is observed discretly along the curve

z : [0, t] → R2, z(s) = (z1(s), z2(s)).

Define Y by
Yu = Xz(u)
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and G by

Gu =

∫ z(u)

−∞
g(z(u) − s)W (ds), u ∈ [0, T ].

Assume that we are given high-frequency observations Yi∆n = Xz(i∆n), i ≥ 0 with
∆n → 0. For p > 0, we define the power variation of Y as

V (Y, p)nt :=

⌊t/∆n⌋∑
i=1

|∆n
i Y |p where ∆n

i Y = Yi∆n − Y(i−1)∆n .

Before delving into the asymptotic results, we present the necessary assumptions on
the curve z, the kernel g and the volatility field σ:

(A1) The curve t 7→ z(t) is C2 and the derivatives z′1(t), z
′
2(t) are positive and

bounded away from 0.

(A2) For α ∈ (−1, 0), the kernel g admits the representation

g(x) = ∥x∥αf(x)

where ∥·∥ denotes the Euclidean norm. The function f : R2
+ → R is bounded,

f(0) ̸= 0 and f ∈ C1(R2
+) ∩ L2(R2

+) with

∥∇f(x)∥ ≤ C(∥x∥−1 ∧ 1), x ∈ R2
+, C > 0 some constant.

(A3) There exist γ > 1/2 such that for any q > 0,

E[|σt − σs|q]1/q ≤ Cq∥t− s∥γ

for some constant Cq > 0 and t, s ∈ R2
+.

(A4) There exists a ∈ R2
+ such that the partial derivatives satisfy |∂jg(x)| ≤

|∂jg(y)| for any x ≥ y ≥ a, j = 1, 2. Furthermore it holds that

Ft :=

∫
R2
+\[0,1]

(∂1g(s)2 + ∂2g(s)2)σ2
t−sds <∞ P− a.s. for all t ∈ R2

+.

We finally define the asymptotic variance of the non-stationary Gaussian core G:

ϕ2
t = z′1(t)z

′
2(t)f(0)2

(∫
R2
+\(1,∞)2

∥z′(t)◦x∥2αdx+

∫
R2
+

(∥z′(t)◦(x+1)∥α−∥z′(t)◦x∥α)2dx
)
,

defined as the scaled limit of ∆−(2α+2var(Gt+∆ −G(t).

The law of large numbers for the realized power variations and the associated stable
central limit theorem are the main results of Chapter IV. The stable central limit
theorem is proven following the methodology presented in Section I.3.3. We have
the following result:
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Theorem I.4.10. Assume that conditions (A1), (A2) and (A4) hold.

(i) If α ∈ (−1,−1/2), we obtain that

∆1−p(1+α)
n V (Y, p)nt

u.c.p.−→ mp

∫ t

0

|ϕsσz(s)|pds. (I.4.6)

(ii) If α ∈ (−1/2, 0), we deduce the convergence

∆1−p/2
n V (Y, p)nt

u.c.p.−→ mp

∫ t

0

|ws|pds. (I.4.7)

Futhermore, assume that conditions (A1)-(A4) are satisfied and α ∈ (−1,−3/4).
We also assume that γ(p∧1) > 1/2. Let (Bt)t≥0 be a Brownian motion defined on an
extension (Ω,F ,P) of the original probability space (Ω,F ,P), and being independent
of the σ-field F . We deduce the functional stable convergence

∆−1/2
n

(
∆1−p(1+α)

n V (Y, p)nt −mp

∫ t

0

|ϕsσzs|pds
)

st−→
∫ t

0

κs|σzs|pdBs. (I.4.8)

where κ2s is defined as

κ2s = ϕ2p
s

∞∑
k=2

λ2kk!

(
1 + 2

∞∑
l=1

ρ(l)k

)
.

Observe that we cannot prove a central limit theorem when α ∈ (−1/2, 0), due to a
non-negligible intrinsic biais. We also highlight the fact that contrary to the usual
limit results, the realized power variation does not estimate the integrated volatility
along the curve z but an integrated product of the quantity ϕt and the volatility
σz(t).

Remark I.4.11. We mention at the beginning of the current section that Chapter
IV is based on a work in progress. Instead of assuming (A2) for the kernel function
g, we may assume the following:

(A2’) g(x) = |x1|α|x2|αf(x), α ∈ (−1/2, 0) ∪ (0, 1/2)

with f(0) ̸= 0 and f decaying fast enough at infinity. The asymptotic regime
changes drastically compare to the asymptotic regime under assumption (A2). So
far we only managed to establish partial asymptotic results under (A2’) but the
limit theory is still misunderstood in that case.





Chapter II

Limit theorems for general
functionals of Brownian local
times

Abstract: In this paper, we present the asymptotic theory for integrated functions
of increments of Brownian local times in space. Specifically, we determine their
first-order limit, along with the asymptotic distribution of the fluctuations. Our
key result establishes that a standardized version of our statistic converges stably
in law towards a mixed normal distribution. Our contribution builds upon a series
of prior works by S. Campese, X. Chen, Y. Hu, W.V. Li, M.B. Markus, D. Nualart
and J. Rosen [43,45,72,73,107,139,140], which delved into special cases of the con-
sidered problem. Notably, [45, 72, 73, 139, 140] explored quadratic and cubic cases,
predominantly utilizing the method of moments technique, Malliavin calculus and
Ray-Knight theorems to demonstrate asymptotic mixed normality. Meanwhile, [43]
extended the theory to general polynomials under a non-standard centering by ex-
ploiting Perkins’ semimartingale representation of local time and the Kailath-Segall
formula. In contrast to the methodologies employed in [45,72,73,139], our approach
relies on infill limit theory for semimartingales, as formulated in [77, 84]. Notably,
we establish the limit theorem for general functions that satisfy mild smoothness
and growth conditions. This extends the scope beyond the polynomial cases studied
in previous works, providing a more comprehensive understanding of the asymptotic
properties of the considered functionals.
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local times

II.1 Introduction

Over the past five decades, the mathematical literature has witnessed a surge in
interest regarding the probabilistic and statistical properties of local times. Origi-
nating from the structure of a Hamiltonian in a specific polymer model, numerous
investigations have been dedicated to the asymptotic theory concerning functionals
derived from the local time of a Brownian motion. A notable body of work in this
domain includes [43, 45, 72, 73, 107, 139]. Recall that the local time (Lx)x∈R of a
Brownian motion (Wt)t∈[0,1] over a time interval [0, 1] is defined as the almost sure
limit

Lx := lim
ε↓0

1

2ε

∫ 1

0

1(x−ε,x+ε)(Ws)ds. (II.1.1)

The primary focus of our paper centers around statistics of the form:

V (f)hR :=

∫
R
f
(
h−1/2(Lx+h − Lx)

)
dx, h > 0, (II.1.2)

where f : R → R is a smooth enough function with f(0) = 0. Our objective
is to ascertain the asymptotic behavior of the statistic V (f)hR as h → 0. The
theorem below summarizes several special cases, extensively explored in the existing
literature, that fall within the scope of our investigation.

Theorem II.1.1. Let Z be a standard Gaussian random variable independent of
the local time (Lx)x∈R.

(i) Chen et al. [45], Hu and Nualart [72], Rosen [140], case f(x) = x2: As h→ 0

1

h3/2

(∫
R

(
Lx+h − Lx

)2
dx− 4h

)
d−→

√
64

3

∫
R
(Lx)2dx× Z.

(ii) Hu and Nualart [73], Rosen [139], case f(x) = x3: As h→ 0

1

h2

∫
R

(
Lx+h − Lx

)3
dx

d−→

√
192

∫
R
(Lx)3dx× Z.

(iii) Campese [43], case f(x) = xq with q ∈ N≥2: As h→ 0

1

h
q+1
2

(∫
R

(
Lx+h − Lx

)q
dx+Rq,h

)
d−→ cq

√∫
R
(Lx)qdx× Z,

where the random variable Rq,h is given by

Rq,h :=

⌊q/2⌋∑
k=1

aq,k

∫
R

(
Lx+h − Lx

)q−2k
(

4

∫ x+h

x

Ludu

)k

dx,

and the constants aq,k and ck are defined as

aq,k =
(−1)kq!

2kk!(q − 2k)!
and cq =

√
22q+1q!

q + 1
.
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The weak convergence established in Theorem II.1.1(i) for the quadratic case has
been demonstrated via the method of moments in [45]. On the other hand, in
[72], techniques from Malliavin calculus, along with a version of the Ray-Knight
theorem, were employed to derive the same result. Similar methodologies were
applied in [73, 139] to establish the cubic case outlined in Theorem II.1.1(ii). The
more general outcome of [43], as presented in Theorem II.1.1(iii), employs a distinct
technique to establish asymptotic mixed normality. The starting point in [43] is the
semimartingale representation of the local time (Lx)x∈R, initially proven by Perkins
in [124]. This representation, in turn, implies a semimartingale decomposition of
the statistic

∫
R

(
Lx+h − Lx

)q
dx. The somewhat intricate standardization Rq,h is

derived from the Kailath-Segall formula [144], ensuring that the normalized object
is a martingale. In the final step, the asymptotic Ray-Knight theorem is applied to
deduce weak convergence.

It is worth noting that Theorem II.1.1(iii) extends the results of Theorem II.1.1(i)
and (ii) due to R2,h = −4h and R3,h = 0 (cf. [43]). However, in other cases, the
standardization Rq,h is somewhat unnatural as it depends on the parameter h. Our
main result, presented below, not only extends Theorem II.1.1 to general functions
but also employs a much more natural standardization. Unless stated otherwise, all
random variables are defined on a given probability space (Ω,F ,P).

Theorem II.1.2. Let f ∈ C(R) be a function with polynomial growth satisfying
f(0) = 0. Define the quantity

ρu(f) := E[f(N (0, u2))] for u ∈ R. (II.1.3)

Then it holds that

V (f)hR
P−→ V (f)R :=

∫
R
ρσu(f)du where σu := 2

√
Lu (II.1.4)

as h → 0. If moreover f ∈ C1(R) and f, f ′ have polynomial growth we deduce the
stable convergence

U(f)hR := h−1/2
(
V (f)hR − V (f)R

) dst−→ U(f)R :=

∫
R

√
v2σu

− σ2
uρ

2
σu

(f ′) dW ′
u,

(II.1.5)
where W ′ is a Brownian motion defined on an extended probability space and inde-
pendent of F . The quantity vx is defined as

v2x := 2

∫ 1

0

cov (f(xB1), f(x(Bs+1 −Bs))) ds (II.1.6)

with B being a standard Brownian motion.

Building on the insights presented in [43], our approach begins by leveraging the
semimartingale representation of the local time. This transformation allows us to
recast the original problem into an asymptotic statistic of a semimartingale. Em-
ploying a series of approximation techniques from stochastic analysis, we then apply
the limit theory for high-frequency observations of semimartingales, as established
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in [77]. This application yields the stable convergence result expressed in (II.1.5).
However, it’s important to highlight that our framework diverges from classical re-
sults established in works such as [15,83,95,131] in several aspects. Firstly, we need
to introduce a blocking technique as a necessity to break the correlation in the statis-
tic V (f)hR. Another notable departure from standard high-frequency theory lies in
the assumption regarding the semimartingale property of the diffusion coefficient.
This property, crucial for obtaining the necessary smoothness for a stable limit the-
orem, is absent in our model. Instead, our diffusion coefficient is represented by
the process σu defined in (II.1.4), which is not a semimartingale. Consequently, we
employ more nuanced techniques to derive the asymptotic theory.

A surprising distinction, in comparison to [95], is observed in the form of the
limit at (II.1.5). Generally, when the function f is not even, the limit typically
comprises three terms, revealing an F -conditional bias (cf. [77, 95] and Theorem
II.2.1 below). However, in our scenario, we obtain a simpler limit denoted as U(f)R,
devoid of an F -conditional bias. This holds true regardless of whether the function
f is even or not.

The paper is structured as follows. Section II.2 provides crucial technical re-
sults, including the semimartingale decomposition of the local time (Lx)x∈R and a
functional stable central limit theorem. In Section 3, we delve into the proof of the
main result.

Notation

Unless explicitly stated otherwise, all random variables and stochastic processes are
defined on a filtered probability space denoted by (Ω,F , (Ft)t∈R,P). All positive
constants are denoted by C (or by Cp if we want to emphasise the dependence on
an external parameter p) although they may change from line to line. We use the
notation

It := [min(0, t),max(0, t)].

We say that a function f : R → R has polynomial growth if it holds that |f(x)| ≤
C(1 + |x|p) for some p ≥ 0. We denote by ⟨X, Y ⟩ the covariation process of two
semimartingales X and Y . For real-valued stochastic processes Y n and Y , we employ
the notation Y n u.c.p.−→ Y to signify uniform convergence in probability, specifically:

sup
t∈A

|Y n
t − Yt|

P−→ 0

for any compact set A ⊂ R. For a sequence of random variables (Y n)n∈N defined on

a Polish space (E, E), we say that Y n converges stably in law towards Y (Y n dst−→ Y ),
which lives on an extension (Ω′,F ′,P′) of the original probability space (Ω,F ,P), if
and only if

lim
n→∞

E[Fg(Y n)] = E′[Fg(Y )]

for all bounded F -measurable random variables F and all bounded continuous func-
tions g : E → R.
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II.2 Definitions and preliminary results

To begin, we utilize the semimartingale representation of the local time process
(Lx)x∈R, as derived in [124]. This representation posits the existence of a Brownian
motion (Bt)t∈R such that the local time is expressed as follows:

Lx = Lz +

∫ x

z

σydBy +

∫ x

z

aydy, x ≥ z, (II.2.1)

where the diffusion coefficient σ is defined at (II.1.4), and the drift coefficient a is
a predictable, locally bounded process. This representation, as emphasized in the
introduction, serves as a fundamental tool for establishing the stable limit theorem
in (II.1.5). Additionally, we introduce two random times

S := inf {a ≤ 0 : La > 0} , S := sup {a ≥ 0 : La > 0} , (II.2.2)

and remark that S and S are stopping times with respect to the filtration generated
by L. Note Lx = 0 for any x ̸∈ [S, S].
To establish the results outlined in Theorem II.1.2, it is essential to introduce a
functional version of the statistic V (f)hR. For a fixed T > 0, we define this functional
as follows:

V (f)ht :=

∫
It

f
(
h−1/2(Lx+h − Lx)

)
dx, t ∈ [−T, T ]. (II.2.3)

We obtain the following theorem.

Theorem II.2.1. Let f ∈ C(R) be a function with polynomial growth satisfying
f(0) = 0. Then it holds that

V (f)h
u.c.p.−→ V (f) as h→ 0 where V (f)t :=

∫
It

ρσu(f)du. (II.2.4)

Assume moreover that f ∈ C1(R) and f, f ′ have polynomial growth, and define the
process

U(f)ht := h−1/2
(
V (f)ht − V (f)t

)
.

Then, as h → 0, we obtain the functional stable convergence U(f)h
dst−→ U(f) on

(C([−T, T ]), ∥ · ∥∞), where

U(f)t :=

∫
It

rax,σxdx+

∫
It

wσxdBx +

∫
It

√
v2σx

− w2
σx
dW ′

x. (II.2.5)

The processes vu andW ′ have been introduced in Theorem II.1.2, while the quantities
wu and ru1,u2 are defined as

wu := uρu(f ′), (II.2.6)

ru1,u2 := u1ρu2(f
′) +

∫ 1

0

E
[
f ′(u2(Bx+1 −Bx))(B2

2 − 2)
]
dx.
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We now demonstrate that the consistency statement in (II.1.4), as mentioned in
Theorem II.1.2, follows from the more general results provided in Theorem II.2.1.
Initially, we observe the identities

V (f)hR = V (f)hS + V (f)h
S

+OP(h), V (f)R = V (f)S + V (f)S (II.2.7)

hold. For any ε > 0, we conclude that

P
(
|V (f)hS − V (f)S| > ε

)
≤ P

(
sup

t∈[−T,T ]

|V (f)ht − V (f)t| > ε, |S| ≤ T

)

+ P (|S| > T ) , (II.2.8)

and a similar estimate holds for the probability P(|V (f)h
S
− V (f)S| > ε). Conse-

quently, the uniform convergence in (II.2.4) implies the statement in (II.1.4) when we
choose T to be sufficiently large and then h to be sufficiently small. This establishes
the consistency result in the context of Theorem II.1.2.
Subject to an additional smoothness condition on the function f , the expression for
the limit U(f)t simplifies as demonstrated in the following proposition.

Proposition II.2.2. Assume that f(0) = 0, f ∈ C3(R), and f and its first three
derivatives have polynomial growth. Define the function

G(u) :=

∫ u

0

ρ2√x(f ′)dx, u ≥ 0. (II.2.9)

Then we obtain the identity

U(f)t = G(Lt) −G(L0) +

∫
It

√
v2σx

− w2
σx
dW ′

x. (II.2.10)

Proof. First of all, we note that ρu(g) < ∞ when the function g has polynomial
growth. Observing the semimartingale decomposition at (II.2.1), an application of
Itô formula gives

F (Lb) = F (La) +

∫ b

a

F ′(Lu)dLu + 2

∫ b

a

F ′′(Lu)Ludu,

for any F ∈ C2(R) and any b > a. A twofold application of an integration by parts
formula implies that∫ 1

0

E
[
f ′(u2(Bx+1 −Bx))(B2

2 − 2)
]
dx = u22ρu2(f

′′′).

According to definition (II.2.9) it holds that

G′(u) = ρ2√u(f ′) and G′′(u) = 2ρ2√u(f ′′′).

Consequently, we deduce the identity∫
It

rax,σxdx+

∫
It

wσxdBx =

∫
It

ρσu(f ′)dLu +

∫
It

σ2
uρσu(f ′′′)du
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=

∫
It

G′(σ2
u/4)dLu +

1

2

∫
It

σ2
uG

′′(σ2
u/4)du

=

∫
It

G′(Lu)dLu + 2

∫
It

L2
uG

′′(Lu)du = G(Lt) −G(L0).

This completes the proof of the proposition.

As a consequence of Proposition II.2.2 and the identity Lx = 0 for x ̸∈ [S, S], we
infer that

U(f)R = U(f)S + U(f)S =

∫
R

√
v2σx

− w2
σx
dW ′

x, (II.2.11)

provided the function f satisfies the conditions outlined in Proposition II.2.2. There-
fore, the stable convergence asserted in Theorem II.1.2 follows from Proposition
II.2.2 when accompanied by a suitable approximation argument. The details of this
argument will be explained in Section II.3.4.

Example II.2.3. Here, we illustrate that Theorem II.1.2 includes the results of
Theorem II.1.1(i) and (ii) as specific cases.

(i) Consider the quadratic case f(x) = x2 and note the identities ρu(f) = u2,
ρu(f ′) = 0. We immediately conclude that

V (f)R =

∫
R
σ2
udu = 4

∫
R
Ludu = 4,

where the last equality follows from the occupation time formula. We also deduce
that

v2x = 2x4
∫ 1

0

cov
(
B2

1 , (Bs+1 −Bs)
2
)
ds = 4x4

∫ 1

0

cov (B1, Bs+1 −Bs)
2 ds =

4

3
x4,

and consequently we get v2σu
= 64

3
(Lu)2. Thus we recover the statement of Theorem

II.1.1(i).

(ii) Now, consider the cubic setting f(x) = x3. In this scenario we deduce the
identities ρu(f) = 0 and ρu(f ′) = 3u2. Consequently, V (f)R = 0 and w2

u = 9u6. A
straightforward computation shows that

v2x = 2

∫ 1

0

cov (f(xB1), f(x(Bs+1 −Bs))) ds = 12x6.

Thus we deduce the identity v2σu
−w2

σu
= 192(Lu)3 and we recover the statement of

Theorem II.1.1(ii).

II.3 Proofs

II.3.1 Preliminary results

To simplify our analysis, we begin by establishing stronger assumptions on the in-
volved stochastic processes. Analogous to the reasoning provided in (II.2.8), we can
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perform all proofs on the set {S, S ∈ [−T, T ]} for some T > 0. Provided Lz > 0 for
all z ∈ [y, x], we will also use the identity

σz = σy + 2(Bz −By) +

∫ z

y

ãu · (Lu)−1/2dy, (II.3.1)

where ã is a locally bounded process. This identity follows from σx = 2
√
Lx and an

application of the Itô formula to (II.2.1).
Additionally, given that ã, a and σ are locally bounded processes, we may, without
loss of generality, assume that

sup
ω∈Ω, x∈[−T,T ]

(|ãx(ω)| + |ax(ω)| + |σx(ω)|) ≤ C

by employing a standard localization argument (cf. [15]).
Due to the boundedness of coefficients a and σ we deduce from Burkholder inequality
for any a < b and p > 0:

E

[
sup
x∈[a,b]

|Lx − La|p
]
≤ Cp|b− a|p/2. (II.3.2)

Consequently, due to definition in (II.1.4), we also deduce the inequality

E

[
sup
x∈[a,b]

|σx − σa|p
]
≤ Cp|b− a|p/4. (II.3.3)

Furthermore, for any function g : R → R with polynomial growth we have that

E
[
g
(
h−1/2(Lx+h − Lx)

)]
≤ C, (II.3.4)

which follows directly from (II.3.2).
We will often use the following lemmata, which are well known results.

Lemma II.3.1. Consider the process Y n
t =

∑⌊nt⌋
i=1 χ

n
i , t ∈ [0, T ], where the random

variables are χn
i are Fi/n-measurable and square integrable. Assume that

⌊nt⌋∑
i=1

E
[
χn
i |F(i−1)/n

] u.c.p.−→ Yt and

⌊nT ⌋∑
i=1

E
[
(χn

i )2|F(i−1)/n

] P−→ 0.

Then Y n u.c.p.−→ Y as n→ ∞.

Lemma II.3.2. Consider a sequence of stochastic processes Y n and Y n,m. Assume
that

Y n,m dst−→ Zm as n→ ∞, Zm dst−→ Y as m→ ∞, and

lim
m→∞

lim sup
n→∞

P

(
sup

t∈[0,T ]

|Y n,m
t − Y n

t | > ε

)
= 0 for any ε > 0.

Then it holds Y n dst−→ Y as n→ ∞.
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The following estimate is important for the mathematical arguments below.

Proposition II.3.3. It holds that

sup
x∈[−T,T ]

P
(
x ∈ (S, S), Lx ∈ [0, ε)

)
≤ CT ε.

Proof. Let τx be the first time the Brownian motion W hits the level x ∈ R. For
x ∈ (S, S), it must satisfy τx < 1. Now, applying the strong Markov property of

Brownian motion, we introduce a new process W̃t := Wt+τx − Wτx , where t ≥ 0.

Consequently, W̃ is a new Brownian motion independent of τx. Let Lx
t (W ) denote

the local time of W at point x up to time t. This leads to the relation Lx
1(W ) =

L0
1−τx(W̃ ). A well-known result asserts that L0

u(W̃ )
d
= |W̃u| for any fixed u. Thus,

by conditioning on τx, we infer that

P
(
x ∈ (S, S), Lx ∈ [0, ε)

)
≤ P (τx < 1, Lx ∈ [0, ε))

= P
(
τx < 1,

√
1 − τx · |N (0, 1)| ∈ [0, ε)

)
≤ CεE

[
1{τx<1}(1 − τx)−1/2

]
.

The density of τx is given by p(u) = (2π)−1/2|x|u−3/2 exp(−x2/2u)1{u>0}. Hence, we
conclude that

E
[
1{τx<1}(1 − τx)−1/2

]
<∞,

which completes the proof.

II.3.2 Law of large numbers

In this section we show the uniform convergence in probability as stated in (II.2.4).
An application of (II.2.8) implies the statement (II.1.4).
The basic idea of all proofs is to consider the approximation

h−1/2(Lx+h − Lx) ≈ h−1/2σx(Bx+h −Bx).

Observing this approximation we see that the two increments h−1/2(Lx+h−Lx) and
h−1/2(Ly+h − Ly) are asymptotically correlated when |x − y| < h. To break this
dependence we use a classical blocking technique. For i ≥ 0 we introduce the sets

Ai(m) = [i(m+ 1)h, i(m+ 1)h+mh],

Bi(m) = [i(m+ 1)h+mh, i(m+ 1)h+ (m+ 1)h].

Note that the length of Ai(m) is mh (big block) while Bi(m) has the length h (small
block). In the first step we obtain the following decomposition:

V (f)ht = Zh,m
t (f) +Rh,m

t (f) +Dh,m
t (f),

where

Zh,m
t (f) :=

∑
i∈N:i(m+1)h+mh∈It

∫
Ai(m)

f
(
h−1/2(Lx+h − Lx)

)
dx,
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Rh,m
t (f) :=

∑
i∈N: i(m+1)h+mh∈It

∫
Bi(m)

f
(
h−1/2(Lx+h − Lx)

)
dx,

and Dh,m
t (f) comprises the edge terms and satisfies

Dh,m(f)
u.c.p.−→ 0 as h→ 0 (II.3.5)

due to (II.3.4) and the polynomial growth of f . Next, we will analyse the asymptotic
behaviour of the processes Zh,m(f) and Rh,m(f).

(a) Negligibility of Rh,m
t (f): First, we observe the inequality

sup
t∈[−T,T ]

|Rh,m
t (f)| ≤ Rh,m

T (|f |) +Rh,m
−T (|f |)

Since f has polynomial growth we deduce that |f(x)| ≤ C(1 + |x|p) for some p > 0.
Due to inequality (II.3.2) we get

E
[
Rh,m

T (|f |) +Rh,m
−T (|f |)

]
≤ Cm−1.

Thus, we conclude that

lim
m→∞

lim sup
h→0

P

(
sup

t∈[−T,T ]

|Rh,m
t (f)| > ε

)
= 0, (II.3.6)

for any ε > 0. This proves the negligibility of the term Rh,m(f).

(b) Law of large numbers for the approximation: We introduce the following ap-
proximation of the statistic Zh,m

t (f):

Z
h,m

t (f) :=
∑

i∈N: i(m+1)h+mh∈It

αh
i (m), (II.3.7)

αh
i (m) :=

∫
Ai(m)

f
(
h−1/2σthi (m)(Bx+h −Bx)

)
dx,

where thi (m) = i(m+1)h is the left boundary of the interval Ai(m). Due to Riemann
integrability we deduce that∑
i∈N: i(m+1)h+mh∈It

E[αh
i (m)|Fthi (m)] = mh

∑
i∈N: i(m+1)h+mh∈It

ρσ
th
i
(m)

(f)
u.c.p.−→ m

m+ 1
V (f)t

as h→ 0 and m/(m+ 1)V (f)
u.c.p.−→ V (f) as m→ ∞. By Lemma II.3.1 it suffices to

prove that ∑
i∈N:≤i(m+1)h+mh∈[−T,T ]

E
[∣∣αh

i (m)
∣∣2 |Fthi (m)

]
P−→ 0 as h→ 0.

By (II.3.4) we readily deduce that

E[|αh
i (m)|2|Fthi (m)] ≤ C(mh)2.



II.3. Proofs 45

Hence, we conclude

Z
h,m

(f)
u.c.p.−→ m

m+ 1
V (f) as h→ 0, and

m

m+ 1
V (f)

u.c.p.−→ V (f) as m→ ∞.

(II.3.8)

(c) In view of steps (a) and (b) we are left to proving the statement

Z
h,m

(f) − Zh,m(f)
u.c.p.−→ 0. (II.3.9)

Since f has polynomial growth we have the following inequality for ε, A > 0:

|f(x) − f(y)| ≤ C
(
wf (A, ε) + (1 + |x|p + |y|p)(1{|x|>A} + 1{|y|>A} + 1{|x−y|>ε})

)
,

where wf (A, ε) := sup{|f(x) − f(y)| : |x|, |y| ≤ A, |x − y| ≤ ε} is the modulus
of continuity of f . Using this inequality and (II.3.2), and also 1{|x|>A} ≤ A−1|x|,
1{|x−y|>ε} ≤ ε−1|x− y|, we conclude that

E

[
sup

t∈[−T,T ]

∣∣∣Zh,m

t (f) − Zh,m
t (f)

∣∣∣] ≤ C
(
wf (A, ε) + A−1

+ ε−1
∑

i∈N: i(m+1)h+mh∈[−T,T ]

∫
Ai(m)

(
h1/2 + h−1/2E

[∫ x+h

x

|σu − σthi (m)|2du
]1/2)

dx.

Since σ is continuous and bounded we see that the third term converges to 0 as
h → 0. On the other hand, we have that limε→0wf (A, ε) = 0 for a any fixed A.
Hence, we deduce that

Z
h,m

(f) − Zh,m(f)
u.c.p.−→ 0

by letting first h → 0, then ε → 0 and A → ∞. Due to statements (II.3.6) and
(II.3.8), we obtain the convergence in (II.2.4).

II.3.3 Stable central limit theorem

Demonstrating the stable central limit theorem as stated in Theorem II.2.1 poses a
more intricate challenge. Our approach is primarily based upon limit theorems for
semimartingales, notably in works such as [15]. It is crucial to highlight that the
diffusion coefficient σx = 2

√
Lx is not a semimartingale, introducing a heightened

level of complexity to the proofs. We will continue to employ the blocking technique
introduced in the preceding section.
First of all, we decompose our statistic into several terms:

U(f)h =
3∑

k=1

Zh,m,k(f) +
3∑

k=1

Rh,m,k(f) +D
h,m

. (II.3.10)

Here the processes Zh,m,k(f), k = 1, 2, 3, are big blocks approximations, which are
defined by

Zh,m,1
t (f) := h−1/2

∑
i∈N: i(m+1)h+mh∈It

(
αh
i (m) − E[αh

i (m)|Fthi (m)]
)
,
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Zh,m,2
t (f) := h−1/2

∑
i∈N: i(m+1)h+mh∈It

(∫
Ai(m)

f
(
h−1/2(Lx+h − Lx)

)
dx− αh

i (m)

)
,

Zh,m,3
t (f) := h−1/2

∑
i∈N: i(m+1)h+mh∈It

∫
Ai(m)

(
ρσ

th
i
(m)

(f) − ρσx(f)
)
dx.

The small block processes Rh,m,k(f), k = 1, 2, 3, are introduced in exactly the same
way with the set Ai(m) being replaced by Bi(m) in all relevant definitions. Finally,

the process D
h,m

comprises all the edge terms. Similarly to the treatment of the
term Dh,m in (II.3.5), we immediately conclude that

D
h,m u.c.p.−→ 0 as h→ 0. (II.3.11)

In the following subsections we will show that all small blocks terms are negligible
in the sense

lim
m→∞

lim sup
h→0

P

(
sup

t∈[−T,T ]

|Rh,m,k
t (f)| > ε

)
= 0 for any ε > 0, (II.3.12)

for all k = 1, 2, 3. Finally, we will show that

Zh,m,1(f)
dst−→ U ′m(f), Zh,m,2(f)

u.c.p.−→ U ′′m(f), Zh,m,3(f)
u.c.p.−→ 0

as h→ 0, and moreover

U ′m(f)
dst−→ U ′(f) =

∫ ·
0
wσxdBx +

∫ ·
0

√
v2σx

− w2
σx
dW ′

x, (II.3.13)

U ′′m(f)
u.c.p.−→ U ′′(f) =

∫ ·
0
rax,σxdx

as m→ ∞. Consequently, due to (II.3.11)-(II.3.13), an application of Lemma II.3.2
and properties of stable convergence imply the statement of Theorem II.2.1.

II.3.3.1 Central limit theorem for the approximation

Recalling the notation from the previous subsection, we set

Zh,m,1
t (f) =:

∑
i∈N: i(m+1)h+mh∈It

Xh
i (m).

We now prove the stable central limit theorem for Zh,m,1(f) as h → 0. According
to Theorem [84, Theorem IX.7.28] we need to show that∑

i∈N: i(m+1)h+mh∈It

E[|Xh
i (m)|2|Fthi (m)]

P−→
∫
It

v2σx
(m)dx (II.3.14)

∑
i∈N: i(m+1)h+mh∈It

E[Xh
i (m)(Bthi (m)+(m+1)h −Bthi (m))|Fthi (m)]

P−→ cm

∫
It

wσxdx

(II.3.15)
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∑
i∈N: i(m+1)h+mh∈It

E[|Xh
i (m)|21{|Xh

i (m)|>ε}|Fthi (m)]
P−→ 0 ∀ε > 0 (II.3.16)

∑
i∈N: i(m+1)h+mh∈It

E[Xh
i (m)(Nthi (m)+(m+1)h −Nthi (m))|Fthi (m)]

P−→ 0 (II.3.17)

where the last statement should hold for all bounded continuous martingales N with
⟨B,N⟩ = 0, cm = m/(m+ 1), and the function vu(m) will be introduced below.

We start by showing the condition (II.3.14). A straightforward computation using
the substitution x = hz1, y = hz2 shows that

E[|Xh
i (m)|2|Fthi (m)] = h−1

∫
A2

i (m)

(
E
[
f
(
h−1/2σthi (m)(Bx+h −Bx)

)
×f
(
h−1/2σthi (m)(By+h −By)

)∣∣∣Fthi (m)

]
− ρ2σ

th
i
(m)

(f)

)
1{|x−y|<h}dxdy

= h

∫
[i(m+1),i(m+1)+m]2

(
E
[
f
(
σthi (m)(Bz1+1 −Bz1)

)
×f
(
σthi (m)(Bz2+1 −Bz2)

)∣∣∣Fthi (m)

]
− ρ2σ

th
i
(m)

(f)

)
1{|z1−z2|<1}dz1dz2.

Hence, by Riemann integrability we deduce that∑
i∈N: i(m+1)h+mh∈It

E[|Xh
i (m)|2|Fthi (m)]

P−→
∫
It

v2σx
(m)dx,

where

v2u(m) :=
1

m

∫
[0,m]2

cov (f (u(Bz1+1 −Bz1)) , f (u(Bz2+1 −Bz2))) 1{|z1−z2|<1}dz1dz2.

We note that
lim

m→∞
v2u(m) = v2u, (II.3.18)

where v2u has been introduced in (II.1.6).

In the next step we show condition (II.3.15). By the integration by parts formula
we deduce the identity

E[Xh
i (m)(Bthi (m)+(m+1)h −Bthi (m))|Fthi (m)]

=

∫
Ai(m)

E
[
f
(
h−1/2σthi (m)(Bx+h −Bx)

)
h−1/2(Bx+h −Bx)|Fthi (m)

]
dx

= (mh)−1wσ
th
i
(m)

where the function wu has been defined in (II.2.6). This implies condition (II.3.15)
by Riemann integrability.
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To show condition (II.3.16), we observe the inequality

E
[
|Xh

i (m)|21{|Xh
i (m)|>ε}|Fthi (m)

]
≤ ε−2E

[
|Xh

i (m)|4|Fthi (m)

]
≤ Cε−2m4h2.

Hence, we deduce the statement of (II.3.16).

To prove condition (II.3.17), we apply a martingale representation theorem to deduce
the representation

Xh
i (m) =

∫
Ai(m)

ηh,mi,x dBx,

where ηh,mi is a predictable square integrable process. Now, applying Itô isometry,
we obtain that

E
[
Xh

i (m)(Nthi (m)+(m+1)h −Nthi (m))|Fthi (m)

]
= E

[∫
Ai(m)

ηh,mi,x d⟨B,N⟩x|Fthi (m)

]
= 0

Consequently, we showed condition (II.3.17).

Now, due to (II.3.14)-(II.3.17), we conclude the stable convergence Zh,m,1(f)
dst−→

U ′m(f) as h→ 0 with

U ′m(f)t := cm

∫
It

wσxdBx +

∫
It

√
v2σx

(m) − c2mw
2
σx
dW ′

x.

On the other hand, since cm → 1 and v2u(m) → v2u as m→ ∞, we obtain that

U ′m(f)
dst−→ U ′(f) =

∫
I·

wσxdBx +

∫
I·

√
v2σx

− w2
σx
dW ′

x (II.3.19)

as m→ ∞.

II.3.3.2 Negligibility of the small blocks: the martingale term

Here we show that the small block term Rh,m,1(f) is negligible. We recall

Rh,m,1
t (f) = h−1/2

∑
i∈N: i(m+1)h+mh∈It

(
βh
i (m) − E[βh

i (m)|Fthi (m)+mh]
)
,

where

βh
i (m) :=

∫
Bi(m)

f
(
h−1/2σthi (m)(Bx+h −Bx)

)
dx.

Since Rh,m,1(f) is a martingale, f has polynomial growth and σ is bounded, we
conclude that

E
[
|Rh,m,1

T (f)|2 + |Rh,m,1
−T (f)|2

]
≤ Cm−1.

Hence, by Lemma II.3.1 we obtain that

lim
m→∞

lim sup
h→0

P

(
sup

t∈[−T,T ]

|Rh,m,1
t (f)| > ε

)
= 0 for any ε > 0.
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II.3.3.3 Riemann sum approximation error

We now consider the Riemann sum approximation error associated with big blocks.
We need to show that

Zh,m,3
t (f) = h−1/2

∑
i∈N: i(m+1)h+mh∈It

∫
Ai(m)

(
ρσx(f) − ρσ

th
i
(m)

(f)
)
dx

u.c.p.−→ 0.

(The corresponding statement for the small block term Rh,m,3(f) is shown in exactly
the same way). For this purpose we introduce the threshold

εh = hr for some r ∈ (1/4, 1/2). (II.3.20)

On each big block Ai(m), we will distinguish two cases according to whether Lthi (m) <
εh or Lthi (m) ≥ εh.
We start with the first case. Since f ∈ C1(R) the map u 7→ ρu(f) is C1. Also note
that supu∈A |ρ′u(f)| is bounded if A is a compact set. Due to mean value theorem
and boundedness of σ we have

1{
thi (m)∈(S,S), Lth

i
(m)<εh

} ∫
Ai(m)

∣∣∣ρσx(f) − ρσ
th
i
(m)

(f)
∣∣∣ dx

≤ C1{
thi (m)∈(S,S), Lth

i
(m)<εh

} ∫
Ai(m)

∣∣∣σx − σthi (m)

∣∣∣ dx
Now, we use Proposition II.3.3, inequality (II.3.3) as well as Hölder inequality with
conjugates p, q > 1, 1/p+ 1/q = 1, to deduce that

E

[
1{

thi (m)∈(S,S), Lth
i
(m)<εh

} ∣∣∣σx − σthi (m)

∣∣∣] ≤ Ch1/4ε
1/q
h .

Thus, we obtain that

h−1/2E

 ∑
i∈N: i(m+1)h+mh∈[−T,T ]

1{
thi (m)∈(S,S), Lth

i
(m)<εh

} ∫
Ai(m)

∣∣∣ρσx(f) − ρσ
th
i
(m)

(f)
∣∣∣ dx


≤ Ch−1/4ε
1/q
h → 0, (II.3.21)

where we use the definition at (II.3.20) and choose q close enough to 1.
Now, we treat the case Lthi (m) ≥ εh. For a fixedm ∈ N, we conclude by Borel–Cantelli
lemma and εh = hr for r < 1/2 that there exists a h0 > 0 such that P-almost surely

sup
x∈Ai(m)

|Lx − Lthi (m)| ≤ εh/2

for any h < h0. In the scenario Lthi (m) ≥ εh the latter implies that

inf
x∈Ai(m)

|Lx| ≥ εh/2 P-almost surely, (II.3.22)
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for h < h0. We introduce the following process:

Zh,m,3.1
t := h−1/2

∑
i∈N: i(m+1)h+mh∈It

1{
Lth

i
(m)≥εh

} ∫
Ai(m)

(
ρσx(f) − ρσ

th
i
(m)

(f)
)
dx.

To handle the process Zh,m,3.1 we will apply the decomposition (II.3.1). First of all,
we use the mean value theorem to deduce that

ρσx(f) − ρσ
th
i
(m)

(f) = ρ′σ
th
i
(m)

(f)(σx − σthi (m)) + (ρ′σ
xh
i

(f) − ρ′σ
th
i
(m)

(f))(σx − σthi (m)),

where xhi is a certain point in the interval (thi (m), x). Now, applying (II.3.1), we
decompose Zh,m,3.1 = Zh,m,3.2 + Zh,m,3.3 + Zh,m,3.4 as

Zh,m,3.2
t := 2h−1/2

∑
i∈N: i(m+1)h+mh∈It

1{
Lth

i
(m)≥εh

} ∫
Ai(m)

ρ′σ
th
i
(m)

(f)
(
Bx −Bσ

th
i
(m)

)
dx,

Zh,m,3.3
t := h−1/2

∑
i∈N: i(m+1)h+mh∈It

1{
Lth

i
(m)≥εh

} ∫
Ai(m)

ρ′σ
th
i
(m)

(f)

(∫ x

thi (m)

ãy · (Ly)−1/2dy

)
dx,

Zh,m,3.4
t := h−1/2

∑
i∈N: i(m+1)h+mh∈It

1{
Lth

i
(m)≥εh

} ∫
Ai(m)

(ρ′σ
xh
i

(f) − ρ′σ
th
i
(m)

(f))(σx − σthi (m))dx.

Since Zh,m,3.2 is a martingale, we obtain that

E
[
|Zh,m,3.2

T |2 + |Zh,m,3.2
−T |2

]
≤ CTh.

By Lemma II.3.1 we deduce that

Zh,m,3.2 u.c.p.−→ 0 as h→ 0. (II.3.23)

Due to (II.3.22) we know that (Lx)−1/2 < 2ε
−1/2
h for all x ∈ Ai(m) and h < h0. Since

σ, ã are bounded, we conclude that

E

[
sup

t∈[−T,T ]

|Zh,m,3.3
t |

]
≤ CTh

1/2ε
−1/2
h → 0 as h→ 0. (II.3.24)

To handle the last term Zh,m,3.4 we apply a similar technique as in step (c) of Section
II.3.2. Notice that the quantity ρ′σx

(f) is bounded, because σ is bounded. We obtain
that ∣∣∣∣ρ′σxh

i

(f) − ρ′σ
th
i
(m)

(f)

∣∣∣∣ ≤ C
(
wρ′(f)(A, ε) + 1{|σ

xh
i
−σ

th
i
(m)

|>ε}

)
.

Since Lx ≥ εh/2 for all x ∈ Ai(m) and h < h0, we deduce from representation
(II.3.1) that

E
[
|σx − σthi (m)|p

]
≤ C

(
hp/2 + hpε

−p/2
h

)
for any p > 0, for all x ∈ Ai(m) and h < h0. Hence, we now obtain from (II.3.3)
that

E

[
sup

t∈[−T,T ]

|Zh,m,3.4
t |

]
≤ C

(
wρ′(f)(A, ε)

(
1 + h1/2ε

−1/2
h

)
+ ε−3h1/2

)
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Thus, we conclude that

Zh,m,3.4 u.c.p.−→ 0 as h→ 0. (II.3.25)

A combination of (II.3.21) and (II.3.23)-(II.3.25) implies the statement

Zh,m,3(f)
u.c.p.−→ 0 as h→ ∞.

Similarly, Rh,m,3(f)
u.c.p.−→ 0 as h→ 0.

II.3.3.4 The terms Zh,m,2(f) and Rh,m,2(f)

In view of the previous steps, we are left with handling the terms Zh,m,2(f) and
Rh,m,2(f). We start with the term Zh,m,2(f). First, we consider an approximation
of Zh,m,2(f) given as

Z
h,m,2

t (f) := h−1/2
∑

i∈N: i(m+1)h+mh∈It

∫
Ai(m)

E
[
f
(
h−1/2(Lx+h − Lx)

)
−f
(
h−1/2σthi (m)(Bx+h −Bx)

)
|Fthi (m)

]
dx.

Applying Lemma II.3.1 and following the same arguments as presented in part (c)
of Section II.3.2 (see the proof of (II.3.9)), we deduce that

Z
h,m,2

(f) − Zh,m,2(f)
u.c.p.−→ 0 as h→ 0. (II.3.26)

We use again the mean value theorem to obtain the decomposition

E
[
f
(
h−1/2(Lx+h − Lx)

)
− f

(
h−1/2σthi (m)(Bx+h −Bx)

)
|Fthi (m)

]
= E

[
h−1/2f ′

(
h−1/2σthi (m)(Bx+h −Bx)

)(
(Lx+h − Lx) − σthi (m)(Bx+h −Bx)

)
|Fthi (m)

]
+ E

[
h−1/2

(
f ′(zhi ) − f ′

(
h−1/2σthi (m)(Bx+h −Bx)

))
×
(

(Lx+h − Lx) − σthi (m)(Bx+h −Bx)
)
|Fthi (m)

]
,

where zhi is a point between h−1/2σthi (m)(Bx+h − Bx) and h−1/2(Lx+h − Lx). As in

the previous subsection we need to discuss the cases Lthi (m) ≥ εh and Lthi (m) < εh
separately. The easier case Lthi (m) < εh is handled in exactly the same way as
presented in (II.3.21), so we focus on the scenario Lthi (m) ≥ εh. Similarly to the
treatment of Zh,m,3.4 we conclude that

h−1/2
∑

i∈N: i(m+1)h+mh<t

1
{Lth

i
(m)≥εh}

∫
Ai(m)

E
[
h−1/2

(
f ′(zhi ) − f ′

(
h−1/2σthi (m)(Bx+h −Bx)

))

×
(

(Lx+h − Lx) − σthi (m)(Bx+h −Bx)
)
|Fthi (m)

]
dx

u.c.p.−→ 0

as h→ ∞. Thus, we need to show that
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Z
h,m,2.1

t := h−1/2
∑

i∈N: i(m+1)h+mh∈It

1
{Lth

i
(m)≥εh}

∫
Ai(m)

E
[
h−1/2f ′

(
h−1/2σthi (m)(Bx+h −Bx)

)

×

(∫ x+h

x

(au − athi (m))du+

∫ x+h

x

(∫ u

thi (m)

ãs · (Ls)−1/2ds

)
dBu

)
|Fthi (m)

]
dx

u.c.p.−→ 0

and

Z
h,m,2.2

t := h−1/2
∑

i∈N: i(m+1)h+mh∈It

1
{Lth

i
(m)≥εh}

∫
Ai(m)

E
[
h−1/2f ′

(
h−1/2σthi (m)(Bx+h −Bx)

)
×
(
hathi (m) + 2

∫ x+h

x

(Bu −Bthi (m))dBu

)
|Fthi (m)

]
dx

u.c.p.−→ m

m+ 1

∫
It

rax,σxdx

(II.3.27)

as h→ 0. The statement Z
h,m,2.1 u.c.p.−→ 0 is obtained along the lines of the arguments

presented in the previous subsection. Finally, observe the identities

E
[
f ′
(
h−1/2σthi (m)(Bx+h −Bx)

)
athi (m)|Fthi (m)

]
= athi (m)ρσth

i
(m)

(f ′)

and

2h−1

∫
Ai(m)

E
[
f ′ (h−1/2u(Bx+h −Bx)

) ∫ x+h

x

(Bu −Bthi (m))dBu

]
dx

= 2h−1

∫
Ai(m)

E
[
f ′ (h−1/2u(Bx+h −Bx)

) ∫ x+h

x

(Bu −Bx)dBu

]
dx

= 2mh

∫ 1

0

E
[
f ′ (u(By+1 −By))

∫ y+1

y

(Bu −By)dBu

]
dy

= 2mh

∫ 1

0

E
[
f ′ (u(By+1 −By))

∫ 2

0

BudBu

]
dy

= mh

∫ 1

0

E
[
f ′ (u(By+1 −By)) (B2

2 − 2)
]
dy,

where we used the substitution x = hy and the self-similarity of the Brownian
motion. Hence, the convergence in (II.3.27) follows from Riemann integrability.
Following exactly the same arguments we conclude that

lim
m→∞

lim sup
h→0

P

(
sup

t∈[−T,T ]

|Rh,m,2
t (f)| > ε

)
= 0 for any ε > 0.

This completes the proof of stable convergence U(f)h
dst−→ U(f).

II.3.4 Proof of Theorem II.1.2

Here we prove the statements of Theorem II.1.2 via an application of Theorem
II.2.1 and Proposition II.2.2. Recall that we have already shown the convergence
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at (II.1.4); see (II.2.8). Thus we are left to proving the stable central limit theorem
presented in Theorem II.1.2.
We recall that it suffices to show all convergence results under the restriction S, S ∈
[−T, T ] for some T > 0. Theorem II.2.1 states that U(f)h

dst−→ U(f) on (C([−T, T ]), ∥·
∥∞). Since the mapping F : [−T, T ]2 ×C([−T, T ]) → R defined as F ((t1, t2), H) :=
H(t1) +H(t2) is continuous, we deduce by the properties of stable convergence and
(II.2.7):

U(f)hR
dst−→ U(f)S + U(f)S

=

∫
R
rax,σxdx+

∫
R
wσxdBx +

∫
R

√
v2σx

− w2
σx
dW ′

x,

under conditions of Theorem II.2.1. Our task now boils down to demonstrating
that the sum of the first two terms in the limit are equal to zero. This assertion
has already been established in (II.2.11) under the condition f(0) = 0, with f ∈
C3(R), and f and its first three derivatives exhibiting polynomial growth. Therefore,
our focus shifts to confirming that this statement carries over under the weaker
assumptions of Theorem II.1.2.
Let f ∈ C1(R) be an arbitrary function satisfying the conditions of Theorem II.1.2.
Then there exists a sequence of functions (fn)n≥1 ∈ C3(R) that fulfils the conditions
fn(0) = 0,

|fn(x)| + |f ′
n(x)| + |f ′′

n(x)| + |f ′′′
n (x)| ≤ C(1 + |x|p) for some p > 0,

and
sup
x∈A

(|fn(x) − f(x)| + |f ′
n(x) − f ′(x)|) → 0 as n→ 0, (II.3.28)

for any compact set A ⊂ R. In view of Lemma II.3.2 it suffices to show that

U(fn)R
P−→ U(f)R as n→ ∞, and (II.3.29)

lim
n→∞

lim sup
h→0

P
(∣∣U(fn)hR − U(f)hR

∣∣ > ε
)

= 0 for any ε > 0. (II.3.30)

We start by proving the statement (II.3.29). For this purpose we introduce the
notation rax,σx(f), wσx(f) and vσx(f) to explicitly denote the dependence of these
quantities on the function f . Since S, S ∈ [−T, T ] it suffices to prove the convergence

E
[∫ T

−T

|rax,σx(fn) − rax,σx(f)| + |wσx(fn) − wσx(f)| + |vσx(fn) − vσx(f)|dx
]
→ 0

as n→ ∞, to conclude (II.3.29). But the latter follows directly from (II.3.28) since
the processes a and σ are bounded.
Now, we show condition (II.3.30). Applying Theorem II.2.1 we deduce that

P
(∣∣U(fn)hR − U(f)hR

∣∣ > ε
)
≤ P

(
sup

t∈[−T,T ]

∣∣U(fn)ht − U(f)ht
∣∣ > ε

)

→ P

(
sup

t∈[−T,T ]

|U(fn)t − U(f)t| > ε

)
as h→ 0.
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Using Markov and Burkholder inequalities, and the same arguments as in the proof
of (II.3.29), we obtain that

P

(
sup

t∈[−T,T ]

|U(fn)t − U(f)t| > ε

)
→ 0 as n→ ∞.

Thus we deduce (II.3.30), which completes the proof of Theorem II.1.2.



Chapter III

Limit theorems for asynchronously
observed bivariate pure jump
semimartingales

Abstract: In this article we establish the asymptotic theory of the Hayashi-Yoshida
estimator for the quadratic covariation process of a bivariate pure jump process.
Specifically, we consider the problem of estimating the quadratic covariation process
for a bivariate symmetric β-stable processes (L1

t , L
2
t )t≥0, with β ∈ (0, 2), from high

frequency non-synchronous observations of (L1
t )t≥0 and (L2

t )t≥0. The main focus is
on the derivation of a stable non-central limit theorem for the integrated covariance
process. Building on the insight of [36] we use a method called pseudo-aggregation
to handle the asynchronicity of the sampling scheme. Following the methodology
of [58, 70], we will show that the limiting process in the stable non-central limit
theorem is a β-stable process.

55
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III.1 Introduction

Since Jacod’s preliminary work more than 20 years ago [77], the asymptotic theory
of statistics for Itô semimartingales has been studied in many different directions,
with a predominant part of the literature focusing on the estimation of the power
variation of Lévy processes in a high frequency regime, a quantity of crucial interest
notably in financial applications.

The realized quadratic variation process of a Rd-valued of an Itô semimartingale
(Yt)t≥0, observed at time points i∆n, i = 0, ..., ⌊t/∆n⌋, is defined as

[Y ]nt :=

⌊t/∆n⌋∑
i=1

(∆n
i Y )(∆n

i Y )⊺ with ∆n
i := Yi∆n − Y(i−1)∆n .

A well-known fact from the general theory of semimartingales is the convergence in
probability

[Y ]nt
P−→ [Y ]t

towards the quadratic variation process of Y . As a consequence of this convergence,
a natural question arises: the establishment of an associated Central Limit Theorem,
namely the convergence in distribution of the error process

Un
t := δn([Y ]nt − [Y ]t)

d−→ Ut

towards a non-trivial process (Ut)t≥0, with (δn)n≥0 a suitable normalizing sequence.

In the Gaussian framework, namely when the Gaussian part of an Itô semimartingale
Y is non-vanishing, the asymptotic theory is well-known and we can establish the
convergence in law of the error process towards a non-trivial conditionally Gaus-
sian limiting process (see e.g. [15, 24, 49, 130]). In the simplest case, consider a
d-dimensional Itô semimartingale Y defined as

Yt = Y0 +

∫ t

0

asds+

∫ t

0

σsdWs

with a a predictable locally bounded d-dimensional drift, σ a Rd×d-valued càdlàg
volatility process and W a d-dimensional Brownian process.

Theorem III.1.1. [15] Under previous assumptions on a and σ we obtain the
following stable convergence

∆1/2
n ([X]nt − [X]t)

dst−→Mt,

where, conditionally on F , (Mt)t≥0 is a Gaussian martingale with mean zero and
conditional covariance function

E
[
M jk

t M
j
′
k
′

t |F
]

= cjj
′

t ckk
′

t + cjk
′

t ckj
′

t with ct = σtσ
⊺
t .
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Numerous extension has been studied, in particular in the presence of jumps (e.g.
[24]), with noisy data (see e.g. [130]) or with asynchronous data (see e.g. [36,67]).

Now, when considering pure jump Itô semimartingales, the probabilistic tools and
assumptions on the model differ drastically from the Gaussian case. In the context of
synchronous high-frequency data, the one-dimensional case has been demonstrated
in a very general framework in [58] with

Yt =

∫ t

0

σs−dZs +Xt,

where Z is a non-homogeneous Lévy process, σ an Itô semimartingale and Y an Itô
semimartingale with vanishing Gaussian part. In the multivariate case, the following
theorem has been proven in [70] for β-stable pure jump processes.

Theorem III.1.2. [70] Let δn = (∆n log(1/∆n))−1/β, n ≥ 1. For any β ∈ (0, 2)
we obtain the functional stable convergence

Un
t := δn

(
[L]nt − [L]∆n⌊t/∆n⌋

) dst−→ Ut,

where (Ut)t≥0 is an Rd×d-valued Lévy process with characteristic triplet (0, 0, νU) with
νU the Lévy measure given by

νU(B) =
1

2β

∫
Sd×d

µ(dz)

∫
R+

1B(ρz)ρ−1−βdρ, B ∈ B(Rd ⊙ Rd),

and

µ(z) =

∫
S2d

1z

(
θ1 ⊙ θ2

||θ1 ⊙ θ2||

)
||θ1 ⊙ θ2||βH(dθ1)H(dθ2), z ∈ B (Sd×d)

with B bounded away from 0. The process U is defined on an extension (Ω,F , (F t)t≥0,P)
of the original space (Ω,F , (Ft)t≥0,P) and is independant of the σ-algebra F .
The aim of this paper is to provide similar result when considering a bivariate β-
stable pure jump process L, with the particularity that we observe each component
of L asynchronously. We will show a stable weak limit theorem for the Hayashi-
Yoshida estimator of the quadratic covariation [L1, L2]t. We refer to the sequel for
a definition of stable convergence and of the Hayashi-Yoshida estimator. The limit-
ing process will be a R-valued symmetric β-stable process with a scaling parameter
dependent of the asynchronous observation scheme.

In Section 2 we introduce the model and the main result. Section 3 collects some
preliminary results for the proof of the main result. Section 4 is devoted to the
proof of the main result in the case β ∈ (1, 2) and Section 5 for the proof in the case
β ∈ (0, 1].

III.2 The model, notation and main results

III.2.1 Notation

In this subsection we introduce the main notations used throughout the paper. For
a ∈ C we write |a| to denote the norm of a. For a vector x ∈ R2 its transpose
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is denoted x⊺. The notation ∥x∥ stands for the Euclidean norm of x. The set Sd

denotes the Euclidean unit sphere in Rd. Let x = (x1, x2)
⊺ , y = (y1, y2)

⊺ ∈ R2. We
denote by ⟨x, y⟩ = x1y1 + x2y2 the standard scalar product in R2.

The sequence ∆n = O(1/n), n ≥ 1, will be used in the sequel.

For two sequences of real numbers (un)n and (vn)n, we say that (un)n is asymp-
totically equivalent to (vn)n, and we denote this relation un ∼ vn if un/vn

n→∞−→ 1,
provided vn ̸= 0 ∀n. In particular, if un ∼ vn, then they have the same limit.

Let (Yt)t≥0 be a càdlàg stochastic process. We denote by Yt− the left limit of Y
at time t and by ∆Yt = Yt − Yt− the jump at t. Thoughout this paper (tki )i∈N,
k = 1, 2, is a sequence of positive numbers satisfying 0 ≤ tki < tkj ≤ 1 for all i < j
and sup

i
|tki+1 − tki | → 0.

We write ∆tki
Y := Ytki − Ytki−1

and ∆n
i Y := Yi∆n − Y(i−1)∆n with (∆n)n≥1 defined

above.

For stochastic processes Y n and Y we denote by Y n u.c.p.−→ Y the uniform conver-
gence in probability, that is

sup
t∈[0,T ]

|Y n
t − Yt|

P−→ 0 for any T > 0.

We recall that a sequence of random variables (Yn)n∈N defined on (Ω,F ,P) is said to
converge stably with limit Y defined on an extension (Ω,F ,P) of the original prob-

ability space (Ω,F ,P), denoted Yn
dst−→ Y , iff for any bounded continuous function

g and any bounded F -measurable random variable Z it holds that

E [g(Yn)Z] −→ E [g(Y )Z] , as n→ ∞.

Finally, we will consider R2-valued pure jump Lévy processes (Yt)t≥0 = (Y 1
t , Y

2
t )t≥0,

without Gaussian part and drift. They are characterised by the Lévy triplet (0, 0, ν),
namely

E [exp(i⟨u, Yt⟩)] = exp

(
t

∫
R2

{exp(i⟨x, u⟩) − 1 − i⟨x, u⟩1{∥x∥≤1}}ν(dx)

)
for u ∈ R2 and ν a measure, called the Lévy measure, satisfying ν({0}) = 0 and∫
R2(1 ∧ ∥x∥2)ν(dx) <∞.

III.2.2 The setting

We consider a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual con-
ditions. We define on this filtered probability space a 2-dimensional symmetric
β-stable Lévy process (Lt)t≥0 with Lévy triplet (0, 0, G), where G denotes the Lévy
measure of L and admits the representation

G(dx) =
1

ρ1+β
dρH(dθ)
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where x = (ρ, θ) ∈ R+ × Sd and H denotes a symmetric finite measure on Sd, called
the directional measure.

Without loss of generality, we suppose that (Lt)t≥0 is observed at high frequency
over the time interval [0, 1]. More specifically, we suppose that Lk is observed at
times (tki )0≤i≤nk

, k = 1, 2. We assume the following conditions on the observation
times :

1. There exist strictly monotonic (deterministic) C2 functions fk : [0, 1] −→
[0, 1] with non-zero right and left derivative in 0 and 1 respectively and with
fk(0) = 0, fk(1) = 1 such that

tki = fk

(
i

nk

)
, 0 ≤ i ≤ nk, k = 1, 2.

2. There exists a natural number M > 0 such that

1

M
< inf

x∈[0,1]
f

′

k(x) < sup
x∈[0,1]

f
′

k(x) < M, k = 1, 2.

3. Set n = n1 + n2. It holds that

nk

n
−→ mk ∈ (0, 1], k = 1, 2.

Note that with our notation, n1 = O(∆n), n2 = O(∆n). The main focus of this paper
is the Hayashi-Yoshida estimator of the quadratic covariation, which is defined as

̂[Y 1, Y 2]
HY

1 =

n1∑
i=1

n2∑
j=1

∆t1i
Y 1∆t2j

Y 21{(t1i−1,t
1
i ]∩(t2j−1,t

2
j ]̸=∅}

for any bivariate semimartingale (Yt)t≥0 = (Y 1
t , Y

2
t )t≥0. The main goal of this paper

is to develop a fluctuation theorem for the Hayashi-Yoshida estimator applied to our
process of interest. In the following we denote by Un

1 the error process defined as

Un
1 = δn

(
̂[L1, L2]

HY

1 − [L1, L2]⌊1/t1n1
⌋

)
where δn is a sequence that will be defined later on. Observe that we stop the true
quadratic covariation at time ⌊1/t1n1

⌋ (see Section 2.3.1).

III.2.3 Asynchronicity of the sampling scheme

III.2.3.1 Pseudo-aggregation

Following the methodology of [36, Section 3], to handle the asynchronicity of the
data, we use a method called pseudo-aggregation. We can rewrite the estimator



60
Chapter III. Limit theorems for asynchronously observed bivariate

pure jump semimartingales

without indicator functions as it is sufficient to aggregate addends for which partial
sums are telescoping. Suppose without loss of generality that n1 ≤ n2 and consider
L1 as the reference process. Rewrite the Hayashi-Yoshida estimator by taking the
sum of the products of all increments of L1 with the telescoping sums of aggregated
observed increments of L2 where the observation time instants overlap with the ac-
cording observation time instant of L1. This aggregation procedure is possible due
to the independence of non-overlapping increments of L2.

For each 0 ≤ i ≤ n1 we define the next-tick interpolation ti,+ := min
0≤j≤n2

{t2j | t2j ≥ t1i }

and the previous-tick interpolation ti,− := max
0≤j≤n2

{t2j | t2j ≤ t1i }. We can rewrite the

Hayashi-Yoshida estimator as

̂[L1, L2]
HY

1 =

n1∑
i=1

∆t1i
L1
(
L2
ti,+

− L2
ti−1,−

)
=

n1∑
i=1

∆t1i
L1
(

(L2
ti,+

− L2
t1i

) + ∆t1i
L2 + (L2

t1i−1
− L2

ti−1,−
)
)

:=

n1∑
i=1

∆t1i
L1
(

∆ti,+L
2 + ∆t1i

L2 + ∆ti−1,−L
2
)

where ∆ti,+L
2 = L2

ti,+
− L2

t1i
and ∆ti−1,−L

2 = L2
t1i−1

− L2
ti−1,−

. In the sequel, for

all 0 ≤ i ≤ n1, we denote the observation time instants by ∆t1i
= t1i − t1i−1,

∆ti,+ = ti,+ − t1i and
∆ti−1,− = t1i−1 − ti−1,−. Note that for each i these observation time instants are non-
overlapping.

With this new expression for the Hayashi-Yoshida estimator we can rewrite the
error process as

Un
1 = δn

n1∑
i=1

∆t1i
L1∆t1i

L2 − ∆t1i
[L1, L2] + ∆t1i

L1
(
∆ti,+L

2 + ∆ti−1,−L
2
)
.

Remark III.2.1. In the sequel, the difference ∆t1i
L1∆t1i

L2−∆t1i
[L1, L2] will be called

the synchronous part of the error process and the term ∆t1i
L1
(
∆ti,+L

2 + ∆ti−1,−L
2
)

will be called asynchronous part of the error process. Indeed, if there is no asyn-
chronicity in the sampling scheme, i.e. if ti,− = ti,+, then

Un
1 = δn

n1∑
i=1

∆t1i
L1∆t1i

L2 − ∆t1i
[L1, L2].

III.2.3.2 Asymptotic of the sampling scheme

For any n ∈ N we define the following sequences of functions, for t ∈ [0, 1]

F n(t) = n
∑
t1i≤t

(∆t1i
)2 ,
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Gn(t) = n
∑
ti,+≤t

∆t1i

(
∆ti,+ + ∆ti−1,−

)
.

Taking the terminology from [36, Definition 2], we call F n(t) sequence of quadratic
variation of times and Gn(t) sequence of quadratic covariation of times. The
sequence of functions Gn describes the interaction between the sampling scheme of
the first process and the interpolation steps of the second.

To ensure the convergence of Un we may assume the following :

Assumption A. For the sequences of quadratic (co)-variation of times, the follow-
ing holds:

F n(t) → F (t) and Gn(t) → G(t)

uniformly as n→ ∞, where F and G are continuous functions on [0, 1].

Assumption (A) is general and can be verified for many sampling schemes, including
e.g. Poisson random sampling scheme. However there exists sampling where the
limit of F n and/or Gn is not tractable, hence the need to assume (A) in these
settings. In our setting, we can compute directly the limit of F n and Gn.

Lemma III.2.2. Under conditions (1), (2) and (3) on the sampling scheme, we
have:

F n(1)
n→∞−→ 1

m1

∫ 1

0

(f ′
1(t))

2dt and Gn(1)
n→∞−→ 1

m2

∫ 1

0

f ′
1(t)f

′
2(t)dt.

Proof. Using a first order Taylor approximation, we obtain that

(∆t1i
)2 =

(
f1

(
i

n1

)
− f1

(
i− 1

n1

))2

=
1

n2
1

(
f ′
1

(
i− 1

n1

))2

+ o

(
1

n2
1

)
and therefore by a Riemann sum argument

F n(1) = n

n1∑
i=1

(∆t1i
)2 =

n

n1

n1∑
i=1

1

n1

(
f ′
1

(
i− 1

n1

))2

+ o(1)
n→∞−→ 1

m1

∫ 1

0

(f ′
1(t))

2dt.

We use a similar approach to compute the limit of Gn. Denote by ji,− the integer
such that t2ji,− = ti,− and by ji,+ the integer such that t2ji,+ = ti,+. Observe that by

construction t2ji,+ = t2ji,−+1. We have

n

n1∑
i=1

∆t1i

(
∆ti,+ + ∆ti−1,−

)
=n

n1∑
i=1

∆t1i

(
∆ti,+ + ∆ti,−

)
+ n

n1−1∑
i=1

(
∆t1i+1

− ∆t1i

)
∆ti,−

+ n
(

∆t11
∆t0,− + ∆t1n1

∆t1n1,−

)
and since ∆t0,− = 0, ∆t1n1

= O(∆n) and ∆t1n1,−
= O(∆n) we get that

n
(

∆t11
∆t0,− + ∆t1n1

∆t1n1,−

)
= o(1).
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Using Taylor approximations, we observe that

∆t1i+1
− ∆t1i

=
1

n1

f ′
1

(
i

n1

)
− 1

n1

f ′
(
i− 1

n1

)
+ o

(
1

n1

)
=

1

n2
1

f ′′
1

(
i− 1

n1

)
+ o

(
1

n1

)
+ o

(
1

n2
1

)
.

Since ∆ti,− = O(∆n) = O(1/n1) we obtain

n

n1−1∑
i=1

(
∆t1i+1

− ∆t1i

)
∆ti,− = n

n1−1∑
i=1

(
1

n2
1

f ′′
1

(
i− 1

n1

)
+ o

(
1

n1

))
∆ti,−

= O(1/n1) + o(1) = o(1)

and therefore

n

n1∑
i=1

∆t1i

(
∆ti,+ + ∆ti−1,−

)
= n

n1∑
i=1

∆t1i

(
∆ti,+ + ∆ti,−

)
+ o(1).

Now, using again a first order Taylor approximation:

∆ti,+ + ∆ti,− = f2

(
ji,− + 1

n2

)
− f1

(
i

n1

)
+ f1

(
i

n1

)
− f2

(
ji,−
n2

)
=

1

n2

f ′
2

(
ji,−
n2

)
+ o

(
1

n2

)
,

hence, using a Riemann sum argument:

n

n1∑
i=1

∆t1i

(
∆ti,+ +∆ti−1,−

)
= n

n1∑
i=1

∆t1i

(
∆ti,+ + ∆ti,−

)
+ o(1)

= n

n1∑
i=1

(
1

n1

f ′
1

(
i− 1

n1

)
+ o

(
1

n1

))(
1

n2

f ′
2

(
ji,−
n2

)
+ o

(
1

n2

))
=

n

n2

n1∑
i=1

1

n1

f ′
1

(
i− 1

n1

)
f ′
2

(
ji,−
n2

)
+ o(1)

n→∞−→ 1

m2

∫ 1

0

f ′
1(t)f

′
2(t)dt.

Examples :

• Synchronous case : n1 = n2 = n and t1i = t2i = f
(
i
n

)
. Then

F n(1) →
∫ 1

0

f ′(t)2dt and Gn(1) = 0.

• Perfect asynchronicity scheme : n1 = n2, t
1
i = i

n
and t2i = i

n
+ 1

2n
. In that case,

F n(1) → 1 and Gn(1) → 1.
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III.2.4 Limit theorem

In this section we introduce the asymptotic theory for the Hayashi-Yoshida estimator
applied to a symmetric β-stable bivariate Lévy process. We denote

δn = (∆n log(1/∆n))−1/β, n ≥ 1,

which will be proven to be the rate of convergence of the error process. The following
theorem holds.

Theorem III.2.3. For any β ∈ (0, 2), we obtain the stable convergence

Un
1 = δn

(
̂[L1, L2]

HY

1 − [L1, L2]1

)
dst−→ U1

where (Ut)t≥0 is an R-valued symmetric β-stable process with U1
d
= Sβ(c, 0, 0) a

symmetric β-stable distribution with characteristic exponent

φSβ(c,0,0)(t; β, c, 0, 0) = exp(−c|t|β).

The scaling parameter c is defined as

c :=
σ0
β

m1

∫ 1

0

(f ′
1(t))

2dt+
2σ1

β

m2

∫ 1

0

f ′
1(t)f

′
2(t)dt

with

σ0
β :=


−Γ(−β) cos

(
πβ
2

)
2β

∫
S22

∣∣θ11θ22 + θ21θ
1
2

∣∣β H(dθ1)H(dθ2) if β ∈ (0, 1) ∪ (1, 2),

π

4

∫
S22

∣∣θ11θ22 + θ21θ
1
2

∣∣H(dθ1)H(dθ2) if β = 1,

σ1
β :=


−Γ(−β) cos

(
πβ
2

)
2β

∫
S22

∣∣θ21θ12∣∣β H(dθ1)H(dθ2) if β ∈ (0, 1) ∪ (1, 2),

π

4

∫
S22

∣∣θ21θ12∣∣H(dθ1)H(dθ2) if β = 1.

S2 denotes the unit sphere on R2 with respect to the Euclidean norm and θi = (θ1i , θ
2
i ),

i = 1, 2. Moreover, the process U is defined on an extension (Ω,F , (F t)t≥0,P) of the
original space (Ω,F , (Ft)t≥1,P) and is independent of the σ-algebra F .

III.3 Proof of Theorem III.2.3

In the sequel we denote by C all positive constants appearing in the proofs, although
they may change from line to line. The idea behind the proof of Theorem III.2.3 is to
show the functional weak convergence (with respect to the Skorokhod J1-topology)(

(L1
t1n1

⌊t/t1n1
⌋, L

2
t2n2

⌊t/t2n2
⌋), U

n
t

)
d−→
(
(L1

t , L
2
t ), Ut

)
,
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which implies the functional stable convergence Un dst−→ U , according to e.g. [58,
Lemma 6.9]. The laws of (L1

t1n1
⌊·/t1n1

⌋, L
2
t2n2

⌊·/t2n2
⌋) and Un factorize asymptotically,

cf [58, Proof of Proposition 7.3], which guarantees the independence of the limits L
and U. Hence we need to prove the functional weak convergence

Un d−→ U,

which we will show in the following.

III.3.1 Main decompositions

We are following the decompositions proposed in [70], adapted to the bivariate
setting and the observation scheme. Following the argument in [58, Assumption
S2], we can truncate the original Lévy measure specified in (2.1) and work with
G restricted to the unit ball {∥x∥ ≤ 1} instead of the original Lévy measure. We
assume now that

G(dx) =
1(0,1](ρ)

ρ1+β
dρH(dθ), x = (ρ, θ) ∈ R+ × S2.

The main decomposition is given by

L = M(v) + A(v), v ∈ (0, 1),

where A(v)t =
∑

s≤t ∆Ls1{∥∆Ls∥>v}, which corresponds to the classical Lévy-Itô

decomposition. When β > 1, M(v) is a martingale. Denote by ∆n := sup
k=1,2

|tki,nk
−

tki−1,nk
|. We set

vn =

{
∆

1/(2β)
n log(1/∆n), if β > 1

(∆n log(1/∆n))1/β, if β ≤ 1

and define Mn = M(vn), An = A(vn). The process Mn has the Lévy triplet
(0, 0, G(dx)1{∥x∥≤vn}) and An is a compound Poisson process with intensity G(vn) :=
G({x ∈ R2 : vn < ∥x∥ ≤ 1}) and jump distribution G(dx)1{vn<∥x∥≤1}/G(vn). Note
that An and Mn are independent.

We recall that

Un
t = δn

n1∑
i=1

∆t1i
L1∆t1i

L2 − ∆t1i
[L1, L2]︸ ︷︷ ︸

synchronous part

+

asynchronous part︷ ︸︸ ︷
∆t1i

L1
(
∆ti,+L

2 + ∆ti−1,−L
2
)
.

We further decompose Un in terms of Mn and An and according to the number
of jumps within the observation time instants ∆t1i

, ∆ti,+ and ∆ti−1,− . We write

Mn = (Mn,1,Mn,2) and An = (An,1, An,2). We denote by τi (resp. τi,+, τi−1,−) the
number of jumps within ∆t1i

(resp. ∆ti,+ and ∆ti−1,−). We also denote by T (n, i)j
(resp. T (n, i,+)j, T (n, i− 1,−)j) the time of the j-th jump within ∆t1i

(resp. ∆ti,+

and ∆ti−1,−). Due to Itô formula, we have that
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Un
t =

n1∑
i=1

ξni

with

ξni = δn

(∫ t1i

t1i−1

(
L1
s− − L1

t1i−1

)
dL2

s +

∫ t1i

t1i−1

(
L2
s− − L2

t1i−1

)
dL1

s︸ ︷︷ ︸
synchronous part

+

asynchronous part︷ ︸︸ ︷
∆t1i

L1
(
∆ti,+L

2 + ∆ti−1,−L
2
))

.

More specifically, we have that ξni =
∑13

j=1 ξ
n
i (j) with

ξni (1) = δn

(
∆t1i

Mn,1∆L2
T (n,i)1

+ ∆L1
T (n,i)1

∆t1i
Mn,2

)
1{τi=1}

ξni (2) = δn
(
∆L1

T (n,i)1
∆L2

T (n,i)2
+ ∆L1

T (n,i)2
∆L2

T (n,i)1

)
1{τi=2}

ξni (3) = δn

(
∆t1i

Mn,1∆t1i
An,2 + ∆t1i

An,1∆t1i
Mn,2

)
1{τi≥2}

ξni (4) = δn

(∫ t1i

t1i−1

(Mn,1
s− −Mn,1

t1i−1
)dMn,2

s +

∫ t1i

t1i−1

(Mn,2
s− −Mn,2

t1i−1
)dMn,1

s

)

ξni (5) = δn

(∫ t1i

t1i−1

(An,1
s− − An,1

t1i−1
)dAn,2

s +

∫ t1i

t1i−1

(An,2
s− − An,2

t1i−1
)dAn,1

s

)
1{τi≥3}

ξni (6) = δn∆t1i
Mn,1

(
∆ti,+M

n,2 + ∆ti−1,−M
n,2
)

ξni (7) = δn∆t1i
Mn,1

(
∆L2

T (n,i,+)1
1{τi,+=1} + ∆L2

T (n,i−1,−)1
1{τi−1,−=1}

)
ξni (8) = δn∆t1i

Mn,1
(
∆ti,+A

n,21{τi,+≥2} + ∆ti−1,−A
n,21{τi−1,−≥2}

)
ξni (9) = δn∆L1

T (n,i)1
1{τi=1}

(
∆ti,+M

n,2 + ∆ti−1,−M
n,2
)

ξni (10) = δn∆L1
T (n,i)1

1{τi=1}
(
∆L2

T (n,i,+)1
1{τi,+=1} + ∆L2

T (n,i−1,−)1
1{τi−1,−=1}

)
ξni (11) = δn∆L1

T (n,i)1
1{τi=1}

(
∆ti,+A

n,21{τi,+≥2} + ∆ti−1,−A
n,21{τi−1,−≥2}

)
ξni (12) = δn∆t1i

An,11{τi≥2}
(
∆ti,+M

n,2 + ∆ti−1,−M
n,2
)

ξni (13) = δn∆t1i
An,11{τi≥2}

(
∆ti,+A

n,21{τi,+≥1} + ∆ti−1,−A
n,21{τi−1,−≥1}

)
.

We will see that ξni (1) + ξni (7) + ξni (9) represents the dominating part when β > 1,
while ξni (2) + ξni (10) is dominating when β ≤ 1.

Remark III.3.1. Observe that the terms ξni (j), j = 1, 2, 3, 4, 5 come from the
synchronous part of the error process. They are very similar in nature to the terms
of the decomposition that appears in [70, Section 4.1], the difference being that
they consider a sampling scheme with synchronous data (i.e. all components of
the process are observed at the same time points) and regularly spaced time points
tni = i∆n. The assumption of regularly spaced time points is not crucial in the proof
and can be omitted, as long as all the observation time instants (i.e. the difference
between two consecutives times points) have the same order ∆n, which is the case in
our setting. It follows that these five terms in our setting will have the same order
as the five terms that appear in the decomposition of [70, Section 4.1].
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III.3.2 Preliminary results

In this section we list a few technical results required to demonstrate Theorem
III.2.3. The first result gives some conditions to ensure negligibility of certain partial
sums [58, Lemma 6.6].

Lemma III.3.2. Let ξni be real-valued Fi∆n-measurable random variables. Then

each of the following conditions implies the uniform convergence
∑nk

i=1 ξ
n
i

u.c.p.−→ 0:

nk∑
i=1

E[|ξni | ∧ 1] −→ 0, (III.3.1)

nk∑
i=1

E[ξni |F(i−1)∆n ]
u.c.p.−→ 0 and

nk∑
i=1

E[(ξni )2] −→ 0, (III.3.2)

∑nk

i=1 E
[
ξni 1{|ξni |≤1}|F(i−1)∆n

] u.c.p.−→ 0∑nk

i=1 E
[
(ξni )21{|ξin|≤1}

]
−→ 0,

∑nk

i=1 P (|ξni | > 1) −→ 0.

}
(III.3.3)

The next lemma provides us some inequalities for the moments of Mn. Both of them
comes from [83, Proposition 2.1.10].

Lemma III.3.3. Let W be a predictable R-valued process and u > 0 fixed. Then it
holds that

E
[
sup
s≤t

∣∣∣∣∫ u+s

u

WsdMs(vn)

∣∣∣∣p] ≤ Cvp−β
n E

[∫ u+t

u

|Ws|p ds
]
, (III.3.4)

E
[
sup
s≤t

|Mu+s(vn) −Mu(vn)|p
]
≤ Ctvp−β

n , (III.3.5)

for 1 ≤ β < p ≤ 2 when β ≥ 1 and β < p ≤ 1 if β < 1.

Below we collect some estimates on the jumps of the process A(vn). They follow
from [58, Lemma 6.2 and 6.3].

Lemma III.3.4. Let w > 0, b = H(S2)/β and recall the definition of τi and T (n, i)j.

• For any 1 ≤ j ≤ m, it holds on the set {τi ≥ j − 1} that

P(τi ≥ m) ≤ C
(
∆n/v

β
n

)m−j+1
. (III.3.6)

• For any 1 ≤ j ≤ m, it holds on the set {τi ≥ j − 1} that

E
[(
|∆LT (n,i)k | ∧ w

)p
1{τi≥m}

]
≤ C


∆n

(
b∆n

vβn

)m−j

wp−β for p > β

∆n

(
b∆n

vβn

)m−j

log(1/∆n) for p = β

∆n

(
b∆n

vβn

)m−j

vp−β
n for p < β.

(III.3.7)



III.3. Proof of Theorem III.2.3 67

• For any 1 ≤ j ≤ k < r ≤ m, it holds on the set {τi ≥ j − 1} that

E
[(
|∆LT (n,i)k ||∆LT (n,i)r | ∧ w

)p
1{τi≥m}

]
≤ C

∆2
n log(1/∆n)

(
b∆n

vβn

)m−j−1

wp−β, p > β

∆2
n (log(1/∆n))2

(
b∆n

vβn

)m−j−1

, p = β.

(III.3.8)

Next lemma is a result from [69, Lemma 1 and 2] that provides an approximation
for the characteristic function of a sequence of 1-dependent random variables.

Lemma III.3.5. Let X1, X2, ... be a sequence of 1-dependent random variables. If
max1≤k≤n E

[
|eitXk − 1|

]
≤ 1/36, then

∣∣∣ log
(
E
[
eit

∑n
k=1 Xk − 1

])
−

n∑
k=1

E
[
eitXk − 1

]
−

n∑
k=2

E
[(
eitXk−1 − 1

) (
eitXk − 1

)]
−

n∑
k=3

E
[(
eitXk−2 − 1

) (
eitXk−1 − 1

) (
eitXk − 1

)] ∣∣∣ ≤ C max
1≤k≤n

∣∣E [eitXk − 1
] ∣∣ n∑

k=1

∣∣E [eitXk − 1
] ∣∣.

Moreover we have the following estimates∣∣E [(eitX1 − 1
) (
eitX2 − 1

) (
eitX3 − 1

)] ∣∣ ≤ (E [|eitX1 − 1|2
])3/2

(III.3.9)

E
[
|eitX1 − 1|2

]
≤ 2
∣∣E [eitX1 − 1

] ∣∣ (III.3.10)

The following lemma is a statement of complex analysis that comes from [58, Lemma
6.7].

Lemma III.3.6. Let ani be complex numbers such that

⌊t/∆n⌋∑
i=1

ani
u.c.p.−→ g(t)

where g is a complex-valued continuous function. Then

⌊t/∆n⌋∏
i=1

(1 + ani )
u.c.p.−→ exp(g(t)).

Remark III.3.7. Let (ξni )1≤i≤n be a sequence of i.i.d. random variables and let Γn =∑⌊1/∆n⌋
i=1 ξni . Throughout the paper we will use the following criterion to show the

convergence of Γn towards a symmetric stable process Γ with Lévy triplet (0, 0, νΓ)
and stability index β ∈ (0, 2) (see [58, Lemma 6.8]). We need to show that

⌊1/∆n⌋∏
i=1

E
[
eitξ

n
i
] u.c.p.−→



exp

{∫ {
eitx − 1 − itx

}
νΓ(dx)

}
if β ∈ (1, 2)

exp

{∫ {
eitx − 1

}
νΓ(dx)

}
if β ∈ (0, 1)

exp

{∫ {
eitx − 1 − itx1{0<|x|≤1}

}
νΓ(dx)

}
if β = 1
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or equivalently, using Lemma III.3.6

⌊1/∆n⌋∑
i=1

E
[
eitξ

n
i − 1

] u.c.p.−→



∫ {
eitx − 1 − itx

}
νΓ(dx) if β ∈ (1, 2)∫ {

eitx − 1
}
νΓ(dx) if β ∈ (0, 1)∫ {

eitx − 1 − itx1{0<|x|≤1}
}
νΓ(dx) if β = 1.

III.4 Proof of Theorem III.2.3 in the case β ∈ (1, 2)

III.4.1 Negligible terms

We start by the terms ξni (j) for j = 2, 3, 4, 5. Observe that these terms come from
the synchronous part of the decomposition of the error process Un

1 . Combined with
Remark III.3.1 we can use the result of [70, Section 4.3.1] to show their negligibility,
since asynchronicity does not play any role for these terms and since the observation
time instants don’t need to be identical but only comparable in size, which is the
case here where ∆t1i

= O(∆n) for all 1 ≤ i ≤ n1. From this, we have that ξni (j),
j = 2, 3, 4, 5 is negligible. For j = 12, 13 we have

E [|ξni (j)| ∧ 1] ≤ P(τi ≥ 2) ≤ C∆n(log(1/∆n))−2β

by (III.3.6) applied to m = 2. Hence we conclude that
∑n1

i=1 E [|ξni (j)| ∧ 1] → 0 and
we deduce by (III.3.1) that

n1∑
i=1

ξni (j)
u.c.p.−→ 0, j = 12, 13.

For j = 8, 11 by (III.3.6) applied to m = 2 we have

E [|ξni (j)| ∧ 1] ≤ P(τi,+ ≥ 2) + P(τi−1,− ≥ 2) ≤ C∆n(log(1/∆n))−2β.

It follows that
∑n1

i=1 E[|ξni | ∧ 1] → 0 and by (III.3.1)

n1∑
i=1

ξni (j)
u.c.p.−→ 0.

We now consider the case j = 6. We first have ξni (6) = ηni,− + ηni,+ with

ηni,− := δn∆t1i
Mn,1∆ti−1,−M

n,2, ηni,+ := δn∆t1i
Mn,1∆ti,+M

n,2.

We have

E[ηni,−|Ft1i−1
] = δnE[∆t1i

Mn,1]E[∆ti−1,−M
n,2|Ft1i−1

] = 0.

On the other hand, using the independence of ∆t1i
Mn,1 and ∆ti−1,−M

n,2 we obtain
that

E[(ηni,−)2] = δ2nE[(∆t1i
Mn,1)2]E[(∆ti−1,−M

n,2)2].
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By (III.3.5) applied to p = 2 we get that

E[(ηni,−)2] ≤ C∆2
nδ

2
nv

4−2β
n = C∆n(log(1/∆n))4−2(β+1/β).

Since β + 1/β > 2 for β > 1 we obtain that

n1∑
i=1

E[(ηni,−)2] −→ 0.

Therefore, by condition (III.3.2) we have

n1∑
i=1

ηni,−
u.c.p.−→ 0.

We consider now the term ηni,+. As before we have

E[ηni,+|Ft1i
] = 0

and

E[(ηni,+)2] ≤ C∆2
nδ

2
nv

4−2β
n = C∆n(log(1/∆n))4−2(β+1/β)

by (III.3.5) applied to p = 2. Therefore by condition (III.3.2) we have

n1∑
i=1

ηni,+
u.c.p.−→ 0.

Finally we get that
n1∑
i=1

ξni (6)
u.c.p.−→ 0.

It remains to prove that ξni (10) is asymptotically negligible. We have

E
[∣∣δn∆L1

T (n,i)1
1{τi=1}

(
∆L2

T (n,i,+)1
1{τi,+=1} + ∆L2

T (n,i−)1
1{τi−1,−=1}

)∣∣ ∧ 1
]

≤ E
[∣∣δn∆L1

T (n,i)1
1{τi=1}∆L

2
T (n,i,+)1

1{τi,+=1}
∣∣ ∧ 1

]
+ E

[∣∣δn∆L1
T (n,i)1

1{τi=1}∆L
2
T (n,i,−)1

1{τi−1,−=1}
∣∣ ∧ 1

]
≤ E

[∣∣δn∆L1
T (n,i)1

1{τi=1}∆L
2
T (n,i,+)1

1{τi,+=1}
∣∣] ∧ 1

+ E
[∣∣δn∆L1

T (n,i)1
1{τi=1}∆L

2
T (n,i,−)1

1{τi−1,−=1}
∣∣] ∧ 1

=
(
E
[∣∣δn∆L1

T (n,i)1
1{τi=1}

∣∣]E [∣∣∆L2
T (n,i,+)1

1{τi,+=1}
∣∣]) ∧ 1

+
(
E
[∣∣δn∆L1

T (n,i)1
1{τi=1}

∣∣]E [∣∣∆L2
T (n,i,−)1

1{τi−1,−=1}
∣∣]) ∧ 1

≤ P(τi = 1) (P(τi,+ = 1) + P(τi−1,− = 1))

≤ P(τi ≥ 1) (P(τi,+ ≥ 1) + P(τi−1,− ≥ 1)) .

By (III.3.6) applied to m = 1 we obtain that

P(τi ≥ 1) (P(τi,+ ≥ 1) + P(τi−1,− ≥ 1)) ≤ C(∆n/v
β
n)2 = C∆n(log(1/∆n))−2β.
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It follows that
n1∑
i=1

E[|ξni (10)| ∧ 1] −→ 0

and therefore by condition (III.3.1) we have

n1∑
i=1

ξni (10)
u.c.p.−→ 0.

To sum up we have shown that
∑n1

i=1 ξ
n
i (j)

u.c.p.−→ 0 for j = 2, 3, 4, 5, 6, 8, 10, 11, 12, 13.

III.4.2 The dominating term

III.4.2.1 Technical results

Lemma III.4.1. Let p, q ≥ 2 and let (∆n,1
i )1≤i≤p and (∆n,2

j )1≤j≤q be two families of

observation time instants with supi,j(∆
n,1
i +∆n,2

j ) ≤ C∆n. For each 1 ≤ j ≤ q define
a set Sj ⊂ {1, ..., p}, Sj ̸= ∅, such that

⋃
1≤j≤q Sj = {1, ..., p}. For all t ∈ R we have

p∏
i=1

αn
i ∆n,1

i

∫
∥y1∥,...,∥yp∥∈(vn,1]

exp

{
q∑

j=1

∆n,2
j

×
∫

∥xj∥∈(0,vn]

eitδn⟨xj ,
∑

k∈Sj
yk⟩ − 1 − itδn⟨xj,

∑
k∈Sj

yk⟩

G(dxj)

}
G(dy1)...G(dyp) = o(∆n).

Proof. There exists C > 0 such that supi ∆n,1
i ≤ C∆n. SinceG(vn) ≤ C∆

−1/2
n log(1/∆n)−β,

it follows that αn
i = exp(−∆n,1

i G(vn)) → 1 and therefore

p∏
i=1

αn
i ∆n,1

i

∫
∥y1∥,...,∥yp∥∈(vn,1]

exp

{
q∑

j=1

∆n,2
j

×
∫

∥xj∥∈(0,vn]

eitδn⟨xj ,
∑

k∈Sj
yk⟩ − 1 − itδn⟨xj,

∑
k∈Sj

yk⟩

G(dxj)

}
G(dy1)...G(dyp)

≤ C∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

exp

{
q∑

j=1

∆n,2
j

×
∫
∥xj∥∈(0,vn]

eitδn⟨xj ,
∑

k∈Sj
yk⟩ − 1 − itδn⟨xj,

∑
k∈Sj

yk⟩

G(dxj)

}
G(dy1)...G(dyp)

= C∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

exp {zn(t, y1, ..., yp)}G(dy1)...G(dyp)

:= Rn(t)
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with

zn(t, y1, ..., yp) =

q∑
j=1

∆n,2
j

∫
∥xj∥∈(0,vn]

eitδn⟨xj ,
∑

k∈Sj
yk⟩ − 1 − itδn⟨xj,

∑
k∈Sj

yk⟩

G(dxj).

We further decompose Rn(t) = ρ1n(t) + ρ2n(t) + ρ3n(t) with

ρ1n(t) = ∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

{exp {zn(t, y1, ..., yp)} − 1 − zn(t, y1, ..., yp)}G(dy1)...G(dyp)

ρ2n(t) = ∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

zn(t, y1, ..., yp)G(dy1)...G(dyp)

ρ3n(t) = ∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

G(dy1)...G(dyp).

We start with the term ρ1n(t). For any w > 0 it holds that∫
(w∥x∥) ∧ (w∥x∥)2G(dx) = C

(
w

∫ 1

w−1

r−βdr + w2

∫ w−1

0

r1−βdr

)
≤ Cwβ

and

| exp(iw) − 1 − iw| ≤ C(|w| ∧ w2).

We deduce for a fixed t ∈ R that

|zn(t, y1, ..., yp)| ≤ C

q∑
j=1

∆n,2
j

∫ δn
∣∣∣∣∣∣⟨xj,

∑
k∈Sj

yk⟩

∣∣∣∣∣∣
 ∧

δn
∣∣∣∣∣∣⟨xj,

∑
k∈Sj

yk⟩

∣∣∣∣∣∣
2

G(dxj)

≤ C∆q
n

q∑
j=1

∫ δn
∣∣∣∣∣∣⟨xj,

∑
k∈Sj

yk⟩

∣∣∣∣∣∣
 ∧

δn
∣∣∣∣∣∣⟨xj,

∑
k∈Sj

yk⟩

∣∣∣∣∣∣
2

G(dxj)

where we used the fact that supj ∆n,2
j ≤ C∆n. Observe that∣∣∣∣∣∣⟨xj,

∑
k∈Sj

yk⟩

∣∣∣∣∣∣ ≤ ∥xj∥

∥∥∥∥∥∥
∑
k∈Sj

yk

∥∥∥∥∥∥ ≤ ∥xj∥
∑
k∈Sj

∥yk∥

hence

|zn(t, y1, ..., yp)| ≤ C∆q
n

q∑
j=1

∫ δn∥xj∥∑
k∈Sj

∥yk∥

 ∧

δn∥xj∥∑
k∈Sj

∥yk∥

2

G(dxj)

≤ C∆q
nδ

β
n

q∑
j=1

∑
k∈Sj

∥yk∥

β

= C∆q−1
n log(1/∆n)−1

q∑
j=1

∑
k∈Sj

∥yk∥

β

.
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Using the fact that |ex − 1 − x| ≤ x2 for |x| ≤ 1, and since ∆q−1
n log(1/∆n)−1 → 0,

there exists a rank n0 such that for all n ≥ n0, |zn(t, y1, ..., yp)| ≤ 1. Then

| exp {zn(t, y1, ..., yp)} − 1 − zn(t, y1, ..., yp)| ≤ |zn(t, y1, ..., yp)|2

≤ C∆2q−2
n log(1/∆n)−2

 q∑
j=1

∑
k∈Sj

∥yk∥

β


2

.

By Jensen inequality, we have∑
k∈Sj

∥yk∥

β

≤ |Sj|β−1
∑
k∈Sj

∥yk∥β ≤ C
∑
k∈Sj

∥yk∥β

and, for some aj ∈ R, (
q∑

j=1

aj

)2

≤ q

q∑
j=1

a2j .

Therefore  q∑
j=1

∑
k∈Sj

∥yk∥

β


2

≤ C

q∑
j=1

∑
k∈Sj

∥yk∥2β.

Since
∫
∥y∥2βG(dx) ≤ C, this implies that

|ρ1n(t)| ≤ C∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

|zn(t, y1, ..., yp)|2G(dy1)...G(dyp)

≤ C∆p+2q−2
n log(1/∆n)−2

q∑
j=1

∑
k∈Sj

∫
∥yk∥2βG(dyk)

≤ C∆p+2q−2
n log(1/∆n)−2.

We continue with the term ρ3n(t). Recall that G(vn) ≤ C∆
−1/2
n log(1/∆n)−β. We

have

|ρ3n(t)| = ∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

G(dy1)...G(dyp)

= ∆p
nG(vn)p

≤ C∆p/2
n log(1/∆n)−pβ.

Concerning ρ2n(t), we have

ρ2n(t) =

q∑
j=1

ρ2n,j(t)

with
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ρ2n,j(t) =

∆p
n∆n,2

j

∫
∥y1∥,...,∥yp∥∈(vn,1]

∫
∥x∥∈(0,vn]

eitδn⟨x,∑k∈Sj
yk⟩ − 1 − itδn⟨x,

∑
k∈Sj

yk⟩

G(dx)G(dy1)...G(dyp).

Let 1 ≤ j ≤ q. Denote |Sj| = mj and observe that 1 ≤ mj ≤ p. Since each variable
yk is interchangeable we obtain

ρ2n,j(t)

= ∆p
n∆n,2

j

∫
∥y1∥,...,∥yp∥∈(vn,1]

∫
∥x∥∈(0,vn]

eitδn⟨x,∑k∈Sj
yk⟩ − 1 − itδn⟨x,

∑
k∈Sj

yk⟩

G(dx)G(dy1)...G(dyp)

= ∆p
n∆n,2

j

∫
∥ymj+1∥,...,∥yp∥∈(vn,1]

G(dymj+1)...G(dyp)

×
∫

∥y1∥,...,∥ymj ∥∈(vn,1]

∫
∥x∥∈(0,vn]

(
eitδn⟨x,

∑mj
k=1 yk⟩ − 1 − itδn⟨x,

mj∑
k=1

yk⟩

)
G(dx)G(dy1)...G(dymj

)

=

∫ {
eitz − 1 − itz

}
νn,j(dz)

where νn,j is a Lévy measure defined on R by

νn,j(A) = ∆p
n∆n,2

j G(vn)p−mj

∫
(vn,1]

mj

(∫
(0,vn]

1A

(
δn

mj∑
k=1

⟨x, yk⟩

)
G(dx)

)
G(dy1)...G(dymj

)

with A ∈ B(R \ {0}). We will show that νn,j converges strongly to the null measure.
Set x = (ρ, θ) ∈ R+ × S2 and yk = (ρk, θk) ∈ R+ × S2 for all 1 ≤ k ≤ mj. Note that

mj∑
k=1

⟨x, yk⟩ = ρ

mj∑
k=1

ρk⟨θ, θk⟩.

We obtain, for w > 0 and B ∈ B(S1)

νn,j(B×(w,∞)) = ∆p
n∆n,2

j G(vn)p−mj

∫
S
mj+1

2

∫
(0,vn]×(vn,1]

mj

1B

( ∑mj

k=1 ρk⟨θ, θk⟩∣∣∑mj

k=1 ρk⟨θ, θk⟩
∣∣
)

× 1(w,∞)

(
δnρ

∣∣∣∣∣
mj∑
k=1

ρk⟨θ, θk⟩

∣∣∣∣∣
)(

ρ

mj∏
k=1

ρk

)−1−β

dρdρ1...dρmj
H(dθ)H(dθ1)...H(dθmj

).

We compute the integral with respect to dρdρ1...dρmj
. For any r1, ..., rmj

∈ R we
have

∆p
n∆n,2

j G(vn)p−mj

∫
(0,vn]×(vn,1]

mj

1(w,∞)

(
δnρ

∣∣∣∣∣
mj∑
k=1

ρkrk

∣∣∣∣∣
)(

ρ

mj∏
k=1

ρk

)−1−β

dρdρ1...dρmj
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= ∆p
n∆n,2

j G(vn)p−mj

∫
(vn,1]

mj

(∫ vn

w/δn|∑mj
k=1 ρkrk|

ρ−1−βdρ

)(
mj∏
k=1

ρk

)−1−β

dρ1...dρmj

= −∆p
n∆n,2

j G(vn)p−mj
v−β
n

β

∫
(vn,1]

mj

(
mj∏
k=1

ρk

)−1−β

dρ1...dρmj

+ ∆p
n∆n,2

j G(vn)p−mj
δβn
βwβ

∫
(vn,1]

mj

∣∣∣∣∣
mj∑
k=1

ρkrk

∣∣∣∣∣
β (mj∏

k=1

ρk

)−1−β

dρ1...dρmj

= −∆p
n∆n,2

j G(vn)p−mj
v−β
n

β

(∫ 1

vn

ρ−1−β
1 dρ1

)mj

+ ∆p
n∆n,2

j G(vn)p−mj
δβn
βwβ

∫
(vn,1]

mj

∣∣∣∣∣
mj∑
k=1

ρkrk

∣∣∣∣∣
β (mj∏

k=1

ρk

)−1−β

dρ1...dρmj
.

We consider the first integral. We have∫ 1

vn

ρ−1−β
1 dρ1 =

1

β

(
v−β
n − 1

)
hence

−∆n,2
j

v−β
n

β

(∫ 1

vn

ρ−1−β
1 dρ1

)mj

= ∆n,2
j

−v−β
n

βmj+1

(
v−β
n − 1

)mj
.

Finally,∣∣∣∆p
n∆n,2

j G(vn)p−mj
−v−β

n

βmj+1

(
v−β
n − 1

)mj

∣∣∣ ≤ C∆p+1
n ∆(mj−p)/2

n log(1/∆n)β(mj−p)v−β
n (v−βmj

n + 1)

≤ C∆(p+mj+2)/2
n log(1/∆n)β(mj−p)

(
∆−(mj+1)/2

n log(1/∆n)−β(mj+1) + ∆−1/2
n log(1/∆n)−β

)
≤ C∆(p+1)/2

n log(1/∆n)−β(p+1) + C∆(p+mj+1)/2
n log(1/∆n)−β(p+1−mj).

For the second integral, observe that∣∣∣∣∣
mj∑
k=1

ρkrk

∣∣∣∣∣
β

≤

(
mj∑
k=1

ρk|rk|

)β

≤ mβ−1
j

mj∑
k=1

ρβk |rk|
β ≤ mβ−1

j sup
1≤k≤mj

|rk|
mj∑
k=1

ρβk ≤ C

mj∑
k=1

ρβk .

We obtain that ∫
(vn,1]

mj

∣∣∣∣∣
mj∑
k=1

ρkrk

∣∣∣∣∣
β (mj∏

k=1

ρk

)−1−β

dρ1...dρmj

≤ C

∫
(vn,1]

mj

mj∑
k=1

ρβk

(
mj∏
k=1

ρk

)−1−β

dρ1...dρmj

= C

mj∑
k=1

∫
(vn,1]

mj

ρ−1
k

mj∏
l=1
l ̸=k

ρ−1−β
l dρ1...dρmj

= Cmj

∫
(vn,1]

mj

ρ−1
1

mj∏
k=2

ρ−1−β
k dρ1...dρmj
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= Cmj

∫ 1

vn

ρ−1
1 dρ1

(∫ 1

vn

ρ−1−β
2 dρ2

)mj−1

= Cmj log(1/vn)

(
1

β
(v−β

n − 1)

)mj−1

.

Using the fact that 2β log(1/vn)/ log(1/∆n) → 1, we get

Cmj

βmj−1

∣∣∣log(1/vn)
(
v−β
n − 1

)mj−1
∣∣∣ ≤ C∆−(mj−1)/2

n log(1/∆n)1−β(mj−1) + C log(1/∆n)

It follows that∣∣∣∣∣∣∆p
n∆n,2

j G(vn)p−mj
δβn
βwβ

∫
(vn,1]

mj

∣∣∣∣∣
mj∑
k=1

ρkrk

∣∣∣∣∣
β (mj∏

k=1

ρk

)−1−β

dρ1...dρmj

∣∣∣∣∣∣
≤ C∆p+1

n

(
∆−1/2

n log(1/∆n)−β
)p−mj

δβn
(
∆−(mj−1)/2

n log(1/∆n)1−β(mj−1) + log(1/∆n)
)

≤ C∆(p+1)/2
n log(1/∆n)−β(p−1) + C∆(p+mj)/2

n log(1/∆n)−β(p−mj)

Finally,

|νn,j(B × (w,∞))| ≤C∆(p+1)/2
n

(
log(1/∆n)−β(p+1) + log(1/∆n)−β(p−1)

)
+ C∆(p+mj)/2

n

(
log(1/∆n)−β(p−mj) + ∆1/2

n log(1/∆n)−β(p+1−mj)
)

hence the strong convergence of νn,j towards the null measure. In particular we have
that

ρ2n,i(t) = o(∆n)

and therefore
ρ2n(t) = o(∆n).

Finally,

Rn(t) ≤ C∆p+2q−2
n log(1/∆n)−2 + C∆p/2

n log(1/∆n)−pβ + o(∆n) = o(∆n)

hence the result.

Lemma III.4.2. Under the same conditions on the observation time instants as
Lemma III.4.1, we have, for t ∈ R :

E
[
eitδn

∑p
j=1⟨∆

n
j M

n,∆n
0A

n⟩1{τ0=1} − 1
]

=

p∑
j=1

[
eitδn⟨∆

n
j M

n,∆n
0A

n⟩1{τ0=1} − 1
]

+ o(1).

Proof. We start by expanding the indicator function. We have

E
[
eitδn

∑p
j=1⟨∆

n
j M

n,∆n
0A

n⟩1{τ0=1} − 1
]

= αn
0∆n

0G(vn)E
[
eitδn

∑p
j=1⟨∆

n
j M

n,∆n
0A

n⟩ − 1
]
.

Recall that the increments of Mn are independent since the observation time instants
are non-overlapping.
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By conditioning on An we obtain

E
[
eitδn

∑p
j=1⟨∆

n
j M

n,∆n
0A

n⟩
]

= E

[
p∏

j=1

exp

{
∆n

j

∫
(0,vn]

{
eitδn⟨xj ,∆

n
0A

n⟩ − 1 − itδn⟨xj,∆n
0A

n⟩
}
G(dxj)

}]

= E

[
exp

{
p∑

j=1

∆n
j

∫
(0,vn]

{
eitδn⟨xj ,∆

n
0A

n⟩ − 1 − itδn⟨xj,∆n
0A

n⟩
}
G(dxj)

}]

hence

E
[
eitδn

∑p
j=1⟨∆

n
j M

n,∆n
0A

n⟩1{τ0=1} − 1
]

= αn
0∆n

0

∫
(vn,1]

{exp{zn(t, y)} − 1}G(dy) := Rn(t)

with

zn(t, y) =

p∑
j=1

∆n
j

∫
(0,vn]

{
eitδn⟨xj ,y⟩ − 1 − itδn⟨xj, y⟩

}
G(dxj).

We decompose Rn(t) = ρ1n(t) + ρ2n(t) with

ρ1n(t) = αn
0∆n

0

∫
(vn,1]

{exp{zn(t, y)} − 1 − zn(t, y)}G(dy)

ρ2n(t) = αn
0∆n

0

p∑
j=1

∆n
j

∫
(vn,1]

(∫
(0,vn]

{
eitδn⟨xj ,y⟩ − 1 − itδn⟨xj, y⟩

}
G(dxj)

)
G(dy).

Starting with the term ρ1n(t), we use the same inequality as in the proof of Lemma
III.4.1. We obtain for a fixed t ∈ R that

|zn(t, y)| ≤ C

p∑
j=1

∆n
j

∫
(0,vn]

(δn|⟨xj, y⟩|) ∧ (δn|⟨xj, y⟩|)2G(dx)

≤ C

p∑
j=1

∆n
j

∫
(0,vn]

(δn∥xj∥∥y∥) ∧ (δn∥xj∥∥y∥)2G(dx)

≤ Cδβn∥y∥β
p∑

j=1

∆n
j ≤ C∆p−1

n ∥y∥β log(1/∆n)−1.

Consequently, we obtain for a fixed t ∈ R

|ρ1n(t)| ≤ Cαn
0∆n

0

∫
(vn,1]

|zn(t, y)|2G(dy) ≤ Cαn
0∆2p−1

n log(1/∆n)−2 = o(∆n).

Therefore we get that

Rn(t) = ρ2n(t) + o(∆n)

= αn
0∆n

0

p∑
j=1

∆n
j

∫
(vn,1]

(∫
(0,vn]

{
eitδn⟨xj ,y⟩ − 1 − itδn⟨xj, y⟩

}
G(dxj)

)
G(dy) + o(∆n)
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We know from the synchronous case presented in [70, Section 4.3.2] that, for 1 ≤
p ≤ j

αn
0∆n

0∆n
j

∫
(vn,1]

(∫
(0,vn]

{
eitδn⟨xj ,y⟩ − 1 − itδn⟨xj, y⟩

}
G(dxj)

)
G(dy)

= E
[
eitδn⟨∆

n
j M

n,∆n
0A

n⟩1{τ0=1} − 1
]

hence the result.

Proposition III.4.3. Under the same conditions on the observation time instants
as Lemma III.4.1, we have:

E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj

∆n,1
k An1{τk=1}⟩

− 1


=

q∑
j=1

∑
k∈Sj

E
[
exp{itδn⟨∆n,2

j Mn,∆n,1
k An1{τk=1}⟩} − 1

]
+ o(1).

Proof. We recall that Mn has the Lévy triplet (0, 0, G(dx)1{∥x∥≤vn} and An is a
compound Poisson process with intensity G(vn) := G({x ∈ R2 : vn < ∥x∥ ≤ 1})
and jump distribution G(dx)1{vn<∥x∥≤1} and Mn and An are independent. We start
by expanding the expectation on the left hand side with respect to the indicator
functions. We obtain

E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj

∆n,1
k An1{τk=1}⟩

− 1


=

p∏
i=1

P(1{τi=1} = 1)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj

∆n,1
k An⟩

− 1


+

p∑
l=1

P(1{τl=1} = 0)

p∏
i=1
i ̸=k

P(1{τi=1} = 1)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj\{l}

∆n,1
k An⟩

− 1


+

p∑
l1=1

p∑
l2=1

l2 ̸=l1

(
P(1{τl1=1} = 0)P(1{τl2=1} = 0)

×
p∏

i=1
i ̸=l1,l2

P(1{τi=1} = 1)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj\{l1,l2}

∆n,1
k An⟩

− 1

)

+

p∑
l1=1

p∑
l2=1

l2 ̸=l1

p∑
l3=1

l3 ̸=l1,l2

(
P(1{τl1=1} = 0)P(1{τl2=1} = 0)P(1{τl3=1} = 0)

×
p∏

i=1
i ̸=l1,l2,l3

P(1{τi=1} = 1)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj\{l1,l2,l3}

∆n,1
k An⟩

− 1

)
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+ . . .

+

p∑
l1=1

p∑
l2=1

l2 ̸=l1

p∑
l3=1

l3 ̸=l1,l2

(
P(1{τl1=1} = 1)P(1{τl2=1} = 1)P(1{τl3=1} = 1)

×
p∏

i=1
i ̸=l1,l2,l3

P(1{τi=1} = 0)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj∩{l1,l2,l3}

∆n,1
k An⟩

− 1

)

+

p∑
l1=1

p∑
l2=1

l2 ̸=l1

(
P(1{τl1=1} = 1)P(1{τl2=1} = 1)

×
p∏

i=1
i ̸=l1,l2

P(1{τi=1} = 0)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj∩{l1,l2}

∆n,1
k An⟩

− 1

)

+

p∑
l=1

P(1{τl=1} = 1)

p∏
i=1
i ̸=l

P(1{τi=1} = 0)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj∩{l}

∆n,1
k An⟩

− 1

 .
We start by studying all the terms containing at least two increments of An. Such
a term can be written, for 0 ≤ m ≤ p− 2, as

m∏
l=1

P(1{τkl=1} = 0)

p∏
i=1

i ̸=k1,...,km

P(1{τi=1} = 1)E

exp

itδn
q∑

j=1

⟨∆n,1
j Mn,

∑
k∈Sj\{k1,...,km}

∆n,1
k An⟩

− 1

 .
(III.4.1)

We have that
m∏
l=1

P(1{τkl=1} = 0) =
m∏
l=1

(1 − αn,1
kl

∆n,1
kl
G(vn))

= 1 −
m∑
l=1

αn,1
kl

∆n,1
kl
G(vn) + o(∆n) = 1 + o(∆1/2

n )

where we used that ∆n,1
kl

≤ C∆n, αn,1
kl

= exp(−∆n,1
kl
G(vn)) → 1 and

G(vn) ≤ C∆
−1/2
n log(1/∆n)−β. From this, to get the order of (III.4.1) we only need

to study the following expression, for some k1, ..., km ∈ {1, ..., p} :

p∏
i=1

i ̸=k1,...,km

αn,1
i ∆n,1

i G(vn)E

exp

itδn
q∑

j=1

⟨∆n,1
j Mn,

∑
k∈Sj\{k1,...,km}

∆n,1
k An⟩

− 1

 .
(III.4.2)

Since {1, ..., p} \ {k1, ..., km} = {i1, ..., ip−m}, after a change of index in the product
we obtain

p∏
i=1

i ̸=k1,...,km

αn,1
i ∆n,1

i G(vn)E

exp

itδn
q∑

j=1

⟨∆n,1
j Mn,

∑
k∈Sj\{k1,...,km}

∆n,1
k An⟩

− 1


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=

p−m∏
l=1

αn,1
il

∆n,1
il
G(vn)E

exp

itδn
q∑

j=1

⟨∆n,1
j Mn,

∑
k∈Sj∩{i1,...,ip−m}

∆n,1
k An⟩


+ o(∆n)1/2

= o(∆1/2
n ) +

p−m∏
l=1

αn,1
il

∆n,1
il

∫
∥yi1∥,...,∥yip−m∥∈(vn,1]

exp

{
q∑

j=1

∆n,2
j

×
∫

∥x∥∈(0,vn]

eitδn⟨x,∑k∈Sj∩{i1,...,ip−m} yk⟩ − 1 − itδn⟨x,
∑

k∈Sj∩{i1,...,ip−m}

yk⟩

G(dx)

}

×G(dyi1)...G(dyip−m)

= o(∆1/2
n ) + o(∆n) = o(∆1/2

n )

by Lemma III.4.1. Therefore we get that

E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj

∆n,1
k An1{τk=1}⟩

− 1


=

p∑
l=1

P(1{τl=1} = 1)

p∏
i=1
i ̸=l

P(1{τi=1} = 0)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj∩{l}

∆n,1
k An⟩

− 1


+ o(∆1/2

n )

∼
p∑

l=1

αn,1
l ∆n,1

l G(vn)E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj∩{l}

∆n,1
k An⟩

− 1


=

p∑
l=1

E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj∩{l}

∆n,1
k An1{τk=1}⟩

− 1


Since

∑
k∈Sj∩{l} ∆n,1

k An contains at most 1 increment of An we obtain, using Lemma
III.4.2, that

E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj∩{l}

∆n,1
k An1{τk=1}⟩

− 1


=

q∑
j=1

∑
k∈Sj∩{l}

E
[
exp

{
itδn⟨∆n,2

j Mn,∆n,1
k An1{τk=1}⟩

}
− 1
]

+ o(1)

and finally

E

exp

itδn
q∑

j=1

⟨∆n,2
j Mn,

∑
k∈Sj

∆n,1
k An1{τk=1}⟩

− 1


=

p∑
l=1

q∑
j=1

∑
k∈Sj∩{l}

E
[
exp

{
itδn⟨∆n,2

j Mn,∆n,1
k An1{τk=1}⟩

}
− 1
]

+ o(1)
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=

q∑
j=1

∑
k∈Sj

E
[
exp

{
itδn⟨∆n,2

j Mn,∆n,1
k An1{τk=1}⟩

}
− 1
]

+ o(1),

since
∑p

l=1

∑
k∈Sj∩{l} ak =

∑
k∈Sj

ak.

III.4.2.2 Approximation of the characteristic function

We rewrite
Xi := ξni (1) + ξni (7) + ξni (9)

in a vectorial form as follows :

ξni (1) = δn

(
∆t1i

Mn,1∆L2
T (n,i)1

+ ∆L1
T (n,i)1

∆t1i
Mn,2

)
1{τi=1}

= δn⟨∆t1i
Mn,

(
0 1
1 0

)
∆LT (n,i)1⟩1{τi=1}

ξni (7) = δn∆t1i
Mn,1

(
∆L2

T (n,i,+)1
1{τi,+=1} + ∆L2

T (n,i−1,−)1
1{τi−1,−=1}

)
= δn⟨∆t1i

Mn,

(
0 1
0 0

)
∆LT (n,i,+)⟩1{τi,+=1}

+ δn⟨∆t1i
Mn,

(
0 1
0 0

)
∆LT (n,i−1,−)⟩1{τi−1,−=1}

:= ξni (7, 1) + ξni (7, 2)

ξni (9) = ∆L1
T (n,i)1

1{τi=1}
(
∆ti,+M

n,2 + ∆ti−1,−M
n,2
)

= δn⟨∆ti,+M
n,

(
0 0
1 0

)
∆LT (n,i)1⟩1{τi=1}

+ δn⟨∆ti−1,−M
n,

(
0 0
1 0

)
∆LT (n,i)1⟩1{τi=1}

:= ξni (9, 1) + ξni (9, 2)

and therefore, if we regroup the different terms with respect to each increment of
Mn we obtain

Xi = δn

(
⟨∆ti−1,−M

n,

(
0 0
1 0

)
∆LT (n,i)1⟩1{τi=1}

+ ⟨∆t1i
Mn,

(
0 1
0 0

)
∆LT (n,i−1,−)1{τi−1,−=1} +

(
0 1
1 0

)
∆LT (n,i)11{τi=1} +

(
0 1
0 0

)
∆LT (n,i,+)1{τi,+=1}⟩

+ ⟨∆ti,+M
n,

(
0 0
1 0

)
∆LT (n,i)1⟩1{τi=1}

)
(III.4.3)

The goal of this section is to show the approximation :

log
(
E
[
eit

∑n1
i=1 Xi − 1

])
=

n1∑
i=1

E
[
eitXi − 1

]
+ o(1). (III.4.4)

Using Lemma III.3.5, it is sufficient to show that

E
[
eitXi − 1

]
= O(∆n). (III.4.5)
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n1∑
i=2

E
[
(eitXi − 1)(eitXi−1 − 1)

]
= o(∆n), (III.4.6)

n1∑
i=3

E
[
(eitXi − 1)(eitXi−1 − 1)(eitXi−2 − 1)

]
= o(∆n). (III.4.7)

Note that (Xi)i is a sequence of 1-dependent random variables by construction, since
there is no overlapping observation time instants between Xi and Xi+2.

Using Proposition III.4.3 and the representation (III.4.3), we can decompose E
[
eitXi − 1

]
as follows:

E
[
eitXi − 1

]
=E

[
eitξ

n
i (1) − 1

]
+ E

[
eitξ

n
i (7,1) − 1

]
+ E

[
eitξ

n
i (7,2) − 1

]
+ E

[
eitξ

n
i (9,1) − 1

]
+ E

[
eitξ

n
i (9,2) − 1

]
. (III.4.8)

We know from the synchronous case [70, Section 4.3.2] that each expectation in the
decomposition (III.4.8) is of order ∆n, hence

E
[
eitXi − 1

]
= O(∆n)

and (III.4.5) is verified. Using (III.3.9) and (III.3.10) we obtain∣∣E [(eitXi−2 − 1
) (
eitXi−1 − 1

) (
eitXi − 1

)] ∣∣ ≤ (E [|eitXi − 1|2
])3/2

≤ 23/2
∣∣E [eitXi − 1

] ∣∣3/2 = O(∆3/2
n )

therefore
n1∑
i=3

E
[(
eitXi−2 − 1

) (
eitXi−1 − 1

) (
eitXi − 1

)]
= O(∆1/2

n ).

and (III.4.7) is verified. It is left to verify the condition (III.4.6). We start by
decomposing the term

n1∑
i=2

E
[(
eitXi−1 − 1

) (
eitXi − 1

)]
=

n1∑
i=2

(
E
[
eitδn(Xi+Xi−1)

]
− E[eitXi + eitXi−1 ] + 1

)
.

Note that [t1i , ti,+] ⊂ [t1i , t
1
i+1] and [ti,−, t

1
i ] ⊂ [t1i−1, t

1
i ], hence we can decompose the

observation time instants as

∆t1i
= t1i − t1i−1 = (t1i − ti,−) + (ti,− − t1i−1) := ∆ti,− + ∆ti

∆t1i+1
= t1i+1 − t1i = (t1i+1 − ti,+) + (ti,+ − t1i ) := ∆ti+1

+ ∆ti,+ .

With these new notations, we obtain that

∆t1i
Mn Law

= ∆tiM
n + ∆ti,−M

n

∆t1i+1
Mn Law

= ∆ti,+M
n + ∆ti+1

Mn. (III.4.9)

Furthermore we decompose each increment ∆LT (n,i)1 (resp. ∆LT (n,i+1)1) depending
whether the jump occurs over the observation time instant ∆ti,− or ∆ti (resp. ∆ti,+
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or ∆ti+1
). Denote by τ i the number of jumps within ∆ti and T (n, i)1 the time of the

first jump of L within the observation time instant ∆ti , τi,− the number of jumps
within ∆ti,− and T (n, i,−)1 the time of the first jump of L within the observation
time instant ∆ti,− . We obtain

∆LT (n,i)11{τi=1} = ∆LT (n,i)1
1{τ i=1}1{τi,−=0} + ∆LT (n,i,−)11{τ i=0}1{τi,−=1}.

Lemma III.4.4. Let ∆n
0M

n be any increment ofMn with ∆n
0 = O(∆n).We observe

the following approximation:

E
[
exp{itδn⟨∆n

0M
n,∆LT (n,i)1⟩1{τi=1}} − 1

]
= E

[
exp

{
itδn⟨∆n

0M
n,∆LT (n,i)1

1{τ i=1}⟩
}
− 1
]

+ E
[
exp

{
itδn⟨∆n

0M
n,∆LT (n,i,−)11{τi,−=1}⟩

}
− 1
]

+ o(1).

Similarly,

E
[
exp

{
itδn⟨∆n

0M
n,∆LT (n,i+1)11{τi=1}⟩

}
− 1
]

= E
[
exp

{
itδn⟨∆n

0M
n,∆LT (n,i,+)11{τi,+=1}⟩

}
− 1
]

+ E
[
exp

{
itδn⟨∆n

0M
n,∆LT (n,i+1)1

1{τ i+1=1}⟩
}
− 1
]

+ o(1).

Proof. Let t ∈ R. We denote by αn
i := exp(−∆t1i

G(vn)), αn
i = exp(−∆tiG(vn))

and αn
i,− = exp(−∆ti,−G(vn)). Observe first that, for some increment ∆n

0M (see [70,
Section 4.3.2])

E[exp{itδn⟨∆n
0M,∆LT (n,i)1⟩1{τi=1}} − 1]

= αn
i ∆n

0∆t1i

∫
∥y∥∈(vn,1]

(∫
∥x∥∈(0,vn]

(exp{itδn⟨x, y⟩} − 1 − itδn⟨x, y⟩)G(dx)

)
G(dy) + o(∆n)

∼ ∆n
0∆t1i

∫
∥y∥∈(vn,1]

(∫
∥x∥∈(0,vn]

(exp{itδn⟨x, y⟩} − 1 − itδn⟨x, y⟩)G(dx)

)
G(dy)

where we used the fact that αn
i = exp(−∆t1i

G(vn)) → 1 due to the upper bound

G(vn) ≤ C∆
−1/2
n log(1/∆n)−β. On the other hand,

E[exp{itδn(⟨∆n
0M,∆LT (n,i)1

⟩1{τ i=1} + ⟨∆n
0M,∆LT (n,i,−)1⟩1{τi,−=1})} − 1]

= P(1{τ i=1} = 1)P(1{τi,−=1} = 1)E[exp{itδn(⟨∆n
0M,∆LT (n,i)1

⟩ + ⟨∆n
0M,∆LT (n,i,−)1⟩)}]

+ P(1{τ i=1} = 1)(1 − P(1{τi,−=1} = 1))E[exp{itδn⟨∆n
0M,∆LT (n,i)1

⟩}]

+ (1 − P(1{τ i=1} = 1))P(1{τi,−=1} = 1)E[exp{itδn⟨∆n
0M,∆LT (n,i,−)1⟩}]

+ (1 − P(1{τ i=1} = 1))(1 − P(1{τi,−=1} = 1)) − 1

= αn
i α

n
i,−∆ti∆ti,−G(vn)2E[exp{itδn(⟨∆n

0M,∆LT (n,i)1
⟩ + ⟨∆n

0M,∆LT (n,i,−)1⟩)}]

+ αn
i ∆tiG(vn)(1 − αn

i,−∆ti,−G(vn))E[exp{itδn⟨∆n
0M,∆LT (n,i)1

⟩}] − αn
i ∆tiG(vn)

+ αn
i,−∆ti,−G(vn)(1 − αn

i ∆tiG(vn))E[exp{itδn⟨∆n
0M,∆LT (n,i,−)1⟩}] − αn

i,−∆ti,−G(vn)

+ αn
i α

n
i,−∆ti∆ti,−G(vn)2.
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In view of Lemma III.4.1, the first term in the decomposition is negligible. We also
have the negligibility of the last term of the decomposition. It follows that

E[exp{itδn(⟨∆n
0M,∆LT (n,i)1

⟩1{τ i=1} + ⟨∆n
0M,∆LT (n,i,−)1⟩1{τi,−=1})} − 1]

= (1 − αn
i,−∆ti,−G(vn))αn

i ∆ti∆
n
0

∫
∥y∥∈(vn,1]

(∫
∥x∥∈(0,vn]

(
eitδn⟨x,y⟩ − 1 − itδn⟨x, y⟩

)
G(dx)

)
G(dy)

+ (1 − αn
i ∆tiG(vn))αn

i,−∆ti,−∆n
0

∫
∥y∥∈(vn,1]

(∫
∥x∥∈(0,vn]

(
eitδn⟨x,y⟩ − 1 − itδn⟨x, y⟩

)
G(dx)

)
G(dy)

+ o(∆n)

∼ (∆ti + ∆ti,−)∆n
0

∫
∥y∥∈(vn,1]

(∫
∥x∥∈(0,vn]

(
eitδn⟨x,y⟩ − 1 − itδn⟨x, y⟩

)
G(dx)

)
G(dy)

= ∆t1i
∆n

0

∫
∥y∥∈(vn,1]

(∫
∥x∥∈(0,vn]

(
eitδn⟨x,y⟩ − 1 − itδn⟨x, y⟩

)
G(dx)

)
G(dy)

hence the result.

We can rewrite Xi (and Xi+1) using Lemma III.4.4 and (III.4.9) :

Xi = δn

(
⟨∆ti−1,−M

n,

(
0 0
1 0

)
∆LT (n,i)1

1{τ i=1} +

(
0 0
1 0

)
∆LT (n,i,−)11{τi,−=1}⟩

+ ⟨∆tiM
n,

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1} +

(
0 1
1 0

)
∆LT (n,i)1

1{τ i=1}

+

(
0 1
1 0

)
∆LT (n,i,−)11{τi,−=1} +

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩

+ ⟨∆ti,−M
n,

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1} +

(
0 1
1 0

)
∆LT (n,i)1

1{τ i=1}

+

(
0 1
1 0

)
∆LT (n,i,−)11{τi,−=1} +

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩

+ ⟨∆ti,+M
n,

(
0 0
1 0

)
∆LT (n,i)1

1{τ i=1} +

(
0 0
1 0

)
∆LT (n,i,−)11{τi,−=1}⟩

)
.

From this we get

Xi +Xi+1 = δn

(
⟨∆ti−1,−M

n,

(
0 0
1 0

)
∆LT (n,i)1

1{τ i=1} +

(
0 0
1 0

)
∆LT (n,i,−)11{τi,−=1}⟩

+ ⟨∆tiM
n,

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1} +

(
0 1
1 0

)
∆LT (n,i)1

1{τ i=1}

+

(
0 1
1 0

)
∆LT (n,i,−)11{τi,−=1} +

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩

+ ⟨∆ti,−M
n,

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1} +

(
0 1
1 0

)
∆LT (n,i)1

1{τ i=1}

+

(
0 1
1 0

)
∆LT (n,i,−)11{τi,−=1} +

((
0 1
0 0

)
+

(
0 0
1 0

))
∆LT (n,i,+)11{τi,+=1}

+

(
0 0
1 0

)
∆LT (n,i+1)1

1{τ i+1=1}⟩
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+ ⟨∆ti,+M
n,

(
0 0
1 0

)
∆LT (n,i)1

1{τ i=1} +

((
0 1
0 0

)
+

(
0 0
1 0

))
∆LT (n,i,−)11{τi,−=1}

+

(
0 1
1 0

)
∆LT (n,i,+)11{τi,+=1} +

(
0 1
1 0

)
∆LT (n,i+1)1

1{τ i+1=1}

+

(
0 1
0 0

)
∆LT (n,i+1,+)11{τi+1,+=1}⟩

+ ⟨∆ti+1
Mn,

(
0 1
0 0

)
∆LT (n,i,−)11{τi,−=1} +

(
0 1
1 0

)
∆LT (n,i,+)11{τi,+=1}

+

(
0 1
1 0

)
∆LT (n,i+1)1

1{τ i+1=1} +

(
0 1
0 0

)
∆LT (n,i+1,+)11{τi+1,+=1}⟩

+ ⟨∆ti+1,+
Mn,

(
0 0
1 0

)
∆LT (n,i,+)11{τi,+=1} +

(
0 0
1 0

)
∆LT (n,i+1)1

1{τ i+1=1}⟩
)
.

Using Proposition III.4.3 the characteristic function of Xi + Xi+1 is the sum of
the characteristic function of each term in Xi + Xi+1. Similarly, the characteristic
function of Xi (resp. Xi+1) is the sum of the characteristic function of each term in
Xi (resp. Xi+1). By observing that

E
[
(eitXi − 1)(eitXi+1 − 1)

]
= E

[
eit(Xi+Xi+1) − 1

]
−
(
E
[
eitXi − 1

]
+ E

[
eitXi+1 − 1

])
we obtain

E
[
(eitXi − 1)(eitXi+1 − 1)

]
= E

[
exp

{
itδn⟨∆ti,−M

n,

(
0 1
1 0

)
∆LT (n,i,+)1⟩1{τi,+=1}

}
− 1

]
−
(
E
[
exp

{
itδn⟨∆ti,−M

n,

(
0 1
0 0

)
∆LT (n,i,+)1⟩1{τi,+=1}

}
− 1

]
+ E

[
exp

{
itδn⟨∆ti,−M

n,

(
0 0
1 0

)
∆LT (n,i,+)1⟩1{τi,+=1}

}
− 1

])
(III.4.10)

+ E
[
exp

{
itδn⟨∆ti,+M

n,

(
0 1
1 0

)
∆LT (n,i,−)1⟩1{τi,−=1}

}
− 1

]
−
(
E
[
exp

{
itδn⟨∆ti,+M

n,

(
0 1
0 0

)
∆LT (n,i,−)1⟩1{τi,−=1}

}
− 1

]
+ E

[
exp

{
itδn⟨∆ti,+M

n,

(
0 0
1 0

)
∆LT (n,i,−)1⟩1{τi,−=1}

}
− 1

])
. (III.4.11)

Using again Proposition III.4.3 we can regroup the two terms in (III.4.10) and the
two terms in (III.4.11) to obtain that

E
[
(eitXi − 1)(eitXi+1 − 1)

]
= 0

hence (III.4.6) is verified and the approximation (III.4.4) holds.

III.4.2.3 The limit distribution

We have that

log

(
E

[
exp

{
it

n1∑
i=1

Xi

}
− 1

])
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=

n1∑
i=1

(
E
[
exp

{
itδn⟨∆t1i

Mn,

(
0 1
1 0

)
∆LT (n,i)1⟩1{τi=1}

}
− 1

]
(III.4.12)

+ E
[
exp

{
itδn⟨∆t1i

Mn,

(
0 1
0 0

)
∆LT (n,i−1,−)1⟩1{τi−1,−=1}

}
− 1

]
(III.4.13)

+ E
[
exp

{
itδn⟨∆t1i

Mn,

(
0 1
0 0

)
∆LT (n,i,+)1⟩1{τi,+=1}

}
− 1

]
(III.4.14)

+ E
[
exp

{
itδn⟨∆ti−1,−M

n,

(
0 0
1 0

)
∆LT (n,i)1⟩1{τi=1}

}
− 1

]
(III.4.15)

+ E
[
exp

{
itδn⟨∆ti,+M

n,

(
0 0
1 0

)
∆LT (n,i)1⟩1{τi=1}

}
− 1

])
(III.4.16)

+ o(1).

Using the results from [70, Section 4.3.2], we get that

(III.4.12) = n

n1∑
i=1

αn1
i (∆t1i

)2
∫ {

eitz − 1 − itz
}
ν0n(dz) + o(1),

(III.4.13) + (III.4.14) = n

n1∑
i=1

∆t1i
(αn

i−1,−∆ti−1,− + αn
i,+∆ti,+)

∫ {
eitz − 1 − itz

}
ν1n(dz) + o(1),

(III.4.15) + (III.4.16) = n

n1∑
i=1

αn1
i ∆t1i

(∆ti−1,− + ∆ti,+)

∫ {
eitz − 1 − itz

}
ν2n(dz) + o(1),

with

ν0n(A) =
1

n

∫
∥x∥≤vn

(∫
vn<∥y∥≤1

1A

(
δn⟨x,

(
0 1
1 0

)
y⟩
)
G(dx)

)
G(dy),

ν1n(A) =
1

n

∫
∥x∥≤vn

(∫
vn<∥y∥≤1

1A

(
δn⟨x,

(
0 1
0 0

)
y⟩
)
G(dx)

)
G(dy),

ν2n(A) =
1

n

∫
∥x∥≤vn

(∫
vn<∥y∥≤1

1A

(
δn⟨x,

(
0 0
1 0

)
y⟩
)
G(dx)

)
G(dy).

Since G is a symmetric distribution, we have that ν1n(A) = ν2n(A). We recall that
αn1
i → 1, αn

i,− → 1 and αn
i,+ → 1. Combining these two facts, we get that

log

(
E

[
exp

{
it

n1∑
i=1

Xi

}
− 1

])
∼ F n(1)

∫ {
eitz − 1 − itz

}
ν0n(dz) + 2Gn(1)

∫ {
eitz − 1 − itz

}
ν1n(dz).

Denote P0 =

(
0 1
1 0

)
and P1 =

(
0 1
0 0

)
. By [70, Section 4.3.2], we have νkn(A) →

νkU(A), k = 0, 1 where

νkU(A) =
1

2β

∫
S22
µk(dz)

∫ ∞

0

1A(ρz)ρ−1−βdρ, k = 0, 1
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with

µk(z) =

∫
S22

1z

(
⟨θx, Pkθ

y⟩
|⟨θx, Pkθy⟩|

)
|⟨θx, Pkθ

y⟩|β H(dθx)H(dθy), z ∈ B(S1).

It follows that

log

(
E

[
exp

{
it

n1∑
i=1

Xi

}
− 1

])
−→ F (1)

∫ {
eitz − 1 − itz

}
ν0U(dz) + 2G(1)

∫ {
eitz − 1 − itz

}
ν1U(dz) (III.4.17)

We recall the following result from [143, Lemma 14.11]. For β ∈ (1, 2) and x > 0 we
have∫ ∞

0

(
eiρx − 1 − iρx

)
ρ−1−βdρ = |x|βΓ(−β) cos

(
πβ

2

)(
1 − i tan

(
πβ

2

)
sgn(x)

)
.

From this lemma, we obtain∫ (
eitz − 1 − itz

)
νkU(dz)

=
|t|β

2β

∫
S2
2

|⟨θx, Pkθ
y⟩|βΓ(−β) cos

(
πβ

2

)(
1 − i tan

(
πβ

2

)
sgn

(
t⟨θx, Pkθ

y⟩
|⟨θx, Pkθy⟩|

))
H(dθx)H(dθy).

Since H is a symmetric measure, it follows that∫
S22
|⟨θx, Pkθ

y⟩|βsgn

(
t⟨θx, Pkθ

y⟩
|⟨θx, Pkθy⟩|

)
H(dθx)H(dθy) = 0

due to the integrand being an odd function. We conclude that∫ (
eitz − 1 − itz

)
νkU(dz) = −|t|βσk

β

with

σk
β :=

−Γ(−β) cos
(
πβ
2

)
2β

∫
S2
2

|⟨θx, Pkθ
y⟩|βH(dθx)H(dθy).

Finally,

(III.4.17) = −
(
F (1)σ0

β + 2G(1)σ1
β

)
|t|β

hence the result of Theorem III.2.3 in the case β ∈ (1, 2).

III.5 Proof of Theorem III.2.3 in the case β ∈ (0, 1]

III.5.1 Negligible terms

As for the case β ∈ (1, 2), the terms ξni (j), j = 1, 3, 4, 5 come from the synchronous
part of the decomposition of the error process and therefore the asynchronicity of
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the sampling scheme does not appear in these terms. Combined with Remark III.3.1
we can use the result from [70, Section 4.4.1] and conclude that ξni (j), j = 1, 3, 4, 5
are negligible. We consider the case j = 6. Set ξni (6) = ηni,− + ηni,+ with

ηni,− = δn∆t1i
Mn,1∆ti−1,−M

n,2, ηni,+ = δn∆t1i
Mn,1∆ti,+M

n,2.

Suppose first that β = 1. Observe that

E[ηni,−|Ft1i−1
] = δnE[∆t1i

Mn,1]E[∆ti−1,−M
n,2|Ft1i−1

] = 0,

E[(ηni,−)2] = δ2nE[(∆t1i
Mn,1)2]E[(∆ti−1,−M

n,2)2].

By (III.3.5) applied to p = 2 we obtain that

E[(ηni,−)2] ≤ Cδ2n∆2
nv

2
n = C∆2

n.

It follows that
∑n1

i=1 E[(ηni,−)2] → 0 and by (III.3.2) we have

n1∑
i=1

ηni,−
u.c.p.−→ 0.

Similarly,

E[ηni,+|Ft1i
] = 0,

E[(ηni,+)2] ≤ C∆2
n

by (III.3.5) applied to p = 2. Therefore
∑n1

i=1 E[(ηni,+)2] → 0. By (III.3.2),
∑n1

i=1 η
n
i,+

u.c.p.−→
0 and finally

n1∑
i=1

ξni (6)
u.c.p.−→ 0.

Suppose now that β < 1. By (III.3.5) applied to p = 1, we have

E[|ηni,−| ∧ 1] + E[|ηni,+| ∧ 1] ≤ Cδn∆2
nv

1−2β
n = C∆1/β

n log(1/∆n)(1−2β)/β

and by (III.3.1) it follows that

n1∑
i=1

ξni (6)
u.c.p.−→ 0.

For j = 8, observe that

|δn∆t1i
Mn,1∆ti,+A

n,21{τi,+≥2}| ≤ δn|∆t1i
Mn,1|

∑
k≥1

|∆L2
T (n,i,+)k

|1{τi,+≥2∨k}.

By independence of An and Mn we also have

E[|δn∆t1i
Mn,1∆ti,+A

n,21{τi,+≥2}|] = δnE[|∆t1i
Mn,1|]E[|∆ti,+A

n,2|1{τi,+≥2}].

Suppose that β = 1. By (III.3.5) applied to p = 2 we have E[|∆t1i
Mn,1|2] ≤ C∆nvn

and therefore by Jensen inequality

E[|∆t1i
Mn,1|] ≤

√
E[|∆t1i

Mn,1|2] ≤ C∆1/2
n v1/2n .
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Applying (III.3.7) for p = β = 1 and w = 1, we get∑
k≥1

E[|∆L2
T (n,i,+)k

|1{τi,+≥2∨k}] ≤ C
∑
k≥1

∆n

(
b∆n

vn

)2∨k−1

log(1/∆n)

= C∆2
nv

−1
n log(1/∆n)

(
2b+

∑
k≥1

(
b∆n

vn

)k
)

≤ C∆2
nv

−1
n log(1/∆n)

since there exists n0 such that b∆nv
−1
n < 1 for all n ≥ n0. It follows that

E[|δn∆t1i
Mn,1∆ti,+A

n,21{τi,+≥2}|] ≤ C∆5/2
n v−1/2

n log(1/∆n) = C∆2
n log(1/∆n)1/2.

We can similarly show that

E[|δn∆t1i
Mn,1∆ti−1,−A

n,21{τi−1,−≥2}|] ≤ C∆2
n log(1/∆n)1/2

E[|δn∆t1i
An,11{τi≥2}(∆ti,+M

n,2 + ∆ti,−M
n,2)] ≤ C∆2

n log(1/∆n)1/2.

Suppose now that β < 1. By (III.3.5) applied to p = 1 we have

E[|∆t1i
Mn,1|] ≤ C∆nv

1−β
n .

Applying (III.3.7) with w = 1 we obtain∑
k≥1

E[|∆L2
T (n,i,+)k

|1{τi,+≥2∨k}] ≤ C
∑
k≥1

∆n

(
b∆n

vβn

)2∨k−1

≤ C∆2
nv

−β
n

and

E[|δn∆t1i
Mn,1∆ti,+A

n,21{τi,+≥2}|] ≤ Cδn∆3
nv

1−2β
n = C∆1+1/β

n log(1/∆n)(1−2β)/β.

As before we can show similarly that

E[|δn∆t1i
Mn,1∆ti−1,−A

n,21{τi−1,−≥2}|] ≤ C∆1+1/β
n log(1/∆n)(1−2β)/β

E[|δn∆t1i
An,11{τi≥2}(∆ti,+M

n,2 + ∆ti,−M
n,2)] ≤ C∆1+1/β

n log(1/∆n)(1−2β)/β.

From this, by (III.3.1) and for 0 < β ≤ 1 we have

n1∑
i=1

ξni (j)
u.c.p.−→ 0, j = 8, 12.

We consider now the case j = 7, 9. Suppose first that β = 1. Observe that

E[δn∆t1i
Mn,1∆L2

T (n,i−1,−)1
1{τi−1,−=1}|Ft1i−1

] = δn∆L2
T (n,i−1,−)1

1{τi−1,−=1}E[∆t1i
Mn,1] = 0,

E[δn∆t1i
Mn,1∆L2

T (n,i,+)1
1{τi,+=1}|Ft1i

] = δn∆t1i
Mn,1E[∆L2

T (n,i,+)1
1{τi,+=1}] = 0

since G is symmetric and therefore ∆L2
T (n,i,+)1

has a symmetric distribution. On the

other hand, using (III.3.5) with p = 2 and (III.3.7) with p = 2, w = 1 and j = 1 we
obtain

E[(δn∆t1i
Mn,1(∆L2

T (n,i−1,−)1
1{τi−1,−=1} + ∆L2

T (n,i,+)1
1{τi,+=1}))

2] = Cδ2n∆2
nvn = C∆n log(1/∆n)−1.
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It follows by (III.3.2) that
n1∑
i=1

ξni (7)
u.c.p.−→ 0.

If β < 1 we have by (III.3.5) for p = 1 and by (III.3.7) for m = p = j = w = 1 that

E[ξni (7)| ∧ 1] ≤ Cδn∆2
nv

1−β
n = C∆n log(1/∆n)−1.

By (III.3.1) we get that
n1∑
i=1

ξni (7)
u.c.p.−→ 0.

We can prove similarly that

n1∑
i=1

ξni (9)
u.c.p.−→ 0, β ≤ 1.

We finally consider the cases j = 11, 13. We will only prove the negligibility of ξni (11),
as the proof for ξni (13) is essentially the same. Since ∆t1i

and ∆ti−1,− (resp. ∆ti,+)

are non overlapping, ∆L1
T (n,i)1

and ∆ti−1,−A
n,2 (resp. ∆ti,+A

n,2) are independent.
Therefore,

E[|ξni (11)|] = δnE[|∆L1
T (n,i)1

|1{τi=1}]
(
E[|∆ti−1,−A

n,2|1{τi−1,−≥2}] + E[|∆ti,+A
n,2|1{τi,+≥2}]

)
.

Suppose that β = 1. As before,∑
k≥1

E[|∆L2
t(n,i−1,−)k

|1{τi−1,−≥2∨k}] +
∑
k≥1

E[|∆L2
t(n,i,+)k

|1{τi,+≥2∨k}] ≤ C∆2
nv

−1
n log(1/∆n)

and by (III.3.7) applied to w = p = 1,

E[(|∆L1
T (n,i)1

| ∧ 1)1{τi=1}] ≤ C∆n log(1/∆n).

We obtain that

E[|ξni (11)|] ≤ C∆3
nv

−1
n log(1/∆n)2 = C∆2

n log(1/∆n).

If β < 1,∑
k≥1

E[|∆L2
t(n,i−1,−)k

|1{τi−1,−≥2∨k}] +
∑
k≥1

E[|∆L2
t(n,i,+)k

|1{τi,+≥2∨k}] ≤ C∆2
nv

−β
n

and by (III.3.7) applied with w = p = 1,

E[(|∆L1
T (n,i)1

| ∧ 1)1{τi=1}] ≤ C∆n.

It follows that
E[|ξni (11)|] ≤ C∆3

nv
−β
n = C∆2

n log(1/∆n)−1.

Finally, by (III.3.1), for β ≥ 1,

n1∑
i=1

ξni (11)
u.c.p.−→ 0.

We have shown that
∑n1

i=1 ξ
n
i (j)

u.c.p.−→ 0 for j = 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13.
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III.5.2 The dominating term

III.5.2.1 The synchronous case

The weak convergence

⌊1/∆n⌋∑
i=1

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}
dst−→ U1

was proven in [70]. Their approach consists of a direct computation of the Lévy
measure when β ≤ 1, and characteristic function techniques when β ∈ (1, 2). Our
result on asynchronicity relies on the approximation of the characteristic function
from Lemma III.3.5 hence the need to derive the same result using the same tech-
niques as for the case β ∈ (1, 2). Assume that for all i, ∆n

i = ∆n. Using Lemma
III.3.6 and Remark III.3.7, we need to show that

⌊1/∆n⌋∑
i=1

E[eitδn⟨∆LT (n,i)1
,∆LT (n,i)2

⟩1{τi=2}−1]
u.c.p.−→

{∫
{eitx − 1} νU(dx) if β ∈ (0, 1)∫ {
eitx − 1 − itx1{0<|x|≤1}

}
νU(dx) if β = 1,

where νU was defined in [70, Theorem 2.2]. We have

⌊∆−1
n ⌋∑

i=1

E
[
exp

{
itδn⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}

}
− 1
]

=

⌊∆−1
n ⌋∑

i=1

(
P
(
1{τi=2} = 1

)
E
[
exp

{
itδn⟨∆LT (n,i)1 ,∆LT (n,i)2⟩

}]
− 1 +

(
1 − P

(
1{τi=2} = 1

)))

=

⌊∆−1
n ⌋∑

i=1

(
(∆n

i )2

2
αn
i G(vn)

2
∫
||y||∈(vn,1)

∫
||x||∈(vn,1)

eitδn⟨x,y⟩
G(dx)

G(vn)

G(dy)

G(vn)
− (∆n

i )2

2
αn
i G(vn)

2

)

=


∆−1

n

(∆n)2

2
αn

∫
||y||∈(vn,1)

∫
||x||∈(vn,1)

(
eitδn⟨x,y⟩ − 1

)
G(dx)G(dy), β < 1

∆−1
n

(∆n)2

2
αn

∫
||y||∈(vn,1)

∫
||x||∈(vn,1)

(
eitδn⟨x,y⟩ − 1 − itδn⟨x, y⟩1{0<|⟨x,y⟩|≤1}

)
G(dx)G(dy), β = 1

(III.5.1)

=


αn

∫ (
eitz − 1

)
νn(dz) if β < 1

αn

∫ (
eitz − 1 − itz1{0<|z|≤1}

)
νn(dz) if β = 1.

where

νn(A) =
∆n

2

∫
||y||∈(vn,1)

∫
||x||∈(vn,1)

1A(δn⟨x, y⟩)G(dx)G(dy).

The equality (III.5.1) is true due to the fact that G is symmetric and therefore

−itδn
∫
∥y∥∈(vn,1]

∫
∥x∥∈(vn,1]

⟨x, y⟩G(dx)G(dy) = 0.
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Observe thatG(x) ≤ Cx−β, thereforeG(vn) ≤ C∆−1
n log(1/∆n)−1 and αn = exp(−∆nG(vn)) →

1 and we can omit this term in the limit. We will now show that the Levy measure
νn converges. To do so, we need to show the conditions of [143, Theorem 8.7]. It is
sufficient to show the following :

1. lim
n→∞

νn(B × (w,∞)) = νU(B × (w,∞)) for B ∈ B(S1) and w > 0;

2. lim
ε→0+

lim sup
n→∞

∫
|z|≤ε

|z|2νn(dz) = 0.

We start by proving the first condition. We recall that G(dx) =
1(0,1]

ρ1+β dρH(dθ),

x = (ρ, θ) ∈ R+ × S2, with H a symmetric spherical measure. We therefore obtain
the following expression :

νn(B × (w,∞)) =
∆n

2

∫
S22

∫
(vn,1]2

1B

(
⟨θ1, θ2⟩
|⟨θ1, θ2⟩|

)
1(w,∞) (δnρ1ρ2|⟨θ1, θ2⟩|)

× (ρ1ρ2)
−1−β dρ1dρ2H(dθ1)H(dθ2).

Let r > 0. We first assume that ω ∈ (0, 1). We have that ω/(δnρ1r) < 1 for any
y1 > vn. We get that

∆n

2

∫
(vn,1]2

1(ω,∞) (δnρ1ρ2r) (ρ1ρ2)
−1−βdρ1dρ2

=
∆n

2

(∫ ω

vn

ρ−1−β
1

(∫ 1

ω/(δnρ1r)

ρ−1−β
2 dρ2

)
dρ1 +

∫ 1

ω

ρ−1−β
1 dρ1

∫ 1

vn

ρ−1−β
2 dρ2

)
=

∆nδ
β
n log(δn)rβ

2βwβ
+

∆nδ
β
nr

β log(w)

2βwβ
+

∆n

2β2

(
1 + w−β − w−β − 2δβn + δβn/w

β
)

=
∆nδ

β
n log(δn)rβ

2βwβ
+ o(1)

=
rβ

2β2wβ
+ o(1),

where we used that 2β log(1/vn) log(1/∆n)−1 → 1. Now we suppose that w ≥ 1. For
w ≥ 1 we have w/(δnρ1r) ≤ 1 for any ρ1 ≥ wvn. Consequently we have

∆n

2

∫
(vn,1]2

1(w,∞)(δnρ1ρ2r)(ρ1ρ2)
−1−βdρ1dρ2

=
∆n

2

∫ 1

wvn

ρ−1−β
1

(∫ 1

w/(δnρ1r)

ρ−1−β
2 dρ2

)
dρ1

=
∆n

2β

∫ 1

wvn

ρ−1−β
1

(
(w/(δnρ1r))

−β − 1
)
dρ1

=
∆nδ

β
n log(δn)rβ

2βwβ
+ o(1)

=
rβ

2β2wβ
+ o(1).
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Hence we have proven the first condition and νn → νU with

νU(A) =
1

2β

∫
S22
µ(dz)

∫ ∞

0

1A(ρz)ρ−1−βdρ, A ∈ B(R)

and

µ(z) =

∫
S22

1z

(
⟨θ1, θ2⟩
|⟨θ1, θ2⟩|

)
|⟨θ1, θ2⟩|βH(dθ1)H(dθ2), z ∈ B(S1).

We will now show the second condition. Let ε > 0. We have∫
|z|≤ε

|z|2νn(dz) =
∆n

2

∫
S22

∫
(vn,1]2

1(0,ε)(δnρ1ρ2|⟨θ1, θ2⟩|)

× (ρ1ρ2)
−1−β (δnρ1ρ2|⟨θ1, θ2⟩|)2 dρ1dρ2H(dθ1)H(dθ2).

We will compute the integral with respect to dρ1dρ2. Let r > 0. We have

∆n

2
δ2nr

2

∫
(vn,1]2

1(0,ε)(δnρ1ρ2r)(ρ1ρ2)
1−βdρ1dρ2

=
∆n

2
δ2nr

2

∫ ε/r

vn

(∫ ε/(δnρ2r)

vn

ρ1−β
1 dρ1

)
ρ1−β
2 dρ2

=
∆n

2(2 − β)
δ2nr

2

(
(ε/r)2−βδβ−2

n

∫ ε/r

vn

ρ−1
2 dρ2 − δβ−2

n

∫ ε/r

vn

ρ1−β
2 dρ2

)

=
∆nδ

β
nr

βε2−β log(δn)

2(2 − β)
+

∆nδ
β
nr

βε2−β log(ε/r)

2(2 − β)
+

∆nδ
2β−2
n r2

2(2 − β)2
− ∆nδ

β
nε

2−βrβ

2(2 − β)2
.

Since ∆nδ
β
n = log(1/∆n)−1 = o(1) and since 2β log(1/vn) log(1/∆n)−1 → 1, we have

that

∆nδ
β
nr

βε2−β log(δn)

2(2 − β)
+

∆nδ
β
nr

βε2−β log(ε/r)

2(2 − β)
+

∆nδ
2β−2
n r2

2(2 − β)2
− ∆nδ

β
nε

2−βrβ

2(2 − β)2

=
∆nδ

β
nr

βε2−β log(δn)

2(2 − β)
+ o(1)

→ rβε2−β

4β(2 − β)
as n→ ∞.

Since 0 < β ≤ 1 we can conclude that the second condition is verified, i.e.

lim
ε→0+

lim sup
n→∞

∫
|z|≤ε

|z|2νn(dz) = 0.

Remark III.5.1. Consider two set of observation time instants (∆n,1
i )i and (∆n,2

j )j

with ∆n,1
i = ∆n,2

j = ∆n and ∆n,k
i ∩ ∆n,l

j = ∅ for all i, j and k, l = 1, 2. With similar
techniques, we can show that

⌊∆−1
n ⌋∑

i=1

E[exp{itδn⟨∆LT (n,1,i)1 ,∆LT (n,2,i)1⟩1{τ1,i=1}1{τ2,i=1}} − 1]
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=

⌊∆−1
n ⌋∑

i=1

(αn∆n)2
∫
∥y∥∈(vn,1]

∫
∥x∥∈(vn,1]

(
eitδn⟨x,y⟩ − 1

)
G(dx)G(dy)

= 2α2
n

∫ (
eitz − 1

)
νn(dz)

with νn is the Lévy measure defined above. Since αn → 1, we get the convergence

⌊∆−1
n ⌋∑

i=1

E[eitδn⟨∆LT (n,i)1
,∆LT (n,i)2

⟩1{τi=2}−1]
u.c.p.−→


2

∫ {
eitx − 1

}
νU(dx) if β < 1,

2

∫ {
eitx − 1 − itx1{0<|x|≤1|}

}
νU(dx) if β = 1.

III.5.2.2 Technical results

For simplicity of exposure all the proofs in this section will be presented for the case
β < 1. Similar result with β = 1 can be proven using the same arguments.

Lemma III.5.2. Let (∆n
i )1≤i≤p, p ≥ 3, be a collection of non-overlapping observa-

tion time instants with ∆n
i = O(∆n) for all i. Define, for a fixed q < p,

S := {i1, ..., iq} ⊂ {1, ..., p},
Sj := {i1, ..., imj

} ⊂ {1, ..., p} \ S, for all j ∈ S.

We suppose that S ∪
(⋃

j∈S Sj

)
= {1, ..., p}. We set, for all 1 ≤ i ≤ p, αn

i =

exp(−∆n
iG(vn)). Then

p∏
i=1

αn
i ∆n

i

∫
∥y1∥,...,∥yp∥∈(vn,1]

(
e
itδn

∑
j∈S⟨yj ,

∑
k∈Sj

yk⟩ − 1
)
G(dy1)...G(dyp) = o(∆n).

Proof. Observe first that G(vn) ≤ C∆−1
n log(1/∆n)−1, hence αn

i → 1 and therefore

p∏
i=1

αn
i ∆n

i

∫
∥y1∥,...,∥yp∥∈(vn,1]

(
e
itδn

∑
j∈S⟨yj ,

∑
k∈Sj

yk⟩ − 1
)
G(dy1)...G(dyp)

∼
p∏

i=1

∆n
i

∫
∥y1∥,...,∥yp∥∈(vn,1]

(
e
itδn

∑
j∈S⟨yj ,

∑
k∈Sj

yk⟩ − 1
)
G(dy1)...G(dyp)

≤ C∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

(
e
itδn

∑
j∈S⟨yj ,

∑
k∈Sj

yk⟩ − 1
)
G(dy1)...G(dyp)

=

∫ {
eitz − 1

}
νn(dz)

with, for A ∈ B(R \ {0})

νn(A) = C∆p
n

∫
∥y1∥,...,∥yp∥∈(vn,1]

1A

δn∑
j∈S

⟨yj,
∑
k∈Sj

yk⟩

G(dy1)...G(dyp).
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To prove the lemma it is sufficient to show that νn(A) converges strongly to the null
measure with νn(A) ≤ o(∆). Set yi = (ρi, θi) ∈ R+×S2 for all 1 ≤ i ≤ p. We obtain,
for w > 0 and B ∈ B(S1),

νn(B × (w,∞)) = C∆p
n

∫
Sp2

∫
(vn,1]p

1B

 ∑
j∈S
∑

k∈Sj
ρjρk⟨θj, θk⟩∣∣∣∑j∈S

∑
k∈Sj

ρjρk⟨θj, θk⟩
∣∣∣


× 1(w,∞)

δn
∣∣∣∣∣∣
∑
j∈S

∑
k∈Sj

ρjρk⟨θj, θk⟩

∣∣∣∣∣∣
( p∏

i=1

ρi

)−1−β

dρ1...dρpH(dθ1)...H(dθp).

The above integral has the same order as

∆p
n

∫
(vn,1]p

1(w,∞)

δn∑
j∈S

∑
k∈Sj

ρjρkrj,k

( p∏
i=1

ρi

)−1−β

dρ1...dρp

for some rj,k > 0. Denote by λp the Lebesgue measure on Rp and observe that

λp

ρ1, ..., ρp ∈ (vn, 1]p : δn
∑
j∈S

∑
k∈Sj

ρjρkrj,k > w




≤ λp ({ρ1, ..., ρp ∈ (vn, 1]p : δnρ1ρ2rp,q > w}) for some (p, q) ∈ S × Sj.

It follows that

∆p
n

∫
(vn,1]p

1(w,∞)

δn∑
j∈S

∑
k∈Sj

ρjρkrj,k

( p∏
i=1

ρi

)
dρ1...dρp

≤ ∆p
n

(∫
(vn,1]

ρ−1−βdρ

)p−2 ∫
(vn,1]2

1(w,∞) (δnρ1ρ2rp,q) (ρ1ρ2)
−1−βdρ1dρ2.

In the proof of the synchronous case (see Section III.5.2.1), we have shown that

∆n

∫
(vn,1]2

1(w,∞) (δnρ1ρ2) (ρ1ρ2)
−1−βdρ1dρ2 = O(1).

Combined with the fact that∫
(vn,1]

ρ−1−βdρ = − 1

β
+

∆−1
n log(1/∆n)−1

β
= O(∆−1

n log(1/∆n)−1)

we obtain

∆p
n

(∫
(vn,1]

ρ−1−βdρ

)p−2 ∫
(vn,1]2

1(w,∞) (δnρ1ρ2rp,q) (ρ1ρ2)
−1−βdρ1dρ2 = O(∆n log(1/∆n)2−p),

hence the result.
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Corollary III.5.3. Let (∆n
i )1≤i≤p, p ≥ 2, be a collection of non-overlapping ob-

servation time instants with ∆n
i = O(∆n) for all i. With the usual notation, we

have

E

[
exp

{
itδn

p∑
i=1

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}

}
− 1

]

=

p∑
i=1

E
[
exp

{
itδn⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}

}
− 1
]

+ o(1).

Proof. We start by expanding the expectation on the left hand side with respect
to the indicator functions. Analogously to the proof of the Proposition III.4.3, we
obtain

E

[
exp

{
itδn

p∑
i=1

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}

}
− 1

]

=

p∑
l=1

P(1{τl=2} = 1)

p∏
i=1
i ̸=l

P(1{τi=2} = 0)E
[
exp

{
itδn⟨∆LT (n,l)1 ,∆LT (n,l)2⟩

}
− 1
]

+Rn
p

with Rn
p a finite sum of terms of the form, for 0 ≤ m ≤ p− 2,

m∏
l=1

P(1{τkl=2} = 0)

p∏
i=1

i ̸=k1,...,km

P(1{τi=2} = 1)E

exp

itδn
p∑

i=1
i ̸=k1,...,km

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩

− 1

 .
Define as in the prequel αn

i := exp(−∆n
iG(vn)) and observe that αn

i → 1 since
G(vn) ≤ C∆−1

n log(1/∆n)−1. From this,

m∏
l=1

P(1{τkl=2} = 0) =
m∏
l=1

(
1 − αn

kl

(
∆n

kl

)2
G(vn)2/2

)
= 1 +O(log(1/∆n)−1)

and therefore

m∏
l=1

P(1{τkl=2} = 0)

p∏
i=1

i ̸=k1,...,km

P(1{τi=2} = 1)E

exp

itδn
p∑

i=1
i ̸=k1,...,km

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩

− 1


∼

∏
i∈{1,...,p}\{k1,...,km}

P(1{τi=2} = 1)E

exp

itδn ∑
i∈{1,...,p}\{k1,...,km}

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩

− 1

 .
Denote {i1, ..., ip−m} = {1, ..., p} \ {k1, ..., km}. We have

p−m∏
l=1

P(1{τil=2} = 1)E

[
exp

{
itδn

p−m∑
l=1

⟨∆LT (n,il)1 ,∆LT (n,il)2⟩

}
− 1

]

=

p−m∏
l=1

αn
il

(
∆n

il

)2
2

∫
∥y1∥,...∥y2p−2m∥∈(vn,1]

(
eitδn

∑p−m
l=1 ⟨yl,yl+p−m⟩ − 1

)
G(dy1)...G(dy2p−2m)
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= o(∆n)

by Lemma III.5.2. It follows that

E

[
exp

{
itδn

p∑
i=1

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}⟩

}
− 1

]

=

p∑
l=1

P(1{τl=2} = 1)

p∏
i=1
i ̸=l

P(1{τi=2} = 0)E
[
exp

{
itδn⟨∆LT (n,l)1 ,∆LT (n,l)2⟩

}
− 1
]

+ o(∆n)

∼
p∑

l=1

P(1{τl=2} = 1)E
[
exp

{
itδn⟨∆LT (n,l)1 ,∆LT (n,l)2⟩

}
− 1
]

=

p∑
l=1

E
[
exp

{
itδn⟨∆LT (n,l)1 ,∆LT (n,l)2⟩1{τl=2}

}
− 1
]

hence the result.

Corollary III.5.4. Let (∆n
i )1≤i≤p, p ≥ 3, be a collection of non-overlapping obser-

vation time instants. Define, for a fixed q < p,

S := {i1, ..., iq} ⊂ {1, ..., p},
Sj := {i1, ..., imj

} ⊂ {1, ..., p} \ S, for all j ∈ S.

We suppose that S ∪
(⋃

j∈S Sj

)
= {1, ..., p}. Then

E

exp

itδn∑
j∈S

⟨∆LT (n,j)11{τj=1},
∑
k∈Sj

∆LT (n,k)11{τk=1}⟩

− 1


=
∑
j∈S

∑
k∈Sj

E
[
exp

{
itδn⟨∆LT (n,j)11{τj=1},∆LT (n,k)11{τk=1}⟩

}
− 1
]

+ o(1).

Proof. As for the previous corollary, we expand the expectation with respect to the
indicator function to get

E

exp

itδn∑
j∈S

⟨∆LT (n,j)11{τj=1},
∑
k∈Sj

∆LT (n,k)11{τk=1}⟩

− 1


=
∑
j∈S

∑
k∈Sj

P(1{τj=1} = 1)P(1{τk=1} = 1)
∏

i∈{1,...p}\(S∪Sj)

P(1{τi=1} = 0)

× E
[
exp

{
itδn⟨∆LT (n,j)1 ,∆LT (n,k)1⟩

}
− 1
]

+R
n

p

with R
n

p a finite sum of terms of the form, for S ⊂ S and Sj ⊂ Sj for all j ∈ S

with 3 ≤
∣∣∣S ∪

(⋃
j∈S Sj

)∣∣∣ ≤ p, (this condition is to ensure that there is at least two

terms of the form ⟨∆LT (n,i)1 ,∆LT (n,j)1⟩ inside the expectation)∏
j∈S

∏
k∈

⋃
j Sj

P(1{τj=1} = 1)P(1{τk=1} = 1)
∏

i∈{1,...,p}\S∪(
⋃

j∈S Sj)

P(1{τi=1} = 0)
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× E

exp

itδn∑
j∈S

⟨∆LT (n,j)1 ,
∑
k∈Sj

∆LT (n,k)1⟩

− 1

 .
Similarly to the previous corollary, we have∏
i∈{1,...,p}\S∪(

⋃
j∈S Sj)

P(1{τi=1} = 0) =
∏

i∈{1,...,p}\S∪(
⋃

j∈S Sj)

(
1 − αn

i ∆n
iG(vn)

)
= 1+O(log(1/∆n)−1)

and therefore∏
j∈S

∏
k∈

⋃
j Sj

P(1{τj=1} = 1)P(1{τk=1} = 1)
∏

i∈{1,...,p}\S∪(
⋃

j∈S Sj)

P(1{τi=1} = 0)

× E

exp

itδn∑
j∈S

⟨∆LT (n,j)1 ,
∑
k∈Sj

∆LT (n,k)1⟩

− 1


∼
∏
j∈S

∏
k∈

⋃
j Sj

P(1{τj=1} = 1)P(1{τk=1} = 1)E

exp

itδn∑
j∈S

⟨∆LT (n,j)1 ,
∑
k∈Sj

∆LT (n,k)1⟩

− 1

 .
Denote S ∪

(⋃
j∈S Sj

)
:= {i1, ..., im} with m :=

∣∣∣S ∪
(⋃

j∈S Sj

)∣∣∣. We have

∏
j∈S

∏
k∈

⋃
j Sj

P(1{τj=1} = 1)P(1{τk=1} = 1)E

exp

itδn∑
j∈S

⟨∆LT (n,j)1 ,
∑
k∈Sj

∆LT (n,k)1⟩

− 1


=

m∏
l=1

αn
il
∆n

il

∫
∥yi1∥,...,∥yim∥∈(vn,1]

(
e
itδn

∑
j∈S⟨yj ,

∑
k∈Sj

yk⟩ − 1
)
G(dyi1)...G(dyim) = o(∆n)

by Lemma III.5.2. It follows that

E

exp

itδn∑
j∈S

⟨∆LT (n,j)11{τj=1},
∑
k∈Sj

∆LT (n,k)11{τk=1}⟩

− 1


=
∑
j∈S

∑
k∈Sj

P(1{τj=1} = 1)P(1{τk=1} = 1)
∏

i∈{1,...p}\(S∪Sj)

P(1{τi=1} = 0)

× E
[
exp

{
itδn⟨∆LT (n,j)1 ,∆LT (n,k)1⟩

}
− 1
]

+ o(∆n)

∼
∑
j∈S

∑
k∈Sj

P(1{τj=1} = 1)P(1{τk=1} = 1)E
[
exp

{
itδn⟨∆LT (n,j)1 ,∆LT (n,k)1⟩

}
− 1
]

=
∑
j∈S

∑
k∈Sj

E
[
exp

{
itδn⟨∆LT (n,j)11{τj=1},∆LT (n,k)11{τk=1}⟩

}
− 1
]
,

hence the result.

Proposition III.5.5. Let (∆n
i )1≤i≤p, p ≥ 3, be a collection of non-overlapping

observation time instants. Define, for a fixed q < p and a fixed r ≤ p

S(q) := {i1, ..., iq} ⊂ {1, ..., p},
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Sj := {i1, ..., imj
} ⊂ {1, ..., p} \ S(q), for all j ∈ S(q),

S(r) := {i1, ..., ir} ⊂ {1, ..., p}.

We suppose that S(q) ∪
(⋃

j∈S Sj

)
= {1, ..., p}. Then

E

exp

itδn
∑

i∈S(r)

⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}

+
∑
j∈S(q)

⟨∆LT (n,j)11{τj=1},
∑
k∈Sj

∆LT (n,k)11{τk=1}⟩

− 1


=
∑
i∈S(r)

E
[
exp

{
itδn⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}

}
− 1
]

+
∑
j∈S(q)

∑
k∈S(j)

E
[{

exp{itδn⟨∆LT (n,j)11{τj=1},∆LT (n,k)11{τk=1}
}
− 1
]

+ o(1).

Proof. The proof, although tedious to write, is similar to the proof of the two pre-
vious corollary and relies on the expansion of the expectation with respect to the
indicator functions and then we apply Lemma III.5.2.

III.5.2.3 Approximation of the characteristic function

We recall that ξni (2) + ξni (10) is the dominating part when β ≤ 1. As in the previous
section, we rewrite Xi = ξni (2) + ξni (10) in a vectorial form as

ξni (2) = δn(∆L1
T (n,i)1

∆L2
T (n,i)2

+ ∆L1
T (n,i)2

∆L2
T (n,i)1

)1{τi=2}

= δn⟨∆LT (n,i)1 ,

(
0 1
1 0

)
∆LT (n,i)2⟩1{τi=2},

ξni (10) = δn∆L1
T (n,i)1

1{τi=1}
(
∆L2

T (n,i−1,−)1
1{τi−1,−=1} + ∆L2

T (n,i,+)1
1{τi,+=1}

)
= δn⟨∆LT (n,i)11{τi=1},

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1} +

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩

:= ξni(10, 1) + ξni (10, 2).

We want to show the approximation :

log
(
E
[
eit

∑n1
i=1 Xi − 1

])
=

n1∑
i=1

E
[
eitXi − 1

]
+ o(1). (III.5.2)

Using Lemma III.3.5, it is sufficient to show that

E
[
eitXi − 1

]
= O(∆n). (III.5.3)

n1∑
i=2

E
[
(eitXi − 1)(eitXi−1 − 1)

]
= o(∆n), (III.5.4)

n1∑
i=3

E
[
(eitXi − 1)(eitXi−1 − 1)(eitXi−2 − 1)

]
= o(∆n). (III.5.5)
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We start with the condition (III.5.3). Using Proposition III.5.5, we obtain

E
[
eitXi − 1

]
= E

[
eitξ

n(2) − 1
]

+ E
[
eitξ

n
i (10,1) − 1

]
+ E

[
eitξ

n
i (10,2) − 1

]
+ o(∆n).

From the synchronous case, each term on the right hand side of the above decom-
position is of order ∆n, hence the condition (III.5.3) is verified. As for the case
β ∈ (1, 2), due to (III.3.9) and (III.3.10), condition (III.5.5) is verified. We need to
verify now (III.5.4). It is left to decompose the term

n1∑
i=2

E
[
(eitXi−1 − 1)(eitXi − 1)

]
=

n1∑
i=2

{
E
[
eit(Xi−1+Xi)

]
− E

[
eitXi−1 + eitXi

]
+ 1
}
.

We keep the same notation as the case β ∈ (1, 2) and we decompose the observation
time instant as follows :

∆t1i
:= ∆ti + ∆ti,−

∆t1i+1
:= ∆ti,+ + ∆ti+1

.

Lemma III.5.6. We observe the following approximation:

E
[
exp

{
itδn⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}

}
− 1
]

= E
[
exp

{
itδn⟨∆LT (n,i)1

,∆LT (n,i)2
⟩1{τ i=2}

}
− 1
]

+ E
[
exp

{
itδn⟨∆LT (n,i)1

,∆LT (n,i,−)1⟩1{τ i=1}1{τi,−=1}

}
− 1
]

+ E
[
exp

{
itδn⟨∆LT (n,i,−)1 ,∆LT (n,i,−)2⟩1{τi,−=2}

}
− 1
]

+ o(1).

Proof. We recall first that vn = (∆n log(1/∆n))−1/β. Since G(x) ≤ Cx−β, it follows
that G(vn) ≤ C∆−1

n log(1/∆n)−1. In particular, with the usual notation, we also
have αn

i = exp(−∆n
iG(vn)) → 1. On one hand, we have, for t ∈ R

E[exp{itδn⟨∆LT (n,i)1 ,∆LT (n,i)2⟩1{τi=2}} − 1]

= αn
i

(∆n
i )2

2

∫
(vn,1]2

{exp{itδn⟨x, y⟩} − 1}G(dx)G(dy)

∼ (∆n
i )2

2

∫
(vn,1]2

{exp{itδn⟨x, y⟩} − 1}G(dx)G(dy).

On the other hand,

E[exp{itδn(⟨∆LT (n,i)1
,∆LT (n,i)2

⟩1{τ i=2} + ⟨∆LT (n,i)1
,∆LT (n,i,−)1⟩1{τ i=1}1{τi,−=1}

+ ⟨∆LT (n,i,−)1 ,∆LT (n,i,−)2⟩1{τi,−=2})} − 1]

= P(τ i = 2)P(τi,− = 2)E[exp{itδn(⟨∆LT (n,i)1
,∆LT (n,i)2

⟩ + ⟨∆LT (n,i,−)1 ,∆LT (n,i,−)2⟩)} − 1]

+ P(τ i = 2)(P(τi,− = 1) + P(τi,− = 0))E[exp{itδn⟨∆LT (n,i)1
,∆LT (n,i)2

⟩} − 1]

+ P(τi,− = 2)(P(τ i = 1) + P(τ i = 0))E[exp{itδn⟨∆LT (n,i,−)1 ,∆LT (n,i,−)2⟩} − 1]

+ P(τ i = 1)P(τi,− = 1)E[exp{itδn⟨∆LT (n,i)1
,∆LT (n,i,−)1⟩} − 1]

= αn
i α

n
i,−

(
∆

n

i

)2 (
∆n

i,−
)2

4

∫
(vn,1]4

(exp{itδn(⟨x1, x2⟩ + ⟨x3, x4⟩)} − 1)G(dx1)G(dx2)G(dx3)G(dx4)
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+ αn
i

(∆
n

i )2

2
(αn

i,−∆n
i,−G(vn) + αn

i,−)

∫
(vn,1]2

(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy)

+ αn
i,−

(∆n
i,−)2

2
(αn

i ∆
n

iG(vn) + αn
i )

∫
(vn,1]2

(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy)

+ αn
i α

n
i,−∆

n

i ∆n
i,−

∫
(vn,1]2

(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy).

Due to Lemma III.5.2 the first term in the decomposition is asymptotically negligi-
ble. It follows that

E[exp{itδn(⟨∆LT (n,i)1
,∆LT (n,i)2

⟩1{τ i=2} + ⟨∆LT (n,i)1
,∆LT (n,i,−)1⟩1{τ i=1}1{τi,−=1}

+ ⟨∆LT (n,i,−)1 ,∆LT (n,i,−)2⟩1{τi,−=2})} − 1]

= αn
i

(∆
n

i )2

2
(αn

i,−∆n
i,−G(vn) + αn

i,−)

∫
(vn,1]2

(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy)

+ αn
i,−

(∆n
i,−)2

2
(αn

i ∆
n

iG(vn) + αn
i )

∫
(vn,1]2

(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy)

+ αn
i α

n
i,−∆

n

i ∆n
i,−

∫
(vn,1]2

(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy) + o(∆n)

∼ 1

2

(
(∆

n

i )2 + 2∆
n

i ∆n
i,− + (∆n

i,−)2
) ∫

(vn,1]2
(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy)

=
(∆n

i )2

2

∫
(vn,1]2

(exp{itδn⟨x, y⟩} − 1)G(dx)G(dy),

hence the result.

Using this lemma, we rewrite Xi (and similarly Xi+1) as

Xi = δn

(
⟨∆LT (n,i)1

,

(
0 1
1 0

)
∆LT (n,i)1

⟩1{τ i=2}

+ ⟨∆LT (n,i)1
1{τ i=1},

(
0 1
1 0

)
∆LT (n,i,−)11{τi,−=1} +

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1}

+

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩

+ ⟨∆LT (n,i,−)1 ,

(
0 1
1 0

)
∆LT (n,i,−)2⟩1{τi,−=2}

+ ⟨∆LT (n,i,−)11{τi,−=1},

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1} +

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩

)
.

From this we get

Xi +Xi+1 = δn

(
⟨∆LT (n,i)1

,

(
0 1
1 0

)
∆LT (n,i)1

⟩1{τ i=2}

+ ⟨∆LT (n,i)1
1{τ i=1},

(
0 1
1 0

)
∆LT (n,i,−)11{τi,−=1} +

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1}

+

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩
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+ ⟨∆LT (n,i,−)1 ,

(
0 1
1 0

)
∆LT (n,i,−)2⟩1{τi,−=2}

+ ⟨∆LT (n,i,−)11{τi,−=1},

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1}

+

(
0 0
1 0

)
∆LT (n,i+1)1

1{τ i+1=1}

+

((
0 1
0 0

)
+

(
0 0
1 0

))
∆LT (n,i,+)11{τi,+=1}⟩

+ ⟨∆LT (n,i,+)1 ,

(
0 1
1 0

)
∆LT (n,i,+)2⟩1{τi,+=2}

+ ⟨∆Lt(n,i,+)11{τi,+=1},

(
0 1
1 0

)
∆LT (n,i+1)1

1{τ i+1=1}

+

(
0 1
0 0

)
∆LT (n,i+1,+)11{τi+1,+=1}⟩

+ ⟨∆LT (n,i+1)1
,

(
0 1
1 0

)
∆LT (n,i+1)2

⟩1{τ i+1=2}

+ ⟨∆LT (n,i+1)1
1{τ i+1=1},

(
0 1
0 0

)
∆LT (n,i+1,+)11{τi+1,+=1}⟩

)
.

Similarly to the previous case, using Proposition III.5.5 the characteristic function
of Xi + Xi+1, Xi and Xi+1 is the sum of the characteristic function of each term
in the above decomposition. As in the case β ∈ (1, 2), up to rearranging the term
using Proposition III.5.5, we obtain

E
[
(eitXi − 1)(eitXi+1 − 1)

]
= 0.

Condition (III.5.4) is therefore verified and the approximation (III.5.2) holds.

III.5.2.4 The limiting distribution

We have that

log

(
E

[
exp

{
it

n1∑
i=1

Xi

}
− 1

])

=

n1∑
i=1

(
E
[
exp

{
itδn⟨∆LT (n,i)1 ,

(
0 1
1 0

)
∆LT (n,i)2⟩1{τi=2}

}
− 1

]
(III.5.6)

+ E
[
exp

{
itδn⟨∆LT (n,i)11{τi=1},

(
0 1
0 0

)
∆LT (n,i−1,−)11{τi−1,−=1}⟩

}
− 1

]
(III.5.7)

+ E
[
exp

{
itδn⟨∆LT (n,i)11{τi=1},

(
0 1
0 0

)
∆LT (n,i,+)11{τi,+=1}⟩

}
− 1

])
(III.5.8)

+ o(1).

Now we apply the result from the synchronous case presented in the prequel. We
have, if β < 1:

(III.5.6) = n

n1∑
i=1

αn1
i (∆t1i

)2
∫ (

eitz − 1
)
ν0n(dz) + o(1),
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(III.5.7) + (III.5.8) = 2n

n1∑
i=1

αn1
i ∆t1i

(αn
i−1,−∆ti−1,− + αn

i,+∆ti,+)

∫ (
eitz − 1

)
ν1n(dz) + o(1),

and if β = 1:

(III.5.6) = n

n1∑
i=1

αn1
i (∆t1i

)2
∫ (

eitz − 1 − itz1{0<|z|≤1}
)
ν0n(dz) + o(1),

(III.5.7) + (III.5.8) = 2n

n1∑
i=1

αn1
i ∆t1i

(αn
i−1,−∆ti−1,− + αn

i,+∆ti,+)

∫ (
eitz − 1 − itz1{0<|z|≤1}

)
ν1n(dz)

+ o(1),

with

ν0n(A) =
n

2

∫
∥y∥∈(vn,1]

∫
∥x∥∈(vn,1]

1A

(
δn⟨x,

(
0 1
1 0

)
y⟩
)
G(dx)G(dy),

ν1n(A) =
n

2

∫
∥y∥∈(vn,1]

∫
∥x∥∈(vn,1]

1A

(
δn⟨x,

(
0 1
0 0

)
y⟩
)
G(dx)G(dy).

We recall that αn1
i → 1, αn

i,− → 1 and αn
i,+ → 1. It follows that

log

(
E

[
exp

{
it

n1∑
i=1

Xi

}
− 1

])

∼


F n(1)

∫ {
eitz − 1

}
ν0n(dz) + 2Gn(1)

∫ {
eitz − 1

}
ν1n(dz), β < 1

F n(1)

∫ {
eitz − 1 − itz1{0<|z|≤1}

}
ν0n(dz)

+ 2Gn(1)

∫ {
eitz − 1 − itz1{0<|z|≤1}

}
ν1n(dz)

, β = 1.

Denote P0 =

(
0 1
1 0

)
and P1 =

(
0 1
0 0

)
. By [70, Section 4.4.2], we have νkn(A) →

νkU(A), k = 0, 1 where

νkU(A) =
1

2β

∫
S22
µk(dz)

∫ ∞

0

1A(ρz)ρ−1−βdρ, k = 0, 1

with

µk(z) =

∫
S22

1z

(
⟨Pkθ

x, θy⟩
|⟨Pkθx, θy⟩|

)
|⟨Pkθ

x, θy⟩|β H(dθx)H(dθy), z ∈ B(S1).

It follows that

log

(
E

[
exp

{
it

n1∑
i=1

Xi

}
− 1

])

−→


F (1)

∫ {
eitz − 1

}
ν0U(dz) + 2G(1)

∫ {
eitz − 1

}
ν1U(dz), β < 1

F (1)

∫ {
eitz − 1 − itz1{0<|z|≤1}

}
ν0U(dz)

+ 2G(1)

∫ {
eitz − 1 − itz1{0<|z|≤1}

}
ν1U(dz)

, β = 1.

(III.5.9)
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Using [143, lemma 14.11], we observe the equalities∫ ∞

0

(
eiρx − 1

)
ρ−1−βdρ = |x|βΓ(−β) cos

(
πβ

2

)(
1 − i tan

(
πβ

2

)
sgn(x)

)
, if β < 1∫ ∞

0

(
eiρx − 1 − iρx1{0<|x|≤1}

)
ρ−2dρ = −πx

2
− ix log(x) + icx, β = 1

for x > 0 with

c =

∫ ∞

1

ρ−2 sin(ρ)dρ+

∫ 1

0

ρ−2(sin(ρ) − ρ)dρ.

Suppose that β < 1. Similarly to the case β ∈ (1, 2) we obtain, using the symmetry
of H,∫ (

eitz − 1
)
νkU(dz)

=
|t|β

2β

∫
S22
|⟨θx, Pkθ

y⟩|βΓ(−β) cos

(
πβ

2

)(
1 − i tan

(
πβ

2

)
sgn

(
t⟨θx, Pkθ

y⟩
|⟨θx, Pkθy⟩|

))
H(dθx)H(dθy)

= −|t|βσk
β

with

σk
β =

−Γ(−β) cos
(
πβ
2

)
2β

∫
S22
|⟨θx, Pkθ

y⟩|βH(dθx)H(dθy).

Suppose now that β = 1. We have∫ (
eitz − 1 − itz1{0<|x|≤1}

)
νkU(dz)

=
1

2

∫
S22
|⟨θx, Pkθ

y⟩|
(
−π

2
|t| − it

⟨θx, Pkθ
y⟩

|⟨θx, Pkθy⟩|
log |t| + ict

⟨θx, Pkθ
y⟩

|⟨θx, Pkθy⟩|

)
H(dθx)H(dθy).

Since H is symmetric, we have∫
S22
⟨θx, Pkθ

y⟩H(dθx)H(dθy) = 0

and therefore∫ (
eitz − 1 − itz1{0<|x|≤1}

)
νkU(dz) = −σk

1 |t| with σk
1 =

π

4

∫
S22
|⟨θx, Pkθ

y⟩|H(dθx)H(dθy).

We conclude that

(III.5.9) = −
(
F (1)σ0

β + 2G(1)σ1
β

)
|t|β, β ≤ 1

hence the result of Theorem III.2.3 in the case β ≤ 1.





Chapter IV

Limit theorems for two
dimensional ambit fields observed
along curves

Abstract: This article delves into the asymptotic behavior of power variations of
continuous two-dimensional ambit fields observed along a curve in R2. Specifically,
the ambit field under consideration is an integral involving a weight kernel g : R2 →
R and a stochastic intermittency process σ, driven by Gaussian white noise. Our
investigation demonstrates that the limit theory for the power variation statistics
critically hinges on the behavior of the weight kernel g around 0. We explore the case:
g(x) ∼ c∥x∥α as x → 0 ∈ R2. We establish the laws of large numbers and stable
central limit theorems. It is noteworthy that the limit theory and proofs of these
results significantly differ from those of one-dimensional Brownian semi-stationary
processes, as discussed in, for example, [12,13,54,62,129].
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IV.1 Introduction

In recent years, there has been an increasing interest surrounding ambit stochastics.
Ambit fields, a category of spatio-temporal stochastic fields, were initially introduced
by Barndorff-Nielsen and Schmiegel in a series of papers [20,21], primarily within the
realm of turbulence modeling. However, their applications have since proliferated
across various disciplines, including mathematical finance and biology, among others,
as evidenced by works such as [9,17]. For a comprehensive exploration of the theory
and applications of ambit fields we refer to the excellent monograph [10].

Ambit processes characterize the dynamics within a stochastically evolving field,
such as turbulent wind field, along curves embedded within the field. What sets am-
bit fields apart from other models is their incorporation of additional inputs, often
called volatility or intermittency, beyond the fundamental random input. Mathe-
matically, a general ambit field is described by the formula:

Xt(x) = µ+

∫
At(x)

g(t, s,x,y)σs(y)L(ds, dy) +

∫
Dt(x)

q(t, s,x,y)as(y)dsdy,

where t denotes time while x ∈ Rd gives the position in space. Further, At(x) and
Dt(x) are ambit sets, g and q are deterministic weight functions, σ represents the
volatility or intermittency field, a is a drift field and L denotes a Lévy basis on
R+ × Rd (i.e. an independently scattered random measure on R+ × Rd).

While stochastic analysis and modeling can be investigated in general spatio-
temporal scenarios, much of the literature predominantly focuses on purely temporal
settings when exploring limit theory and statistical inference for ambit fields. In
these cases, authors often investigate Lévy semi-stationary processes, which take
the form:

Xt = µ+

∫ t

−∞
g(t− s)σsL(ds) +

∫ t

−∞
q(t− s)asds. (IV.1.1)

Here, L represents a two-sided one-dimensional Lévy motion. Numerous papers have
delved into the statistical analysis of power variations for Brownian semi-stationary
processes, as evidenced in works such as [12, 13, 54, 62, 129], which corresponds to
L = W being a Brownian motion. To provide a comparative overview, let us
briefly examine the limit theory for high-frequency observations of Brownian semi-
stationary processes. The focus lies on the power variations of X, defined as:

V (X, p)nt := ∆nτ
−p
n

⌊t/∆n⌋∑
i=1

|∆n
iX|p, t ∈ [0, T ], p > 0,

where ∆n
iX := Xi∆n −X(i−1)∆n and τ 2n := E[(∆n

iG)2] with

Gt :=

∫ t

−∞
g(t− s)W (ds) (IV.1.2)

and W representing the Brownian motion. It is notable that the limit theory crit-
ically depends on the behavior of the kernel g at 0, which determines the local
smoothness of the Brownian semi-stationary process. In particular, we obtain the
following theorem which can be found in [12,54].
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Theorem IV.1.1. Assume that the process X, introduced at (IV.1.1) with L =
W being a two-sided Brownian motion, is defined on a probability space (Ω,F ,P).
Further assume that g(x) ∼ cxα as x → 0 with α ∈ (−1/2, 1/2). Then, under
conditions of [54, Theorem 3.1], we deduce the uniform convergence in probability

sup
t∈[0,T ]

|V (X, p)nt − V (X, p)t|
P−→ 0 with V (X, p)t := mp

∫ t

0

|σs|pds,

where mp := E[|N (0, 1)|p]. When further α ∈ (−1/2, 0) and conditions of [54,
Theorem 3.2] are satisfied, we obtain the stable convergence in law:

∆−1/2
n (V (X, p)nt − V (X, p)t)

st−→ λp

∫ t

0

|σs|pB(ds),

where B is a new Brownian motion independent of the initial σ-algebra F , and the
constant λp is defined in [54, Eq. (3.3)].

In addition to the exploration of the Brownian case, another branch of literature
investigates the Lévy case [28–30,32,101–103,108], with most of the articles focusing
on the simplified scenario of σ = 1 and a = 0. From a statistical perspective,
researchers have examined the estimation of intermittency σ, the stability index
of the driving motion L, and the Hurst parameter. Only a handful of papers [31,
34,120,121] delve into specific subclasses of spatio-temporal ambit fields. Typically,
these studies concentrate on determining the limiting behavior of power variations of
rectangular increments. A related analysis of high-frequency asymptotics of SPDEs
can be found in [46].

In this paper, we investigate the limit theory for power variations of two-
parameter ambit fields observed along a curve. Specifically, we examine an ambit
field defined as

Xt =

∫ t

−∞
g(t− s)σsW (ds), (IV.1.3)

where W represents the white noise process on R2, g : R2
+ → R is a deterministic

weight function satisfying g ∈ L2(R2
+), and σ is a continuous intermittency field,

ensuring the integral at (IV.1.3) is well-defined in the Walsh sense. We set g(s1, s2) =
0 if s1 < 0 or s2 < 0. We assume that the process X can be observed discretely
along the curve

z : [0, t] → R2, z(s) = (z1(s), z2(s)).

and we introduce the new processes Y and G defined via

Yu := Xz(u), Gu :=

∫ z(u)

−∞
g(z(u) − s)W (ds), u ∈ [0, T ]. (IV.1.4)

The importance of observing ambit fields along curves in time-space has been em-
phasized in [10, 14]. In related literature, statistical inference for Gaussian fields
observed along curves has been investigated in [2, 104,151].

Our primary focus is on the asymptotic theory for power variation statistics of
Y . Similar to the one-dimensional theory illustrated in Theorem IV.1.1, the limit
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theory for the power variation of Y critically depends on the behavior of the weight
kernel g near 0 ∈ R2. However, the complexity increases significantly depending
on the specific assumptions about the function g. Here, we explore the isotropic
case where g(x) ∼ c∥x∥α. In this, we apply techniques from Malliavin calculus to
obtain the desired limit theory. We demonstrate convergence in probability for the
statistics V (X, p)n and provide the corresponding fluctuation analysis.

The paper is organized as follows: Section IV.2 introduces the setting, main as-
sumptions, and crucial decompositions. The main asymptotic statements are gath-
ered in Section IV.3, while Section IV.4 is dedicated to proving the limit theorems.
Proofs of some technical statements are collected in the Appendix.

Notations

In this section we introduce some notations that are used throughout the paper.
All stochastic processes are defined on a filtered probability space (Ω,F ,P). All
positive constants are denoted by C, or Cp if they depend on an external parameter
p, although they may change from line to line. Vectors in Rd or Zd are denoted by
bold letters; in particular, we write 1 := (1, . . . , 1) ∈ Rd and 0 := (0, . . . , 0) ∈ Rd (in
most cases we will have d = 2). For x,y ∈ Rd the vector x ◦ y ∈ Rd (resp. x + y)
denotes the componentwise multiplication (resp. summation), i.e. (x ◦ y)i = xiyi
(resp. (x + y)i = xi + yi) for all i = 1, . . . , d. Furthermore, we write x < y when
xi < yi for all i = 1, . . . , d, and [x,y] := [x1, y1] × . . .× [xd, yd]. All stochastic fields
are adapted to a filtration (Gt)t∈R2 . Furthermore, W ([s, t]) is independent of the
σ-algebra Gs and W ([s, t]) ∼ N (0,Leb[s, t]).
For functions h1, h2 : Zd → R we use the notation

h1(z) ≲ h2(z)

when there exists a constant C > 0 such that h1(z) ≤ Ch2(z) for all z ∈ Zd. We
write h1(z) ≲θ h2(z) if we want to stress the dependence of the constant C on some
external parameter θ. Furthermore, we write h1(x) ∼ h2(x) as x → x0 ∈ R2 when

lim
x→x0

h1(x)/h2(x) = 1.

In the following exposition we will use the notion of stable convergence. We re-
call that a sequence of stochastic processes (Yn)n≥1 in D([0, T ]) equipped with the
Skorohod topology and defined on (Ω,F ,P) is said to converge stably with limit

Y (Yn
st−→ Y ) defined on an extension (Ω,F ,P) of the original probability space

(Ω,F ,P), if and only if for any bounded, continuous function h and any bounded
F -measurable random variable Z it holds that

E[h(Yn)Z] → E[h(Y )Z], as n→ ∞. (IV.1.5)

We refer to [3, 141] for a detailed exposition of stable convergence. We also write

Yn
u.c.p.−→ Y to denote convergence in probability uniformly on compact intervals, i.e.

sup
t∈[0,T ]

|Yn(t) − Y (t)| P−→ 0 for any T > 0.



IV.2. The setting and main assumptions 109

IV.2 The setting and main assumptions

IV.2.1 Assumptions

In this subsection, we outline the primary prerequisites for ensuring the existence of
the integral introduced in (IV.1.3) and the necessary conditions for the limit theory.
The stochastic field (Xt)t∈R2 described in (IV.1.3) is defined in the Walsh sense, as
detailed in [149]. Specifically, we require that g ∈ L2(R2

+) and supt∈R2 E[σ2
t ] <∞ to

ensure the finiteness of the integral∫ t

−∞
g2(t− s)σ2

sds <∞ P− a.s. (IV.2.1)

We assume that we are given high frequency observations Yi∆n , i ≥ 0, where ∆n → 0
and Y is defined at (IV.1.4). The power variation of Y (or equivalently, the power
variation of X discretely observed along the curve z) is defined as

V (Y, p)nt :=

⌊t/∆n⌋∑
i=1

|∆n
i Y |p, ∆n

i Y = Yi∆n − Y(i−1)∆n , (IV.2.2)

with p > 0. Similar to the definition (IV.1.2), the Gaussian process G introduced at
(IV.1.4) governs the asymptotic theory for the statistic V (Y, p)n in certain scenarios.
However, it is important to note that the stationarity of G—typically crucial in
proving limit theorems—is lost due to time transformation by the curve z (unless
z is a linear function). This loss of stationarity has significant implications for the
presented asymptotic theory.

To determine the asymptotic theory for the power variation statistics we will
require a set of assumptions on the kernel g, the intermittency field σ and the curve
z. We start with the following assumption on the curve z:

(A1) The curve t 7→ z(t) =
(
z1(t), z2(t)

)
is C2 and the derivatives z′1(t), z

′
2(t) > 0

are bounded away from zero.

Assumption (A1) is very general, encompassing various practical curve forms. In
[14], the authors specifically examine straight lines, a special case of this assumption.
They establish corresponding laws of large numbers for quadratic variation (i.e.,
with p = 2). While (A1) doesn’t address curves that remain constant across one
component, the pertinent results are notably simpler, aligning more closely with the
one-dimensional cases explored in [12, 13, 54]. On the other hand, the positivity of
the derivatives is assumed for simplicity of expositions only.

The next set of assumptions concerns the kernel function g. In the univari-
ate framework, as observed in [12, 13, 54, 62, 129], the behavior of g at 0 dictates
the asymptotic theory for power variation statistics. In the multivariate context,
various specifications for this behavior exist, yielding markedly different theoretical
outcomes. We will delve into the following class:

(A2) For some α ∈ (−1, 0) the kernel g admits the representation

g(x) = ∥x∥αf(x). (IV.2.3)
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where ∥ · ∥ denotes the Euclidean norm and the function f : R2
+ → R is

bounded, f(0) ̸= 0 and satisfies f ∈ C1(R2
+) ∩ L2(R2

+) with

∥∇f(x)∥ ≤ C
(
∥x∥−1 ∧ 1

)
, x ∈ R2

+,

for some constant C > 0.

We note that under assumption (IV.2.3), the condition g ∈ L2(R2
+) necessitates

the restriction α > −1. Conversely, to prevent the process Y from being differ-
entiable—where the limit of V (Y, p)n can be readily obtained via the mean value
theorem and Riemann integrability—we exclude values α ≥ 0. Thus, we confine our
considerations to the range α ∈ (−1, 0) in (A2).

In addition to the continuity assumption on the intermittency field σ, we will
also stipulate its Hölder continuity in Lq, for any q > 0, to establish the central limit
theorem:

(A3) There exists a γ > 1/2 such that for any q > 0

E[|σt − σs|q]1/q ≤ Cq||t− s||γ (IV.2.4)

for some constant Cq > 0 and t, s ∈ R2
+.

Last but not least we will also require the following condition:

(A4) There exists a ∈ R2
+ such that the partial derivatives satisfy |∂jg(x)| ≤ |∂jg(y)|

for any x ≥ y ≥ a, j = 1, 2. Furthermore it holds that

Ft :=

∫
R2
+\[0,1]

(
∂1g(s)2 + ∂2g(s)2

)
σ2
t−sds <∞ P− a.s.

for all t ∈ R2
+.

IV.2.2 First remarks

Before delving into the investigation of the limit theory for power variation statistics
V (Y, p)n, let us provide some heuristic insights into the forthcoming results. The
foundation of our statistics lies in the increments of Y , which we can express as:

Yt+∆ − Yt =

∫
R2

(g(z(t+ ∆) − s) − g(z(t) − s))
(
1At,∆

(s) + 1Bt,∆
(s)
)
σsW (ds)

=: I1t,∆ + I2t,∆

with

At,∆ := (−∞, z1(t)] × (−∞, z2(t)] ∪ (z1(t), z1(t+ ∆)] × (z2(t), z2(t+ ∆)],

Bt,∆ := (−∞, z1(t)] × (z2(t), z2(t+ ∆)] ∪ (z1(t), z1(t+ ∆)] × (−∞, z2(t)].

It is evident that the terms I1t,∆ and I2t,∆ differ significantly in nature. Their stochas-
tic order heavily relies on the form of the kernel g outlined in assumptions (A2) as
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well as on the value of α. Specifically, under assumptions (A2) and (A4), and for
∆ → 0, we observe:I

1
t,∆ = OP(∆1+α) = I2t,∆ : α ∈ (−1,−1/2)

I1t,∆ = OP(∆1+α), I2t,∆ = OP(∆1/2) : α ∈ (−1/2, 0)
(IV.2.5)

Consequently, when α ∈ (−1/2, 0), the term I2t,∆ dominates in the above decompo-
sition.
We remark that the increments Yt+∆−Yt are too intricate to handle independently,
often necessitating a separation between the Gaussian component G of Y and the
intermittency σ to establish the limit theory of V (Y, p)n. Such a separation is
feasible under assumptions (A1)-(A4) when α ∈ (−1,−1/2). Here, we can justify
the approximation

Yt+∆ − Yt ≈ σzt(Gt+∆ −Gt), (IV.2.6)

where G has been introduced at (IV.1.4). Leveraging this approximation and em-
ploying further probabilistic techniques, including a blocking technique, enables us
to infer the limit theory of V (Y, p)n from the corresponding asymptotic theory for
V (G, p)n, where the latter is a functional of a non-stationary Gaussian process.
In the remaining scenario—when (A2) holds with α ∈ (−1/2, 0)—we instead infer
that:

Yt+∆ − Yt ≈ H
(
W, (σs,z2(t))s≤z1(t), (σz1(t),s)s≤z2(t)

)
.

Here, we necessitate vastly different techniques, relying on martingale approxima-
tions, to derive the asymptotic theory for V (Y, p)n.

IV.3 Limit theorems

To demonstrate the main theoretical statements, we need to introduce additional
notation. Recall that mp = E[|N (0, 1)|p] and define, for any p > 0, the function
fp(x) := |x|p −mp. We introduce the Hermite expansion of fp as

fp(x) =
∞∑
k=2

λkHk(x), (IV.3.1)

where (Hk)k≥0 are Hermite polynomials. Additionally, we define the function

ϕ2
t = z′1(t)z

′
2(t)f(0)2

(∫
R2
+\(1,∞)2

∥z′(t)◦x∥2αdx+

∫
R2
+

(∥z′(t)◦(x+1)∥α−∥z′(t)◦x∥α)2dx
)
,

(IV.3.2)
which pertains to the time variation of the curve z and the kernel g. Finally, we
introduce the correlation function

ρ(l) := corr
(
BH

1 , B
H
l+1 −BH

l

)
,

where (BH
t )t≥0 denotes the standard fractional Brownian motion with Hurst param-

eter H = α + 1 ∈ (0, 1).
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IV.3.1 Law of large numbers

We introduce the stochastic processes

w2
t = z′2(t)

∫ ∞

0

|x|2αf 2(x, 0)σ2
z1(t)−x,z2(t)

dx+ z′1(t)

∫ ∞

0

|x|2αf 2(0, x)σ2
z1(t),z2(t)−xdx.

(IV.3.3)

The following theorem demonstrates the law of large numbers under different spec-
ifications of the weight function g.

Theorem IV.3.1. Assume that conditions (A1), (A2) and (A4) hold.

(i) If α ∈ (−1,−1/2), we obtain that

∆1−p(1+α)
n V (Y, p)nt

u.c.p.−→ mp

∫ t

0

|ϕsσz(s)|pds. (IV.3.4)

(ii) If α ∈ (−1/2, 0), we deduce the convergence

∆1−p/2
n V (Y, p)nt

u.c.p.−→ mp

∫ t

0

|ws|pds. (IV.3.5)

Some remarks are necessary to grasp the implications of Theorem IV.3.5. From a
statistical perspective, the convergence described in (IV.3.4) signifies that the power
variation doesn’t directly estimate the integrated intermittency along the curve z
(as in the univariate case), but rather an integrated product of σzt and ϕt. Here, ϕt

embodies the asymptotic scaled variance of the non-stationary Gaussian process G
on small scales, i.e.

lim
∆→0

∆−(2α+2)var(Gt+∆ −Gt) = ϕ2
t .

A clear distinction arises between the convergence results (IV.3.4) and (IV.3.5).
Firstly, the scaling of the statistics under consideration is inferred from the preceding
subsection discussion (cf. (IV.2.5)). Secondly, while the limit at (IV.3.4) is solely
dependent on the intermittency σ observed along the curve z, the limit at (IV.3.5)
relies on past observations of the intermittency field. This distinction also stems
from the considerations outlined in (IV.2.5).

Remark IV.3.2. Similar to the one-dimensional case, the convergence in (IV.3.4)
can be utilized for the estimation of the parameter α. One classical approach is
to employ the change-of-frequency method for statistical estimation. Let V (Y, p)n,2t

denote the power variation statistic computed using observations (Y2i∆n)1≤i≤⌊t/(2∆n)⌋.
Then, under assumptions (A1), (A2), (A4), and α ∈ (−1,−1/2), we have:

V (Y, p)n,2t

V (Y, p)nt

P−→ 21−p(1+α).

This result can be used for the statistical estimation of the parameter α (cf. [12,13,
54]).
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Remark IV.3.3. The critical case α = −1/2 in Theorem IV.3.1(i)-(ii) is challenging
to address. In this situation we expect a non-trivial contribution from both terms I1t,∆
and I2t,∆. However, these terms are handled using different probabilistic techniques
in the proofs, making it difficult to manage the case α = −1/2. Nevertheless, in the
simple scenario where p = 2, our proofs suggest the convergence

∆1−p/2
n V (Y, 2)nt

u.c.p.−→
∫ t

0

(
ϕ2
sσ

2
z(s) + w2

s

)
ds.

when α = −1/2.

Remark IV.3.4. The findings of this and subsequent subsections can be extended
to d-parameter stochastic fields relatively straightforwardly, albeit with much heavier
notation. For instance, in the analogue of assumption (A2), the critical region for
the parameter α becomes:

α ∈ (−d/2, 1 − d/2).

However, explicit discussion of this scenario is beyond the scope of this paper.

IV.3.2 Weak limit theorems

This subsection is dedicated to presenting fluctuation results associated with Theo-
rem IV.3.1. Our main result is demonstrated in the following theorem.

Theorem IV.3.5. Assume that conditions (A1)-(A4) are satisfied and α ∈ (−1,−3/4).
Furthermore, we assume that γ(p∧ 1) > 1/2. Let (Bt)t≥0 be a Brownian motion de-
fined on an extension (Ω,F ,P) of the original probability space (Ω,F ,P), and being
independent of the σ-field F . We deduce the functional stable convergence

∆−1/2
n

(
∆1−p(1+α)

n V (Y, p)nt −mp

∫ t

0

|ϕsσzs|pds
)

st−→
∫ t

0

κs|σzs |pdBs. (IV.3.6)

where κ2s is defined as

κ2s = ϕ2p
s

∞∑
k=2

λ2kk!

(
1 + 2

∞∑
l=1

ρ(l)k

)
.

Remark IV.3.6. We remark that
∑∞

l=1 ρ(l)2 < ∞ when H = α + 1 ∈ (0, 3/4).
Hence, we conclude that

κ2s ≤ ϕ2p
s

(
1 + 2

∞∑
l=1

ρ(l)2

)
∞∑
k=2

λ2kk! = ϕ2p
s var(fp(N (0, 1)))

(
1 + 2

∞∑
l=1

ρ(l)2

)
,

which ensures finiteness of the function κ.

Let us provide some insights into the results of Theorem IV.3.5. First, compared to
the law of large numbers presented in (IV.3.4), the stable limit theorem in (IV.3.6)
requires an additional restriction to α ∈ (−1,−3/4). This is due to an intrinsic

bias that may explode when multiplied by the convergence rate ∆
−1/2
n . Similar bias

issues arise in the setting of (IV.3.5), hence explaining the absence of associated
weak limit theorems in this case.
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Proving the statement in (IV.3.6) hinges on demonstrating the validity of the ap-
proximation (IV.2.6) and then employing a blocking technique to derive the conver-
gence at (IV.3.6) from the corresponding result for the statistic V (G, p)n. However,
handling the functional V (G, p)n poses several technical challenges since G is a
non-stationary Gaussian process. Consequently, the Malliavin calculus techniques
established [114, 123], utilized to show asymptotic normality and tightness of func-
tionals of stationary Gaussian sequences, require modification to accommodate the
non-stationary setting.

IV.4 Proofs

It is worth noting that σ is locally bounded due to its continuity. Additionally,
because all our asymptotic results are stable under localization, we can assume
without loss of generality that the intermittency field σ is bounded on compact sets;
see e.g. [15] for a detailed argument. Via the same argument we can assume that
the random field F introduced in Assumption (A4) is bounded on compact sets.
Furthermore, we assume that conditions (A1) and (A4) hold throughout the proof.
Recalling that z1(t), z2(t) > 0, we introduce the filtration

Ft := Gz(t), t ≥ 0. (IV.4.1)

It will be convenient to use the following notation (cf. Figure 1):

Ai,n :=
[
z1
(
(i− 1)∆n

)
, z1(i∆n)

)
×
[
z2
(
(i− 1)∆n

)
, z2(i∆n)

)
,

Bi,n :=
(
−∞, z1

(
(i− 1)∆n

))
×
[
z2
(
(i− 1)∆n

)
, z2(i∆n)

)
,

B′
i,n :=

[
z1
(
(i− 1)∆n

)
, z1(i∆n)

)
×
(
−∞, z2

(
(i− 1)∆n

))
,

Ci,n :=
(
−∞, z1(i∆n)

)
×
(
−∞, z2(i∆n)

)
,

and
gi,n(x) := g

(
z(i∆n) − x

)
, x ∈ Ci,n, (IV.4.2)

for any i = 0, 1, 2 . . . and n ∈ N.

IV.4.1 Auxiliary results

Recalling the notation x ◦ y, we observe the inequality

∥x ◦ y∥ ≤ ∥x∥∥y∥. (IV.4.3)

In this section, we shall derive various auxiliary results, including the ones related to
the asymptotic behavior of the covariance kernel of the increments of the Gaussian
core (Gt)t≥0 that has been introduced in (IV.1.4). Note that Assumption (A1)
implies that for any T > 0, there exist constants 0 < z′T ≤ z′T <∞ such that

z′T (t− s) ≤ zi(t) − zi(s) ≤ z′T (t− s) (IV.4.4)

for any 0 ≤ s ≤ t ≤ T and i = 1, 2.
Let us write ∆n

iG := Gi∆n −G(i−1)∆n and γn(i, j) := cov(∆n
iG,∆

n
jG) for any i, j =

0, 1, 2 . . . and n ∈ N. We start with the following technical results.
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Figure IV.1: An illustration of some sets defined in the proof of Lemma IV.4.1

0
0

Bi,n

B′i,n
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Ai−1,n

Bi−1,n

B′i−1,n

Ci−2,n
z1((i− 2)∆n) z1((i− 1)∆n) z1(i∆n)

z2((i− 2)∆n)

z2((i− 1)∆n)

z2(i∆n)

Lemma IV.4.1. Suppose that Assumptions (A1) and (A2) hold, and that α ∈
(−1,−1/4). Then for any T > 0, there exists a sequence

(
ρ(k)

)∞
k=0

such that∑∞
k=0 ρ(k)2 <∞ and

|γn(i, j)| ≲α,f,z ∆2α+2
n ρ(|i− j|)

for any n ∈ N and i, j = 0, 1, . . . , ⌊T/∆n⌋.

Proof. See Appendix.

Lemma IV.4.2. Suppose that Assumptions (A1) and (A2) hold. Then we deduce
the inequalities∫

Ai,n

g2i,n(s)ds ≲α,f,z ∆2+2α
n ,

∫
Bi,n∪B′

i,n

g2i,n(s)ds ≲α,f,z ∆2+2α
n ,

∫
Ci−1,n

{gi,n(s) − gi−1,n(s)}2 ds ≲α,f,z ∆2+2α
n ,

∫
(−∞,z(i∆n)−ε)

(gi,n(s) − gi−1,n(s))2 ds ≲α,f,z ∆2
nε

2α,

for any ε = (ε, ε) with ε ∈ (∆n, 1).

Proof. The first three inequalities follow directly from the proof of Lemma IV.4.1
when handling the variance term γn(i, i). To show the last inequality we use the
substitution y = z(i∆n) − s and Assumption (A2) to get∫

(−∞,z(i∆n)−ε)

(gi,n(s) − gi−1,n(s))2 ds

=

∫
(ε,∞)

(g(y) − g(y + z((i− 1)∆n) − z(i∆n)))2 ds
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=

∫
(ε,∞)

(∥y∥αf(y) − ∥y + z((i− 1)∆n) − z(i∆n)∥αf(y + z((i− 1)∆n) − z(i∆n)))2 ds.

Using again Assumption (A2), we thus conclude that∫
(−∞,z(i∆n)−ε)

(gi,n(s) − gi−1,n(s))2 ds

≲α,f,z

∫
(ε,∞)

(∥y∥α − ∥y + z((i− 1)∆n) − z(i∆n)∥α)2 dy + ∆2
n.

For the latter integral we use the substitution y = ε ◦ x to obtain:∫
(ε,∞)

(∥y∥α − ∥y + z((i− 1)∆n) − z(i∆n)∥α)2 dy

= ε2+2α

∫
(1,∞)

(
∥x∥α − ∥x + ε−1{z((i− 1)∆n) − z(i∆n)}∥α

)2
dx.

Finally, applying the mean value theorem and the differentiability of the curve z,
we obtain that∫

(1,∞)

(
∥x∥α − ∥x + ε−1{z((i− 1)∆n) − z(i∆n)}∥α

)2
dx

≲α,f,z ∆2
nε

−2

∫
(1,∞)

∥x∥2α−2dx = O(∆2
nε

−2).

This completes the proof of Lemma IV.4.2.

Lemma IV.4.3. Suppose that Assumptions (A1) and (A2) hold, and that α ∈
(−1,−1/2). Then we have,

(i) For any T > 0,
lim
∆→0

sup
t∈[0,T ]

|∆−(2α+2)vt,t+∆ − ϕ2
t | = 0,

where

vt,t+∆ := var(Gt+∆ −Gt) (IV.4.5)

and ϕ2
t has been defined in (IV.3.2).

(ii) For any T > 0,
sup

t∈[0,T ]

|ϕt+∆ − ϕt| ≲f,T,z ∆.

(iii) For any T > 0,

inf
n∈N,t∈[0,T ]

∆−2α−2
n vt,t+∆n > 0.

Proof. See Appendix.

Lemma IV.4.4. Let α ∈ (−1,−1/2). Under Assumptions (A1), (A2) and (A4),
for any q > 0, we obtain that

E[|∆n
i Y |q] + E[|∆n

iG|q] ≲q ∆(1+α)q
n
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Proof. Recalling (IV.4.5), we deduce that

E[|∆n
iG|q] = mqv

q/2
(i−1)∆n,i∆n

≲q ∆(1+α)q
n

where we used Lemma IV.4.3.
Let us proceed to the second part. We recall Assumption (A4) and assume without
loss of generality that a > 1. Applying Burkholder’s inequality yields:

E[|∆n
i Y |q] ≲q

(∫
[z((i−1)∆n),z(i∆n)]

g2i,n(s)σ2
sds

)q/2

+

(∫
(−∞,z(i∆n)]\[z((i−1)∆n),z(i∆n)]

{gi,n(s) − gi−1,n(s)}2 σ2
sds

)q/2

Recalling that σ is bounded on compact intervals and applying Assumption (A4),
we deduce that

E[|∆n
i Y |q] ≲q E

[(
v(i−1)∆n,i∆n + ∆2

nFz((i−1)∆n)

)q/2]
.

This completes the proof of Lemma IV.4.4.

IV.4.2 Proofs of laws of large numbers

Next, we prove a law of large numbers for the power variations of the Gaussian core
G.

Lemma IV.4.5. Under the assumptions of Theorem IV.3.1(i), we have for any
fixed t > 0:

∆1−p(1+α)
n V (G, p)nt

P−→ mpϕ
p+
t as n→ ∞,

where

ϕp+
t :=

∫ t

0

|ϕs|pds.

Proof. We obtain that

∆1−p(1+α)
n E[V (G, p)nt ] = ∆1−p(1+α)

n

⌊t/∆n⌋∑
i=1

E[|∆n
iG|p]

= mp∆n

⌊t/∆n⌋∑
i=1

∆−p(1+α)
n v

p/2
(i−1)∆n,i∆n

= mp∆n

⌊t/∆n⌋∑
i=1

(
ϕ2
(i−1)∆n

+ u∆n((i− 1)∆n)
)p/2 −−−→

n→∞
mpϕ

p+
t ,

where we used Lemma IV.4.3 in the last part with the notation u∆(t) := ∆−(2α+2)vt,t+∆−
ϕ2
t .

For two jointly normal random variables X1 and X2 with mean zero and unit vari-
ance, we observe the inequality (recall that fp(x) =

∑
k≥2 λkHk(x)):

|cov(|X1|p, |X2|p)| =

∣∣∣∣∣∑
k≥2

λ2kk!E[X1X2]
k

∣∣∣∣∣ ≤ E[X1X2]
2
∑
k≥2

λ2kk!.
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As a consequence, we conclude for the variance of V (G, p)nt that

∆2−2p(1+α)
n var

(
V (G, p)nt

)
= ∆2

n

⌊t/∆n⌋∑
i=1

var
(∣∣∣∆n

iG

∆1+α
n

∣∣∣p)
+ ∆2

n2

⌊t/∆n⌋−1∑
k=1

⌊t/∆n⌋−k∑
i=1

cov
(∣∣∣∆n

iG

∆1+α
n

∣∣∣p, ∣∣∣∆n
i+kG

∆1+α
n

∣∣∣p)
≲α,f,z,p ∆2

n

⌊t/∆n⌋∑
i=1

ρ(0)2 + 2∆2
n

⌊t/∆n⌋−1∑
k=1

⌊t/∆n⌋−k∑
i=1

ρ(k)2

≲α,f,z,p ∆n

∞∑
k=0

ρ(k)2 −−−→
n→∞

0.

IV.4.2.1 Proof of Theorem IV.3.1(i)

By Pólya’s theorem, it suffices to establish (IV.3.4) for a fixed t ≥ 0. To this end,
let us consider for any ℓ > 0 the decomposition

∆1−p(1+α)
n V (Y, p)nt −mp

∫ t

0

|ϕsσz(s)|pds

= ∆1−p(1+α)
n

⌊t/∆n⌋∑
i=1

(
|∆n

i Y |p − |σz((i−1)∆n)∆
n
iG|p

)
+ ∆1−p(1+α)

n

⌊ℓt⌋∑
j=1

∑
i∈In(j,ℓ)

(
|σz((i−1)∆n)|p − |σz((j−1)/ℓ)|p

)
|∆n

iG|p

+

⌊ℓt⌋∑
j=1

|σz((j−1)/ℓ)|p
(

∆1−p(1+α)
n

∑
i∈In(j,ℓ)

|∆n
iG|p −mp(ϕ

p+
j/ℓ − ϕp+

(j−1)/ℓ)

)

+mp

( ⌊ℓt⌋∑
j=1

|σz((j−1)/ℓ)|p(ϕp+
j/ℓ − ϕp+

(j−1)/ℓ) −
∫ t

0

|σz(s)|pdϕp+
s

)
=: At(n) +Bt(ℓ, n) + Ct(ℓ, n) +Dt(ℓ),

where

In(j, ℓ) :=

{
i : i∆n ∈

(
j − 1

ℓ
,
j

ℓ

]}
.

By the definition of the Riemann–Stieltjes integral, Dt(ℓ)
a.s.→ 0 as ℓ→ ∞. Moreover,

by Lemma IV.4.5, we have Ct(ℓ, n)
P−→ 0 as n→ ∞ for any ℓ > 0.

Let us proceed with the term Bt(ℓ, n). To check that for any ε > 0,

lim
ℓ→∞

lim sup
n→∞

P(|Bt(ℓ, n)| > ε) = 0,
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we use the bound

|Bt(ℓ, n)| ≤
⌊ℓt⌋∑
j=1

sup
s∈((j−2)/ℓ,j/ℓ]

||σz(s)|p − |σz((j−1)/ℓ)|p|
(

∆1−p(1+α)
n

∑
i∈In(j,ℓ)

|∆n
iG|p

)
.

(IV.4.6)
Now, observe that, by Lemma IV.4.5, the right-hand side of (IV.4.6) converges in
probability, as n→ ∞, to

⌊ℓt⌋∑
j=1

sup
s∈((j−2)/ℓ,j/ℓ]

||σz(s)|p − |σz((j−1)/ℓ)|p|(ϕp+
j/ℓ − ϕp+

(j−1)/ℓ)

≤ sup
s∈[0,T ]

|ϕs|p
1

ℓ

⌊ℓt⌋∑
j=1

sup
s∈((j−2)/ℓ,j/ℓ]

||σz(s)|p − |σz((j−1)/ℓ)|p|
P−−−→

ℓ→∞
0,

where the final convergence follows from the continuity of the intermittency field σ.

Finally, we handle the term At(n). Due to inequalities ||x|p−|y|p| ≤ p|x−y|(|x|p−1+
|y|p−1) for p > 1, and ||x|p − |y|p| ≤ |x − y|p for p ≤ 1, x, y ∈ R, Cauchy-Schwarz
inequality and Lemma IV.4.4, it suffices to show that

∆1−2(1+α)
n

⌊t/∆n⌋∑
i=1

E
[(

∆n
i Y − σz((i−1)∆n)∆

n
iG
)2]→ 0 (IV.4.7)

as n→ ∞. We use the decomposition

∆n
i Y − σz((i−1)∆n)∆

n
iG = R(1)

n +R(2)
n +R(3)

n (IV.4.8)

where

Rn
i (1) =

z(i∆n)∫
z((i−1)∆n)

g(z(i∆n) − s)(σs − σz((i−1)∆n))W (ds),

Rn
i (2) =

∫
Bi(εεε)

(g(z(i∆n) − s) − g(z((i− 1)∆n) − s))σsW (ds)

− σz((i−1)∆n)

∫
Bi(εεε)

(g(z(i∆n) − s) − g(z((i− 1)∆n) − s))W (ds),

Rn
i (3) =

∫
Ci(εεε)

(g(z(i∆n) − s) − g(z((i− 1)∆n) − s))σsW (ds)

− σz((i−1)∆n)

∫
Ci(εεε)

(g(z(i∆n) − s) − g(z((i− 1)∆n) − s))W (ds)

for some εεε = (ε, ε) > 0. Here the sets Bi(εεε) and Ci(εεε) are defined as

Bi(εεε) := [z((i− 1)∆n) − εεε, z(i∆n)] \ [z((i− 1)∆n), z(i∆n)], (IV.4.9)

Ci(εεε) := (−∞, z(i∆n)] \ [z((i− 1)∆n) − εεε, z(i∆n)]. (IV.4.10)



120
Chapter IV. Limit theorems for two dimensional ambit fields

observed along curves

We note that

E[(Rn
i (1))2] =

z(i∆n)∫
z((i−1)∆n)

g2i,n(s)E[(σs − σz((i−1)∆n))
2]ds

≲f ∆2α
n

z(i∆n)∫
z((i−1)∆n)

E[(σs − σz((i−1)∆n))
2]ds

≲f ∆2+2α
n E[r(z((i− 1)∆n), C∆n)]

where r(s, ηηη) := sup{(σs − σt)
2|t ∈ [s − ηηη, s + ηηη]}. In view of continuity of σ, we

deduce the convergence

∆1−2(1+α)
n

⌊t/∆n⌋∑
i=1

E
[
(Rn

i (1))2
]
→ 0.

Next, we decompose Rn
i (2) = Rn

i (2.1) +Rn
i (2.2), where

Rn
i (2.1) =

∫
Bi(εεε)

(gi,n(s) − gi−1,n(s))(σs − σz((i−1)∆n)−εεε)W (ds),

Rn
i (2.2) =(σz((i−1)∆n)−εεε − σz((i−1)∆n))

∫
Bi(εεε)

(gi,n(s) − gi−1,n(s))W (ds).

Then, we have:

∆1−2(1+α)
n

⌊t/∆n⌋∑
i=1

E
[
(Rn

i (2.1))2
]
≲f ∆n

⌊t/∆n⌋∑
i=1

E[r(z((i− 1)∆n), εεε)],

∆1−2(1+α)
n

⌊t/∆n⌋∑
i=1

E
[
(Rn

i (2.2))2
]
≲f ∆n

⌊t/∆n⌋∑
i=1

E[r(z((i− 1)∆n), εεε)2]1/2.

Hence, both terms converge to 0 when we first let n→ ∞ and then εεε→ 0.
Finally, due to the boundedness of σ on compact sets and Aassumption (A4), we
obtain similarly to the proof of Lemma IV.4.4 that

E
[
(Rn

i (3))2
]
≲σ

∫ z((i−1)∆n)−εεε

−∞

[
gi,n(s) − gi−1,n(s)

]2
ds

≲σ,z,f,α ∆2α+2
n

∫
[ε,∞)2

[
∆n∥y∥α∥y + 1∥α+1 ∧ ∥y∥2α−2

]
dy

≲σ,z,f,α,ε ∆2α+2
n (∆nM

2α+3
n +M2α

n ) ≤ ∆2α+2
n ∆−2α/3

n ,

where the second inequality follows from bounds derived around (IV.5.16) and the

last step chooses Mn = ∆
−1/3
n . This leads to

∆1−2(1+α)
n

⌊t/∆n⌋∑
i=1

E
[
(Rn

i (3))2
]
≲σ,z,f,α,t,ε ∆−2α/3

n ,

which completes the proof of Theorem IV.3.1(i).
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IV.4.2.2 Proof of Theorem IV.3.1(ii)

We start with the decomposition

∆n
i Y =: Y 1

i,n + Y 2
i,n (IV.4.11)

where

Y 1
i,n :=

∫
Bi,n∪B′

i,n

gi,n(s)σsW (ds),

Y 2
i,n :=

∫
Ai,n∪Ci−1,n

{gi,n(s) − gi−1,n(s)}σsW (ds).

We will show later that that the term Y 1
i,n dominates under conditions of Theorem

IV.3.1(ii). This random variable is further approximated via

Y ′
i,n :=

∫
Bi,n

gi,n(s)σs1,z2((i−1)∆n)W (ds) +

∫
B′
i,n

gi,n(s)σz1((i−1)∆n),s2W (ds). (IV.4.12)

The next lemma assesses the stochastic order of the terms Y 1
i,n, Y 2

i,n and Y ′
i,n.

Lemma IV.4.6. Let p > 0. Then, under assumptions (A1), (A2), (A4) and α ∈
(−1/2, 0),

E
[
|Y 1

i,n|p + |Y ′
i,n|p

]
≲p ∆p/2

n , E
[
|Y 2

i,n|p
]
≲p ∆p(1+α)

n .

Proof. See Appendix.

In particular, we conclude from Lemma IV.4.6 that the term Y 2
i,n is negligible com-

pared to Y 1
i,n. The following statement shows that the term Y 1

i,n is well approximated
by the quantity Y ′

i,n.

Lemma IV.4.7. Let p > 0 and recall the notation fp(x) = |x|p. Then, under
assumptions (A1), (A2), (A4) and α ∈ (−1/2, 0), as n→ ∞:

∆n

⌊t/∆n⌋∑
i=1

(
fp(∆

−1/2
n Y 1

i,n) − fp(∆
−1/2
n Y ′

i,n)
) u.c.p.−→ 0.

Proof. See Appendix.

Now, let us apply the previous statements. First of all, due to Lemma IV.4.6, we
readily deduce the convergence

∆n

⌊t/∆n⌋∑
i=1

fp(∆
−1/2
n Y 2

i,n)
u.c.p.−→ 0

by Markov inequality. Hence, using Lemma IV.4.7, we conclude that

∆n

⌊t/∆n⌋∑
i=1

(
fp(∆

−1/2
n ∆n

i Y ) − fp(∆
−1/2
n Y ′

i,n)
) u.c.p.−→ 0.
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As a consequence, we are left to showing the convergence

∆n

⌊t/∆n⌋∑
i=1

fp(∆
−1/2
n Y ′

i,n)
u.c.p.−→ mp

∫ t

0

|ws|pds.

Applying martingale techniques, the latter follows if we prove the following state-
ments:

∆n

⌊t/∆n⌋∑
i=1

E
[
fp(∆

−1/2
n Y ′

i,n)|F(i−1)∆n

] u.c.p.−→ mp

∫ t

0

|ws|pds (IV.4.13)

∆2
n

⌊T/∆n⌋∑
i=1

E
[
f 2
p (∆−1/2

n Y ′
i,n)|F(i−1)∆n

] P−→ 0. (IV.4.14)

The convergence at (IV.4.14) follows immediately from Lemma IV.4.6. To prove
(IV.4.13), we recall the definition (IV.4.1) of the filtration Ft, and notice that,
conditionally on F(i−1)∆n , the random variable Y ′

i,n is Gaussian with conditional
variance

E
[(
Y ′
i,n

)2 |F(i−1)∆n

]
=

∫
Bi,n

g2i,n(s)σ2
s1,z2((i−1)∆n)ds

+

∫
B′
i,n

g2i,n(s)σ2
z1((i−1)∆n),s2

ds =: ∆nw
2
i,n.

The convergence at (IV.4.13), and hence the statement of Theorem IV.3.1(ii), now
follows from the following lemma.

Lemma IV.4.8. Under assumptions of Theorem IV.3.1(ii), it holds that

∆n

⌊t/∆n⌋∑
i=1

∣∣∣wp
(i−1)∆n

− wp
i,n

∣∣∣ u.c.p.−→ 0. (IV.4.15)

Proof. See Appendix.

IV.4.3 Proof of the central limit theorem

IV.4.3.1 Auxiliary lemmas

Lemma IV.4.9. Let α ∈ (−1,−3/4) and ∆ ∈ (0, 1). Under Assumptions (A1) and
(A2), we obtain that

sup
t∈[0,T ]

|∆−(2α+2)vt,t+∆ − ϕ2
t | ≲α,f,T,z ∆β (IV.4.16)

for some β > 1/2.

Proof. We proceed as in the proof of Lemma IV.4.3(i) and note that several error
terms are O(∆), which mainly stem from (IV.5.9). In this part, we only consider
the remaining terms.
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Let us first examine the components of vt,t+∆(1). In particular, concerning the term
I2 introduced in Section IV.5.2, we have

sup
t∈[0,T ]

I2 ≲α,f,T,z ∆

∫
(1,M ]×(0,1]

∥y∥2α+1dy +

∫
[M,∞)×(0,1]

∥y∥2αdy

≲α,f,T,z ∆

∫
(1,M ]×(0,1]

y2α+1
1 dy1dy2 +

∫
[M,∞)×(0,1]

y2α1 dy1dy2

≲α,f,T,z ∆
M2α+2

2α + 2
− M2α+1

2α + 1
.

Now, let us pick β ∈ (1/2,−2α − 1), which is guaranteed by α < −3/4. Now, we
choose M such that M2α+1 = ∆β. Then, we have that

sup
t∈[0,T ]

I2 ≲α,f,T,z ∆β.

The term I3 of vt,t+∆(1) (see again Section IV.5.2), and parts of vt,t+∆(2) are shown
analogously.

Next, we come back to the computation of the covariance function γn(i, j) = cov(∆n
iG,∆

n
jG).

Lemma IV.4.10. Let us fix an integer l ≥ 1. Then it holds that

sup
i=1,...,⌊T/∆n⌋

|∆−2α−2
n γn(i, i+ l) − ϕ2

(i−1)∆n
ρ(l)| → 0 as n→ ∞,

where ρ(t, l) is defined as

ρ(l) :=
1

2

[
(l − 1)2α+2 + (l + 1)2α+2 − 2l2α+2

]
. (IV.4.17)

Proof. We represent the covariances via the polarisation identity:

γn(i, i+ l) =
1

2

[
vi∆n,(i+l−1)∆n + v(i−1)∆n,(i+l)∆n − vi∆n,(i+l)∆n − v(i−1)∆n,(i+l−1)∆n

]
.

Then, in view of Lemma IV.4.3(i), (ii), we deduce the claim

sup
i=1,...,⌊T/∆n⌋

|∆−2α−2
n γn(i, i+ l) − ρ((i− 1)∆n, l)| as n→ ∞, (IV.4.18)

where

ρ((i− 1)∆n, l) =
ϕ2
(i−1)∆n

2

[
(l − 1)2α+2 + (l + 1)2α+2 − 2l2α+2

]
.

Next, we will show the associated functional central limit theorem. For this purpose
we recall the Hermite expansion of the function fp(x) = |x|p −mp:

fp(x) =
∞∑
k=2

λkHk(x).

We note that
∑∞

k=2 λ
2
kk! <∞ for any p ≥ 0 due to E[f2p(N (0, 1))] <∞.
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Proposition IV.4.11. Under the assumptions of Theorem IV.3.5(i), we deduce the
functional stable convergence on D([0, T ]):

∆−1/2
n

(
∆1−p(1+α)

n V (G, p)nt −mp

∫ t

0

|ϕs|pds
)

st−→
∫ t

0

κsdBs, as n→ ∞,

where B is a Brownian motion independent of F and κ2s is given as

κ2s = ϕ2p
s

∞∑
k=2

λ2kk!

(
1 + 2

∞∑
l=1

ρ(l)k

)
.

Proof. It suffices to prove the finite dimensional weak convergence and the tightness
of the statistic.
We start with the first claim and pick 0 ≤ t1 < . . . < td with d ∈ N. Let us denote
Sn = (Sn(t1), . . . , Sn(td)), where

Sn(t) = ∆−1/2
n

(
∆1−p(1+α)

n V (G, p)nt −mp

∫ t

0

|ϕs|pds
)
. (IV.4.19)

We use the decomposition Sn(t) = S
(1)
n (t) + S

(2)
n (t) + S

(3)
n (t), where

S(1)
n (t) := ∆1/2

n

⌊t/∆n⌋∑
i=1

ϕp
(i−1)∆n

(∣∣∣∣∣ ∆n
iG√

v(i−1)∆n

∣∣∣∣∣
p

−mp

)
,

S(2)
n (t) := ∆1/2

n

⌊t/∆n⌋∑
i=1

(
(∆−2α−2

n v(i−1)∆n)p − ϕp
(i−1)∆n

) ∣∣∣∣∣ ∆n
iG√

v(i−1)∆n

∣∣∣∣∣
p

,

S(3)
n (t) := ∆1/2

n mp

∫ t

0

(
ϕp
[s/∆n]∆n

− ϕp
s

)
ds.

In view of Lemma IV.4.9, we conclude that |S(2)
n (t)| u.c.p.−→ 0. On the other hand, the

statement (IV.5.17) and the condition p > 1/2 imply the convergence |S(3)
n (t)| u.c.p.−→ 0.

Next, we deal with the main part S
(1)
n . Here we heavily use techniques from Malli-

avin calculus. In particular, the Gaussian process (Gt)t≥0 can be interpreted as
an isonormal Gaussian family, to which we can associate a separable Hilbert space
H. The scalar product ⟨·, ·⟩H on H is induced by the covariance kernel of G. A
detailed discussion of notions used in the arguments below can be found in the
monograph [117].
Recalling |x|p −mp =

∑∞
k=2 λkHk(x) and noting the following identity for iterated

Wiener integrals

Hk

(
∆n

iG√
v(i−1)∆n

)
= Ik

( ∆n
iG√

v(i−1)∆n

)⊗k
 ,

we obtain the following expansion:

S(1)
n (tq) =

∞∑
k=2

Ik(fn
k (q)) (IV.4.20)
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where

fn
k (q) = λk∆1/2

n

⌊tq/∆n⌋∑
i=1

ϕp
(i−1)∆n

(
∆n

iG√
v(i−1)∆n

)⊗k

.

We will show that(
S(1)
n (t1), . . . , S

(1)
n (td)

) d−→
(∫ t1

0

κsdBs, . . . ,

∫ td

0

κsdBs

)
. (IV.4.21)

In view of [11, Theorem 5], a sufficient condition for the convergence (IV.4.21) is
the fulfillment of the following three conditions:

(i) For any q ∈ {1, . . . , d}, we have

lim
m→∞

lim sup
n→∞

∞∑
k=m

k!||fn
k (q)||2H⊗k = 0.

(ii) There exists a sequence Σ,Σ2,Σ3, . . . of positive semidefinite d × d matrices
such that for any (q1, q2) ∈ {1, . . . , d}2 and k ≥ 2 it holds that

lim
n→∞

k!⟨fn
k (q1), f

n
k (q2)⟩H⊗k = Σk(q1, q2),

and Σ =
∑∞

k=2 Σk.

(iii) For any q ∈ {1, . . . , d}, k ≥ 2 and r ∈ {1, . . . , k − 1} it holds that

lim
n→∞

||fn
k (q) ⊗r f

n
k (q)||2H⊗2(k−r) = 0.

First, we prove (i) and (ii). To this end, for any q ∈ {1, . . . , d}, we note that

k!||fn
k (q)||2H⊗k = k!λ2k∆n

⌊tq/∆n⌋∑
i=1

⌊tq/∆n⌋∑
j=1

ϕp
(i−1)∆n

ϕp
(j−1)∆n

〈( ∆n
iG√

v(i−1)∆n

)⊗k

,
( ∆n

jG√
v(j−1)∆n

)⊗k〉
H⊗k

= k!λ2k∆n

( ⌊tq/∆n⌋∑
i=1

ϕ2p
(i−1)∆n

+ 2

⌊tq/∆n⌋∑
i=1

⌊tq/∆n⌋−i∑
l=1

ϕp
(i−1)∆n

ϕp
(i+l−1)∆n

rn(i, i+ l)k

)
.

Combining Lemma IV.4.1 and Lemma IV.4.3(iii) leads to

|rn(i, j)| ≤ Cρ̄(|i− j|). (IV.4.22)

For any k ≥ 2, this yields |rn(i, j)k| ≤ Cρ̄(|i − j|)2 due to |rn(i, j)| ≤ 1. Using this
result together with uniform boundedness of ϕ on compact intervals yields

0 ≤ lim sup
n→∞

k!||fn
k (q)||2H⊗k ≤ C

∞∑
k=m

k!λ2k

(
1 + 2

∞∑
i=1

ρ̄(i)2

)
.

Since
∑∞

i=1 ρ̄(i)2 <∞ and
∑∞

k=2 k!λ2k <∞, we immediately deduce part (i).
Concerning part (ii), we only consider the case q =: q1 = q2; the scenario q1 ̸= q2 is
handled similarly. For any k ≥ 2 note that

k!||fn
k (q)||2H⊗k = k!λ2kM

n
k (q) + 2k!λ2kR

n
k(q),
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where

Mn
k (q) = ∆n

⌊tq/∆n⌋∑
i=1

ϕ2p
(i−1)∆n

(
1 + 2

[tq/∆n]−i∑
l=1

(
ρ((i− 1)∆n, l)

ϕ2
(i−1)∆n

)k)
,

Rn
k(q) = ∆n

⌊tq/∆n⌋∑
i=1

⌊tq/∆n⌋−i∑
l=1

ϕp
(i−1)∆n

ϕp
(i+l−1)∆n

rn(i, i+ l)k − ϕ2p
(i−1)∆n

(
ρ((i− 1)∆n, l)

ϕ2
(i−1)∆n

)k

.

Regarding the main term, we deduce that

lim
n→∞

k!λ2kM
n
k (q) = k!λ2k

∫ tq

0

ϕ2p
s

(
1 + 2

∞∑
l=1

ρ(l)k
)
ds. (IV.4.23)

To deal with the term Rn
k(q), we first notice that for each l ≥ 1, the continuity of ϕ

and Lemma IV.4.10 imply that

sup
i=1,...,⌊T/∆n⌋

∣∣∣rn(i, i+ l) − ϕ−2
(i−1)∆n

ρ((i− 1)∆n, l)
∣∣∣→ 0 as n→ ∞. (IV.4.24)

Due to Lemma IV.4.1, Lemma IV.4.10 and the dominated convergence theorem, we
deduce that

sup
i=1,...,⌊T/∆n⌋

∞∑
l=1

∣∣∣∣∣∣ϕp
(i−1)∆n

ϕp
(i+l−1)∆n

rn(i, i+ l)k − ϕ2p
(i−1)∆n

(
ρ((i− 1)∆n, l)

ϕ2
(i−1)∆n

)k
∣∣∣∣∣∣→ 0

as n→ ∞, which implies that limn→∞ 2k!λ2kR
n
k(q) = 0. As a result, (ii) is verified.

Next, we proceed to (iii). For any q ∈ {1, . . . , d}, k ≥ 2 and r ∈ {1, . . . , k − 1}, we
set Cn

k (q, r) = ||fn
k (q) ⊗r f

n
k (q)||2

H⊗2(k−r) . We have that

Cn
k (q, r) =λ4k∆2

n

⌊tq/∆n⌋∑
i1,i2,i3,i4=1

(
ϕp
(i1−1)∆n

ϕp
(i2−1)∆n

ϕp
(i3−1)∆n

ϕp
(i4−1)∆n

× rn(i1, i2)
rrn(i3, i4)

rrn(i1, i3)
k−rrn(i2, i4)

k−r

)

≤Cλ4k∆2
n

⌊tq/∆n⌋∑
i1,i2,i3,i4=1

ρ̄(|i1 − i2|)rρ̄(|i3 − i4|)rρ̄(|i1 − i3|)k−rρ̄(|i2 − i4|)k−r.

Note that ρ̄(|i1 − i2|)rρ̄(|i1 − i3|)k−r ≤ ρ̄(|i1 − i2|)k + ρ̄(|i1 − i3|)k. Using this with

multiple applications of the inequality
∑⌊tq/∆n⌋

i=1 ρ̄(|i − j|)q ≤ 2
∑⌊tq/∆n⌋−1

i=0 ρ̄(i)v for
any v ≥ 1 and j ∈ {1, . . . , ⌊tq/∆n⌋} yields

Cn
k (q, r) ≤ 16Cλ4k∆n

⌊tq/∆n⌋−1∑
j1=0

ρ̄(j1)
r

⌊tq/∆n⌋−1∑
j2=0

ρ̄(j2)
k−r

⌊tq/∆n⌋−1∑
j3=0

ρ̄(j3)
k

= 16Cλ4k∆
1− r

k
n

⌊tq/∆n⌋−1∑
j1=0

ρ̄(j1)
r∆

1− k−r
k

n

⌊tq/∆n⌋−1∑
j2=0

ρ̄(j2)
k−r

⌊tq/∆n⌋−1∑
j3=0

ρ̄(j3)
k.
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At this stage, since k ≥ 2 and ρ̄(i) ≤ 1, we observe that

∞∑
i=0

ρ̄(i)k ≤
∞∑
i=0

ρ̄(i)2 <∞,

which leads with Hölder’s inequality to ∆
1− p

k
n

∑⌊tq/∆n⌋−1
i=0 ρ̄(i)v → 0 for both v = r

and v = k − r. As a result, we conclude (iii) with limn→∞Cn
k (q, r) = 0.

Next, we show tightness of the sequence (S
(1)
n (t))t∈[0,T ]. To show the latter we use

the recent result of [114, Theorem 1.1]. Therein tightness for the partial sum process
of functions of stationary Gaussian sequence has been obtained. We slightly modify
their arguments to account for the non-stationary case. Using a standard tightness
criterium it suffices to prove the inequality

E
[∣∣S(1)

n (t) − S(1)
n (s)

∣∣q]1/q ≲q (∆n(⌊t/∆n⌋ − ⌊s/∆n⌋))1/2 (IV.4.25)

for some q > 2 and 0 ≤ s ≤ t ≤ T (cf. [114, Lemma 3.1]). Observing that the
function f(x) = |x|p −mp has Hermite rank 2, and following the same arguments
as displayed in [114, pages 9–10], we conclude that

E
[∣∣S(1)

n (t) − S(1)
n (s)

∣∣q]1/q ≲q,p

2∑
k=0

Rk and Rk ≲k,p,ϕ

∆n

⌊t/∆n⌋−1∑
i,j=⌊s/∆n⌋

|γn(i, j)|k+2

1/2

Applying Lemma IV.4.1 and recalling that
∑∞

j=1 ρ(j)2 <∞, we deduce that

Rk ≲ (∆n(⌊t/∆n⌋ − ⌊s/∆n⌋))1/2 for k = 0, 1, 2.

Hence, condition (IV.4.25) holds and we obtain tightness of the sequence (S
(1)
n (t))t∈[0,T ].

IV.4.3.2 Proof of Theorem IV.3.5

By fixing ℓ > 0, we use the following decomposition:

∆−1/2
n

(
∆1−p(1+α)

n V (Y, p)nt −mp

∫ t

0

|ϕsσz(s)|pds
)

=Ãt(n) + B̃t(ℓ, n) + C̃t(ℓ, n) + D̃t(n)

where

Ãt(n) =∆1/2−p(1+α)
n

⌊t/∆n⌋∑
i=1

(
|∆n

i Y |p − |σz((i−1)∆n)∆
n
iG|p

)
B̃t(ℓ, n) =∆−1/2

n

⌊t/∆n⌋∑
i=1

(
∆1−p(1+α)

n |σz((i−1)∆n)∆
n
iG|p −mp|σz((i−1)∆n)|p

(
ϕp+
i∆n

− ϕp+
(i−1)∆n

))

− ∆−1/2
n

⌊tℓ⌋∑
j=1

|σz((j−1)/ℓ)|p
(

∆1−p(1+α)
n

∑
i∈In(j,ℓ)

|∆n
iG|p −mp(ϕ

p+
j/ℓ − ϕp+

(j−1)/ℓ)

)
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C̃t(ℓ, n) =∆−1/2
n

⌊tℓ⌋∑
j=1

|σz((j−1)/ℓ)|p
(

∆1−p(1+α)
n

∑
i∈In(j,ℓ)

|∆n
iG|p −mp(ϕ

p+
j/ℓ − ϕp+

(j−1)/ℓ)

)

D̃t(n) =mp∆
−1/2
n

( ⌊t/∆n⌋∑
i=1

|σz((i−1)∆n)|p(ϕ
p+
i∆n

− ϕp+
(i−1)∆n

) −
∫ t

0

|σz(s)|pdϕp+
s

)
with

In(j, ℓ) :=

{
i : i∆n ∈

(
j − 1

ℓ
,
j

ℓ

]}
.

It turns out that all terms except C̃t(ℓ, n) are negligible. We start by handling

the main term C̃t(ℓ, n). In view of Lemma IV.4.11 and the properties of stable
convergence, for each fixed ℓ > 0, as n → ∞, we obtain the functional stable
convergence

C̃t(ℓ, n)
st−→

⌊tℓ⌋∑
j=1

|σz((j−1)/ℓ)|p
∫ jℓ

(j−1)/ℓ

κsdBs on D([0, T ]).

Then, as ℓ→ ∞, we deduce the convergence

⌊tℓ⌋∑
j=1

|σz((j−1)/ℓ)|p
∫ jℓ

(j−1)/ℓ

κsdBs
u.c.p.−→

∫ t

0

κs|σz(s)|pdBs. (IV.4.26)

Next, we move on to the term D̃t(n). Due to Hölder continuity and the boundedness
of σ on compact sets, we obtain that

E

[
sup

t∈[0,T ]

|D̃t(n)|

]
≲ ∆−1/2+γ(p∧1)

n .

Since we assumed that γ(p ∧ 1) > 1/2, we conclude the convergence

D̃(n)
u.c.p.−→ 0. (IV.4.27)

Now, we handle the term B̃t(ℓ, n). In view of the results in [53], for any ε > 0, we
obtain that

lim
ℓ→∞

lim sup
n→∞

P

(
sup

t∈[0,T ]

|B̃t(ℓ, n)| > ε

)
= 0. (IV.4.28)

Finally, we handle the term Ãt(n). The inequality ||x|p − |y|p| ≤ p|x − y|(|x|p−1 +
|y|p−1) for p > 1 combined with the Cauchy-Schwarz inequality, ||x|p−|y|p| ≤ |x−y|p
for p ∈ (0, 1], and Lemma IV.4.4 lead to

E

[
sup

t∈[0,T ]

|Ãt(n)|

]
≲ ∆1/2−(1+α)(p∧1)

n

⌊T/∆n⌋∑
i=1

(
E
[
|∆n

i Y − σz((i−1)∆n)∆
n
iG|2

])(p∧1)/2
(IV.4.29)
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To deal with the terms in above sum, we consider the decomposition

∆n
i Y − σz((i−1)∆n)∆

n
iG = Rn

i (1) +Rn
i (2) +

m∑
j=1

R̃n
i (j) (IV.4.30)

with

Rn
i (1) =

z(i∆n)∫
z((i−1)∆n)

gi,n(s)(σs − σz((i−1)∆n))W (ds),

Rn
i (2) =

∫
Bi(εεε(1))

(gi,n(s) − gi−1,n(s))σsW (ds)

− σz((i−1)∆n)

∫
Bi(εεε(1))

(gi,n(s) − gi−1,n(s))W (ds),

R̃n
i (j) =

∫
Bi(εεε(j+1))\(∪j

r=1Bi(εεεr))∪[z((i−1)∆n),z(i∆n)])

(gi,n(s) − gi−1,n(s))σsW (ds)

− σz((i−1)∆n)

∫
Bi(εεε(j+1))\(∪j

r=1Bi(εεεr))∪[z((i−1)∆n),z(i∆n)])

(gi,n(s) − gi−1,n(s))W (ds),

where εεε
(j)
n = (ε

(j)
n , ε

(j)
n ), 0 < ε

(1)
n < ε

(2)
n < . . . < ε

(m)
n < ε

(m+1)
n = ∞, and the sets

Bi(εεε
(j)) have been introduced in (IV.4.9). Due to Lemma IV.4.2 we deduce the

inequalities

E[|Rn
i (1)|2] ≲ ∆2+2α+2γ

n , E[|Rn
i (2)|2] ≲ ∆2

n(ε(1)n )2α+2γ, E[|R̃n
i (m)|2] ≲ ∆2

n(ε(m)
n )2α,

E[|R̃n
i (j)|2] ≲ ∆2

n(ε(j+1)
n )2γ(ε(j)n )2α, j = 1, . . . ,m− 1.

In view of (IV.4.29), the decomposition (IV.4.30), [12, Lemma] and the arguments
in [12, pp. 1191-1192], we conclude that there exist an m ≥ 1 and sequences

ε
(j)
n = ∆

aj
n with 1 > a1 > . . . > am > 0 such that

Ã(n)
u.c.p.−→ 0. (IV.4.31)

In view of (IV.4.26)-(IV.4.31), the proof of Theorem IV.3.5 is complete.

IV.5 Appendix

IV.5.1 Proof of Lemma IV.4.1

We show first two auxiliary lemmata. The proof of the first lemma is omitted as it
is straightforward.

Lemma IV.5.1. Under Assumption (A2) and α < 0, for all x = (x1, x2) ∈ R2
+ and

y = (y1, y2) ∈ R2
+ we have that

|g(x) − g(y)| ≲f ∥(x1 ∧ y1, x2 ∧ y2)∥α−1∥x− y∥.

Lemma IV.5.2. For any a > 0 and b > 0, the following asymptotic statements
hold:
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(i) If β ∈ (−1, 0) and γ < 0, then∫
(0,a]2

∥x∥β∥x + h1∥γdx ∼
√

2hγ
∫
(0,a]2

∥x∥βdx, h→ ∞.

(ii) If β ∈ (−1, 0) and β + γ < −1, then∫
(0,a]×(b,∞)

∥x∥β∥x + h1∥γdx = O(hβ+γ+1), h→ ∞.

(iii) If β ∈ (−2, 0) and β + γ < −2, then∫
(b,∞)2

∥x∥β∥x + h1∥γdx = O(hβ+γ+2), h→ ∞.

Proof. Throughout the proof, we consider h > 0.

(i) We have ∫
(0,a]2

∥x∥β∥x + h1∥γdx = hγ
∫
(0,a]2

∥x∥β∥h−1x + 1∥γdx,

where ∥h−1x + 1∥γ ≤ 2
γ
2 for any h > 0 and x ∈ (0, a]2. By the dominated conver-

gence theorem,

h−γ

∫
(0,a]2

∥x∥β∥x + h1∥γdx =

∫
(0,a]2

∥x∥β∥h−1x + 1∥γdx −−−→
h→∞

√
2

∫
(0,a]2

∥x∥βdx.

(ii) Since ∥(x1, x2)∥ ≥ x2 for any (x1, x2) ∈ [0,∞)2, by Tonelli’s theorem we arrive
at the bound∫

(0,a]×(b,∞)

∥x∥β∥x + h1∥γdx =

∫ a

0

∫ ∞

b

∥(x1, x2)∥β∥(x1 + h, x2 + h)∥γdx1dx2

≤ a

∫ ∞

b

xβ(x+ h)γdx,

since under the present assumptions, both β < 0 and γ < 0. By substituting
u = x/h, we get∫ ∞

b

xβ(x+ h)γdx = hγ
∫ ∞

b

xβ
(x
h

+ 1
)γ
dx = hβ+γ+1

∫ ∞

b/h

uβ(u+ 1)γdu, (IV.5.1)

where ∫ ∞

b/h

uβ(u+ 1)γdu −−−→
h→∞

∫ ∞

0

uβ(u+ 1)γdu <∞, (IV.5.2)

since β ∈ (−1, 0) and β + γ < −1. Hence,

lim sup
h→∞

h−(β+γ+1)

∫
(0,a]×(b,∞)

∥x∥β∥x + h1∥γdx ≤ a

∫ ∞

0

uβ(u+ 1)γdu <∞.
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(iii) Note first that we have again β < 0 and γ < 0. Due to the elementary inequality
∥(x1, x2)∥ ≥ √

x1x2, valid for any (x1, x2) ∈ [0,∞)2, and Tonelli’s theorem, we find
that ∫

(b,∞)2
∥x∥β∥x + h1∥γdx ≤

(∫ ∞

b

xβ/2(x+ h)γ/2dx

)2

,

where
∫∞
b
xβ/2(x + h)γ/2dx < ∞ since β/2 + γ/2 = (β + γ)/2 < −1. Note that,

additionally, β/2 ∈ (−1, 0), so we can reuse (IV.5.1) and (IV.5.2), with obvious
changes, to deduce that∫ ∞

b

xβ/2(x+ h)γ/2dx ∼ hβ/2+γ/2+1

∫ ∞

0

xβ/2(x+ 1)γ/2dx, h→ ∞.

Thus,

lim sup
h→∞

h−(β+γ+2)

∫
(b,∞)2

∥x∥β∥x + h1∥γdx ≤
(∫ ∞

0

xβ/2(x+ 1)γ/2dx

)2

<∞,

which concludes the proof.

Proof of Lemma IV.4.1. Suppose that i ≥ 0 and ⌊T/∆n⌋ ≥ j ≥ i+ 1. Since W is a
Gaussian white noise process, we can then express the covariance γn(i, j) as

γn(i, j) =

∫
Ai,n

gi,n(x)
(
gj,n(x) − gj−1,n(x)

)
dx

+

∫
Bi,n

gi,n(x)
(
gj,n(x) − gj−1,n(x)

)
dx

+

∫
B′
i,n

gi,n(x)
(
gj,n(x) − gj−1,n(x)

)
dx

+

∫
Ai−1,n

(
gi,n(x) − gi−1,n(x)

)(
gj,n(x) − gj−1,n(x)

)
dx

+

∫
Bi−1,n

(
gi,n(x) − gi−1,n(x)

)(
gj,n(x) − gj−1,n(x)

)
dx

+

∫
B′
i−1,n

(
gi,n(x) − gi−1,n(x)

)(
gj,n(x) − gj−1,n(x)

)
dx

+

∫
Ci−2,n

(
gi,n(x) − gi−1,n(x)

)(
gj,n(x) − gj−1,n(x)

)
dx

=: an(i, j) + bn(i, j) + b′n(i, j) + ãn(i, j) + b̃n(i, j) + b̃′n(i, j) + cn(i, j).

Note that, under Assumption (A2), we have

|gi,n(x)| ≲f ∥z(i∆n) − x∥α, x ∈ Ci,n, (IV.5.3)

|gi,n(x) − gi−1,n(x)| ≲f

∥∥z((i− 1)∆n

)
− x

∥∥α, x ∈ Ci−1,n. (IV.5.4)

Moreover, by Lemma IV.5.1,

|gi,n(x) − gi−1,n(x)| ≲α,f,z ∆n

∥∥z((i− 1)∆n

)
− x

∥∥α−1
, x ∈ Ci−1,n. (IV.5.5)
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Applying (IV.5.3) and (IV.5.5) to an(i, j) we get

|an(i, j)| ≲α,f,z ∆n

∫
Ai,n

∥z(i∆n) − x∥α
∥∥z((j − 1)∆n

)
− x

∥∥α−1
dx

(a)
= ∆n

∫
(0,z1(i∆n)−z1((i−1)∆n)]
×(0,z2(i∆n)−z2((i−1)∆n)]

∥y∥α
∥∥z((j − 1)∆n

)
− z(i∆n) + y

∥∥α−1
dy

(b)

≤ ∆n

∫
(0,∆nz′T ]2

∥y∥α
∥∥∆nz

′
T (j − i− 1)1 + y

∥∥α−1
dy

(c)
= ∆2α+2

n

∫
(0,z′T ]2

∥ỹ∥α
∥∥z′T (j − i− 1)1 + ỹ

∥∥α−1
dỹ

︸ ︷︷ ︸
=:a(j−i−1)

,

(IV.5.6)

where in step (a) we substitute y = z(i∆n) − x, in (b) we use (IV.4.4), and finally
in (c) we substitute ỹ = ∆−1

n y. Additionally, by applying (IV.5.4) and (IV.5.5) to
ãn(i, j) and using estimates analogous to (IV.5.6), we can show that |ãn(i, j)| ≲α,f,z

a(j − i).

Next, we apply (IV.5.3) and (IV.5.5) to bn(i, j), which enables us to deduce, adapting
(IV.5.6), that

|bn(i, j)| ≲α,f,z ∆n

∫
Bi,n

∥z(i∆n) − x∥α
∥∥z((j − 1)∆n

)
− x

∥∥α−1
dx

= ∆n

∫
(z1(i∆n)−z1((i−1)∆n),∞)
×(0,z2(i∆n)−z2((i−1)∆n)]

∥y∥α
∥∥z((j − 1)∆n

)
− z(i∆n) + y

∥∥α−1
dy

≤ ∆n

∫
(∆nz′T ,∞)×(0,∆nz′T ]

∥y∥α
∥∥∆nz

′
T (j − i− 1)1 + y

∥∥α−1
dy

= ∆2α+2
n

∫
(z′T ,∞)×(0,z′T ]

∥ỹ∥α
∥∥z′T (j − i− 1)1 + ỹ

∥∥α−1
dỹ

︸ ︷︷ ︸
=:b(j−i−1)

.

(IV.5.7)

Swapping the components, we also find that |b′n(i, j)| ≲α,f,z b(j − i − 1). Fur-
ther, using (IV.5.4) and (IV.5.5), and mimicking (IV.5.7) we can prove the estimate
|b̃n(i, j)| + |b̃′n(i, j)| ≤ b(j − i).
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Finally, by (IV.5.5), we get

|cn(i, j)| ≲α,f,z ∆2
n

∫
Ci−1,n

∥∥z((i− 1)∆n

)
− x

∥∥α−1∥∥z((j − 1)∆n

)
− x

∥∥α−1
dx

= ∆2
n

∫
(z1((i−1)∆n)−z1((i−2)∆n),∞)
×(z2((i−1)∆n)−z2((i−2)∆n),∞)

∥y∥α−1
∥∥z((j − 1)∆n

)
− z

(
(i− 1)∆n

)
+ y

∥∥α−1
dy

≤ ∆2
n

∫
(∆nz′T ,∞)2

∥y∥α−1
∥∥∆nz

′
T (j − i)1 + y

∥∥α−1
dy

= ∆2α+2
n

∫
(z′T ,∞)2

∥ỹ∥α−1
∥∥z′T (j − i)1 + ỹ

∥∥α−1
dỹ

︸ ︷︷ ︸
=:c(j−i)

,

where the steps are analogous to those in (IV.5.6) and (IV.5.7).
To summarize, we have shown that

|γn(i, j)| ≲α,f,z ∆2α+2
n

(
a(j − i− 1) + a(j − i) + b(j − i− 1) + b(j − i) + c(j − i)

)
≲ ∆2α+2

n

(
a(j − i− 1) + b(j − i− 1) + c(j − i)

)
,

which motivates us to define

ρ(k) := a(k − 1) + b(k − 1) + c(k), k ≥ 2.

Additionally, we may set

ρ(k) := sup
n∈N

sup
0≤i,j≤[T/∆n]

|i−j|=k

∆−(2α+2)
n |γn(i, j)|, k = 0, 1,

since ρ(0) <∞ and ρ(1) <∞ then by Lemma IV.4.3. It remains to note that

a(k) = O(kα−1), by Lemma IV.5.2(i) with β = α and γ = α− 1,

b(k) = O(k2α), by Lemma IV.5.2(ii) with β = α and γ = α− 1,

c(k) = O(k2α), by Lemma IV.5.2(iii) with β = α− 1 and γ = α− 1.

Thus,
∑∞

k=0 ρ(k)2 <∞ as long as α < −1/4, which concludes the proof.

IV.5.2 Proof of Lemma IV.4.3

Throughout the proof we assume, without loss of generality, that ∆ ∈ (0, 1]. By the
mean value theorem, for any t ∈ [0, T ] and ∆ ∈ (0, 1] there exist ξ1t,∆, ξ2t,∆ ∈ [t, t+∆]
such that

z1(t+ ∆) − z1(t) = ∆z′1(ξ
1
t,∆) and z2(t+ ∆) − z2(t) = ∆z′2(ξ

2
t,∆). (IV.5.8)

For the sake of simpler notation, we write z′
∆(t) :=

(
z′1(ξ

1
t,∆), z′2(ξ

2
t,∆)
)
. Since z is

C2, we have
sup

t∈[0,T ]

∥z′
∆(t) − z′(t)∥ ≲z,T ∆. (IV.5.9)
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It is also useful to note that, by Assumption (A1), for any ∆ ∈ (0, 1], t ∈ [0, T ], and
x ∈ R2

+,

∥z′
∆(t) ◦ x∥ ≳T,z ∥x∥, ∥z′(t) ◦ x∥ ≳T,z ∥x∥. (IV.5.10)

(i) We can write

vt,t+∆ = vt,t+∆(1) + vt,t+∆(2)

where

vt,t+∆(1) =

∫
(−∞,z(t+∆))\(−∞,z(t))

g(z(t+ ∆) − x)2dx

vt,t+∆(2) =

∫
(−∞,z(t)]

(
g(z(t+ ∆) − x) − g(z(t) − x)

)2
dx.

Concerning the first term, we have that

vt,t+∆(1) = ∆2z′1(ξ
1
t,∆)z′2(ξ

2
t,∆)

∫
R2
+\(1,∞)

g(∆z′
∆(t) ◦ y)2dy

= ∆2α+2z′1(ξ
1
t,∆)z′2(ξ

2
t,∆)

∫
R2
+\(1,∞)

f(∆z′
∆(t) ◦ y)2∥z′

∆(t) ◦ y∥2αdy,

where we have substituted y =
( z1(t+∆)−x1

z1(t+∆)−z1(t)
, z2(t+∆)−x2

z2(t+∆)−z2(t)

)
and used (IV.5.8). It

follows from (IV.5.9) that the factor z′1(ξ
1
t,∆)z′2(ξ

2
t,∆) converges to z′1(t)z

′
2(t) as ∆ → 0

uniformly in t ∈ [0, T ]. Thus it is enough to show that

lim
∆→0

sup
t∈[0,T ]

∫
R2
+\(1,∞)2

|f(∆z′
∆(t) ◦ y)2∥z′

∆(t) ◦ y∥2α − f(0)2∥z′(t) ◦ y∥2α|dy = 0.

(IV.5.11)
The integrand in (IV.5.11), for any t ∈ [0, T ], ∆ ∈ (0, 1), and y ∈ R2

+, can be
estimated as

|f(∆z′
∆(t) ◦ y)2∥z′

∆(t) ◦ y∥2α − f(0)2∥z′(t) ◦ y∥2α|
≤ |f(∆z′

∆(t) ◦ y)2 − f(0)2|∥z′
∆(t) ◦ y∥2α

+ f(0)2|∥z′
∆(t) ◦ y∥2α − ∥z′(t) ◦ y∥2α|.

(IV.5.12)

The first term on the right-hand side of (IV.5.12) satisfies

|f(∆z′
∆(t) ◦ y)2 − f(0)2|∥z′

∆(t) ◦ y∥2α ≲f ∆∥z′
∆(t) ◦ y∥2α+1 ≲T,z ∆∥y∥2α+1

(IV.5.13)

by the mean value theorem, boundedness of the gradient of f (guaranteed by As-
sumption (A2)), and (IV.5.10), whilst the second term can be bounded as

|∥z′
∆(t) ◦ y∥2α − ∥z′(t) ◦ y∥2α|

≤ 2|α|(∥z′
∆(t) ◦ y∥ ∧ ∥z′(t) ◦ y∥)2α−1∥z′

∆(t) ◦ y − z′(t) ◦ y∥
≲α,T,z ∆∥y∥2α

(IV.5.14)
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by (IV.5.9), (IV.5.10) and the inequality |xγ − yγ| ≤ |γ|(x ∧ y)γ−1|x − y|, valid for
x > 0, y > 0, and γ < 1. It is useful to note that the first term on the right-hand
side of (IV.5.12) satisfies also an alternative bound

|f(∆z′
∆(t) ◦ y)2 − f(0)2|∥z′

∆(t) ◦ y∥2α ≤
(
f(∆z′

∆(t) ◦ y)2 + f(0)2
)
|∥z′

∆(t) ◦ y∥2α

≲α,f,T,z ∥y∥2α
(IV.5.15)

by Assumption (A2) and (IV.5.10).
Having established the necessary estimates, we will proceed to splitting the integral
in (IV.5.11) into three parts via

R2
+ \ (1,∞)2 ⊆ (0, 1]2 ∪ (1,∞) × (0, 1] ∪ (0, 1] × (1,∞)

and denote the respective integrals by I1, I2 and I3, respectively.
In view of (IV.5.13) and (IV.5.14), the integration by polar coordinates leads to

sup
t∈[0,T ]

I1 ≲α,T,z ∆

∫
(0,1]2

(
∥y∥2α+1 + ∥y∥2α

)
dy

≲α,T,z ∆

∫ π/2

0

∫ 2

0

(
r2α+2 + r2α+1

)
drdθ = O(∆).

To deal with I2, fix M > 1. In view of (IV.5.13), (IV.5.14) and (IV.5.15), we obtain
that

lim sup
∆→0

sup
t∈[0,T ]

I2 ≲α,f,T,z lim sup
∆→0

∆

∫
(1,M ]×(0,1]

∥y∥2α+1dy

+ lim sup
∆→0

∆

∫
(1,M ]×(0,1]

∥y∥2αdy + lim sup
∆→0

∫
(M,∞)×(0,1]

∥y∥2αdy

=

∫
(M,∞)×(0,1]

∥y∥2αdy

≤
∫
(M,∞)×(0,1]

y2α1 dy1dy2 = O(M2α+1).

Since M > 1 is arbitrary, it follows that

lim sup
∆→0

sup
t∈[0,T ]

I2 = 0.

We deal with I3 similarly and consequently finish the proof of (IV.5.11).
Next, we study the asymptotic behavior of the second term of vt,t+∆. In particular,
we have that

vt,t+∆(2) =∆2z′1(ξ
1
t,∆)z′2(ξ

2
t,∆)

∫
R2
+

(
g(∆z′

∆(t) ◦ (y + 1)) − g(∆z′
∆(t) ◦ y)

)2
dy

=∆2α+2z′1(ξ
1
t,∆)z′2(ξ

2
t,∆)

×
∫
R2
+

(
f(∆z′

∆(t) ◦ (y + 1))∥z′
∆(t) ◦ (y + 1)∥α − f(∆z′

∆(t) ◦ y)∥z′
∆(t) ◦ y∥α

)2
dy,
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where we substituted y =
( z1(t)−x1

z1(t+∆)−z1(t)
, z2(t)−x2

z2(t+∆)−z2(t)

)
.

Arguing as in (IV.5.11), we are left to show that

lim
∆→0

sup
t∈[0,T ]

∫
R2
+

|A(y)|dy = 0, (IV.5.16)

where

A(y) =
(
f(∆z′

∆(t) ◦ (y + 1))∥z′
∆(t) ◦ (y + 1)∥α − f(∆z′

∆(t) ◦ y)∥z′
∆(t) ◦ y∥α

)2
− f(0)2

(
∥z′(t) ◦ (y + 1)∥α − ∥z′(t) ◦ y∥α

)2
.

Proceeding as in (IV.5.12), (IV.5.13) and (IV.5.14), we obtain that

|A(y)| ≲α,f,T,z(∥y + 1∥α + ∥y∥α)∆(∥y + 1∥α+1 + ∥y∥α+1)

≲α,f,T,z∆∥y∥α∥y + 1∥α+1.

On the other hand, Lemma IV.5.1 and the inequality |xγ −yγ| ≤ |γ|(x∧y)γ−1|x−y|
leads to an alternative bound:

|A(y)| ≤ ∆−2α
(
g(∆z′

∆(t) ◦ (y + 1)) − g(∆z′
∆(t) ◦ y)

)2
+ |f(0)2|

(
∥z′(t) ◦ (y + 1)∥α − ∥z′(t) ◦ y∥α

)2
≲α,f,T,z ∥y∥2α−2

Again, fix M > 1. In view of these two estimates, we get that

lim
∆→0

sup
t∈[0,T ]

∫
R2
+

|A(y)|dy ≲α,f,T,z lim sup
∆→0

sup
t∈[0,T ]

∆

∫
(0,M ]2

∥y∥α∥y + 1∥α+1dy

+ lim sup
∆→0

sup
t∈[0,T ]

∫
R2
+\(0,M ]2

∥y∥2α−2dy

=

∫
R2
+\(0,M ]2

∥y∥2α−2dy = O(M2α).

Since M can be chosen arbitrarily large, we get (IV.5.16) and finish the proof of (i).

(ii) Since z′1, z
′
2 are in C1 and hence Lipschitz continuous on compact intervals,

we have

sup
t∈[0,T ]

(
|z′1(t+ ∆) − z′1(t)| + |z′2(t+ ∆) − z′2(t)|

)
≲T,z ∆.

Arguing as in (IV.5.14), we also obtain that

sup
t∈[0,T ]

∣∣∥z′(t+ ∆) ◦ x∥2α − ∥z′(t) ◦ x∥2α
∣∣ ≲T,z ∆∥x∥2α,

sup
t∈[0,T ]

∣∣∥z′(t+ ∆) ◦ (x + 1)∥α − ∥z′(t+ ∆) ◦ x∥α

− ∥z′(t) ◦ (x + 1)∥α + ∥z′(t) ◦ x∥α
∣∣ ≲T,z ∆∥x + 1∥α + ∆∥x∥α,

sup
t∈[0,T+1]

∣∣∥z′(t) ◦ (x + 1)∥α − ∥z′(t) ◦ x∥α
∣∣ ≲T,z ∥x∥α−1 ∨ ∥x∥α.
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Using these identities along with the boundedness of the integral∫
R2
+\(1,∞)2

∥x∥2αdx +

∫
R2
+

(∥x + 1∥α + ∥x∥α)(∥x∥α−1 ∨ ∥x∥α)dx <∞,

we deduce that

sup
t∈[0,T ]

|ϕt+∆ − ϕt| ≲α,f,T,z ∆. (IV.5.17)

(iii) Since f(0) ̸= 0 and f is continuous, there exists ε ∈ (0, 1) such that

inf
x∈B0(ε)

f(x)2 > 0. (IV.5.18)

In addition, supn≥1,t∈[0,T ] ∆nz
′
∆n

(t) ≤ C. Combining these results with the fact that
z′1, z

′
2 are bounded away from zero, we conclude that

inf
n∈N,t∈[0,T ]

∆−2α−2
n vt,t+∆n ≥ inf

n∈N,t∈[0,T ]
∆−2α−2

n vt,t+∆n(1)

≳T,z inf
n∈N,t∈[0,T ]

∫
R2
+\(1,∞)2

f(∆nz
′
∆n

(t) ◦ y)2∥y∥2αdy

≳T,z inf
x∈B0(ε)

f(x)2
∫
B0(ε/C)

∥y∥2αdy > 0.

IV.5.3 Proof of Lemma IV.4.6

Introduce Gaussian random variables

G1
i,n :=

∫
Bi,n∪B′

i,n

gi,n(s)W (ds),

G2
i,n :=

∫
Ai,n∪Ci−1,n

{gi,n(s) − gi−1,n(s)}W (ds).

Due to Lemma IV.4.2 we conclude that

E
[
|G1

i,n|p
]
≲p ∆p/2

n , E
[
|G2

i,n|p
]
≲p ∆p(1+α)

n .

Following the arguments of the proof of Lemma IV.4.4, we deduce that

E[|Y 1
i,n|p + |Y ′

i,n|p] ≲p

(
∆p/2

n + ∆p
nE
[
F

p/2
z((i−1)∆n)

])
and

E[|Y 2
i,n|p] ≲p

(
∆p(1+α)

n + ∆p
nE
[
F

p/2
z((i−1)∆n)

])
.

This completes the proof since F is bounded on compact sets.
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IV.5.4 Proof of Lemma IV.4.7

The arguments follow along the same lines as the proof of Theorem IV.3.1(i). First
of all, we note that it suffices to show the convergence

⌊t/∆n⌋∑
i=1

E
[
(Y 1

i,n − Y ′
i,n)2

]
→ 0.

Observing the treatment of the term Rn
i (1) in the proof of Theorem IV.3.1(i), we

conclude that

⌊t/∆n⌋∑
i=1

E
[
(Y 1

i,n − Y ′
i,n)2

]
≤ ∆n

⌊t/∆n⌋∑
i=1

E [r(z((i− 1)∆n), C∆n)] + o(1),

where r(s, ηηη) = sup{(σs−σt)2|t ∈ [s−ηηη, s+ηηη]}. Due to continuity and boundedness
of σ on compact sets, the proof is complete.

IV.5.5 Proof of Lemma IV.4.8

We introduce the notation

wt,t+∆n(1) := ∆−1
n

∫ z1(t)

−∞

∫ z2(t+∆n)

z2(t)

g2(z(t+ ∆n) − s)σ2
s1,z2(t)

ds,

wt,t+∆n(2) = ∆−1
n

∫ z1(t+∆n)

z1(t)

∫ z2(t)

−∞
g2(z(t+ ∆n) − s)σ2

z1(t),s2
ds.

and

wt(1) := z′2(t)

∫ ∞

0

|x|2αf 2(x, 0)σ2
z1(t)−x,z2(t)

dx,

wt(2) := z′1(t)

∫ ∞

0

|x|2αf 2(0, x)σ2
z1(t),z2(t)−xdx.

Observe that w2
t = wt(1) + wt(2). To show Lemma IV.4.8 it suffices to prove the

convergence

sup
t∈[0,T ]

|wt,t+∆n(j) − wt(j)|
P−→ 0 as ∆n → 0, (IV.5.19)

for j = 1, 2. We prove this convergence only for j = 1 as the case j = 2 is shown
similarly. We start with the change of variable y = z(t + ∆n) − s to deduce the
identity

wt,t+∆n(1) = ∆−1
n

∫ ∞

z1(t+∆n)−z1(t)

∫ z2(t+∆n)−z2(t)

0

g2(y)σ2
z1(t+∆n)−y1,z2(t)

dy.

Now, recalling the Assumption (A2) and observing that

sup
t∈[0,T ]

|z1(t+ ∆n) − z1(t)| → 0 and |∆−1
n (z2(t+ ∆n) − z2(t)) − z′2(t)| → 0

as ∆n → 0, we readily obtain the convergence in (IV.5.19) for j = 1. This completes
the proof of Lemma IV.4.8.



Appendix A

Technical results

A.1 Walsh theory of stochastic integration

In this section we introduce the main concepts of the Walsh theory of stochastic
integration for martingale measure. This theory of stochastic integration is used
notably to define stochastic integrals in dimension ≥ 2. We refer to Section I.2.2
where such integrals are needed to define a 2-dimensional ambit field.

Most of the results presented below comes from the seminal paper of Walsh [149]
and the comprehensive survey of Podolskij [129] on ambit field. We refer e.g. to
[56, 57, 94] to explore further the topic. The Walsh theory of stochastic integration
generalizes in some sense Itô’s stochastic integration theory to dimension higher
than 1.

We recall first Definition I.2.23 of a Lévy basis:

Definition A.1.1. Let (Ω,F ,P) be a probability space, E a set and E a σ-field on
E . A Lévy measure L on (E, E) is a collection of random variables (L(B))B∈E such
that

(i) L(∅) = 0,

(ii) Let A1, ..., An ∈ E be mutually disjoint sets. Then the random variables
L(A1), ..., L(An) are mutually independent.

(iii) For all A ∈ E the random variable L(A) is infinitely divisible.

We consider in the following Lévy basis on a bounded domain. We denote by Bb(Rd)
the Borel σ-field generated by bounded Borel sets of Rd. Assume that we have a
Lévy basis L on [0, T ]× S with S ∈ Bb(Rd). Let A ⊆ S, A ∈ Bb(Rd) and 0 < t ≤ T.
We define

Lt(A) := L((0, t] × A).

Assume that for all A ∈ Bb(Rd), Lt(A) is a random variable defined on a proba-
bility space (Ω,F ,P). We need then to define a right continuous filtration on the
probability space (Ω,F ,P). Denote by N the P-null sets of F and define

F0
t := σ{Ls(A) : A ⊆ S, A ∈ Bb(Rd), 0 < s ≤ t} ∧ N .

139
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We establish the right continuous filtration (Ft)t≥0 on (Ω,F ,P) as

Ft :=
⋂
s>t

F0
s for all t ≥ 0.

We can now define the notion of orthogonal martingale measure:

Definition A.1.2. We consider the filtered probability space (Ω,F , (Ft)t≥0,P).
The collection of random variables (Lt(A))t≥0,A⊆S,A∈Bb(Rd) is an orthogonal Ft-
martingale measure if each of the following conditions are satisfied:

(i) L0(A) = 0, for all A ⊆ S, A ∈ Bb(Rd).

(ii) (Lt(A))t≥0 is a Ft-martingale, for all A ⊆ S, A ∈ Bb(Rd), with zero mean.

(iii) ∀t > 0, Lt(·) is a σ-finite L2(P)-valued signed measure.

(iv) Let A,B ⊆ S, A,B ∈ Bb(Rd). If A and B are disjoint sets, that is A ∩B = ∅,
then (Lt(A))t≥0 and (Lt(B))t≥0 are orthogonal martingales, i.e. the random
variables Lt(A) and Lt(B) are independent for any t ≥ 0.

Example A.1.3. The white noise on Rd can be defined as follows. Let B(Rd) be
the Borel σ-field containing all Borel sets of Rd. Let Ẇ be a process such that

E
[
Ẇ (A)

]
= 0, for all A ∈ B(Rd)

and
cov(Ẇ (A), Ẇ (B)) = λd(A ∩B), for all A,B ∈ B(Rd),

where λd denotes the Lebesgue measure on Rd. Then the process Ẇ := (Ẇ (A))A∈B(Rd)

is a Gaussian process called the white noise process. One can show that the white
noise process on Rd defines an orthogonal martingale measure (Wt(A))t≥0,A⊆S,A∈Bb(Rd−1)

on Rd−1.

Following the usual construction of the Itô integral, we define the notion of ele-
mentary functions:

Definition A.1.4. Let f : R+ × Rd × Ω → R be a function. f is said to be
elementary if

f(t, x, ω) = X(ω)1(a,b](t)1A(x)

where X is bounded and Fa-measurable and A ∈ Bb(Rd). Linear combinations of
elementary functions are called simple functions. We denote by S the space of
elementary functions.

We then define the stochastic integral of the simple function f with respect to the
martingale measure L by∫ t

0

∫
B

f(s, x)L(ds, dx) := X (Lt∧b(A ∩B) − Lt∧a(A ∩B))

where B ∈ Bb(Rd), A,B ⊆ S and 0 < t ≤ T.
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To extend this result to all predictable processes we use the classical techniques:
we would like to use a density argument to extend the integral for stochastic inte-
grands in the class of elementary functions to the class of predictable processes, in
this context that is predictable with respect to the σ-algebra generated by elemen-
tary functions.

Definition A.1.5. We denote by P the σ-algebra generated by all elementary func-
tions. We call P the predictable σ-algebra.

We introduce the covariance measure:

Definition A.1.6. Let L be an orthogonal martingale measure. The covariance
measure associated to L is defined as

Q([0, t] × A) = ⟨L(A)⟩t, A ∈ Bb(Rd),

where ⟨·⟩ is the conditional quadratic variation, that is the non-decreasing process
⟨X,X⟩ such that, if X is a local martingale, M2−⟨M,M⟩ is a local martingale. We
associated to Q an L2-norm:

∥f∥2Q := E
[∫

[0,T ]×S

f 2(t, x)Q(dt, dx)

]
.

One can show that the space (L2(Ω × [0, T ] × S,P , Q), ∥·∥Q) is a Hilbert space and
that S is dense in L2(Ω × [0, T ] × S,P , Q). From this, we can approximate any
random function f ∈ L2(Ω × [0, T ] × S,P , Q) by a sequence of functions fn ∈ S,
such that

∥f − fn∥Q → 0 and∫ t

0

∫
B

f(s, x)L(ds, dx) := lim
n→∞

∫ t

0

∫
B

fn(s, x)L(ds, dx) in L2(Ω,F ,P).

We finish this section by citing two results, useful notably in the proof of the main
result of Chapter IV.

Corollary A.1.7. By construction, the Itô type isometry

E

[∣∣∣∣∫ T

0

∫
S

f(t, x)L(dt, dx)

∣∣∣∣2
]

= ∥f∥2Q

is satisfied. In particular, if L is a white noise process W , we obtain

E

[∣∣∣∣∫ T

0

∫
S

f(t, x)W (dt, dx)

∣∣∣∣2
]

= E
[∫ T

0

∫
S

f 2(t, x)dtdx

]
.

We also have a Burkholder inequality (see [42]): for all p ≥ 2 there exists a constant
cp ∈ (0,∞) such that for all f ∈ L2(Ω × [0, T ] × S,P , Q) and all 0 < t ≤ T ,

E
[∣∣∣∣∫ t

0

∫
B

f(s, x)L(ds, dx)

∣∣∣∣p] ≤ cpE

[(∫ T

0

∫
Rd

f 2(s, x)Q(ds, dx)

)p/2
]
.
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A.2 Stable convergence of processes

In this section we introduce the concept of stable convergence, a mode of conver-
gence extremely useful notably when dealing with random limit. This section is
based on the book [64], although the results presented below are classical and can
be found in many different sources.

We start by giving some motivations on why we should define stable convergence.
We consider the following simple example: assume that we are given a central limit
theorem for some error process of the form

√
n(Xn −X)

d−→ N (0, V ) (A.2.1)

where Xn and X are random variables and assume that V is a non-negative random
variables. For statistical purpose, this central limit theorem is unusable as the distri-
bution of the mixed normal N (0, V ) can be difficultly tractable, or even untractable.
We would like to renormalize the error process

√
n(Xn −X) by an estimator Vn of

the random variance V , using Slutsky’s theorem, to obtain a statistically tractable
limit, in that case a standard normal distribution.

However, to do so we need the joint convergence in distribution (Vn,
√
n(Xn −

X))
d−→ (V,N (0, V )) which is not guaranteed by the central limit theorem in

(A.2.1). We need a notion of weak convergence stronger than the convergence in
distribution to allow a stronger version of Slutsky’s theorem.

Stable convergence is defined as follows:

Definition A.2.1. Let (Xn)n≥1 be a sequence of random variables defined on a
probability space (Ω,F ,P), taking values in a measurable Polish space (E, E). The
sequence (Xn)n≥1 is said to converge stably in law towards a limit X defined on an

extension (Ω,F ,P) of the original probability space, and we denote it Xn
dst−→ X, if

and only if it holds that

E[g(Xn)Y ]
n→∞−→ E[g(X)Y ]

for any bounded continuous g and any bounded F -measurable random variable Y.

This definition is general and includes in particular the case of stochastic process,
for example when considering E = D([0, T ]) the space of càdlàg functions, equipped
with some Skorokhod topology. It is possible to define equivalently stable conver-
gence by defining it as the convergence of conditional distribution with respect to
the original σ-field F . Note that contrary to the convergence in distribution and
similarly to the convergence in probability, stable convergence is a characteristic of
the random variable and not of its distribution.

Indeed, if we have the convergence in distribution Xn
d−→ X, the probability

space where Xn and X are defined does not matter and can be different, in contrary
to the stable convergence where the limiting random variable has to be defined on
an extension of the original space.

We give next a lemma exhibiting the different relations between different modes
of convergence:
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Lemma A.2.2. Let (Xn)n≥1 be a sequence of random variables defined on a proba-
bility space (Ω,F ,P). It holds that

(i) The stable convergence Xn
dst−→ X implies the convergence in distribution

Xn
d−→ X.

(ii) The convergence in probability Xn
P−→ X implies the stable convergence Xn

dst−→
X.

(iii) If Xn
dst−→ X and X is F-measurable, then Xn

P−→ X.

The next proposition gives us criteria to prove the stable convergence Xn
dst−→ X:

Proposition A.2.3. Let (Xn)n≥1 be a sequence of random variables. Then the
following properties are equivalent:

(i) Xn
dst−→ X.

(ii) (Xn, Y )
d−→ (X, Y ) for all F-measurable random variables Y.

(iii) (Xn, Y )
dst−→ (X, Y ) for all F-measurable random variables Y.

Condition (ii) is particularly useful in practice to prove stable central limit theorem
and is one of the key property used in Chapter III to prove the stable convergence
of the error process of interest.

We finally mention the following stable version of Slutsky’s theorem:

Theorem A.2.4. Let (Xn)n≥1, (Vn)n≥1 be two sequences of random variables, de-
fined on the same probability space (Ω,F ,P). We assume that

Xn
dst−→ X and Vn

P−→ V.

Then
(Xn, Vn)

dst−→ (X, V ).

A.3 Some elements of Malliavin Calculus

This subsection is an introduction to Malliavin calculus. Originated by Malliavin in
1976 in his seminal paper [105], Malliavin calculus was defined first to get a better
understanding on the existence of densities for the distribution of random variables
and in particular the existence of densities for stochastic partial differential equations
(see e.g. [40] or recently [60]). It allows to define a notion of stochastic differentiation
originally on Wiener spaces but it was extended later to Poisson spaces or Wiener-
Poisson spaces [75]. We refer to [27, 106, 117, 118] for a comprehensive introduction
on Malliavin calculus.

In 2005 Nualart and Peccati in [119] proved the so-called fourth moment theo-
rem: a central limit theorem for sequence of iterated Wiener-Itô integrals that laid
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out the premises of the Malliavin-Stein method, used to obtain quantitative central
limit theorems. We refer to e.g. [115,116,122].

We provide the main tools to prove the step (ii), (iii) and (iv) of the methodol-
ogy presented in Section I.3.3. Most of these results can be find in [117, Chapter 1].
Let H be a real separable Hilbert space equipped with a inner product ⟨·, ·⟩H that in-
duces an associated norm denoted ∥·∥H . We start with the definition of an isonormal
Gaussian process:

Definition A.3.1. Let B = {B(h), h ∈ H} be a stochastic process defined on a
probability space (Ω,F ,P). Assume that B is a centered Gaussian family of random
variables. Then B is called an isonormal Gaussian process (on H) when

E [B(h)B(g)] = ⟨h, g⟩H , ∀h, g ∈ H.

We define the Hermite polynomials:{
Hn(x) = (−1)nex

2/2 dn

dxn

(
e−x2/2

)
, n ≥ 1,

H0(x) = 1.
(A.3.1)

One can show that this polynomial family is orthogonal with respect to the Gaussian
distribution, namely:

E[Hn(X)Hm(Y )] = 1{n=m}n! (E[XY ])n , for X, Y ∼ N (0, 1) jointly Gaussian.
(A.3.2)

We denote by G the σ-algebra generated by {B(h), h ∈ H} and for all k ≥ 1 define
Hk ⊂ L2(Ω,F ,P) the closed linear subspace

Hk = span{Hk(B(h)), h ∈ H, ∥h∥H = 1}.

H0 is the set of constants. Hk is called the Wiener chaos of order k. Then one
can prove the following theorem [117, Theorem 1.1.1]:

Theorem A.3.2. Denote by γ the standard normal distribution. Then the Hermite
polynomials form a complete orthogonal system in L2(R, γ). Moreover, the space
L2(Ω,G,P) can be decomposed as the orthogonal sum:

L2(Ω,G,P) =
∞⊕
k=0

Hn.

For any k ≥ 1 we define H⊗k as the k-th tensor product of H and H⊙k as the
k-th symmetric tensor product of H. We endowed the space H⊙k with the norm
∥·∥H⊙k =

√
k!∥·∥H⊗k .

Let h = h1 ⊗ ... ⊗ hk, g = g1 ⊗ ... ⊗ gk be two elements of H⊗k. We define the
p-th contraction of h and g, denoted h⊗p g, as

h⊗p g = ⟨hk−p+1, g1⟩H ...⟨hk, gp⟩Hh1 ⊗ ...⊗ hk−p ⊗ gp+1 ⊗ ...⊗ gk ∈ H⊗2(k−p)

and by h̃ the symmetrization of h defined as

h̃ =
1

k!

∑
σ∈Sk

hσ(1)⊗...⊗hσ(k) ∈ H⊙k with Sk the group of permutations of {1, ..., k}.

One can show the following [117, Section 1.1.2]:
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Theorem A.3.3. Let k ≥ 1. There exists a unique linear isometry Ik : H⊙k → Hk,
called the k-th Wiener-Itô integral with respect to B. Moreover, let h ∈ H with
∥h∥H = 1. Then

Ik(h⊗q) = Hq(B(h)).

Theorem A.3.2 is the tool used for the step (ii) while Theorem A.3.3 is necessary
for the step (iii).

We state the last result of this subsection, necessary to proceed with step (iv).
Let Yn = (Y 1

n , ..., Y
d
n ) be a centered d-valued stochastic process defined on some

probability space (Ω,F ,P) and assume that Yn admits the chaotic expansion:

Y k
n =

∞∑
m=1

Ik(fk
m,n), fk

m,n ∈ H⊙m.

We have the following central limit theorem [11]:

Theorem A.3.4. If each of the following conditions holds:

(i) For any k = 1, ..., d we have

lim
N→∞

lim sup
n→∞

∞∑
m=N+1

m!∥fk
m,n∥2H⊗m = 0.

(ii) For any m ≥ 1, k, l = 1, ..., d we have constants Cm
k,l such that

lim
n→∞

m!∥fk
m,n∥2H⊗m = Cm

k,k,

lim
n→∞

E
[
Im(fk

m,n)Im(f l
m,n)

]
= Cm

k,l, k ̸= l,

and the matrix Cm = (Cm
k,l)1≤k,l≤d is positive definite for all m.

(iii)
∞∑

m=1

Cm = C ∈ Rd×d.

(iv) For any m ≥ 1, k = 1, ..., d and p = 1, ...,m− 1

lim
n→∞

∥fk
m,n ⊗p f

k
m,n∥2H⊗2(m−p) = 0.

Then we have the weak convergence

Yn
d−→ Nd(0, C).
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a class of stationary increments Lévy driven moving averages. The Annals of
Probability, 45(6B):4477 – 4528, 2017.

[31] A. Basse-O’Connor, V. Pilipauskaitė, and M. Podolskij. Power variations
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[51] S. Cohen and J. Rosiński. Gaussian approximation of multivariate lévy pro-
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[81] J. Jacod and J. Mémin. Caractéristiques locales et conditions de continuité
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ing average processes. In Stochastic Models, Statistics and Their Applications,
pages 41–56. Springer Proceedings in Mathematics and Statistics, 10 2019.

[102] M. M. Ljungdahl and M. Podolskij. A minimal contrast estimator for the
linear fractional stable motion. Statistical Inference for Stochastic Processes,
23(2):381–413, 2020.

[103] M. M. Ljungdahl and M. Podolskij. Multidimensional parameter estimation of
heavy-tailed moving averages. Scandinavian Journal of Statistics, 49(2):593–
624, 2022.

[104] W.-L. Loh. Estimating the smoothness of a Gaussian random field from ir-
regularly spaced data via higher-order quadratic variations. The Annals of
Statistics, 43(6):2766 – 2794, 2015.

[105] P. Malliavin. Stochastic calculus of variation and hypoelliptic operators. Proc.
int. Symp. on stochastic differential equations, Kyoto 1976, 195-263 (1978).,
1978.

[106] P. Malliavin. Stochastic Analysis. Springer Berlin, Heidelberg, 1997.

[107] M. B. Marcus and J. Rosen. Lp moduli of continuity of Gaussian processes and
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