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Abstract— As a consequence of accepting sustainable
initiatives, e.g. Green Deal, sustainable maintenance attracted
significant attention in academia. However, observation of low
market intelligence and lack of sustainable goal-oriented
philosophy has been reported. The article proposes the Energy-
Based Maintenance (EBM) paradigm to fulfil the needs of
sustainable manufacturing philosophy. The EBM implicitly
consists of two concepts: Functional-Productiveness (FPC) and
Comparative Functional Productiveness (CFD). Namely, the
core of FPC is to propose a new view in understanding the
nature of functionality by delineating static (maintenance)
events (e.g., total failure, death, etc.) from dynamic (process)
events (e.g., quasi-faults, leakage, contamination, etc.). The CFD
uses FPC and dynamic (process) events and acts as a catalyst in
reducing noise for feature extraction by comparing system
behaviour (cylinder response) and energy consumption.
Demonstration on a case study of proposed EBM practice versus
traditional ones is done on three bulldozers CAT D8R. The
results show reduced oil waste and energy consumption and
improved MTBF; however, the stoppages are censored due to
constant monitoring and inspection.

Keywords—energy-based maintenance, hydraulic systems,
functional-productiveness concept, comparative functional
dynamics, machine learning

. INTRODUCTION

A. Traditional Maintenance Practices — pre-loT era

Academicians occupied with industrial maintenance have
long sought to explain how maintenance should be perceived
and employed practically in an industrial environment. To
frame it, the BSI (British Standards Institution) published a
standard which defines maintenance as: "...the combination
of all technical and administrative actions, intended to retain
an item in or restore it to, a state in which it can perform its
desired function" [1]. The BSI definition of maintenance
implicates two basic maintenance strategies that most
researchers oblige with: Corrective Maintenance (CM) and
Preventive Maintenance (PM) [2]-[5]. The CM also belongs
to run-to-failure and reactive maintenance practice, while PM
consists of Time-Based Maintenance (TBM) and Condition-
Based Maintenance (CBM). Unlike the CM approach, where
the goal is to reduce the severity of the failure, the PM
dedicates to finding and preventing, or in other instances,
reducing the frequency of failures. The CM approach dealt
with supplying standby machines, stocks of spare parts, and
providing labour training for repair, which, in turn, consumed
a significant portion of time and money. At the time, these
alternatives soon fall short of expectations, making PM more
compelling. However, although TBM provided opportunities
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to improve operational effectiveness eventually had a hard
time fulfilling the needs of more complex and sophisticated
systems. Leveraging stoppage' expenses while preventing
failures, maintenance optimisation became an extensively
popular topic [6], [7].

The maintenance optimisation era forced peers to shift
more attention to optimal strategies, aiming to reduce
unnecessary activities, thus, creating a solution space for the
CBM approach. Acceptance of the CBM paradigm
experienced unprecedented interest in academia [7], [8],
mostly due to disruptive technologies. Some argue that CBM
was introduced in 1975 [9], while others state that it dates
back to the late 1940s when Rio Grande Railway Steel
Company introduced the concept, later adopted by the US
Army [10]. The uniqueness of CBM became apparent in its
distinctive way of reducing unnecessary activities by taking
action only in the case of abnormality. The topic became
extensively interesting in practice and academia, although
lacking proper characterisation. Eventually, Jardine et al. [11]
took the credit by stating that CBM: "...is a maintenance
program that recommends maintenance actions based on the
information collected through condition monitoring."
Although elusive, one can conclude that, unlike TBM, actions
are taken when acquired data shows abnormal behaviour.
Jardine et al. argue that, for CBM to be functional, two data
types are required: event data (e.g., repair or preventive
actions) and monitoring data (e.g., temperature and pressure).
What is interesting is that the CBM is considered the same as
PdM by various authors [3], [9], [10], [12]. The author of this
article argues that this could be a misconception and
misinterpretation of these practices. The first reason is that
different underlying concepts drive the methodologies to
different goal-oriented objectives. The second reason is that
both policies utilise other available maintenance practices
and technology.

B. Maintenance Practices — post 10T era

The first aspect of CBM, the diagnostic aspect [13]-[15],
Fault Detection and Isolation (FDI) [16], [17] or RCA (Root
Cause Analysis) [18], deals with fault detection, isolation,
and identification when the failure occurs. On the other side,
prognostics deals with fault anticipation, i.e., providing
decision support before the failure occurs. These two aspects
frame the CBM program [2], [3], [11], [19], in addition to
data acquisition, data processing, and decision-making,
which are three essential steps of CBM.

Neo-Jardinians, who champion the CBM program over
other maintenance concepts, mostly focus on the prognostics
aspect [20]-[25], especially the Remaining Useful Life



(RUL) prediction. The prognostic aspect evaluates the
historical diagnosis results and anticipates RUL of safe
operation, relying mostly on statistical approaches [10].
Conversely, PdM practice mostly utilises the real-time data-
driven approach by monitoring signal deviations from
disturbances affecting specific machining processes,
including diagnosis and prognosis.

We propose that CBM is not identical to PdM to present
the claims further. To some extent, similarities exist, and
PdM somewhat implies CBM (diagnosis and prognosis);
however, it does not address the same processing
information. Namely, the CBM policy belongs to preventive
and predictive maintenance practice. Hence, if data analysis
relies on maintenance (failure) data, it belongs to CBM
practice. If the data analysis relies on control (process) data,
it belongs to PAM. For CBM, the goal is to prevent stoppages
(failures), while for PdM, the goal is to use feature extraction
methods to understand and act upon anomalies or quasi-
failures that can cause degradation and eventually stoppage.

With that in mind, the CBM's maintenance activities rely
mostly on failure data with statistical or analytical modelling
to predict and perform needed actions. For instance, Cox's
Proportional Hazard Modeling usage in CBM emphasises
high dependence on failure data for diagnosis [2], [26].
Conversely, PdM relies more on process control data (e.g.,
vibration, noise, temperature) to predict the impact or
reduction of operational performances. In this particular
realm of maintenance (PdM), PCA (Principal Component
Analysis) gained prominence after the 2000s [27], [28] for
determining the replacement control limits. More recently,
the method of PCA has been applied in manufacturing [29],
the aerospace industry [30], and infrastructure [31], also
extended with an unsupervised machine learning approach
[32]. The development of sensor technology, remote
monitoring (e-maintenance[33]), and typologies suggested
by Veldman et al. [3], inspired the author to propose this
maintenance juxtaposition.

Likewise, numerous programs exist within the literature
on the lower level of decision-making; for instance, PHM
(Prognostics and Health Management) [34] program extends
the traditional CBM's diagnostic and prognostic aspects with
LCM (Life Cycle Management) capabilities. Some authors
consider PHM a synonym for CBM [17], [35], although
without proper terminological explanation to support such
claims. Similarly, the SHM (Structural Health Monitoring)
program closely reflects CBM, although only the condition-
monitoring part of CBM focuses on structural damage
detection. The SHM has been widely applied in aerospace
[36], civil [37]-[39], and mechanical engineering structures
[40]. Unlike many programs at the tactical level that CBM
consists of, the SHM [41], however, mostly relies only on
vibration or noise data for pattern recognition [42], with more
details in the diagnostic aspect [43]. Putting all together, one
can conclude that PHM and SHM closely relate to each other,
with differences in analysis detail. These programs should be
encompassed within the PdM practice, emphasising high
dependency on real-time signal processing and decision-
making based on control (process) data.

C. Energy-Based Maintenance (EBM) Paradigm

More researchers have recently advocated the need for
sustainable maintenance practices [44]-[46]. From the
current energy-oriented research [47], [48] evidence suggests
that most of the research includes data-driven statistical and
mathematical modelling for decision-making purposes [49].

Unlike previous maintenance practices where the goal is
profit-driven, the EBM adds a dimension of sustainability
[50]. Besides, the EBM paradigm's prominent research is
monitoring energy as a performance parameter. As previous
research only includes energy as a sub-dimension of financial
effectiveness and efficiency of maintenance activities for
optimisation purposes, with the help of available ML
(Machine Learning) and DL (Deep learning) techniques, the
energy consumption profiles (ECP) [51], [52] associates with
the system health.

Moreover, by monitoring ECP, one can conclude the
degradation process of a particular machine or component.
Indeed, the logical pattern is that the actuator element's
degradation performance (e.g., cylinder, motor) is strongly
associated with the components' energy degradation
processes, considering that energy follows a logical serial
relationship. For instance, a hydraulic system of serial
components transforms the energy from electric input to
mechanical work through hydraulic (fluid) energy. Thus, the
degradation of components within the system through, for
instance, contamination [53] produces oil degradation,
viscosity change and leakage — resulting in volumetric, thus
energy losses. From such a logical presupposition, the benefit
is that by monitoring energy losses between components'
power ports, i.e., input and output, one can easily follow a
particular component's degradation state. Interestingly,
unlike traditional maintenance practices, the EBM practice
consists of threefold information from monitoring just a
simple parameter as ECP. For instance, by monitoring ECP,
the resulting information includes:

e energy consumption as monetary value = financial;
e energy degradation = fault and failure assessment;

e energy waste = environmental responsibility.

Thus, measuring and monitoring energy can indicate the
potential wear within the system and suggest conducting
maintenance activities. However, it can also reflect the
environmental consequence and financial losses associated
with the failure since it can be transferred into monetary
value. As a result, data can provide much more insight into
the system's health, trigger maintenance actions, or provide
financial and sustainability effectiveness information.

D. Research Rationale and Aim of the Study

This research aims to provide meta-data on hydraulic
industrial and mobile machinery to compare future studies
interested in implementing sustainability or energy-oriented
maintenance policies. The first goal is to deliver various
maintenance practice characteristics and outcomes within
West Balkan countries. Secondly, the aim is to reflect the lack
of underlying concepts and goal-oriented philosophies
behind each maintenance practice compared to EBM.
Thirdly, the idea of functional productiveness for clear
apprehension and improving the benefits of monitoring ECP
is provided. Finally, the conceptualisation of the system's
working behaviour, i.e., dynamics, must distinguish the
functional-productive from the non-functional-productive
system as Comparative Functional Dynamics (CFD) is given.

The rest of the study is explained in the following. The
methodology section provides a questionnaire-based
formulation narrative for the extraction of empirical data. The
third section proposes and explains the concept of FPC
through formulas and illustrations. The following section
explains the concept of CFD and its possible application. The
fifth section provides the meta-data of maintenance practices



within West Balkan countries. Finally, the last section
discusses the benefits and setbacks of EBM over other
maintenance practices and sets concluding remarks,
implications and contributions to the literature.

Il. METHODOLOGY

A. Research Methods

The survey design was done in the previous study (see
[54]) since no standardised survey instrument is used to
extract all maintenance features and associated activities.
Within the EBM paradigm, the FPC is given to estimate the
system's functional and operational state. In addition to the
FPC, the CFD apparatus serves as a comparison tool for the
energy consumption mode and estimates deviation that
reinforces the FPC by penalising outliers that do not show
degradational performances. Finally, the author discusses the
advancements of FPC and CFD and the philosophy behind
the concepts as EBM pillars and compares the EBM with
other maintenance practices.

B. Survey Design and Application

The questionnaire-based survey is set for the region of
West Balkan territory. The survey is disseminated to
companies that utilise hydraulic mobile and industrial
machines for servicing and manufacturing purposes. The
questionnaire instrument validation is developed through
three stages: (1) survey design — literature review, detecting
features, and drafting the survey (2) survey simulation with
validity and reliability testing; (3) survey analysis — meta-
data, data sorting and filtering in respect to eligibility criteria,
and evaluation of empirical evidence collected. Data
collection includes empirical evidence from companies'
databases from at least 10000 working hours (e.g., at most
previous three years assuming at least two working shifts).
Raw data from the survey is aimed at companies utilising
different maintenance practices. Differentiation is made
between maintenance practice and maintenance policy.
Namely, most companies do not have generally written or
accepted policies (e.g., CBM). However, they practice CBM
through condition monitoring by utilising expensive high
sensors and reacting abnormally.

Indeed, many companies apply various practices to their
equipment after filtering data. Some may also have both CM
and PM practice in a case of new equipment where enough
data is unavailable; however, after unique evaluation,
practices are determined based on the philosophy behind the
applied practice. The survey consists of meta-data (e.g., age,
pressure, flow), maintenance activities (e.g., filter
management, oil monitoring), tools (e.g., monitoring sensors,
data analysis tools), and maintenance practice outcomes (e.g.,
MTBF, hydraulic oil waste, energy waste).

C. A Case Study in Open-pit Coal Mining

The monitoring procedure includes systematically
acquiring data from mobile machines from January-
December 2020. Some of the most important data for
comparative analysis are given in Table 1. The fuel
consumption per year (FCY) is transformed as one litre-diesel
into 10 kWh later for analysis. Maintenance activities are
performed according to the energy goal-oriented philosophy
supported by the EBM paradigm.

TABLE I. META DATA OF THREE BULLDOZERS

Hydraulic machinery meta-data®

MH MA FCY HFW TBF
CAT D8R 4405.6 6 116183 0.021 2471*
CAT D8R 3354.5 3 96534 0.017 1927*
CAT D8R 3915.0 3 113681 0.015 3211*

a MH — Machine working hours during 2020; MA — Machine Age [years]; FCY — Fuel
Consumed per year [lit./y]; HFW - Hydraulic Fluid Wasted [lit/hour]
*Data includes censoring with stated random failure.

The monitoring procedure is subjected to operational
personnel who perform work with a bulldozer and monitor
pressure and flow deviations, with the latter being more
important to detect leakages. However, the concepts of CFD
and FPC are only partially implemented for several reasons:
too much data per day for acquisition, insufficient personnel
to perform data acquisition, and a harsh working
environment. Therefore, applying CFD and FPC is done at
the end of each work shift to detect potential anomalies (e.g.,
wear, leakages).

I1l. FUNCTIONAL-PRODUCTIVENESS CONCEPT

Defining failure as "...termination of the ability of a
system to perform a required function" [1] can be considered
a formulaic statement since it lacks quantitative
determination of ability and functionality, which is where it
is assumed the problem resides. To address it, functional-
productiveness is used instead of functionality to determine
the working process as true quantitatively (1) or false (0). The
ability is replaced with the term capability as "...system or
unit capacity to transfer power™ with ability values as true (1)
or false (0). If we consider that power (P) is a rate (t) at which
work (W) is done, then defining functional-productiveness
must be done both for work and time.

Reasonably, if we define functional-productiveness of
both time (x-axis) and work (y-axis), failure is a two-
dimensional space of a function. It, therefore, must oblige
both work control limits and time-space control limits (fig.
1). Nevertheless, let us communicate the argument by stating
that quasi-failure of a system is "the inability of a system to
be functionally-productive, where the functional-
productiveness (i) is the quantitative capability of work (W,)
and time (T,) required to create a product or provide a
service". Therefore, we are quantifying functional-
productiveness as:

(W, = 0ifBCL(W,,), > Wy, v Wy, > UCL(W,) ,elseypy, =1 (1
Vi = Wr, = 0if T, > UCL(T), , else Yy, = 1 ’ )

W,,; work required to be performed, T period in unit time for
acting, UCL and BCL with index values i=1,2,3,...n are
upper- and bottom-control limits due to change over time
(assuming natural degradation, e.g., wear process) (fig. 2).
Hence, considering that power is time derivative of work;
thus power (P,) function depends on the system dynamics
and imposed requirements by the actuation device:

¥, = F(W,(F), T:(9)) )

one can conclude that functionality is a two-dimensional
space process. In that sense, the functionality of a system is
dependent on work. Since work is done by compressing the
fluid in the hydraulic system, functional-productiveness is a
derivative of pressure and volumetric flow.
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Fig. 1. Functional dynamics concept of demanded power by the system
and a given period considering traditional static control limits (legend: TF-
UCL = total failure upper control limit; TF-BCL = total failure bottom
control limit; QF-UCL = quasi-failure upper control limit; QF-BCL =
quasi-failure bottom control limit; t,i = time to create a product)
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Fig. 2. Functional dynamics concept of demanded work by the system and
a given time window considering dynamic control limits (legend: TF-UCL
= total failure upper control limit; TF-BCL = total failure bottom control
limit; QF-UCL = quasi-failure upper control limit; QF-BCL = quasi-failure
bottom control limit; tpi = time to create a product)

To set the periods Tp, we can use Moving Average (MA) and
determine and interpolate potential cycle-times (t,-j) based on
the real-time available values of t; as:

k
1
= ;Zl by 3)
=
hence, interpolating  boundaries  for  functional-
productiveness of T, is done by setting quasi-failure control
limit QF(Tp) and total failure control limit TF(T,) of j periods
as:

k N
QF(T,) = %z ty £2- jﬁz (s - ﬂtw)z “)
= /

N

TF(T,) = max(t,-;) + \]ﬁz (tz?*l' - #tnﬂ)z (5)

j=1

Max t; is the maximum value of machine cycle times t; before
period p, and TF(T,) is calculated by the sum of a sample’s
max cycle time and standard deviation before period Tp. py
represents the mean values of machine cycle times before
period p.

. ¥r, =1if T, <QF (T‘”Pz)ua <TF (Twm)m ©)
e else I/JT,, =0

i

The same method we used to interpolate the value of W, as:

k
1
Wy, = Z Wy, ™)

hence, interpolating functional-productiveness of work W,,
and setting quasi-failure control limits using j periods:

ucL

B Yw, =1if Wy, <QF (Wwp‘)m <TF (Wwpt) A
Y, TF (W, > QF (W, > W, ,else =0 3
( wp’)BCL ( wm)BL‘L Vi, lpw?’z

where quasi-failure upper boundaries for work W,,; are set as:

1 k 1 N 2
0 (40,),, =5 2 Mo 2 [ (07 1) ©)

1 < :
TF (W'Pp.-)uu. = max (Wl/’p*j) + m; (WIPP*I' - HW"’P*}‘) (10)

and quasi-failure bottom boundaries for work W, are set as:

k
QF (Wwp,)m = %]; Wy, ;—2° jNilZ (fp—f - #t,,_,)z (11)

j=1

1 < ’
1905, =m0 (W, )= g (W, ) (12

hence, incorporating boundary limits of eq. 4 and eq. 6 into
reliability modelling, we get:

R(Yr, @)= f¥r, @)
R (IPWT,,,, (fj)) = f(lpw,,,(f/)'lpr,,,,(f/)) = {R ((%: 7 (;3 _ fElP:V 7 (;))) (13)

With logical operators, if both functional-productiveness of a
machine to perform process t,; (eg. 6) and work W, (eq. 8)
in a specific period (T;) will be defined as:

I’DWTP*] =Lif pr—/ =1 Awwp-l -

dur,, =f (b, () 9, () ={ else Py, | = 0. (14)

Hence, in the case of FPC, time to an event is not failure or
stoppage of a machine but rather "outliers" or quasi-faults
outside of the proposed dynamic boundary condition. Thus,
the functional space is determined by the time to create a
product (Tpi) and the work required (Wp;) from which one can
determine the existence of quasi-failures.

1V. COMPARATIVE FUNCTIONAL DYNAMICS

A. Data Acquisition and Pre-Processing

A dataset of variables and raw data consists of sensor data,
log data, and system degradation parameters/data.
Simultaneously, the energy consumption is used to calculate
reliability with the CFD approach (Fig. 3). In the domain of
EBM practice, the data of CFD uses monitoring the ECP
while considering faulty modes (e.g., temperature increase,
leakage) and considering the actuator response (e.g., cylinder
speed and force).
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Fig. 3. Algorithm of Energy-Based Maintenance Practice with Functional-
Productiveness concept and integrated Comparative Functional Dynamics
with underlying activities of each step in the algorithm

The proposed model of EBM practice utilising FPC and
CFD consist of the following steps: (1) developing FPC for a
given machine (collecting raw data, modelling FPC and
setting functionality boundary limits (eq.1-12)); (2) setting a
functionality limits of monitoring energy variables is
constructed on smoothing or moving average functions for
quasi-faults in systems, suggesting that it needs a close
examination if it continues to repeat with additional
maintenance intervention (outliers set as Total Failure — TF
in eq.5, eq.10, eq.12); (3) estimating operability and
optimising maintenance interventions considering work and
time for performing designed work in correspondence to
functionality (eq.13-14); (4) CFD apparatus relies on ML
tools (e.g., LDA, PCA) and uses flow and pressure as main
indicators with machine response features (e.g., cylinder
speed and force); (5) expected outliers in "normal™ system
operation are stored and used for feature extraction or
penalising in the case of non-faulty disturbances in power
transmission between elements (e.g., pump-valve-cylinder).
These features of potential faulty conditions are modelled as
a time to an event [0, 1].

Moreover, the primary goal of CFD is to eliminate quasi-
disturbances by penalising non-faulty operating conditions,
energy changes and deviation in actuator response by
comparing multiple systems' ECPs, operational states and
actuator responses. For instance, let us consider monitoring n
hydraulic systems' pressure and flow data and comparing the
data with actuator response (e.g., measuring cylinder
variables — force and movement speed). By comparing
multiple sensor readings between a single sensor disturbance
and other n-1 sensor readings, one can easily conclude that
the deviations are not due to chance. For instance, increased
oil leakage in the hydraulic system will reduce a cylinder's
force and movement speed.

V. RESULTS AND DISCUSSION

A. Survey Meta-Data

Meta-data includes the type of manufacturing or service
company's hydraulic machines applied and their associated
characteristics (e.g., machines' age, working pressures and
flows). However, only some important features are presented
in Table Il due to limited space.

TABLE I1. COMPANIES' AND MACHINES' META-DATA

Comp-n Hydraul.ic Machines Meta-Data®
n | Type | Fluid MA | NWP | NWF | EC

1. 22 IND HV 11.9| 106.3 45.7 10
2. 18 | MOB HV 83| 2765 1413 80
3. 17 MOB HV 10.2| 186.4| 122.7 50
4, 10 IND HM 84| 1353 38.0 10
5. 18 MOB HV 8.8| 1754| 2321 78
72. 73 MOB HV 6.8 291.8| 1754 85

Average - - - 9.63| 1755| 89.88| 33.96

b Type of industrial machines — Industrial -IND or Mobile — MOB; Fluid type based on ISO H-;

Machine Age (MA); Nominal Working Pressure (NWP); Nominal Working Flow (NWF),

Energy Consumption (EC) in kWh in average values of electric motor or ICE; Company

number (Comp-n)

Besides the meta-data of companies and machines

utilising hydraulic control systems, data also includes

maintenance practices applied within companies. Likewise,

associated maintenance practice includes activities of which
the most important ones are given in Table IlI.

TABLE III. MAINTENANCE PRACTICE META-DATA

Maintenance Practice Meta-Data®
MPPM | MDT MP MAP FAP CMI FRT

Comp-n

1. 145 | TECH | CM Vi TECH | None | 951
2. 044 | TECH | OM cC TECH | PFTC | 2432
3. 0.76 | TENG| PM UOA BSc | PFTC | 259
4. 0.30 None | CM VI None | None | 2886
5. 0.33 TESP | PdM | OCM | MSc | PFTC | 668
72. 0.36 | TENG | PM UOA BSc | PFTC | 1087
Average 0.53 - - - - - 1157

¢ MPPM — Maintenance Personnel Per Machine; MDT — Maintenance Department Team

(TECH — Technicians; TENG — Technicians&Engineers; TESP —
Technicians&Engineers&Specialists); MAP — Maintenance Analysis Program (VI — Visual
inspection; CC — Contamination Control; UOA — Used Oil Analysis; OCM — Oil Condition

Monitoring); FAP — Failure Analysis Personnel (TECH — Technician performs failure analysis;

BSc — Engineer; MSc — Master engineering/specialist performs failure analysis.

Moreover, data collected are sorted into technical

machine operational characteristics, maintenance practice

and maintenance performance parameters. The most

important ones include MTBF, HFW, and EC. The values of

MTBF (fig. 4) are taken from the database of companies that

participated in the survey; HFW is divided by the number of
machines and hours (fig. 5).
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Fig. 4. Mean-Time-Between-Failures concerning maintenance policy

Hydraulic power waste is calculated as non-random
deteriorating failure concerning leakages from selected
systems reported stopped due to the same loss. The results
show that around 21% of stoppages attribute to leakage due
to degradation of elements, seals, places of connection
between pipes and tubes, or random operator faults leading to
the breakage of components. For calculating energy losses
due to leakage, approximations ranging from 1,1-2% [55],

[56] are used for calculations.
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Fig. 5. Hydraulic fluid waste per machine/hour concerning maintenance
policy
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B. Comparison of EBM with Traditional MPs

The collected parameters in Table IV are given for
objective assessment of the results obtained. Since only two
technicians are responsible for managing and maintaining
hydraulic bulldozers, it still shows a higher average

personnel per machine than other MPs. The bulldozers'
age is also lower than the average values of hydraulic
machines subjected to different MPs. Filter management
(FRT) is conducted appropriately and corresponds to CBM
and PdM practice. However, data shows bias towards
observing machinery, including more inspections and
improved monitoring by personnel.

d MPPM — Maintenance Personnel Per Machine; MA — Machine Age; FRT — Filter Replacement

Time [hours];
Table V provides data from simulated EBM maintenance
practices compared to other maintenance practices, and the
results show the following. The MTBF of hydraulic machines
subjected to EBM practice resulted in u+ 6 =778.27 £ 389.81
hours, which ranges from -22% to -53% worse performance
in comparison to other maintenance practices given in Table
V, respectively. Although, as stated, some quasi-failures
requesting stoppage are censored and did not show failure
after inspection. Energy consumption per hour showed better
performance than any other practice, best in the case
compared to PM practice (113%), while CBM shows the
least, although still 20% higher.

TABLE IV. PROPERTIES OF EBM AND TRADITIONAL MPS
Prop. Type of Maintenance Practice®
EBM CM PM oM DM CBM | PdM
MPPM 0.66 0.34 0.48 0.47 0.15 0.45 | 0.65
MA 5.50 9.49 9.15 | 11.22 | 850 | 11.74 | 9.01
FRT 501 993 796 773 1196 | 636 | 484

TABLE V. PERFORMANCE HEATMAP OF EBM VS TRADITIONAL MPs
Maintenance Practice (Policy)®
EBM CM PM OM DM CBM PdM
MTBE | -22% | -39% |
EC-L 46% 113% | 101% 60% 20% 60%
HFW 50% 112% | 154% 95% 127% | 165%

e MTBF — Mean Time Between Failures; EC-L — Energy Consumption due to Leakage [kW/oil

leakage * hour]; HFW — Hydraulic Fluid Wasted per machine [I/hour].
Hydraulic fluid waste (HFW) per hour provides
interesting information. Although some data from the survey
includes monthly overall hydraulic fluid waste per machine,
data is obtained by transforming it into oil waste per machine
hour for a given system. Although expected, EBM
outperformed CM, PM, OM, and DM in terms of oil
preservation and not disposing nor resulting in abnormal
leakage; the comparison to CBM and PdM practice shows
127% and 165% reduction in fluid waste, thus, requiring
further and in-depth analysis for such an anomaly.

Several assumptions can be drawn. Firstly, those
machines subjected to CBM and PdM policies may follow
equipment manufacturers' recommendations and replace the
oil every 1000h resulting in such huge fluid waste. Secondly,
depending on the environmental requirements, the fluid is
constantly replaced in the same manner. In both cases, the
primary goal is to maintain the machine in an operational
state as long as possible; however, oil can still have good
working characteristics even after disposal. Thirdly,
maintenance management and personnel do not consider
leakage a serious threat and neglect the obvious
environmentally hazardous effect.
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Fig. 7. Characteristics and performances of various maintenance practices

The evidence suggests the following from analysing
activities and performance of each maintenance practice (fig.
7). MTBF negatively correlates with the machine age,



confirmed by the previous study [54]. Following original
equipment  manufacturers'  guidelines,  presumably,
technicians and managers within CBM and PdM paradigm
dispose of the hydraulic oil while still possessing good
physio-chemical characteristics; however, needing further
analysis to support such claims. Although CBM and PdM
show improvement in energy efficiency and reduction in
energy waste, the EBM outperforms both practices; however,
the EBM practice requires constant inspection.

VI. CONCLUDING REMARKS

Finally, this work provides meta-data on maintenance
practices applied within industrial and mobile hydraulic
machines. Although some organisations claim to utilise PAM
policy, they lack the proper technical and technological
apparatus to support such claims. Collected data from a
survey on West Balkan territory compared with the newly
proposed maintenance practice of EBM. The basic idea of
EBM is to monitor energy consumption and deviations in the
signal to detect anomalies; thus, system faults and react upon
them before potential failure. The idea of changing the
functionality into FPC helped enable EBM. However, FPC
itself could not fulfil the demands because the concept had
problems detecting faulty from non-faulty conditions;
therefore, another idea is introduced as comparative
functional dynamics. The substance behind the CFD is to
monitor system response from the system being analysed and
other systems with the same characteristics. This way,
potential "outliers™ and errors can be reduced, thus increasing
the accuracy of detecting faults. As a result, the simulation of
an implemented EBM practice on three bulldozers resulted in
reduced oil and energy waste, however, at the cost of more
inspection and increased stoppages.

When writing the paper, several papers are concerned
with monitoring energy as a consumption parameter and a
fault recognition pattern [57], stressing that this could
resonate with a zeitgeist, especially with environmental
legislation and initiatives imposition (e.g., Green Deal).
Overall, the EBM suggests measuring the quality of energy
response because production depends on actuator response
(e.g., hydraulic press — cylinder speed and force), which again
depends on volumetric flow and pressure.
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