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Abstract— As a consequence of accepting sustainable 
initiatives, e.g. Green Deal, sustainable maintenance attracted 
significant attention in academia. However, observation of low 
market intelligence and lack of sustainable goal-oriented 
philosophy has been reported. The article proposes the Energy-
Based Maintenance (EBM) paradigm to fulfil the needs of 
sustainable manufacturing philosophy. The EBM implicitly 
consists of two concepts: Functional-Productiveness (FPC) and 
Comparative Functional Productiveness (CFD). Namely, the 
core of FPC is to propose a new view in understanding the 
nature of functionality by delineating static (maintenance) 
events (e.g., total failure, death, etc.) from dynamic (process) 
events (e.g., quasi-faults, leakage, contamination, etc.). The CFD 
uses FPC and dynamic (process) events and acts as a catalyst in 
reducing noise for feature extraction by comparing system 
behaviour (cylinder response) and energy consumption. 
Demonstration on a case study of proposed EBM practice versus 
traditional ones is done on three bulldozers CAT D8R. The 
results show reduced oil waste and energy consumption and 
improved MTBF; however, the stoppages are censored due to 
constant monitoring and inspection. 

Keywords—energy-based maintenance, hydraulic systems, 
functional-productiveness concept, comparative functional 
dynamics, machine learning 

I. INTRODUCTION 

A. Traditional Maintenance Practices – pre-IoT era 

Academicians occupied with industrial maintenance have 
long sought to explain how maintenance should be perceived 
and employed practically in an industrial environment. To 
frame it, the BSI (British Standards Institution) published a 
standard which defines maintenance as: "…the combination 
of all technical and administrative actions, intended to retain 
an item in or restore it to, a state in which it can perform its 
desired function" [1]. The BSI definition of maintenance 
implicates two basic maintenance strategies that most 
researchers oblige with: Corrective Maintenance (CM) and 
Preventive Maintenance (PM) [2]–[5]. The CM also belongs 
to run-to-failure and reactive maintenance practice, while PM 
consists of Time-Based Maintenance (TBM) and Condition-
Based Maintenance (CBM). Unlike the CM approach, where 
the goal is to reduce the severity of the failure, the PM 
dedicates to finding and preventing, or in other instances, 
reducing the frequency of failures. The CM approach dealt 
with supplying standby machines, stocks of spare parts, and 
providing labour training for repair, which, in turn, consumed 
a significant portion of time and money. At the time, these 
alternatives soon fall short of expectations, making PM more 
compelling. However, although TBM provided opportunities 

to improve operational effectiveness eventually had a hard 
time fulfilling the needs of more complex and sophisticated 
systems. Leveraging stoppage' expenses while preventing 
failures, maintenance optimisation became an extensively 
popular topic [6], [7]. 

The maintenance optimisation era forced peers to shift 
more attention to optimal strategies, aiming to reduce 
unnecessary activities, thus, creating a solution space for the 
CBM approach. Acceptance of the CBM paradigm 
experienced unprecedented interest in academia [7], [8], 
mostly due to disruptive technologies. Some argue that CBM 
was introduced in 1975 [9], while others state that it dates 
back to the late 1940s when Rio Grande Railway Steel 
Company introduced the concept, later adopted by the US 
Army [10]. The uniqueness of CBM became apparent in its 
distinctive way of reducing unnecessary activities by taking 
action only in the case of abnormality. The topic became 
extensively interesting in practice and academia, although 
lacking proper characterisation. Eventually, Jardine et al. [11] 
took the credit by stating that CBM: "…is a maintenance 
program that recommends maintenance actions based on the 
information collected through condition monitoring." 
Although elusive, one can conclude that, unlike TBM, actions 
are taken when acquired data shows abnormal behaviour. 
Jardine et al. argue that, for CBM to be functional, two data 
types are required: event data (e.g., repair or preventive 
actions) and monitoring data (e.g., temperature and pressure). 
What is interesting is that the CBM is considered the same as 
PdM by various authors [3], [9], [10], [12]. The author of this 
article argues that this could be a misconception and 
misinterpretation of these practices. The first reason is that 
different underlying concepts drive the methodologies to 
different goal-oriented objectives. The second reason is that 
both policies utilise other available maintenance practices 
and technology. 

B. Maintenance Practices – post IoT era 

The first aspect of CBM, the diagnostic aspect [13]–[15],  
Fault Detection and Isolation (FDI) [16], [17] or RCA (Root 
Cause Analysis) [18], deals with fault detection, isolation, 
and identification when the failure occurs. On the other side, 
prognostics deals with fault anticipation, i.e., providing 
decision support before the failure occurs. These two aspects 
frame the CBM program [2], [3], [11], [19], in addition to 
data acquisition, data processing, and decision-making, 
which are three essential steps of CBM. 

Neo-Jardinians, who champion the CBM program over 
other maintenance concepts, mostly focus on the prognostics 
aspect [20]–[25], especially the Remaining Useful Life 



(RUL) prediction. The prognostic aspect evaluates the 
historical diagnosis results and anticipates RUL of safe 
operation, relying mostly on statistical approaches [10]. 
Conversely, PdM practice mostly utilises the real-time data-
driven approach by monitoring signal deviations from 
disturbances affecting specific machining processes, 
including diagnosis and prognosis. 

We propose that CBM is not identical to PdM to present 
the claims further. To some extent, similarities exist, and 
PdM somewhat implies CBM (diagnosis and prognosis); 
however, it does not address the same processing 
information. Namely, the CBM policy belongs to preventive 
and predictive maintenance practice. Hence, if data analysis 
relies on maintenance (failure) data, it belongs to CBM 
practice. If the data analysis relies on control (process) data, 
it belongs to PdM. For CBM, the goal is to prevent stoppages 
(failures), while for PdM, the goal is to use feature extraction 
methods to understand and act upon anomalies or quasi-
failures that can cause degradation and eventually stoppage. 

With that in mind, the CBM's maintenance activities rely 
mostly on failure data with statistical or analytical modelling 
to predict and perform needed actions. For instance, Cox's 
Proportional Hazard Modeling usage in CBM emphasises 
high dependence on failure data for diagnosis [2], [26]. 
Conversely, PdM relies more on process control data (e.g., 
vibration, noise, temperature) to predict the impact or 
reduction of operational performances. In this particular 
realm of maintenance (PdM), PCA (Principal Component 
Analysis) gained prominence after the 2000s [27], [28] for 
determining the replacement control limits. More recently, 
the method of PCA has been applied in manufacturing [29], 
the aerospace industry [30], and infrastructure [31], also 
extended with an unsupervised machine learning approach 
[32]. The development of sensor technology, remote 
monitoring (e-maintenance[33]), and typologies suggested 
by Veldman et al. [3], inspired the author to propose this 
maintenance juxtaposition. 

Likewise, numerous programs exist within the literature 
on the lower level of decision-making; for instance, PHM 
(Prognostics and Health Management) [34] program extends 
the traditional CBM's diagnostic and prognostic aspects with 
LCM (Life Cycle Management) capabilities. Some authors 
consider PHM a synonym for CBM [17], [35], although 
without proper terminological explanation to support such 
claims. Similarly, the SHM (Structural Health Monitoring) 
program closely reflects CBM, although only the condition-
monitoring part of CBM focuses on structural damage 
detection. The SHM has been widely applied in aerospace 
[36], civil [37]–[39], and mechanical engineering structures 
[40]. Unlike many programs at the tactical level that CBM 
consists of, the SHM [41], however, mostly relies only on 
vibration or noise data for pattern recognition [42], with more 
details in the diagnostic aspect [43]. Putting all together, one 
can conclude that PHM and SHM closely relate to each other, 
with differences in analysis detail. These programs should be 
encompassed within the PdM practice, emphasising high 
dependency on real-time signal processing and decision-
making based on control (process) data. 

C. Energy-Based Maintenance (EBM) Paradigm 

More researchers have recently advocated the need for 
sustainable maintenance practices [44]–[46]. From the 
current energy-oriented research [47], [48] evidence suggests 
that most of the research includes data-driven statistical and 
mathematical modelling for decision-making purposes [49]. 

Unlike previous maintenance practices where the goal is 
profit-driven, the EBM adds a dimension of sustainability 
[50]. Besides, the EBM paradigm's prominent research is 
monitoring energy as a performance parameter. As previous 
research only includes energy as a sub-dimension of financial 
effectiveness and efficiency of maintenance activities for 
optimisation purposes, with the help of available ML 
(Machine Learning) and DL (Deep learning) techniques, the 
energy consumption profiles (ECP) [51], [52] associates with 
the system health. 

Moreover, by monitoring ECP, one can conclude the 
degradation process of a particular machine or component. 
Indeed, the logical pattern is that the actuator element's 
degradation performance (e.g., cylinder, motor) is strongly 
associated with the components' energy degradation 
processes, considering that energy follows a logical serial 
relationship. For instance, a hydraulic system of serial 
components transforms the energy from electric input to 
mechanical work through hydraulic (fluid) energy. Thus, the 
degradation of components within the system through, for 
instance, contamination [53] produces oil degradation, 
viscosity change and leakage – resulting in volumetric, thus 
energy losses. From such a logical presupposition, the benefit 
is that by monitoring energy losses between components' 
power ports, i.e., input and output, one can easily follow a 
particular component's degradation state. Interestingly, 
unlike traditional maintenance practices, the EBM practice 
consists of threefold information from monitoring just a 
simple parameter as ECP. For instance, by monitoring ECP, 
the resulting information includes: 

• energy consumption as monetary value = financial; 

• energy degradation = fault and failure assessment; 

• energy waste = environmental responsibility. 

Thus, measuring and monitoring energy can indicate the 
potential wear within the system and suggest conducting 
maintenance activities. However, it can also reflect the 
environmental consequence and financial losses associated 
with the failure since it can be transferred into monetary 
value. As a result, data can provide much more insight into 
the system's health, trigger maintenance actions, or provide 
financial and sustainability effectiveness information. 

D. Research Rationale and Aim of the Study 

This research aims to provide meta-data on hydraulic 
industrial and mobile machinery to compare future studies 
interested in implementing sustainability or energy-oriented 
maintenance policies. The first goal is to deliver various 
maintenance practice characteristics and outcomes within 
West Balkan countries. Secondly, the aim is to reflect the lack 
of underlying concepts and goal-oriented philosophies 
behind each maintenance practice compared to EBM. 
Thirdly, the idea of functional productiveness for clear 
apprehension and improving the benefits of monitoring ECP 
is provided. Finally, the conceptualisation of the system's 
working behaviour, i.e., dynamics, must distinguish the 
functional-productive from the non-functional-productive 
system as Comparative Functional Dynamics (CFD) is given. 

The rest of the study is explained in the following. The 
methodology section provides a questionnaire-based 
formulation narrative for the extraction of empirical data. The 
third section proposes and explains the concept of FPC 
through formulas and illustrations. The following section 
explains the concept of CFD and its possible application. The 
fifth section provides the meta-data of maintenance practices 



within West Balkan countries. Finally, the last section 
discusses the benefits and setbacks of EBM over other 
maintenance practices and sets concluding remarks, 
implications and contributions to the literature. 

II. METHODOLOGY 

A. Research Methods 

The survey design was done in the previous study (see 
[54]) since no standardised survey instrument is used to 
extract all maintenance features and associated activities. 
Within the EBM paradigm, the FPC is given to estimate the 
system's functional and operational state. In addition to the 
FPC, the CFD apparatus serves as a comparison tool for the 
energy consumption mode and estimates deviation that 
reinforces the FPC by penalising outliers that do not show 
degradational performances. Finally, the author discusses the 
advancements of FPC and CFD and the philosophy behind 
the concepts as EBM pillars and compares the EBM with 
other maintenance practices. 

B. Survey Design and Application 

The questionnaire-based survey is set for the region of 
West Balkan territory. The survey is disseminated to 
companies that utilise hydraulic mobile and industrial 
machines for servicing and manufacturing purposes. The 
questionnaire instrument validation is developed through 
three stages: (1) survey design – literature review, detecting 
features, and drafting the survey (2) survey simulation with 
validity and reliability testing; (3) survey analysis – meta-
data, data sorting and filtering in respect to eligibility criteria, 
and evaluation of empirical evidence collected. Data 
collection includes empirical evidence from companies' 
databases from at least 10000 working hours (e.g., at most 
previous three years assuming at least two working shifts). 
Raw data from the survey is aimed at companies utilising 
different maintenance practices. Differentiation is made 
between maintenance practice and maintenance policy. 
Namely, most companies do not have generally written or 
accepted policies (e.g., CBM). However, they practice CBM 
through condition monitoring by utilising expensive high 
sensors and reacting abnormally. 

Indeed, many companies apply various practices to their 
equipment after filtering data. Some may also have both CM 
and PM practice in a case of new equipment where enough 
data is unavailable; however, after unique evaluation, 
practices are determined based on the philosophy behind the 
applied practice. The survey consists of meta-data (e.g., age, 
pressure, flow), maintenance activities (e.g., filter 
management, oil monitoring), tools (e.g., monitoring sensors, 
data analysis tools), and maintenance practice outcomes (e.g., 
MTBF, hydraulic oil waste, energy waste). 

C. A Case Study in Open-pit Coal Mining 

The monitoring procedure includes systematically 
acquiring data from mobile machines from January-
December 2020. Some of the most important data for 
comparative analysis are given in Table I. The fuel 
consumption per year (FCY) is transformed as one litre-diesel 
into 10 kWh later for analysis. Maintenance activities are 
performed according to the energy goal-oriented philosophy 
supported by the EBM paradigm. 

TABLE I.  META DATA OF THREE BULLDOZERS 

 Hydraulic machinery meta-dataa 

 MH MA FCY HFW TBF 

CAT D8R 4405.6 6 116183 0.021 2471* 

CAT D8R 3354.5 3 96534 0.017 1927* 

CAT D8R 3915.0 3 113681 0.015 3211* 

a. MH – Machine working hours during 2020; MA – Machine Age [years]; FCY – Fuel 
Consumed per year [lit./y]; HFW - Hydraulic Fluid Wasted [lit/hour] 

*Data includes censoring with stated random failure.  

The monitoring procedure is subjected to operational 
personnel who perform work with a bulldozer and monitor 
pressure and flow deviations, with the latter being more 
important to detect leakages. However, the concepts of CFD 
and FPC are only partially implemented for several reasons: 
too much data per day for acquisition, insufficient personnel 
to perform data acquisition, and a harsh working 
environment. Therefore, applying CFD and FPC is done at 
the end of each work shift to detect potential anomalies (e.g., 
wear, leakages). 

III. FUNCTIONAL-PRODUCTIVENESS CONCEPT 

Defining failure as "…termination of the ability of a 
system to perform a required function" [1] can be considered 
a formulaic statement since it lacks quantitative 
determination of ability and functionality, which is where it 
is assumed the problem resides. To address it, functional-
productiveness is used instead of functionality to determine 
the working process as true quantitatively (1) or false (0). The 
ability is replaced with the term capability as "…system or 
unit capacity to transfer power" with ability values as true (1) 
or false (0). If we consider that power (P) is a rate (t) at which 
work (W) is done, then defining functional-productiveness 
must be done both for work and time. 

Reasonably, if we define functional-productiveness of 
both time (x-axis) and work (y-axis), failure is a two-
dimensional space of a function. It, therefore, must oblige 
both work control limits and time-space control limits (fig. 
1). Nevertheless, let us communicate the argument by stating 
that quasi-failure of a system is "the inability of a system to 
be functionally-productive, where the functional-
productiveness (ψ) is the quantitative capability of work (Wψ) 
and time (Tψ) required to create a product or provide a 
service". Therefore, we are quantifying functional-
productiveness as: 

 

(

) 

Wψi work required to be performed, T period in unit time for 
acting, UCL and BCL with index values i=1,2,3,…n are 
upper- and bottom-control limits due to change over time 
(assuming natural degradation, e.g., wear process) (fig. 2). 
Hence, considering that power is time derivative of work; 
thus power (Pψ) function depends on the system dynamics 
and imposed requirements by the actuation device: 

 
() 

one can conclude that functionality is a two-dimensional 
space process. In that sense, the functionality of a system is 
dependent on work. Since work is done by compressing the 
fluid in the hydraulic system, functional-productiveness is a 
derivative of pressure and volumetric flow. 
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Fig. 1. Functional dynamics concept of demanded power by the system 

and a given period considering traditional static control limits (legend: TF-
UCL = total failure upper control limit; TF-BCL = total failure bottom 
control limit; QF-UCL = quasi-failure upper control limit; QF-BCL = 

quasi-failure bottom control limit; tpi = time to create a product) 

 

Fig. 2. Functional dynamics concept of demanded work by the system and 
a given time window considering dynamic control limits (legend: TF-UCL 
= total failure upper control limit; TF-BCL = total failure bottom control 

limit; QF-UCL = quasi-failure upper control limit; QF-BCL = quasi-failure 

bottom control limit; tpi = time to create a product) 

To set the periods Tp, we can use Moving Average (MA) and 
determine and interpolate potential cycle-times (tp-j) based on 
the real-time available values of ti as: 

 

() 

hence, interpolating boundaries for functional-
productiveness of Tp is done by setting quasi-failure control 
limit QF(Tp) and total failure control limit TF(Tp) of j periods 
as: 

 

() 

. 

() 

Max tj is the maximum value of machine cycle times tj before 
period p, and TF(Tp) is calculated by the sum of a sample's 
max cycle time and standard deviation before period Tp. µtj 
represents the mean values of machine cycle times before 
period p. 

 

() 

The same method we used to interpolate the value of Wψp as: 

 

() 

hence, interpolating functional-productiveness of work Wψp 
and setting quasi-failure control limits using j periods: 

 

() 

where quasi-failure upper boundaries for work Wψpi are set as: 

 

() 

 

() 

and quasi-failure bottom boundaries for work Wψpi are set as: 

 

() 

 

() 

hence, incorporating boundary limits of eq. 4 and eq. 6 into 
reliability modelling, we get: 

 

() 

With logical operators, if both functional-productiveness of a 
machine to perform process tp-j (eq. 6) and work Wp-j (eq. 8) 
in a specific period (Tj) will be defined as: 

. 
() 

Hence, in the case of FPC, time to an event is not failure or 
stoppage of a machine but rather "outliers" or quasi-faults 
outside of the proposed dynamic boundary condition. Thus, 
the functional space is determined by the time to create a 
product (Tpi) and the work required (Wpi) from which one can 
determine the existence of quasi-failures. 

IV. COMPARATIVE FUNCTIONAL DYNAMICS 

A. Data Acquisition and Pre-Processing 

A dataset of variables and raw data consists of sensor data, 
log data, and system degradation parameters/data. 
Simultaneously, the energy consumption is used to calculate 
reliability with the CFD approach (Fig. 3). In the domain of 
EBM practice, the data of CFD uses monitoring the ECP 
while considering faulty modes (e.g., temperature increase, 
leakage) and considering the actuator response (e.g., cylinder 
speed and force). 
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Fig. 3. Algorithm of Energy-Based Maintenance Practice with Functional-
Productiveness concept and integrated Comparative Functional Dynamics 

with underlying activities of each step in the algorithm 

The proposed model of EBM practice utilising FPC and 
CFD consist of the following steps: (1) developing FPC for a 
given machine (collecting raw data, modelling FPC and 
setting functionality boundary limits (eq.1-12)); (2) setting a 
functionality limits of monitoring energy variables is 
constructed on smoothing or moving average functions for 
quasi-faults in systems, suggesting that it needs a close 
examination if it continues to repeat with additional 
maintenance intervention (outliers set as Total Failure – TF 
in eq.5, eq.10, eq.12); (3) estimating operability and 
optimising maintenance interventions considering work and 
time for performing designed work in correspondence to 
functionality (eq.13-14); (4) CFD apparatus relies on ML 
tools (e.g., LDA, PCA) and uses flow and pressure as main 
indicators with machine response features (e.g., cylinder 
speed and force); (5) expected outliers in "normal" system 
operation are stored and used for feature extraction or 
penalising in the case of non-faulty disturbances in power 
transmission between elements (e.g., pump-valve-cylinder). 
These features of potential faulty conditions are modelled as 
a time to an event [0, 1]. 

Moreover, the primary goal of CFD is to eliminate quasi-
disturbances by penalising non-faulty operating conditions, 
energy changes and deviation in actuator response by 
comparing multiple systems' ECPs, operational states and 
actuator responses. For instance, let us consider monitoring n 
hydraulic systems' pressure and flow data and comparing the 
data with actuator response (e.g., measuring cylinder 
variables – force and movement speed). By comparing 
multiple sensor readings between a single sensor disturbance 
and other n-1 sensor readings, one can easily conclude that 
the deviations are not due to chance. For instance, increased 
oil leakage in the hydraulic system will reduce a cylinder's 
force and movement speed. 

V. RESULTS AND DISCUSSION 

A. Survey Meta-Data 

Meta-data includes the type of manufacturing or service 
company's hydraulic machines applied and their associated 
characteristics (e.g., machines' age, working pressures and 
flows). However, only some important features are presented 
in Table II due to limited space. 

TABLE II.  COMPANIES' AND MACHINES' META-DATA 

Comp-n 
Hydraulic Machines Meta-Datab 

n Type Fluid MA NWP NWF EC 

1. 22 IND HV 11.9 106.3 45.7 10 

2. 18 MOB HV 8.3 276.5 141.3 80 

3. 17 MOB HV 10.2 186.4 122.7 50 

4. 10 IND HM 8.4 135.3 38.0 10 

5. 18 MOB HV 8.8 175.4 232.1 78 

…        

72. 73 MOB HV 6.8 291.8 175.4 85 

Average - - - 9.63 175.5 89.88 33.96 

b. Type of industrial machines – Industrial -IND or Mobile – MOB; Fluid type based on ISO H-; 
Machine Age (MA); Nominal Working Pressure (NWP); Nominal Working Flow (NWF), 

Energy Consumption (EC) in kWh in average values of electric motor or ICE; Company 
number (Comp-n) 

Besides the meta-data of companies and machines 
utilising hydraulic control systems, data also includes 
maintenance practices applied within companies. Likewise, 
associated maintenance practice includes activities of which 
the most important ones are given in Table III. 

TABLE III.  MAINTENANCE PRACTICE META-DATA 

Comp-n 
Maintenance Practice Meta-Datac 

MPPM MDT MP MAP FAP CMI FRT 

1. 1.45 TECH CM VI TECH None 951 

2. 0.44 TECH OM CC TECH PFTC 2432 

3. 0.76 TENG PM UOA BSc PFTC 259 

4. 0.30 None CM VI None None 2886 

5. 0.33 TESP PdM OCM MSc PFTC 668 

…        

72. 0.36 TENG PM UOA BSc PFTC 1087 

Average 0.53 - - - - - 1157 

c. MPPM – Maintenance Personnel Per Machine; MDT – Maintenance Department Team 
(TECH – Technicians; TENG – Technicians&Engineers; TESP – 

Technicians&Engineers&Specialists); MAP – Maintenance Analysis Program (VI – Visual 
inspection; CC – Contamination Control; UOA – Used Oil Analysis; OCM – Oil Condition 

Monitoring); FAP – Failure Analysis Personnel (TECH – Technician performs failure analysis; 
BSc – Engineer; MSc – Master engineering/specialist performs failure analysis. 

Moreover, data collected are sorted into technical 
machine operational characteristics, maintenance practice 
and maintenance performance parameters. The most 
important ones include MTBF, HFW, and EC. The values of 
MTBF (fig. 4) are taken from the database of companies that 
participated in the survey; HFW is divided by the number of 
machines and hours (fig. 5). 

 



Fig. 4. Mean-Time-Between-Failures concerning maintenance policy 

Hydraulic power waste is calculated as non-random 
deteriorating failure concerning leakages from selected 
systems reported stopped due to the same loss. The results 
show that around 21% of stoppages attribute to leakage due 
to degradation of elements, seals, places of connection 
between pipes and tubes, or random operator faults leading to 
the breakage of components. For calculating energy losses 
due to leakage, approximations ranging from 1,1-2% [55], 
[56] are used for calculations. 

 

Fig. 5. Hydraulic fluid waste per machine/hour concerning maintenance 
policy 

 
Fig. 6. Hydraulic power waste per machine/hour concerning maintenance 

policy 

B. Comparison of EBM with Traditional MPs 

The collected parameters in Table IV are given for 
objective assessment of the results obtained. Since only two 
technicians are responsible for managing and maintaining 
hydraulic bulldozers, it still shows a higher average  

personnel per machine than other MPs. The bulldozers' 
age is also lower than the average values of hydraulic 
machines subjected to different MPs. Filter management 
(FRT) is conducted appropriately and corresponds to CBM 
and PdM practice. However, data shows bias towards 
observing machinery, including more inspections and 
improved monitoring by personnel. 

TABLE IV.  PROPERTIES OF EBM AND TRADITIONAL MPS 

Prop. 
Type of Maintenance Practiced 

EBM CM PM OM DM CBM PdM 

MPPM 0.66 0.34 0.48 0.47 0.15 0.45 0.65 

MA 5.50 9.49 9.15 11.22 8.50 11.74 9.01 

FRT 501 993 796 773 1196 636 484 

d. MPPM – Maintenance Personnel Per Machine; MA – Machine Age; FRT – Filter Replacement 
Time [hours]; 

Table V provides data from simulated EBM maintenance 
practices compared to other maintenance practices, and the 
results show the following. The MTBF of hydraulic machines 
subjected to EBM practice resulted in μ ± σ = 778.27 ± 389.81 
hours, which ranges from -22% to -53% worse performance 
in comparison to other maintenance practices given in Table 
V, respectively. Although, as stated, some quasi-failures 
requesting stoppage are censored and did not show failure 
after inspection. Energy consumption per hour showed better 
performance than any other practice, best in the case 
compared to PM practice (113%), while CBM shows the 
least, although still 20% higher. 

TABLE V.  PERFORMANCE HEATMAP OF EBM VS TRADITIONAL MPS 

 Maintenance Practice (Policy)e 

EBM CM PM OM DM CBM PdM 

MTBF -22% -41% -33% -44% -39% -53% 

EC-L 46% 113% 101% 60% 20% 60% 

HFW 50% 112% 154% 95% 127% 165% 

e. MTBF – Mean Time Between Failures; EC-L – Energy Consumption due to Leakage [kW/oil 
leakage * hour]; HFW – Hydraulic Fluid Wasted per machine [l/hour]. 

Hydraulic fluid waste (HFW) per hour provides 
interesting information. Although some data from the survey 
includes monthly overall hydraulic fluid waste per machine, 
data is obtained by transforming it into oil waste per machine 
hour for a given system. Although expected, EBM 
outperformed CM, PM, OM, and DM in terms of oil 
preservation and not disposing nor resulting in abnormal 
leakage; the comparison to CBM and PdM practice shows 
127% and 165% reduction in fluid waste, thus, requiring 
further and in-depth analysis for such an anomaly. 

Several assumptions can be drawn. Firstly, those 
machines subjected to CBM and PdM policies may follow 
equipment manufacturers' recommendations and replace the 
oil every 1000h resulting in such huge fluid waste. Secondly, 
depending on the environmental requirements, the fluid is 
constantly replaced in the same manner. In both cases, the 
primary goal is to maintain the machine in an operational 
state as long as possible; however, oil can still have good 
working characteristics even after disposal. Thirdly, 
maintenance management and personnel do not consider 
leakage a serious threat and neglect the obvious 
environmentally hazardous effect. 

 

Fig. 7. Characteristics and performances of various maintenance practices 

The evidence suggests the following from analysing 
activities and performance of each maintenance practice (fig. 
7). MTBF negatively correlates with the machine age, 



confirmed by the previous study [54]. Following original 
equipment manufacturers' guidelines, presumably, 
technicians and managers within CBM and PdM paradigm 
dispose of the hydraulic oil while still possessing good 
physio-chemical characteristics; however, needing further 
analysis to support such claims. Although CBM and PdM 
show improvement in energy efficiency and reduction in 
energy waste, the EBM outperforms both practices; however, 
the EBM practice requires constant inspection. 

VI. CONCLUDING REMARKS 

Finally, this work provides meta-data on maintenance 
practices applied within industrial and mobile hydraulic 
machines. Although some organisations claim to utilise PdM 
policy, they lack the proper technical and technological 
apparatus to support such claims. Collected data from a 
survey on West Balkan territory compared with the newly 
proposed maintenance practice of EBM. The basic idea of 
EBM is to monitor energy consumption and deviations in the 
signal to detect anomalies; thus, system faults and react upon 
them before potential failure. The idea of changing the 
functionality into FPC helped enable EBM. However, FPC 
itself could not fulfil the demands because the concept had 
problems detecting faulty from non-faulty conditions; 
therefore, another idea is introduced as comparative 
functional dynamics. The substance behind the CFD is to 
monitor system response from the system being analysed and 
other systems with the same characteristics. This way, 
potential "outliers" and errors can be reduced, thus increasing 
the accuracy of detecting faults. As a result, the simulation of 
an implemented EBM practice on three bulldozers resulted in 
reduced oil and energy waste, however, at the cost of more 
inspection and increased stoppages. 

When writing the paper, several papers are concerned 
with monitoring energy as a consumption parameter and a 
fault recognition pattern [57], stressing that this could 
resonate with a zeitgeist, especially with environmental 
legislation and initiatives imposition (e.g., Green Deal). 
Overall, the EBM suggests measuring the quality of energy 
response because production depends on actuator response 
(e.g., hydraulic press – cylinder speed and force), which again 
depends on volumetric flow and pressure. 
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