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Note: Differential proton flux energy is measured in (cm?-s-ster-keV)1. E(1) > 1 indicates storm time. E(1) index is a composite index and is unitless. ®
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(p1,p2,p3) outperforms the AUC = 0.63 of the set (p4,p5,p6). In fact, taking all six proton differential flux energies gives an AUC of 0.77 which is less than that of the (p1,p2,p3) set. Furthermore,
pl alone gives the best AUC performance with AUC = 0.81 and 56.5% true positive rate (TPR) for the storm class. All fluxes taken together gave TPR=59.3%.

Cross-correlation analysis and lagged mutual analysis both show a ~1 hour lag time with the (p1,p2,p3) set giving the highest values for storm times, respectively.

In terms of DTW clustering, the sets (p1,p2) and (p3,p4,p5,p6) can be visually seen as being more similar, respectively. Three clusters were selected for the K-Means algorithm. It is unsupervised.
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Weather. Machine Learning Techniques for Space Weather, Elsevier Pages 45-69 (2018,). 5. t-SNE analysis shows different morphologies for local behavior between the two sets (p1,p2,p3) and (p4,p5,p6) with the (p1,p2,p3) exhibiting more cyclic underlying patterns. No clear clustering is ~
[7] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. ournal of Machine Learning Research 9, 2579-2605 (2008). observed. >
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