

Forecasting High-Energy Proton and Electron Fluxes at LEO Orbits

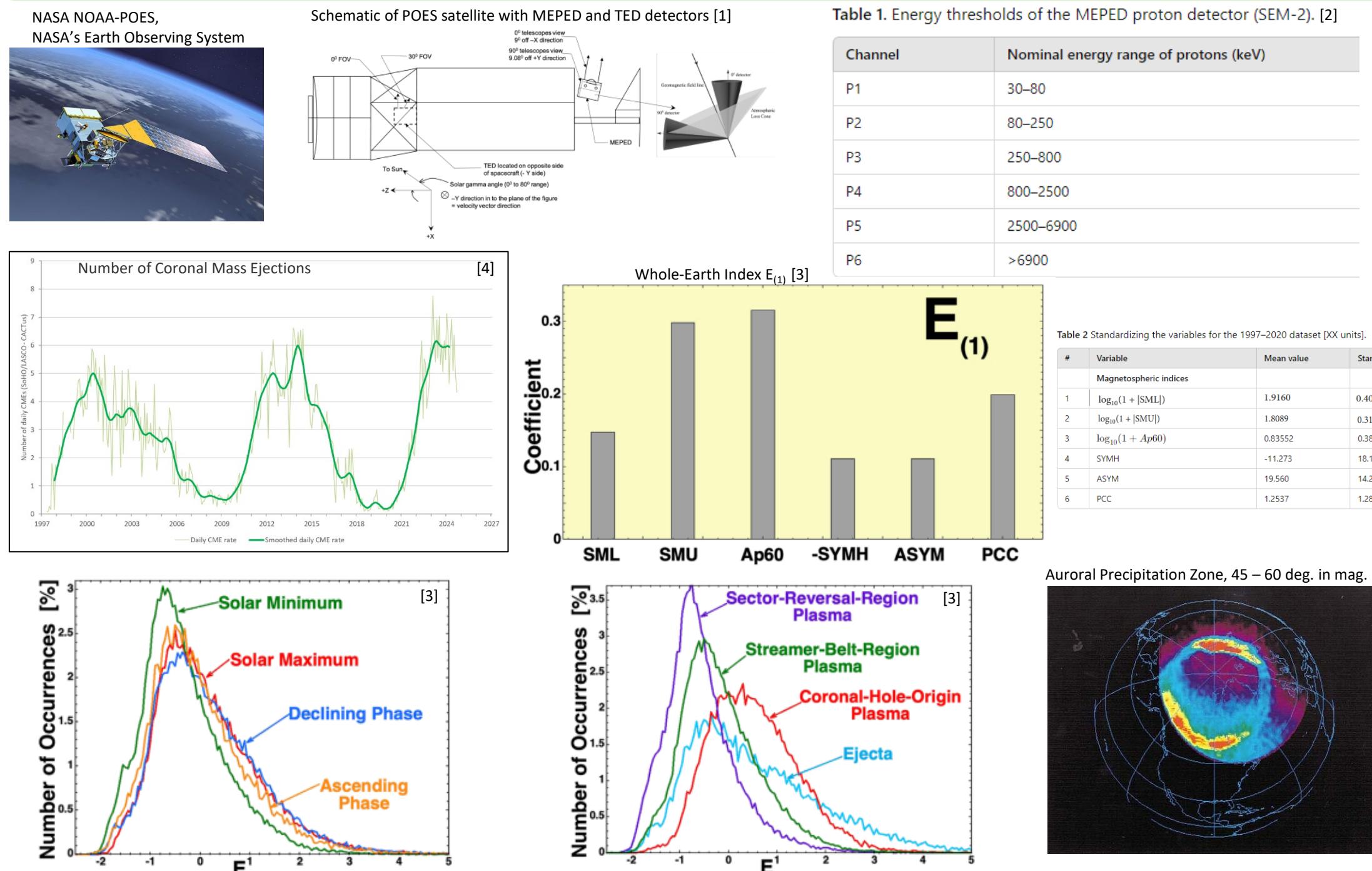
Carl Schneider^{1,*}, Vasily L. Petrov², Andreas M. Hein¹

¹Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,

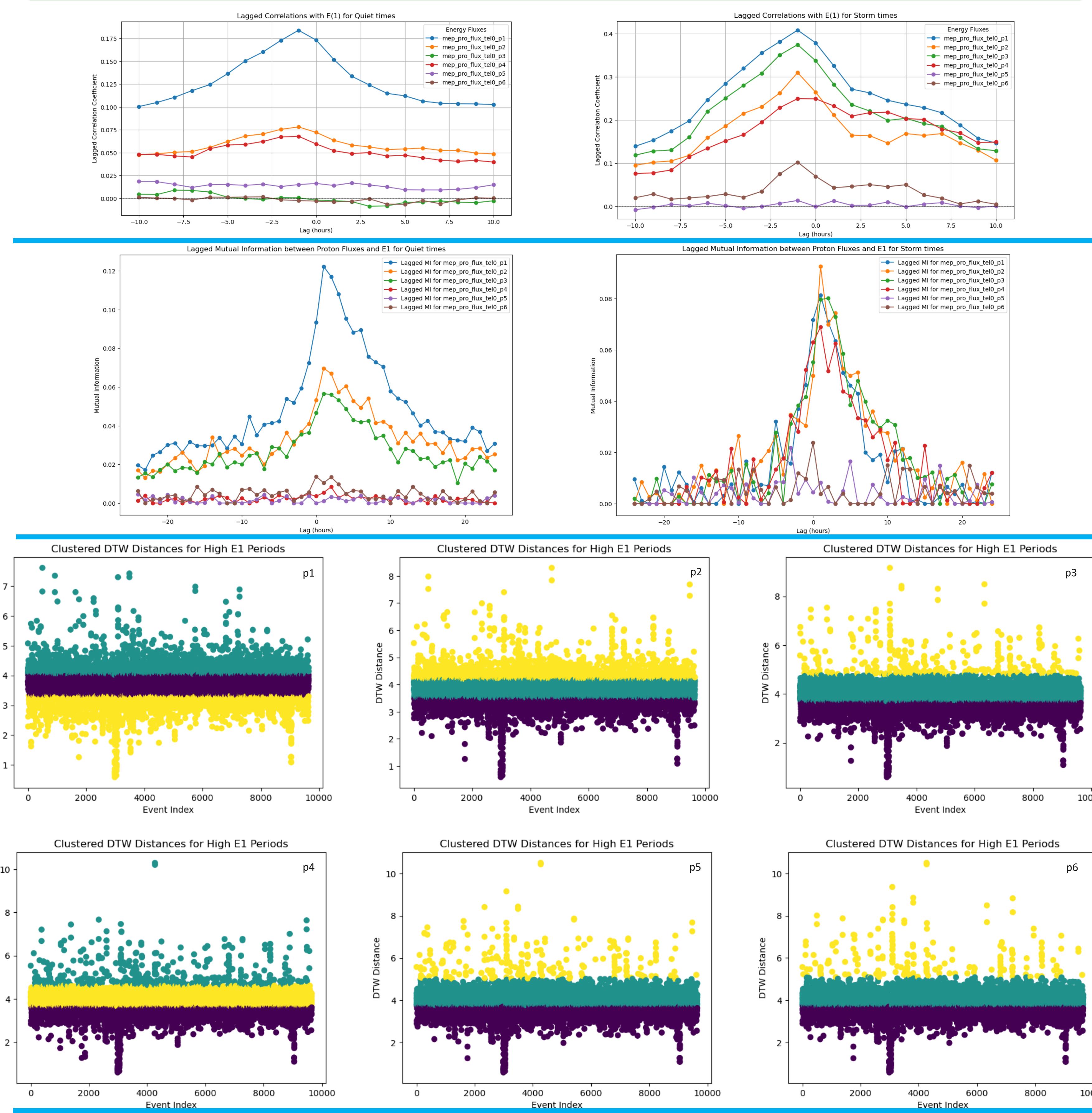
²Mission Space S.a.r.l, Luxembourg

*Contact info

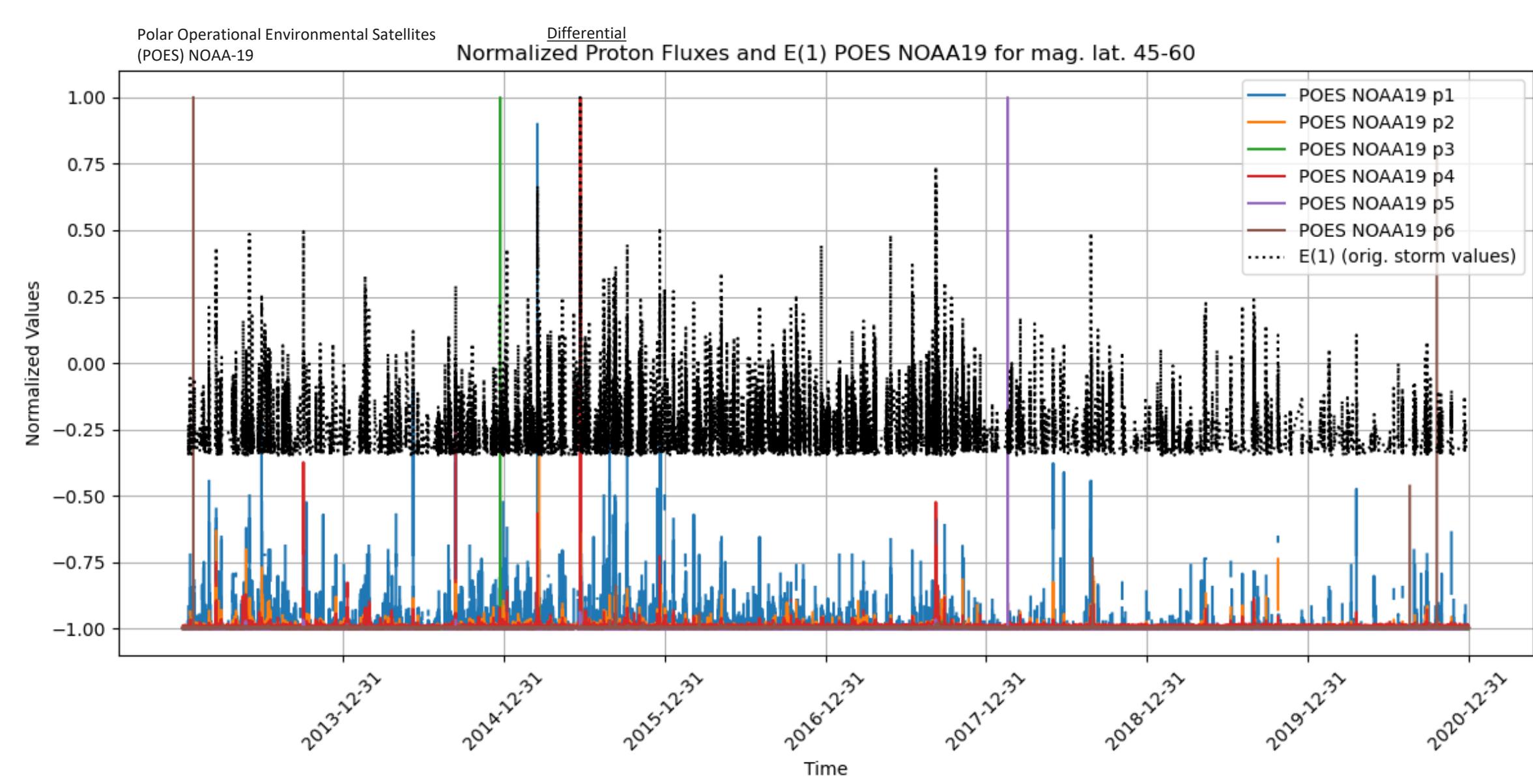
Introduction



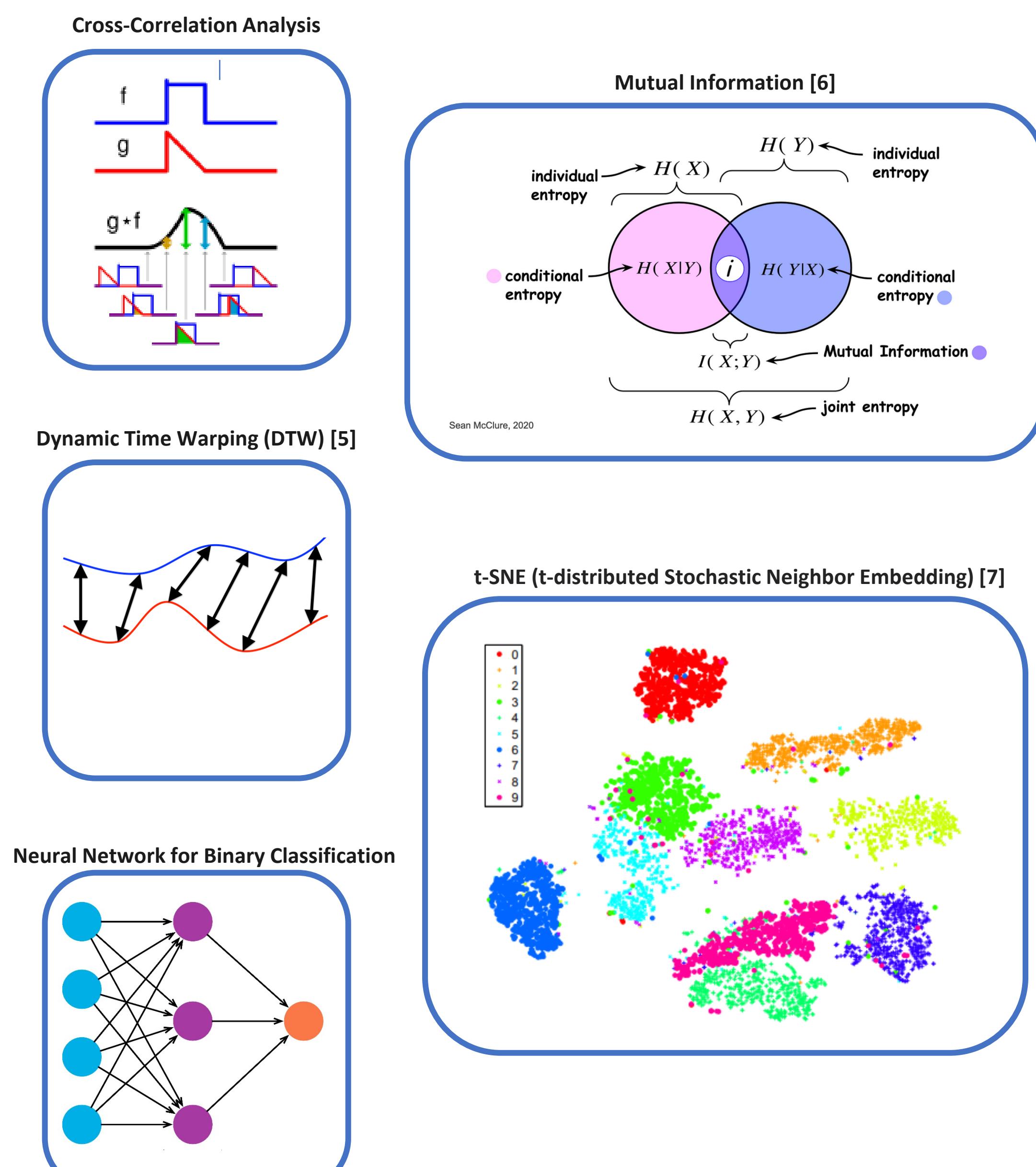
Experimental Results



Data



Proposed Approaches



Conclusion

- Consistently, the set of the three lowest energies (i.e., p1,p2,p3) which are all less than 1 MeV, seems most significant for E_{10} prediction than the set of the three highest energies (i.e., p4,p5,p6).
- Recasting the prediction of $E_{10} > 1$ for storm times as a binary classification problem and using a neural network with two hidden layers with balanced classes, the ROC AUC = 0.79 of the set (p1,p2,p3) outperforms the AUC = 0.63 of the set (p4,p5,p6). In fact, taking all six proton differential flux energies gives an AUC of 0.77 which is less than that of the (p1,p2,p3) set. Furthermore, p1 alone gives the best AUC performance with AUC = 0.81 and 56.5% true positive rate (TPR) for the storm class. All fluxes taken together give TPR=59.3%.
- Cross-correlation analysis and lagged mutual analysis both show a "1 hour lag time with the (p1,p2,p3) set giving the highest values for storm times, respectively.
- In terms of DTW clustering, the sets (p1,p2) and (p3,p4,p5,p6) can be visually seen as being more similar, respectively. Three clusters were selected for the K-Means algorithm. It is unsupervised.
- t-SNE analysis shows different morphologies for local behavior between the two sets (p1,p2,p3) and (p4,p5,p6) with the (p1,p2,p3) exhibiting more cyclic underlying patterns. No clear clustering is observed.

References

- [1] Fasil Tesema Kebbede, PhD Thesis, University of Bergen, Norway (2021).
- [2] Joseph E. Borovsky and Christian J. Lao. A system science methodology develops a new composite highly predictable index of magnetospheric activity for the community: the whole-Earth index (E_{10}). Frontiers in Astronomy and Space Sciences, vol. 10 (2023).
- [3] Linn-Kristine Glesnes Ødegaard et al. Space Weather impact on the degradation of NOAA POES MEPED proton detectors. J. Space Weather Space Clim., 6, A26 (2016).
- [4] Solar-Terrestrial Center of Excellence (STCE). Solar Cycle 25 (SC25) Tracking website: <https://www.stce.be/content/sc25-tracking>.
- [5] Giorgio, Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. J. Stat. Soft., 31 (2009).
- [6] Jay R. Johnson, Simon Wing, Editor(s); Enrico Camporeale, Simon Wing, Jay R. Johnson. Chapter 3 - An Information-Theoretical Approach to Space Weather. Machine Learning Techniques for Space Weather, Elsevier Pages 45-69 (2018).
- [7] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine Learning Research 9, 2579-2605 (2008).

