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Abstract. Noise is a framework for the design and security assessment
of Authenticated Key Exchange (AKE) protocols between two parties
using Diffie-Hellman (DH) as the only public-key cryptosystem. In this
paper, we present an evaluation of the computation and communication
cost of Noise and PQNoise, a recently introduced post-quantum version
of the Noise protocol framework. Furthermore, we present combinations
of the 12 fundamental (interactive) Noise patterns and their PQNoise
counterparts, thereby obtaining hybrid handshake patterns, and include
them in our evaluation. We integrated PQNoise and the novel hybrid
patterns into Noise-C, a reference implementation of the Noise protocol
framework written in C. In order to evaluate Noise and its variants, we
emulated networks with different latency, throughput, and packet-loss
settings using Linux network emulation tools. For all Noise handshakes
we chose cryptosystems that provide a comparable (pre-quantum) level
of security, namely X25519 and Kyber512. We ran our experiments on
two different devices, one is a laptop with an Intel Core i5-10210U CPU
and the other an Orange Pi One development board with a 32-bit ARM
Cortex-A7 processor. The results we collected show that, under normal
network conditions, the Noise patterns and their PQNoise counterparts
have nearly identical execution times, except when the latter require an
additional handshake message. However, under bad network conditions
with high packet-loss rates, PQNoise falls behind Noise, mainly because
of the relatively large public-key and ciphertext sizes of Kyber512. The
execution times of our hybrid handshakes are almost indistinguishable
from the corresponding PQNoise handshakes when the packet-loss rates
are low, and at higher loss rates the differences are small.

Keywords: End-to-end security · Post-quantum cryptography · Noise
protocol · Key encapsulation mechanism · Hybrid key establishment

1 Introduction

The Transport Layer Security (TLS) protocol is one of the most common End-
to-End (E2E) security protocols on the Internet and secures billions of HTTPS
transactions daily. It consists of a few sub-protocols, of which the handshake
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protocol and the record protocol are the most important ones. The former is
responsible for authentication and key exchange using public-key cryptographic
schemes, while the latter ensures the confidentiality and integrity of application
data through symmetric cryptosystems [20,24]. Initially designed in the 1990s
under the name Secure Sockets Layer (SSL), the TLS protocol has since then
undergone a number of revisions to extend its functionality and fix weaknesses
and flaws [16]. These over 30 years of evolution have made TLS a very complex
protocol, which is overloaded with many legacy versions that still need to be
supported for backward compatibility and many niche features and extensions
with disputable relevance for real-world use cases. The high complexity of TLS
has been the root cause for various types of attacks on the protocol itself and
on different implementations [22]. In addition, complex protocols like TLS are
unattractive for embedded and mobile devices, which are usually constrained in
computational power and energy supply compared to conventional PCs.

Noise [19] was introduced by Trevor Perrin in 2014 as a framework for the
design of custom E2E security protocols whose AKE component is solely based
on Diffie-Hellman (DH) [6] operations. Noise-based protocols aim to reduce the
complexity caused by run-time decisions during protocol execution, which are
prevalent in TLS and “interwoven” with the handshake, by relegating them to
design-time decisions (e.g., one-way or mutual authentication) within a frame-
work and a thin negotiation layer (i.e., an optional prologue) before the actual
handshake to agree on a handshake pattern and related cryptosystems. Also, in
contrast to TLS, Noise adopts long-term (static) DH keys instead of long-term
signature keys to authenticate the ephemeral DH key exchange, thereby mini-
mizing the number of public-key schemes that need to be supported1. Once the
negotiation phase is completed, the rest of the handshake is a straight sequence
of message transfers and DH operations without any conditional statements like
branches, which massively simplifies the implementation testing of the protocol
and also reduces the attack surface compared to TLS. The concrete handshake
pattern determines many of the security properties the resulting protocol will
have; for example, if the two parties do not need to be authenticated, then the
so-called NN pattern will suffice, but if server authentication (with transmission
of the server’s static key, similar to TLS) is desired, then the NX pattern is the
best choice [19]. The existence of several handshake patterns with well-studied
security properties allows designers to simply choose the Noise variant that fits
the security needs of their target application best, and saves them the time and
effort of designing a custom protocol from scratch or trying to figure out how to
disable and/or remove unnecessary TLS functionalities.

Early versions of TLS (resp., SSL) used “classical” public-key cryptosystems
like RSA, DSA, and DH, but over the years they have become largely replaced
by elliptic curve schemes (i.e., ECDH for key exchange and ECDSA for authen-
tication). As mentioned above, Noise uses ECDH (based on either Curve25519
or Curve448 [14]) not only for the establishment of shared secrets, but also the
authentication of the ephemeral public keys exchanged during a handshake. In

1 Note that all DH operations/keys of Noise are, in fact, ECDH operations/keys.
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1994, Peter Shor introduced quantum algorithms for efficient (polynomial-time)
factorization of large composite numbers and efficient computing of the discrete
logarithm problem, thereby enabling quantum computers to break virtually all
of the currently prevalent public-key schemes, including DH, RSA, ECDH, and
ECDSA [23]. Due to the looming threat of quantum cryptanalysis, it becomes
necessary to replace these algorithms by post-quantum alternatives that fulfill
the same purpose, but are able to withstand cryptanalytic attacks executed on
large-scale quantum computers. A well-known example of such a post-quantum
algorithm is Kyber [5], a lattice-based KEM selected for standardization by the
U.S. National Institute of Standards and Technology (NIST). This transition to
Post-Quantum Cryptography (PQC) also requires an adaptation and extension
of security protocols like TLS and Noise to support the new algorithms. There
have been a couple of initiatives for adding post-quantum schemes to TLS; two
examples are the crypto provider of the Open Quantum Safe project [25] and
KEMTLS [21]. On the other hand, for Noise, the only post-quantum variant we
are aware of is PQNoise [3], which was published in 2022.

Besides the concrete integration of post-quantum schemes into TLS, a large
body of research has been devoted to analyzing how they affect the execution
time and the amount of data exchanged in a handshake [15,12,2]. For Noise, on
the other hand, the research so far has focussed on proving security properties
of different Noise protocols [13,8,3] and automated code generation for various
Noise variants [11]. Since PQNoise is still fairly new, relatively little is known
about its performance apart from results of a Go implementation for two hand-
shake patterns described in [3]. However, according to [17, Table 4], software
developed in the Go language seems to be significantly less efficient, in terms
of execution time and energy consumption, than software written in C. A more
detailed comparison of pre- and post-quantum Noise, especially a comparison
based on efficient C implementations of the handshakes, is still lacking.

In this paper, we study the performance of an optimized C implementation
of PQNoise, taking into account the computation and communication cost, re-
spectively, and compare it to Noise as well as TLS. Such kind of performance
evaluation is important to assess how the migration to PQC might impact the
latency of secure communication of widely-used Internet applications. We are
especially interested in measuring and comparing the performance of pre- and
post-quantum security protocols on mobile devices that are less powerful than
conventional PCs. This means we evaluated these protocols on mobile devices
under network conditions (i.e., latency, throughput, packet-loss rate) similar to
that of mobile (cellular) networks based on 4G technology. Although Noise has
been integrated into a number of applications, e.g., WhatsApp [27] and Wire-
Guard [7], it will most likely not replace TLS on a large scale. However, there is
a good chance that Noise will find widespread adoption for use cases where one
entity controls all the communication endpoints, e.g., the client app running on
smart phones and the back-end servers. In such settings, it often makes sense to
use a custom protocol (designed and security-evaluated with help of the Noise
framework) that is specifically tailored for the target application.



4 Joshua Renckens et al.

Apart from an evaluation of the performance of PQNoise, we also describe
hybrid variants of Noise handshakes combining X25519 and Kyber512. There
has been prior work on creating hybrid versions of Noise [18], which focused on
defining Noise patterns that offer Hybrid Forward Secrecy (HFS) through the
introduction of a "hfs" pattern-modifier and two new tokens. The new tokens
represent KEM operations and the transfer of KEM public keys or ciphertexts
to the other party. However, the specification of these HFS patterns for Noise
was last updated in 2018 (i.e., four years before the publication of the PQNoise
paper) and its current status is still unofficial. Noise-C [26], which is intended
as a reference implementation of Noise, contains a version of the HFS patterns
based on NewHope [1] instead of Kyber. In our work, we combine the classical
X25519-based Noise patterns with their PQNoise counterparts to obtain novel
hybrid Noise handshakes that use Kyber512 as KEM to achieve post-quantum
security. We integrated these hybrid patterns to Noise-C and included them in
our evaluation of the computation and communication cost of handshakes on
mobile devices. Furthermore, we analyze how the combination of classical and
post-quantum algorithms, as well as the additional handshake data that have to
be transmitted, slows down the hybrid patterns compared to PQNoise.

2 Preliminaries

2.1 Noise Protocol Framework

As mentioned in the previous section, Noise is framework to support the design
and security evaluation of custom protocols between two parties, usually called
initiator and responder. A concrete instance of a Noise-based security protocol
is defined by a protocol name, which includes the handshake pattern, the DH
function (either X25519 or X448), an algorithm for Authenticated Encryption
with Associated Data (AEAD), and a hash function [19]. A concrete example
for a Noise protocol name is Noise_NX_25519_AESGCM_SHA256, where NX is the
handshake pattern. Handshake pattern names usually consist of two uppercase
letters, indicating the status of the static DH keys and how they are conveyed
to the other party (as will be further discussed below), followed by one or more
optional pattern modifiers. The concrete handshake pattern to be used by the
protocol, including the underlying cryptosystems, is normally chosen at design
time. However, as mentioned in [19, Sect. 6], it is also possible that the parties
agree on it interactively; for example, the initiator can send a list of supported
Noise protocols to the responder in a so-called preamble. Once this negotiation
is completed, the actual handshake is a linear sequence of message (i.e., public-
key) transfers and cryptographic operations that does not involve any run-time
decisions apart from error handling [19]. Depending on the chosen handshake
pattern, a Noise protocol can have different security properties, e.g., unilateral
or mutual authentication, weak or strong forward secrecy, identity hiding, and
zero round-trip encryption. All patterns have in common that they exchange
public DH keys (static or ephemeral), perform DH operations, and hash all the
computed DH results together to derive a shared secret.
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Pattern Components. A handshake pattern describes the overall execution
of the handshake and consists of a sequence of message patterns, which defines
the exchange of messages. The message patterns, in turn, are composed of one
or more tokens that specify the involved DH public keys and DH operations to
be executed when sending or receiving the message. Besides such patterns and
tokens, the Noise specification also defines a couple of variables, which have to
be maintained by each party, irrespective of the used handshake pattern.

– A handshake hash value h representing a fingerprint of the pre-distributed
static DH keys and all exchanged messages. It is initialized by hashing the
Noise protocol name. Whenever static public DH keys and/or payloads are
AEAD-encrypted, h is included in the message as associated data.

– A chaining key ck, which is also initialized with the hash of the protocol
name. The result of every DH operation is “mixed” into ck through a hash-
based key-derivation function. After completion of the handshake, ck serves
to generate encryption keys for transport messages.

– An encryption key k for encryption/decryption of public static DH keys as
well as handshake payloads using an AEAD algorithm. This key is derived
from the chaining key ck and gets updated every time ck changes.

– A counter-based nonce n of 64 bits in length, which is used as input for the
AEAD algorithm. The nonce gets reset to zero every time ck changes.

There are six different standard tokens that can appear in a Noise message
pattern; two represent public keys and the other four DH operations performed
on a combination of two DH key-shares, one private and the other public.

– "e": The sender generates a new (ephemeral) DH key pair and then sends
the public key to the receiver unencrypted. This public key will be used to
update the handshake hash h on both sides.

– "s": The sender sends its static public DH key to the receiver. This key is
normally encrypted using the encryption key k and nonce n. However, the
DH key is sent in clear when k is still empty, which is the case when no DH
operation has been carried out yet. Further, the message sent, irrespective
of whether it is encrypted or not, is hashed into h by both parties.

– "ee", "es", "se", and "ss": These tokens instruct the parties to perform
DH computations that involve a key-share of the initiator and a key-share
of the responder. The left letter stands for the initiator’s key-share and the
right letter for the responder’s key-share to be used. Each key-share can be
ephemeral (e) or static (s). The result of the DH operation is mixed into the
chaining key ck, at which point a new k is generated and n is set to zero.

The tokens can be arranged into a message pattern and several of such message
patterns constitute a handshake pattern. How a handshake pattern is executed
in detail is best explained using a single example like the KN pattern, illustrated
in Fig. 1. This handshake pattern contains the delimiter "..." (i.e., an ellipsis
or three periods), which separates the so-called pre-message patterns from the
actual message patterns. A pre-message can be used to pre-distribute a static
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NN:
→ e
← e, ee

NK:
← s
...
→ e, es
← e, ee

NX:
→ e
← e, ee, s, es

KN:
→ s
...
→ e
← e, ee, se

KK:
→ s
← s
...
→ e, es, ss
← e, ee, se

KX:
→ s
...
→ e
← e, ee, se, s, es

XN:
→ e
← e, ee
→ s, se

XK:
← s
...
→ e, es
← e, ee
→ s, se

XX:
→ e
← e, ee, s, es
→ s, se

IN:
→ e, s
← e, ee, se

IK:
← s
...
→ e, es, s, ss
← e, ee, se

IX:
→ e, s
← e, ee, se, s, es

Fig. 1. The 12 fundamental interactive Noise patterns

public DH key, e.g., by means of an out-of-band transmission, before the actual
(interactive) part of the handshake starts. In the KN pattern, the pre-message
consists of a right arrow and an "s" token, indicating that the initiator’s static
public key was already shared with the responder at some point prior to the
actual handshake. A right arrow represents a message from the initiator to the
responder, and a left arrow a message in the other direction. The first message
pattern, a right arrow with an "e" token, means that the initiator sends the
public share of a freshly-generated ephemeral DH key-pair to the responder. On
the other hand, the second message pattern is composed of a left arrow and the
tokens "e", "ee", and "se". This means the responder generates an ephemeral
DH key-pair and sends its public share to the initiator ("e"). Then, both sides
carry out an ephemeral-ephemeral ("ee") DH, followed by a static-ephemeral
("se") DH using the initiator’s static public key, which was pre-distributed.

Fundamental Interactive Patterns. The tokes and patterns outlined above
provide a flexible toolbox for the design of custom handshake protocols. Alter-
natively, instead of creating a new handshake from scratch, a designer can also
use one of the 12 so-called fundamental interactive patterns that are described
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in the Noise specification. The security properties of the fundamental patterns
are well studied and were even formally proven in [13,8]. As already mentioned
earlier, the first letter of a pattern name conveys information on the initiator’s
static public key, and the second letter on the responder’s static public key. In
total, there are four possible letters on the initiator’s side:

– N (“None”): The initiator does not use a static DH key in this pattern and
is, therefore, not authenticated during the handshake.

– K (“Known”): The initiator’s static DH key was pre-distributed, i.e., sent to
the responder, before the handshake execution. Hence, the responder knows
(and implicitly trusts) the initiator’s static key.

– X (“Xmitted”): The static DH key of the initiator is sent to the responder in
one of the handshake messages, usually encrypted (which can help to hide
the initiator’s identity).

– I: (“Immediate”): The initiator sends its static DH key immediately to the
responder (i.e., in the first handshake message), despite the fact that this
early transmission reduces or inhibits identity hiding.

The responder’s static DH key can have the N, K, or X property, but not I. As
a consequence, there are 12 possible combinations of initiator/responder static
DH keys; the resulting handshake patterns are illustrated in Fig. 1.

2.2 Kyber KEM

CRYSTALS-Kyber (Kyber for short) is a family of post-quantum KEMs whose
security is based on the hardness of the Module Learning with Errors (MLWE)
problem, which comes with a worst-case to average-case reduction from certain
hard problems over module lattices [5]. The NIST is currently working towards
standardizing Kyber (under the name “ML-KEM”) with three parameter sets
providing security levels roughly similar to that of the AES with 128, 192, and
256-bit keys, respectively. The algebraic structure in which Kyber operates is
a module2 of low rank k defined over a polynomial ring Rq. Depending on the
security level, k is either 2, 3, or 4. All three instances of Kyber use the same
ring, namely Rq = Zq[X]/(Xn − 1) with n = 28 and q = 13n + 1 = 3329. The
base field Zq contains primitive 256-th roots of unity so that multiplication in
Rq can be implemented very efficiently using the Number-Theoretic Transform
(NTT). Besides polynomial arithmetic, other building blocks of Kyber include
functions for the sampling of polynomials (i.e., coefficients) from uniform and
centered binomial distributions, and SHA3-based functions for pseudo-random
number generation from a seed, hashing, and shared-secret derivation.

From a high-level perspective, Kyber (as any other KEM) consists of three
functions: key generation (KeyGen), encapsulation (Encaps), and decapsulation
(Decaps). By using these functions, two parties can establish a shared secret as
follows. First, the initiator generates a key pair consisting of an encapsulation
key ek , which is public and sent to the responder, and a private decapsulation
2 A module can be seen as a lattice, but is defined over a ring (other than the ring Z).
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key dk . The responder calls the Encaps function to generate a random 32-byte
secret s and encapsulate (i.e., encrypt) it using the received ek . Encaps outputs
s both in the clear (for use by the responder) and in encapsulated form, i.e., as
ciphertext ct , which is sent to the initiator. Finally, the initiator executes the
Decaps function with ct and dk as input to obtain the secret s.

2.3 PQNoise: KEM-Based Post-Quantum Noise

Key establishment based on a KEM such as Kyber differs from a key exchange
system (e.g., DH, ECDH) in some basic aspects. For example, in DH, the two
involved parties exchange their public keys, whereas, when using a KEM, one
party sends a public key but the other party a ciphertext (i.e., an encapsulated
secret). Furthermore, when executing a DH key exchange, each party can send
its public key straight away, without having to wait first for the other party’s
key. When the public keys have been pre-distributed, it is possible for the two
parties to agree on a shared secret without any interaction (the other party can
even be “off-line”). In a KEM-based key establishment, on the other hand, the
secret to be shared can only be encapsulated after receipt of the other party’s
key, and decapsulation can only be done after encapsulation. Performing Non-
Interactive Key Exchange (NIKE) using a lattice KEM is feasible [10], but (in
contrast to DH) unattractive in practice due to very large public keys.

Despite these differences between key exchange and key encapsulation, it is
possible to design AKE protocols that use a KEM like Kyber instead of DH as
underlying public-key cryptosystem. PQNoise [3] is an attempt to leverage the
Kyber KEM for making Noise ready for the post-quantum era. However, since
Kyber can not serve as a “drop-in” replacement for DH, most Noise handshake
patterns require some substantial modifications. Instead of transmitting public
DH keys, one party now sends its public (encapsulation) KEM key, which can
be either static or ephemeral, and the other party returns a ciphertext (i.e., an
encapsulated secret). Accordingly, the DH operations of classical Noise have to
be replaced by executions of Encaps or Decaps. To facilitate the transition from
DH to Kyber, the PQNoise designers introduced two new tokens:

– "ekem": The sender generates a secret key and encapsulates it using the
receiver’s ephemeral public KEM key. Thereafter, a message containing the
produced ciphertext is sent to the receiver. Both parties hash this message
into the handshake hash h and the shared secret key into the chaining key
ck, which triggers the generation of a new encryption key k.

– "skem": This token is the static counterpart to "ekem". The only difference
is that the message is encrypted should an encryption key k be available.

The two Noise tokens "e" and "s" also exist in PQNoise and serve the same
purpose, but with public KEM keys instead of public DH keys. Bigger changes
were necessary for the tokens "ee", "se", "es", and "ss"; they were dropped
and superseded by "ekem" and "skem". An "ee" token can be replaced by an
"ekem" token in a straightforward way. The "es" and "se" tokens are replaced
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KN:
→ s
...
→ e
← e, ee, se

→
pqKN:
→ s
...
→ e
← ekem, skem

Fig. 2. Transition of Noise (KN pattern) to PQNoise (pqKN pattern)

by a "skem" token at the side that is supposed to have the other party’s public
static key, i.e., the initiator for "es" and the responder for "se". However, this
does not work for message patterns where an "es" or a "se" token is preceded
by a "s" token (i.e., the static key is transmitted to the other party) since, in
PQNoise, a "skem" token and the related "s" token can not appear in one and
the same message pattern. In these cases, the "skem" token has to be moved to
the next message pattern (going in opposite direction), which can increase the
overall number of messages. Finally, the "ss" token has to be replaced by two
"skem", one in each direction, which may also result in an additional message
being necessary for a PQNoise handshake compared to its Noise counterpart.

Figure 2 shows the transition from Noise to PQNoise using the KN pattern
as example. There is no change at all in the pre-message pattern ("s") and the
first message pattern ("e"). The second message pattern does not contain the
second "e" token anymore since PQNoise handshakes generally have only one
"e" and one "ekem" token, respectively. In addition, the "ee" token is replaced
by "ekem" and "se" by "skem". Here, the "skem" token remains in the same
message pattern as "se", which, as mentioned above, is not always the case.

Figure 3 illustrates post-quantum versions of the 12 fundamental handshake
patterns as presented in [3, Fig. 2]. pqNX is an example for a handshake pattern
requiring an additional message (from the initiator to the responder) since the
"es" token of NX was replaced by "skem", and this "skem" can not appear in
the same message pattern as "s". This is actually the case for all handshakes
containing an X in the handshake name, meaning that at least one static key is
transmitted. However, IN and IK show that a "s" token in a message pattern
does not always increase the overall number of messages.

3 Hybrid Noise

The security of classical public-key cryptosystems like DH and ECDH has been
scrutinized for decades. Lattice-based post-quantum schemes like Kyber have
not (yet) undergone similarly rigorous cryptanalytic effort. Therefore, it makes
sense to deploy hybrid security protocols that combine pre- and post-quantum
cryptography, especially during a transition period until the confidence in post-
quantum cryptosystems is sufficiently high to allow them to stand on their own
feet. A properly-designed hybrid protocol remains secure even when either the
pre-quantum or the post-quantum component gets broken (but not both).
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pqNN:
→ e
← ekem

pqNK:
← s
...
→ skem, e
← ekem

pqNX:
→ e
← ekem, s
→ skem

pqKN:
→ s
...
→ e
← ekem, skem

pqKK:
→ s
← s
...
→ skem, e
← ekem, skem

pqKX:
→ s
...
→ e
← ekem, skem, s
→ skem

pqXN:
→ e
← ekem
→ s
← skem

pqXK:
← s
...
→ skem, e
← ekem
→ s
← skem

pqXX:
→ e
← ekem, s
→ skem, s
← skem

pqIN:
→ e, s
← ekem, skem

pqIK:
← s
...
→ skem, e, s
← ekem, skem

pqIX:
→ e, s
← ekem, skem, s
→ skem

Fig. 3. The 12 fundamental interactive PQNoise patterns

As mentioned in Sect. 1, there was a previous attempt of creating a hybrid
version of the Noise protocol framework, which had the goal to achieve Hybrid
Forward Secrecy (HFS) [18]. Two new tokens, "e1" and "ekem1", were intro-
duced and served the purpose of adding ephemeral KEM keys to the classical
(DH-based) Noise handshake patterns. The resulting hybrid handshakes were
specified through a "hfs" pattern modifier. However, the static keys (used to
authenticate the ephemeral keys) were still solely DH keys since post-quantum
ephemeral keys are sufficient for post-quantum forward secrecy. Note that, as
also mentioned in Sect. 1, the reference C implementation of the HFS patterns
uses NewHope instead of the NIST-standardized Kyber KEM.

The main goal of the HFS patterns was to provide protection against the
“harvest now decrypt later” threat scenario. Our hybrid Noise handshakes aim
for a (slightly) different goal, namely to ensure full post-quantum security, like
PQNoise, but with a “safety net” in form of the classical DH-based tokens. The
purpose of this safety net is to guarantee pre-quantum attack resistance in the
(hopefully unlikely) case that ongoing or future cryptanalysis of Kyber reveals
a flaw that could be exploited by a pre-quantum adversary.
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KNhyb:
→ s, sh
...
→ e, eh
← e, ee, se, ekemh, skemh

Fig. 4. Hybrid KN handshake pattern

Our hybrid handshakes can be seen as a “unification” of the classical (DH-
based) Noise handshakes and PQNoise (using the Kyber KEM). In contrast to
the HFS patterns, our hybrid handshakes use both static DH keys and static
KEM keys. Consequently, each message pattern of our hybrid handshake is the
combination of the tokens of the corresponding message patterns of the normal
and the post-quantum handshake. The operations associated with each token
remain the the same, but we have two sets of tokens, representing classical DH
and post-quantum KEM operations, respectively. Furthermore, the ephemeral
KEM keys are generally encrypted (when possible). The order of the tokens is
kept consistent for each token-set to not interfere with the security properties
that they provide on their own. In this way, the individual security guarantees
of each pattern carry over to the hybrid pattern. An obvious explanation is the
fact that adding KEM-keys to a Noise pattern (or, conversely, adding DH-keys
to a PQNoise pattern) can be seen as a “mixing” of pseudo-random data into
the hash object on both sides at some stage of the handshake execution. This
does not imply that the pre- and post-quantum security properties are always
the same in each stage of the handshake, but in the end the hybrid handshake
inherits the security guarantees that each of them individually provides.

We created hybrid variants of all 12 fundamental interactive Noise patterns
and integrated them to the reference implementation Noise-C [26]. Apart from
keeping the tokens of the respective pattern (i.e., Noise, PQNoise) in the same
order, we also grouped them into ephemeral and static tokens whenever it was
possible. We generally put the ephemeral DH tokens at the very front, followed
by the ephemeral KEM tokens, followed by the static tokens (again DH before
KEM). Our goal was to enable the encryption of any KEM key prior its trans-
mission, using a symmetric key derived, in part, through the corresponding DH
equivalent. Figure 4 depicts a concrete example, namely the hybrid form of the
KN handshake. The "h" tokens here are equivalents of the PQNoise tokens and
come from the post-quantum version of the pattern. We just appended "h" to
distinguish them from the original PQNoise patterns, though they represent, in
essence, the same operations. All other tokens are regular Noise tokens.

4 Evaluation

The bulk of past research on the Noise framework has focused on analyzing its
security; this includes work on the formal verification of Noise patterns [13] as
well as the development of a novel security model to better analyze and prove
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their security properties. This model enabled full security proofs for individual
(classic and post-quantum) patterns in [8,3]. However, our evaluation will focus
on the (relative) efficiency of regular Noise, PQNoise, and our hybrid Noise. As
already mentioned earlier, we integrated the latter two to the Noise-C reference
implementation, which means all three Noise versions use the same set of low-
level cryptographic functions. We built the three Noise versions using the same
compiler settings to ensure a fair and consistent evaluation. However, since the
overall execution time of a security protocol depends on both its computation
cost and its communications cost, it makes sense to do the efficiency evaluation
under different network conditions. To achieve this, we utilized a Linux feature
called network namespaces to set up an emulated network for which numerous
parameters can be configured, e.g., Round Trip Time (RTT), throughput, and
packet-loss rate. This feature was used before for evaluations of post-quantum
TLS [21,15,12] and a comparison of Go implementations of the (regular) Noise
KK and XX patterns with their respective PQNoise counterparts [3].

For our experiments, we ran the regular, post-quantum, and hybrid variants
of the NN, NK, NX, and XX patterns. We chose those as, in our opinion, they have
an interesting mix of properties when it comes to differences between the three
variants of each pattern. In the case of NN, the message flow is the same across
all three variants, but the public-key (resp., ciphertext) sizes differ. Hence, this
pattern will illustrate how an increased amount of data transferred between the
parties (but with the same number of messages) impacts the overall handshake
latency. The NK pattern is an indicator for how the presence of pre-distributed
static key(s) on one side changes the picture. Similar to NK, also the NX pattern
involves static key(s) on one side, but they are transmitted during handshake
execution. Therefore, NX allows us to assess how static-key transfers impact the
three variants. Finally, XX is interesting because its post-quantum and hybrid
variants require an additional message, i.e., we can expect significant differences
between those two and the regular variant.

In addition, we compared the three Noise variants with TLS 1.3, more con-
cretely OpenSSL version 3.0.2 with the provider from the Open Quantum Safe
(OQS) project [25]. We configured OpenSSL such that is uses exactly the same
public-key algorithms as Noise, namely X25519 for pre-quantum key exchange
and Kyber512 for post-quantum key encapsulation. Note that all protocols we
compare execute a Kyber512 implementation from the OQS project, which is
configured to utilize AVX2 instructions on modern Intel CPUs. However, there
are some caveats to consider when comparing Noise and TLS. The static keys
used by regular Noise to authenticate the ephemeral DH key exchange are also
DH keys, whereas TLS implements a form of “Signed Diffie-Hellman,” i.e., the
exchanged DH or ECDH keys are signed with static (i.e., long-term) signature
keys. Furthermore, in TLS, the static signature keys are authenticated with the
help of certificates, whereas, in Noise, it is “up to the application to determine
whether the remote party’s static public key is acceptable” [19, Sect. 14]. Since
post-quantum signatures are outside the scope of this paper, we evaluated the
post-quantum and hybrid variants of TLS with ECDSA signatures.
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Table 1. Main characteristics of the devices used for our experiments

Device Processor Architecture Frequency Operating system
Laptop Intel Core i5-10210U 64 bit 2.1 GHz Ubuntu 22.04.4
Board ARM Cortex-A7 32 bit 1.3 GHz Armbian 24.5.1

In order to assess the (relative) performance of the protocols, we conducted
experiments on a laptop with an Intel Core i5-10210U CPU. Moreover, we ran
these experiments also on an Orange Pi One development board housing a 32-
bit ARM Cortex-A7 processor, which serves as an example for a less-powerful
mobile device and allows us to determine how the computing power impacts the
results under the same network conditions. As shown in Table 1, both devices
had a recent version of Ubuntu Linux installed on them; for the Orange board
we went with a version from Armbian [4] that was optimized for this board. To
get results that are as consistent as possible, we set all cores to performance on
both devices and disabled hyperthreading and turbo boost on the laptop (the
Cortex-A7 on the board lacks these features). We pinned the execution of the
server and client to one core each and gave those highest execution priority.

To have control over the network conditions (e.g., latency, throughput), we
emulated a network using the Linux tools mentioned before. The overall setup
is the same for every experiment; we have two network namespaces, cli_ns and
srv_ns, that ran the client-side and server-side of our experiments. These two
namespaces were connected using a pair of virtual ethernet interfaces, i.e., one
interface in each namespace, named cli_ve and srv_ve, respectively. This emu-
lated network was set up separately on both the board and the laptop. For the
experiments, we varied three major attributes of the network: RTT, packet-loss
rate, and throughput. Since we want to compare the protocols under situations
that mobile devices can encounter, we oriented ourselves on typical properties
of 4G networks, since, on a global scale, they are the most widely-used mobile
network infrastructure. For these networks, a throughput of roughly 10 Mbps
and latencies of 60–70 ms (i.e., RTTs of 120–140 ms) seem common [9]. We ran
our experiments with the following three combinations of network settings:

– RTT 10 ms, throughput 1000 Mbps: This is a special setting, simulating an
ideal network scenario that is not supposed to be representative of a real-
world 4G mobile network. Instead, the purpose of this setting is to serve as
a baseline to assess how changing the RTT or throughput affects results.

– RTT 100 ms, throughput 10 Mbps: This setting represents a network close
to what an average (or slightly above-average) 4G network might be.

– RTT 200 ms, throughput 10 Mbps: This setting represents long-distance
connections with high latency, but with the same average throughput.

For all three sets of network conditions, we varied the packet-loss rate from
0% to 20%. In most network usage scenarios, a packet-loss rate of under 1% is
deemed acceptable and in the majority of cases remains below 5%; going up to
20% allowed us to simulate even particularly bad network conditions.
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Table 2. Average initiator-side computation time in ms

Laptop Board
Variant NN NK NX XX NN NK NX XX
Noise 0.19 0.30 0.30 0.41 2.67 4.81 4.82 7.04

PQNoise 0.13 0.18 0.21 0.29 2.05 3.12 3.21 4.55
Hybrid 0.31 0.45 0.50 0.70 4.71 8.11 8.17 11.54

5 Results and Discussion

To collect experimental results, we ran the handshake of the different protocols
1000 times, excluding warm-up runs, and measured the time taken. The overall
handshake time includes the overhead introduced by low(er) network layers, in
particular TCP, to establish a connection. For every experiment, we collected
the handshake times at the median, the 75th, and the 95th percentile to hint on
how different network conditions affect 50%, 75%, and 95% of a userbase.

5.1 Computation Costs

We start with analyzing and comparing the computation cost of the Noise pro-
tocol variants on the laptop and the board. Table 2 summarizes the execution
times of the computational parts (mostly cryptographic operations and various
auxiliary functions) of the protocols executed by the initiator. These timings do
not include the communication part of the handshake, such as socket functions
for initialization of the connection and sending/receving of data. The laptop is
between 13 and 18 times faster than the board, which is not very surprising in
light of the enormous architectural and micro-architectural differences between
a 64-bit Intel CPU and a (much simpler) 32-bit ARM Cortex-A processor. It is
important to note that, on the laptop, the computational part of all protocols is
less than one hundredth of the RTT of 100 ms, and on the board it is less than
one tenth (except for XXhyb). When looking at the different patterns, it turns
out that the computational cost correlates with the number of tokens (i.e., the
number of DH or KEM operations). For example, the computation times of the
regular NN and XX patterns differ by a factor of more than two, and the NK and
NX pattern are roughly in the middle between them.

When comparing the computation times between the Noise variants, we can
see that the PQNoise patterns are less costly than the Noise patterns; this is in
line with software benchmarking results reported in the literature, according to
which Kyber512 outperforms X25519. The computation times of all our hybrid
patterns are almost exactly the sum of the related Noise and PQNoise patterns
since the way we put them together does not entail additional computations.

5.2 Comparison of Noise variants with TLS variants

Figure 5a shows the median handshake times (including both computation and
communication) of the pre-quantum, post-quantum, and hybrid variants of the
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(a) Noise NX results (median)
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Fig. 5. NX and TLS variants comparison for RTT = 100 ms, measured on the board

NX pattern for an RTT of 100 ms, measured on the board. The handshake times
of the variants are very similar (for reasonable packet-loss rates) and dominated
by the communication cost, i.e., the time spent for message transmission(s). In
fact, the pqNX pattern is marginally faster than regular NX, which is due to the
lower computation cost, irrespective of the larger key sizes. A Kyber512 public
key is 800 − 32 = 768 bytes longer than an X25519 public key, but when the
throughput is 10 Mbps, the transmission of these additional 768 bytes requires
only 0.61 ms and is negligible compared to the RTT. When the packet-loss rate
exceeds 10%, the full handshake time of the post-quantum and hybrid variants
increases versus the regular NX pattern. The hybrid variant is pretty similar to
the post-quantum variant, at both low and high packet-loss rates.

Figure 5b illustrates the handshake execution times of pre-quantum, post-
quantum, and hybrid TLS (with server authentication) on the board, measured
for a 100-ms RTT. For reasonably low packet-loss rates, the handshake times
are very similar across the three variants, but about 12% slower than the Noise
NX variants. However, as explained in the previous section, a direct comparison
of Noise and TLS is not easily possible due to certain differences between these
protocols. First, the post-quantum and hybrid TLS variants use ECDSA signa-
tures to sign the ephemeral public keys and ciphertexts transmitted during the
handshake. They protect against “harvest now decrypt later” threats, but, in
contrast to PQNoise and hybrid Noise, are vulnerable to impersonation by an
adversary capable to forge an ECDSA handshake signature. Second, the static
key used in TLS to authenticate the key agreement is itself authenticated by an
(in our case self-signed) ECDSA certificate, which is not the case for Noise.

5.3 Pattern Comparisons

In this subsection, we present results for all four Noise handshake patterns we
consider in this paper (i.e., NN, NK, NX, and XX) and compare them directly with
each other (and with TLS), whereby we focus on the post-quantum and hybrid
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(a) Post-quantum results (median)
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Fig. 6. Direct comparison for the post-quantum and hybrid variants of all protocols in
the idealized network scenario (i.e., RTT of 10 ms, throughput of 1000 Mbps)

variants. Under realistic 4G network conditions (i.e., an RTT of 100 ms), the
total handshake times are largely dominated by the connection latencies, while
the computation times play a minor role. Therefore, we decided to evaluate the
Noise patterns also under “idealized” network conditions, i.e., an RTT of 10 ms
and a throughput of 1000 Mbps, which will make the computation costs more
apparent. Figure 6a depicts the median handshake times of the post-quantum
variants of the four patterns under these idealized conditions, measured on the
ARM board. For low packet-loss rates, the pqNN, pqNK, and pqNX patterns are
nearly identical. The pqXX pattern is the by far slowest, which can be explained
by the fact that it has the highest computational cost (i.e., one KeyGen, three
Encaps, and three Decaps in total) and highest communication cost (i.e., three
public keys and three ciphertexts in four messages) of all patterns. When the
packet-loss rate increases, the pqXX pattern is earlier and more severely affected
than the other patterns. Two of the four messages of the pqXX pattern contain
a Kyber512 public key and a ciphertext, i.e, their length exceeds the Maximum
Transmission Unit (MTU) of 4G networks, which is a bit below 1500 bytes. As
a consequence, two pqXX messages get segmented, thereby making this pattern
more susceptible to packet losses, which start to become noticeable at 9% loss
rate. The post-quantum TLS protocol performs better than pqXX for loss rates
above 9%, but worse for lower loss rates.

Figure 6b illustrates the handshake times for the hybrid variants of the pro-
tocols, again for an RTT of 10 ms. For low packet-loss rates, the order is the
same as for the PQNoise patterns: NNhyb is the fastest, followed by NKhyb and
NXhyb, which are almost identical. XXhyb is the slowest among the four hybrid
patterns, mainly for two reasons: (i) it has the highest computational cost (see
Table 2), and (ii) similar to pqXX, it requires the transmission of four messages
(i.e., one message more than the post-quantum/hybrid NK and NX patterns). In
summary, the “hybridization” of PQNoise causes relatively little overhead, and
this little overhead will become even less significant for an RTT of 100 ms.
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(a) Post-quantum results (median)
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(b) Hybrid results (median)
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(c) Post-quantum results (75th percentile)
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(d) Hybrid results (75th percentile)
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(e) Post-quantum results (95th percentile)
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Fig. 7. Direct comparison for the post-quantum and hybrid variants of all protocols in
the realistic network scenario (i.e., RTT of 100 ms, throughput of 10 Mbps)

Figure 7 shows direct comparisons between the different post-quantum pro-
tocol variants and their hybrid counterparts for a realistic 4G network scenario
(i.e., for an RTT of 100 ms). The graphs represent the handshake times in the
average case and for the 75th and the 95th percentile, respectively. Overall, the
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median results for the post-quantum Noise patterns are very similar to that in
the “idealized” network setting. For low packet-loss rates, the pqNN, pqNK, and
pqNX patterns have almost the same execution times, while pqXX is by far the
slowest PQNoise pattern. The high handshake time of pqXX is primarily due to
high communication cost, originating from the transmission of four messages in
total, half of which are segmented into two packets each. We can also observe
that Noise pqXX and post-quantum TLS swapped their positions compared to
the idealized network scenario, i.e., pqXX is now slower than TLS. Again, this
can be explained by the high communication cost of pqXX (Kyber512 keys and
ciphertexts are much larger than ECDSA signatures). The median handshake
times of the hybrid protocols are, for low loss rates, basically indistinguishable
from their post-quantum counterparts.

When the packet-loss rate increases, the relative order of the four PQNoise
patterns in the median case remains basically the same. The pqNN pattern has
the lowest number of messages, and also the lowest number of packets, trans-
mitted between the two parties, followed by pqNK, pqNX, and finally pqXX. We
can observe from Fig. 7a that packet losses start to impact the pqNN pattern
only at a rather high loss rate of above 15%. On the other hand, the pqNK and
pqNX patterns get affected at loss rates above 13% and 10%, respectively. This
relatively big difference between the two patterns is caused by the responder’s
static key, which is pre-shared in pqNK, but transmitted during the handshake
in pqNX, i.e., packet losses affect pqNX more severely. pqXX is the most sensitive
pattern when it comes to packet losses as it’s handshake time starts to increase
already at a loss rate of above 8%. Overall, these observations hold true for the
median, 75th, and 95th percentile, though with each percentile the differences
between the patterns become smaller. The hybrid handshakes, depicted on the
right of Fig. 7, suffer from packet losses in a roughly similar way as PQNoise.

As stated in Sect. 4, the typical packet-loss rate of a 4G network is around
1% and rarely exceeds 5%. Our results indicate that for all post-quantum and
hybrid patterns except the XX variants, 95% of the user base in a network with
a 1% loss rate would not experience any impact by lost packets. The XX variants
start to lose a packet already at a 1% loss rate in the 95th percentile, which is
little surprising when considering that they transmit twice as many packets as
the pqNN pattern. According to Fig. 7e, the pqNN handshake pattern starts to
lose its first packet at a 2% loss rate in the 95th percentile. Even at a high loss
rate of 5%, about 75% of network users are unaffected by packet losses, as can
be concluded from Fig. 7c and 7d. The only protocols that start to lose packets
below a 5% loss rate in the 75th percentile are the XX variants.

6 Conclusions

Using the recently-proposed PQNoise protocol framework as starting point, we
developed and implemented hybrid variants of the 12 fundamental interactive
Noise patterns. We determined the handshake execution times of regular, post-
quantum and hybrid variants of the NN, NK, NX, and XX patterns on two mobile
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devices, a laptop and an ARM development board. This evaluation was carried
out under different network conditions (i.e., RTT, throughput, and packet-loss
rate) and took both the computation and communication cost into account.

Overall, the PQNoise and hybrid variants performed very well in comparison
to the classical Noise patterns, with only the slightly higher amount of packets
becoming an issue at high packet-loss rates. We noticed the biggest differences
among the three variants for the XX pattern, partly due to high computational
cost (in both the pre- and post-quantum setting) and partly because the post-
quantum and hybrid variants entail an additional handshake message. We also
found that the overheads of the hybrid patterns versus PQNoise are very small
and mainly caused by the additional computing time for X25519, especially on
the board. The additional communication cost for transmission of X25519 keys
is negligible and does also not cause extra packet fragmentation for any of the
patterns. Furthermore, the additional computation cost gets less significant the
better the computing power of the mobile device and the worse the RTT of the
network becomes. Putting everything together, the experiments and results we
presented in this paper encourage the deployment of hybrid Noise handshakes
rather than purely post-quantum variants.
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