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Abstract—A key challenge for autonomous driving lies in main-
taining real-time situational awareness, particularly in complex
urban settings. This study introduces an innovative cloud-driven
solution for 360-degree perception in autonomous vehicles us-
ing vehicle-to-everything (V2X) communications. Our approach
utilizes transformer-based models to fuse multi-camera sensor
data into a comprehensive bird’s-eye view (BEV) representation,
enabling accurate 3D object detection. By offloading computa-
tionally intensive tasks to the cloud, the system achieves scalable
processing while reducing latency. In addition, techniques such
as feature vector clipping, compression, and quantization are
applied to optimize data transmission, ensuring real-time perfor-
mance. Experimental results show an over 79.2% reduction in
end-to-end delay compared to onboard-only computing. These
experiments validate the integration of AI and V2X technology
to enhance autonomous vehicle perception.

Index Terms—Autonomous Vehicles; 360-Degree Perception;
Cloud Computing; V2X Communications

I. INTRODUCTION

The development of fully autonomous vehicles has driven

significant progress in automotive industry [1, 2], with the

potential to transform driving experience by enhancing oper-

ational efficiency and safety [3]. At the core of autonomous

driving are perception systems that enable real-time detection

of surrounding objects [4, 5]. Real-time perception is critical

for navigating complex environments and supporting decision

making in motion planning [6]. Industry leaders such as Tesla

[7], BMW and Mercedes-Benz face considerable challenges

in processing the extensive sensor data (e.g., cameras, radar,

and LiDAR) required for 3D object detection [8, 9]. Recent

research has focused on addressing the stringent latency and

accuracy requirements associated with autonomous perception

tasks [10]. Perception models such as BEVFormer [11] have

demonstrated high detection accuracy [12]. However, their

computational demands often exceed the capabilities of vehicle

hardware [10], resulting in increased latency and power con-

sumption [13]. For instance, an industrial report published by

Ford Motor indicated that future vehicles may need to allocate

up to 47% of their energy to onboard computing [2]. This

emphasizes the need for more efficient processing strategies.

To address onboard computing challenges, researchers have

proposed partitioning perception models [14, 15] and offload-

ing computationally intensive layers to the cloud [16, 17].

While this strategy reduces onboard computing burden, it

also introduces intermediate feature vector transmission la-

tency [18], which is problematic for real-time detection with

strict latency requirements [14]. To address the challenge of

efficiently transmitting large feature vectors from onboard to

cloud processing, post-training quantization [19] and clipping

[20] can be applied to layer activation feature vectors. By sig-

nificantly reducing bandwidth requirements and transmission

latency, these techniques enable real-time processing within

hybrid computing environments [20]. Further compression

can minimize the size of the feature vector [10], improving

efficiency. However, quantization, clipping, and compression

can negatively impact detection quality due to data loss [20].

Finding an optimal trade-off between end-to-end delay and

detection quality remains a critical area of research.

To explore these trade-offs, we propose a BEVFormer based

hybrid computing strategy integrating cooperative perception

for 360-degree 3D detection. Cooperative perception enables

vehicles and infrastructure to share sensor data via Vehicle-to-

Everything (V2X), overcoming limitations such as occlusions

and sensor range constraints [21]. By exchanging Coopera-

tive Perception Messages (CPMs), which include information

about detected objects, this method extends perception beyond

onboard sensors [22]. In our approach, the vehicle performs

lightweight feature extraction locally while offloading inten-

sive computations to the cloud, combining local and cloud

processing to improve real-time performance. Experimental

results demonstrate over a 79.2% reduction in end-to-end delay

compared to onboard-only computing, highlighting the effec-

tiveness of distributing perception tasks between the vehicle

and the cloud. Our contributions include:

• 360-degree 3D Perception: We benchmark onboard com-

puting, where tasks are processed locally, and hybrid

computing, where intensive tasks offloaded to the cloud.

Detection results are encoded into CPMs in both cases.

• Hybrid Computing: We introduce dynamic feature clip-

ping, compression, and precision adjustments to reduce

offloading latency while preserving detection quality.

• Real-world Testing: The system is tested in real-world

scenarios with V2X integration, achieving low end-to-end

delay, making it suitable for real-time perception.



The remainder of this paper is organized as follows: Section II

reviews the relevant literature. Section III details our proposed

method, including the on-board and cloud components, as well

as the test route and communication technologies used. Section

IV presents our experimental results, focusing on trade-offs

between latency, accuracy. Finally, Section V summarizes our

findings and outlines potential future research directions.

II. RELATED WORK

Cooperative perception [21] has gained significant atten-

tion as a method to enhance the situational awareness of

autonomous vehicles [1]. By enabling vehicles to share sen-

sor data and computational resources [23], these systems

can significantly improve object detection [9] and prediction

in complex environments [24]. Several recent studies have

explored vehicle-to-cloud (V2C) communication to offload

perception tasks to remote servers [8, 10]. This approach

leverages the higher computational power of the cloud to

complement onboard processing [2, 25]. Early works in the

field, such as [26, 27], focused on transmitting raw data to the

cloud. However, these approaches suffered from bandwidth

limitations and high transmission latency [28, 29], making

them unsuitable for real-time applications [30]. To address

these challenges, [18, 20] introduced feature-level offloading

[4], where intermediate feature vectors are transmitted instead

of raw data [27], significantly reducing bandwidth usage

[31]. However, the size of these feature vectors can still be

prohibitively large [14, 32], especially when generated by deep

neural networks like ResNet101 [33] or BEVFormer [11].

Recent studies, such as [14], have proposed various methods

for compressing feature vectors [16], including quantization

and lossy compression [16, 34]. Although these methods

reduce transmission data size, they often result in a degra-

dation of detection accuracy [13]. Our work builds on these

efforts by introducing a dynamic clipping mechanism [20]

that minimizes unnecessary feature data while retaining key

information for accurate 3D object detection. We also evaluate

the effectiveness of lossless compression in combination with

different floating-point precisions to achieve a balance between

latency, bandwidth, and accuracy.

Additionally, while previous work has focused primarily on

static environments or simulations, our system is tested in

real-world driving scenarios, utilizing V2X communication.

This enables us to account for network jitter and variability,

providing a more robust evaluation of real-time capabilities

and performance of the Cooperative Perception System (CPS).

III. METHODOLOGY

In this section, we outline the methodology for evaluating

the proposed lightweight 360-degree 3D perception system.

Multi-view (6x) camera images are processed using BEV-

Former [11], a 3D object detection framework for autonomous

driving. The model outputs 3D bounding boxes with ob-

ject positions, orientations, and sizes in a Bird’s-eye view

(BEV) space, making it well suited for perception. Results

are then encoded into CPMs and broadcast to nearby vehicles

or infrastructure via V2X, standardized by The European

Telecommunications Standards Institute (ETSI) [22].

A. Test Scenario & Route

The tests were carried out on public roads in the Kirchberg

area of Luxembourg, which offers various road layouts and

traffic conditions. This environment allowed us to evaluate

perception scenarios in highly realistic settings. Communica-

tions between vehicles and infrastructure are handled by the

YoGoKo Y-Box module, which supports the ITS-G5 and C-

V2X technologies. For more information on the test vehicle,

sensors, hardware, and software stack, refer to [35]. For this

work, we setup two distinct scenarios, as shown in Figure 1:

In the Onboard computing scenario, multi-view images

are fed into the BEVFormer model, with all perception tasks

performed locally. The detection results are then encoded

into CPM and transmitted to nearby vehicle or infrastructure

via ITS-G5. The experimental route spanned a distance of

approximately 1.5 km1. Within this setup, we evaluated the

transmission of CPMs to assess the reliability and perfor-

mance of V2X communication in real world traffic. To ensure

consistent measurements, we placed a stationary receiver at

specific coordinates. This provided a fixed reference point

for evaluating V2X communication quality as the transmitting

vehicle moved along the designed test route.

In the Hybrid computing scenario, BEVFormer is split

into two parts: Part-1 handles initial feature extraction with

lightweight computations onboard, while Part-2 completes

perception tasks in the cloud. Multi-view images are processed

by BEVFormer Part-1 to extract feature vectors, which are then

clipped, compressed, and sent to the cloud via C-V2X. In the

cloud, BEVFormer Part-2 completes the remaining perception

tasks, including 3D object detection. The detection results are

encoded into CPMs and broadcast to nearby vehicles via C-

V2X, enabling cooperative perception. The test route spans

approximately 4km2. We use the cellular mode of C-V2X to

communicate with a cloud server located at the University

of Luxembourg in the same area. Twelve commercial base

stations, including 4G and 5G (non-standalone) sites, operate

along the route on Low- (700 MHz) and Mid-band (3.6

GHz) frequencies. The area provides an average download

throughput of 57 Mbps for 4G and 115 Mbps for 5G, with

upload speeds ranging from 25 to 35 Mbps for both. We use

UDP for data offloading to the cloud, as it offers the lowest

end-to-end delay for offloading sensor data [36].

B. Hardware Configuration & Detection Model

The hardware configurations used in this study are outlined

in Table I. The onboard setup utilizes a Jetson Orin, selected

for its low power consumption and processing capabilities

in embedded perception tasks. The cloud platform employs

multiple Tesla V100 GPU nodes, designed to handle com-

putationally intensive tasks. For more details on GPU node

configurations, we refer the reader to [25].

1Local test route: http://g-o.lu/3/GsHC
2Cloud test route: http://g-o.lu/3/96TS
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Fig. 1: Experimental scenarios: In the Onboard Computing scenario, the BEVFormer model runs locally, transmitting detection

results as CPMs over ITS-G5. In the Hybrid Computing scenario, a compressed feature vector is sent via C-V2X to the cloud

for intensive BEVFormer processing, with detection results broadcast to nearby vehicles.

Platform Hardware Configuration

Local (≈30W)
NVIDIA Jetson Orin
2048 CUDA Cores, 131.4 TOPS (INT8)
8-core ARM Cortex-A78AE

Cloud (≈3000W)

2x Intel Xeon Skylake CPUs (56 cores total)
4x NVIDIA Tesla V100 GPUs (16 GB each)
20480 CUDA Cores, 500 TFLOPS (FP16)

TABLE I: Hardware setups for the onboard and cloud com-

puting platforms described in Section III-A
.

We use the BEVFormer with ResNet101 backbone [37],

initialized from the FCOS3D checkpoint [12]. BEVFormer

performs multi-view 3D object detection in several stages.

It begins with a ResNet101 backbone that extracts features

from multi-view camera inputs. These features are transformed

into a BEV representation using a view transformer that

fuses spatial information from different perspectives. The BEV

representation is refined by a BEV encoder, which applies

self-attention to improve the detection accuracy. Finally, the

detection head outputs 3D bounding boxes, predicting object

positions, orientations, and sizes. For more details on the BEV-

Former, we refer the reader to [11]. In our hybrid setup, we

split BEVFormer after the initial backbone layers, performing

feature extraction onboard. The remaining backbone layers,

view transformation, BEV encoding, and 3D detection are

offloaded to the cloud for efficient processing.

C. Dataset and Evaluation

For this study, we use the nuScenes dataset [38], a large-

scale dataset specifically created for autonomous driving re-

search. The dataset consists of images resolution of 1600x900

from six cameras, five radars, and one LiDAR, providing full

360-degree coverage, perfectly aligning with our objective

of achieving comprehensive 3D detection. The dataset also

includes detailed annotations for 3D object detection, tracking,

and segmentation across various classes such as vehicles,

pedestrians, and cyclists. In this work, we use a BEVFormer

model pre-trained on the NuScenes dataset without perform-

ing any additional training. We use the nuScenes dataset

solely to evaluate the performance of the model after post-

quantization, clipping, and compression. The evaluation aims

to assess potential detection accuracy loss resulting from

different quantization levels, as well as the effects of clipping

and compression. To evaluate performance across all classes,

we use the NuScenes Detection Score (NDS), which offers

a comprehensive assessment of detection tasks. The NDS is

calculated using the following formula [11]:

NDS =
1

10

(

5mAP +
∑

mTP∈TP

(1−min(1,mTP))

)

This score integrates various aspects of model performance,

including mean average precision (mAP) and mean true pos-

itive (mTP), providing a robust evaluation.

D. Lightweight Features Offloading: Hybrid Computing

In hybrid computing, multi-view images captured around

the vehicle are first processed by the initial backbone layers

onboard to extract features. These features are then dynami-

cally clipped and compressed to reduce their size and optimize

bandwidth before transmission to the cloud. In the cloud, the

remaining backbone processing, view transformation, BEV

encoding, and 3D object detection are completed. This division

reduces the computational load on the vehicle, while resource

intensive tasks are handled in the cloud. The complete pro-

cessing workflow is detailed in Algorithm 1.

Feature Vector Extraction: The backbone network B on

the vehicle processes the input images X and extracts feature

vectors F (x) ∈ R
C×H×W at the split layer Lsplit, where

C is the number of channels, and H and W represent the

spatial dimensions. The selection of Lsplit balances onboard

processing and reduces data offloaded to the cloud.

Feature Vector Clipping & Compression: The extracted

features F (x) at the split layer Lsplit undergo a clipping process

with lower bound Lp and upper bound Up.

Fclip(x) = max (Lp,min (F (x), Up))

The system dynamically chooses the bounds (Lp, Up) in order

to clip activations to their plower and pupper percentiles.

Based on our experimental analysis, we set plower and pupper to

10th and 90th percentiles, respectively, to balance bandwidth

reduction and detection accuracy. By clipping values outside

this range, the system removes outliers that do not contribute



significantly to detection. This clipping function lowers the

entropy of the activation distribution, making compression

more efficient. The clipped features Fclip(x) are compressed

using a lossless zlib compression [39], further minimizing the

data size for efficient transmission to the cloud.

Offloading to Cloud: After clipping and compression,

the features are offloaded to the cloud via C-V2X while

the vehicle follows the test route. Compressed Fcomp(x) are

transmitted at regular intervals, defined by the offload fre-

quency ∆t, which adjusts according to network conditions to

minimize latency [40]. The system monitors latency between

transmission and cloud acknowledgment. If latency increases,

indicating network congestion or slower speeds, the frequency

is adjusted to prevent delays [41]. In the cloud, activations are

decompressed and processed using a multi-GPU setup (Section

III-A), accelerating detection compared to on-board hardware.

The results are encoded into CPMs and transmitted to nearby

vehicles and infrastructure, enhancing situational awareness

through cooperative perception.

Algorithm 1 Lightweight Features Offloading: Hybrid

Given:

X: Input image, B: Backbone network, Lsplit: Split layer,

plower, pupper: Clipping percentiles, ∆t: frequency

1: Onboard Hardware:

2: Initialize input X , backbone network B, and Layers L

3: while vehicle is driving do

4: for each layer L in B do

5: if L = Lsplit then

6: Compute clipping thresholds plower, pupper:

7: Lp ← Percentile(F (x), plower)
8: Up ← Percentile(F (x), pupper)
9: Fclip(x)← max (Lp,min (F (x), Up))

10: Fcomp(x)← Compress(Fclip)
11: Transmit Fcomp(x) to the Cloud

12: Wait ∆t

13: On Cloud:

14: while receiving data from vehicle do

15: Frecv(x)← Decompress(Fcomp(x))
16: DetResults← BEVFormer.head(Frecv(x))
17: CPM← Encode(DetResults)
18: Broadcast CPM

19: Return: CPM containing 3D object detection results

E. CPM Encoding

The CPM encoding process packages detected objects and

environmental data into a standardized format defined by

ETSI [22], ensuring interoperability in CPS. As illustrated in

Fig. 2, the message structure includes several containers such

as the ITS-PDU header, management, and sensor information

containers, which store the reference position, sensor ID, and

metadata. The encoding process is managed by the YoGoKo

Y-Box module [35], which supports both ITS-G5 and C-V2X

technologies, enabling seamless V2X communication.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our pro-

posed perception system designed for autonomous driving.

121 bytes
35 bytes per

location
ITS-PDU header,

Delta time,
Management
data container

Perception
regions

Detected
objects

Sensor
information

3 bytes

32 bytes per
object

...Pr1 Pr2 Prn Ob1 Ob2 ... Obn

Fig. 2: A basic overview of different containers included in the

CPM message format as defined by the ETSI standard [22].
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Fig. 3: CPM transmission latency versus distance between a

moving vehicle (25 km/h Avg.) and a stationary receiver at

fixed coordinates (longitude: 6.161993, latitude: 49.626478).

The system generates and transmits CPMs while integrating

3D object detection to enhance environmental awareness. By

offloading sensor data processing to the cloud and enabling

communication with nearby vehicles, the system supports

cooperative perception, allowing more accurate and timely

decision making in complex driving scenarios. Repeating each

experiment five times for statistical robustness, we evaluated

its effectiveness using the scenarios detailed in Section III-A.

A. Onboard computing and CPM transmission

To establish a baseline, we performed inference tests on

the onboard platform, as detailed in Section III-B, using the

NuScenes dataset described in III-C. These tests yielded an

average inference time of 673 ms for the default model prior

to optimization. This far exceeds the typical latency threshold

for real-time perception in autonomous driving (e.g., less than

100 ms) [10]. Although the model achieved an NDS of 0.52,

onboard processing consumed over 65% (±4) of the hardware

resources, as monitored through the nvidia-smi GPU tracking.

These results highlight the limitations of onboard computing,

particularly regarding resource usage and time constraints.

Model optimization using TensorRT: To address resource

usage and time constraints, we employ TensorRT for model

optimization [5]. TensorRT enhances performance by applying

precision calibration (FP32, FP16, or FP8) and optimizing

the computational complexity of the model. The experimental

results in Table II show how TensorRT optimization signifi-

cantly reduces inference times without major degradation in

detection. By reducing the precision from FP32 to FP16 and

FP8, we observe substantial improvements in inference.

For instance, inference time drops from 486 ms (FP32)

to 194 ms (FP8), with only a marginal decrease in NDS,

from 0.52 to 0.51, indicating that the performance in terms

of detection is largely preserved even with reduced precision.



These results align with previous studies, which demonstrated

that quantization effectively maintains high detection accuracy

while significantly reducing inference time [24, 30].

Quantization Inference (ms) NDS CPM (ms)
End-to-end
delay (ms)

FP32 486 0.52 5.9 (±1.8) 491.9 (±2.7)
FP16 257 0.52 5.7 (±1.7) 262.7 (±2.3)
FP8 194 0.51 4.9 (±1.6) 198.9 (±2.3)

TABLE II: Performance metrics for the BEVFormer model

with ResNet101 backbone, evaluated using TensorRT opti-

mization at different quantization levels (FP32, FP16, FP8) on

the onboard vehicle platform, as detailed in Section III-B. The

table includes inference time and CPM transmission latency,

which together form the end-to-end delay. Standard deviations

(±) are provided to reflect measurement variability.

CPM Transmission & V2X Communication: Upon de-

tecting surrounding objects, the 3D detection results are en-

coded into a CPM and broadcast to nearby vehicles via V2X

direct communication. The objective of this CPM transmission

test was to measure the end-to-end latency in a cooperative

perception scenario. Key parameters for this evaluation are

summarized in Table III.

Parameter Name Value

Transmission Power (Tx) 23 dBm
Energy threshold -85 dBm
Channel bandwidth / carrier frequency 10 MHz / 5.9 GHz
Radio Configuration Single Channel (CCH)
Data rate 7 Mbps
Number of CPM Transmitted / loss ratio 6000 / 0.09

TABLE III: Important network parameters for V2X.

A static receiver node was placed at fixed coordinates,

as described in the caption of Figure 3. The transmitting

node, located in the vehicle, as detailed in Section III-A.

The results of these tests, shown in Figure 3, illustrate how

CPMs transmission latency varies with the distance between

the two communicating nodes. The results indicate a slight

linear increase in transmission latency as the distance grows,

likely due to propagation delays and intermittent network

congestion. The average transmission latency was 4.10 ms,

with a maximum of 18.41 ms and a standard deviation of

1.61 ms. Notably, packet loss increased significantly when the

distance exceeded 300 m, highlighting sensitivity to longer

distances. These observations are consistent with previous

simulation-based research [30].

Although TensorRT optimizations and model quantization

have significantly reduced end-to-end delay, as shown in

Table II, the system still falls short of the 100 ms target

required for real-time perception. For example, quantization

to FP8 results in an end-to-end delay of 198.9ms, which is

almost double the desired threshold. Consequently, the end-to-

end delay (onboard inference plus transmission) restricts CPM

transmission rates to below 5Hz, highlighting the need for

more efficient data processing to achieve real-time perception.

B. Cloud Computing and Lightweight Features Sharing

Offloading intensive perception tasks to the cloud, while

keeping lighter tasks onboard, reduces local computation but

adds transmission latency. Techniques like post-training quan-

tization, compression, and clipping help minimize bandwidth

usage and transmission time. This section explores the feasibil-

ity of lightweight feature sharing over networks, focusing on

split layer selection, accuracy retention, and end-to-end delay.

Layer Partitioning and Feature Extraction: Determining

the optimal partition layer in cloud processing is crucial, as

it affects both the onboard feature extraction time and the

size of transmitted features. In BEVFormer, partitioning earlier

backbone layers (e.g., layer 1) minimizes onboard computation

but requires transmitting larger feature vectors to the cloud.

Conversely, deeper partitioning reduces feature vector size but

increases onboard inference time. Figure 4 illustrates the trade-

off between inference latency and feature vector size between

split points and quantization levels.

• Feature extraction time: As more backbone layers are

executed locally, feature extraction time increases, signif-

icantly impacting the real time feasibility. A split at Layer

5 in FP32 yields a latency of 55 ms, acceptable for real-

time use, but deeper splits quickly exceed the 100 ms

threshold (e.g., 115 ms at Layer 10). Lower precisions

like FP16 (20 ms at Layer 5) and FP8 (9 ms at Layer

5) reduce latency, but the benefits diminish with deeper

layers, where even FP8 exceeds 140 ms by Layer 30. This

highlights the need for optimal split points and further

optimizations to meet real-time constraints.

• Feature Vector Size: Shallow splits generate large fea-

ture vectors, making real-time transmission challenging.

For example, FP32 at Layer 1 produces 52 MB, requiring

a throughput of 520 Mbps at 10 Hz, far exceeding typical

V2X bandwidth. Even FP16 (43 MB, 430 Mbps) and

FP8 (31 MB, 310 Mbps) remain too large. Deeper splits,

however, reduce vector sizes: FP32 at Layer 25 requires 5

MB (50 Mbps), and FP8 only 3 MB (30 Mbps), which are

more suitable for real-time transmission. Nevertheless,

deeper splits increase onboard processing time, requiring

a trade-off between transmission latency and feature size.

To reduce activation sizes beyond what quantization can offer,

we also rely on dynamic clipping and compression.

Feature Transmission and Compression: Dynamic clip-

ping and zlib compression were applied to reduce feature

vector sizes and transmission latency across quantization lev-

els. These techniques reduced feature sizes by approximately

97% for FP32, 90% for FP16, and 80% for FP8, significantly

improving transmission efficiency across all layers. The larger

reductions for FP32 are expected, as higher precision data

contains more entropy, making it more compressible compared

to FP16 and FP8. We focus on layers 1 to 5 because deeper

splits yielded minimal improvements in transmission latency

while increasing feature extraction time. As shown in Figure 5,

FP8 exhibited the lowest latency, with medians of 52 ms at
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Fig. 4: Feature vector size and extraction time vs. split depth.

Solid lines show feature extraction time (left y-axis), while

dashed lines indicate size (right y-axis). Lower quantization

(FP16, FP8) reduce both extraction time and feature size.
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Fig. 5: Transmission latency of feature vectors from vehicle

to cloud across five split layers for FP32, FP16, and FP8 over

a 5G network using C-V2X. FP8 demonstrates the lowest and

most stable latency, suitable for real-time transmission. FP32

exhibits the highest latency and variability, especially at earlier

split layers due to larger feature size.

Layer 1 and 35 ms at Layer 5, meeting the threshold required

for real-time perception systems.

FP16 provided a balanced latency, with medians of 67 ms

at Layer 1 and 45 ms at Layer 5, making it suitable for

applications that can tolerate moderate delays. In contrast,

FP32 exhibited the highest latency, reaching 90 ms at Layer

1 and 70 ms at Layer 5, and was more sensitive to network

jitter, as indicated by larger outliers. Despite providing higher

precision, the elevated latency of FP32 renders it impractical

for time-sensitive decisions without further optimization. FP8,

with its minimal jitter and consistently low latency, emerges

as the most viable option for cloud-based 3D object detection.

As network demands increase with the adoption of 5G and

beyond, the scalability of this approach, particularly with FP8,

position it well for future real-time perception systems. While

trade-offs between quantization levels exist, FP8 is ideal for

latency critical environments, whereas FP16 and FP32 are

more suitable for scenarios that prioritize higher data quality.

End-to-end Delay: The results in Table IV summarize

the end-to-end delay and the impact of split layers and

quantization levels. For FP32 quantization at split Layer 1,

the total end-to-end delay is 128.7 ms, with local processing

time (backbone and compression) contributing 27.9 ms, and

transmission latency (V2C and C2V) adding 77.4 ms. In

contrast, FP8 at the same split layer shows a significantly

reduced total delay of 73.8 ms, mainly due to the lower local

processing time of 13.3 ms and a reduced transmission latency

of 43.4 ms. Lower quantization levels, such as FP8, reduce

both computational burden and transmission latency, though

they introduce a slight trade-off in accuracy, with the NDS for

FP8 at split Layer 1 being 0.50 compared to 0.52 for FP32.

As the split Layer deepens (e.g., Layer 5), onboard processing

time increases due to the more complex feature extraction. For

FP32, the total delay at split Layer 5 increases to 137.7 ms,

with 60.5 ms for local processing time and 62.1 ms for trans-

mission latency. In comparison, FP8 achieves a lower end-to-

end delay of 61.9 ms at the same split Layer, primarily due to

its reduced local processing time of 12.7 ms and transmission

latency of 36.3 ms. This reduction in delay for FP8 comes

with only a slight decrease in accuracy, as the NDS drops

marginally to 0.45. Cloud processing times (decompression

and head) remain low across all quantization levels due to the

powerful cloud hardware, with decompression times ranging

from 1.4 to 2.6 ms, depending on the quantization level. This

consistent cloud performance ensures that most of the delay

comes from local processing time and transmission latency,

highlighting the importance of selecting the optimal split point

and quantization level for real-time systems. Transmission

latencies exhibit greater variability compared to local or cloud

latencies, with the largest deviations observed at split layer

1 for FP32 (±4.00 ms for V2C) and FP8 (±2.80 ms for

V2C), reflecting the impact of fluctuating network conditions

on the transmission process. Although lower quantization

levels like FP8 reduce total delay, they introduce a slight

degradation in accuracy. Optimizing split layer, quantization,

compression, and clipping based on real-time constraints and

network bandwidth enhances performance and reliability in

cloud-based cooperative perception.

End-to-end Delay vs. Accuracy Trade-off: Figure 6 illus-

trates the trade-off between end-to-end delay and NDS across

different split layers and quantization levels. This suggests that

while FP32 maintains accuracy, it is highly sensitive to the

increased computational load of deeper layers, making it less

practical for real-time systems with strict latency constraints.

Conversely, FP16 and FP8 provide more favorable trade-offs.

FP16 at Layer 5 reduces latency to 77.2 ms, with a modest

NDS of 0.45. FP8 offers the lowest delay, achieving 61.9 ms

at Layer 5 while maintaining an acceptable NDS of 0.43.

Smaller feature vectors also reduce the risk of network-induced

latency and packet loss, enhancing robustness in real-world

deployments. Intermediate splits, such as Layer 3 with FP16,

provide a balanced trade-off between end-to-end delay and

accuracy. Layer 3 with FP16 achieves a delay of 88.7 ms and

an NDS of 0.47, making it a practical solution for perception

systems that require both timely responses and reasonably

accurate detection, a visual demonstration of the result is

shown in Figure 7. In scenarios where accuracy is the primary



Q Level
Split

Layer

Onboard Processing Time (ms) Transmission latency (ms) Cloud Processing Time (ms) End-to-end
Delay (ms)

NDS
Bandwidth

Usage (Mbps)Backbone Compression V2C C2V Decompression Head

32

1 17.2 (±2.10) 10.7 (±1.85) 65.8 (±4.00) 11.6 (±1.15) 2.6 (±0.60) 20.8 (±1.35) 128.7 (±4.20) 0.52 10.5
2 22.3 (±1.75) 8.6 (±1.55) 58.0 (±3.90) 9.8 (±0.95) 2.4 (±0.55) 18.4 (±1.25) 119.6 (±3.90) 0.50 8.4
3 30.5 (±1.90) 7.3 (±1.50) 48.9 (±3.75) 8.4 (±0.85) 2.5 (±0.50) 15.9 (±1.30) 113.5 (±3.80) 0.48 6.8
4 39.8 (±1.65) 6.4 (±1.30) 54.5 (±3.50) 7.0 (±0.75) 2.3 (±0.45) 14.7 (±1.10) 124.7 (±3.60) 0.47 5.9
5 55.4 (±1.45) 5.1 (±1.10) 56.3 (±3.20) 5.8 (±0.70) 2.5 (±0.40) 12.6 (±0.95) 137.7 (±3.40) 0.46 5.4

16

1 9.3 (±1.70) 9.1 (±1.50) 57.6 (±3.10) 12.7 (±0.95) 2.1 (±0.50) 18.2 (±1.30) 109.0 (±3.90) 0.51 9.0
2 11.7 (±1.50) 7.3 (±1.30) 39.3 (±2.95) 7.6 (±0.85) 2.2 (±0.45) 16.6 (±1.20) 84.7 (±3.70) 0.49 6.6
3 15.3 (±1.35) 6.2 (±1.20) 44.1 (±2.80) 6.6 (±0.80) 2.1 (±0.40) 14.3 (±1.05) 88.7 (±3.50) 0.47 5.6
4 18.5 (±1.25) 5.2 (±1.05) 42.3 (±2.65) 8.6 (±0.75) 2.0 (±0.35) 13.4 (±0.95) 90.0 (±3.25) 0.46 4.6
5 20.4 (±1.10) 4.3 (±0.95) 31.2 (±2.50) 7.1 (±0.70) 2.0 (±0.30) 12.2 (±0.85) 77.2 (±3.05) 0.45 4.3

8

1 5.1 (±1.45) 8.2 (±1.45) 33.6 (±2.80) 9.8 (±0.90) 1.6 (±0.50) 15.5 (±1.25) 73.8 (±3.90) 0.47 8.4
2 6.2 (±1.25) 6.7 (±1.30) 40.4 (±2.60) 8.1 (±0.85) 1.6 (±0.45) 14.1 (±1.15) 77.1 (±3.60) 0.46 6.9
3 7.3 (±1.10) 5.7 (±1.10) 44.3 (±2.40) 6.3 (±0.80) 1.5 (±0.40) 12.6 (±1.00) 77.7 (±3.50) 0.44 5.5
4 8.4 (±1.05) 4.7 (±1.00) 33.4 (±2.20) 5.6 (±0.75) 1.5 (±0.35) 11.9 (±0.90) 65.5 (±3.25) 0.43 4.7
5 9.1 (±0.90) 3.6 (±0.90) 29.3 (±2.00) 7.0 (±0.70) 1.4 (±0.30) 11.0 (±0.85) 61.9 (±3.00) 0.43 4.1

TABLE IV: Performance metric for various split layers and quantization levels, including onboard processing time, V2C and

C2V transmission latency, cloud processing time, and total end-to-end delay. The standard deviations reflect variability. The

last column shows bandwidth utilization for offloading feature vectors from vehicle to cloud.
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Fig. 6: End-to-end delay vs. detection accuracy (NDS) across

split layers and quantization levels. Earlier layers result in

higher accuracy but increased delay, while intermediate layers

provide a balance between delay and accuracy.

concern, FP32 at shallower layers remains the best choice,

although it comes at the expense of higher delay.

V. CONCLUSION AND FUTURE WORK

This study evaluates cloud-based 3D object detection using

a BEVFormer based model integrated with V2X communica-

tion. We propose a hybrid computing strategy that leverages

cooperative perception for 360-degree detection. The approach

offloads intensive computations to the cloud while maintain-

ing lightweight feature extraction onboard, enabling real-time

perception. Experimental results demonstrate that dynamic

clipping, compression, and 5G-enabled C-V2X transmission

significantly optimize latency and bandwidth utilization. For

instance, offloading FP32 feature vectors at 10Hz from Layer

1 reduced bandwidth usage by over 95%, from 520 Mbps to

10.5 Mbps. We also investigate the trade-offs between end-

to-end delay and detection quality across various split layers

and quantization levels. Additionally, TensorRT optimizations

were applied to further enhance inference speed. Our results

demonstrate that while FP32 offers the highest accuracy,

its substantial end-to-end delay renders it impractical for

real-time applications. In contrast, FP8 achieves significantly

lower latency with reasonable accuracy, making it suitable for

latency-sensitive scenarios. FP16 provides a balanced trade-off

between accuracy and latency, fitting applications that require

both timely responses and adequate detection performance.

This study underscores the importance of selecting appropri-

ate split layers and quantization levels based on operational

requirements. Shallower splits with FP32 are optimal for

accuracy-focused tasks, whereas deeper splits with FP8 cater

to applications with strict latency constraints.

One promising direction for future work is to refine the

quantization through the exploration of advanced mixed-

precision strategies. This involves dynamically adjusting the

layers between FP32, FP16, and FP8 based on real-time

requirements. Such an approach could further improve both la-

tency and detection quality compared to the static quantization

employed in this study. Additionally, evaluating the system

with emerging wireless technologies, such as 6G or satellite-

based communication, could reveal significant performance

enhancements, especially in non-urban or remote areas.
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