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Abstract. Accurately estimating Remaining Useful Life (RUL) in in-
dustrial systems is crucial for optimizing maintenance strategies and ex-
tending the lifespan of assets. Data-driven RUL models leverage machine
learning (ML) algorithms to extract patterns from operational data, ex-
celling in capturing complex relationships. Despite advancements in RUL
prognosis models, the black-box nature of machine learning algorithms
poses challenges for industrial users, hindering trust and adoption. Ex-
plainable Artificial Intelligence (XAI) methods offer promising solutions
by making complex models transparent and interpretable. This paper
focuses on applying XAI methods to enhance trust in machine learn-
ing models for RUL prognosis. We emphasize a quantitative assessment
of explanation mechanisms, including metrics such as consistency and
robustness. Our study contributes to developing more trustworthy and
reliable predictive maintenance strategies. We evaluate XAI methods ex-
plaining RUL models applied to a real-world scenario of industrial fur-
nace data. Our findings aim to provide valuable insights for industrial
practitioners, guiding them in selecting RUL prognosis techniques.
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1 Introduction

The accurate estimation of the Remaining Useful Life (RUL) of equipment in in-
dustrial systems is critical for ensuring optimal maintenance strategies, minimiz-
ing downtime, and maximizing the lifespan of assets. Over the years, researchers
and practitioners have explored various approaches to RUL prognosis, leading
to the development of physical and data-driven models. Physical models [7, 14],
rooted in engineering principles, provide insights into the degradation processes
of components. These models leverage knowledge of the system’s design, materi-
als, and operating conditions to estimate RUL. On the other hand, data-driven
models [22, 13, 8, 24, 16, 20, 4] harness the power of machine learning algorithms
to extract patterns and correlations from historical operational data. This paper
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focuses on these models, which excel in capturing complex relationships that
may be challenging for traditional physics-based approaches.

Despite the advancements in RUL prognosis models, industrial users often
need help trusting the predictions generated by machine learning algorithms. The
black-box nature of these models can hinder their adoption, mainly when critical
decisions rely on their outputs. This lack of transparency raises concerns about
the model’s reliability, interpretability, and generalizability to varying operat-
ing conditions. Explainable artificial intelligence (XAI) methods are promising
solutions for these trust issues. XAI methods aim to make the decision-making
process of complex models more transparent and interpretable. By providing in-
sights into the inner workings of machine learning models, XAI methods empower
users to understand, validate, and ultimately trust the predictions made by these
models [17]. XAI methods rely on different aspects: model specificity, scope, and
the location of explanation [2]. For the model specificity, we have model-specific
methods that can be only used on a specific type of model, such as Layer-wise
Relevance Propagation (LRP) [3] that is designed to provide explanations for
predictions made by deep neural networks. In contrast, model-agnostic methods,
such as SHAP [15] and LIME [18], are designed to apply to different types of
machine learning models as only the model’s input and output are analyzed.

Recent works apply XAI methods to explain RUL machine learning mod-
els [17, 10, 21, 12]. In practice, decision-makers evaluate the generated expla-
nations subjectively to select the best models. However, reviewing explanation
methods to confirm their correctness objectively is equally essential. Although
quantitative metrics exist to evaluate XAI outputs [23, 6], no previous study has
evaluated explanations for data-driven RUL models.

In this work, we contribute to the field of RUL prognosis by investigating the
application of XAI methods to enhance trust in machine learning models ap-
plied to a real industrial scenario. Our study emphasizes ensuring a quantitative
assessment of the explanation mechanisms by metrics such as consistency and ro-
bustness, leveraging an XAI evaluation framework [9] specific for Deep Learning
(DL) model explainers. By presenting a comprehensive analysis of these models,
we aim to provide industrial users with valuable insights into the strengths and
limitations of RUL prognosis techniques, ultimately contributing to developing
more trustworthy and reliable predictive maintenance strategies.

In the remainder of this paper, we present the related work (Section 2),
describe the methodology and evaluation metrics (Section 3), followed by the
description and analysis of the experiments we conducted on real-world scenarios
of industrial furnace data (Section 4), and conclude in Section 5.

2 Related Work

Machine Learning for RUL. In the early phases of data-driven models for
Remaining Useful Life (RUL), traditional Machine Learning (ML) algorithms
like Support Vector Machines (SVM) and Random Forests (RF) dominated. Wu
et al. [22] illustrated the benefits of SVM in a classification-regression scheme,
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showing enhanced performance in capturing intricate relationships. Multi-layer
Perceptrons (MLPs) [13] and Extreme Learning Machines (ELM) [8] emerged as
direct RUL prediction options, prioritizing simplicity for accuracy and reduced
computational costs, particularly in specific contexts. The rise of deep learning,
including Convolutional Neural Networks (CNN) and Long Short-Term Memory
networks (LSTM), became notable with their ability to handle complex patterns
in massive IoT and Industry 4.0 datasets. LSTM, effective in handling sequen-
tially correlated data [24, 16], and CNNs, showcasing remarkable accuracy [20],
emphasize the significance of data-driven model choices [4].

XAI for RUL. Despite being nascent, using XAI for RUL prognosis is gaining
acceptance [17]. Noteworthy contributions include a convolutional bidirectional
LSTM for turbofan engine RUL prognosis [10], utilizing SHAP for validation.
Another method [21] introduces RUL interpretation for deep learning, employing
Shap to obtain interpretations at different hierarchies. Additionally, a proposed
explainable regression framework for predicting machine RUL [12] utilizes SHAP
and LIME for explanations.

XAI Evaluation Metrics. Various metrics gauge the effectiveness of XAI
methods. Robustness, measured by average sensitivity through Monte Carlo
sampling [23], and explanation complexity, assessed with the Gini Index [6], are
relevant metrics. However, this work provides the first quantitative evaluation
of XAI methods on data-driven RUL models using diverse metrics.

3 Methodology

XAI ensures the reliability of AI systems. However, when employing XAI for
decision-making in high-stakes scenarios like RUL prediction, it is imperative to
validate the accuracy of the generated explanations. This raises the following
question: How can we ensure the correctness of explanations to make informed
decisions in RUL prognosis?

We answer this question by providing a quantitative assessment of expla-
nation mechanisms, which holds equal importance with subjective, inherently
human-centric evaluations. Our approach, as illustrated in figure 1, uses state-
of-the-art DL algorithms, specifically LSTM and CNN, for accurate RUL esti-
mation. Subsequently, we delve into generating explanations using Layer-Wise
Relevance Propagation (LRP) [3] and objectively evaluating the obtained expla-
nations.

RUL Prognosis. To estimate the RUL, we propose to use CNN and LSTM,
considering their demonstrated capabilities. CNN is chosen for its adept feature
extraction capability. In this context, CNN handles sequential patterns by in-
gesting data divided into sliding windows. These sliding windows encapsulate
features in one dimension and the corresponding time sequences of each feature
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Fig. 1: Diagram of the proposed methodology for quantitative assessment.

in the other dimension. This approach enables CNN to capture the temporal
dependencies effectively. LSTM is enlisted for its ability to manage sequentially
correlated data. Its architecture allows precise control over the remembering and
forgetting processes of both previous and current states. This makes it suitable
for tasks where understanding the sequential evolution of data is needed, as is
the case in RUL prediction.

Explanations generation. Both chosen DL algorithms function as black boxes,
offering decisions without revealing any information about the factors influenc-
ing them. To address this opacity, we employ LRP as our XAI method. LRP
facilitates the identification of each input feature’s contribution to the model’s
output by operating in reverse, starting from the output and assigning relevance
scores to each feature, indicating their importance in shaping the final prediction.

Example 1. Let’s consider a machine with features like Temperature, Pressure,
and Vibration, and we want to predict its Remaining Useful Life (RUL). After
RUL prediction and LRP application, we obtain relevance values: 0.2 for Tem-
perature, 0.3 for Pressure, and 0.5 for Vibration. These values represent each
feature’s contribution to the model’s output. The obtained results can be visual-
ized via a heatmap, providing a clear and intuitive understanding of the relative
importance of each feature, as illustrated in the figure 2.

The utilization of LRP is motivated by two key factors: i) LRP offers a model-
specific approach that seamlessly aligns with the internal architecture of DNN. ii)
Given the sequential nature of the data, LRP provides a granular understanding
of the contributions of each feature within each time sequence.

Explanations Evaluation. Following the generation of LRP explanations for
both the CNN and LSTM, ensuring the reliability of these explanations is
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Fig. 2: Heatmap illustrating the relevance values obtained through LRP for fea-
tures in RUL of a machine.

paramount for the crucial task of selecting the most suitable model (either LSTM
or CNN). Recognizing the limitations of relying solely on subjective evaluations,
as human assessments may vary, our methodology emphasizes objective evalua-
tions of the obtained explanations. In our work, we propose to use Quantus [9],
an XAI quantification toolkit, to attain a holistic evaluation of the generated
explanation from multiple perspectives: Robustness, Complexity, Faithfulness,
and more.

4 Experiments

4.1 Setup

We evaluated our work in a real-world dataset comprising furnace runs, chosen
for their significance in manufacturing processes. Despite their vital role in the
steel industry, no prior work has estimated the RUL of furnaces. The tabular
dataset includes information about runs from seven distinct furnaces, features
from different sensors, and the occurrence of failures recorded since 2022. Due to
confidentiality reasons, we cannot make the dataset publicly available.To frame
the dataset as an RUL problem, we estimate the remaining number of runs a
furnace will undergo before a failure occurs. In line with this objective, we use
a linear degradation function.

Beside CNN and LSTM models used to predict the RUL, we’ve also em-
ployed a state-of-the-art (SOTA) method for predicting RUL, known as DA-
LSTM [19], that shows superiority in prediction accuracy. This model, proposed
in the paper, introduces a lightweight approach combining dual attention and
Long Short-Term Memory (LSTM). The attention mechanism (AM) captures
complex degradation features, while the LSTM is used to compensate for the
limitations of AM in modeling sequential information. After obtaining LRP ex-
planations, we employed Quantus to assess the robustness and complexity of the
generated explanations using two metrics for each:

– Avg-Sensitivity [23] assesses the robustness of the explanations by evaluating
their stability and sensitivity in the face of input perturbations. It quantifies
how much an explanation changes in response to insignificant perturbations
in the input. Essentially, if the input being explained undergoes a slight
modification without significantly altering the model’s prediction, we expect
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minimal changes in the corresponding explanation as well. Additionally, ex-
planations exhibiting high sensitivity may be more vulnerable to adversarial
attacks, as noted by [1]

– Local Lipschitz Estimate [1] is another measure that evaluates the consis-
tency and stability of generated explanations. It measures changes in the
output caused by variations in the input. We specifically consider local sta-
bility, focusing on neighboring inputs. This metric states that similar inputs
should lead to relatively consistent explanations. It relies on the local Lip-
schitz continuity, which assesses the smoothness of the function within a
neighborhood of each point

– Sparseness [6] measures the complexity of explanations. Its primary objective
is to determine if a minimal set of features is enough to explain the model.
This entails assessing whether we can effectively describe the model’s work-
ings using only a concise and essential set of features (i.e. only the features
with significant contributions are included). If this criterion is met, we cate-
gorize the explanation as simple and human friendly. The sparseness in our
case is quantified using the Gini Index [11].

– Complexity [5] also enables us to assess the features utilized in the explana-
tion. Given humans’ limited capacity to process vast amounts of information
at once, explanations with fewer features are preferable. In this case, com-
plexity is measured by the fractional contribution of each feature to the total
magnitude of the attribution. If every feature received equal attribution, the
explanation would be complex. Conversely, the simplest explanation would
highlight only one feature.

4.2 Results

Table 1 displays experimental results in terms of Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE), revealing that both LSTM and DA-
LSTM outperform the CNN model in terms of accuracy. This superiority is due
to LSTM’s ability to capture sequential and temporal dependencies in the data
more effectively than CNN. While CNN excels in capturing local patterns, LSTM
is designed to capture long-range dependencies, making it better suited for the
RUL prediction a task that might require understanding events occurring far
back in time.

Table 2 presents a comparison of the evaluation metrics for explanations
generated by CNN, LSTM, and DA-LSTM models. Notably, CNN-generated
explanations are more straightforward and robust. This superiority can be at-
tributed to the architectural characteristics of CNN, which tend to reduce the
dimensionality of the input to emphasize only essential features. This results in
generating simpler explanations focused on important features. Furthermore, its
hierarchical feature extraction method organizes information in layers, simplify-
ing the process of assigning importance to different input parts. This allows for
a stable and reliable way of assigning importance or relevance to different parts
of the input data. In contrast, explanations derived from LSTM and DA-LSTM
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models may yield more variability due to the sequential nature of their process-
ing, leading to inconsistencies based on the order of events. This inconsistency
impacts both the robustness of the generated explanations as well as the features
used for explanation.

Table 1: Experimental results of CNN and two LSTM-based models in terms of
RMSE and MAE.

Method RMSE MAE

CNN 36.59 17.38
LSTM 16.89 7.88

DA-LSTM 9.59 5.83

Table 2: Quantitative evaluation of LRP explanations in terms of robustness and
complexity.

LRP of Robustness Complexity
Avg-Sens [23] Lipschitz [1] Spars [6] Complex [5]

CNN 0.35 9.97 0.26 4.85
LSTM 0.78 15.49 0.66 4.32

DA-LSTM 0.80 17.54 0.72 4.50

While LSTM models demonstrate better performance in predicting RUL,
CNN provides more robust and simpler explanations. Hence, a trade-off be-
tween performance and explainability is essential, as it underscores the need for
careful consideration in model selection, particularly in real-world applications
where decision-makers rely on model predictions to inform actions. It is impor-
tant to recognize that high performance alone does not guarantee the quality
of explanations based on which decisions are made. Additionally, these results
may not universally apply to all CNN and LSTM models as data characteris-
tics play an equally significant role. Nevertheless, emphasizing the importance of
quantitative evaluation metrics such as robustness, simplicity, and consistency is
essential for assessing the reliability and trustworthiness of model explanations.

5 Conclusion

In this study, we introduced an approach for validating RUL prediction ex-
planations through quantitative evaluation. Using CNN and LSTM algorithms
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for RUL prediction and employing LRP for explanation generation, we eval-
uated the explanations generated for both models. Our evaluation focused on
assessing the robustness and complexity of the models, revealing the critical
importance of quantitative evaluation in enhancing decision-making based on
explanations. Our findings indicate that while LSTM-based models outperform
in RUL prediction accuracy, CNN offers more robust and simpler explanations.
This underscores the necessity of finding a trade-off between performance and
explainability. Looking ahead, our future endeavors involve expanding the scope
by exploring additional evaluation metrics and addressing diverse use cases.
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