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Abstract: The introduction of Energy-Based Maintenance (EBM) practice in Sustainable Manufacturing (SM) is 4 

attracting significant attention from academicians, especially considering imposed European initiatives (e.g., 5 

Green Deal). Although traditional Predictive Maintenance (PdM) practice uses Machine Learning (ML) tools, it 6 

still relies on secondary (waste) energy indicators of a p-f curve (e.g., vibration, temperature). We introduce the 7 

notion of Functional-Productiveness (FP) for setting FP thresholds in detecting “Quasi-fault” events considering 8 

hydraulic power. Discretised hydraulic power signal with Recursive Feature Elimination (RFE) is used for feature 9 

extraction. Support Vector Machine (SVM), Random Forest (RF), Partial Least Square Discriminant Analysis 10 

(PLS-DA) and t-Distributed Stochastic Network Embedding (t-SNE) algorithms are used for Feature Selection 11 

(FS) process. The extracted features show latent degradation of a hydraulic control system of a Rubber Mixing 12 

Machine (RMM) performed by binary classification {None, Quasi-Fault} with SVM, RF, PLS-DA and Logistic 13 

Regression (LR). The results show that latent degradation led to a 20% drop in hydraulic power compared to the 14 

initial state, while the existing diagnostic practice of Lubricant Condition Monitoring (LCM) fails to provide such 15 

insights. Consequently, the study suggests that traditional monitoring practices that rely on static p-f indicators 16 

are becoming obsolete, leading to unnecessary energy waste and power loss. 17 
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1 Introduction 24 

1.1 Background and rationale 25 

Understanding Cleaner Production (CP) as a: „...preventive approach to managing the environmental impacts of 26 

business processes and products“ (Srinivas, 2022), it is unavoidable to perceive that preventive can be considered 27 

formulaic in understanding the degradational consequences of poor maintenance policies and practices. 28 

Rhetorically, UNEP’s definition of CP as „...continuous application of an integrated preventive environmental 29 

strategy to processes, products, and services to increase overall efficiency and reduce risks to humans and the 30 

environment“ (UNEP, 2006) fails to address what are exactly the roles of preventive practices and questions how 31 

industrial maintenance is perceived within proposed definitions. As asset-intensive companies set their agendas 32 

in accomplishing high-end market demands, responding to disruptive market demands and EU-imposed normative 33 

regulations and requirements (e.g., Green Deal, SDGs – Sustainability Development Goals) with the help of 34 

Industry 4.0 features (e.g., Internet of Things (IoT), Cloud Computing) became much more manageable (Orošnjak, 35 

2022). However, although existing maintenance research shifted towards „Maintenance 4.0“ with the introduction 36 

of Industry 4.0 (I4.0), it is a question, what are the actual maintenance constructs that altered maintenance from 37 

PdM (Predictive Maintenance) to M4.0? Other than adding I4.0 nomenclatures and associated features with 38 

buzzwords „smart maintenance“, „IoT maintenance“, etc., one cannot, with sophisticated exactitude, claim that 39 

such practices revolutionalised maintenance in a scientific sense. 40 

The ongoing PdM concerns are mainly oriented towards DL (Deep Learning) philosophy (Li, 2018), whether for 41 

diagnostic or prognostic purposes. Detecting anomalies with, for instance, vibroacoustic signals (indicators) is 42 

still mostly researched within the PdM (Tang et al., 2022) of mechanical structures. Using computer vision with 43 

IC (infrared cameras) for detecting anomalies (Ullah et al., 2017) is an example of using thermography to predict 44 

faults in electrical power equipment. In the hydraulic sphere, the LCM (Lubricant Condition Monitoring) is mostly 45 

used since it provides insight into the operational state of the system’s internal structures (Karanović et al., 2018). 46 

Included CM indicators can be used to assess potential anomalies produced by non-random stress events; however, 47 

existing research still builds on static and subjective (pre)set thresholds using „energy waste“ indicators (red line 48 

in Fig. 1) of the p-f curve. With the introduction of Sustainable manufacturing, we assume that the lack of 49 

maintenance advancement in the industrial „4th Wave“ is hidden in the dimension of sustainability. From the 50 

technical aspect, the idea is to shift from time and waste energy to primary (functional) energy (green line in Fig. 51 

1), for diagnosis/prognosis purposes. Hence, we suggest shifting to Energy-Based Maintenance (EBM) practice. 52 

The EBM is a type of maintenance strategy focusing on equipment and systems’ power consumption to identify 53 

problems and schedule maintenance (Orošnjak et al., 2021). The goal of EBM is to optimise energy usage, reduce 54 

waste, and improve the efficiency and reliability of the equipment. There are several aspects of EBM: (1) 55 

Condition Monitoring Practice (CMP) – using sensors or other monitoring devices to measure power consumption 56 

and identify trends and changes that may indicate a problem; (2) Predictive Practice (PdP) (diagnosis and/or 57 

prognosis) – extracting features to prognose a potential failure or diagnose existing causes of degradation; (3) 58 

Corrective Practice (CrP) – identifying and fixing problems that are causing excessive energy consumption, such 59 

as worn parts or incorrect settings; (4) Optimisation Maintenance Practice (OMP) – conducting modelling and 60 

optimisation of maintenance-associated tasks and activities to minimise energy as a cost function (Xia et al., 61 

2022). In addition, the benefit of using energy as an optimisation factor is that it can be transformed into monetary 62 



value (Xie et al., 2019). Although state-of-the-art literature on maintenance involving sustainable philosophy 63 

experiences two streams: Sustainable Maintenance (SM) (Pires et al., 2016) and EBM philosophy (Orošnjak, 64 

2021), different ideas drive the two. Namely, the SM practice is more oriented towards philosophical and social 65 

aspects of maintenance, while EBM is more oriented towards the technical and economical aspects. 66 

 67 

Fig. 1. Conceptualisation of the p-f curve with secondary energy indicators (red line) and primary energy 68 

indicators (green line) 69 

1.2 Literature review 70 

Existing research on PdM that includes waste-energy indicators usually relies on diagnostics, including 71 

contamination (e.g., oil analysis) (Huang et al., 2022), vibration signal (Liu et al., 2021), electrical power intake 72 

(Yin et al., 2021), etc. For instance, Jiang et al. (2021) decompose vibration signals by Empirical Wavelet 73 

Transform (EWT) to form features in the time and frequency domain and use correlation coefficients to detect 74 

changes in signal behaviour. Yin et al. (2021) propose a Genetic Algorithm-based wavelet neural network 75 

(GAWNN) for locating abnormal energy consumption patterns. They propose Fuzzy logic evaluation to define 76 

abnormal energy consumption by an expert judgement for conducting the correlation between abnormal machine 77 

components and energy consumption. Since sampling rates of different sensors are usually inconsistent, efforts 78 

have been made to address the problem of the multi-sampling rate problem. Huang et al. (2021) propose a multi-79 

sensor data fusion method with CNN (Convolutional Neural Networks) to detect faults through automatically 80 

learned features from raw data. In a similar paper, Huang et al. (2022) propose CNN using classification with 81 

LDA (Linear Discriminant Analysis) for comparison and Pearson’s correlation for analysing the correlation 82 

between features and faults. Under the same problem, Xiangkai Ma et al. (2021) propose multi-rate fusion using 83 

CNN architecture for classification for fault diagnosis. Although all of the research combine different data and 84 

deep learning, they still rely on secondary energy emission indicators, and ommitt hydraulic power signal. 85 



Moreover, there is an existing problem in anomaly detection in hydraulic systems considering detecting abnormal 86 

behaviour patterns in signal processing. The usual practice is to build a classification model with or without prior 87 

information about the operational state of the system, using supervised or unsupervised learning, respectively. 88 

The problem concerns defining fault or failure thresholds for delineating the operational states as „healthy“ or 89 

„non-healthy“. Usually, these thresholds are set subjectively without explanation of these pre-set thresholds (Tang 90 

et al., 2021) and with explanations behind the probability assumptions of the behavioural process. It raises the 91 

question about Gaussian (or linear) probability assumptions of faults, especially since they (almost) always show 92 

non-Gaussian and non-linear characteristics (Pei et al., 2021). Secondly, it also questions whether such 93 

subjectively imposed abnormal behaviours by simulating faulty conditions and failures happen in practice. Or 94 

what is the benefit of simulating such faults in practical (industrial) encirclement? 95 

On one side, the existing research regarding EBM is currently in the early infancy stage, mostly relying on 96 

simulations and cost-benefit analysis (Orošnjak et al., 2021). Only a portion of studies address practical industrial 97 

applications (Yin et al., 2021) and compare EBM to other practices (Orošnjak, 2021); however, the results show 98 

poor performance compared to traditional practices. The ongoing research reflects a top-down approach, 99 

suggesting that extracted primary energy/power data are mostly used for optimisation purposes (Xia et al., 2018) 100 

on a strategic level (Zhou and Yi, 2021) and maintenance decision-making (MDM), thus lacking operational and 101 

technical applications of the proposed solutions. On the other side, the PdM research still relies on energy-waste 102 

indicators of a p-f curve, neglecting the deviation of primary (functional) power for gaining insights about the 103 

degradation of system performance. 104 

1.3 Study aims and objectives 105 

Considering that labelling (supervised classes) usually includes pre-set 95% control thresholds (González-Muñiz 106 

et al., 2022) or static-fixed thresholds in determining the system’s or unit’s failed state (Emec et al., 2016), we 107 

aim to resolve this problem of functionality by using the concept of Functional Productiveness (FP) (Orošnjak, 108 

2021). The underlying reason for introducing FP is to avoid labelling data under controlled experimental (testbed) 109 

conditions, especially to avoid artificially „simulated faults“. On the other hand, the industrial environment works 110 

in an extreme operating regime and, therefore, is much more difficult to classify or label features and fault 111 

conditions. Therefore, we experiment in a real-working environment instead of controlled (testbed) conditions 112 

using dynamic FP thresholds for binary classification. 113 

Feature Selection (FS) has become one of the most important topics in feature engineering, and an extensive 114 

elaboration on FS is given throughout the paper. The underlying reason for this is that using FS factors like 115 

Pearson’s Correlation Score (CS) and XGBoost Feature Importance (XFI) can suffer from redundancy (Ma et al., 116 

2021) or, in the case of inaccurately detecting feature boundaries can easily lead to misclassification (Yu et al., 117 

2020). This paper proposes FS by incorporating RFE (Recursive Feature Elimination) strategy. The models used 118 

for RFE-FS include Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM) and 119 

Random Forest (RF). In addition, the t-distributed Stochastic Network Embedding (t-SNE) is used to visualise 120 

and gain insight into the global information provided by extracted features. Finally, we compare the results with 121 

existing maintenance showing that latent degradation caused 20% of unnecessary energy waste that was not 122 

observed by the LCM practice. 123 



The rest of the study is structured as follows. The second chapter explains a study’s methodological and 124 

experimental design and flow diagram of data processing, including raw data acquisition, feature extraction, 125 

selection, and classification algorithms. The third chapter includes results and discusses results obtained from raw 126 

data and machine learning modelling. Finally, the study closes by concluding remarks, contributions to the 127 

literature and future research directions.   128 

2 Methodology and experimental analysis 129 

2.1 Rubber Mixing Machine Hydraulic Control System 130 

The hydraulic system of a Rubber Mixing Machine (RMM) is used for the experiment. The hydraulic control part 131 

(Fig. 2) operates by opening and closing the saddle of the RMM chamber and consists of a tank (1), electric motor 132 

(2) and hydraulic pump (3), control and regulation valves (4), and linear position actuators (5). The SCADA 133 

(Supervisory Control and Data Acquisition) system monitors the process and provides additional data about the 134 

system. The data collection process from RMM was performed from 06.10.2021-12.12.2021. The acquisition of 135 

data outside of the SCADA (12) system includes physically mounted contamination sensors: HYDAC Aqua 136 

Sensor AS3000 (6), HYDAC CS1220 contamination sensor (7), QT500 Flow Turbine (8), MultiHandy 2045 (9), 137 

a communication module for AS3000 and CS1000 (10), and PC for data acquisition (11). The process starts with 138 

inserting rubber (bulk) material. When the material reaches the defined temperature (°C) within the chamber, it 139 

automatically activates the hydraulic system via SCADA. The pump provides hydraulic power to the actuators 140 

(5) that operate the saddle. The actuators are equipped with SCADA sensors that regulate the speed of opening, 141 

unloading and closing the saddle (i.e., chamber doors). Existing maintenance practice within the company includes 142 

regular monitoring, inspections, and replacements of parts, filters, oil refilling, etc., through the LCM program. 143 

The LCM includes physio-chemical and elemental analysis to detect wear or oil-related contamination. For a 144 

detailed description of the experiment, methods and procedures for raw data extraction, the reader is referred to 145 

Supplementary material 1. 146 



 147 

Fig. 2. Experimental installation 148 

2.2 Raw data acquisition and (pre)processing 149 

Data acquisition and pre-processing include three steps (Fig. 3). The first step includes acquiring raw data from 150 

the SCADA system, hydraulic power-related data (pressure and flow), LCM (oil-contamination) data, and 151 

response Y data of each performed cycle. SCADA system’s data is automatically generated during the experiment 152 

and extracted in csv files. LCM includes physical-chemical and elemental analysis (e.g., oil contamination). The 153 

labelling is performed using the FP concept (Orošnjak, 2021). The FP generates dummy variable Y as [0, 1], as 154 

[None, Quasi-fault] condition. The labelling is performed as a semi-supervised mechanism by setting the FP 155 

threshold to 95% normal operation with a penalisation function to remove false-positive points. For a detailed 156 

description of FP thresholds, please see appendix A1. Response Y label by Functional-Productiveness 157 

Table 1. Collection of data from SCADA and sensors 158 

No. Parameter Unit Component Device 
1 Hydraulic volumetric flow l/min Hydraulic MultiHandy 2045 
2 Hydraulic pressure bar Hydraulic MultiHandy 2045 
 Hydraulic power kW Hydraulic MultiHandy 2045 

3 Hydraulic oil temperature °C Hydraulic CS/AS/SCADA 
4 Chamber temperature °C Chamber SCADA 
5 ISO 4406 contamination ISO Code Hydraulic CS1000 
6 Water saturation %water Hydraulic AS3000 
7 Load kg Chamber SCADA 
8 Cycle length sec System SCADA 
10 Hydraulic cycle time sec Hydraulic SCADA 
11 Hydraulic actuators reaction sec Hydraulic SCADA 



12 Energy consumption kWh System SCADA 

Data (pre)processing reduces the complexity of data by considering only the data(sets), either extracted or 159 

selected, in which the information gained for establishing a model increases the performance of a model. Examples 160 

of failures during system operation were jamming the saddle, power-off due to a break in electrical supply, and 161 

other cases where total failure/stoppage caused bias in collected data. Because the system is an asset-intensive 162 

process and works 24/7, approximately 320 days a year, the stoppages happened regularly due to failures or batch 163 

changes of material. Raw data collection includes variables given in Table 1. 164 

 165 

Fig. 3. Data flowchart from the production process to machine learning classifiers and features 166 

After the extracted raw data, discretisation is performed on the HyPower signal data by sampling, i.e., transferring 167 

continuous-time to discrete-time x(t) → x[n], such that x(t) → x(nT) where n є ℝ {0, 1, 2…n} and T is the sampling 168 

period of 0.1 sec (fs = 10 Hz). By binning the signal into three parts for opening, idling, and closing the saddle, 169 

we have extracted discrete domain features with statistical formulas given in Table 2. 170 



Table 2. Time-discrete domain features 171 

Time-domain feature Feature notation1 The formula for feature generation 

Mean value N_Mean_XS 𝑀𝐸𝐴𝑁 =
ଵ


∑ 𝑁


ୀଵ   

Standard deviation  N_StDev_XS 𝑆𝑡𝐷𝑒𝑣 =
ඥ(௫ି௫̅)మ

ିଵ
  

Root Mean Square N_RMS_ XS 𝑅𝑀𝑆 = ට
ଵ


∑ 𝑥

ଶ
   

Minimum N_Min_XS min (𝑁)  
Maximum N_Max_ XS max (𝑁)  
Quartiles (Q1,Q3) N_nQ_ XS 𝑛𝑄ଵ;ଷ = 𝑥() + 𝑎൫𝑥(ାଵ) − 𝑥()൯  
Interquartile Range N_IQR_ XS IQR = N_3Q_𝑋𝑆 − N_1Q_𝑋𝑆  
Peak-to-peak N_P-P_ XS 𝑃_𝑃 = |N_MIN_𝑋𝑆 − N_MAX_𝑋𝑆|  

Skewness N_Skew_ XS 𝑆𝑘𝑒𝑤 = μଷ =
∑ (௫ି௫̅)య



(ିଵ)∙ఙయ   

Kurtosis N_Kurt_ XS 𝐾𝑢𝑟𝑡 = μ ସ =
ඥ(ିଵ)

ିଶ

∑ (௫ି௫̅)య


(ିଵ)∙ఙయ   
1XS – OS for Opening Saddle regime; IS for Idle Saddle Regime; CS for Closing Saddle Regime. 

Data integrity includes maintaining data accuracy and consistency during the experiment with (pre)defined 172 

notations, file types, storage, etc. The data integrity step can be replaced with data quality, which is essential in 173 

assuring rigidity and avoiding bias in our data collection and stewardship. Data filtering includes the inspection 174 

of data and variables (and features) with high multicollinearity used later in modelling. Thus, filtering here reduces 175 

the cost of modelling and assuring data redundancy. After the filtering and extracting features, we performed data 176 

normalisation by standardisation and split dataset D into a training-testing dataset DTT (70%) and validation 177 

dataset DV (30%). The problem of overfitting can still reside and question the model’s applicability in practice. 178 

Therefore, to reduce the noise and remove redundant features, respecting Occam’s razor law, we use the RFE-FS 179 

strategy. The RFE-FS is a wrapper method. The idea of the RFE-FS is to reduce unnecessary and redundant 180 

features and avoid overfitting. Also, the feature subset’s cross-validation technique can help with this problem. 181 

However, although cross-validation highlights significant features by reducing noise in data, the feature subsets 182 

can be biased towards the specific algorithm (Remeseiro and Bolon-Canedo, 2019). The problem also exhibits in, 183 

for instance, Decision Trees and Multi-layer Perceptron (MLP) networks with regularisation, which can turn off 184 

the irrelevant features (Duch et al., 2004). Also, discarding important features that do not improve the 185 

classification by the proposed algorithm can lead to information loss because some features are more informative 186 

if combined with other features (Zenglin Xu et al., 2010). Finally, RFE-FS is used with a combination of different 187 

algorithms: SVM (Chang and Lin, 2008), PLS-DA (Ruiz-Perez et al., 2020), and Random Forest (RF) (Chen et 188 

al., 2020). 189 

2.2.1 Support Vector Machine (SVM) 190 

Usually, distance-based and entropy-based methods with SVM wrappers are used in industrial applications for 191 

fault diagnosis (Hui et al., 2017; Liu et al., 2014; Lu et al., 2015). The SVM’s hyperplane function that separates 192 

two labelled datasets given instance pairs as training vectors x and labels y such that x є ℝn and a label y є ℝm, y є 193 

[0, 1], where i is instance and j feature such that as xi
j. The SVM attempts to separate data by finding an optimal 194 

hyperplane as a function f(x) = wTx + b, where w is the feature weight (or wi for each vector) and b is the bias. The 195 

loss function solves the optimisation problem: 196 

min
𝝎,

ଵ

ଶ
𝒘்𝒘 + 𝐶 ∑ 𝜉(𝒘, 𝑏; 𝒙; 𝑦)

ୀଵ , (1) 



subject to 𝑦(𝒘்𝒙 + 𝑏) ≥ 1 − 𝜉, 𝜉 ≥ 0.  

where 𝜉(𝒘, 𝑏; 𝒙; 𝑦) is a loss function, and C ≥ 0 is a penalty parameter of the training error. The loss functions: 197 

max (1 − 𝑦(𝝎்𝜙(𝒙) + 𝑏), 0), and max (1 − 𝑦ଵ(𝝎்𝜙(𝒙) + 𝑏), 0)ଶ, (2) 

are represented as the l1 and l2 loss functions of SVM, respectively, where ϕ is a function mapping data into high-198 

dimensional space. Considering that datasets, when projected on a scatter plot, do not reflect linear separation, a 199 

kernel trick can be used. The purpose of the kernel, such as K (x0, x1) = ϕ(x0)Tϕ(x1), is to transform low-200 

dimensional input space into „better“ high-dimensional space for separation, where hyperplane takes n-1 of the 201 

feature vectors (e.g., 3D plot uses 2D hyperplane for separation). From the SVM ϕ(x)=x with the linear kernel 202 

K(x0, x1) = x0
T x1, where x0, x1 represents the binary classes [0, 1] = [None, Quasi-fault]. 203 

2.2.2 Partial Least Squares Discriminant Analysis (PLS-DA) 204 

The PLS-DA is extremely popular in classification (Perk et al., 2011) and feature selection (Yan et al., 2017) in 205 

various applications outside industrial systems. The model, however, is often misused since it is prone to 206 

overfitting (Ruiz-Perez et al., 2020); thus, cross-validation is used to avoid misinterpretation (Westerhuis et al., 207 

2008). The PLS-DA takes the relation between features and constructs a new set of features corresponding to the 208 

projection (loading) into lower dimensional space vectors, i.e., Latent Variables (LVs) or Principal Components 209 

(PCs). Unlike unconstrained PCA (Principal Component Analysis), which constructs new features by linear 210 

transformations that best explain variance within the data, the PLS-DA is constrained, meaning it projects LVs 211 

concerning the class label y0 or y1. 212 

Explaining PLS-DA analytically, what it does is that it transforms dataset X into lower dimension matrix A, where 213 

X is n×m matrix, and A is transformed X matrix into a lower dimension of m×d-dimensional vectors C, with error 214 

matrix E, such that C = XA + E. The transformed C contains rows corresponding to the transformed vectors, while 215 

the E matrix contains information for the next PC. The difference between PCA’s PCs is that in PC1 (or LV1), 216 

the PCA preserves the most variance of the original dataset X, while PLS-DA preserves in PC1 (LV1) as much 217 

variance but to target label or class. Eigenvectors of the covariance matrix C give PCs as: 218 

𝐶 =
ଵ

ିଵ
𝑋்𝐶𝑋 ,  (3) 

where Cn is the n×n centre matrix. The loadings (L1…Ln) are given, for eigenvectors e1…en and eigenvalues λ1… 219 

λn of C such that: 220 

𝐿 = ඥλ𝑒  , for i = 1,...n,  (4) 

while for PLS-DA, the C is formulated as: 221 

𝐶 =
ଵ

(ିଵ)మ 𝑋்𝐶𝑦𝑦்𝐶𝑋 ,  (5) 

and through an iterative process, we get loading vectors ai after k iterations, such that: 222 

max
(ೖ,ೖ)

𝑐𝑜𝑣(𝑋𝑎 , 𝑦𝑏), (6) 

where bk is the loading of each label yk, X1 = X, and Xk and yk are error matrices after the transformation of previous 223 

k-1 components. The misinterpretation lies in believing that the model should be “better” with higher explained 224 



variance, which in the case of PLS-DA, can cause bias. Overall, it can be considered that PLS-DA is a supervised 225 

version of PCA (Ruiz-Perez et al., 2020), such that PLS is just ordinary PLS regression with a special dummy y-226 

variable where PC1 is used to best separate the classes, while PC1 in PCA is used that contains the most variance 227 

in a given dataset. For a detailed mathematical explanation, the reader is referred to (Ruiz-Perez et al., 2020). 228 

2.2.3 Random Forest (RF) 229 

Random Forest (RF) can be considered as a combination of ML methods bagging (bootstrap aggregating) and 230 

random selection (Kaur and Malhotra, 2008). The prior makes a prediction based on a majority vote of selected 231 

trees, while the latter searches each node for the best K split within a given feature subset. Although they are 232 

ensembles of decision trees (DTs), unlike DTs, they tend to grow deep and result in overfitting. The practical 233 

application of RF can be explained in short as follows. Consider a decision tree with M leaves that divides the 234 

feature space into M regions Rm, 1≤m≤M. For each tree, the function f(x) is defined as: 235 

𝑓(𝑥) =  𝑐 ෑ(𝑥, 𝑅)

ெ

ୀଵ

, (6) 

where M is the number of regions in feature spaces, Rm is the region appropriate to m, while cm is the constant 236 

suitable to m: 237 

∏(𝑥, 𝑅) = ൜
1, 𝑖𝑓 𝑥𝜖𝑅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 . (7) 

The last classification is set by a majority vote, including all trees. In the RF algorithm, solving is done by the 238 

goodness of split s at node t. Dividing and splitting the tree into nodes concerning the greatest value, i.e., least 239 

impurity of a split, is done by breakdown criteria: 240 

Φ(𝑠, 𝑡) = Δ𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑃ோ𝑖(𝑡ோ) − 𝑃𝑖(𝑡), (8) 

where s is split at node t, tR is split at node t proportional to the number of objects, Δi is a function with tR that has 241 

probability PR, the tL has probability PL that is defined as decreasing impurity with objects in tL, while Φ(s, t) is 242 

the goodness of split, i(t) is a function with tR. Although the RF is done via the varImp() function, the detailed 243 

mathematical formulation can be found in Breiman (2001). Also, detailed description of RFE-FS results is given 244 

in Supplementary Material 2. 245 

3 Results & Discussion 246 

3.1 Raw data and feature extraction 247 

Since different anomalies are detected during an RMM, the sequence window of performing a hydraulic cycle is 248 

split into three segments: OS as the opening saddle segment, IS as the idle saddle segment, and CS as the closing 249 

saddle segment. The graphs in Fig. 4 depict the hydraulic power signal for performing one hydraulic cycle, which 250 

lasts approximately 20 seconds. 251 



 252 

Fig. 4. Hydraulic power [kW] readings (y-axis) and time [sec] (x-axis) for performing the hydraulic cycle  253 

Data acquired from SCADA include hydraulic cycle time HS_cycle_time and time between the rubber mixing 254 

process and hydraulic cycle as HS_idle_time (Fig. 5). 255 

 256 

Fig. 5. Measurement of hydraulic idle time [sec] between cycles (primary y-axis) and hydraulic cycle time [sec] 257 
(secondary y-axis) of performed cycles (x-axis) 258 

Within the monitoring period, some cycles were stopped before starting again since HS_idle_time had a 259 

discrepancy between cycles (Fig. 5red line). The time to perform a hydraulic cycle (Fig. 5 blue line) was over 3 260 

minutes in a few instances due to the jamming of the saddle. The movement speeds T1 and T2 included 261 

measurements of fast and slow saddle opening, the same as T4 and T5 for fast and slow saddle closing, 262 

respectively. The T3 includes an idle time of the saddle for unloading the rubber material. 263 



 264 

Fig. 6. Actuator speed [sec] for opening (T1 and T2), closing (T4 and T5) (primary y-axis), and idle saddle 265 
position (T3) of measured cycles (secondary y-axis) 266 

The T3 (Fig. 6 purple line) signal shows that in a few instances, the saddle was jammed at the 750th cycle (>660 267 

seconds). The obtained signals also depict several deviations in cylinder speed of extension (T1 and T2) and 268 

retraction (T4 and T5). The LCM data includes the measurement of water saturation via AS3000 (Fig. 7) and 269 

particle contamination via the CS1000 sensor (Fig. 8). 270 

 271 

Fig. 7. Water saturation level (y1-axis) and temperature (y2-axis) during experiment monitoring cycles (x-axis) 272 

The obtained results from inline monitoring of water saturation do not show significant discrepancies concerning 273 

water-related contamination of hydraulic oil. The rule of thumb for an alarming limit of possible water-induced 274 

contamination is at 200 ppm, which is by measurement of AS3000 sensor at ~50% saturation (Day and Bauer, 275 

2007), which in this case did not show the separation of water molecules from entrained into free form. 276 

 277 

Fig. 8. APC readings according to ISO4406 code for particles ≥4 μm (y1-axis) and for particles  ≥6 μm and ≥14 278 
μm (y2-axis) during experiment monitoring cycles (x-axis) 279 



The readings from APC (Automatic Particle Counter) show relative contamination considering recommended 280 

cleanliness levels by ISO4406 are at 18/15/13 for the specific system (MPFiltri, 2020). The readings throughout 281 

the experiment show 21/20/17, suggesting contamination either with particles (e.g., dirt or wear). However, the 282 

problem with APCs is that they can show biased results since they also include water and air droplets as readings. 283 

Even so, elevated levels suggested further laboratory oil analysis. The laboratory analysis included physio-284 

chemical analysis (Table 3) – density (ASTM D1298), viscosity (ASTM D445), viscosity index (ASTM D2270), 285 

flame (ASTM D97) and flow point (ASTM D92), TAN (ASTM D664), Zinc (ASTM D4927), and analysis using 286 

Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectrophotometry (Table 4). 287 

 Table 3. Laboratory analysis of physical and chemical characteristics of hydraulic fluid 288 

TBS [h] CO DEN V40 V100 VI FP FLP WC TAN 
New oil BY 863.50 45.78 6.98 109 230 -32 13 0.42 
392.0 DY 880.70 53.30 7.53 103 218 -39 24 0.43 
427.4 DY 880.40 53.35 7.57 103 216 -38 19 0.45 
270.4 DY 880.00 53.63 7.57 103 216 -39 17 0.53 
252.8 DY 880.00 53.33 7.55 104 215 -39 16 0.48 
221.6 DY 880.23 53.32 7.55 104 215 -39 25 0.46 

TBS = Time between samples; CO = color and odor; DEN = density of oil [kg/m3]; V40 = Viscosity at 40°C [mm2/s]; V100 = Viscosity 
at 100°C [mm2/s]; VI = Viscosity index [-]; FP = Flame point [°C]; FLP = Flow point [°C]; WC = Water content [ppm]; TAN = Total 

acid number [mgKOH/g]. 

 Table 4. Elemental analysis of particles within hydraulic fluid using WDXRF spectrophotometry 289 

TBS [h] Zn Fe Pb Cu Si Sn Cr Al Ag Ni Mn Cd 
New oil 0.037 2 0 0 27 0 2 0 0 3 0 0 
392.0 0.034 5 0 0 24 0 1 0 0 0 0 0 
427.4 0.034 4 0 0 29 0 1 0 0 0 0 0 
270.4 0.034 4 0 0 18 0 1 0 0 0 0 0 
252.8 0.034 3 0 0 20 0 2 0 0 0 0 0 
221.6 0.034 5 0 0 27 0 2 0 0 0 0 0 
TBS = Time between samples; Zn = Zinc; Fe = Iron; Pb = Lead; Cu = Copper; Si = Silicon; Sn = Tin; Cr = Chromium; Al = Aluminium; 

Ag = Silver; Ni = Nickel; Mn = Manganese; Cd = Cadmium.  

Based on the results obtained, the evidence suggest changes in oil viscosity, flow and flame point. Considering 290 

that system was refilled to refresh the oil, which can be noticed with TAN change after 4th sample, the conclusions 291 

cannot be obtained solely from the laboratory analysis. In addition, the elemental analysis using WDXRF does 292 

not show signs of wear due to appropriate filtering and maintenance, suggesting that high APC readings are due 293 

to rubber material that contaminated the fluid. In sum, non-destructive LCM results fail to provide conclusions 294 

regarding the degradation within the system. 295 

3.2 Feature extraction through RFE 296 

Obtained features by the RFE-FS method using feature weight of PLS-DA, SVM, and RF are depicted in Fig. 9. 297 

The performances of models are depicted through ROC (Receiver Operator Characteristic) curve. The ROC curve 298 

is a plot of sensitivity (y-axis) and 1-specificity (x-axis) and is calculated as: 299 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =
்

்ାிே
 , (7) 

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝐹𝑃𝑅 =
ி

ிା்ே
 . (8) 

The given equations provide values for estimating AUC (Area under the ROC curve). The AUC values with ROC 300 

curves for different features are given with confidence intervals (CI). The accuracy is generated from two (2) to 301 

all features (19) by depicting model improvement scores. Additionally, the AUC scores with CI are obtained via 302 



cross-validation (CV), specifically, MCCV (Monte Carlo Cross-Validation). Compared to other CV techniques 303 

(e.g., LOOCV – leave one out cross-validation; SCV – stratified cross-validation), the MCCV reduces bias in 304 

contributing to measurement accuracy. 305 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Multivariate analysis of feature (y-axis) importance measure (x-axis) by models (a) PLS-DA ranking 306 
features model; (b) RF-ranking features model; (c) SVM-ranking features model 307 

The feature importance score by PLS-DA shows poor performance, even with all included features (Fig. 10). 308 

Moderate results are achieved with PLS-DA or SVM model (Fig. 11) with RF classification. The models using 309 

SVM-selected features seem to contribute the most to the accuracy regardless of the model (Fig. 12, Fig. 13). 310 

However, although RF classification using PLS-DA and SVM provide the highest scores, after evaluation of the 311 

misclassification using the validated dataset the RF shows a reduction in accuracy. 312 

  

Fig. 10. PLS-DA classification with 2 LVs of PLS (left) and with SVM features (right) 313 



  

Fig. 11. PLS-DA with RF features (left) and SVM with RF features (right) 314 

  

Fig. 12. SVM classification with PLS-DA selected features (left) and with SVM features (right) 315 

  

Fig. 13. RF classification with PLS-DA features (left) and with SVM features (right) 316 



Contributions with more than five features do not significantly increase the accuracy of included models (Fig. 9c). 317 

For comparative purposes and to gain insight into model-selected features, we perform data visualisation via t-318 

SNE. 319 

3.3 t-distributed Stochastic Network Embedding (t-SNE) 320 

The t-SNE is a non-linear dimensionality reduction technique mostly used to visualise high-dimensional data. The 321 

t-SNE can be considered the best data dimensionality reduction and visualisation technique (Jiang et al., 2021). 322 

The t-SNE works by computing the probability pij of a given dataset by estimating conditional probability pj│i, as: 323 

𝑝| =
𝑒

ቌ
ିฮ௫ି௫ೕฮ

మ

ଶఙ
మ ቍ

∑ 𝑒
ቆ

ି‖௫ି௫ೖ‖
మ

ଶఙ
మ ቇ

ஷ  

 , (9) 

where σi is the variance of Gaussian that is centred around xi and pi│i is set to 0 for searching pairwise similarities. 324 

It should be emphasised that probability is 1, such that ∑ 𝑝| = 1  for all i. Hence, defining: 325 

𝑝 =
𝑝| + 𝑝|

2𝑁
 , (10) 

because pi and pi of N-dimensional space is 1/N, the conditional probability can be written as pj│i = Npij and pi│j = 326 

Npji. Since pji = pij, then eq.10 is proven. Using yi and yj of xi...xj, we calculate conditional probability qj│i as: 327 

𝑞| =
𝑒ିฮ𝒚ି𝒚ೕฮ

మ

∑ 𝑒ି‖𝒚ି𝒚ೖ‖
మ

ஷ  
 , (11) 

and also for modelling pairwise similarities, the qi│i is set to 0. Hence, the conditional probabilities pj│i, and qj│i 328 

will be equal for modelling data points into low-dimensional space from high-dimensional space. The measure of 329 

in which qj│i models pj│i  is done by KL (Kullback-Leibler) divergence, such that the model minimises the sum of 330 

KL divergences over all data points using a gradient as: 331 

𝜕𝐶

𝜕𝑦

= 4 ൫𝑝 − 𝑞൯൫𝑦 − 𝑦൯ ቀ1 + ฮ𝑦 − 𝑦ฮ
ଶ

ቁ
ିଵ

.



 (12) 

The cost function is defined as C: 332 

𝐶 =  𝐾𝐿(𝑃‖𝑄)



=   𝑝|𝑙𝑜𝑔
𝑝|

𝑞|

 ,



 (13) 

in which Pi is conditional probability over given data points xi and Qi is a conditional probability of given yi. 333 

Finally, t-SNE performs a binary search of σi getting Pi with a defined perplexity. The perplexity is defined as: 334 

𝑃𝑒𝑟𝑝(𝑃) = 2ு() , (14) 

and H represents the Shanon entropy of Pi: 335 

𝐻(𝑃) = −  𝑝|𝑙𝑜𝑔ଶ𝑝|



 . (15) 



The perplexity can be represented as a measure of the effective number of neighbours. Usually, perplexity is 336 

between 5 and 50 (Maaten and Hinton, 2008). Hence, the expected outcome of t-SNE is separation such that 337 

feature-containing information is more clustered with a good potent capability of separability (Tang et al., 2020). 338 

To represent the local geometry and global information preserved, we depict t-SNE results of PLS-DA (Fig. 14), 339 

RF (Fig. 15) and SVM (Fig. 16). 340 

 

(a) 

 

(b) 

 

(c) 

Fig. 14. t-SNE of PLS-DA with (a) 10 perplexity; (b) 25 perplexity; (c) 50 perplexity 341 

 

(a) 

 

(b) 

 

(c) 

Fig. 15. t-SNE of RF with (a) 10 perplexity; (b) 25 perplexity; (c) 50 perplexity 342 

 

(a) 

 

(b) 

 

(c) 

Fig. 16. t-SNE of SVM with (a) 10 perplexity; (b) 25 perplexity; (c) 50 perplexity 343 

In the visualisation results of PLS-DA and RF-extracted features, the t-SNE shows misclassification increased 344 

clusters’ density and inability to form clusters by the t-SNE. The PLS-DA shows slight signs of discrimination 345 

properties (Fig. 14), while RF features provide hard-to-understand information for clustering (Fig. 15). The SVM-346 

selected features, in contrast to previous models, show clustering properties (Fig. 16c), where further multi-class 347 

labelling is needed (e.g., for diagnosis and fault detection). 348 



3.4 Classification results using SVM features 349 

From the RFE-FS method, the extracted SVM features are used for classification in the holdout sample. In 350 

addition, the current research on binary classification also suggests using LR (Logistic Regression) (Orošnjak, 351 

2022) due to good prediction properties; the LR algorithm is also added. Although the evidence shows that SVM 352 

and LR classifiers have excellent prediction properties, the RF outperforms both models by almost 4% (Table 5) 353 

and visualisation by AUC also reflects such statements.  354 

Table 5. Classification results of models using holdout datasets 355 

LR classification results using the training dataset LR classification results using holdout dataset 
 None Quasi-fault %  None Quasi-fault % 

None 352 11 96.96 None 144 8 94.74 
Quasi-fault 11 322 96.69 Quasi-fault 9 123 93.18 

Overall   96.83    93.96 
SVM classification results using the training dataset SVM classification results using holdout dataset 

 None Quasi-fault %  None Quasi-fault % 
None 353 16 95.66 None 143 8 94.71 

Quasi-fault 10 317 96.94 Quasi-fault 10 123 92.48 
Overall   96.30 Overall   93.59 

PLS-DA classification results using the training dataset PLS-DA classification results using holdout dataset 
 None Quasi-fault %  None Quasi-fault % 

None 313 64 83.03 None 127 27 82.47 
Quasi-fault 50 269 84.33 Quasi-fault 26 104 80.00 

Overall   83.68 Overall   81.23 
RF classification results using the training dataset RF classification results using holdout dataset 

 None Quasi-fault %  None Quasi-fault % 
None 359 8 97.82 None 152 5 96.82 

Quasi-fault 4 325 98.78 Quasi-fault 1 126 99.21 
Overall   98.30 Overall   98.02 

The resulting PLS-DA model shows poor prediction properties in this particular case. By visualising obtained 356 

results from a binary classification using hydraulic power, we can see that >95% accuracy can be achieved with 357 

the SVM (Fig. 17left) and LR model (Fig. 17right) and >99% accuracy with the RF model (Fig. 18left); however, 358 

PLS-DA show poor prediction properties considering AUC obtained results (Fig. 18right). 359 

  

Fig. 17. SVM classifier results (left) and LR classifier results (right) 360 



  

Fig. 18. RF classifier results (left) and PLS-DA classifier results (right) 361 

The final idea is to use extracted features as FP-markers. Hence, if we consider the rise of elemental particles in 362 

the oil as „markers“ suggesting degradation of, e.g., the hydraulic pump, then we can consider features from a 363 

hydraulic power signal as a variable suggesting the loss of output power from the pump – suggesting internal 364 

leakage, external leakage, or wear of the pump observed by latent degradational effect. 365 

3.5 Energy waste due to latent degradation 366 

After the experimental period (49 days), we plotted the results of hydraulic power loss. The results show that the 367 

power output significantly reduces over time with the same power input—an average of 0.63% power loss/daily 368 

compared to the start of the experiment. More importantly, at the end of the experiment, the total degradation 369 

reached a 25.9% loss of hydraulic power, i.e., energy waste (Fig. 19). 370 

 371 

Fig. 19. Power loss (y1-axis) and %loss (y2-axis) per day (x-axis) during the experiment 372 

Considering that approximately 358 hydraulic cycles were performed daily, a total of 96.38 kWh of energy are 373 

irreversibly wasted due to latent degradation of the hydraulic system, excluding the first week, which is an 374 



approximation of 2.26±0.006 kWh of loss daily. To illustrate the „latent effect“ of degradation, we depict a 375 

hydraulic power with (Fig. 20 blue line) and without outliers (Fig. 20 red line) and show how degradation on each 376 

monitored cycle at the start and the end of the experiment. 377 

 378 

Fig. 20. Monitored hydraulic power loss (y-axis) with experimental cycles (x-axis) 379 

The power output increase was noticed on the 24th and 36th day, respectively (Fig. 19). These two instances 380 

included maintenance activities of adjusting regulation valves, filter replacement and oil refilling. Significant 381 

energy waste was achieved by reducing the time for opening and closing the saddle. This can also be observed in 382 

Fig. 4 (December), where the hydraulic cycle was reduced from 20 to 18 seconds. The extensive degradation 383 

started after the replacement of parts, and potential leakage and wear of the hydraulic pump caused a stoppage of 384 

the RMM process. Although the study uses a binary classification problem for gaining insight into the system 385 

degradation using FP notation, further diagnosis needs to be conducted for associating „Quasi-faults“ with root 386 

causes of degradation. 387 

4 Concluding remarks 388 

For the first time, the study uses hydraulic power as a CM indicator for delineating the healthy from the non-389 

healthy state. Using the RFE-FS strategy, we show that SVM features outperform other models and, in 390 

combination with RF for classification, can provide >95% accuracy given unseen data. The extracted features and 391 

classification highlighted that observed degradation caused 26% of energy waste. On the other side, applied LCM 392 

practice within the company failed to provide such insight, consequently wasting 0.63% of energy/daily. The 393 

results obtained from laboratory analysis (physio-chemical properties and WDXRF) fail to provide information 394 

about the degradation of the hydraulic system (e.g., wear, leakage). Therefore, through inexpensive sensors and 395 

machine learning, we show how cleaner production can be achieved using FP markers (i.e., extracted features) 396 

through functional productivity. 397 

The contributions to the literature are seen through introduction of the functional-energy p-f curve as a new 398 

„maintenance construct“ that shifts the focus from waste to functional energy indicators. Emphasising that altering 399 

maintenance practice from PdM to EBM requires switching attention from secondary (waste) to primary 400 



(functional) energy indicators are justified because the same indicator can be used for (1) predictions 401 

(diagnostics/prognostics); (2) optimisation (energy efficiency); and (3) operational efficiency, since energy can 402 

be transferred into monetary value. To do so, we conceptualise the functional-productiveness as a semi-403 

unsupervised mechanism that labels degradation events as „Quasi-faults“. 404 

We consider the ongoing and future research of the EBM and FP beneficial for upcoming EU-imposed policies 405 

and regulations for reducing energy waste. Therefore, we consider expanding and advancing the FP as an 406 

unsupervised labelling mechanism for deep learning networks where the faster reaction to changes in signal 407 

behaviour can be observed and reacted to without production stoppages and interventions.  408 
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Appendices 522 

A1. Response Y label by Functional-Productiveness 523 

The Xj
i,d is a dataset of i instances, j variables, and d matrices (days) [1, 49]. In our FP case, we use j variables 524 

{HS_cycle_time, T1, T2, T3, T4, T5, HyPower_XS}. The generated FP label dataset Yj
i,d matrix consists of 525 

instances i and variables j. Value in Xj
i,d ≠ Yj

i,d because the value in Yj
i is dummy Cℝ, ℝ є [0, 1], i.e., class label 526 

[None, Quasi-fault]. The labels are semi-supervised where each Yj
i,j is inputted as 0 or 1, as: 527 

𝑌ௗ


= 0, 𝑓𝑜𝑟 ∀𝑖, 𝑖 = 1,2 … 20 𝑖𝑓 𝑋,ௗ


 ∈  ൣ𝑋ௗିଵ
ఫതതതതതത − 2𝜎ௗିଵ


, 𝑋ௗିଵ

ఫതതതതതത + 2𝜎ௗିଵ


൧ (A.1) 

and 528 

𝑌ௗ


= 1, 𝑓𝑜𝑟 ∃𝑖, 𝑖 = 1,2 … 20 𝑖𝑓𝑋,ௗ


 ∉  ൣ𝑋ௗିଵ
ఫതതതതതത − 2𝜎ௗିଵ


, 𝑋ௗିଵ

ఫതതതതതത + 2𝜎ௗିଵ


൧ (A.2) 

where 𝑋ௗ
ఫതതതത represents the average value of a variable j in a d dataset X as: 529 

𝑋ௗ
ఫതതതത =

1

𝑛
 𝑋,ௗ







 , (A.3) 

and σj
d is the standard deviation of a variable j in a d dataset: 530 

𝜎ௗ


= ඩ
1

𝑛 − 1
൫𝑋ௗ

ఫതതതത − 𝑋,ௗ


൯
ଶ



ୀଵ

, (A.4) 

where d-l is used for setting thresholds, i.e., upper and bottom control limits of a functional productiveness where 531 

l = 1, restricting to the previous d sequence. Secondly, we assume that at the start of the experiment, each j variable 532 

follows ℵ distribution with parameters (μ, σ2), such that Xj
d ~ℵ(μ, σ2). The „Quasi-fault“ event Yj

i,d = 1 is for any 533 

event that breaks the threshold set in eq.A2. 534 

Considering that outliers can be total failure events, such instances i are removed from eq.A1-A4, and after 535 

removing the i = n-1 instances, the new FP threshold is set. The outliers removal is done using Grubb’s test for ≤ 536 

2 number of outliers.  More importantly, since there is a significant chance that labels can be marked as false 537 

positives due to random events, we introduce the second penalisation performed by the researcher. The 538 

penalisation is performed in eq.A2 when Yj
d = 1 if the Xj

i,d value escapes the FP ~ 95% threshold ൣ𝑋ௗିଵ
ఫതതതതതത ± 2𝜎ௗିଵ


൧, 539 

but does not correlate with changes in system response. For instance, the length of the HyPower_XS sequence 540 

should correlate with HS_cycle_time since the length of the sequence window measures the cycle time. 541 

Specifically, N_Mean_OS is the feature explaining the average power of the sequence being transferred to the 542 

actuators that operate the speeds T1 and T2. The T3 as the time between saddle positions should correlate with 543 

HyPower_IS and HS_cycle_time. Finally, the HyPower_CS should correlate with T4 and T5, which are the speeds 544 

for fast and slow closing of the saddle by actuators. Reasonably, the pump’s power (pressure and flow) is in a 545 

serial relationship with the actuators’ movement force and speed – changes in the hydraulic power from the pump 546 

cause changes in the force and speed of the actuator. 547 


