TRACTABLE COMPUTATION OF BAYES FACTORS FOR ROBUST MODEL SELECTION IN THE PHYSICAL SCIENCES

Jack S. Hale

Probability & Statistics Seminar - 19th December 2024

Joint work with Damian Mingo Ndiwago, Remko Nijzink and Christophe Ley

TOPICS

- Uncertainty quantification with a focus on problems in the physical sciences.
- Finite element methods for elasticity problems on manifolds.
- Expressive mathematical software for the solution of partial differential equations.

Dr. Damian Mingo Ndiwago

Mrs. Sona Salehian Ghamsari

Mr. Andrey Latyshev

OUTLINE

- Importance of the model selection problem.
- Motivating example in hydrology.
- The Bayesian parameter inference problem.
- By analogy, the Bayesian model selection problem.
- Recent work robust computation of Bayes factor applied to hydrological models [Min+25].

ASK ANY MODELLER...

- I would like models that:
 - fit the data,
 - are simple (Occam's Razor),
 - and generalize beyond the data used for calibration.

ALL MODELS ARE WRONG...

Two questions:

- 1. Which modelling procedure, will, with enough data, identify the 'true' model?
- 2. Based on the data, which model from a finite set of models, lies closest to the 'true' model?

MODEL SELECTION CRITERIA

- Frequentist and Bayesian model selection criteria offer a principled way of answering the second question and selecting models.
- In particular, the Bayes factor, provides a principal way of selecting between models, and implicitly penalises model complexity.
- The Bayes factor is not widely used in practice to assess and select moderately complex models - difficult and expensive to compute.

MAGELA CREEK - LOCATION

Magela Creek - 600 km².

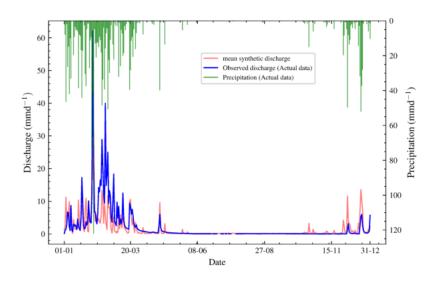
MAGELA CREEK - MAIN CHARACTERISTICS

Magela Creek - Summer rainfall, tropical.

MAGELA CREEK - DATA

Streamflow monitoring device. Source: Fine Art America

MAGELA CREEK - HYDROGRAPH



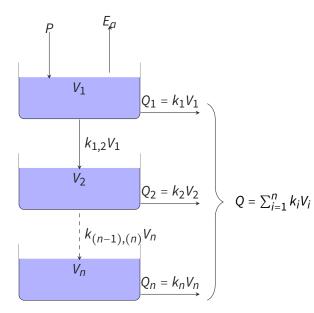
MODEL CONSTRUCTION IN HYDROLOGICAL SCIENCES

- Physically inspired conceptual models predominant.
 - Axiomatic physical principles or postulates, e.g. conservation of mass.
 - Empirical parametric models of system components in the absence of a complete or tractable theoretical framework e.g. transpiration, flow through ground, multiscale behaviour.
- Space of models is created by combining various existing components 'suitable' for the site.
- Model parameters calibrated against data.
- Success? goodness of fit on held out data.

MAGELA CREEK - MODEL CONSTRUCTION

- 1. Approach hydrological modeller, Remko Nijzink.
- 2. After discussions on the site:
 - Large summer rainfall events dominant fast runoff processes.
 - No snowfall or ice.
 - Equatorial evapotranspiration likely to be important.
 - Uncertain number of slower processes (groundwater storage etc.)
- 3. Remko proposes something called the Hydrologiska Byråns Vattenbalansavdelning (HBV) approach.

MAGELA CREEK - HBV-LIKE MODELS



HBV-LIKE MODELS

$$(V_1)_t = P - E_a - k_1 V_1, \qquad n = 1,$$

$$(V_1)_t = P - E_a - k_1 V_1 - k_{1,2} V_1, \qquad n \ge 2,$$

$$(V_i)_t = k_{(i-1),(i)} V_{i-1} - k_i V_i - k_{(i),(i+1)} V_i, \qquad i = 2, \ldots, n-1, \quad n \ge 3,$$

$$(V_n)_t = k_{(n-1),(n)} V_{n-1} - k_n V_n, \qquad n \ge 2,$$

$$V(t = 0) = \hat{V},$$

$$E_a = \frac{E_p}{V_{\text{max}}} V_1,$$

$$Q = \sum_{i=1}^{n} k_i V_i.$$

IN AN IDEAL WORLD...

Statement (The Bayesian model-parameter inference problem - [WHR12]) Define a space of models $\mathbb{M} = \{M_1, \dots, M_n\}$ each with its own parameter space $\Theta_M \subset \mathbb{R}^{p_M}$ with $M \in \mathbb{M}$. Given some data $y \in \mathbb{R}^q$, determine the posterior distribution (or its statistics) $p(M, \theta_M \mid y)$ on the joint model-parameter space $\mathbb{M} \times \bigcup_{M \in \mathbb{M}} \Theta_M$.

$$n = \{2,3,4\},$$

$$\mathbb{M} = \{M_2, M_3, M_4\},$$

$$\Theta_M \subset \mathbb{R}^{3n},$$

$$\mathbb{R}^p \ni y = G_M(\theta_M) + \eta, \ \eta \sim N(0, \sigma^2).$$

START SIMPLE: THE PARAMETER INFERENCE PROBLEM

Statement (The Bayesian parameter inference problem - [WHR12]) Define a space of parameters $\Theta \subset \mathbb{R}^p$. Given some data $y \in \mathbb{R}^q$, determine the posterior distribution (e.g. its statistics) $p(\theta \mid y)$ on the parameter space Θ .

PARAMETER INFERENCE WORKFLOW

1. (Prior) Set the distribution on Θ

$$p(\theta)$$
.

2. (Likelihood) Acquire data y and assume model for y for fixed $\theta \in \Theta$

$$p(y | \theta)$$
.

Joint probability

$$p(\theta, y) = p(y \mid \theta)p(\theta).$$

4. (Posterior) Condition joint probability on data y

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}.$$

COMPUTATION [MFR24B]

We would like to compute quantities such as posterior probabilities

$$\mathbb{E}[g(\theta) \mid y] = \int_{\Theta} g(\theta) p(\theta \mid y) d\theta.$$
 (2)

- In almost all interesting cases eq. (2) has no closed form solution.
- However, we can usually *compute* at fixed θ and y:

$$\log p(\theta \mid y) = \log p(y \mid \theta) + \log p(\theta) - \log p(y)$$

where p(y) is the unknown/hard-to-compute constant of proportionality.

THE WORK HORSE OF BAYES [MFR24B]

• The Metropolis-Hastings (et al.) algorithm can compute

$$\left\{\theta^{(1)},\ldots,\theta^{(M)}\right\} \xrightarrow{M\to\infty} p(\theta\mid y)$$

· and requires only evaluations of

$$\log p(\theta^c \mid y) - \log(\theta^{(i)} \mid y) = \log p(y \mid \theta^c) + \log p(\theta^c)$$
$$-\log p(y \mid \theta^{(i)}) - \log p(\theta^{(i)})$$

• The constant of proportionality log p(y) is gone!

GOOD NEWS

Claim

For some common problems (small data, moderate dimension parameter space, known likelihood etc.) it is possible to numerically solve the parameter inference problem [MFR24a].

WHAT ABOUT THE MODEL SELECTION PROBLEM?

 $\mathbb{M} \times \bigcup_{M \in \mathbb{M}} \Theta_M$.

Statement (The Bayesian model-parameter inference problem - [WHR12]) Define a space of models $\mathbb{M} = \{M_1, \dots, M_n\}$ each with its own parameter space $\Theta_M \subset \mathbb{R}^{p_M}$ with $M \in \mathbb{M}$. Given some data $y \in \mathbb{R}^q$, determine the posterior distribution $p(M, \theta_M \mid y)$ on the joint model-parameter space

MODEL SELECTION WORKFLOW: PART I

1. Hierarchical prior Set a distribution on $\mathbb{M} \times \bigcup_{M \in \mathbb{M}} \Theta_M$

$$p(M)$$
 and $p(\theta_M \mid M)$.

2. Likelihood – Acquire data y and assume model for y on fixed $M \in \mathbb{M}$ and $\theta_M \in \Theta_M$

$$p(y \mid \theta_M, M)$$
.

3. Joint probability

$$p(y, \theta_M, M) = p(y \mid \theta_M, M)p(\theta_M \mid M)p(M)$$
(3)

MODEL SELECTION WORKFLOW: PART II

5. Joint posterior Condition joint probability on data y

$$p(M, \theta_M \mid y) = \frac{p(y \mid M, \theta_M)p(\theta_M \mid M)p(M)}{p(y)}.$$

Observations

- The dimension of the joint model-parameter space is larger.
- M is a discrete set.
- The size of the parameter space p_M varies across M.

Problem

 Standard MCMC demands that the joint posterior has a density with respect to some underlying 'nice' measure – not the case.

MODEL SELECTION WORKFLOW: PART III

6. Marginalise across θ_M

$$p(M \mid y) = \int_{\Theta_M} p(M, \theta_M \mid y) d\theta_M$$

$$= \frac{p(M)}{p(y)} \int_{\Theta_M} p(y \mid M, \theta_M) p(\theta_M \mid M) d\theta_M.$$

7. Take two competing models $M_i \in \mathbb{M}$ and $M_j \in \mathbb{M}$ and write the posterior ratio

$$\frac{p(M_i \mid y)}{p(M_j \mid y)} = \frac{p(y \mid M_i)}{p(y \mid M_j)} \frac{p(M_i)}{p(M_j)} \frac{p(y)}{p(y)}.$$

MODEL SELECTION WORKFLOW: PART IV

 Under a non-informative prior on M, the posterior ratio is equal to ratio of the marginal likelihoods (the Bayes factor).

$$\mathsf{BF}_{ij} = \frac{p(M_i \mid y)}{p(M_j \mid y)} = \frac{p(y \mid M_i)}{p(y \mid M_j)}.$$

Challenge

If we can compute the marginal likelihood $p(y \mid M)$ then we can compute the Bayes factor – model selection.

$$p(y \mid M) = \int_{\Theta_M} p(y \mid M, \theta_M) p(\theta_M \mid M) \ d\theta_M.$$

SUMMARY SO FAR...

- The Bayesian parameter inference problem is straightforward.
- The Bayesian parameter-model inference problem is not.
- There is a 'nearby' quantity, the marginal likelihood $p(y \mid M_i)$ and hence the Bayes factor, which may be tractable.

NAIVE MONTE CARLO – NO FREE LUNCH [FW12]

• Let's take a look at the marginal likelihood $p(y \mid M)$

$$p(y \mid M) = \int_{\Theta_{M}} \underbrace{p(y \mid M, \theta_{M})}_{\text{likelihood}} \underbrace{p(\theta_{M} \mid M)}_{\text{prior}} d\theta_{M},$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} p(y \mid M, \theta_{M}^{(i)}), \quad \theta_{M}^{(i)} \stackrel{\text{iid}}{\sim} p(\theta_{M} \mid M).$$

- Prior weighted likelihood.
- Integrand may have sharp peaks or heavy tails and does not 'concentrate' like posterior.
- Likelihood evaluation expensive 10 million+ evaluations for simple problems.

THERMODYNAMIC INTEGRAL: PART I [FP08]

• Define the *power posterior*. For inverse temperature parameter $\gamma \in [0,1]$

$$p_{\gamma}(\theta_{M} \mid y, M) \propto p(y \mid \theta_{M}, M)^{\gamma} p(\theta_{M} \mid M)$$

$$\stackrel{\downarrow}{\text{1}} = 0.00$$

$$0.1 \quad \stackrel{\uparrow}{\gamma} = 0.00$$

$$0.0 \quad \stackrel{\downarrow}{\text{5}} = 0.00$$

$$0.0 \quad \stackrel{\downarrow}{\text{5}} = 0.25$$

$$0.1 \quad \stackrel{\uparrow}{\gamma} = 0.25$$

$$0.1 \quad \stackrel{\uparrow}{\gamma} = 0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

THERMODYNAMIC INTEGRAL: PART II [FP08]

• The power posterior normalising constant $Z(\gamma)$ is

$$Z(\gamma) = \int_{\Theta_M} p(y \mid M, \theta_M)^{\gamma} p(\theta_M \mid M) d\theta_M$$

• Differentiate $\log Z(\gamma)$ with respect to γ using chain rule

$$\frac{d}{d\gamma} \log Z(\gamma) = \frac{1}{Z(\gamma)} \frac{d}{d\gamma} Z(\gamma)$$
$$= \mathbb{E}_{p_{\gamma}(\theta_{M} \mid y, M)} [\log p(D \mid \theta_{M}, M)]$$

THERMODYNAMIC INTEGRAL: PART III [FP08]

- Use second fundamental theory of calculus on the interval $\gamma \in [0,1]$

$$\begin{split} \underbrace{\log Z(1)}_{\log p(y\mid M)} &- \underbrace{\log Z(0)}_{\log \int_{\theta_M} p(\theta_M\mid M) = 0} \\ &= \int_0^1 \mathbb{E}_{p_{\gamma}(\theta_M\mid y, M)} [\log p(y\mid \theta_M, M)] \, \mathrm{d}\gamma. \end{split}$$

Result [FP08]

The logarithm of the marginal likelihood is equal to the thermodynamic integral

$$\log p(y \mid M) = \int_0^1 \mathbb{E}_{p_{\gamma}(\theta_M \mid y, M)}[\log p(y \mid \theta_M, M)] d\gamma.$$

MAIN CONTRIBUTIONS OF RECENT WORK - [MIN+25]

- An algorithm Replica Exchange Hamiltonian Monte Carlo + Thermodynamic Integration that can simultaneously compute:
 - parameter estimates
 - marginal likelihood (hence, the Bayes factor).

for general Bayesian inference problems expressible in the probabilistic programming framework TFP with:

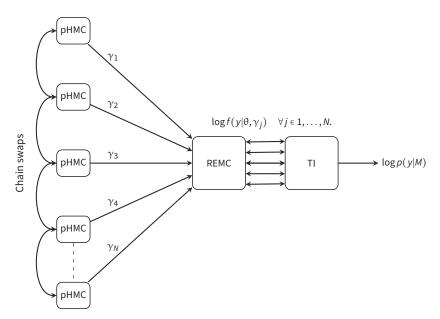
- − moderate parametric dimension $dim(\theta_M) \sim 50$,
- possibly multimodal and highly constrained posteriors.

ALGORITHMIC ASPECTS: I

$$\log p(y \mid M) = \int_0^1 \mathbb{E}_{p_{\gamma}(\theta_M \mid y, M)} [\log p(y \mid \theta_M, M)] d\gamma$$

- Thermodynamic integral: Trapezoidal rule.
- Power posterior:
 - strong correlations: preconditioned Hamiltonian Monte Carlo.
 - multi-modality: replica exchange.
- Likelihood: Monte Carlo via Power posterior samples.

ALGORITHMIC ASPECTS: II

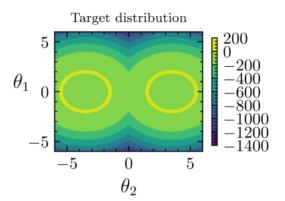


GAUSSIAN SHELLS: I

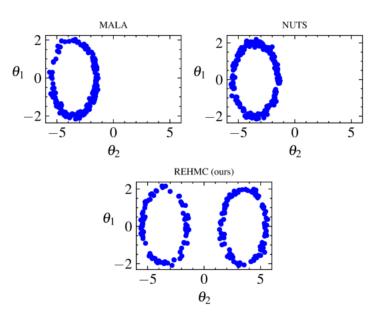
- Benchmark problem of two Gaussian Shells in moderate dimensions.
- Shells separated by region of low probability.
- · Concentration of measure in high dimensions.

$$\ell(\theta) = \frac{1}{\sqrt{2\pi w_1^2}} \exp\left[-\frac{(\|\theta_1 - c_1\| - r_1)^2}{2w_1^2}\right] + \frac{1}{\sqrt{2\pi w_2^2}} \exp\left[-\frac{(\|\theta_2 - c_2\| - r_2)^2}{2w_2^2}\right].$$

GAUSSIAN SHELLS: II



GAUSSIAN SHELLS: III



GAUSSIAN SHELLS: IV

Dimensions	*Reference $\log p(y)$	Estimated $\log p(y)$
2	-1.75	-1.75 ± 0.003
5	-5.67	-5.68 ± 0.006
10	-14.59	-14.60 ± 0.006
20	-36.09	-36.12 ± 0.014
30	-60.13	-60.19 ± 0.025

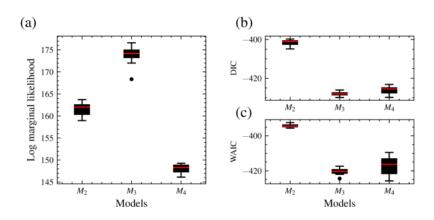
^{*} As reported in Feroz et al. (2009)

MAGELA CREEK EXAMPLE - CONSISTENCY

Check that the Bayes Factor selects the parsimonious model when the 'true' model is in M.

- 1. Generate data from the intermediate model M_3 .
- 2. This leaves the simpler model M_2 which cannot fit M_3 , and M_4 , which due to the nested construction can, but with higher complexity.
- 3. Compute the marginal likelihood, DIC and WAIC for each model.

MAGELA CREEK EXAMPLE - CONSISTENCY



MAGELA CREEK EXAMPLE - REAL DATA

See which model the Bayes Factor selects when the 'true' model (i.e. reality) is not in \mathbb{M} .

- 1. Use real run-off data from Magela Creek.
- 2. All models in M are possible candidates.
- 3. Compute the marginal likelihood, DIC and WAIC for each model.

	M ₂ (95 % CI)	M ₃ (95 % CI)	M ₄ (95 % CI)
k_1	0.724 (0.517, 0.940)	0.794 (0.0.574, 1.046)	1.169 (0.774, 1.520)
k_2	0.125 (0.081, 0.174)	0.242 (0.155, 0.344)	1.991 (1.192, 2.801)
k_3	-	0.157 (0.096, 0.221)	1.352 (0.720, 1.964)
k_4	-		1.067 (0.598, 1.546)
$k_{1,2}$	1.195 (0.838, 1.637)	1.923 (1.105, 2.889)	2.292 (1.367, 3.417)
$k_{2,3}$	-	0.511 (0.380, 0.648)	0.728 (0.463, 0.983)
$k_{3,4}$	-		0.826 (0.497, 1.136)
\hat{V}_1	1.030 (0.548, 1.530)	1.029 (0.566, 1.457)	1.140 (0.032, 2.893)
\hat{V}_2	1.017 (0.593, 1.549)	0.999 (0.582, 1.477)	0.861 (0.048, 2.239)
\hat{V}_3	-	0.997 (0.569, 1.523)	0.940 (0.041, 2.325)
\hat{V}_4	-		1.082 (0.060, 2.768)
$V_{ m max}$	1.139 (0.808, 1.474)	0.912 (0.657, 1.201)	0.796 (0.549, 1.057)
σ^2	5.289 (4.694, 5.830)	5.273 (4.739, 5.828)	5.847 (5.212, 6.499)
$\log p(y M)$	-506.259	-529.483	-608.181
$\log BF_{23}$	23.224	-	-
$\log BF_{24}$	101.922	-	-
DIC	940.352	940.397	969.722

946.512

979.932

WAIC

946.536

SUMMARY

- For modellers in the physical sciences model structure, and consequently model selection, is as an important problem as parameter inference.
- Full Bayes on $\mathbb{M} \bigcup_{M \in \mathbb{M}} \Theta_M$ is still intractable, but Bayes factors provide a reasonable alternative for model selection.
- We propose a performant methodology for robustly computing the marginal likelihood, and hence the Bayes factor.
- It is not hard to find cases where information theoretic approaches fail and Bayes factor succeeds - that robustness (still) comes at a computational cost.

[FP08]	N. Friel and A. N. Pettitt. "Marginal Likelihood Estimation via Power Posteriors". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 70.3 (July 2008), pp. 589–607. DOI: 10.1111/j.1467–9868.2007.00650.x. (Visited on 12/17/2024).
[FW12]	Nial Friel and Jason Wyse. "Estimating the evidence – a review". en. In: Statistica Neerlandica 66.3 (2012), pp. 288–308. ISSN: 1467-9574. DOI: 10.1111/j.1467-9574. 2011. 00515.x. (Visited on 12/17/2024).
[MFR24a]	Gael M. Martin, David T. Frazier, and Christian P. Robert. "Approximating Bayes in the 21st Century". In: Statistical Science 39.1 (Feb. 2024). DOI: 10.1214/22-STS875.
[MFR24b]	Gael M. Martin, David T. Frazier, and Christian P. Robert. "Computing Bayes: From Then 'Til Now'". In: Statistical Science 39.1 (Feb. 2024). DOI: 10.1214/22-STS876.
[Min+25]	Damian N. Mingo et al. "Selecting a conceptual hydrological model using Bayes' factors computed with Replica Exchange Hamiltonian Monte Carlo and Thermodynamic Integration". English. In: Geoscientific Model Development (2025), pp. 1–45. DOI: 10.5194/egusphere-2023-2865.
[WHR12]	Ernst Wit, Edwin van den Heuvel, and Jan-Willem Romeijn. "'All models are wrong': an introduction to model

uncertainty". In: Statistica Neerlandica 66.3 (2012), pp. 217–236. DOI:

10.1111/j.1467-9574.2012.00530.x.