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Abstract—The development and testing of real-time perception
capabilities is crucial to fully realize the potential of connected
and automated driving. This study presents a comprehensive
analysis of end-to-end delay and object detection quality for
distributed perception. We investigate object detection from
camera images in two distinct scenarios: local and cloud pro-
cessing. In the local scenario, objects are detected using only
on-board hardware. The results are then used to generate
Cooperative Perception Messages (CPM), which are broadcast
to nearby vehicles via the ITS-G5 communication technology.
In the cloud processing scenario, images are compressed using
H.265 before being transmitted to the cloud via C-V2X, where
objects are detected on more demanding hardware. The detection
results are then transmitted to vehicles in the vicinity, enabling
cooperative perception scenarios. This study evaluates real-time
object detection systems in real-world conditions, and highlights
the trade-offs between the end-to-end detection delay and quality.
By leveraging emerging technologies such as ITS-G5 and C-V2X,
our research provides crucial insights for the development of
efficient perception systems in the connected driving ecosystem.

Index Terms—Cloud Computing; Distributed Perception; C-
V2X; ITS-G5; Object Detection; CPM

I. INTRODUCTION

Real-time perception is critical for ensuring the safety and

efficiency of autonomous driving systems [1, 2]. However, the

computational demands of perception systems often exceed

the capabilities of vehicles with limited computing resources,

leading to a trade-off between accuracy and end-to-end delay

[3, 4]. To address this challenge, offloading perception tasks

to cloud servers has emerged as a promising solution [5].

By shifting computationally intensive processing to the cloud

and conducting lighter computations onboard the vehicle,

resources can be allocated more efficiently [6]. However,

offloading introduces latency, particularly in the transmission

of raw sensor data between the vehicle and the cloud, posing

significant challenges for real-time object detection. To mit-

igate these challenges, existing research commonly employs

various data compression strategies [7, 8]. These strategies aim

to reduce network bandwidth usage, transmission latency, and

computing power consumption on board. However, while these

approaches offer potential benefits, they also raise concerns

about potential accuracy loss [9]. Achieving the optimal bal-

ance between end-to-end delay, accuracy, and computational

efficiency requires careful investigation [2, 6, 10, 11].

Our study sheds light on the trade-offs between end-to-end

delay and detection quality, offering insights into the real-

world performance of real-time object detection systems. In

particular, we make the following contributions:

1) We establish a validation framework tailored to assess

the performance of real-time perception in connected

driving environments. This framework includes field

trials and validation methodologies specifically designed

to address the challenges of processing sensor data.

2) We create and release a real-world driving dataset using

a front-facing rooftop camera, annotating pedestrian,

vehicle, and traffic light classes 1. Using this dataset, we

train object detectors to establish a perception pipeline

used to evaluate cooperative driving scenarios.

3) We explore both local and cloud processing techniques

to optimize real-time object detection performance, min-

imize latency, and ensure robustness in real-world sce-

narios. To offload processing to the cloud, we benchmark

the use of H.265 video encoding and study the trade-off

between end-to-end delay and detection quality.

The remainder of this paper is structured as follows. In Section

II, we review the related literature. Section III describes exper-

imental setup, including details on the hardware and software

configuration, the vehicle instrumentation, and data collection

during field trials. Section IV presents the experimental results

and discusses data processing trade-offs in terms of end-to-end

delay and detection quality. Finally, in Section V, we conclude

this work with a summary of our findings.

II. RELATED WORK

In this section, we review the existing literature relevant

to real-time perception in connected and automated driving,

focusing on key areas related to our study: Previous stud-

ies [12, 13] have highlighted the importance of Vehicle-to-

Everything (V2X) communication in improving the range

of perception [14] and fostering the evolution of connected

driving ecosystems [6]. Recent works have explored various

dimensions of V2X and Cooperative Perception Messages

(CPM), including communication protocols [15], message

formats [12, 15]. Protocols such as ITS-G5 [16] and C-

V2X [17] have been extensively investigated for their ef-

ficacy in enabling low latency and reliable communication

channels between vehicles [4, 18]. In addition, studies have

1Dataset available: https://github.com/FaisalHawlader/LuxDrive-Dataset
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Fig. 1: Experimental scenarios: in the Local scenario, inference is performed on-board using a lightweight detection model, and

the results are transmitted as CPMs to nearby vehicles and/or infrastructures over ITS-G5. In the Cloud scenario, a compressed

video feed is sent to a Cloud server using C-V2X, where a more computationally demanding detector is used. The detection

results are then transmitted to vehicles in the vicinity, enabling a cooperative perception scenario.

focused particularly on designing CPM formats and establish-

ing message generation rules [19] to optimize the exchange

of relevant perception data while minimizing communication

overhead [12, 20]. However, on-board perception systems

in vehicles equipped with constrained computing resources

encounter challenges due to high computational demands, as

demonstrated in previous studies [5, 19]. Achieving real-time

performance is impeded by the necessity to strike a balance

between accuracy and processing speed, as highlighted in

recent surveys [2]. As shown in prior works [21, 22], the

integration of cloud technology with C-V2X shows consid-

erable potential by enabling vehicles to transmit sensor data

to a remote cloud server for processing, thereby leveraging

the abundant resources available therein [23]. Research has

shown [24] that using C-V2X communication for cloud-based

processing can further improve scalability and computational

capabilities, facilitating the development of more sophisticated

and robust driving ecosystems [5, 25]. However, addressing

challenges such as data transmission latency and bandwidth

limitations is crucial to fully realizing the potential of this

integration [26]. This underscores the importance of ongoing

research and investment efforts to maximize the advantages of

combining cloud technologies with a connected and automated

driving environment [1, 27, 28]. Testing and validating such

an integrated system with real-time applications requires a

comprehensive evaluation to ensure compliance with latency

constraints and other application requirements [16, 29]. How-

ever, many difficulties arise from the need for vehicles to

be equipped with sensors and communication hardware and

software modules that integrate with cloud servers [4, 26, 30].

This not only incurs high costs, but also faces limitations

due to safety and government regulations. Consequently, the

evaluation framework and the design of the real world tests are

constrained, leading researchers to rely on simulation-based

studies [31] lacking real-world use cases [27].

III. EXPERIMENTAL SETUP

In this section, we detail the methodology used to design

and setup the testbed framework aimed at evaluating dis-

tributed vehicular perception.

A. Tested Scenarios

We evaluate the performance of cooperative object detection

through two distinct scenarios, depicted on Fig. 1.

• Local scenario: Camera images are processed on-board

upon capture. To cope with on-board hardware constraint,

a lightweight detector is used (see Section III-F for

details). The detection results are then encoded to gen-

erate CPMs, which are broadcast to nearby vehicles or

roadside units (RSU) using the ITS-5G communication

standardized by the The European Telecommunications

Standards Institute (ETSI) [32].

• Cloud scenario: Camera images are compressed on-

board upon capture using the H.265 codec. The com-

pressed bitstream is then transmitted to the cloud using

the cellular mode of C-V2X. Once on the cloud, the

encoded frames undergo decoding, followed by an in-

ference step to detect objects. Since hardware constraints

are relaxed on the cloud compared to on-board, a more

computationally demanding model is used than in the

Local scenario. Finally, the detection results are transmit-

ted back to the originating vehicle as well as to nearby

vehicles using C-V2X.

The Local scenario focuses on on-board processing within

the vehicle, while the Cloud scenario explores the potential

benefits of cloud-based processing. We aim to evaluate and

compare the performance of local and cloud processing ap-

proaches in terms of end-to-end delay, detection quality, and

overall effectiveness in real-world driving scenarios.

B. Vehicle Instrumentation

We conduct experiments using an experimental vehicle

used for connected and autonomous driving research. The

vehicle, a 2018 KIA Soul EV, is equipped with a suite of

sensors, including a LiDAR, cameras, and a GNSS receiver.

These sensors are crucial for capturing environmental data

required for perception tasks. However, for the purposes of this

study, we focus exclusively on processing data from a single

front-facing camera sensor. Communications between vehicles

and with infrastructure are facilitated by the YoGoKo Y-Box

communication module, which features ITS-G5 and C-V2X

Authorized licensed use limited to: University of Luxembourg. Downloaded on December 17,2024 at 23:04:36 UTC from IEEE Xplore.  Restrictions apply. 



communication technologies. For further information on the

test vehicle, equipped sensors, hardware, and driving software

stack, we refer the reader to [33].

C. Test Route & Network Measurements

Our driving tests were conducted on public roads in the

Kirchberg area of Luxembourg City. It includes diverse road

features and traffic conditions, allowing us to evaluate different

cooperative perception scenarios at the highest level of realism.

In the Local scenario, the experimental setup for the

CPM measurements involved conducting V2X communication

using the ITS-G5 protocol within a dynamic environment. The

experimental setup involved a stationary receiver located at

specific coordinates (lon 6.161993, lat 49.626478) while a

transmitter vehicle moved at speeds ranging from 40 to 50

km/h. This stationary receiver position was chosen to ensure

consistency in measurement conditions, providing a fixed

reference point for assessing the quality of communication

between the transmitter vehicle and the receiver. The experi-

mental route spans over a distance of approximately 1.5km2.

Within this experimental setup, we evaluated the transmission

of CPM messages to assess the reliability and performance of

V2X communication under public traffic conditions.

In the Cloud scenario, the driving route spans approx-

imately 4km3 and we use the cellular mode of the C-V2X

technology to communicate with a cloud server located at

the premises of the University of Luxembourg in the same

area. Twelve commercial base stations are located in proximity

of the test route, including 4G and 5G (non-standalone)

cellular sites, using Low- (700 MHz) and Mid-band (3.6 GHz)

frequencies. The area features an average download throughput

of 55 Mbps for 4G and 105 Mbps for 5G, whereas the average

upload throughput oscillates between 20 and 30 Mbps for both

technologies. We use UDP for data offloading to the cloud, as

UDP has shown potential for streaming sensor data to a remote

cloud for processing with the lowest end-to-end delay [34].

D. Data Collection & Annotation

Data collection is a crucial aspect in the development and

evaluation of perception systems for autonomous vehicles.

To obtain more accurate detection results on the previously

introduced test routes, we first collect and annotate a dataset,

and then perform transfer learning on the pre-trained YOLO

model. To do so, we set up a front-facing camera and a GNSS

sensor mounted in the front of the roof rack of the vehicle.

We collected 5000 frames at 1Hz with synchronized time and

GNSS measurements along the Cloud test route described

in Section III-C. To generate ground truth data for training

and evaluation purposes, we manually annotated the collected

frames and divided them into training (70%), validation (15%),

and test (15%) subsets. The annotation process involved metic-

ulously labeling objects of interest in the captured images,

focusing on three object classes: pedestrians, vehicles, and

traffic lights. We use the specialized Roboflow [35] annotation

2Local test route:http://g-o.lu/3/GsHC
3Cloud test route:http://g-o.lu/3/96TS
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Fig. 2: A basic overview of different containers included in the

CPM message format as defined by the ETSI standard [32].

tool to streamline this process and ensure accurate labeling.

The dataset comprises a total of 59574 annotated instances

across all classes, with an average of 15 objects per image.

E. CPM Encoding

In the Local scenario, the results of the object detection

performed on-board are packaged into CPMs and broadcast to

nearby vehicles over the ITS-G5 communication protocol. The

list of detected objects is encoded into CPMs following the

ETSI standard [32]. A basic overview of different containers

included in the CPM message format is displayed on Fig. 2.

The ITS-PDU header, management data, and sensor infor-

mation containers include, among others, information such

as protocol versions, message type, reference position, and

sensor ID. Containers of detected objects include information

about the detected objects, such as the class of the object

and the confidence level assigned by the perception system.

According to the ETSI definition, the CPM should also include

perception regions, which shall list the location information

of the detected objects calibrated with the sensor location.

Obtaining the location of the object would require an addi-

tional localization technique to be employed for each detected

object, which is beyond the scope of this work. In order to

maintain the standard format of the CPM payload, the ego

vehicle location is used for the perception region.

F. Hardware Configuration & Detection Models

The limited processing capabilities and energy constraints

inherent to vehicles pose significant challenges to real time

applications such as cooperative perception. As a result,

computational tasks are often offloaded to external resources,

where computing resources are more abundant. However,

using this paradigm, achieving high detection quality and low

end-to-end delay requires a well-designed architecture, high

speed networks and high-performance computing [36]. The

hardware configurations used in our experiments are detailed

in Table I. The Local setup refers to the on-board device, for

which we select hardware with appropriately limited power

consumption. In contrast, Cloud offers more robust compute

capabilities, at higher financial and electrical power costs.

To perform object detection, we use YOLOv8 [37], for its

state-of-the-art performance in terms of accuracy and speed

[10]. YOLOv8 offers various models ranging from small

to extra-large. Table II presents a comparison of YOLOv8

variants in terms of model complexity, inference speed (Local

and Cloud), and detection accuracy. The comparison highlights

Authorized licensed use limited to: University of Luxembourg. Downloaded on December 17,2024 at 23:04:36 UTC from IEEE Xplore.  Restrictions apply. 



Platform Hardware configuration

Local (≈100W)
GeForce GTX 1650 GPU
896 CUDA Cores, 5.7 TFLOPS (FP16)
Intel i9-9980HK @2.4GHz

Cloud (≈450W) NVIDIA GeForce RTX 4090 GPU
16384 CUDA Cores, 82.6 TFLOPS (FP16)
Intel i9-13900K @2.8GHz

TABLE I: Hardware setups for the Local and Cloud scenarios

described in Section III-A.

significant differences in inference times between Local and

Cloud processing. While Local inference times range from

19.2 to 521.4 ms depending on the model variant, cloud-based

inference is consistently faster, ranging from 1.2 to 3.9 ms.

These results underscore the advantage of offloading compu-

tational tasks to a cloud where power constraints are lifted

and resources are abundant, allowing the use of better models

while significantly reducing inference time. Since our study

focuses on real-time detection, we select the small variant

as the lightweight detector running on-board in our Local

scenario. For the Cloud scenario where power constraints are

relaxed, we use the much more demanding xlarge variant.

YOLOv8
Params(M) FLOPS(B)

Inference(ms)
mAP

variant Local Cloud

nano 3.2 8.7 19.2 1.2 0.65
small 11.2 28.6 29.4 1.9 0.69
medium 25.9 78.9 192.3 2.7 0.74
large 43.7 165.2 361.1 3.2 0.85
xlarge 68.3 257.8 521.4 3.9 0.89

TABLE II: Comparison of YOLOv8 variants in terms of model

complexity, inference time, and mean average precision (mAP)

on the test split of the dataset presented in Section III-D.

G. Model Training

We trained the small and xlarge YOLOv8 variants, for the

Local and Cloud scenarios respectively. We split the dataset

described in Section III-D into a training set 3500 frames,

a validation set of 750 frames, and a test set 750 frames. To

avoid class imbalance, we include the same proportion of each

class into each dataset split. All models are trained for up to a

100 epochs with early stopping and using the Adam optimizer

with an initial learning rate of 0.001. Rather than learning from

scratch, we leverage transfer learning by initializing models

with pre-trained weights obtained by training on the COCO

dataset [38]. To accelerate training, we set the batch size to

the maximal value that fits in GPU memory.

IV. RESULTS AND DISCUSSION

In this section, we present the results of our experiments and

provide a detailed discussion of the findings. The experiments

were conducted under typical day weather conditions featuring

partly cloudy skies, on a predefined route as detailed in

Section III-C. To ensure the collection of statistically valid

results, each experiment consisted of 10 repetitions.

A. ITS-G5 CPM Transmission (Local scenario only)

The CPM transmission latency is influenced by various fac-

tors, such as network conditions, signal quality, and hardware

capabilities, including processing time at the receiving end.

These factors require a detailed investigation to understand

their collective impact on the performance of CPM transmis-

sion. To ensure reliable transmission, we begin by measuring

RSSI while transmitting CPM over ITS-G5. Our findings,

as shown in Fig. 3a, reveal a consistent pattern in which

RSSI values exhibit an inverse correlation with distance. As

expected, with increasing distance between the sender and

receiver, the RSSI decreases. However, in particular, beyond

a distance of 150 m, we observed an increase in path loss.

This phenomenon suggests additional factors influencing the

dynamics of signal propagation beyond a distance of 150 m.

Environmental variables such as buildings, terrain topology

and signal interference may contribute to this observed in-

crease in path loss [19]. Despite this deviation, the results

of the experiments demonstrate reliable transmission range of

150 m, and a maximum range of up to 400 m. The network

parameters with transmission power and radio configuration

details are summarized in Table III.

Parameter Name Value

Transmission Power (Tx) 23 dBm
Energy threshold -85 dBm
Channel bandwidth / carrier frequency 10 MHz / 5.9 GHz
Radio Configuration Single Channel (CCH)
Data rate 6 Mbps
Number of CPM Transmitted / loss ratio 4000 / 0.07

TABLE III: ITS-G5 network parameters.

In a second experiment, we measured end-to-end CPM

transmission delay between the mobile sender and static

receiver. The results are shown in Fig. 3b. It shows that

the CPM transmission latency remains consistently low, with

values ranging from 1.5 (± 1.0) ms to 6 ms (±2.5) ms, for a

communication range of up to 400 m. These findings align

with previous studies on ITS-G5 technologies, which have

demonstrated low latency and reliable transmission of CPMs

in a simulated connected driving scenarios [39].

B. Video Streaming Latency (Cloud scenario only)

To stream camera images for cloud detection, we consider

two different streaming resolutions: 1920x1080 (FHD) and

1280x720 (HD). Encoding always occurs in the on-board

hardware, while decoding is performed on the cloud. Depend-

ing on the compression quality, the latency for encoding and

decoding ranges from 0.5 to 3 ms, which is relatively low

compared to inference and transmission times. The choice

of compression value of H.265, controlled by Constant Rate

Factor (CRF) while keeping other parameters to defaults [40],

results in streaming latencies ranging from 3 to 457.4 ms for

FHD and 2.5 to 341.4 ms for HD, as illustrated in Fig. 4.

The CRF values range from 0 to 51, where 0 corresponds to

lossless compression and 51 represents the highest possible

compression with the greatest loss of data.

Authorized licensed use limited to: University of Luxembourg. Downloaded on December 17,2024 at 23:04:36 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Demonstration of (a) RSSI measurements and (b) la-

tency measurements, plotted against distance between receiver

and transmitter during CPMs transmission using the ITS-G5.

Fig. 4: For cloud processing, we measured the mean latency

for HD and FHD input resolutions at various H.265 compres-

sion qualities: High (H), Medium (M), Low (L) and Very Low

(VL). The results focus solely on vehicle-to-cloud transmission

using UDP, excluding encoding and decoding latencies.

To further investigate the end-to-end delay of the cloud

scenario, we define distinct settings: FHD-H (High quality) at

Fig. 5: Breakdown of mean end-to-end delay (ms) for Local

and Cloud processing scenarios. In the Local scenario, end-to-

end delay depends solely on inference time and V2X (CPM)

communication. For the Cloud processing, end-to-end delay

depends on compression, vehicle-to-cloud (V2C) streaming,

decompression, inference in the cloud, and the Cloud-to-

vehicle (C2V) communication latency.

CRF 0, FHD-M (Medium quality) at CRF 24, FHD-L (Low

quality) at CRF 30, and FHD-VL (Very Low quality) at CRF

51. Similarly, we assign the same CRF values for HD, defining

the following settings: HD-H, HD-M, HD-L and HD-VL.

C. End-to-End Delay

In this section, we examine the end-to-end delay of both, the

Local and the Cloud scenario. A breakdown of the different

components of end-to-end delays for the different experiments

is displayed on Fig. 5. In the case of the Local scenario, the

end-to-end delay depends on only the on-board inference time

of 29.4 ms (see Table II) and on the V2X latency incurrent

by CPM transmission over ITS-G5 (see Fig. 3b). Hence, the

local end-to-end delay reaches 36.4 ms.

In the Cloud processing scenario, the end-to-end delay is

dependent on a series of interconnected factors. These include

compressing images using H.265, latency incurred during

vehicle-to-cloud (V2C) communication over C-V2X in cellular

mode, decoding executed within the cloud infrastructure, in-

ference time for object detection, and transmission of detection

results back to one or more vehicles (C2V) in the vicinity.

Conversely, in the Cloud processing scenario, considering

FHD-M, the delay can increase to 40.8 ms, while considering

HD-M, the delay decreases to 30.4 ms. For FHD-VL and

HD-VL streaming, the delay decreases to 20.8 and 15.26 ms,

respectively. In terms of end-to-end delay, all compression

factors are viable for real-time operation, except for high

compression qualities (FHD-H and HD-H). In the cases of

FHD-H and HD-H, not displayed on Fig. 5 for scaling reasons,

delay respectively reaches 457.4 and 341.4 ms. Note that

inference time remains constant at 3.9 ms for all Cloud

experiments since the same detection model is used.

Authorized licensed use limited to: University of Luxembourg. Downloaded on December 17,2024 at 23:04:36 UTC from IEEE Xplore.  Restrictions apply. 
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and cloud-based processing, for two distinct input resolutions

(HD and FHD), and four compression qualities ranging from

High (H) to Very Low (VL).

D. Detection Quality vs. End-to-End Delay Trade-off

To gain a comprehensive understanding of the proposed

distributed and cooperative perception strategies, it is essential

to carefully consider the trade-off between detection quality

and end-to-end delay. By exploring this trade-off, our objective

is to identify the optimal balance between quality and end-

to-end delay. Fig. 6 synthesizes our results by presenting

different trade-offs between end-to-end delay and mean av-

erage precision (mAP), for Local and Cloud processing with

different input resolutions and compression qualities. In Cloud

processing scenarios, a higher mAP score of 0.89 is achieved

in FHD-H with an end-to-end delay of 450.4 ms. For high-

quality compression scenarios (FHD-H and HD-H), the use

of CRF 0 entails lossless compression and results in larger

amount of data streamed to the cloud. This inevitably increases

end-to-end delay in both the FHD-H (450.4ms) and HD-H

(334.5ms) cases. With optimal choices of compression quali-

ties, end-to-end delays can be lowered below 50 ms without

disproportionately sacrificing mAP. Specifically, the FHD-M

and HD-M scenarios maintain a high accuracy compared to

their high compression quality counterparts (0.89 mAP from

FHD-H to FHD-M, 0.88 mAP from HD-H to HD-M), while

drastically reducing end-to-end delay (33.8 ms from FHD-H to

FHD-M, 23.4 ms from HD-H to HD-M). A further reduction is

possible by streaming Very Low quality images (HD-VL and

FHD-VL), but this results in degraded mAP compared to even

the lightweight Local model. Since the HD-L model provides

substantially higher mAP at a comparable end-to-end delay,

there is no tangible benefit of using Very Low compression.

The visual impact of lowering compression quality and

its effect on detection results are illustrated on Fig. 7. In

particular, in FHD-M settings, Cloud detection rates closely

resemble those of object detection, in contrast to FHD-H

settings. However, a decrease in detection instances begins

with the FHD-L scenario. In FHD-VL, only a traffic light is

detected, leaving other objects undetected, thereby compro-

mising overall detection quality due to the low-quality stream.

V. CONCLUSION AND FUTURE WORK

In this study, we analyze real-time object detection strate-

gies, which include both Local and Cloud-based methodolo-

gies, and employ field trials for validation. We demonstrate

the feasibility of ITS-G5 for robust transmission of CPM in

local environments. Furthermore, we explore the potential of

C-V2X communication to utilize cloud hardware, facilitating

real-time object detection. Our findings indicate significantly

improved detection quality compared to processing solely on-

board hardware. To gain a comprehensive understanding of

the proposed cooperative perception strategies, we investigate

the trade-off between detection quality and end-to-end delay.

In addition, we also create and release a real-world driving

dataset annotating instances of pedestrian, vehicle, and traffic

light classes providing a valuable resource for researchers. Fu-

ture research will explore adaptive techniques and hybrid opti-

mization strategies, including dynamically switching between

local and cloud processing based on bandwidth availability

and situational complexity, such as high-accuracy demands in

areas like intersections.
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