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Abstract

We use efficient coding principles borrowed from sensory neuroscience to
derive the optimal population of neurons to encode rewards from a prob-
ability distribution. We find that the response properties of dopaminergic
reward prediction error neurons in a rodent and a primate data set
are similar to those of the efficient code in many ways: the neurons
have a broad distribution of midpoints covering the reward distribution;
neurons with higher thresholds have higher gains, more convex tuning
functions, and lower slopes; moreover, their slope is higher when the
reward distribution is narrower. Furthermore, we derive learning rules
that converge to this efficient code; the learning rule for the position of
the neuron on the reward axis closely resembles the learning rule of dis-
tributional reinforcement learning. Thus, reward prediction error neuron
responses may be optimized to broadcast an efficient reward signal, form-
ing a connection between efficient coding and reinforcement learning,
two of the most successful theories in computational neuroscience.

Keywords: distributional reinforcement learning, efficient coding, value,
reward, reward prediction error
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Fig. 1 Experimental design and basic results of Eshel et al.[14]. A mouse was pre-
sented with variable rewards, while the responses of RPENs were recorded. A: Terminology
for sigmoidal tuning curves as expected for reward prediction error neurons. The thresh-
old is the reward value at which the spontaneous activity is reached. The midpoint is the
reward value at which half the maximal response is reached. B: Rewards were drawn from
a discrete distribution (vertical lines), which we approximate with a moment-matched log-
normal distribution for our analyses (continuous line). C: Reward tuning curves of the 39
dopaminergic reward prediction error neurons measured by [14] after preprocessing of [15].
We additionally subtracted the minimal response across all trials for each neuron. D: Effi-
cient code for the reward distribution in (A). For visual clarity, only 20 neurons are shown.

Main

Processing rewards is critical for much of cognition, including decision making,
planning, and learning. An important reward representation in the brain is
maintained by reward prediction error neurons (RPENS) [1]. These dopamin-
ergic neurons in the midbrain respond to received rewards relative to an
expectation based on past experience. The existence of these neurons is the
most prominent evidence in favor of reinforcement learning (RL) in the brain
[2]. Moreover, RPENs have been implied in a broad range of tasks that
require value-based cognition [3]. Thus, the encoding of reward by RPENS is
a cornerstone of our understanding of reward signals in the brain.

In a different domain of neuroscience, sensory processing, it has been
hypothesized that neuronal codes are optimized for efficiency, i.e. to convey as
much information as possible with given budgets for the number of neurons
and the number of action potentials [4, 5]. The efficient coding hypothesis has
long been used to account for the response properties of sensory neurons (e.g.
[6-8]). Gradually, the notion of efficient coding has also made inroads in the
domain of reward. Efficient coding has been invoked to explain reward-based
choices [9-11], and contextual modulation of the responses of cortical reward
neurons has been interpreted as a form of efficient coding [12]. In a time inter-
val estimation task, an RL agent that encoded the duration of a task-irrelevant
interval with much lower resolution than that of a task-relevant interval could
account for RPEN responses and their relation to behavior [13].
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Here, we investigate at a neural level whether RPENs implement an effi-
cient code for reward value. We first derive the most efficient population of
sigmoidally tuned neurons to encode rewards sampled from an arbitrary given
distribution. We then apply this general framework to two data sets, one in
mouse with a fixed reward distribution [15, 16] and one in monkey with a
variable reward distribution [17]. We find that key properties of the efficient
code are reflected in the data, suggesting that efficient coding could serve as
a unifying principle. Finally, we develop learning rules for the efficient code.

We analytically derive the optimal population of neurons to encode rewards
by extending the framework of Ganguli and Simoncelli [18]. Assuming that
RPENSs have a sigmoidal tuning curve for reward [Fig. 1A, 19, 20], we start
with a large family of populations, within which we search for the most efficient
one. We construct the family based on a base population of neurons on the
unit interval. We then allow any smooth, monotone function to map from
reward R to the unit interval and define the responses of the neurons in terms
of the responses of the base population at the mapped location. Additionally,
we allow an arbitrary scaling of the neurons’ response gains and of the density
of neurons depending on their placement. In mathematical terms, we use a
prototypical sigmoidal response function hg on the unit interval to define the
response of a neuron with midpoint at p as:

hu(R) = ho(F(R) — F(u))g(n), (1)
where F(R) = f_ROO f(t)dt is the mapping from reward space to the unit inter-
val. Its derivative f(R) > 0 represents the conversion between reward space
and the unit interval. g(u) is the gain of a neuron with midpoint at u. Finally,
we define the density function d(R) as the probability that a neuron’s midpoint
is placed at reward value R.

We then optimize the three functions to find the most efficient populations
that can be generated this way to encode rewards from a distribution with den-
sity p(R) and cumulative density P(R) (see Online Methods). Efficiency here
refers to the maximization of a measure of information given constraints on the
expected total firing rate. This yields a family of equally efficient populations,
which we parameterized by « € [0, 1]:

p(R) . 1

SR =p(R); d(R)x a—ppniai IR < G pgye

(2)

This solution extends the earlier result [18], which assumed a uniform density of
neurons on the unit interval, effectively setting d(R) = f(R) in our formulation.
Their solution is a special case of our family, with « = 1 and thus d(R) = p(R)
and g(R) = #(R).

Application 1: Variable-reward task. We first compare the predictions
of the efficient coding framework to data from the ‘variable-reward task’ of
Eshel et al. [16] (Fig. 1B). In this task, mice were given one of seven reward



Springer Nature 2021 I TEX template

4 RPENs implement an efficient code

magnitudes in each trial with certain probabilities, while RPENSs responses
were recorded. Fig. 1C shows the observed reward tuning curves of the RPENSs.
We derived the efficient code for a continuous approximation of the discrete
probability distribution, in the form of a log-normal distribution matching the
mean and variance of the discrete distribution (¢ = 1.29 and o2 = 0.71). The
predictions for neural density and gain are shown in Extended Data Fig. 1.
To compare our predictions to the data, we use the same number of neurons
as in the dataset (n = 39) and adjust free parameters of the derived efficient
population to match the measured population: We first set o to maximize the
probability of the observed midpoints (whose distribution depends only on
this parameter), resulting in o = 0.673. We define a neuron’s threshold as the
point where the spontaneous firing rate is surpassed.

We fitted the spontaneous firing rate r* and k, a parameter controlling the
slopes of all neurons, to the observed thresholds, resulting in the estimates
#* =10.08 and k = 5.20. Finally, we set the constraint on the expected spike
rate, rmax, t0 match the average neural gain based on sigmoid fits to the tuning
curves, resulting in . = 322.5 (see Online Methods for details). A subset
of the resulting efficient code is shown in Fig. 1D. We now examine several
properties of the efficient code and compare them to the data.

Prediction 1: RPEN midpoints cover the reward distribution. In the efficient
code, RPEN midpoints are placed at specific quantiles of the distribution with
a slight bias towards higher quantiles, yielding a distribution similar to the
original reward distribution. Indeed, the midpoints of the observed neurons
cover the range of the reward distribution, with a roughly similar distributional
shape (Fig. 2A). The mean of the measured midpoints is 5.96, higher than
the mean reward, which is 5.21 (¢£(38) = 0.848, p = 0.40). The fact that this
difference is not significant is unsurprising, as for the measured of number of
neurons, even the predicted midpoints are not significantly different from the
mean reward (t(38) = 0.246, p = 0.81).

Prediction 2: RPEN gain increases with threshold. In the efficient code, the
gain is higher for neurons with higher reward thresholds (Fig. 1). The intuition
is that those neurons respond to fewer rewards and can thus afford a higher
gain with the same expected number of spikes. This effect does not occur for
unimodal tuning functions [18, 21]. We observe the expected increase of gain
in the data (Fig. 2B); to our knowledge, this empirical finding has not been
reported before.

Prediction 3: RPEN tuning curve asymmetry flips with increasing thresh-
old. In the efficient code, the increase of gain with threshold has implications
for the shape of the RPEN tuning curves around threshold (Fig. 2C). As the
gain increases, the spontaneous firing rate falls lower in the sigmoid shape.
Thus, the threshold moves from the upper concave part of the sigmoid down
into the convex part. In other words, neurons with low thresholds have con-
cave tuning curves around their threshold and neurons with high thresholds
have concave ones. To quantify the degree of such “asymmetry” of the neural
responses, we followed previous work [15] and approximated the neural tuning
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Fig. 2 Comparisons between the measured neurons of Eshel et al. [16] and the
efficient code. A: The distribution of the midpoints of the measured neurons covers the
reward distribution with a slight upward shift (mean midpoint = 5.96, versus mean reward =
5.21, t(38) = 0.848, p = 0.402); the efficient code accounts for this (mean = 5.36). B: RPEN
gain, i.e. maximal response of a fitted sigmoid function, plotted against threshold. There
is a significant positive relationship (r(37) = 0.637, p < 0.001). The neurons of an efficient
population (blue) again match the measured population (black) quite well. C: Efficient
coding accounts for the relationship between asymmetry and threshold. The spontaneous
activity r* is reached at 01 within the concave part of the sigmoidal response function for a
neuron with low threshold and gain, and at 62 within the convex part of a sigmoidal response
function for a neuron with high threshold and gain. D: Degree of asymmetry of neural

responses ( plotted against threshold. There is a strong positive relationship between

BT
B~ +BF
these two variables (r(37) = 0.832,p < 0.001). The neurons of an efficient population (blue)
closely approximate the the measured population (black). The dashed line is expected from
ideal distributional TD learning. E: Distributional reinforcement learning accounts for the
relationship between asymmetry and threshold: A reward value R shift the response function
down proportional to 8~ if below the threshold (R; < #) and up proportional to 87 if above
the threshold (R¢ > ). An equilibrium is achieved when the two expected shifts cancel
each other. F: Slope of the sigmoid fit a plotted against threshold for the efficient code
neurons. There is a significant negative linear relationship (r(37) = —0.915, p < 0.001). The
inset shows the same plot for the measured neurons. There is a significant negative linear
relationship in the data, too (r(37) = —0.550, p < 0.001).

curves with two linear response functions, one above and one below the spon-
taneous firing rate r* (Fig. 2C). This allows for an asymmetric response of

the RPENSs, with the slope above threshold 81 being different from the slope
below threshold S~ [22, 23]. The ratio of slopes, % € [0,1], can then be
used as an index of asymmetry, which is close to 1 for concave tuning curves
and close to 0 for convex tuning curves. Using this index, the efficient code pre-
dicts that asymmetry is higher for neurons with higher thresholds: the shape
flips from convex to concave. This relationship is also observed in the data

(black dots in Fig. 2D), as first reported by Dabney et al. [15].
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Fig. 3 Efficient coding accounts for response slope characteristics in the
Variable-distribution task. [17]. A: “Normal” distribution used in the experiment (pur-
ple) and moment-matched continuous distribution. B: Same for the “Uniform” distribution.
C: Left: example neuron from Rothenhoefer et al.[17], showing steeper tuning for the “nor-
mal” than for the “uniform” distribution (left). Error bars represent & 1 s.e.m. across trials.
Right: example neuron from the efficient code. D: Scatter plot of the response slopes of all
neurons in the data [17] (left) and in the efficient code (right). Insets show the histogram
of differences, and the downward arrow indicates the mean of it. The data showed a signifi-
cantly different response slope with a mean difference of —0.605 (¢(38) = —3.26, p = 0.002),
and the model also demonstrated a significantly different response slope with a mean differ-
ence of —1.58 (¢(38) = —10.4, p < 0.001).

The observed relationship can also be accounted for by the theory of
distributional reinforcement learning (DRL; dashed line in Fig. 2D), which
attributes it to an asymmetry of the update equations of the thresholds, such
that neurons converge to different expectiles of the reward distribution (Fig.
2E). We will examine the relationship between efficient coding and DRL in
detail below.

Prediction 4: RPEN slope decreases with threshold. In the efficient code,
neurons with higher thresholds have a lower slope parameter of the sigmoid
fit (Fig. 2F). This occurs because the predicted tuning functions are shallower
in regions with lower reward density. In the measured neurons, we indeed
find a significant negative correlation of slope and threshold (r(37) = —0.550,
p < 0.001). To our knowledge, this empirical finding has also not been reported
before. Overall, the measured neurons have shallower tuning curves than pre-
dicted by the efficient code. A possible explanation is that we did not take into
account stochasticity in the RPEN inputs. Such stochasticity would produce
random horizontal shifts of the sigmoid tuning curve, which, when averaged,
would result in a lower slope.

Application 2: Variable-distribution task. So far, we have examined
RPEN responses to a fixed reward distribution. Rothenhoefer et al. [17] instead
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exposed two macaque monkeys to cues associated with rewards drawn from
one of two distributions (either a “uniform” or a “normal” distribution) with
the same mean (Fig. 3A-B). The main finding of Rothenhoefer et al. was that
dopamine responses are amplified for rare rewards, producing steeper response
functions for the “normal” distribution than for the “uniform” one (Fig. 3C-D).
This suggests that RPENs encode the frequency of rewards.

The variable distributions make this data set an interesting additional test
for the efficient coding framework. We derived an efficient code for a moment-
matched continuous approximation of each distribution (Fig. 3A-B). We fitted
the parameters «, k, and 7y, to minimize the mean squared error between
model and data on the response slopes for the individual distributions. The
resulting estimates were & = 0.473, k= 2.00, and 7. = 28.2 (Extended
Data Fig. 2). As in Application 1, we find that the midpoints of the neurons in
the efficient code cover the range of the reward distribution (Extended Data
Fig.2B and D). Moreover, the efficient coding model successfully reproduced
the main finding (Fig. 3C-D): a majority of neurons in the efficient code (39
out of 40) exhibited steeper slopes for the “normal” distribution, in agreement
with the data (31 out of 40).

Learning rules for the efficient code. Distributional RL [15] proposes
that RPENs update their thresholds in proportion to the difference between
the received reward and their thresholds, with different proportionality factors
for positive and negative differences (Fig. 2E). This learning rule leads those
thresholds to converge to the expectiles of the reward distribution. This is very
similar to the prediction of the efficient code, which places neuron’s midpoints
at specific quantiles of the distribution. With the additional assumption that
the slope of the reward tuning curve above and below threshold is proportional
to the learning rate, distributional RL accounts for the observed relationship
between threshold and asymmetry. However, without modification, it does not
account for the relationship between gain and threshold or the relationship
between slope and threshold. Since the efficient code does account for these
observations, a good way to consolidate the two theories is to extend the DRL
learning rule such that the gain and slope of neurons also converge to the
parameters for the efficient code.

To learn the placement of neurons on the reward axis, we can use the asym-
metric DRL learning rules. To converge to the quantiles of the distribution,
we shift the neuron to higher reward values by a step size b and towards lower
reward values by a different step size a if a reward below the midpoint occurs
(Fig. 4 A). If we set a and b such that ap = b(1—p), this procedure converges to
the pth quantile of the distribution. In the DRL formulation, neurons instead
update their position proportional to the difference between their location and
the presented reward and thus converge to the expectiles of the distribution.
This changes the population only slightly, but achieves similar efficiency as the
populations placed at the quantiles (Extended Data Fig. 3). It should also be
kept in mind that both the step function that we apply for the quantiles and
the linear weighting functions that yield expectiles are idealizations.
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In the efficient code, RPEN slope should be proportional to the local
probability density of rewards. To learn the slope, we can estimate the local
probability density based on the probability that a reward within the dynamic
range of the neuron occurs, i.e. in the range where the neuron has a high
slope. As the dynamic range is inversely proportional to the slope, it should be
inversely proportional to the local reward density as well, which means that
the probability of a reward in the dynamic range should be constant. A simple
learning rule to achieve this is to increase the slope and shrink the dynamic
range when a reward falls into the dynamic range and decrease the slope and
increase the dynamic range when a reward falls outside the dynamic range.
When we allow a gradual definition for falling into the dynamic range, a nat-
ural choice is to use the derivative of the sigmoid function; this is the kernel
we chose for our simulations (Fig. 4B). Any other kernel around the midpoint
of the sigmoid whose width scales inversely with the slope would also work.

Finally, we need to adjust the gain of the neurons to match the efficient
coding solution. For this purpose, we present two solutions that work similarly
well but that are based on different biological mechanisms. In the first method,
we learn an estimate of the expected firing rate and set the gain based on
this estimate. Effectively, this results in the inverse of the sigmoid shape for
updating the gain with high rewards reducing a neuron’s gain and low rewards
increasing its gain (Fig. 4C). In the second method, we couple the fixed gain
to the quantile the specific neuron should converge to based on its learning
asymmetry (Fig. 4D).

These learning rules for midpoints, slope, and gain together produce a
population of neurons similar to the analytical efficient coding solution (Fig
4C, D, F), with similar efficiency (Fig. 4G). These populations clearly beat the
best possible solution that assumes the same tuning function for every neuron
(Fig. 4E,G). Thus, these rules successfully extend the DRL learning rule to
produce an efficient code.

Discussion. We have presented evidence that RPENs implement an effi-
cient code for reward. Starting from a normative account of the tuning of
RPEN responses, we were able to account for five empirical findings across two
tasks. Thus, efficient coding could serve as a unifying principle underlying the
response characteristics of RPENSs.

Our results are robust to changing the measure of information used for
optimizing the population, the assumed distribution of neural responses, or
the assumption of a sigmoid shape. Different objective functions or different
response distributions lead to different relationships between the density of the
reward distribution and the optimal density and gain of neurons [18]. However,
neural density always increases with reward density, as it is more efficient to
focus neural resources on probable rewards. Analogously, all objectives lead
to higher gains at higher thresholds, as gain increases are “cheaper” for neu-
rons with higher thresholds. Furthermore, changing the mathematical form of
the shape of the response function does not change the density and gain pre-
dictions, as those were derived independently of the shape, and only leads to
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Fig. 4 A combination of learning rules to learn the efficient code. Each panel shows the
steady state distribution population of 20 neurons after learning based on 20000 reward
presentations with an inset illustrating the learning rule. A: Learning the position on the
reward axis for the neurons to converge to the quantiles of the distribution. This learning
rule is similar to the distribution RL learning rule. B: Additionally learning the slope of
the neurons to be proportional to the local density by increasing the slope when the reward
falls within the dynamic range and decreasing otherwise. C: First method to set the gain:
iterative adjustment to converge to a fixed average firing rate. D: Second method to set the
gain: Use a fixed gain per neuron based on the quantile it will eventually converge to. E:
The efficient tuning curve for a single neuron. F: The analytically derived optimal solution.
G: Comparison of the different populations in the overall information transfer with the
same number of neurons (20) and expected firing rate (8.27 per neuron as in the fit to the
measured data).

slightly different predictions for the asymmetry of the responses around the
threshold. For any shape that is convex in its lower response range and con-
cave in its upper response range, the qualitative argument for the dependence
between threshold and asymmetry will hold.

Our work has limitations. To simplify our analysis, we restricted ourselves
to a task with a single reward supplied in each independent episode without
any action required by the animal. In this simple case, the reward received
and the change in value of the current state are confounded. Thus, all our
analyses are agnostic to this distinction. In multi-step [24] and delayed-reward
tasks [25], RPENSs take future rewards into account with temporal discounting.
The efficient coding framework we presented here would need to be modified
for a temporally discounted value code. Moreover, our theory covers only the
phasic reward prediction error response of RPENs. The ramping activity of
RPENSs [e.g. 26, 27] will require additional explanation, most likely including
an encoding of reward timing [28]. In fact, it has been proposed that RPENSs
encode elapsed time more generally [29], and that this encoding is tuned to
task properties in a manner reminiscent of efficient coding [13].

The efficient coding hypothesis is compatible with reinforcement learning.
Specifically, we extended the learning rule from DRL [15] to account not only
for the relationship between asymmetry and threshold but also for the three
other tuning properties predicted by the efficient code. Besides DRL, there
are two alternative explanations of the data by Eshel et al. [16]: the Laplace
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code [30] and normalized reinforcement learning [31]. In the Laplace code, TD-
learning neurons with different parameters are used to encode the timing and
a whole distribution of rewards in the future by representing an analogue of
the Laplace transform in the neural responses. Individual neurons still have
a sigmoid response curve in this code and the dependence between asymme-
try and threshold can be created similarly as in the efficient code by cutting
the curve at different response levels. In their formulation, they subtract the
expected response from each neuron instead of changing the gain (as we predict
and observe). Normalized reinforcement learning [31] proposes that RPENSs
perform divisive normalization with different half saturation constants. This
yields sigmoid (Naka-Rushton [32]) neurons with different thresholds, and the
asymmetry around those thresholds is explained again by cutting the sig-
moids at different heights. Neither of these explanations explicitly examines
code efficiency or attempts to account for the dependencies of gain or slope on
threshold.

Future work could examine how learning rules that produce an efficient
code can be implemented in biologically realistic circuits (perhaps similar to
[33-36]), empirically distinguish between candidate learning rules, and examine
how RPENs can relatively quickly switch from one reward distribution to
another.

Supplementary information. This article is accompanied by Supplemen-
tary Information.
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Online Methods

Analysis of neural data

Variable-reward task. We used the data from the variable-reward task by
[16] as preprocessed by [15]. For details of data acquisition, please refer to
[16]. Five mice were subjected to a variable-reward paradigm incorporating
two experimental conditions: a no-odor condition and odor condition. During
each trial, one of seven reward magnitudes (0.1, 0.3, 1.2, 2.5, 5, 10, and 20 nL)
was randomly chosen with probabilities of 0.066, 0.091, 0.15, 0.15, 0.31, 0.15,
and 0.077 respectively. Electrophysiological data were recorded from n = 40
ventral tegmental area dopaminergic RPENs. From each of the mice, 3, 6, 9,
16, and 6 neurons were selected respectively. One neuron was excluded because
it had never shown a single response larger than its baseline for any reward
magnitude. We used the data as preprocessed by Dabney et al.[15]. As part
of this preprocessing, on each trial, a pre-stimulus response was subtracted
from the later responses. As this procedure yielded negative firing rates, we
additionally subtracted for each neuron the overall smallest response from all
its responses.

Variable-distribution task. To further investigate response of dopamin-
ergic RPENs with different reward distributions, we analyzed the data from
the variable-distribution task presented in Rothenhoefer et al. [17]. For detailed
data acquisition methods, we refer to that paper. Two macaque monkeys were
subjected to a variable-reward paradigm, where cues indicated rewards from
either a uniform or a normal distribution. In each trial, rewards of 0.2, 0.4, or
0.6 mL were delivered based on a uniform distribution (1/3 chance for each
amount) or a normal distribution where 0.2 and 0.6 mL had a 2/15 proba-
bility and the 0.4 mL reward had an 11/15 probability. Electrophysiological
data from RPENs were collected to monitor dopamine responses. Peri-stimulus
response was subtracted from the later responses, and smoothed as in the
variable-reward task.

Logistic fits

For each neuron separately, we fitted logistic sigmoid functions o(R) =
1—67‘10‘2% to the responses. We denote the gain ap, the slope as, and
the midpoint agz collectively by a. To estimate the parameters, we used
maximum-likelihood estimation based on Poisson noise, so that

T
a= argminz (rjlog (c(Rj; a)) — o(Rj; a)), (3)

a le
where r; is the measured firing rate of a neuron responding to the reward
magnitude R; on the jth trial. We proceeded to compare the fitted parameters
between the data and the efficient code.
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Fitting asymmetric slopes

To enable comparisons to the asymmetry data of [15], we repeated their anal-
ysis and applied the same asymmetry calculation to the simulated neurons in
our efficient code.

First, we subtracted a baseline from the smoothed PSTHs for each neuron
and each trial. The baseline was the mean firing rate over the 1000 ms before
stimulus onset. We then estimated asymmetric slopes, 37 and 3~ by separately
fitting linear functions to the responses above and below threshold. Following
Dabney et al. [15], we used estimated utility space as x-axis for this step, but
the results are not sensitive to the choice of utility function.

In math terms, the slope above threshold 57 and the slope below threshold
B~ for responses y; to rewards R; are thus defined as:

B = argmmz r+ B (R —6) — J] , for Rj >0
B; = argmlnz "+ B (R —0) — y]] , for R; <0,
74 ] 1

where 7* is the spontaneous firing rate and the sum over j runs over the T
trials.

To achieve more efficient fitting than Dabney et al. [15], we derive analytical
solutions for ST and 3~ for a given #, which are:

PO 1<RJ 0)(y; — )
(R —0)?

z]ll(Rj —0)(y; — )
i1 (R —0)2

B = for R; >0 (4)

B; = for R; < 6. (5)

Thresholds — called reversal points in [15] — were then chosen to minimize
the overall sum of squares, by sampling 20,000 thresholds from an uniform
distribution between the range of rewards and choosing the best-fitting one.
Dabney et al. used the same random sampling procedure for 3+ and 5.

For fitting our simulated neurons, we set the threshold 6 = h;'(r*)
and y; = h;(v;) and fit the Bs based on the results for 10° trials each
above and below threshold, sampled from the approximated log-normal reward

distribution restricted to the range above and below threshold respectively.

Derivation of the efficient code

To derive the efficient code for reward, we extend the framework for analyt-
ical solutions proposed by Ganguli and Simoncelli [18]. In this framework, a
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uniform standard population is defined on the unit interval [0,1] . By using
an adaptable mapping between the unit interval and the stimulus space and
functions that transform the population, we can define a broad class of popula-
tions among which we can find the most efficient ones analytically. We extend
this framework by allowing the distribution of neurons to be non-uniform ,
which decouples the local slope and density of neurons that are coupled in the
original framework.

Definitions

We start by defining a “standard” population of RPENs. This standard pop-
ulation is a collection of sigmoidal tuning curves s, : [0, 1] — [0, 1] indexed by
their ’center’ w € [0, 1]. Individual neurons are assumed to be monotonically
increasing functions whose derivatives are unimodal functions with their peak
near w. Additionally, we assume that the overall Fisher information Ir(z) of
this population about the position z € [0,1] and the overall increase in firing
rate are independent of x i.e.:

/s;(x)dw ~ const (6)
Ip(z) = /Ip(m,w)dw ~ const, (7)

where Ir(z,w) is the Fisher information provided by the tuning function with
center w and s/, (x) is the derivative of the tuning function.

Finally, we assume that the total amount of Fisher information provided
by each neuron is approximately constant:

/Ip(x, w)dx = const. (8)

One simple way to construct a population that fullfills these criteria is
to start with a prototypical sigmoid function sy centered on 0 and defin-
ing the other tuning curves as s,(z) = so(z — w). This construction often
leads to strong edge effects at 0 and 1, because a substantial part of the
sigmoid response curves near the borders will fall outside the [0, 1] interval.
We ameliorate these effects by using a more sophisticated population based
on cumulative beta distributions below. Nonetheless, this simple construction
illustrates the intuition behind a uniform population of sigmoidal neurons well
and was actually used by Ganguli and Simoncelli in their implementation.

To map between the unit interval and stimulus space we use a strictly
monotonic function F(R) = ffoo f(s)ds from the stimulus space into the unit
interval, parameterized by its derivative f(s) > 0, which we will optimize
below. As F is strictly monotonic, it is also invertible, with its inverse F~!
mapping the unit interval into stimulus space. Additionally, we allow a gain

!Ganguli and Simoncelli [18] used the interval [0, N], where N is the number of neurons, which
is entirely equivalent.
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function g > 0 of stimulus space, which scales the tuning curve of neurons
placed at different positions in stimulus space.

With these definitions, we can now define the tuning function h, of a
neuron with midpoint at stimulus level u:

hu(R) = g(1)sp ) (F(R)), 9)

i.e. we map both the positions of the neurons and the stimuli into the unit
interval, evaluate the sigmoids there and scale the result with the gain.

Up to this point our definitions are equivalent to those of Ganguli and
Simoncelli [18], who now assume that the neurons are equally spaced in the
interval. This additional assumption makes it impossible to place more neu-
rons in some stimulus range without changing their shape. This removes one of
the possible adaptations of a neural populations mentioned by other authors
like Wei and Stocker [37] for example. To allow different distributions of the
neurons, we instead assume that the p; are drawn from a distribution over
reward space with density d, which we will optimize below. The equal place-
ment assumed by Ganguli and Simoncelli is equivalent to the assumption
d(R) = f(R), which yields a uniform distribution over the placements in the
unit interval w.

Optimization Objective

We further assume that the firing rates of the RPENs are subject to inde-
pendent Poisson noise, which is the simplest noise assumption. We can then
calculate the Fisher information Ir(R; 1) provided by a neuron centered on p:

S
In(R; p) = g(u)m

F*(R). (10)
We then optimize the expected value (over both R and p) of the logarithm of
the Fisher information Ir, based on N neurons:

Iy = ERE, llog <le ZIF(R; m))] (11)

This objective was originally proposed as a lower bound on the mutual
information between the neural responses and the stimulus [18, 38, 39], which
becomes tight for small Gaussian shaped errors on the encoded value. How-
ever, some later publications cast doubt on this interpretation: In particular,
[40] interprets this equation as an upper bound on mutual information instead.
Additionally, low firing rates and/or steep changes in firing rate can lead to
this approximation being highly inaccurate, and this realm is actually reached
for cases in which neurons are measured only for short times [41]. Nonethe-
less, Iy remains the best Fisher information-based approximation to mutual
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information, and we follow Ganguli and Simoncelli [18] in optimizing it. They
also tried a few other functionals of Fisher information and got qualitatively
similar results. Mutual information itself is unfortunately untractable for these
derivations.

Assuming further that there is a large population of RPENs, we can now
look at this distribution in the limit of infinitely many neurons. According to
the strong law of large numbers, the logarithm of the mean in Eq. (11) almost
surely converges to the logarithm of the expected Fisher information, because
the Fisher information provided by each single neuron has finite variance:

lim log (;ZIF(R; m)) =logE, [Ir(R; p)] (12)

N —oc0

Because this is a constant with respect to u, we can drop the outer expected
value, yielding:

1= lim Iy = Ep [log (B, [Te(R; m)])]- (13)

To make this expression amenable to optimization, we simplify it as follows:

Eg [log (E, [Ir(R; 1)])] (14)

[ o 3%(H)(F(R))2 )

= /_Oop(R) log (/_Oo d(u)g(u)isF(u)(F(R)) fA(R)dp | dR (15)
o o0 i (F(R))?

-~ F(p)

~ [ nryos (d(R)g(R)f(R) |t (1) du) aR - (16)

~ constant + /jo p(R)log (d(R)g(R)f(R)) dR. (17)

Here, we eliminated the inner integral through two steps, which are
only approximately correct: First, we observe for sigmoidal functions, that
% is a unimodal function that is centered around R, which effec-
tively acts as a smoothing kernel that is convolved with the rest of the integral.
If d(p), f(p) and g(p) change little over the range of this smoothing kernel,
we can replace them by their values at R and pull them out of the integral.
Second, the integral over p we are left with is (approximately) shift-invariant,
i.e. the same for all R and invariant to the monotonic transformation F, if the
original population is (approximately) uniform as defined in Egs. (7) and (8).

The final optimization problem is now to optimize this approximation of I
with respect to the three functions d, g, and f:

i~ [ " p(R) log (d(R)g(R) f(R)) dR. (18)

— 00
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Additionally, we enforce that the expected number of spikes E[r] under the
prior distribution is smaller or equal to a bound 7,.x. The expected number
of spikes is:

E[T] = NEgr [Eu[hu(Rm (19)
_N / p(R) / d(1)g (1) (F(R))dudR (20)
zwv[fdwmwy/WMRM&m (21)
= N/_OO d(p)g(p)(1 = P(p))dp, (22)

where P is the cumulative density function of the reward distribution. In Eq.
(21), we approximated the sigmoid with a step function at u. This approxi-
mation is close if p(R) is near constant over the range where the sigmoid h,,
changes from 0 to 1. This is the case if the sigmoids are reasonably steep.

There are two further constraints, one to make d a valid probability density
and one to limit the range of F' to the unit interval:

D= /OO d(R)dR =1,  d(R) >0 (23)
Faws = [ (RMR=1, () >0 (24)

Solving the Optimization

Now we are ready to solve this optimization problem using Lagrange multi-
pliers. To do so, we first compute the functional derivatives of our objective
function:

O gy — P(B)
Of by _ P(R)
6, . p(R)

Similarly, we compute the functional derivatives of the constraints. First,
for the expected spike rate:

SER]
o (28)
B ry = (1 - P(R)d(R): (20)

dg
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OE[r]
od

(R) = (1 = P(R))g(R).

Second, for the integral of the density D:

0D
o7 B =0
0D
E(R) =0
0D
sa =1

And finally, for the upper end of the interval reached by F', Fiax:

5Fmax
= 1'
S () =1
5Fmax _
S (R) = 0
5Fmax _
5d (R)=0

21

(30)

(31)
(32)

(33)

(34)
(35)

(36)

With these derivatives in place, we solve the optimization problem using
Lagrange multipliers Az, Ap, Ar, which results in the following three equations:

WR
fm M=o
ggg — Apd(R)(1 - P(R)) = 0;
Z%—AR (R)(1 = P(R)) = Ap =0

From Eq. (38), we obtain

Ard(R)g(R)(1 - P(R)) = p(R)

d(R)g(R) = — P

Mr(l—P(R)) ~ 1- P(R)

(37)
(38)

(39)

(40)

(41)
(42)

By inserting this result into Eq. (39), we see that it is guaranteed with Ap = 0.
We conclude that under a constraint on the expected number of spikes,
the neural population that optimizes the Fisher information bound on mutual

information has the following properties:
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® The inverse slope of the sigmoids is proportional to the probability density.

® The product of the probability density for neurons with a given midpoint
and the gain for neurons with this midpoint is equal to the ratio of the
reward probability density and the probability that rewards larger than the
midpoint appear.

The formulation by Ganguli & Simoncelli [18] with equally spaced neurons
in the unit interval enforces the additional constraint that d(R) «x f(R) and
thus arrives at the special case of d(R) o p(R) and g(R) < (1 — P(R))™L.

Splitting density and gain

In our solution, d and ¢ entirely compensate for each other. Due to the fact
that their product needs to be proportional to a product of the two factors
p(R) and #(R), a natural choice to parameterize a family of solutions is to
use a parameter « € [0, 1] that trades off the distribution of the two factors to
density and gain:

p(R) 1

AR T pmpyre > T @y

(43)

Effectively, « trades off the gain increase at higher thresholds against plac-
ing more neurons at higher thresholds. We illustrate this for several different
reward distributions and values of « in Fig. 5.

Other ways of writing % as a product of neural density and gain
are possible, but the split we chose has two convenient properties. First, the
density p(R) appears only as a whole factor, which corresponds to the density
of the reward distribution actually observed by the animal. This allows realistic
learning rules for the neurons, as we derive below. Second, this formula for
the density yields a valid density when o« > 0 independent of the reward
distribution, so that the same split can be applied to all distributions. We can
derive this fact by looking at the uniform distribution on [0, 1]. For this reward
distribution, the density of neurons becomes (1 — 2)*~!, whose integral over
[0,1] is:

! 1 oL
/ (l—l‘)a_ld.’li: |:_(1_x)a:| — ) or >0 (44)
0 a 0 oo, for a <=0

Thus, the valid range for « for the uniform distribution is exactly the positive
numbers. For any other reward distribution, we can transform the distribution
of neurons for the uniform distribution with the inverse cumulative density
function P~'. This yields samples with the desired density é%,
which must therefore be a valid density.
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Fig. 5 Illustration of the solution of the efficient coding problem, varying a (rows) and

the reward distribution (columns). The reward distributions are all log-normal distributions
with their pdfs and parameters plotted at the top.

Choosing a Solution

We fitted « using only the midpoints of the measured neurons. To do so, we
extracted the midpoints of the measured from logistic function fits as described
above. We then estimated a using maximum-likelihood estimation, resulting
in & = 0.673.

The requirements we put forth in Egs. (6)-(8) are approximately met by
many populations of sigmoid-shaped tuning curves. Thus, the exact shape and
in particular the slope of the sigmoid are not fixed by these efficient coding
considerations. For all optimal populations in this paper we use the cumulative
density functions of beta distributions, because these sigmoid functions are
defined on the unit interval [0, 1] and become exactly 0 and 1 at the ends of
the interval, which yields good boundary behavior. These sigmoid functions
are not exactly shifted versions of each other as we assumed in the derivations,
but functions that are shifted versions of each other lead to relatively strong
boundary effects that produce worse deviations from the theory. To place a
neuron at a specific position p € [0, 1], we set the parameters such that p is the
mean of the beta distribution (a = kp,b = k(1 —p)). Thus, we are left with one
more parameter k > 0, which controls the slope of the sigmoid functions. As
the efficient coding scheme does not determine what the overall slope should

be, we set k = 5.20 to fit the threshold distribution of measured neurons
as described below. We do not expect other shapes to behave fundamentally
differently.

We used a fixed spontaneous firing rate r* for all RPENs. We fitted r*
and the slope parameter k£ to minimize the mean squared error between the
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Fig. 6 Comparing encoding populations for reward with 10 neurons and the same expected
number of spikes. A: Compared neuronal populations: single neuron: All neurons share
the same response curve, optimized to maximize transferred information. equal
spacing: neurons tile the space, not optimized.no gain: positions and slopes are
optimized, but all neurons have equal gain. optimal o = 1: fully optimized pop-
ulation as derived previously[18] with density proportional to the distribution.
optimal o = 0.673: Equally optimal distribution but with « fit to match the mid-
point distribution for the optimal code and the experimental data. B: Fisher
information as a function of reward for each of the populations. C: Expected
logarithm of Fisher information under the reward distribution relative to the
single-neuron case.

thresholds of the efficient code, 6 = h; *(r*), and the thresholds of measured
neurons:

argminE [6; — hit(r; k)f.
r*, k

The resulting estimates were #* = 7.63 and k = 5.20.

Finally, the efficient code has a parameter ry . that restricts the budget
for spikes. In the efficient code, the gain of all neurons is proportional to this
parameter. To fit this parameter, we fit sigmoids to both the empirical and
the efficient tuning curves as described above and added the squared error of
the neuron-averaged gains to the optimization objective.

Checking the solution

We performed several checks to confirm that the derived population is indeed
efficient given the reward distribution. To do so, we compared the amount of
information communicated to some other populations with the same number
of neurons and the same expected number of spikes (Fig. 6). The optimized
populations retain more information than other populations. The population
with the optimized o = 0.673 is equally efficient as the solution of Ganguli
and Simoncelli [18], which corresponds to o = 1.
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Other Objectives

Our predictions stay qualitatively similar for optimization objectives that
transform the Fisher information in different ways, such as the discrimax objec-
tive studied by [18]. In particular, our results can be derived whenever the loss
is an expected value over a convex function of Fisher information, which goes
to infinity at 0 and is monotonically decreasing. Then there are diminishing
returns for increasing the fisher information at any specific reward value, but
we need to achieve some nonzero Fisher information for finite loss. Then the
optimal population will always be a trade-off between distributing the Fisher
information broadly and the lower cost for higher thresholds.

As the Fisher information itself and the expected spike rate both depend
on the density and gain only through the product of density and gain, we will
find a trade-off between density and gain for any objective function defined in
this way.

Learning rules for the efficient code

Here, we define the learning rules for the efficient code exactly and show that
they converge to the desired population.

Midpoints

We start with a learning rule that makes the midpoints converge to the
quantiles of the reward distribution, so that their density is proportional to
p(R). This covers the o« = 1 case of Eq. (2). Then, we will describe how to
achieve other a-values by choosing the quantiles from a specific non-uniform
distribution.

To create a neuron that converges to the quantile g of the reward distribu-
tion, we can adjust its midpoint p in analogy to the distributional RL learning
rule: When a reward above p occurs, we increase p by a constant value 7, if
a reward below u occurs, we decrease p by a (usually) different value ~y_:

pi — - for R < p;;
Pi1 = (45)
pi+ v+ for R > py.
The expected change of the midpoint with this learning rule is:
E(pitr — pi) = P(R > pi)v4 — P(R < p)v- (46)
= (1= P(R < pi))y4+ — P(R < pi)y- (47)
=7+ — P(R < pi) (4 +7-), (48)
which is 0 exactly if the current quantile of u, P(R < pu;), satisfies
P(R < i) = —— (49)

T
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negative if it is larger, and positive if it is smaller. If we set v and ~_ such
that ¢ = ,YJ:’Tﬁy_, the neuron with these parameter values will converge to (or
oscillate around) the desired quantile. By setting the distribution of v, and
~v_ values across the population of neurons, we can thus enable convergence to
an arbitrary distribution of quantiles. Choosing a uniform distribution solves
the a =1 case.

To enable convergence to a distribution with density proportional to
% for a # 1, we can choose quantiles proportional to W.
By the transformation theorem for probability densities, this will result in a
distribution with the desired density.

Slopes

The slopes need to converge to values proportional to the local density of
rewards, see (40). As in kernel density estimation, an estimate of the density
around the midpoint of a neuron i can be found by evaluating a positive kernel
function K with integral 1 at the observed reward values R;:

() = 5 3 KR~ ) (50)

From this equation, we could already derive a simple learning rule for the slope
of the sigmoids, namely setting them based on a running average of these kernel
evaluations. This would imply a fixed kernel size for any reward distribution
though, which would be suboptimal if the variance of reward distributions
varied. To avoid this problem, we can use learning rule that adapts the kernel
size simultaneously with the slope. We set the width of the kernel h anti-
proportional to the slope b of the sigmoid function. Thus, the tuning function
and the kernel are stretched and shrunk equally, such that bh = constant.
Then we get:

A 1 & Ri—p
constant = bh = d(u)h = N ;k ( W ) . (51)

In other words, we need to define a learning rule, such that k (%) converges
to a constant. This can be achieved for any constant ¢ € [0, k(0)] by changing
the slope and kernel width proportional to & % —c¢. As h and b need
to stay positive, we perform these updates in log-space, i.e. multiply both by
exp A (k (%) — c) for some small learning rate \.

Gain learning

As the first of two ways of adjusting the gain of a neuron, we can use the
expected firing rate before scaling with the gain. This can achieve convergence
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to the efficient code, because the factor 1 — P(u) arises as an approximation
of the expected firing rate of a neuron in Eq. (22) before multiplication with
the gain. To learn this value, a neuron can compute a running average of the
unscaled neural responses 7 with some learning rate \,.:

Fir1 = (1 — A7 + A% (52)

Plugging this into the efficient code solution yields:

gi = (53)

&Q“ —_

With a = 1, this learning rule would yield the same expected firing rate for
all neurons. With a < 1, it yields a less extreme growth in gain.

Gain coupled to quantile

Another way of adjusting the gain is by setting a fixed gain based on the
quantile a neuron is meant to converge to. As the quantile fixes P(u), we
can read off the correct value from the analytical efficient coding solution, i.e.
set the gain g equal to ﬁ for neurons that are meant to converge to the
quantile q.

Expectiles instead of quantiles

For the figures in the main text, we placed neurons’ midpoints at the quantiles
of the reward distribution as predicted by maximizing coding efficiency. As
distributional RL predicts that neurons should converge to expectiles instead,
we tested the efficiency of such a code in Extended Data Fig. 3. The efficiency
of the code is slightly lower for the expectile-based code, due to a slight shift
of midpoints towards the mean of the distribution. These differences are small
and the code does not show qualitative differences. We understand them as
essentially equivalent.
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Extended data figures
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Extended Data Fig. 1 Efficient code for the variable-reward task [16]. A: Tuning curves.
For clarity, only 20 of 39 neurons are shown. B: Density of neurons as a function of midpoint.
C: Gain as a function of midpoint.
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Extended Data Fig. 2 Efficient code for the variable-magnitude task [17]. A-C: Efficient
code for the uniform distribution. D-F': Efficient code for the normal distribution. A,D:
Tuning curves. For clarity, only 13 of 40 neurons are shown. B,E: Density. C,F: Gain.
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optimal single neuron
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Extended Data Fig. 3 Evaluation of learning rules placing neurons’ midpoints at expec-
tiles instead of quantiles. Plotting conventions as in Fig. 4. Each panel shows the converged
population of 20 neurons after learning based on 20,000 reward presentations. The inset
illustrates the learning rule. A: Learning the position on the reward axis for the neurons to
converge to the quantiles of the distribution. This learning rule is the distribution RL learn-
ing rule. B: Additionally learning the slope of the neurons to be proportional to the local
density by increasing the slope when the reward falls within the dynamic range and decreas-
ing otherwise. C: First method to set the gain: iterative adjustment to converge to a fixed
average firing rate. D: Second method to set the gain: use a fixed gain per neuron based on
the quantile it will eventually converge to. E: The efficient tuning curve for a single neuron.
F: The analytically derived optimal solution. G: Comparison of information transfer across
the different populations with the same number of neurons and expected firing rate.
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Supplementary Information

Comparing thresholds and midpoints

reward density
—— efficient code
—— measured neurons
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Fig. S1 Log-normal kernel density estimation of midpoints and threshold. (A) and thresh-
olds (B). Measured neurons (black) and efficient code (cyan) are overlayed over the reward
density (gray).

Since we are using two metrics for the placement of neurons, threshold
and midpoint, we discuss here how they compare. In our formalism, “density”
refers to the midpoint of a neuron with a sigmoid response function. Threshold
is the reward when a neuron fires at spontaneous activity; this is the point at
which the neuron codes zero prediction error in reinforcement learning. Their
distributions are slightly different. The relationship between the two depends
on the relationship between the gain of the neuron (which defines the midpoint)
and its spontaneous firing rate (which defines the threshold). A neuron whose
gain exceeds twice its spontaneous firing rate has a higher midpoint than
threshold, as reward needs to be higher for the firing rate to reach half the
gain than to reach the spontaneous rate. The threshold will then lie in the
lower, convex part of the response function. Correspondingly, a neuron with
gain less than twice its spontaneous rate has a higher threshold than midpoint,
and its threshold will lie in the upper, concave part of the response function.
In the efficient code, gain increases with threshold. As a result, the prediction
is that low thresholds are higher than their corresponding midpoints and high
thresholds are lower than their corresponding midpoints. In turn, this means
that the threshold distribution should be less dispersed than the midpoint
distribution.

We illustrate this in the variable-magnitude task (Fig. S1). Empirically,
the threshold distribution is indeed narrower (and taller) than the midpoint
distribution, as predicted by the efficient code. Additionally, the spontaneous
firing rate we estimated for this task is lower than the average half gain.
Correspondingly, the average threshold (5.00 uL) is smaller than the average
midpoint (5.96 pL). These shifts are all relatively small though, and the rela-
tionships with other variables (Fig. 2B, D, F) hold for midpoints as they do
for thresholds.
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