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Abstract

In this paper, we study the fundamental limits of simultaneous semantic information and power

transfer in wireless networks, where we consider both the point-to-point case as well as the Gaussian

multiple access channel (MAC). Specifically, for the point-to-point case, we consider a three-party

communication system, where a transmitter aims to simultaneously convey semantic information to an

information receiver and deliver energy to an energy harvesting receiver (ER). An achievable and a

converse region in terms of information and energy rates are presented for both the discrete memoryless

(DM) and Gaussian channel. For the DM channel, the achievable region is obtained by using the

asymptotic equipartition property and a converse region is obtained by using outer bounds on the

semantic information rates. For the Gaussian channel, we characterize an achievable region by using a

power splitting technique between the information and the semantic context parts. A converse region

is obtained that provides an estimate on the information-energy capacity while taking into account

semantics. On the other hand, for the Gaussian MAC case, we consider a setup where a semantic

transmitter and a conventional transmitter are employed subject to an energy harvesting constraint at the

ER. Specifically, we characterize the semantic-bit information energy region, by providing an achievable

and a converse region. Numerical results show that in both cases a higher performance can be achieved

in terms of information and energy rates by considering a low semantic ambiguity code in comparison

to the classical coding scheme (without semantic). Moreover, in the context of Gaussian MAC, it is

shown that is better to use semantic communications in scenarios with low signal-to-noise ratio (SNR),

while conventional communications is preferred at high SNRs.
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I. INTRODUCTION

When Shannon established the theoretical foundation of communications engineering in 1948,

he intentionally excluded semantic aspects from the system design [1]. However, Weaver [2]

expanded upon Shannon’s work and proposed a classification of communication into three levels.

The first level involves the transmission of symbols, as defined in Shannon’s classical Information

Theory. At this level, the primary concern is the accuracy with which the communication symbols

are transmitted. The second level pertains to the precision with which the transmitted symbols

convey the desired meaning. This level recognizes the importance of semantic information in

communication, encompassing the interpretation of meaning by the information receiver (IR),

referred to as semantic communications. The third level focuses on the effects of semantic

information exchange on communication and coding schemes. This level explores how the

received meaning influences communication processes and the design of coding systems. By

considering these three levels, we gain a more comprehensive understanding of communication,

encompassing not only the accurate transmission of symbols but also conveying the meaning

and the impact of semantic information on the overall communication process.

In the last few decades, wireless communication systems have experienced significant develop-

ment from the first generation (1G) to the fifth generation (5G) with the system capacity gradually

approaching the Shannon limit [3]. Nevertheless, the meaning behind the transmitted data in

classical Shannon’s framework is expected to play an important role in 6G communications.

Therefore, semantic communication techniques can be used to enable wireless devices to extract

and transmit the meaning of original data to reduce the heavy congestion of current wireless

networks, thus improving the network’s efficiency [4]. However, using semantic communication

techniques for data transmission faces several challenges such as semantic information modeling

and extraction, original data recovery, and the definition of appropriate semantic metrics that

can capture the effects of wireless factors (e.g., transmit power, packet errors) on semantic

communications [5]. Existing research suggests that semantic communications shows promise

in scenarios where the signal-to-noise ratio (SNR) is low or the available wireless resources are

limited. In other words, semantic communications typically requires less power or bandwidth

resources compared to conventional communications while achieving similar performance [6].

The authors in [7] use a novel approach to model the semantics through a Bayesian game,

where the semantic similarity is used as a semantic error metric. The work in [8] proposes a
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signal shaping method by minimizing the semantic loss, which is measured by the pretrained

bidirectional encoder representation from transformers (BERT). In [9], the authors propose a

deep learning based multi-user semantic communication system that can extract the semantic

information of image and text from different users. The authors in [10] investigate a novel

framework that enables users to communicate with a base station using a semantic communication

and energy harvesting (EH) technique. Semantic data can be compressed to a proper size for

transmission by using a lossless method [11], which utilizes the semantic relationship between

different messages.

Given these significant advantages of semantic communications, it is reasonable to explore

their application in other promising communication technologies to further enhance the per-

formance. Among them, simultaneous wireless information and power transfer (SWIPT) is a

technology that leverages the dual nature of radio frequency (RF) signals, enabling them to

carry both information and energy [12]. The concept of wireless power transfer was initially

proposed by Tesla in the 20th century [13], and it now presents a promising solution for future

communication systems such as low-power short-range communication systems, sensor networks,

machine-type networks, and body-area networks [14]. In the context of point-to-point SWIPT

scenarios, the work in [15] first formalized the notion of information-energy capacity region.

This work was further extended in [16] to include parallel links in point-to-point channels. More

recent research has focused on integrating SWIPT into more complex network topologies, such as

multiple access channels (MAC) [17], interference channels [18], multiple-input multiple-output

systems [19], multiple-antenna cellular networks [20], and others. A comprehensive overview

of existing results in SWIPT for various fundamental multi-user channels is provided in [21].

Ongoing research continues to explore and advance the understanding of SWIPT in various

network scenarios, aiming to optimize its performance and unlock its full potential benefits

in modern communication applications. Specifically, in a SWIPT communication network with

semantics, users can boost their EH capabilities by compressing data using semantic encoding.

This combination of semantic information and EH has applications in wireless sensor networks,

internet of things, and smart grids [22]. Semantic communication helps these systems to make

better decisions based on data context, leading to more efficient energy management, reduced

waste, and improved EH. Using semantic communication protocols in MAC scenarios [23]

allows multiple users to efficiently share communication resources, enhancing capacity and

reducing interference. Integrating MAC and SWIPT enables energy-efficient communication,
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improved cooperation, sustainability, and extended network coverage. These advancements lead

to more advanced wireless communication systems that address energy constraints and enhance

EH performance [17].

With the exception of a few studies (e.g., [6]), existing works do not consider the effects of

multi-user setting on semantic communication performance. In addition, most of the aforemen-

tioned studies on SWIPT systems focus on the conventional communication and therefore the

impact of semantics has not been investigated. To the best of the authors’ knowledge, this is

the first work that takes into account the effect of semantics on SWIPT systems over multi-

user setting from an information theory standpoint. The main contribution of this work is a

novel framework that enables the study of the fundamental limits of SWIPT with semantic

communications in wireless networks. In particular, we first consider a basic point-to-point

semantic SWIPT communication system, where a transmitter simultaneously sends data to an

IR and power to an EH receiver (ER). We propose an information-theoretic framework to

characterize an achievable information-energy region as well as its converse for the discreet

memoryless (DM) channel and the Gaussian channel by taking into account the semantic context

into the communication. For both cases, an achievable region is obtained by using the asymptotic

equipartition property (AEP) and a converse region is obtained to provide an estimate of the

information-energy capacity while taking into account semantics. For the Gaussian multiple

access channel (MAC), we consider a system where a semantic transmitter and a conventional

transmitter are employed subject to an EH constraint at the ER. Specifically, we characterize the

semantic-bit information energy region by providing an achievable and a converse region for the

information-energy region. For the proof of achievability, the key idea is the power splitting

between the two signal components: the information-carrying component and the semantic

context component. The construction of the former is based on random coding arguments,

whereas the latter consists of a deterministic sequence known by the first transmitter and the

IR. The proof of the converse is obtained using Fano’s inequality for semantic communications

and appropriate concentration inequalities. By studying the DM channel, the Gaussian channel,

and the Gaussian MAC, we gain a deeper understanding of the impact of noise, interference,

and other factors on the performance limits of SWIPT systems with semantics. This knowledge

can be leveraged to design efficient SWIPT systems that are more resilient and reliable, with

improved information and energy capabilities. Numerical results show that by considering a

low semantic ambiguity code, a higher performance is observed in comparison to conventional
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Notation Description Notations Description

n Number of channel uses X Random variable of the input signal

M Cardinality of the states T Random variable of the extended alphabet

t Time index C(b) Information energy capacity region

Preq Average power constraint for transmitter Xi Sequence of the the input distribution with

length i

Ereq Energy required at the energy receiver Pr(·) Probability operator

h1 Channel fading for the information link I(X;Y ) Mutual information between X and Y

h2 Channel fading for the energy link H(X) Entropy of random variable X

F (n) Sequence of a distribution F I(X;Y ) Mutual information between X and Y

Q Random variable of semantic context CN(0, σ2) Circular complex Gaussian random vari-

able with zero mean and variance σ2

TABLE I: Summary of notation.

communication approaches (i.e., without semantics). Moreover, in the Gaussian MAC case, it

is typically better to use semantic communications when the SNR is low, whereas conventional

communications is preferred at high SNRs.

Notation: The realization and the set of the events from which the random variable X takes

values are denoted by x and X , respectively. The argument E[X] denotes the expectation with

respect to the distribution of a random variable X . C(b) represents the information-energy

capacity region given an EH constraint b. Q̃(·) denotes the tail distribution function of the

standard normal distribution. Table I summarizes the key notation of the paper.

The remainder of this paper is structured as follows. The fundamental limits of the point-to-

point case are presented in Section II. In Section III, we characterize the information-energy

capacity region for the case of Gaussian MAC with a single semantic transmitter. Finally,

numerical results are presented in Section IV and V concludes the paper.

II. POINT-TO-POINT SWIPT WITH SEMANTICS

Consider a three-party semantic communication setup, in which a semantic transmitter aims to

simultaneously convey information to an IR and power to an ER. In particular, we consider two

cases: a DM channel (see Fig. 1) and a Gaussian channel (see Fig. 2). The study of the DM and

the Gaussian channels is crucial as it provides the foundation for characterizing the fundamental

limits of SWIPT systems with semantic communications. Specifically, gaining insights into these

channels can enhance our understanding on how SWIPT systems operate and how they can
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Fig. 1: A SWIPT system over a DM channel for semantic communication.

be optimized for maximum efficiency. First, we provide the following notations that will be

used to characterize the semantic information energy region for the point-to-point channel with

semantics:

• I(X;Y ) = H(X) − H(X|Y ) is the mutual information between X and Y , where H(X)

and H(X|Y ) are the corresponding entropy of X and the conditional entropy of X given

Y .

• H(X|W ) is the equivocation of the semantic encoder. Specifically, a higher H(X|W ) means

higher semantic redundancy in the semantic coding.

• H(Q) measures the semantic context source, or the local information available at the

transmitter and the IR. Specifically, a higher H(Q) means strong ability of the IR to interpret

received messages.

A. DM channel with SWIPT and semantics

The transmitter sends a message w from a set W with a probability distribution P (W = w)

to an encoder. The message w is encoded into a channel input x = (x1, x2, . . . , xn) ∈ X n by

using an encoding function φ : W → X n, where n denotes the number of channel uses. The

output at the decoder is given by y = (y1, y2, . . . , yn) from the set Yn and is observed at the IR

with probability

Pr(Y = y | X = x) =
n∏
i=1

Pr(yi|xi), (1)

where Pr(yi|xi) is the transition probability distribution. The decoder uses a decoding function

ψ : Yn×Q →W . The output at the ER is given by s = (s1, s2, . . . , sn) from the set Sn and is
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observed at the IR with probability

Pr(S = s | X = x) =
n∏
i=1

Pr(si|xi), (2)

where Pr(si|xi) is the transition probability distribution.

In contrast to conventional communication systems, we assume the existence of side infor-

mation provided via a genie-aided channel to the IR [24]. This side information is likely to

be useful in helping the IR to better understand and interpret the semantic information being

transmitted. Specifically, the communication between the transmitter and the IR is taking place

within a specific context, which means that the transmitted information is related to a particular

topic or area of interest [7]. Therefore, semantic context can influence the IR on how it decodes

the received signals, depending on the tasks and/or actions to be executed. The semantic context

is characterized by a random variable Q with respect to a probability distribution P (Q|W ) [7],

which satisfies ∑
q∈Q

Pr (Q = q|W = w) = 1, (3)

where Q denotes the context random variable. Furthermore, we define the semantic distance

between the words w and ŵ as,

d(w, ŵ) = 1− sim(w, ŵ), (4)

where 0 ≤ sim(w, ŵ) ≤ 1 denotes the semantic similarity between w and ŵ. By following

similar steps as in [7], the average semantic error denoted by PSE is given by

PSE =
∑

w∈W,q∈Q,y∈Yn,x=φ(w)

Pr(Y = y|X = x)Pr(Q = q|W = w)Pr(W = w)d(w,ψ(y, q)). (5)

Let E : S → R+ be the function that determines the average energy harvested, given by

E(s) = 1

n

n∑
i=1

g(si), (6)

where g : S → R+ is a positive real-valued function that determines the energy harvested from

the output symbols. Then, the probability of energy-shortage when transmitting the message w

can be written as

PES(b) = Pr (E(s) ≤ b) , (7)
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Fig. 2: A SWIPT system over Gaussian channel for semantic communication.

where b denotes the targeted energy rate at the ER. The system is said to be operating at the

semantic information-energy rate R(b) ∈ R when both the transmitter and the IR use a transmit-

receive configuration such that: (i) a reliable semantic communication at rate R is ensured; and

(ii) a reliable energy transmission at energy rate b is ensured. A formal definition is given below.

Definition 1. From a semantic communication standpoint, an information-energy rate R(b) is

achievable, if the probability of miss-interpretation of the message w, given the context Q,

satisfies the limit PSE → 0, and the energy shortage probability, PES(b), satisfies PES(b) → 0,

for n→∞.

By using Definition 1, the fundamental limits of semantic information and energy transfer

over a DM channel can be described by the semantic-energy capacity region, defined as follows.

Definition 2. The information-energy capacity region C(b) is defined as the maximum rate over

all the achievable rates, i.e.,

C(b)
4
= sup{R(b) : R(b) is achievable}. (8)

B. Gaussian channel with SWIPT and semantics

In this case, the message w is mapped into a vector x ∈ Rn, where n is the number of channel

uses. The channel gains for the IR and ER are considered constant and denoted by h1 ∈ R and

h2 ∈ R, respectively. The received signal at the IR during channel use t is given by

y1,t = h1xt + zt, (9)
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and the ER observes

y2,t = h2xt, (10)

where Z ∼ N (0, 1) is the Gaussian noise with unit variance and is assumed to be independent

of the signal X . The semantic encoder is subject to an average power constraint of the form

1

n

n∑
t=1

x2
t ≤ Preq, (11)

where Preq is the transmit power constraint. By following similar steps as in [8], an upper bound

of the semantic loss for the Guassian case when a maximum likelihood (ML) detector is used,

is given by

PSE =
1

n

n∑
i=1

n∑
j=1,j 6=i

d(xi, xj)Q̃

Ñ
Preq

 
||xi − xj||2

2

é
, (12)

where d(w, ŵ) = 1− sim(w, ŵ), with

sim(xi, xj) =
BΦ(xi)BΦ(xj)

T

||BΦ(xi)|| ||BΦ(xj)||
, (13)

where BΦ(·) is the pretrained BERT model, which provides an efficient way to quantify the

semantic similarity between two different messages [25] and ||x|| denotes the norm of vector x.

For EH, let E : R → R+, where E(y) determines the average harvested energy function,

given by1

E(y2) =
1

n

n∑
t=1

y2
2,t. (14)

Therefore, given an energy constraint b, the energy shortage probability denoted by PES, is

written as

PES = Pr (E(y2) < b) . (15)

C. SWIPT with semantics

In the following, we provide a description of the semantic information-energy region, presented

in the form of an approximation in the sense of an achievable and a converse region.

1For the purpose of this paper, we adopt a linear approximation of the non-linear EH characteristic. The motivation of using

the linear EH model is two-fold: first, it is analytically tractable, and second, it approximates the performance of practical EH

circuits (e.g., linear operation regime) [26].
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1) Achievable and converse regions for the DM channel: Let b0 = maxs∈S g(s) and b1 =

mins∈S g(s). By using these definitions, the following theorem introduces an achievable information-

energy region for semantic communication over a DM channel.

Theorem 1. The information-energy capacity region for semantic communication is lower bounded

by the function C : [b1, b0]→ R+ with

C(b) ≥ max
Pr(X|W )|E(s)≥b

I(X;Y )−H(X|W ) +H(Q).

Proof: The proof is presented in Appendix A.

Remark 1. From the above expression, the achievable semantic energy region could be lower

or higher than the conventional Shannon capacity region sup{I(X;Y )} depending on the term

−H(X|W ) +H(Q). Specifically, we may achieve a higher semantic information-energy region

by considering a semantic encoder with a codebook of lower ambiguity with respect to the

semantic context Q.

The following theorem introduces an upper bound for the SWIPT semantic information-energy

region.

Theorem 2. The information-energy capacity region for semantic communications is upper

bounded by the function C : [b1, b0]→ R+, i.e.,

C(b) ≤ max
Pr(X|W )|E(s)≥b

H(X)−H(X|W )−H(X|W,Y ) +H(Q).

Proof: The proof is presented in Appendix B.

Thus, Theorem 2 provides a fundamental limit on the semantic rate at which information

can be transmitted over a DM channel, while ensuring a certain level of energy reliability. It

establishes a lower bound on the error probability of any reliable communication scheme and

provides a guideline for designing efficient coding schemes that approach the semantic capacity.

2) Achievable and converse regions for the Gaussian channel: In the case of the memoryless

Gaussian channel, the alphabets are continuous. Nonetheless, information and energy transfer

can be described similarly to the DM channel, where the finite input and output alphabets are

replaced by R. The following theorem introduces a lower bound on the information-energy

capacity region for the Gaussian channel.

October 10, 2023 DRAFT



11

Theorem 3. The information-energy capacity is lower bounded by the function C : R+ → R+,

i.e.,

C(b) ≥ max
Pr(X|W )|E(y2)≥b

1

2
log(1 + λ1Preq)− h(X|W ) +

1

2
log(1 + λ2Preq),

where λ1 ≥ 0 and λ2 ≥ 0 denote the fraction of the power dedicated to the input X and the

semantic context Q, respectively, and h(X|W ) denotes the conditional differential entropy of the

input X given the message W .

Proof: The proof is presented in Appendix C.

The following theorem introduces an upper bound for the semantic information-energy region.

Theorem 4. The information-energy capacity region for the SWIPT semantic communication is

upper bounded by the function C : R+ → R+, i.e.,

C(b) ≤ max
E(y2)≥b

1

2
log(1 + µ1Preq) +

1

2
log(1 + µ2Preq),

where µ1 ≥ 0 and µ2 ≥ 0 denote the fraction of the power dedicated to the input X and the

semantic context Q, respectively.

Proof: The proof is presented in Appendix D.

The converse of the information-energy region of a Gaussian channel with semantics is a

fundamental concept in information theory. It sets an upper limit on the rates of communica-

tion possible over this channel and describes the trade-off between the semantic rate and the

achievable EH rate.

III. MULTI-USER SWIPT WITH SEMANTICS

For the two-user memoryless Gaussian MAC scenario, we have a two hybrid transmitters,

one semantic transmitter and one conventional (bit) transmitter and a non-collocated ER. At

each channel use, t ∈ {1, 2, . . . , }, we denote by x1,t and x2,t the real symbols sent by the

semantic transmitters and the conventional transmitter, respectively. The IR observes the real

channel output

y1,t = h11x1,t + h12x2,t + zt, (16)

and the ER observes

y2,t = h21x1,t + h22x2,t, (17)
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Fig. 3: A SWIPT system over the Gaussian MAC for semantic communication.

where h1i and h2i denotes the corresponding real channel coefficients from the semantic and

conventional transmitter to the IR and the EH, respectively. The noise zt is assumed to be a

realization of identically distributed zero-mean unit variance real Gaussian random variables. The

semantic transmitter sends a message W1 from a set W1 = [1, . . . , 2nR1 ] to the IR. Similarly, the

conventional transmitter sends a message W2 from a set W2 = [1, . . . , 2nR2 ] to the IR, where

R1 and R2 denote the semantic and information rate, respectively. The message wi, i ∈ {1, 2}

is encoded into a channel input xi = (xi,1, xi,2, . . . , xi,n) ∈ X n
i by using an encoding function

φi :Wi → X n
i .

Following a similar approach as in the point-to-point case, we assume that the communication

between the bit transmitter and the IR is taking place within a specific semantic context. The

semantic context for the semantic transmitter is characterized by a random variable Q with respect

to a probability distribution Pr(Q|W1). We assume that the channel inputs for both transmitters

are subject to an average power constraint, i.e.,

1

n

n∑
t=1

x2
i,t ≤ Preq, (18)

where Preq denotes the average transmit power of both transmitters. Therefore, the average

harvested energy and the energy shortage probability are given by (14) and (15), respectively.

The system is said to be operating at the semantic/conventional information-energy rate

(R1(b), R2(b)) ∈ R2
+ when both transmitters and the IR use a transmit-receive configuration such

that: (i) a reliable semantic communication at rate R1(b) is ensured; (ii) a reliable conventional

communication at rate R2(b) is ensured; and (iii) a reliable energy transfer at energy rate b is

ensured. A formal definition is given below.
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Definition 3. From a semantic communication standpoint, an information-energy rate double

(R1(b), R2(b)) is achievable if: 1) the probability of miss-interpretation of the message W1, given

the context Q, satisfies the limit PSE → 0 2) the probability of error PSE of the message W2

satisfies the limit PSE → 0, for n → ∞. 3) the energy shortage probability, PES(b), satisfies

PES(b)→ 0, for n→∞.

By using Definition 3, the fundamental limits of semantic information and energy transfer over

Gaussian MAC can be described by the semantic-energy capacity region, defined as follows.

Definition 4. The semantic-bit information-energy capacity region C1(b) is defined as the max-

imum rate over all the achievable rates, i.e.,

C1(b)
4
= sup{(R1(b), R2(b)) : (R1(b), R2(b)) is achievable}. (19)

A. Achievable semantic-bit information-energy region

The following Theorem introduces a lower bound for the semantic-bit information-energy

capacity region.

Theorem 5. C(b) contains all (R1(b), R2(b)) that satisfy

R1 6
1

α

Å
1

2
log(1 + λ1P1)− h(X1|W1) +

1

2
log(1 + λ2P1)

ã
,

R2 6
1

2
log(1 + P2),

R1 +R2 6
1

2
log
(
1 + λ1P1 + P2

)
− h(X1|W1) +

1

2
log(1 + λ2P1),

b 6 1 + P1 + P2 +
√
λ3P1P2,

with (λ1, λ2, λ3) ∈ [0, 1]3.

Proof: The proof is presented in Appendix E.

The achievable region for a Gaussian MAC with a semantic transmitter involves considering

transmission rates and meaningful information conveyed. It represents rate combinations that

reliably communicate, while preserving semantics and ensuring minimum energy rate b at the

ER. The achievable information energy region with semantics considers accuracy and fidelity of

semantic exchange, balancing rates and semantic quality. Points within the defined region adhere

to both semantic preservation and transmission requirements. These points characterize scenarios
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where the intended semantics are effectively transmitted and comprehended. The boundary of this

region outlines the upper limits for the achievable transmission rates while upholding semantic

integrity and ensuring a minimum EH rate at the ER.

Now, for the case where both transmitters are assumed to be semantic, an achievable region

for two user semantic Gaussian MAC is characterized by the following theorem.

Theorem 6. Eb contains all (R1, R2, b) that satisfy

R1 6
1

α

Å
1

2
log(1 + λ1P1)− h(X1|W1) +

1

2
log(1 + λ2P1)

ã
,

R2 6
1

α

Å
1

2
log(1 + λ2P2)− h(X2|W2) +

1

2
log(1 + λ1P2)

ã
,

R1 +R2 6
1

2
log
(
1 + λ1P1 + P2

)
− h(X1|W1) +

1

2
log(1 + λ2P1),

b 6 1 + P1 + P2 +
√
λ3P1P2,

with (λ1, λ2, α) ∈ [0, 1]3.

Proof: The proof is presented in Appendix F.

B. Converse semantic-bit information-energy region

In order to prove the converse of the semantic-bit information-energy region, we will use the

semantic Fano’s inequality introduced in [27]. The following theorem describes a converse for

the semantic-bit information-energy region.

Theorem 7. E(b) is contained into the set of all (R1, R2, b) that satisfy

R1 6
1

2

1

α
(log(1 + µ1P1) + h(X1|W1)) ,

R2 6
1

2
log(1 + P2),

R1 +R2 6
1

2
log
(
1 + µ1P1 + P2

)
+ h(X1|W1) +

1

2
log(1 + µ2P1),

b 6 1 + P1 + P2 +
√
µ3P1P2,

with (µ1, µ2, α) ∈ [0, 1]3.

Proof: The proof is presented in Appendix G.
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Fig. 4: Achievable semantic information-energy region

versus converse region over the DM channel.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 5: Achievable semantic information-energy region

versus conventional capacity over the DM channel.

IV. NUMERICAL RESULTS

For the DM channel, without loss of generality, we consider a binary symmetric channel

(BSC) with crossover probability ρ, i.e.,

Pr(Y = y | X = x) = ρl(y,x)(1− ρ)n−l(y,x), (20)

where l(y,x) is the Hamming distance between y and x. For the sake of illustrating our results,

we consider a binary set of context Q = {q1, q2}, which satisfies the following distribution [7]

Pr(Q = q1|W = w) =


1, if w = car, automobile,

0, if w = bird,

0.5, if w = crane.

(21)

The average energy harvested at the ER for the BSC case is given by [28]

E(ρ) =
1

n

n∑
n=1

[(1− ρ)Pr(xn = 1) + ρPr(xn = 0)]b1 + [ρPr(xn = 1) + (1− ρ)Pr(xn = 0)]b0,

with b0 = g(0) and b1 = g(1). A benchmark word set from semantic similarity literature is

used with Pr(W = w) = 1
|W| . Fig. 4 plots the achievable semantic information-energy capacity

and its corresponding converse region. A trade-off between the information rate and energy

rate is observed and becomes evident as b increases. As shown in Fig. 5, by considering a

low semantic ambiguity code, an upper bound for the conventional information-energy capacity

region is obtained by the semantic code.
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Fig. 6: Impact of semantic context on the information-energy capacity region over the Gaussian channel.
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Fig. 7: Impact of the nature of the transmitters on

the information-energy capacity region for the Gaussian

MAC, P1 = P2 = 0 dBW (low SNR).
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Fig. 8: Impact of the nature of the transmitters on

the information-energy capacity region for the Gaussian

MAC, P1 = P2 = 40 dBW (high SNR).

Fig. 6 shows the impact of the semantic context on the information-energy capacity region over

the Gaussian channel. By setting λ2 = 0 (no semantics), we obtain the same region as [29]. By

slightly increasing λ2, i.e., (λ2 = 0.2) we observe an enlargement of the semantic information-

energy region, due to the fact that semantic boost the performance of the information transfer

task as well as EH task. However, by setting λ2 = 0.8 corresponding to a higher ambiguity code,

we observe a lower performance in comparison with the conventional Shannon region. Fig. 7

and Fig. 8 gives the achievable information-energy region for the one semantic transmitter case,

two semantic transmitters, and two conventional transmitters for the low SNR and the high SNR
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regime, respectively. Moreover, as seen from Fig. 7 and Fig. 8, the two semantic transmitter

MAC outperforms the other channels for the case of low SNR (P1 = P2 = 0 dB), but performs

worse than the conventional scheme for (P1 = P2 = 20 dB). This is inline with the results

presented in [6], where semantic communication and conventional communication are generally

preferred to be employed at the high SNR and low SNRs, respectively.

V. CONCLUSION

In this paper, we have proposed a novel framework for exploring the fundamental limits

of semantic information and energy transfer in wireless networks. Our focus has been on

point-to-point and multiple access scenarios, where we incorporated the semantic context into

the communication process. For the point-to-point case, we have developed an information-

theoretic framework to characterize achievable information-energy regions and their converses,

considering both the DM and the Gaussian channels. These regions provide insights into the

information-energy capacity while taking into account semantics. For the Gaussian MAC case,

we introduced a system with a semantic transmitter and a conventional transmitter, operating

under EH constraints at the receiver. By analyzing achievable and converse regions for the

information-energy trade-off, we showed that power splitting between information and semantic

context components plays a pivotal role in achieving these limits. Furthermore, our numerical

results indicate that employing low semantic ambiguity codes can lead to improved performance

compared to conventional communication approaches devoid of semantics. In Gaussian MAC

scenarios, our findings suggest that semantic communication is advantageous at low SNRs, while

conventional communication may be preferable at high SNRs.

APPENDIX A

PROOF OF THEOREM 1

The achievability scheme used to obtain the lower bound on the semantic-energy capacity

region relies on the AEP [30] and random coding arguments. By assuming that the semantic

context Q is independent from W , the joint probability distribution is simplified as follows

PrW,X,Y,Q(w, x, y,Q) = Pr(w)Pr(q)Pr(x|w)Pr(y|x). (22)

We generate 2nR n-length i.i.d codewords, according to the distribution

Pr(x) =
n∏
i=1

Pr(xi). (23)
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According to the AEP, the set of all possible sequences is divided into typical sets, where

the sample entropy is close to the entropy of individual variables with high probability, i.e.,

Pr
(
| − 1

n
log p(xn)−H(X)| < ε

)
> 1 − η, with η > 0 and other non-typical sets with low

probability. In the following, we discuss the typical sets, and their properties hold with high

probability for all sequences. A semantic error appears, if a received message is not decoded by

the IR using the context Q. Now, let n be a sufficiently large number. Assume that Q1, Q2, . . . , Qn

is the sequence of the observed context, X1, X2, . . . , Xn is the sequence of the transmitted signals,

and Y1, X2, . . . , Yn is the sequence of the received signals. According to the AEP, there are 2nH(Q)

typical sequences of context. By using the channel coding theorem, there are 2(I(X;Y )−R)n typical

input sequences. For a typical sequence X , there are 2−nH(X|W ) typical sequences of X , given the

context. Hence, there are 2(I(X;Y )−H(X|W )+H(Q))n typical sequences of input, given the context.

Specifically, if

R < I(X;Y )−H(X|W ) +H(Q), (24)

the probability of semantic error PSE → 0, when n→∞.

APPENDIX B

PROOF OF THEOREM 2

Let X , Y , and W be random variables such that W → X → Y forms a Markov chain. Then,

W and Y are independent given X , i.e,

I(Y ;W |X) = 0. (25)

By using the chain rule for the mutual information, the following holds [30]

I(Y ;X,W ) = I(Y ;X) + I(Y ;W |X) (26)

= I(Y ;W ) + I(Y ;X|W ). (27)

Then, by using (25), we have that

I(Y ;X) = I(Y ;W ) + I(Y ;X|W ). (28)

Now, define f 4= I(X;Y )−H(X|W ) +H(Q). Hence, f could be written as follows

f = I(Y ;W ) + I(Y ;X|W )−H(X|W ) +H(Q) = I(Y ;W )−H(X|W,Y ) +H(Q)

=
∑
w∈W

∑
y∈Y

Pr(w, y) log
Pr(w, y)

Pr(y)PrW (w)
−H(X|W,Y ) +

∑
W

pw(W )H(Q|W )
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=
∑
w∈W

∑
y∈Y

Pr(y|w)Pr(w) log Pr(w, y)

Pr(y)Pr(w)
−H(X|W,Y ) +

∑
W

p(W )H(Q|W ), (29)

which follows from the definition of I(X;Y ) in [30]. By using the data procession inequality

[30], i.e, I(X;W ) ≥ I(Y ;W ) and (29), the following holds

f ≤ I(X;W )−H(X|W,Y ) +
∑
W

Pr(W )H(Q|W )

= H(X)−H(X|W )−H(X|W,Y ) +
∑
W

p(W )H(Q|W )

with equality when I(X;W |Y ) = 0. Hence, by using Fano’s inequality [30], we have

R ≤ I(Y ;W ) + I(Y ;X|W )−H(X|W ) +H(Q), (30)

which completes the proof.

APPENDIX C

PROOF OF THEOREM 3

We use the same approach as in the proof of the achievable information-energy region of the

DM channels, i.e., random coding and joint typicality decoding. However, in this case, we must

take into account the power constraint, the non-linear EH constraint as well as the fact that the

variable are continuous and not discrete.

Codebook Generation: We wish to generate a codebook in which all the codewords satisfy

the power constraint as well as the EH constraint. To ensure this, the elements of the codeword

are chosen to be independent and identically distributed, with variance λ1 (Preq − ε), where λ1

denotes the fraction of power dedicated to the non-semantic component and satisfies E[X2
i ] =

b+ ε = λ1Preq, and ε > 0.

Encoding: After the generation of the codebook, the context random variable Q is revealed

to both transmitter and the IR, i.e., we assume that the context Q is sent through a feedback link

by using a fraction λ2 of the power Preq, where λ2 denotes the fraction of the power dedicated

to the semantic component.

Decoding: The IR observes the codeword list and the sequence of the context Q1, Q2, . . . , Qn

generated via a genie-aided link by the transmitter, and decides on w if

• {Xn(w), Y } are jointly typical, {Qn(w)} is a typical sequence, and

• {Xn(w)|W} is a typical sequence given the context.
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By using the AEP, the semantic error probability is upper bounded as follows

PSE ≤ 2n(−I(X:Y )+H(X|Q)−H(Q)−3ε), (31)

which completes the proof.

APPENDIX D

PROOF OF THEOREM 4

Assuming that the message indices W ∈ {1, 2, . . . , 2nR} follow a uniform distribution, the

following holds

nR = H(W ) = I(W ; Ŵ ) +H(W |Ŵ ) (32)

≤ I(W ; Ŵ |Q) + nε (33)

≤ I(X;Y |Q) + h(Q) + nε (34)

= h(Y |Q)− h(Y |X,Q) + nε (35)

= h(Y |Q)− h(Z) + nε (36)

≤
n∑
i=1

h(Yi|Qi)− h(Z) + nε, (37)

where (33) follows from Fano’s inequality, i.e.,

H(W |Ŵ ) ≤ 1 + nRPSE = nε, (38)

where ε→ 0 as PSE → 0; (35) follows from the side information Q provided via a genie-aided

channel to the IR that leads to the enhancement of the capacity. Then, we use a power splitting

technique between the information component and the semantic context Q, i.e.,

Y = µ1X + µ2Q+ Z, (39)

where µ1 + µ2 = 1. Since f : x → 1
2
log(1 + x) is a concave function, by applying Jensen’s

inequality, we obtain

R ≤ 1

2
log(1 + µ1P ) +

1

2
log(1 + µ2P ), (40)

which completes the proof.
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APPENDIX E

PROOF OF THEOREM 5

The proof of achievability uses a very simple power-splitting techniques between information

component and the semantic context Q for the first transmitter.

Semantic source: Given a source message W1 ∈
[
1 : 2nR1

]
. Let S1 represent the inherent

semantic information of W1. Let fs :
[
1 : 2nR1

]
→
[
1 : 2αnR1

]
represent the semantic mapping

from W1 to S1 according to the realization of the random variable Q, with α denotes the

compression factor induced by the semantic encoder.

Random codebook generation: By applying random coding, we randomly and independently

generate 2nRs sequences xn1 (w1), each according to Pr(xn1 ) =
∏n

i=1 Pr(x1i). The generated

sequences constitute the codebook C1 =
[
1 : 2nRs

]
as follows

Pr(C1) =
2nRs∏
m=1

n∏
i=1

Pr (x1i(m)) .

The codebook C is known by both the semantic encoder and the decoder. In order to represent

2αnR semantic information losslessly, Rs must satisfy

Rs ≥ αR1.

Similarly, for the conventional encoder, by applying random coding, we randomly and indepen-

dently generate 2nR2 sequences xn2 (w2), each according to Pr(xn2 ) =
∏n

i=1 Pr(x2i). The generated

sequences constitute the codebook C2 =
[
1 : 2nR2

]
as follows

Pr(C2) =
2nR2∏
m=1

n∏
i=1

Pr (x2i(m)) .

Semantic encoding: Given a source message W1, the encoder finds the corresponding semantic

information set index m1, i.e., to send semantic index m1 ∈
[
1 : 2nRs

]
, and transmits xn1 (m1, Q)

given the context Q.

Conventional encoding: Given a source message W2, the encoder finds the corresponding

semantic information set index m2, i.e., to send semantic index m2 ∈
[
1 : 2nR2

]
, and transmits

xn2 (m2).

Decoding: Let A(n)
ε denote the set of typical (xn1 , x

n
2 ,y) sequences. The IR declares that the

pair (m1,m2) is sent if

(xn1 (m1), x
n
2 (m2),y) ∈ A(n)

ε . (41)
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Otherwise, if there is none or more than one such message, it declares an error E.

Analysis for the probability of error: By the symmetry of the random code construction,

the conditional probability of error does not depend on which pair of indices is sent. Thus, the

conditional probability of error is the same as the unconditional probability of error. So, without

loss of generality, we assume that (m1,m2) = (1, 1) was sent. Let Eq be the event where there

is no typical sequences of the observed context and E1 be the event where there is no typical

sequences of X1 given the observed context. Moreover, we denote by Eij the event where xn1
and xn2 are not typical given the output y, i.e.,

Eij = {(xn1 (i), xn2 (j),y) ∈ A(n)
ε }. (42)

Thus, by the union of events bound, the probability of error denoted by Pr(E) is given by

Pr(E) = Pr
Ä
Eq ∪ E1 ∪ Ec

11 ∪ {Eij}(i,j)6=(1,1)

ä
(43)

≤ Pr(Eq) + Pr(E1) +
∑

i 6=1,j=1

Pr(Ei1) +
∑

i=1,j 6=1

Pr(E1j) +
∑

i 6=1,j 6=1

Pr(Eij), (44)

where Pr(E) is the conditional probability of error given that (1, 1) was sent. From the AEP,

we have Pr(Ec
11)→ 0,

Pr(Eq) ≤ 2nRs2−n(H(Q)−ε), (45)

and

Pr(E1) ≤ 2nRs2−n(H(X1|W1)−ε), (46)

and for i 6= 1, we have

Pr(Ei1) = Pr

Å
(xn1 (i), x

n
2 (1),y) ∈ A(n)

ε }
ã

(47)

=
∑

(x1,x2,y)∈A(n)
ε }

p(x1)p(x2,y) (48)

≤ |A(n)
ε |2−n(H(X1)−ε)2−n(H(X2,Y )−ε) (49)

≤ 2−n(H(X1)+H(X2,Y )−H(X1,X2,Y )−3ε) (50)

= 2−n(I(X1;X2,Y )−3ε) (51)

= 2−n(I(X1;Y |X2)−3ε), (52)

where (52) follows from

I(X1;X2, Y ) = I(X1;X2) + I(X1;Y |X2) = I(X1;Y |X2). (53)

October 10, 2023 DRAFT



23

Similarly, for j 6= 1,

Pr(E1j) = Pr

Å
(xn1 (1), x

n
2 (j),y) ∈ A(n)

ε }
ã

(54)

≤ 2−n(I(X2;Y |X1)−3ε), (55)

and for i 6= 1, j 6= 1,

Pr(Eij) ≤ 2−n(I(X1,X2;Y )−4ε). (56)

It follows that

Pr(E) ≤ Pr(Ec
11) + 2nRs2−n(I(X1;Y |X2)+H(Q)−H(X1|W )−3ε) + 2nR22−n(I(X2;Y |X1)−3ε)

+2n(R1+R2)2−n(I(X1,X2;Y )−4ε) (57)

Since ε > 0 is arbitrary, the condition of the achievability implies that each term tends to 0

as n → ∞. Hence, there exists at least one code with arbitrarily small probability of error.

Furthermore, by combining Rs ≥ αR, the following holds

R1 6
1

α
I(X1;Y |X2, Q), (58)

R2 6 I(X2;Y |X1), (59)

R1 +R2 ≤ I(X1, X2;Y,Q), (60)

b 6 E(Y2). (61)

We consider that the joint distribution follows a Gaussian input distribution

Q ∼ N (0, λ1), X11 ∼ N (0, λ2), and X2 ∼ N (0,
√
P ). (62)

The input symbol is generated given the mutual independent random variables Q, X11, X2,

where the input symbol at the semantic transmitter satisfies

X1 =
√
P1Q+

√
P1X11. (63)

The choice of the Gaussian input distribution (62) yields

I(X1;Y |X2) = log(1 + λ1P1), (64)

I(X2;Y |X1) =
1

2
log(1 + P2), (65)

I(X1, X2;Y ) =
1

2
log
(
1 + λ1P1 + P2

)
. (66)
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Finally, using (64), (65), and (66) into (61), yields the following result

R1 6
1

α

Å
1

2
log(1 + λ1P1)− h(X1|W1) +

1

2
log(1 + λ2P1)

ã
,

R2 6
1

2
log(1 + P2),

R1 +R2 6
1

2
log
(
1 + λ1P1 + P2

)
− h(X1|W1) +

1

2
log(1 + λ2P1),

b 6 E(Y2),

with (λ1, λ2) ∈ [0, 1]2, which completes the proof.

APPENDIX F

PROOF OF THEOREM 6

First, we fix a semantic information-energy achievable pair rates (R1(b), R2(b)) with a given

coding scheme (see Definition 3). Denote by X1 and X2 the channel inputs resulting from

transmitting the independent messages W1 and W2 using such coding scheme, we can now

bound the rates R1, R2 and the sum rate R1 +R2 as follows

nR1 = H(W1) (67)

= I(X1;Y ) +H(W1|Y ) (68)

≤ I(X1;Y ) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (69)

= H(X)−H(X|Y ) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (70)

≤ H(X1|X2)−H(X1|Y ,X2) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (71)

= I(X;Y |X2) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (72)

= H(Y |X2)−H(Y |X1,X2) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (73)

= H(Y |X2)−
n∑
i=1

H(Yi|Y i−1,X1,X2) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (74)

= H(Y |X2)−
n∑
i=1

H(Yi|X1i, X2i) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (75)

=
n∑
i=1

H(Yi|X2)−
n∑
i=1

H(Yi|X1i, X2i) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (76)

≤
n∑
i=1

H(Yi|X2)−
n∑
i=1

H(Yi|X1i, X2i) + +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1 (77)
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=
∑
i=1

I(X1i;Yi|X2i) +
Ä
1− α + (γ + α− 1)P (n)

e,s

ä
nR1, (78)

where (69) follows from Fano’s inequality [27]; (71) follows from the data-processing inequality;

(75) follows from the chain rule; (76) follows from the fact that Yi depends only on X1i and

X2i by the memoryless property of the channel; (77) follows from the chain rule and removing

conditioning. Hence, we have

R1 ≤
1Ä

α− (γ + α− 1)P
(n)
e,s

ä
n
+

1
n

∑
i=1 I(X1i;Yi|X2i)

α− (γ + α− 1)P
(n)
e,s

. (79)

Following similar steps, we obtain

R2 ≤
1

n

n∑
i=1

I(X2i;Yi|X1i) + ε. (80)

Finally, we bound the sum rates as follows:

n(R1 +R2) = H(W1;W2) (81)

= I(W1,W2;Y ) +H(W1,W2|Y ) (82)

≤ I(W1,W2;Y ) + nε (83)

≤ I(X1,X2;Y ) + nε (84)

= H(Y )−H(Y |X1,X2) + nε (85)

= H(Y )−
n∑
i=1

H(Yi|Y i−1,X1,X2) + nε (86)

= H(Y )−
n∑
i=1

H(Yi|X1i, X2i) + nε (87)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|X2i.X2i) + nε (88)

=
n∑
i=1

I(X1i, X2i;Yi) + nε, (89)

where (83) follows from Fano’s inequality; (84) follows from data-processing inequality; (85)

follows from the chain rule; (86) follows from the chain rule; (87) follows from the fact that Yi

depends only on X1i and X2i; (88) follows from the chain rule. Hence, we have

R1 +R2 ≤
1

n

n∑
i=1

I(X1i, X2i;Yi) + ε, (90)

which completes the proof.
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APPENDIX G

PROOF OF THEOREM 7

The proof of achievability uses a very simple power-splitting techniques between information

component and the semantic context Q for the first transmitter.

Semantic source: For the first transmitter, given a source message W1 ∈
[
1 : 2nR1

]
. Let S1

represent the inherent semantic information of W1. Let fs1 :
[
1 : 2nR1

]
→
[
1 : 2αnR1

]
represent

the semantic mapping from W1 to S1 according to the realization of the random variable Q. For

the second transmitter, given a source message W2 ∈
[
1 : 2nR2

]
. Let S2 represent the inherent

semantic information of W2. Let fs2 :
[
1 : 2nR2

]
→
[
1 : 2α1nR2

]
represent the semantic mapping

from W2 to S2 according to the realization of the random variable Q.

Random codebook generation: By applying random coding, we randomly and independently

generate 2nRs sequences xn1 (w1), each according to Pr(xn2 ) =
∏n

i=1 Pr(x1i|qi). The generated

sequences constitute the codebook C1 =
[
1 : 2nRs1

]
as follows

Pr(C1) =
2nRs1∏
m=1

n∏
i=1

Pr (x1i(m)|qi) .

The codebook C is known by both the semantic encoder and the decoder. In order to represent

2αnR semantic information losslessly, Rs1 must satisfy

Rs1 ≥ α1R1.

Similarly, for the conventional encoder, by applying random coding, we randomly and indepen-

dently generate 2nR2 sequences xn2 (w2, Q), each according to Pr (xn2 |Q) =
∏n

i=1 Pr (x2i|qi). The

generated sequences constitute the codebook C2 =
[
1 : 2nRs2

]
as follows

Pr(C2) =
2nRs2∏
m=1

n∏
i=1

Pr (x2i|qi(m)) .

Semantic encoding: Given a source message Wi, i ∈ {1, 2}, transmitter i finds the corre-

sponding semantic information set index mi, i.e., to send semantic index mi ∈
[
1 : 2nRsi

]
, and

transmits xni (mi, Q) given the context Q.

Decoding: Let A(n)
ε denote the set of typical (Q, xn1 , x

n
2 ,y) sequences. The IR declares that

the pair (m1,m2) is sent if

(Q, xn1 (m1), x
n
2 (m2),y) ∈ A(n)

ε . (91)

Otherwise, if there is none or more than one such message, it declares an error E .
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Analysis of the probability of error: By the symmetry of the random code construction,

the conditional probability of error does not depend on which pair of indices is sent. Thus the

conditional probability of error is the same as the unconditional probability of error. So, without

loss of generality, we assume that (m1,m2) = (1, 1) was sent. Let Eq be the event that there is

no typical sequences of the observed context, E1 be the event that there is no typical sequences

of X1 given the observed context and E2 be the event that there is no typical sequences of X2

given the observed context Q2.

Eij = {(q, xn1 (i), xn2 (j),y) ∈ A(n)
ε }. (92)

Thus, by the union of events bound

Pr(E) = Pr
Ä
Eq ∪ E1 ∪ Ec

11 ∪ {Eij}(i,j)6=(1,1)

ä
(93)

≤ Pr(Eq) + Pr(E1) +
∑

i 6=1,j=1

Pr(Ei1) +
∑

i=1,j 6=1

Pr(E1j) +
∑

i 6=1,j 6=1

Pr(Eij), (94)

where Pr(·) is the conditional probability given that (1, 1) was sent. From the AEP, we have:

Pr(Ec
11)→ 0;

Pr(Eq) ≤ 2nRs2−n(H(Q)−ε), (95)

and

Pr(E1) ≤ 2nRs12−n(H(X1|W1)−ε), (96)

and

Pr(E2) ≤ 2nRs22−n(H(X2|W2)−ε), (97)

and for i 6= 1, we have:

Pr(Ei1) = Pr

Å
(xn1 (i), x

n
2 (1),y) ∈ A(n)

ε }
ã

(98)

≤ 2−n(I(X1;Y |X2)−3ε), (99)

Similarly, for j 6= 1,

Pr(E1j) = Pr

Å
(xn1 (1), x

n
2 (j),y) ∈ A(n)

ε }
ã

(100)

=
∑

(x1,x2,y)∈A(n)
ε }

p(x1,y)p(x2) (101)

≤ |A(n)
ε |2−n(H(X1,Y )−ε)2−n(H(X2)−ε) (102)

≤ 2−n(H(X2)+H(X1,Y )−H(X1,X2,Y )−3ε) (103)
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= 2−n(I(X2;X1,Y )−3ε) (104)

= 2−n(I(X2;Y |X1)−3ε), (105)

and for i 6= 1, j 6= 1,

Pr(Eij) ≤ 2−n(I(X1,X2;Y )−4ε). (106)

It follows that

Pr(E) ≤ Pr(Ec
11) + 2nRs2−n(I(X1;Y |X2)+H(Q)−H(X1|W )−3ε) + 2nR22−n(I(X2;Y |X1)−3ε) (107)

+2n(R1+R2)2−n(I(X1,X2;Y )−4ε). (108)

Since ε > 0 is arbitrary, the condition of the achievability imply that each term tends to 0

as n → ∞. Hence, there exist at least one code with arbitrarily small probability of error.

Furthermore, by combining Rs ≥ αR, the following holds

R1 6
1

α
(I(X1;Y |X2, Q) +H(Q)−H(X1|W2)) , (109)

R2 6
1

α
(I(X2;Y |X1, Q) +H(Q)−H(X2|W2)) , (110)

R1 +R2 ≤
1

α
I(X1, X2;Y,Q), (111)

b 6 E(Y2). (112)

The proof of Theorem 7 continues as follows. We consider that the joint distribution follows a

Gaussian input distribution

Q ∼ N (0, 1), X11 ∼ N (0, λ1), and X22 ∼ N (0, λ2). (113)

The input symbol is generated given the mutual independent random variables Q, X11, X22,

where the input symbol at both transmitters satisfies

X1 =
»
P1(1− λ1Q+

√
P1X11, (114)

X2 =
»
P2(1− λ2Q+

√
P2X22. (115)

The choice of the Gaussian input distribution, yields

I(X1;Y |X2) = log(1 + λ1P1). (116)

I(X2;Y |X1) =
1

2
log(1 + λ2P2). (117)

I(Q,X1, X2;Y ) =
1

2
log
(
1 + λ1P1 + λ2P2

)
. (118)
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Finally, using (116), (117), and (118) into (112), yields the following semantic information-

energy region

R1 6
1

α

Å
1

2
log(1 + λ1P1)− h(X1|W1) +

1

2
log(1 + λ2P1)

ã
,

R2 6
1

α

Å
1

2
log(1 + λ2P2)− h(X2|W2) +

1

2
log(1 + λ1P2)

ã
,

R1 +R2 6
1

2
log
(
1 + λ1P1 + P2

)
− h(X1|W1) +

1

2
log(1 + λ2P1),

b 6 E(Y2),

with (λ1, λ2, α) ∈ [0, 1]3, which completes the proof.
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