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Abstract—This paper works on the detection of physical
random access channel (NPRACH) in Narrowband Internet
of Things (NB-IoT) system. The frequency hopping preamble
design and increasing number of IoT terminals lead to inter-cell
interference among different cells, resulting in inevitable increase
of false alarm rate. Due to the ambiguity between preamble
and interference, it is a great challenge for NPRACH detection
methods to achieve low false alarm rate when having strong
interference. In this paper, we analyze the difference between
preamble and interference in the propagation environments of
NPRACH signals in the 2-dimensional Fast Fourier Transfor-
mation (2-D FFT) domain. Then we propose a deep learning-
based NPRACH detection method, dubbed Mask Assisted Anti-
Interference Universal Detection Scheme (MIUS), in the 2-D
FFT domain for preamble detection with inter-cell interference
in different repetition cases. In the proposed MIUS, the Mask-
ResNet Block is designed as a building block to extract features
distinguishing the preamble and interference based on masking
operations. Our proposed MIUS utilizes the Mask-ResNet Block
in a recurrent manner to detect the preambles in sequential
repetitions across different repetition cases. Simulation results
show that MIUS can simultaneously maintain the low false
alarm rate and achieve high detection accuracy in low Signal
to Interference and Noise Ratio (SINR) regime in all repetition
cases.

Index Terms—Deep learning, Fast Fourier Transformation,
Internet of Things, Random access, Preamble detection.

I. INTRODUCTION

W ITH the development of communication technologies,
the Internet of Things (IoT) has gradually become one

of the hottest research topics because of its wide applications
in recent years [1]. Driven by the demand of low power
consumption, large coverage of base station (BS) and multiple
terminal connections in IoT, the 3rd generation partnership
project (3GPP) proposed the Narrow Band Internet of Things
(NB-IoT) [2]–[5]. It is a new low power and wide area (LPWA)
scheme relying on existing long term evolution (LTE) cellular
networks [6]–[11]. The formulation of NB-IoT standard is
completed in Release 14 in 2016 [12]–[19]. Compared with
other LPWA schemes, it has a series of advantages such as
global coverage, low interference, multiple connections and
high level of security, etc. Therefore, NB-IoT stands out as
the most widely accepted IoT standard. [20]
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Narrowband physical random access channel (NPRACH) is
the latest uplink access technology of NB-IoT, which guar-
antees effective connection between BSs and terminals [11],
[21]–[23]. In NPRACH, each terminal randomly selects one
subcarrier in the allocated spectrum and transmits the preamble
in the uplink channel. The BS conducts the preamble detec-
tion with the received signal using well designed NPRACH
detection method, judges which terminal is active and makes
the connection. Considering the narrow band characteristic
and the demand of extended coverage of NB-IoT, a new
single-tone frequency hopping preamble based on frequency
hopping rules was designed for NPRACH, which has been
included in the 3GPP standard [24]. To make the designed
preamble adapt to terminals with different path losses, the
entire cellular cell is divided into several coverage levels
[25]. For different coverage levels, the preambles are sent
with different repetition times (1,2,4,8,...,128) to ensure the
preamble detection accuracy of the terminals while sacrificing
the transmitting resource [26], [27]. Due to the characteristics
of the preamble and the rising number of IoT terminals,
the BS of one cell will also receive the preambles from
neighborhood cells. These preambles occupy the same time-
frequency resources with the original preambles in this cell.
This phenomenon is the collision of inter-cell interference,
which is called interference collision for simplicity in this
paper. And it will cause significant increase of false alarm
rate in the process of NPRACH detection. To the best of
our knowledge, the problem of NPRACH preamble detection
considering inter-cell interference has not been studied in the
literature.

For NPRACH preamble detection problem, most of the
existing methods are based on energy threshold. Lin et al. [24]
proposed a method of searching for the time-of-arrival (ToA)
and carrier-frequency-offset (CFO) based on two-dimensional
Discrete Fourier Transformation (DFT), which can be imple-
mented by a two-dimensional Fast Fourier Transformation (2-
D FFT). Furthermore, in this work, the modulo operation was
conducted to the transformed two dimensional signal. Then the
maximum value was selected as the feature of energy. And the
threshold was set by hand to make the detection. Hwang et
al. [28] also proposed a detection algorithm based on energy
threshold. The feature of energy was directly calculated as the
sum of the energy of each signal element. And the threshold
was determined through derivation according to Neyman-
Pearson criterion, which aimed to control the false alarm rate
under 0.1%. Due to the adaptability of the threshold, the
performance of this method exceeded that of 2-D FFT based
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detection method. Also in this work, a simplified ToA and
CFO estimation algorithm was investigated, which had lower
complexity than the 2-D FFT algorithm with the compensation
of the estimation accuracy. In [29], the Neyman-Pearson crite-
rion based method was promoted by introducing singular value
decomposition (SVD) for calculating the feature of energy, and
the detection performance was improved. In [30], a NPRACH
detection algorithm with CFO elimination was proposed. The
effect of CFO in NPRACH detection was eliminated through
some mathematical operations, and the threshold was set to
detect the preambles. However, inter-cell interference was not
considered in the above researches. All these energy threshold-
based methods concentrate on the energy related features and
set threshold for detection. However, there is no difference
between the preamble and interference from the energy point
of view. Therefore, none of these algorithms could decrease
the false alarm rate considering inter-cell interference.

As we know, deep learning (DL) has been widely used in
wireless communication to enhance the system performance
[31]–[41]. It has also been used in NPRACH detection prob-
lem to improve the detection accuracy [42], [43]. In these
two works, the received frequency preambles of multiple users
are aggregated together and fed into the convolutional neural
networks (CNN) based detection algorithms. After extracting
the two-dimensional features among multiple-users and dif-
ferent symbol groups, the detection result is obtained through
the linear classifier. In the case with no inter-cell interference,
the deep learning based methods achieve better performance
than 2-D FFT energy threshold based methods. Besides, the
similar network architecture is also used to estimate the ToA
and the CFO of the received preamble and achieve better
estimation accuracy. However, it is very hard to distinguish
the preamble with inter-cell interference using the received
frequency symbols directly. So the CNN based detection
algorithms can’t perform well in the time-frequency domain
of the received symbols when inter-cell interference occurs.

There have already been several studies considering intra-
cell interference in NPRACH. Kim et al. [44] considered the
transmitting signal design and proposed the partial preamble
transmission mechanism to decrease the probability of intra-
cell interference collision. However, the available repetition
times were also decreased, which would cause the decrease
of preamble detection accuracy. The trade-off between mis-
detection probability and the collision probability was in-
vestigated and an optimal resource utilization strategy was
found in this work. Besides, Harwahyu et al. [45] presented
an analytical method to estimate the success probability of
access and average access delay of NPRACH. Then a joint
optimization method was proposed to obtain the optimized
parameters of the NPRACH system, which can reduce the
collision probability of intra-cell interference. However, the
interference collision caused by inter-cell interference still
existed in the physical layer. And the false alarm rate still
arose with the growth of the number of terminals.

For inter-cell interference, conducting the NPRACH detec-
tion directly with a well designed method is more straight-
forward instead of optimizing the NPRACH system to de-
crease the probability of interference collision. A good enough

detection method can solve the interference problem entirely
rather than decreasing its effect. However, this is a challenging
way due to that the preamble and its collided interference
are nearly the same in the time-frequency signal domain.
Existing energy threshold methods and time-frequency domain
based deep learning methods are unable to distinguish the
interference with the preamble. Thus the key point is to find
out the potential difference in one specific domain and extract
them by a properly designed algorithm.

In this paper, a DL based method called Mask Assisted Anti-
Interference Universal Detection Scheme (MIUS) is proposed
to solve the challenging problem of preamble detection with
inter-cell interference in all repetition cases. Specifically, on
the basis of 2-D FFT transformation and modulo operation
[24], the received signal is transformed to the two dimensional
domain, which is called 2-D FFT domain and the transformed
signal is defined as the 2-D FFT image. Instead of the energy
based feature, more detailed differences between preamble and
interference are found out in the 2-D FFT domain. And the
differences are extracted through specially designed feature
extractor, which is based on Residual Network (ResNet)
[46]. To avoid the need for training separate networks for
each repetition case, which would lead to significant resource
occupancy, we propose a method in which a single network
is trained to recurrently extract features for each 2-repetition
signal in any repetition case. Finally, the detection procedure is
conducted using well trained neural network (NN) based clas-
sifier. The major contributions of this paper are summarized
as follows:

• The idea of conducting the NPRACH detection problem
in the transformed 2-D FFT domain is proposed in
this paper. The aim is to show the potential differences
between preamble and inter-cell interference, which is
caused by different propagation paths. Relevant theories
are proposed and analyzed theoretically.

• Mask-ResNet Block is designed in MIUS based on ResNet
to extract the potential differences between preamble
and interference shown in the 2-D FFT images. By
focusing on the characteristic of signals related to the
propagation paths, Mask-ResNet Block is able to extract
more detailed engineered features than traditional energy
threshold methods.

• The recurrent operation is designed in this paper to make
MIUS be able to deal with all repetition cases without
re-training Mask-ResNet Block for each repetition case.
On the basis of the signal design among repetitions,
conducting the feature extraction of the divided signals
recurrently with the shared Mask-ResNet Block can guar-
antee the detection performance. The resource occupancy
and the number of training data can also be saved.

• Simulation results show that in real interference scenar-
ios, the false alarm rate of MIUS can be maintained under
0.1% with strong interference, while the existing methods
can’t. Besides, the results for the preamble detection can
be guaranteed in real interference scenario in all repetition
cases. Furthermore, it is shown that the performance of
MIUS exceeds that of the state-of-art deep learning based
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methods and the backbone ResNet.

The rest of this paper is organized as follows. In Section
II, we will describe the NPRACH system considering inter-
cell interference. The transformation of the NPRACH signal
and the analysis of the discrimination will be elaborated in
Section III. The details of the detection method, MIUS, will
be introduced in Section IV. Simulation results are presented
in Section V. Finally in Section VI, we conclude the paper.

II. SYSTEM MODEL

In this section, the system model of NPRACH with interfer-
ence is illustrated. Firstly, the preamble design of NPRACH
is elaborated, and then the received signal of NPRACH with
interference is derived based on the preamble design. For
interference, it is considered as the NPRACH preamble from
neighboring cells with the assumption of ideally synchronized
frames of neighboring cells and full frequency reuse.

A. NPRACH Preamble Design

NB-IoT is based on single-carrier frequency-division mul-
tiple access (SCFDMA) system in the uplink configured with
W Hz frequency bandwidth and ∆w Hz subcarrier band-
width, therefore the number of subcarriers for NPRACH is
K = W/∆w. The length of each symbol is denoted by
N , and the length of a cyclic prefix (CP) portion is Ncp.
Considering the NPRACH transmitting preamble, a complete
random access preamble unit consists of 20 symbols, of which
every 5 symbols constitute a symbol group (SG). Only one
subcarrier is used for transmission in each SG. The frequency
index of the subcarrier is called frequency hopping index.
We assume the frequency hopping index of the n-th SG is
f(n). The frequency hopping indexes satisfy the frequency
hopping rules designed by Ericsson [24]. The rules state that
the frequency hopping indexes of the first two SGs differ by
1, those of the second and the third SGs differ by 6, and those
of the third and the fourth SGs also differ by 1. According
to the frequency hopping rules, we know that once its initial
frequency hopping index is determined, the frequency hopping
indexes of all other SGs are also determined in a complete
random access preamble unit. The multiple users in one cell
can be separated through the orthogonal preambles so that the
multi-users NPRACH detection problem can be transformed
to the single-user detection problem. In practical applications,
in order to expand coverage, the random access preamble unit
will be repeatedly sent for Nrep = 2j times, j = 0, · · · , 7.
The initial frequency hopping indexes of different repeated
preamble units are determined by the pseudo-random sequence
generated by the cell identity [47]. In one repetition unit of
the NPRACH preamble, the value at the k-th subcarrier of the
i-th symbol in the n-th SG satisfies

Sn,i(k) = 1, k = f(n). (1)

The time and frequency representations of the whole pream-
ble is shown in Fig. 1.

Fig. 1: Signal structure of NPRACH of NB-IoT in
time-frequency domain with inter-cell interference.

B. Received Signal Model With Interference

As for the modeling of the received signal of NPRACH,
the received preamble under the effect of only channel fading
and noise in one repetition unit is derived firstly [28]. After
that, the received signal including the received preamble and
interference is derived.

Subjecting the i-th symbol in the n-th SG to an inverse Fast
Fourier Transformation (IFFT), we can obtain the time domain
transmitting symbol as

sn,i(l) =

√
P

N

K∑
k=1

Sn,i(k)e
j2πkl

N , l = 0, · · · , N − 1, (2)

where P denotes the transmitting power. The whole trans-
mitting time domain symbol vector of the n-th SG is sn =
[scp, sn,1, · · · , sn,5], in which scp denotes CP with length of
Ncp. And the length of the entire SG is Ncp + 5N . After
passing through the wireless channel, the received time domain
signal of n-th SG can be obtained as

yn(l) =h(n)sn((i− 1)N + l −D)ej2π∆f(l−D+n(Ncp+5N))

+ vn(l), l = 0, · · · , 5N − 1, (3)

where h(n) ∈ CN (0, 1) is the channel coefficient of n-th SG,
which we assume as flat Rayleigh fading channel. And we also
assume the channel coherence time is longer than the time to
send a preamble unit. D ∈ [0, Ncp − 1] is the ToA and ∆f ∈
[−200, 200]Hz denotes the CFO, which are both determined
by the propagation environment. vn(l) ∈ CN (0, σ2) is the
white Gaussian noise where σ2 denotes the variance of the
distribution of the white Gaussian noise and it is determined
by the environment on the receiver side.

Furthermore, operating a FFT to the received time domain
signal and sample at f(n)-th subcarrier in n-th SG. The
received frequency domain signal is obtained as

Yn,i = NSN (∆f)he
−j2πDf(n)

N e
j2π∆ft(n,i)

N ej(θ+ψ) + Vn,i,
(4)

where SN (∆f) = sin(π∆f)
Nsin(π∆f/N) , t(n, i) = n(5N+Ncp)+iN ,

θ is the carrier phase offset which satisfies uniform distribution
U(0, 2π), ϕ = π∆f(N−1)

N . Vn,i is the noise term satisfying
CN (0, σ2).

The interference is actually the NPRACH preamble from the
neighboring cells and it is defined as the inter-cell interference.
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The interference collision means that some repetition units
of the inter-cell interference occupy the same time frequency
resource with the local cell preamble, which is shown in Fig.
1. This phenomenon leads to the increase of false alarm rate of
NPRACH system, which causes that the user that employs this
preamble can’t access. It is assumed that each repetition unit
of the received NPRACH signal has a certain probability p0 to
encounter an interference collision. It is known that the initial
frequency hopping index of each repetition of a preamble is
determined by the cell identity. So the probability that two
preambles in different cells have the same frequency hopping
indexes in more than one repetition unit is very low [47].
Therefore we assume that each interference will only cause
the interference collision within a single repetition unit. With
this assumption, the ToAs and CFOs of interference collided
with different repetition units of the received signal are mostly
different because the interference signals originate randomly
from the adjacent cells.

According to the above assumptions, the signal on the f(n)-
th subcarrier of the i-th symbol in the n-th SG of the g-th
repetition unit is considered. And the received frequency signal
containing both the preamble and interference at BS can be
expressed as

Y S
n,i = αY P

n,i + IgY
I
n,i + Vn,i, (5)

where Y S
n,i denotes the value of the i-th symbol in the n-th

SG of the actually received signal at BS. α is the preamble
indicator. If the local user equipment is active and the preamble
exists, α = 1, otherwise α = 0. Y P

n,i and Y I
n,i denote the values

of the i-th symbol in the n-th SG of preamble and interference
with the same frequency hopping index respectively which can
be obtained by equation (4). Ig is the interference indicator
which is assumed to satisfy Bernoulli distribution in this paper
and its probability density function is written as

pIg (x|p0) =

{
px0(1− p0)

1−x, x = 0, 1,

0, x ̸= 0, 1,

where p0 is the parameter of the distribution indicating
the collision probability of inter-cell interference. It is de-
termined by the cell coverage and number of terminals.
g = 0, · · · , log2(Nrep) is the index corresponding to the
signal repetition times, which indicates the 1-st to Nrep-th
repetition unit of the received signal. Meanwhile, The signal
to noise ratio (SNR) of interference signal should be defined
as interference to noise ratio (INR) in this paper.

III. SIGNAL TRANSFORMATION AND ANALYSIS

To solve the tough NPRACH detection problem with inter-
ference, the key point is to find out the difference between
the preamble and the interference. In this section, the received
NPRACH signal will be studied from two dimensions, not
one dimension as usual. More discriminative features between
preamble and interference will be derived and analyzed.

A. Transformation of Received Signal

According to [24], each repetition unit of the received sig-
nals in frequency domain is filled to two dimensions according

to the frequency hopping rule as

Xg[m, k] = Y S
n,i,m = 6(n− 4g) + i, k = f(n), (6)

where Xg[m, k] is the element of the signal matrix Xg with
size of M1 ×M2 in which M1,M2 are sizes of the 2-D FFT.
Furthermore, we operate 2-D FFT and modulo operation to
Xg as

Wg[p, q] =

M1−1∑
m=0

M2−1∑
k=0

Xg[m, k]e
−j2πmp

M1 e
−j2πkq

M2 , (7)

Jg[p, q] = |Wg[p, q]|2, (8)

where p ∈ [0,M1] and q ∈ [0,M2], Wg[p, q] denotes the
element of the complex matrix W g after 2-D FFT. Jg is the
real value matrix obtained through modulo operation to W g.

Thus, the transformation process is completed and the
transformed signal J = {Jg}

Nrep

g=0 is obtained from the one
dimensional received signal.

B. Analysis

Definition 1. The three-dimensional signal J is called a 2-D
FFT image when it consists of Jg given by eq. (8), with the
g-th channel corresponding to Jg.

The properties of 2-D FFT image are summarized in The-
orem I.

Theorem 1. The maximum point of any channel of J , which
we refer as (p∗, q∗), satisfies

p∗ = ∆fM1 +
M1

2
, (9)

q∗ = −
D

N
M2, (10)

where M1,M2 are sizes of the 2-D FFT and ∆f , D represent
the CFO and ToA of the corresponding repetition unit of the
received signal respectively.

Proof: Let’s assume there only exists preambles. The
maximum energy point (p∗, q∗) of the g-th channel of the
2-D FFT image satisfies

(p∗, q∗) = argmax
p,q

∣∣∣∣∣
M1−1∑
m=0

M2−1∑
k=0

Xg[m, k]e
−j2πmp

M1 e
−j2πkq

M2

∣∣∣∣∣
2

,

(11)

then expand Xg[m, k] with equation (2), (5) and (6), the
following expression can be obtained after simplifying:

(p∗, q∗) = argmax
p,q

|fg(p, q)|2 , (12)

fg(p, q) =

M1−1∑
m=0

M2−1∑
k=0

ej2π(∆fm−m(p−M1/2)
M1

)e−j2π(
Dk
N + kq

M2
).

(13)
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According to the triangle inequality, we can scale |fg(p, q)|2
as ∣∣∣∣∣

M1−1∑
m=0

M2−1∑
k=0

ej2π(∆fm−m(p−M1/2)
M1

)e−j2π(
Dk
N + kq

M2
)

∣∣∣∣∣
2

≤
M1−1∑
m=0

M2−1∑
k=0

∣∣∣∣ej2π(∆fm−m(p−M1/2)
M1

)e−j2π(
Dk
N + kq

M2
)

∣∣∣∣2
= M1M2, (14)

and the condition for equation is

∆fm−
m

M1
(p−

M1

2
) = 0, (15)

Dk

N
+

k

M2
q = 0. (16)

We can derive the solution: p∗ = ∆fM1+
M1

2
, q∗ = −

D

N
M2.

From Theorem I, it is known that in each repetition, the
maximum point of the 2-D FFT image is determined by the
ToA and CFO of the received signal one by one. Due to that
different repetition units of the preamble are transmitted to-
gether, passing through the same environment and reaching the
receiver almost at the same time, so they have the same ToAs
and CFOs. This means that the locations of the maximum
points of different repetition units of the preamble are the
same. However, the different repetition units of the received
signal with interference come from different transmitters in
different cells according to the assumption, so their ToAs
and CFOs are different. And it leads to the difference of the
locations of maximum points. However, due to the limitation
of the FFT size, the positions of maximum points in different
repetition units of the preamble have slight differences.

Because of the difference of the relative positions of max-
imum points among the channels, the patterns of 2-D FFT
images with preamble and interference are obviously different.
Take the two repetitions case for example and the 2-D FFT
images of preamble and interference are shown in Fig. 2. The
values in the first channel of the 2-D FFT image are shown in
the red pattern and those in the second channel are shown in
the green pattern. From the left image in which the 2-D FFT
image of preamble is shown, we can see that the red and green
patterns are almost overlaping. While in the right image where
the signal collides with interference in both repetition units,
the red and green patterns are separated. The further inference
can be made that in the case with interference in only one
repetition unit, there will only exists one red or green pattern.
And finally in the case with only noise, there is no such
pattern. The difference between preamble and interference has
been observed in local area in 2-D FFT domain explicitly, like
in Fig. 2. The intuitive way to extract the difference is to design
CNN based deep learning algorithms to focus on the local area
and extract the local two-dimensional features in the 2-D FFT
domain. This is exactly the idea of our MIUS.

(a) 2-D FFT image of
preamble.

(b) 2-D FFT image of
interference.

Fig. 2: 2-D FFT images of preamble and interference.

IV. DEEP MODEL FOR ANTI-INTERFERENCE NPRACH
DETECTION

From the analysis in Section III, the difference between
received signals of preamble and interference is shown in the
relationship among the channels of the 2-D FFT image. MIUS
is designed to extract the difference and make the detection
based on the extracted features in this section. The whole
procedure and the key points of MIUS are represented as
below.

The whole procedure of MIUS consists of three parts, which
are signal transformation part, recurrent feature extraction part
and final detection part respectively. Firstly, the signals of
NPRACH with any repetition time is transformed to the 2-
D FFT image and divided into several 2-D FFT images with
2 repetition times. Secondly, the divided 2-repetitions 2-D FFT
images undergo feature extraction recurrently. After that, the
features are mixed together and taken as input to the classifier
in the detection part, and the detection result can be obtained.
The signal transformation part contains the 2-D FFT, module
and dividing operations. Mask-ResNet Block is designed to
extract the effective features of the 2-repetitions 2-D FFT
images and the block is shared during the recurrent operation.
Finally the classifier in the detection part contains a max-
pooling layer following a multi-layer perceptron (MLP). The
MLP consists of a linear layer and the soft-max activating
function. Fig. 3 represents the procedure in detail.

Fig. 3: Illustration of MIUS, which contains three parts
respectively for signal transformation, feature extraction and

final detection.

The first key point of MIUS is to adapt to all repetition
cases. As we know, DL methods are data based techniques
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and they can be used only when they are well trained by
amount of data. Besides, a well trained neural network (NN)
only supports fixed size inputs. Therefore, it is a challenge to
make NN useful for all repetition cases with different input
sizes. It is straightforward to consider to train different NNs for
different repetition cases. However, it is not applicable because
all the NNs need to be stored in the BS and that would engage
considerable resource occupancy. In this paper, the recurrent
feature extraction method of MIUS is designed to solve this
challenging problem. For any repetition case, the NPRACH
detection problem can be transformed to the 2-repetitions case.
Therefore, the Mask-ResNet Block and the final classifier only
need to be trained by the 2-repetitions NPRACH signals.

The second key point of MIUS shows in the design of Mask-
ResNet Block and the max-pooling in the classifier. Due to the
difference between preamble and interference exists among
the channels of the 2-D FFT images, the Mask-ResNet Block
is designed based on the ResNet and masking operation to
extract the relationship among the channels. Max-pooling is
used in the classifier. It is capable to keep the highlighted areas
to make MIUS focus on the difference of the highlighted areas
of preambles and interference.

The details on recurrent feature extraction, Mask-ResNet
Block and the training and testing of MIUS will be illustrated
in the following subsections.

A. Design of Recurrent Operation

Assuming that the repetition times of the signal is N , the 2-
D FFT image of the signal is represented as {J i}Ni=1. Each J i
is a real matrix with size of M1×M2. Considering the dividing
method in the signal transformation part, the neighbouring two
matrixes are put together as a 2-repetitions 2-D FFT image,
the signal can be rewritten as {J2i−1J2i}N/2i=1 . Assuming that
there is already a Mask-ResNet Block for the 2-repetitions 2-D
FFT images. Input all the 2-D FFT images {J2i−1J2i} into
the shared F . They are operated recurrently and N/2 extracted
low dimensional features {zi}N/2i=1 can be obtained. After that,
conduct average pooling operation to the extracted features as

zavg =
1

N

N/2∑
i=1

zi, (17)

where the averaged feature zavg can be obtained. Feeding the
averaged feature to the well trained classifier, the detection
result can be gotten. The reason for using average pooling
is that features can be normalized to the fixed size and the
characteristics from different 2-repetitions parts can be mixed
together effectively. Through this operation, the Mask-ResNet
Block and the classifier only need to be trained in the 2-
repetitions cases. The storage of MIUS in BS only needs
to contain one Mask-ResNet Block and one classifier for 2-
repetitions cases.

The intuition of this method is to consider detection prob-
lem of the N -repetitions NPRACH signal as that of the 2-
repetitions NPRACH signal. Average pooling of the obtained
features after recurrent feature extraction can be considered as
taking the middle point of the divided 2-repetitions features.
As long as the classifier performs well, the misclassified

points will be averaged by the correctly classified points and
the accurate probability of classification will increase for the
middle point. In this way, the performance of MIUS in high
repetition cases can be guaranteed.

B. Design of Mask-ResNet Block

As for the design of Mask-ResNet Block, only 2-repetitions
NPRACH signals need to be considered. The structure of
Mask-ResNet Block is shown in Fig. 4.

Fig. 4: Structure design of the Mask-ResNet Block in MIUS.

The structure is based on ResNet-18 [46] which consists
of five parts. The first part contains a 7 × 7 convolutional
layer, a batch norm layer, a ReLu activate function and a
max-pooling layer. The following four parts are all composed
of two basic blocks and a max-pooling layer. In the basic
block, the input feature firstly undergoes the 3×3 convolution,
the batch norm layer, the ReLu activate function and another
3 × 3 convolution with a batch norm layer. Then it is added
to the feature which is obtained through sending the input
feature into the 1 × 1 convolution with a batch norm layer.
This kind of framework contributes to easier gradient back-
propagation, which greatly improves the calculation speed
and effectively solves the problem of gradient explosions.
ResNet is applied as the backbone architecture so that MIUS
has the significant basic ability to extract the feature of 2-D
FFT image. In the design of the Mask-ResNet Block, masking
operation is added to the backbone architecture to make Mask-
ResNet Block pay more attention to the highlight areas which
are capable of showing the difference. The detailed procedure
of mask-ResNet block is as follows. Firstly, input the 2-D
FFT image to the first four parts of the backbone ResNet, and
the pre-extracted features can be obtained. Then the features
undergo six different masking operations and the six masked
features are further taken as input to the six basic blocks
following max-pooling operation. And finally, the six outputs
are concatenated together and the mixed output features can be
obtained. The details on masking operation will be elaborated
as follows:

From the conclusion in Section III, we know that the dif-
ference between preamble and interference is reflected in the
relationship of the locations of the highlights in neighboring
channels of 2-D FFT image. Considering that we put the
2-D FFT image into the backbone ResNet, the relationship
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of the locations of the highlights in different channels is
reflected in the highlight area of the feature map after several
steps of convolutions and max-poolings. The feature map of
preamble has one strong highlight area while the feature map
of interference has one or two weak highlight areas. To make
MIUS focus on this difference, we conduct masking operation
to the feature map. Masking operation is to retain the values
of the areas we want and set all other areas to zero. In this
work, we consider the feature map output from the fourth part
of the backbone ResNet and design six masks for different
areas of the feature map. After six masking operations in six
different areas, further feature extraction is conducted by six
basic blocks and max-pooling layers. Then six output feature
maps are concatenated together for classification. In this way,
the network can learn to compare the difference of different
areas of the feature map. And it will notice the strong highlight
area of the preamble or weak highlight area of interference
through back-propagation during the training. Six masks we
designed in this work are shown in Fig. 4. Considering the size
of each channel of the output feature map is 16× 16, firstly,
we divide the feature map into three disjoint parts horizontally
and the width of each part are 5, 6 and 5 respectively. These
three parts lead to the first three masks. Then, considering
different levels of central part of the feature map, we design
three masks focusing on different scales of the central area,
which have the size of 6×6, 12×12 and 16×16 respectively.

C. Network Training and Testing

As for the training part, only 2-repetitions NPRACH signals
are needed. Conduct 2-D FFT and modulo operation to the
received 2-repetitions NPRACH signals obtained under the
assumption of Rayleigh fading channels in the training set,
which involves preambles with different SNRs, interference
with different interference collision ratios and INRs, and
received noise. Signals with preambles are labeled as 1 while
others are labeled as 0. Thus we can get a set of 2-D FFT
images. The number of training epoches is set as 100, the
batch-size is set as 40 and the learning rate is set as 0.01. In
each training batch, input the 2-D FFT images to the Mask-
ResNet Block and the classifier, calculate the cross entropy
loss between the outputs and the labels as

L = E[−(o1 log(p1) + o2 log(p2))], (18)

where (p1, p2) is the normalized output probability vector and
oi, i = 1, 2 denotes the label. E[·] is to get the mean of
the results and it is operated over the training batch. Back-
propagate the loss and optimize the parameters of Mask-
ResNet Block and the classifier using ADAM algorithm. Cycle
the above steps for all training batches and epoches. After
finishing the training procedure, the validation set is used to
choose the most generalized model for testing.

As for the testing part, all repetition cases are considered.
After the NPRACH signals are received, they firstly undergo
the signal transformation part, in which they are transformed
to 2-D FFT images and then divided into several 2-repetitions
2-D FFT images. After that, the 2-D FFT images are sent
to the shared Mask-ResNet Block to be operated recurrently.

The output features are mixed together through feature mixing
operation and the mixed feature is obtained. Finally the mixed
feature is taken as input to the classifier and the detection result
is obtained.

V. SIMULATION

In this section, we will verify the effectiveness of MIUS
by simulation experiments. Since the users in the same cell
have been separated by the orthogonal preambles, the problem
of multi-user detection can be transformed to that of single-
user detection. Therefore, in the simulation part, we only
consider the detection of single user and we would pay more
attention to the 2-repetitions case, which is the hardest one
under the interference. Firstly, we will verify the false alarm
rate performance of MIUS in the presence of interference
scenarios. False alarm rate is defined as the ratio between the
number of misjudged interference or noise samples and their
total number. It is hard to be controlled in a low level with the
presence of inter-cell interference. Secondly, we consider the
metric of detection accuracy of preambles. The simulations
are conducted in scenarios where only preamble is available
as well as in scenarios where both preamble and interference
are present across all repetition cases.

A. Simulation Setting

As for the simulation of NPRACH in NB-IoT, there are
some existing simulation models proposed in literature based
on OPNET or the 3-rd Generation Partnership Project (3GPP)
protocol [5], [43]. However, only one cell is considered in
these well-built simulation models and the inter-cell inter-
ference has not been considered. So in our simulations, the
system link is constructed by ourselves with Matlab consid-
ering the simulation of inter-cell interference, and the system
settings follow that of [28]. The specific parameter settings
of the system are presented as follows: The bandwidth for
NPRACH is set as 180 kHz, and that of a single subcarrier
is 3.75 kHz. The FFT size and the length of CP are set as
512 and 128 respectively. The numbers of antennas on the
transmitting side and receiving side are 1 and 2, respectively.
Flat Rayleigh fading channel is considered following [28] and
the size of 2-D FFT is 256× 256.

There are totally six methods for comparison with MIUS in
our simulation, which are described below:

• 2-D FFT threshold method: 2-D FFT threshold method
proposed in [24] is one of the existing energy threshold
methods. In the simulation of this method, We firstly
transform the received time-frequency signals with 2-D
FFT and modulo operation. Then the maximum value of
the matrix is selected as the energy value. The threshold
selection scheme is not clarified in [24]. We magnify the
energy value by 100 times and choose 0.37 as the energy
threshold. This choice makes sure that the false alarm
rate with only noise is just below 0.1%, which follows
the requirement of the protocol.

• Neyman Pearson threshold method: Neyman Pearson
threshold method in [28] is also an energy threshold
method with adaptive thresholds. In our simulation, the
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energy value is computed through adding up all energy
of the received time-frequency symbols. As for threshold
selection, we choose 0.312 as the threshold for the 2-
repetition case according to the Neyman-Pearson criteri-
on, which is shown in Fig. 3 of [28].

• Multi-Layer Perceptron (MLP): MLP is one of the basic
neural networks in deep learning fields. It is selected as
the comparison method to show 1) it is hard to control
the false alarm in time-frequency domain of the signals
with deep learning facing with inter-cell interference and
2) the effectiveness of the network design of MIUS. In
the simulation, the received time-frequency symbols are
directly input to the MLP and the output is the detection
result. As for structure, the number of layers is set as 4
and the ReLU activate function is selected.

• Long Short-Term Memory (LSTM): The correlation a-
mong the received symbols in different repetition units
is not considered in the MLP. LSTM can be seen as the
enhanced version of MLP to detect the time-correlated
symbol sequence in the time-frequency domain. The
reason for selecting LSTM is the same as that of MLP.
In the simulation, the multiple-repetition received time-
frequency signal is directly input to the multi-cell of the
LSTM and the detection result is the output. As for the
network structure, the number of layers of LSTM is set
as 2 and the bi-direction is considered.

• NPRACH-CNN: Considering the state-of-art work in [42],
[43], CNN based deep learning methods are consid-
ered for comparison with our MIUS, which is called
NPRACH-CNN in this paper. Since the difference be-
tween preamble and interference is more explicit in 2-D
FFT domain than time-frequency domain, 2-D FFT image
of the received signal is also considered as the input
of NPRACH-CNN for fair comparison. The network
structure of NPRACH-CNN follows that of [43].

• ResNet: As the improved version of basic CNN, ResNet
is the backbone method of our MIUS. Selecting ResNet
of the comparison method is to show the effectiveness of
the mask design of MIUS. In the simulation, the input
of ResNet is also the 2-D FFT image of the received
time-frequency signals. 18-layers ResNet is selected as
the network structure, which is the same as that in MIUS.

In conclusion, 2-D FFT threshold method and Neyman
Pearson threshold method are considered as the representations
of energy threshold methods. MLP, LSTM are selected as
the time-frequency domain deep learning methods. NPRACH-
CNN is the state-of-art method for NPRACH detection and it
is considered in 2-D FFT domain to make the comparison fair
enough. Finally, the backbone network ResNet is also selected
for comparison as the ablation study to show the effectiveness
of the network design of MIUS. When facing with high
repetition cases for NPRACH-CNN and ResNet, which is
conducted in the 2-D FFT domain, the recurrent operation
method are utilized for test. The two comparison methods are
also trained only in the 2-repetitions case for fair comparison
with MIUS. The hyper-parameters of the above DL methods
are all set the same as MIUS, which is illustrated in Section

IV-C. All DL methods are trained on the same dataset. All
experiments are conducted on an individual computer with i5-
9400 CPU, RTX-2080 GPU and RAM 16GB. All DL methods
are conducted with Pytorch 1.2.0 in Python 3.7 on Windows
10.

The training data-set consists of received signals in three
scenarios, which are scenarios with preamble and noise, inter-
ference and noise and finally preamble, interference and noise.
In the scenario with preamble and noise, we set the range
of received SNR as 6 ∼ 10 dB, and generate 3000 signal
samples randomly in total and set their labels as 1. To make
the DL methods traverse all kinds of interference scenarios
during training, the collision probability of interference is
considered random in the training data-set. So in the scenario
with interference and noise, the number of repetitions with
interference collision is set as the integer random variable
satisfying U(0, Nrep) for simplicity. Nrep is the total number
of repetitions of the signal. The range of INR is chosen as
−6 ∼ 6 dB. We generate 6000 samples randomly with label 0
in total. And finally in the scenario with preamble, interference
and noise, the range of SNR and INR are respectively set
as 6 ∼ 20 dB and −6 ∼ 6 dB. The interference collision
number is still assumed as an integer random variable obeying
U(0, Nrep). 3000 samples are generated randomly with label
1 in this case. The validation set consists of 1000 samples
in interference and noise case and 1000 samples in preamble
and noise case. The samples in interference and noise case is
generated with random interference collision and 6 dB INR.
And those in preamble and noise case are generated with 6
dB SNR. After we finish training the network, the validation
set helps us to select the model that has the best generalized
capability, and the selected model will get involved in the
following test process.

B. Simulation Results of False Alarm Rate

In this subsection, the tests in interference scenarios are
conducted. The tests are separated as two parts. In the first part,
fixed collision probability scenario is considered to evaluate
the effect of MIUS with comparison of existing energy thresh-
old based methods and the backbone ResNet. In the second
part, random collision probability scenario and all repetition
cases are considered. The performance of MIUS is evaluated
and compared with the deep learning methods.

Firstly, considering different fixed collision probabilities,
the performance of false alarm rate is evaluated in the 2-
repetitions case. The methods for comparison are respective-
ly 2-D FFT threshold methods, Neyman Pearson threshold
methods and the backbone ResNet. For the simplicity of
experiment, 3/12, 6/12 and 8/12 are selected as the repre-
sentative collision probabilities in the test. In each collision
probability scenario, 5000 samples with interference and noise
are generated for each fixed INR ranging from −6 dB to 6 dB.
The performance comparison between MIUS and two existing
energy threshold methods are shown in Fig. 5.

In these three figures, the red line represents the perfor-
mance of 2-D FFT threshold detection method, the green
line represents that of NP threshold detection method and the
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(a) 3/12 collision probability
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(b) 6/12 collision probability
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(c) 8/12 collision probability

Fig. 5: Performance comparison with energy threshold based methods in the case of two repetitions in 3/12, 6/12 and 8/12
interference collision probability scenarios.

performance of MIUS is shown in the yellow line. Obviously,
the false alarm rate of MIUS always stays about 0 with
INR ranging in [−6, 6] dB while that of two existing energy
threshold methods is higher. It can be seen that under all
collision probabilities, the false alarm rate of the 2-D FFT
threshold detection algorithm is at least above 5%, which
has exceeded the requirements of the NPRACH system. NP
threshold method only works well under −6 dB INR in three
interference collision levels, but when INR increases, the false
alarm rate of this method increases rapidly. Finally, the false
alarm rates of both two threshold detection algorithms stabilise
at a similar level which are roughly 44%, 75% and 90%
under 3/12, 6/12 and 8/12 collision probability respectively.
Obviously, the NPRACH system can hardly work with these
high false alarm rates. One of the reasons for the results is that
interference has no difference with preambles in the view of
received energy, so it is impossible to distinguish interference
with preamble only by received energy. Furthermore, there is
no other prior information about the interference when setting
the judging threshold. The threshold only has an impact with
the noise. This is also one reason for high false alarm rate of
two existing energy threshold detection methods.
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Fig. 6: False alarm performance comparison between ResNet
and MIUS with 3/12, 6/12 and 8/12 collision probabilities

respectively. CP in the figure represents the collision
probability for simplicity.

The comparison of the performance of false alarm rate
between the backbone ResNet and MIUS is presented in
Fig. 6. The solid line represents the performance of ResNet
and the dotted line represents the result of MIUS. The false

alarm rates in three different interference collision levels
3/12, 6/12, 8/12 are represented by yellow, green and purple
colors respectively. When the INR is below −2 dB, the false
alarm rates of both methods are zero. So we only present
the results with INR from −2 dB to 6 dB in the figure. We
can see from the figure that MIUS outperforms ResNet in all
three interference collision levels with the increasing of INR.
Especially when the INR is 6 dB, the false alarm rates of
ResNet are beyond 1%, 4% and 7% in three different collision
levels, while the false alarm rate of MIUS are controlled under
0.2% in all simulation scenarios. This result confirms that
the extraordinary ability of controlling the false alarm rate of
MIUS comes from the masking operation and the max-pooling
function which is one of our main contributions in this work.
From Fig. 6, We can see that the false alarm rate of MIUS
can always stay below 0.1% except for the scenario with 8/12
collision probability and 6 dB INR. Even in this scenario, its
false alarm rate can stay around 0.2%. From the above results,
MIUS can meet the requirement of false alarm rate and ensure
the NPRACH system work effectively even with strong enough
interference. This consequence verifies the effectiveness of the
discrimination features between preambles and interference.
Meanwhile, MIUS extracts the detailed features of the rela-
tionship among different repetitions of received signal to make
a correct judge between preambles and interference.

The above experiments verify the effectiveness of MIUS
with the assumption of fixed collision probability in the 2-
repetitions case. To test the performance of MIUS in more
realistic scenario, the parameter settings are changed in the
following. More repetition cases are considered, including
2, 4, 8, 16, 32, 64. For each repetition case, 5000 interference
and noise signals are generated through the data generators.
As for the interference, the number of repetitions that be
collided with interference satisfied U(0, Nrep). As for the INR
of the interference, [0, 15] dB is selected for the 2-repetitions
case and [0, 100] dB is selected for the other repetition cases.
Only DL based methods are considered for comparison for
simplicity due to that existing energy threshold based methods
have been proved unable to deal with the interference collision
according to the above experiments. The test results for the 2-
repetitions case are shown in Fig. 7.

The performance of MLP, LSTM and NPRACH-CNN is
shown in the left side of Fig. 7. From the figure, it can be
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(a) Performance of MLP,
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ResNet and NPRACH-CNN.

Fig. 7: False alarm performance of MIUS in realistic two
repetition case with comparison of MLP, LSTM,

NPRACH-CNN and backbone ResNet.

seen clearly that the performance of MLP and the LSTM is
much worse than that of NPRACH-CNN. The false alarm rate
of NPRACH-CNN can be maintained under 10% till 15 dB
INR. Otherwise for MLP and LSTM, 4.5 dB INR and 1.5
dB INR may cause 10% false alarm rate and the rate can
even exceeds 60% when INR exceeds 10 dB. This indicates
that our MLP and LSTM fail to control the false alarm rate
with high INR interference in the time-frequency domain, but
NPRACH-CNN achieves much better performance in the 2-
D FFT domain. This result can prove to some extent that
detecting the preamble from interference in 2-D FFT domain
is more effective than time-frequency domain. After that, the
performance of MIUS is shown in the right side of Fig. 7
with comparison of the backbone ResNet and NPRACH-CNN.
It can be seen that the false alarm rate of MIUS can be
maintained under 2% till 15 dB INR while that of ResNet
and NPRACH-CNN are respectively 6.5% and 4.5%. When
the INR is low, the performance of the three methods are
nearly the same. From about 6 dB INR, the false alarm rates
of NPRACH-CNN and ResNet grow rapidly and that of MIUS
can be maintained in a low level. This experiment verifies
the effectiveness of MIUS to control the false alarm rate
in more realistic scenarios, especially with high INR when
interference is strong. It is clearly shown that the performance
of MIUS is better than the state-of-art NPRACH-CNN in
interference scenario. The comparison with ResNet also shows
the effectiveness of the network design.

TABLE I: False alarm rates of different methods under 100
dB INR in the 4, 8, 16, 32, 64 repetition cases.

Methods
False alarm rate (%) Repetition case

4 8 16 32 64

NPRACH-CNN [43] 8.0 3.5 2.3 1.4 0.5
ResNet 2.8 0.4 0.0 0.0 0.0
MIUS 1.8 0.2 0.0 0.0 0.0

As for the high repetition cases, the testing results are
shown in Table I. Only NPRACH-CNN and ResNet are used
for comparison according to the above experiments, which
indicate that MLP and LSTM in our simulation can not
perform well with interference. Since normal interference level
cannot arise any false alarm rate in high repetition cases
with the deep learning methods in 2-D FFT domain. So an
extreme interference scenario with 100 dB INR is considered
to show the difference of ability of these methods. It can

be seen from the results that the performance of ResNet and
MIUS exceeds that of NPRACH-CNN. For the 4-repetitions
case, the false alarm rate reaches 1.8% for MIUS, 2.8% for
ResNet and 8% for CNN uner 100 dB INR. As for the 8-
repetitions case, MIUS can control the false alarm rate under
0.2% till 100 dB INR, while those of ResNet and NPRACH-
CNN are respectively 0.4% and 3.5%. For the case of 16, 32
and 64-repetitions cases, MIUS and ResNet can all stay 0%
false alarm rate till 100 dB INR, while NPRACH-CNN does
not have this ability, the false alarm rates for 16, 32 and 64
repetition cases are respectively 2.3%, 1.4% and 0.5%. The
above results can prove the effectiveness of recurrent operation
methods. The neural network trained using only 2-repetitions
signals can be implemented to any repetition case without any
other training process. And the performance of false alarm
rate is also satisfied. Besides, the advantage on performance
of MIUS is also shown form the results, compared with the
baseline ResNet and NPRACH-CNN.

C. Performance of Preamble Detection Accuracy

After verifying the effectiveness of MIUS to control the
false alarm rate in the interference scenario, the performance
of preamble detection accuracy is evaluated in this subsection.
The simulations are divided into two parts. In the first part,
the scenario with only preambles across all repetition cases
are considered. In the second part, only 2-repetitions cases
with preambles and different levels of interference are under
consideration.

Firstly, considering the performance of MIUS for all rep-
etition cases with only preamble signals. 5000 preamble and
noise signal samples are generated for each repetition case and
SNR level, which ranges in [0, 10] dB. Due to the limitation
of the space for writing, three repetition cases are selected for
the test, in which the numbers of repetitions are respectively
2, 8, 32. According to the above results of false alarm rates,
energy threshold based methods, MLP and LSTM can not
control the false alarm rate in a low level in the interference
scenario, so only NPRACH-CNN and ResNet are chosen as
the comparison methods. And the results are summarized in
Fig. 8.

From the three figures, we can conclude that the perfor-
mance of MIUS exceeds those of ResNet and NPRACH-CNN
at every SNR level, which verifies the effectiveness of the
design of MIUS for preamble detection. For the 2-repetitions
case, the detection accuracy of MIUS is nearly 0 at 0 dB
SNR. With SNR increasing, the detection accuracy grows
rapidly and reaches 100% at about 6 dB SNR. The trends
of the curves in the 8 repetition and 32 repetition case are the
same. MIUS reaches 100% detection accuracy at 4.8 and 4.2
dB respectively. The performance in 8 repetition case and 32
repetition case show that MIUS can deal with high repetition
cases through recurrent operation methods, and it only need
to be trained in the 2-repetitions case.

Besides, the ability of MIUS for preamble detection with
interference is explored. The interference collision probability
is also modeled as a random variable as before. Three levels
of interference are considered, which are respectively no
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(b) 8-repetitions case.
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Fig. 8: Preamble detection performance of MIUS in 2, 8, 32-repetition cases with comparison of NPRACH-CNN and ResNet.

interference, 0 dB INR interference and 6 dB INR interference.
[0, 15] dB SNR is considered and 5000 samples are generated
for each SNR and interference level. The results are shown in
Fig. 9.
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Fig. 9: Detection performance of MIUS in the case of two
repetitions in different interference levels.

From the figure, it can be seen that when SNR is above 3 dB,
the detection accuracy of MIUS decreases with the increase
of interference level. However, when SNR is under 3 dB, the
detection accuracy would be better with weak interference and
worse facing strong interference. This is because when the INR
of interference and the SNR of preamble are both low, the
difference of the pattern between interference and preamble is
not obvious, which may cause the mistake of MIUS. And the
added interference would be recognised as preamble by MIUS,
which may improve the detection accuracy mistakenly. When
the SNR is high, the pattern of the preamble is obvious and
MIUS can recognise it easily. The appearance of interference
would affect the judgement of MIUS no matter the INR is
low or high. If the interference is weak, the effect may be
small, while it may be large if the interference is strong. So
the order of the detection accuracy from small to large is 6
dB interference scenario, 0 dB interference scenario and no-
interference scenario when the SNR is high. The results above
verify that MIUS has the ability to work effectively in the
interference scenarios, even in low SINR regime.

From the above test performance, we can see that in the
interference scenarios, MIUS can work effectively. But the
performance of detection accuracy is worse compared with the
existing methods in previous works in which the interference
is not considered. With the interference becomes stronger and
stronger, the detection accuracy would decrease at the same
SNR level. This phenomenon is reasonable. Comparing with

the existing algorithms, we add many restrictions related to the
features of difference between preamble and interference to the
method to classify interference and preambles. This will make
the determination of preamble more strict. So the detection
accuracy will decrease and this can be seen as the trade-off of
controlling low false alarm rate in the interference scenarios.

D. Complexity Analysis

To evaluate the complexity of MIUS, the number of param-
eters and flops are calculated and shown in this subsection.
The number of parameters of MIUS is 9805056 and its flops
is calculated as 1.7393 × 1010. Furthermore to make the
complexity more intuitive, the model size and the computation
time of MIUS in our simulation device are presented. Those
of ResNet are also evaluated for comparison. The computation
time is defined as the time of detecting one signal. And the
results are listed in Table II and Table III.

TABLE II: Model size and computation time of ResNet in
the 2, 4, 8, 16, 32, 64 repetition cases.

Measurement
Repetition case

2 4 8 16 32 64

Model size (M) 43.73 43.73 43.73 43.73 43.73 43.73
Computation time (ms) 1.75 2.59 3.97 5.95 10.69 19.84

TABLE III: Model size and computation time of MIUS in
the 2, 4, 8, 16, 32, 64 repetition cases.

Measurement
Repetition case

2 4 8 16 32 64

Model size (M) 43.75 43.75 43.75 43.75 43.75 43.75
Computation time (ms) 4.13 13.15 22.88 34.60 42.96 71.33

From the tables above, it can be seen that the model size
of MIUS is nearly the same as that of ResNet, and for all
repetitions, the model sizes are the same due to that only the
network trained in 2 repetitions case needs to be stored. As for
the computation time, MIUS is longer than that of ResNet for
all repetitions. It is because that the feature output by the 3rd
basic block goes through 6 masking operations in the MIUS,
which cost more computation time than that of ResNet.

VI. CONCLUSION

In this paper, the NPRACH detection problem with inter-
cell interference is considered. Firstly, the difference between
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preamble and interference is studied theoretically, which is
analyzed to exist in the relationship among channels of the
transformed 2-D FFT images caused by different propagation
paths. Then, a deep learning based method MIUS is proposed
based on the theoretical analysis. In MIUS, recurrent operation
method is utilized to make it suitable for all repetition cases.
As for the design of the Mask-ResNet Block in MIUS, six
masks are introduced to the backbone network ResNet, so
that MIUS can concentrate on the difference of preambles
and interference, and extracts efficient features about it. Sim-
ulations show that MIUS can work in all repetition cases and
control the false alarm rate in a low level. The effectiveness
of preamble detection with interference of MIUS can also
be ensured. Besides, MIUS outperforms the existing energy
threshold based methods and state-of-art deep learning based
methods, which shows the effectiveness of the difference
observed and the superiority of the structure design.
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