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Abstract

Despite the leaps in quality and quantity of industrial data along with the increased interest in
data-driven approaches brought about by Industry 4.0, there are still processes that are too complex
to be accurately modeled via traditional first-principles methods, yet lack the necessary data for a
purely data-driven approach.

Taking an industrial chemical vapor deposition (CVD) process as a key example, this work
proposes a hybrid computational workflow involving equation-based (computational fluid dynamics
- CFD) and machine learning (ML) methods for the modeling, investigation, and prediction of
such complex processes. First, this work aims to provide a way of predicting process outcomes
while also allowing the exploration of the process and obtaining insights regarding the several
interplaying physical and chemical phenomena that govern it. The proposed CFD model can help
with the exploration of the process and the prediction of the quality quantity of interest, which
is the thickness of the deposited alumina. It can also shed light on the governing phenomena of
the process. However, it comes with a high computational cost, which makes its use in everyday
applications prohibitive. To overcome this, a purely data-driven predictive model which offers
improved predictive and computational performance is proposed. A way of combining process data
and the results of the CFD model is also proposed, via the GappyPOD method.

Subsequently, this work proposes a purely data-driven approach to identify potential critical
process parameters based on a blend of supervised and unsupervised learning approaches. Following
an initial clustering of the available process outcome data and the analysis of the resulting clusters,
the differences between them can be matched to the differences in their respective process inputs,
allowing the identification of potential key parameters. These parameters allow for deeper insight
into the process and can then be used to develop data-driven models for the qualitative and
quantitative prediction of the process. The versatility of this approach is then highlighted by its

application to a vastly different process; the metabolism of astrocyte cells.
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TBpLdLkég VTEONOTLOTIKEG TtpooeYYioels Paolopéveg oc eELloDoelg
KoL 08N YOUEVEG ALTEO BeBOpEVA YLOL TNV aLVAAVoN kol TtpSPAedn

Bropmxavikdv Siepyooiodv attdé0song

Ekteviic EAAMVIKY Teepidndn

H mopovoa Siatplf Tporyportedetol Ty ouvduaopévn poviehotmoinom Slepyooldv e jue-
B68ouc Pooiopévec oe eliowoeic ko pe pebddouc Paoiopévec otar Sedopéva. O amdtepoc
okoTd¢ cival M TPSTULOT UTIOAOYLOTIKQOV Tpooeyyioewv mou Ba emitpémouv TV avdAuon Ko
TV koA Otepn katovédnom Twv Slepyaolidv, adA& ko TV ykupT TPoPAedh Twv ekPdoeidv Toug
evtdg Twv TBovdv ypovik®v (Tt.X. avdykn TpéPAedne evtdg ouykekpipévou ypovikol TeptBe-
plov) ko VAkGV Teploplopdv (T.X. XoumA1 StoBéoiun utohoylo Tk Lox0g) Tou UTtdp)ouV ot
Bropmxavikég ouvBfkec.

TNV unxovik oAA& kol oe dANoug TOElC TNG ETUOTHUNG, OL YUOLKEC KoL XMLkéG Sep-
yaoleg Touv Aapfdvouy xopa evtdc evdg cuoTHLATOG WTtopolv va eivor kaBoploTikég yia Tnv
ékPoom) toug. Mmopodv va kdvouv tnv Slapopd petald Tpoidvtwy Tov eivall evtde ko ekToC
TpodLaLypaldv ko, oe Blodoyikd cuoTinaTa, TNV Slocpopd petadd Tne ouvtipnone ¢ {wTikHc
Aettovpylolg kol TNg kpiowung aotoyiog Tov cvoThuatoc. H Suvatdtnta avdduvong, katavdénong
kot TPOPAePNC vtV TV Slepyaoldv elval dkpwe onuovtiky. H pabnuotik? povtelomoinon
£XEL QLUTEG TIG duvaTdTNTEG.

Méow tne pabnuotikic poviehotmoinong, yivetow tpoomdbeio edpeong ocvoyetioewv peto-
&0 TV «elodBwVy TOU CUCTHRATOC KO TOU ATOTEAEORATOG TNG depyaoiag. Mo Tnv emtuym
povtelotoinom Tou omoloudfnote cuothuatog, 1 VTopgn dedopévwv sival amapaitntn. Xwpic
dedopéval oyetikd pe tnv diepyaoial, TG TAPOUPETPOUE TNG KL TIC TOTOTNTEG EVILALPEPOVTOG
(Quantities of Interest — Qols), omolodnmote Tpotewduevo povtédo Sev B umopovoe évar emiku-
pwBel ko M awvtioTouxior Tou e TNV TporypatikéTnTo Bor Ttopépueve atpoodidpiotn. H oodtnta
Twv dedopévwv eivan e&oupetikd onuovtikn ko to TAH00¢ Twv Slabéoipwy dedopévwv ivor ko

BoploTikd yia TNV eTLAOYH TOu TPOTOL povTeAoTolnong.

H «mtapadooiokny avdlvon Booileton oe elomoeig Tou Siatumvouy Oepeliddelc apxée.
Y uvhbwc mpdketton yial apXéc Srathpnong opuic, pélog ko evépyelog ot ouvexn péoo émote
oL e€lotoeLc TIou TpokUTITOUY eivall pepikéc SLacpopikéc , dnAadt Siapopikéc e€lodoeic pe pepLkéc
TAPAYDYOVUG WG TPOg XPOvo ko X@po. Auth M Tpootyylon UTopel voL ovopooTtel Tipooéyylo
Boowopévn otic e€lowaosic, Tpooéyyion Booiopévn otnv @uoiki, 1| Tpocéyyion odnyoluevn amd
urtoBéoeic. ‘Omwe mpodidel ko To dvopd toug, autéc oL pooeyyioeic Eekvoldv amd KdTOLEC

vntoBéoeig yio tnv Sepyaoio, Bootopéveg oe 181 uvtdpyxovoa yvion (Bepehmddeg apyéc). Ou
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uTtoBéoeic avtéc akodovBolvTal amd TELPAUATA, TO ATIOTEAEOUA TWV OTolwV Ti¢ uTtooTtneilel 1
TIC KaToppiTTEL, avadelkviovToc éTol TV avdykn yrel StapopeTikéc uoBéoeic. Ou amautoeig
AUTOV TV Kebbdwv Yo Sedopévar svar YoumAéc.

E€loov yphowec yioo tTnv avdAuon diepyaoldv amotelolv oL Tpooeyyioelg Tov eivou Boot-
opéveg apyg oto dedopéva. Autéc ol ipooeyyioeig dev xperdlovtan k&toio TtpokaBopiopévn
untéBsom oxeTikd pe TNV Siepyaoia, kabog Shvavtal va spappooTolv amevbeiog ko éxouv Thv
Suvartétnta ebpeong cvoyxetiocwv ko potifwv evtdg tou Slabéoiuov ouvdlou dedopévwv. Me
Bdon ta potifa ko Tic ouoxeTioelg TTou aviyvebovton pécw TNne XpfHone nebddwv oty odn-
yoUpevwv amd Sedopéva, eivo Suvotdv v oxmuotiotodv véeg utobéosig yia tnv Siepyaoion.
Now onpelwbel Twg 600 To «mAovoLo» to ohvolo Twv dabéouwy dedopévwv, Téoo o £dkoln
7N £0pECT] OUCLALOTIKOV LOTIBwV Ko cuoyeTioewy.

T oupPaivel dpwe 6tav To Stabéopa dedopéva dev siva 00te Aiyootd olte &dpbova; Téte,
gpavileton M avdykn yia vppLdikéc mpooeyyioselg, ol omoieg Tpoomabovv va cuvdudoouv Ta
TPOoTEPHLATA TWV 800 TpoavapepBévtwy Tpoosyyioewv. H «evdidueony oty mtocdTnta dedo-
pévawv Yapoktneilel ToANéC epoppLoyéc umyYovikfc, omol 1 éykupn Ko £YKoLpET ovIeAoToinon
glvarr avarykaio, avelaptitog tne Thovode vPmAfc TodumAokdTnTog Twv diepyaoitdv. H po-
vtelotoinom tétolou TUToL diepyaot®dv, ouviBwe atmoutel apketéc Tapadoxéec. Emiong To Sia-
Béouuol dedopévar elvoll «TTPOLYILOLTIKALY KO CUVETAG evBéyeton vor TTepléyxouv AdBn, avakpifeteg
ko eEMeleLg, k&TL IOV evdéxeTon var dmuLovpyfoel TpofAfuotar otV povteloTmoinom.

Mo tétola Siepyaoio eiva ko N Xnuikh AtédBeon amd Atud (XAA). Ttnv mopovoa diat-
o1, M Proumyavikh adBeon tng moAvoTpwpatikic eniotpwong Ti(C,N)/a-Al,03 Tévw ot
tolevtomolnpévo kopPidlo yLol TNV Tmapaywy avBekTIKOV KOTTTIKOV pyaAelwV XPNOLULOTIOLE-
{tow w¢ perétn mepimrwong, kabdhg amotelel pior ToAdTAOKY Siepyaoio TTov dev YopaktnpileTon
o¥te and movteA EAewdn dedopévwv, dAa oUte ko attd apbovial dedopévwv.

H XAA amotelel po Siepyooion kotd tnv omola o emiotpwon amotiBetouw oe évor Bepud
uTtdo TP aTtd TPdSpouee evoelg Tou PpiokovTtal otnv aéplol Yo, LEow MLOLG CELPALS OO-
YEVQOV KOl ETEPOYEVAOV XNMIKOV avTidpdoeswv. LTy diepyacio ouvelowépelr TANBOpa QuoLkdV
(Te.x. Sidxvom, ouvarywyt, ekpOPNON) KoL XNIULKOV QAVOLEVWV KoL €AV ot SNt LUTE T pout-
vépeva ouvuttodoyloBel ko o peyddoc aplBudc evBidecwv TPoLOVTWVY KoL TILPATPOLOVTWV TTOU
dnuiovpyolvTow kortd TNV SLdpkelal TNE dlepyooiog, N TOAUTIAOKOTNTA TNC YiveTal Tpo@avic.

O mpooeyyioeic Paotopévec otic e€lodoslg, Kol We £Tl To TAeloTOV 1 UTTOAOYLOTIKY PEVTTO-
Suvayuk®y (Computational Fluid Dynamics — CFD) éxouv xpnotpotownOeil pe emtuyio oto mo-
peAB4V Lol TV povtedomoinong Siepyaoidv XAA. O Adyoc Tiow amd auth tTnv emAoyn elvo 1
LKALVOTNTO TWV LOVTEAWVY UTLOAOYLOTIKNE PEVOTOSUVALLKTIC VO BLALTUTIOCOUV ToV TPATIO KATE ToV

omolo Tal SLdpopal YUOLKE KoL XMILKAL avépLevar TTou AapBdvouy Tautdypoval XOpow KTd TNV
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Sudpkera TN Siepyactoc emnpedlouv To TeAkd amotéreopa. MMopdia outd, 1 vdmTuen evéc
gykupou povTélou peuoToduvapkc Yo pal diepyocion XAA dev attoteAei e0kolo épyo. MMoAd
ouxvd, oL Sldpopec Tapdpetpol Tov kabopifouv TaL PUOLKAL Kol XMULKAL @ouvopeval elvol &y vw-
OTEC KoL OL TUéC Toug TepéTiel va BpeBolv péow emimovwv dLodilkoiol®v SokLAC Kol PAALOTOC.
Enlong, o Biaitepec mepimtdoeic N yewuetpiat Tou avtldpaothpa dovatal vor aAAdlel omd
pépo og pépal, kdtL Tou Suoyepaivel TNV Xpfon evdc ndvo Lovtédou Yol SAeC TIG TIEPLTTTOOELS.
Téhog, 1 XAA amotelel poe Siepyaoio e&oupetikd gvaiobntn otic ouvBikec porfic, Bepupokpa-
olag, kol Tieong evtdg tou avtidpaocthpa. ‘Etol, Mol cuxvd, umtdpxel ENAewdn owcOntipwv
gVTOC TOU aVTIBPALTTHP KoL CUVETLWC EAAeLN Kalipwv Sedopévav yial TV avdmtuén povtéiwv
akptPetoc tne depyaoioc.

Mopdha autd, o epxopds g Tétaptng Propmyovikic etavdotaone (Industry 4.0) éxel Pon-
Bfoel otnv adénon twv diabéolpwy dedopévwv otov Brounyoviké topéa. H moodtnror Twv
Brounyowvikv dedopévwv, av ko gleavede ouEnuévn, oe kaulo Tepittwon dev pumopsl va ou-
YkptOei pe TNV ToobTNTA TWV Sedopévav Tou eiva SlaBéolual oTol péool KOWWVLKTC BLkTOWONE 1
OTOV XpPMUoToOoKOVOULKkS Topéa. [Mépal amd tnv adEnom twv dedouévwv, 1 Tétoptn Propmyoviky
ETOLVALOTALON €XEL CUVELOQEPEL Kall TNV YeVIkOTEPT awhENom Tou evBlopépovTtog Yo Tow dedopéval
kol yiow Tig peBddoug mov elval oy de Paotopévec o avtd. H ad&non tnc moodtntoc dedo-
HLEVOV aAN& koL To peyaditepo evdiopépov yiow outd o8hynoe otnv epoppoy nebddwv aptydc
Booopévawv ota dedopéval ko yral TV erétn ko TtpdPAedmn tne TpoavapepBbeicoc diepyaaioc
XAA. TToepdAoL oLuTAL, LOLG KO T) KALTOLVANON TWV PUOLKOV KoL XNIUKDOV QOUVOLEVWV TOVU ELTIAEKO-
vtow otnv diepyaoia eivon e€ioou onuavtiky, 1 povtelomoinon péow uebddwv odnyoduevwv amd
dedopéva ouvodeleToll ATd TNV AVATTUEN evOC LOVTEAOU UTLOAOYLOTIKHC PEVCTOSUVALULKAC YLol
TV Siepyaoia.

Ev té)el, 1 Siepyaoion potdler Tohd mepimAokn v vo povtehotmolnBel emapkde amtd KdToLo
pLovTélo uToAoyloTikHc pevotoduvoyuktc, eved to TAN0oc twv Siabéoipwy dedopévwv dev e-
TutpéTel TNV PéATIoTN poviedomoinon tne péow pefddwv apryde Pooiopévov oto Sedopévar.
Avuth 1 SuokoMia Tng povtelomoinong, os cuvduaopnd pe Tig LtoutepdTnTeg oL YapokTnpilouv
T Sedopéval Tov TpoépyxovTal amd TéETolou TUToV diepyaoiec odnyel oto kVpLO EPWTNUA TOL
koheltow vor actocvtfiosl M Topovoal SatplBh, To oTmoto sivall To TC TpéTel va TtpoceyyilovTtow
Biepyooiec ol omoieg Sev Slabétouv Tal atapaitnTar Sedopéval yia vow povtedomornBoiv BéAtiota
atéd pebddouc aptymc Pootopévec oto Sedopéva, dAa eiva emtionc ToAO utepPolikd TepiTtAo-
KeC YLaL val povtelomoinfoiv amokAelotikd and pebddoug Paoiopévec o elomoeic. H diatplfi

mpoomafel vou aTtavTHoEL 08 ALUTS TO EPWTNUAL, ATIALVTOVTOC o€ 800 TUUEPOUC EPWTHLOLTOL

1. Xpnowotmol®vtac avthv tnv diepyacioc XAA wc pelétn mepimrtwong, mola sivo 1 Kot-
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AOTepm umoloyloTikY Tpooéyylomn mou emtpémel TV okplPn TPSPAedn tne Siepyaioioc

K&vovtag atodotikh xpfon twv (Xpovik®dv 1 AK®OV) Ttépwv;

2. Me Bdon ta Stabéoiua Sedopéval, pmopov va TpoodloptoToiv Thovéc koipLeg Tapdie-

TpoL tng Siepyaoiog;

H amdvtnom tou Tpidtou epwTULATOC £pXETal Ot 800 éEPT. To TPOTO LEPOG KLPOPA TNV ATLOTIEL-
pa povtedomoinong the diepyaoiog XAA TN ahoVvog HEC® UTIOAOYLOTLKHC PEVOTOdUVOYULKNAC,
eV To BelTeEPo aLpopd TNV poviehomoinon tng Siepyaoiog amd nebddouvg oty odnyolpeveg
atd Sedopéval, kdTL TTov cuvdudleton pe TNV TLPEAANATN cUyKpLom Twv V0 Tpooeyyloewv.

H povtelotoinon tng Propnyxavikic kAipokag amdbeone tne ahodpwag (a-Al,O3) péow
UTLOAOYLOTIKTG PEVOTOSUVOLULKTG €PXETOLL [LE TIOAAEG TLPOKATIOELG, OL OTIOlEC OPeidovTaL OTIC L-
SlautepdtnTec Tov Propmyovikol avTiSpaoTHpa, OTIC ATATNOELS TIC TTAPAYWYHS 08 TUVEVALOUS
PUOLKA e Tig LBLoutepdtnTeg TNG (8L tng diepyaoiog XAA.

O avtidpaotipag Tov xpnowotmoteiton yiow tThv dtepyaoio (Sucotec SCT600TH) xopokTn-
pifeton amd o Wioitepn yewpetpior, N omoia mepthapBdver 40-50 Sudtpnrouc Siokoug mov
tomoBeTovvton 0 évoc Tdvw attd Tov dANov, Yipw amd évav TeploTpePduevo cwAfival o oTo-
log SLavépel Tow aéplor avTLEpOVTAL 0TOV AvTLBpaoTpa HECw 800 OLVTLOLALETPLKOV OOV OTO
eminedo tou kdbe Siokov. H mepioTpoeth Tov cwAfva Tpoadidel otnv diepyooia dvav TepLodikd
yopakthpo. Me BAon Ti¢ AToUTHOELS TNG TTUPAYWYNS, T YEWHETPIOL TOU avTISpaoThpo LTtopsel
vo 0ANGE gL okdpaL ko o kaBnuepvh BAom, AOY® TV SLOLPOPETIKDV YEWIETPLOV UTIOCTPOIATWY
(koTtTikV epyadeiwv oTnv ouykekpiwévn Tepimtwon) Tov xpetdleton var etikohupBolv, ol
KoL €TEELSN M YeWUETPlaL Kol 0 TOTOC TV SLATPMTWV Slokwv OV XPNOLLOTIOLOVVTAL £E0PTOVTAL
AT TNV YEDUETPLOL TWV UTTOCTPWHATWV TOVU ETULKAAVTITOVTOLL.

Mépor amtd TIC YEWUETPLKES KO TLOLPOLYWYLKEC LBLaTEPSTNTES, UTLAPXEL KO TO TPOPANIAL To
XMKLKoU SikTOou Tou XpnotpoToteitan yiow Tnv attdBeon tng aholvog. TV TOPoVoaL EPOLPLO-
YH, N adovpva artotiBeton amd éva petypo avtidpovtwv AlCls, CO,, HCI, Ha, HoS. H tpdSpoun
évwon AlCl3 avtidpd pe vepd Tou mapdyeton evtdg Tov avTidpaoThipa Lécw TN avTioTpoYnc
water gas shift avtidpaong and Sioéeidio tou dvBpoka kaw vdpoydvo. Aldpopa cuoTALKTE o
vidpdocwv éxovv Tpotabel oty BupAoypapic, Ta oTtoiat cuvdudlouv éwg ko 104 avtidpdosig
petadd 35 evlidpeowv mpotdvtwv. H xphon evdg tdéoo Aemttopepolc cvoTALATOE avTidpdoswv
oe éval Lovtého pevoToduvaikiic Ba o8nyoldos oe peydAo uTtoAoYLOTIKE K6OTT TOCO KATE TNV
avaTTLE Tou (ETOVATPOOBLOPLONSE TV TIOPARETPWY TV AVTLpdoewy), 600 Ko KATE ThV
xpfion tovu (cuénuéva vtodoytotikd k6ot Adyw AdENONG TWV AYVAOTWY).

Me Bdon to Topamdve, pumopsel val yivel avTIANTTO T éval TOAD AemtTopepéc povTédo

UTLOAOYLOTIKHC PEVOTOBUVALULKTC YLl TNV ouykekpLévr Siepyooio Ba epteAdpfove o tpLodi-
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Yyfuo 1: (o) EvBewktikée yewpetpieg Twv Tpog emiotpwon kottik®v epyadeiwv. (B) Tpuo-
dLdoTaTn AVATIOPAOTALOT EVOG TUNLOTOG Tou avTidpaothpa pe 3 dlokoug. Ta umooTpdpoTa
tomofetovvtan ot koBévay attd outolg Toug diokoug. Me kdkkvo Xpdpo: oTég OTOV TEPLOTPE-
@épuevo cwAfival dlavoprfic Twv aéplwv avtdpivtwv. Me pumle xpopa: datphosic e€b80u yia
kéBOe Sioko. Ou oTéc koL 1M TEPLOTPOPT TOV CWAHVAL €LodBOU ETUTPETOUY TNV OPOLOLOPYPT POt
TWV AVTLIPOVTIWV aeplwv oTo sowTeptkd Tov avtidpaothpa. H andBeomn umopel va AdPel xopa
oe Oheg TIg eTPAveLeg evtdg Tou avTtidpaothipa (Siokot, évBeta, TouxdpaTa K.AT.).

dototn yewpeTpia ko Hhoug toug 40-50 diokoug Tng diepyaoiag. Emiong, Oa frov e&aptdpevo
and tov ypdvo. Emiong, O xpnoupomoirovoe éva AeTTOpEPEC KO TEPITIAOKO GUCTMOL OLVTL-
dpdocwv. ‘Oha taw Tarpamtdvew Ba odnyoloav oe éva e€aupetikd akplBd povtédo, kabiotmvtag
v Xpfion tov ot kabnuepwn Bdon amayopeuTiky.

Me okomd tnv uTépPaon Twv TapATdve TPoPANUETWY Tov oXeTi{oVToL |1 TO UTTOAOYLOTIKS
kéotog, Tpoteivetan éva Slodidotato povtélo pevotoduvapukis (BA. KepdAawo 3) to omoio
AopBdiver vOPV koppdTior Tou avTidpoothpa Tov attotedolvtol attd emtd Siokoue. Emiome,
To povtélo TephapBdver éval ATAOVOTEVLEVO CUOTNUOL XNIULKOV avTLSp&oswy, KATL OV OF
OUVBULOWS [E TIC YEWUETPLKEC ATTAOVOTEVOELS LELOVEL TLEPAULTEPW TO ALTLAULTOVMEVO UTLOAOYLOTIKS
kbéotog. TENog, YLoL TNV TPOTOROIWON TNG TEPLOTPOPTIG TOU CWAHVA TTaLPoX NS TWV ALVTLEPOVTWY
oe Lo dlodldototn yewpetpla, eTuAéyovton katdAAnAec TepLodikéc opLokéc ouvBfkee Yo TV
Tapox ).

To mpotewdpevo povtélo apyikd Tpooapudleton oto TpdPANpa péow TNe Tpooaproyfc
TWV KWNTLKOV TIOUPAUETPWY TWV TPOTEWOUEVOV XNILKOV AVTLOPAOEWY, KoL OTNV CUVEXELOL €-

TUKUPQOVETOUL XPNOLULoToLOVToG To SlaBéopo Sedopéva Tapaywyfg, tow omoiat TtepthofBdvouv
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petpfoelg Tov méyoug TNe adoduwva os 15 SiapopeTikd onueiat Tou avtidpaothpa Yol kdbe
oelpd mopaywyhs. No onuelwbdel Tweg To Tdyog amotedel e€oupetikt évdeldn tng moldTNTOC
™NE ToPAY®YHC, oG kKo 0 atdyog elvor To opoldpoppo Ttdyoc amdbeone yLoL To UTTOC TP
T 6Aov tou avtidpacTtipo. [Mopd tov peydho aplBpnd mapodoxmv kol ATAOUCTEVCEWY, TO
povtédo eiva tkavd va dmoel mpoPAédeic Tou Tdyoug Tne adolwvae, pe éva péoo amdluto
TocooTioio odApa tne Téewe tov 4%. Mépa amd tic TpoPAédelc Tou TdXOVC TNG eToTPW-
ONG TNG AAOVUVALG, TO HLOVTENO TLOPEXEL TTANPOYOPLES YLOL TO TPOWPIA TNG PONG EVTOG TOU OLVTL-
SpaoThpal, AAAE KO YLOL TLC ETULUEPOVUC CUYKEVTPWOELS TWV dLoLPdpWwV AVTLIPOVTWY €VTOC TOU
avtudpaotipa. Mia tpocopoinon yie 60 Seutepdbemta Tng diepyaoiog (2 epiodor — Adyw Tng
TeploTpoPc Tou owhfva eloddov) yio éval koppdtt 7 Siokwv, aautel epimov 3 dpeg oe évov
Tuikd emelepyaoty. EmmpooBétwe, To povtélo emuiTpémel Kol UTTOAOYLOTIKE TIELPALOLTOL, YLOL
avaloyiec Tpddpopwv evioewv yio TI¢ oToteg dev umtdpyouv dlabéoipo dedopéva. Me Bdon
QLUTA T UTOAOYLOTIKA Teelpduoitar, ApOnkay evdeilelc yia To kwnTikd kabeoTddc To omolo Ko-
Bopilel tnv TayitnTa e andbeong, To omoio poiveTow val givol EAEYXOUEVO AT TIC YXMULKEC
avTLdpdoelg kol OxL aTd Youvdpeva SLaXVong.

MopdAn Ty emituy poviehotoinon tng Siepyacioc péow voloylotikfc pevoToduvaLkic,
pag tpooéyyiong Paoiopévne os €€Lodoslc, TO ATAULTOUUEVO UTIOAOYLOTIKO KOGTOC YLl TNV TpO-
oopoiwon evdg ohdkAnpou avtidpaotipa (Tepitov 20 wpeg) kabiotd Tnv YpHion Tou povtédov
adbvatn yio koBnpepwn xpron (m.x. Bedtiotomoinon tne alAnlovxiog twv diokwv yiow Thv
Tapoywyn e nuépag). Mo outd to Adyo, e€etdleton M TPOOTTIKY €VOG LOVTEAOL OLULY (G
odnyoduevou atd ta dedopéva (BA. Kegpdowo 4).

To Saléoypo dedopéva Tapaywyfc, Tow omolal TepLéyouv TANpopopieg oxeTkd e TNV Si-
dtagn ko TG ouvBfikeg Aettoupyiog Tou avTldpaoThpa, AN KO OXETIKAL E TO ATLOTENEOHAL
™ depyaoiag (dnAadh to mdyog Tng emioTpwong T ahodpvag), propoldv va alomotnBoidv
YLOL TNV oLy ¢ 081 yolpevn atd T dedopéva povtedomoinom tng Siepyaoioc. Autd Shvatal va
yiver péow g xpHong alyopiBuwv pnxoavikic ndbnong (Machine Learning - ML) . Ov ahybpiB-
pot pmxovikfic pébnong propoiv var «poBoivouvy amd to StabBéoiuor dedopévor Al Kol vo
avokoAOTTToVV potifa. TNy Tepittwomn tng TpdPAedng Tou Tdxoug TN ahodpvaG ot KATIoL
ouYKeKPLULEVT Oelpd Ttopaywyhc, ol TpoavopepBeioec Aemtopépeiec Sidtalne ko Aettoupyloc
Tou avtidpaotipa wropolv va xpnouuotroinBoldv cav petafAntéc «eloddouy ot éval poviélo
pnxovikfic péBnome to omolo éxel petaPAnTh e€ddou To TdxoC TNg ahoVpvaLG ot kd&ToLov Sloko
Tou avTidpaothipa. Miog ko o petaAntéc e€68ov eivou Yvwotéc, To TpdPANua outd Bor Aubel
pe adyopiBuouvc Tou avikouv ot kot Yoplal TS eTiTNPoVMEVNC LdBnone.

duoikd, T dabéoipa Sedopéval Tapaywyfc elvo dedopéva amd Tov TPAYUATIKS KOOWO.

Y UVETIOC, TiepLéXouv o@dApaTo oA kol Topadferg. Etiong, eivon Sedopéval ou mepLéyouv
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YyApo 2: (o) Lxetikd opddpa yio Tig TtpoPAédelg Tou mpotevduevou povtédou pevotoduvo-
piknic yioe 3 Suapopetikéc Béoeic pe diobéolual Sedopéval dxoug adovpvag. O TPpooopoLOoELS
TIPOLYLOLTOTIOLOUVTAL YLOL TECOEPLS BLALPOPETIKEG YewpeTpieg 7 Slokwv ouvolkd. (B) Méco a-
TéAuTo TocooTiaio opddpa (Léoog 6pog yia Tig 3 Béoeig Yo T oToieg uTtdpyouv Stabéotua
Bedopéval) yLoL TG TIPOTOLOLWTELS TOV TIPOTEWOUEVOU LOVTEAOU UTONOYLOTIKTG PEVOTOUNXOLVLKTG
Yo TG 4 SrovpopeTikég yewpetpieg Tov avtdpaotipa. (y) Métpo Ttaxdtnrag, (§) ovykévipwon
™G Tpddpoune évwong ko (£) ouYKEVTPWON VEPOU OTO E0WTEPLKS TOU AVTLEPAOTHPA OF HLOL
OUYKEKPLLEVT XPOVIKT oTlyp kartd Tn Sudpketa tng atdBeong.

TANpoyopio pe SloupopeTikéc popwéc (Tr.x. aképaol aplBuol, Ttporypartikol optBpol oA kou Ke-

{pevo). ‘'OAn cwut?) M TANPOYOpioL TPETEL VL LETALOYNUALTLOTEL O€ pop@1) e0koAaL Stauxetpiotun ottd
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Toug alyopibuoug unxovikic pdbnone. Emiong, elvor oA oovnBec va unv xpetdlovtan dleg oL
SLaBéoupeg petofAntéc eloddou v TV emtitevén éykupwv TpoPAédewv. MoAéc popéc, 1 xphon
«MM KOLTALTOTULOTLKOVY HeTAPBANTOV e10680u evdéyeTal vol adAoLdoel TNV Tpoyvewo Tkl anddoon
Tou povtélov. Emmpoobitwe, to povtého mou Ba xpnoupwotondel ko M ToAumAokdTnTd TOL
Tallovv emionc onpavtikd pdho oty eykupdtrta Twv TpoPAéPewy.

‘Etot, petd to «kaBdpiopay twv dedopévv kot TV eTAOYH KATEAANAWY LETOLOY NLALTLOMMDV
Yo TG petoPAnTéC eLo68ov (apaipeon Tov péoou bpou ko Staipeon pe TNV TUTHKT ALTtOKALOT YLow
¢ apBuntikéc petaPAntéc ko Suadikn kwdikomoinon yia TG Katnyopikéc petaAnTéc), ako-
AovBel n e oy Twv peTaPANTOV eLoddov Tou Ba xpnowomoinBoldv. LTnv Tapolvoa TepintTwon,
kotoaAfEope o€ 13 petaAnTéc oxetikéc he TNV yewuetpior ko T Sidtogm tov avtidpaothpo.
KaBd¢ eotidlovpe otnv TpdéPAedn touv mdyouc Tne ahovpvog avd Sloko, stvail onuovtikéd va
oupTeptAnBolv TANpoYopieg YLoL TOL XOLPAKTNPLOTIKE TWV YELTOVIK®V diokwv. 'Eva pépog twv
emeyévtwv petofAntov dnuovpyiOnke Paotopévo otic apxikd diobéorpeg petaAntéc kou
poiveto vo tpoodidel otnv Bedtiwon Tnc TpoPAeTtTikHC LkotvoTTOC TOV ovTélov. EvBelkTikd,
2 amd tic petofAntéc mou dnuioupyNOnkav, Atoty N ouvoAikY| ETPAVELX TWV UTLOCTPWUATWV
evtoC Tou avTidpaothpal ko M TUTkT acTtdkAlom T avd dloko empdvelog andBeong evtdeg tou
avtdpaothipa. Téhog, amopéver 1 eAoy) povtédou punxovikic wdbnong. Metd amd mpokoa-
TopKTIkEC Bokipéc, Pavnke TwE To ovTélo Tou duvatal vo Tteptypdidel kaditepal Tow StaBéoipa
Sebopéva eivol éva povtédo Boolopévo oe cuoTolyicg BEVTpwY ATOPAONG KAl TILO OUYKEKPLLEVOL
éva. XGBoost povtélo. H molumhokdtnta tou povtélou pmopel va emnpedoet thv poPAeTtL-
k1f Tou tkavéTnTa, edlkd av autd eivo TeplocdTEpo 1 Atydtepo TepimAoko attd doo TpéTiEL.
ES& mpémer vou onuetwBel dtu M mpoPfAettiky tkavdTnTal Tou povtélov umoloyiletow TdvTote
yiat TpoPAédeic Tou povtédou yia éva ohvolo Sedopévwv to otolo Sev éxel xpnoiotolndel yio
v «mpotdvnony tov. H molumdokdtnra kobBopileton amd Tic SLdpopec LVTEPTAPAUETPOUE TOU
povtédov (T.X. to péyloto Pdbog twv dévtpwv, o ouvolkde aplBudg Sévtpwv otnv cuotouia).
‘Etol, oL apyikéc Sokipég opeidouv v akodouBnBoltv amtd poe Siepyosior BedtiotoToinong av-
TOV TV vrepapopétpwv. Ev tédel, emuléyeton évor povtédo madwdpdunong XGBoost |, tkavd
va TpoPAédel To Tdxog TNe emioTpwong TN adodvag avdt Sioko pe Péoo aTtdAUTO TTocooTLaLO
opdpo TG Tééewg tou 3%, delyxvovtog Bedtiwon oe olYKkpLon e TO LOVTENO LTLOAOYLOTIKNG
pevoTtoduvoyukfc. Mépa amtd tnv Bedtiwon otnv mpoPAeTtiky tkavdtnTa, To Hovtého umopel
va k&ver TpoPAédelc Yol évav oAdkAnpo avTidpaothpa o TepimTou éval SeutepdAeTTO, TETU-
yaitvovtag étol po tepdotia Pertiwon otov amaitolpevo Xpbdvo mpdPAedne tne Tdewe Tov
09.99% GuYKPLTIKA e TO LOVTENO UTIONOYLOTIKTC peuoToduvoyuk?c. To povtélo autd duwe, ot
avtiBeomn pe to povtélo umoloyloTikfic pevoToduvayuiknc, Sev divel kaulo TANpoopial oyeTikd

LE TNV POT| KO TLG CUYKEVIPOOELS TWV ALVTLEPOVTWV eVTOE TOU AVTLEpAOTNHP.
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Yxfua 3: Arddoon tou mpotewdpevou povtéNou pnxaviktc uébnong (o) oto obvolo dedope-
vwv ekmtaidevong: Méoo tetpaywvikd opdipa: 0.005  Méoco amdiuto opdiua:0.051  Méoo
amdiuto TocooTiado opdhua: 0.9% , R?: 0.980. (B') anédoon oto ouvolo Sedopévwv Sokiuic:
Méoo tetpaywvikd opdipo: 0.059 Méoo amdluto opddpe: 0.187 Méoo amdAuto mocooTiaio

opéAua: 3.1% , R%: 0.753.

YTtnv ouvéyela, o pal tpooTdbeia val cuvduooTtolv ta Sabéoipo Sedopéval TToLpY WY TS
KoL ToL dedopéval o Ttopéxovtan attd To ovTéNO UTtohoYLoTik¢ pevuoToduvaikig, TpoteiveTon
poe tpooéyylon péow tng nuebddov GappyPOD, 1 omoio emitpéter TV akplBr) alvokotaLokevn
TWV ATOTEAEOUATWV TOU MOVTEAOU UTIOAOYLOTIKNG pevotoduvoutknc (T Tpo@id porfg ko To
TPOYIA CUYKEVTPWOEWV) pe TNV XpHon Teploplopévou aptBov Sedopévwv tdéoo amd to povtého
pevoTtoduvapikfc, éco kol atd to Stobéoua Sedopéval TTapaLyWYHC.

Me tnv avédmtuln autdv Twv 8o Tpocsyyloswv yla TV poviehomoinon tne diepyasioc,
éxouv 800st duo diapopetikol TpdToL TPdPAedne Yo To amotédeopa g Siepyaociog, o kabévag
pe Tol SLkdl TOu TPOTEPHUATO Ko petovek Tt AtaBétovtag ko Toug 800 duwe, uttdpyeL 1
Suvatdtnra ko Yo Ypfyopeg mpoPAédeic, adA& ko yror BaBitepn avdAuon tne Siepyaoioc.
‘Etot, pe ta 800 mpotevdpeva povtéda, Bewpolpe 6Tl 1 epdTnon 1 mov Tébnke TopaTdve éxel
ooyt Oed.

Y to vndhowrto pépog tng drotpPric, o otdyog eivol M amdvtnon tng SedTepng epOTNONG.
Y uykekpiéval, xpnototolovtag pnefddouc unyavikic pébnone, yivetow mpoomdBeia mwpoodio-

plopol petaAntadv mov mbaveg va sivon kadpleg v to amotédeopo tng depyooiog (BA.
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Kepdouo 5). H mpoomdBeior ovtty Eekwvdiel, pe tnv xpfon twv Stabéouwv dedopévwv yio
k&Be oelpd mapaywyfc. Ou 15 Siabéoueg petphoeig Téxovg alovpwvag yia tig 603 diabéoipeg
oelpéc Topaywyng Tepvdve ard po Siodikaoion opadotoinong (clustering). H opadotoinon,
elvorr Lo néBodog pnyovikfc wébnone mou avikel otic nebdSoug pn emitnpodpevng wdbnong,
plog ko Sev umdipxel petoAnTy €€68ou. Y komdc tne opadomoinone siva v avokohddel o-
pédec peta twv Stabéopwy Sedopévaov. Ta péAn Twv opddwv Tou dnuiovpyodvtal poldlouvv
o TOAD e Ta wéAN The ouddoc toug mopd pe tol EAN dAAwv onddwv. H opordtnTa ou-
T kaBopileton pe PBdom kdmora kprthplar, évor Topdderypo Twv omolwv atoteAet 1 EukAeldeia
andotoon. TNV Tapovoa dovleld, ypmowwototeiton alydplBpog cuoowpeuTikic LepapXikfc
opadomoinong (agglomerative hierarchical clustering), Baotopévog otnv eukdeideia amdotaon.
Y tov ouykekpLuévo ahydplo, o xpHotng kakeltow va eAéEel Tov aplBd twv opddwv.
Katdémv tng opoadomoinong twv dedopévwv amd tig 603 oepéc mapaywyng, N omola e-
ivau. Bootopévn pévo otor dedopéval Tou mdxoug amdBeong, Umopolue VoL KAVOUUE KATOLEC
Topatnpfioelg, pe Pdon TV ToloTik TANpogopia Tou Teptéxeton oto Tdyog andbeong. A-
@o¥ uttoloyloBel o péooc 6poc ko 7 TuTkY aTtdkAlon Tou Tdxouc amdbeong yia tnv kdBe
onddo TTou mpoékue, aitveTol TwG oL opddeg TOV TPOKUTTOUV KATEXOUV SLALPOPETIKE TLOLO-
Tk xopoktnelotikd. Edv {mtnlel and tov alybéplBuo va Bpebolv 2 opddeg, Tpokimrel Twe
autég £Xouv onpovTikéc Sloupopéc, Téoo otov péco bpo (opdda 0: 16.35 pkpduetpo, opddo
1: 15.08 pkpdpetpa), 600 ko otnv Tuk amdkAon (opddo 0: 1.355 pkpdpetpo, opddow 1:
1.578 pkpdpetpa) tou méyovg andbeong. AvtioTolxa, oTNV TEPITTWON TWV TPLOV OL&S®V,
N opddo 1 amd v TPpWTN MepimTwon paivetol val «omdely ot 2 empépoug. O tpeic opddec
IOV TPoKUTITOVY £TiomG TotpovoLdlovv onuavTikés dapopéc otov péoo bpo (opddo 0: 16.35
pikpdpetpo, opddo 1: 15.53 pukpduetpo, opddo 2: 14.32 pikpduetpor) Ko TNV TUTILKT ALTtOKALOT
6po (opdBo 0: 1.354 pkpdpetpor, opddar 1: 1.386 pkpduetpo, opddo 2: 1.588 pikpduetpa) tov
Tidyxovg amdBeong. Ltic XAA, sivar eBuuntéd var urtdpyel 600 to Suvatdv peyaditepo YOS
andbeong, pe v mpoumdBean val Siactnpeiton M opotopopiol TNS eTloTpwoNC LeTaEd SAwv Twv
UTLOO TPWUATWY. XAPN 0 VTS TO TOLOTIKS XOAPAKTNPLOTIKS TOU TAYOVG, elval eppavég &t oL
opddeg Tov TpokvTTOUY amd TNV opadotoinon éxouv EekdBapeg ToloTikéc Sloupopéc, pe TNV
opddo 0 vou aetotedel TV «kaAOTEPNY OBl koL TV opddo 2 vor atotedel TV «XeLpOTEPNY.
Edv otnv ocuvéxelo soTidooupe otic peTaPAnTéc elob8ou tne Siepyooiog yiow ouTéc TiC
ouddeg, pmopolpe vor Topatnpficovpe évtoveg diowpopéc. H opddo 0, amotedeiton oyxedédv
OLTIOKAELOTLKAL aLTtd OELpég TTopaLY WY TTOU XPNOLLOTIOLOUV Lol vedtepn ekBoxn TG «ouvTayHigy
TOPAYWYHS. LTV «CUVTAYHY KwdlkoTolovvtou didpopa Brinato Ttou Tpétel vor Anebolv kortd
v didpkelal TNC Tapaywyfc, To omola oxetifovtal pe Tic cuvBfkec evtdc Tou avtidpaoThpa

Kol TLC oevolhoyieg Twv avtidpdvtwy. Ou opuddec 1 kow 2, aotedodvton ottd oelpéc Tapoywyhe
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Yyhpa 4 Katavour méyxovg otnv mepintwon: (o) 2 opddwv ko (B) 3 opddwv. To vdnrd
HéoO TAXOG KoL 1 XOUNAT TUTLKY aTtdkALo aTtoteAoUV WETPO TNG ATOTEAECHOTIKOTNTOG TNG

Buadikaioiog ko TG ToLdTNTaG Tou Tpotdvtog. Ov oelpéc Ttopaywyne Tng «UwP» opddog emi-
delkviouv alvTEPOL TIOLOTIKAL X OLPOKTNPLO TLKAL.

TOV XPNOLLoToLoUV TaALSTEPEG EKBOYEC TNG KOUVTALYHSY.

‘Emerta, avolntovioc To Tl Siopépel otic petofAntéc e1oddou petald Twv opddwv 1 ko
2, TPATNPOUE TG VTLAPXOLV Slocpopéc ot o LeToPANTH Tou avadelkviel To TOoO oWoT
éywe 1 Sudtadn tou avtidpaoctipa pe Pdon tnv ovopaoTikn empdvelo andbeong (n omoio
ETUAEYETOUL QLTLO TOV XELPLOTH TOU AVTLEPAOTHPOL) Ko TNV TPAYMATIKY eTpdvela antdBeong e-
vt Tov avtidpaothipa. Ou Tipég auTOV TV 800 eTLYAVELOV Bev oupTiTtTouY TTdVTL, KaBhg oL
£TUAOYEG TIOU €XOUV OL XELPLOTEG YLOL TNV OVORLOLOTIKTY eTiLpdiveiat, divovtol oe Prinoatol Tou evég
TETPAYWVLKOU PéTpou. XTnv Tpdln, o XelploTthic oTpoyYVAoToLel TNV Tpoylatiky empdveia
TPOC TA TAV® KATA TNV emAoyh TNne ovopatikfc. Ou opddec 1 ko 2 Aoimdv, apovotdlovv
oNUOVTIKY Stoupopdl o Lot metoANTH Tou avTikatoTTpilel auTHv TNV SLatpopd pwetald ovopa-
OTIKNC KoL TPOLYMATIKNC eTiLpdvetac. Auth 1 petoAnTd eivo 1 aetdAutn Tt Tne Siapopdic.
H petaBAntyd ovty, poll pe tnv «ovvtoyy Siocpépouv petodd twv 3 opddwv ko evdéyeton vau

givau kploleg yLol To amoTéAeopna TNG depyooiog.

2TV CUVEXELX, XPTOLLOTIOLOVTOG TIG TapaTdvw Tpoodioplopéveg petafAntég, pmopoldv
voe avarttuyxBolv povtéda emitnpolpevnc wdBnone. Edv coav petofAnth €£68ou yia awtd

o povtédo Xpnotpotondel n opddo otnv omoial Bo avrkel ol TopTidSol, TéTE TOo TPSPANLAL
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amotedel éva pdPANpa tadivéunone. Edv ocav petafAnty e€b68ov xpnouwomowndel to péoo
T&xog TG adBeong, Téte xoupe UTPooTd pog éval TtpdPANUA TTahvdpdunong.

Mo to TpdPANua Tagwdpnomng, xpnowototeiton évog adydplbuoc Tuxaiwv daokdv. Me tnv
XPHOM TV LeTABANTOV Tov TPoodloploTnKay TAPATAV®, 0 CUVBVALOUO e KATIOLEG OXETLKEG
pe tov adfovta aplbud Tou avtidpaothipa ko TNV Xpovid Topay@yfHe oAA& Kol TNV TUTIKY
ATOKALOTC TNC eTLPAVELOG €VTOC TOu avTLdpaoThpa, umopolue va TpoPAédouue tnv opddo
otnv omola Bo aviikel ot TopTiSo e tkowvotoinTiky akpifetor. H akpifetat yro Tnv mepintwon
Twv 500 opddwv siva 96.7%, eved yioL TNV TepiTTwon Twv TPLOV opddwv eivor 79.3%.

Mot o TtpdPANa TTohvdpdunong, xpnowototeiton évag ahyb6plBpog XGBoost. Me tnv xpnion
TV PeTaANTOV Tou xpnoulotoliinkoy oto TpdPAnua tng Tagwdunong, poll we 5 ard T 15
Sraléolpor mhyn emioTpwong, katopépvoupe v poPAédoupe To wéoco TAYOC ETUOTPWONC e
LKoLVOTIOLTTLK Y okpifeta, edattdvovtag étol Tig amapaitntee petpfioelg mdyxovg katd 66.7%,
ko divovtoc Ty duvatédtnra Pedtivone ota PApctar Tov AcuPdvovton petd To TEPUC TNG
Siepyaoiog yia TtoloTikd édeyyo.

Télog, xpnowotmolwvtag Tic Twés SHAP, ov omoieg éxouv tnv Bdon toug otnv Bewpio
oy viwv, propolpe vo amodoooupe oe kéBe petaf ANt eloddou o Tuh, M ool SAveEL TN
péon ovuPory tng petaAntic otnv TpdéPAedn, Bonbdvtag étol otnv katavdénon Tov TPdTOL
pe Tov omoto o adayéc oe o petofAnTy propel va emmpedoouv tnv teEAkh amddoot Ttou
povTélovu.

Me outdv Tov TpOTo, AVadelkVIETHL TG Lot XAANAOUXIOL [T ETUTNPOVREVOV KAl ETILTNPO-
Opevwv nebddwv pnyavikfc nabnone pmopel v emonudver wbavéc kplouee petofAntéc tne
diepyaoiog. H mpooéyyion auth epapudleton oTny ouvéxeld Ko oe éval evTEADG SLoLPOpPETLKS
TpéPANuA To TEOPANUA Tou peToBOAMOUOU OTA Ao TPOKITTAP.

Extdc Tou kevtpikod Bépatoc tne diepyaciog XAA, otnv Stotpff mepthopfBdvetan 1 pe-
Aétn e Siepyooiog Tou petaBolopod ot aotpokittapa (BA. Kepddawo 6), pe okomd tnv
avddelln onuovtik@v Tapopétpwv péow pebodoloyiag avtiotolyne avthc Tov epapudotnke
yia TV Sepyooion XAA. Tty TepinTwomn TwV Ao TPoKUTTAp®Y, YiveTaw Xpfion evég ouvdlou Se-
Sopévwv Tovu TpokUTTEL ATtd VToAoYLoTIKG Teetpdpoctee. Ou petaPAntéc eloddou eivan ol Béoeig
TV KEVTPWVY 6Tou AapBdvouv xopor Xnuikéc avtidpdoelg evtdg tou kuttdpou. Ou petofAntéc
e€b8ov, civa oL ouYKevTpWOoel TV SLdpopwv peTafoltdv, e onuavtikétepoug to ATP ko
to ADP. Yuumepdiopato yrow Thv vysior kot TV peTafoAkt] KATEOTAOT TOU KUTTAPOU UTLOPOUV
emiong va avtAnBolv amd tov Adyo ATP mpoc ADP.

Xpnoporoldvtog avtiotoiyn adAniovyxio un emitnpoduevey kol eTitnpolpevey pnefddwv
punxovikfic pdbnong, katopépvoupe val poodiopiooupe Tic Béoeic Twv kévipwv avtidpdoswv

Tiov eTNPEE&LOVV TIC CUYKEVTPOOELS TWV KeTafoMTOV, e Tic Béosic Twv toxovlpiwv va go-
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Chapter 1

Introduction

1.1 Motivation

In engineering and other scientific disciplines, the chemical and physical processes that occur within
a system can dictate outcomes that range from success to failure, from products that meet specifi-
cations to scrap, or even from sustained life to critical failure in biological systems. Understanding,
analyzing, and predicting the behavior of these processes is essential, and mathematical modeling
serves as a powerful tool to achieve these goals.

Mathematical modeling aims to identify relationships between key quantities (inputs and out-
puts) in a system. To do this effectively, data are essential. Without data on processes, their
parameters, outcomes, and other relevant factors, models cannot be validated or produce accurate
quantitative results. This makes it difficult to assess how closely a model reflects reality. The
choice of modeling approach depends on the amount of data available.

When data are limited, an equation-based approach (also known as a physics-based or hypothesis-
driven approach) is commonly used. This method starts with a clear hypothesis and assumptions,
often grounded in existing theories or prior knowledge. First-principles models, which rely on the
fundamental equations of a system, fall into this category. These models require experiments to
test and validate their hypotheses. However, incorrect assumptions in an equation-based model
can lead to significant errors. Furthermore, as modeled systems become more complex and require
greater accuracy, the modeling process becomes more challenging. First-principles models typically

depend on parameters to produce quantitative results, and if these parameters are unknown, they
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must be derived from available data. Additionally, as our understanding of a process evolves or

new factors are introduced, these models must be updated, which requires ongoing maintenance.

When data are plentiful, data-driven approaches can be applied directly. These methods typ-
ically operate without a predefined hypothesis and aim to uncover insights and detect patterns
directly from the available data through computational techniques and statistical analysis. The
insights and patterns discovered can then serve as the basis for generating new hypotheses about
the process. The larger the dataset and the more relevant the information it contains, the easier

it becomes to identify meaningful patterns and relationships.

But what happens when the quantity of data is neither “big” nor “small"? Then hybrid ap-
proaches, which try to get the best of both worlds by combining elements from equation-based and
data-driven approaches, become necessary. This is quite often the case in many engineering appli-
cations, where process insights and outcome predictions are required regardless of the complexity
of the process. The modeling of such processes might require many assumptions. Furthermore,
real-world data can be “dirty”, which means that available process data may lack information or

even contain errors.

Equation-based How to model Data-driven
models here? models
—— >
"Small" data "Big" data

Figure 1.1: Modeling approaches for varying data quantities. When data is scarce, equation based
modeling is the most appealing approach. When data is abundant, data-driven modeling can
surpass its equation-based counterpart by extracting process insights directly from the data. When
data are neither “big" nor “small”, hybrid approaches combining both equation based and data-
driven modeling can be used to attempt to get the best of both worlds.

An example of such an application is the chemical vapor deposition (CVD) of multilayer
Ti(C,N)/a-Al,03 coatings on cemented carbide substrates [1]. This process aims to provide
cutting tools with excellent heat and wear resistance properties, together with excellent cutting
performance. However, as with all CVD processes, it comes with a high complexity, associated

with the interplay of several physical and chemical phenomena (e.g., reactions, diffusion, and con-
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vection) that occur in CVD. Furthermore, CVD processes can be highly sensitive to operating
conditions, making them challenging to model and, in extension, control, optimize, and predict

with accuracy and consistency.

CVD processes, like all processes, can greatly benefit from modeling. Modeling can provide
insight into the process and means to improve it. To this end, several approaches can be taken.
Traditionally, equation-based methods such as Computational Fluid Dynamics have been used for
the modeling of CVD processes [2]-[5], as they can shed light on the way in which the various
phenomena contribute to the outcome of the process. Nevertheless, the development of accurate
CFD models can be a daunting task, as oftentimes the several parameters required for the intro-
duction of the numerous phenomena are unknown. In certain cases, the geometry of the reactor
can change from production run to production run, making the use of a single model less viable.
Additionally, as the process can be very sensitive to perturbations, the use of sensors within the

reactor is often avoided, and therefore, dynamic process data might not be available.

Apart from the constraints enforced by difficulties associated with model development, conduct-
ing computational experiments and making predictions using such models can also be undesirable,
especially in cases where time is of the essence. CFD models of CVD processes that aim to take into
account all of the interplaying phenomena can be highly resource intensive, if not computationally
intractable. Several approaches have been proposed in the literature to overcome these problems,
usually by developing surrogates or reduced-order models [6]-[9]. However, the acquisition of an
adequate amount of CFD simulations is necessary for the development of these surrogate models.

This is a cost (either in resources or time) that needs to be considered before development.

Since the beginning of the Industry 4.0 era, data availability has increased greatly in industrial
settings [10]. Although this increase is evident, the scale of the data still remains orders of
magnitude lower than the scale of social media or finance data. Regardless, this increase in
quantity has led to an increase in the number of applications of data-driven methods in many
aspects of industry and an increase in industrial interest in data (the motto “data is the new
oil" comes to mind). This led to a large number of research works, with several applications in
industrial processes [11]. The topics of focus include maintenance management [12]-[14], quality

management [15]-[19], production planning [20]-[22] and control [23], [24], logistics and supply
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chain management [25]-[28], and engineering design [29], [30]. Applications have even emerged
in management [31].

This increased quantity of data, along with the interest in data-driven approaches and the
limitations of equation-based methods, led to the pursuit of data-driven methods for the analysis
and prediction of a CVD process in the present work. However, because the interpretation of
the interplay between the aforementioned physical and chemical phenomena is of interest, the
implementation of data-driven approaches is accompanied by the development of a CFD model
of the process. However, it appears that the process is too complex to be efficiently modeled by
traditional CFD methods, while also lacking the data required to be optimally modeled by data-
driven approaches. This raises the following question: “How should we approach processes that
lack the necessary data to be optimally modeled by data-driven methods, but are also too complex

to be optimally modeled solely by equation based methods?".

1.2 Objectives

This work aims to answer the above question by answering the following.

1. Using this CVD process as a case study, what is the best computational workflow that allows

us to make accurate predictions in a resource-efficient and low-cost way?

2. Can we determine critical process parameters from the available production data?

Question number 1 is answered in Chapters 3 and 4, where both CFD and ML models of the
process are proposed. Using this CVD process as a case study, we propose ways of developing an
accurate model of the process, using both CFD (Chapter 3) and machine learning (ML) approaches
(Chapter 4). Question number 2, is answered first in Chapter 5, where a blend of supervised
and unsupervised learning techniques is proposed as a way to identify potential critical process
parameters in real-world data. In an attempt to explore and highlight the versatility of the approach
proposed in Chapter 5, our second question is answered again in Chapter 6, this time for a
completely different application that involves data from a computational model; the metabolism

of astrocyte cells.
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1.3 Thesis Structure

Chapter 2 presents the interdisciplinary scientific background where CVD, the process of interest,
is introduced. Furthermore, a brief introduction to Computational Fluid Dynamics, the equation-
based method implemented for the modeling of the CVD process, is given. Finally, Chapter 2
ends with a slightly more detailed introduction to machine learning methods and the various steps
necessary for the development of data-driven models. This chapter only briefly mentions concepts
that are further analyzed in the following chapters, which are based on the journal publications

derived from my research project.

Chapter 3 presents the first step taken in the investigation of the CVD process. It addresses
the development of a chemistry-enhanced Computational Fluid Dynamics (CFD) model that allows
the prediction of a-Al,O3 thickness along with the analysis of several phenomena, which will be
presented in detail in Section 2.1.1, involved in the deposition process. The developed model is
also used for a series of computational experiments, aiming to get insights regarding the rate-
determining mechanism of the a-Al,O3 deposition. This chapter was published as a journal article
in [32].

Chapter 4 presents a comparison between the developed CFD model and data-driven ap-
proaches that can also provide accurate a-Al,O3 thickness predictions. Here, several supervised
learning algorithms were implemented using only production data, with ensemble tree-based meth-
ods [33] and more specifically XGBoost [34] demonstrating the best performance on the dataset.
The predictive performance for the a-Al,O3 coating thickness is better for the proposed data-
driven approach, with a reduction of more than 99.99% in the required resources, compared to
the CFD approach. This chapter is finalized with the implementation of another data-driven ap-
proach, namely GappyPOD [35]. GappyPOD allows for the reconstruction of the full state-space
of the CFD simulations, using only limited data from the simulations, along with certain thickness

measurements. This chapter was published as a journal article in [36].

Focusing on entire production runs, Chapter 5 proposes a combination of ML methods for
the analysis of the process using historical production run data. We show that when using only

process outputs that are indicative of quality for clustering, the resulting clusters demonstrate clear
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qualitative differences. By analyzing the differences between the process inputs that correspond to
each of the resulting clusters, we can identify inputs that are potentially critical to the outcome of
the process. Following this step and using the identified inputs, supervised learning algorithms can
be proposed for the prediction of the quality of a production run. Finally, a SHAP value analysis
[37] is included to quantify the impact of each input on the output of the process. This chapter
was published as a journal article in [38].

Subsequently, in Chapter 6 we demonstrate the versatility of the framework developed in
Chapter 5, by applying it to an entirely different process; the metabolism of astrocyte cells. Using
a computational model developed in the work of Farina et al. [39], [40], we show that we are able
to determine inputs, in this case reaction centers, that are highly influential on the energy state of
the cell. A classification model is developed for the prediction of the state of the cell (healthy vs.
non-energized), while regression models allowing for the prediction of metabolite concentrations
are also proposed. This chapter is currently in submission and is available as a preprint in [41].

Finally, the results obtained from the different chapters are summarized in Chapter 7, and the

thesis is concluded with a discussion of possible future directions.
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Chapter 2

Scientific background

2.1 Chemical vapor deposition
2.1.1 Overview

Chemical vapor deposition (CVD) is a widely used chemical process for the production of solid
thin film coatings. It involves the reaction of a solid substance on a heated substrate via a series
of homogeneous chemical reactions occurring in the gas phase and heterogeneous reactions taking
place between the gas and solid phases.

CVD and its various subcategories are widely applied in various thin film technologies, including
the creation of semiconductors [47], dielectrics [48], conductive oxides [49], passivation layers [50],
[51], and oxidation barriers [52]. They are also crucial in producing coatings that resist heat [53],
corrosion [54], and wear [55], [56]. In microelectronics [57], CVD plays a key role in the growth
of epitaxial layers [58], [59]. Beyond these uses, CVD is employed in the manufacturing of high-
temperature materials such as ceramics [60] and tungsten [61] and the development of solar cells
[62], [63]. Furthermore, CVD is used for the fabrication of high temperature fiber composites [64],
[65] and the generation of particles with precisely controlled sizes [66].

Despite its wide range of applications, CVD can be considered a complex process, as it involves
several competing physical and chemical phenomena. As shown in Fig. 2.1, the main phenomena
that occur are homogeneous (gas-gas) and heterogeneous chemical reactions (gas-solid), gas diffu-

sion, adsorption, desorption, and convection. If the numerous intermediate species and byproducts



Scientific background

produced from the aforementioned chemical reactions are also considered, then the complexity of
the process becomes evident. As a consequence, CVD processes can be very sensitive to operating

conditions and quite difficult to accurately and reliably model, control, optimize, and predict.
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Figure 2.1: An overview of the various interplaying phenomena occurring in a CVD process (Taken
from [32]).

2.1.2 Production of wear resistant Ti(C,N)/a-Al,03 coatings for cutting tools

The process investigated in the present work is an industrial-scale process of our collaborators at
CERATIZIT. The goal of the process is the deposition of multilayer Ti (C,N)/a-Al,O3 coatings on
cemented carbide substrates via CVD. A simple example of the coating is presented in Fig. 2.2. The
resulting product improves the properties of carbide cutting tools, providing excellent resistance to

heat and wear, as well as improved high-temperature hardness [67]-[69].

a-AlrO

Figure 2.2: An overview of the material produced. A multilayer coating of Ti(C,N)/a-Al,O3 is
deposited on a cemented carbide substrate using a two-step coating process.
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This multilayer coating is deposited in a commercial industrial CVD reactor (Sucotec SCT600TH),
using a sophisticated two-step coating approach. First, a base layer of Ti (C,N) of around 9 pm
is deposited using a chemical system consisting of TiCl4;—CH3CN-H>—N>—CO at a temperature of
900°C and a pressure of 100 mbar [70], [71]. From the precursors, TiCls is used as the Ti source
and CH3CN is used as the source of C and N.

Following the deposition of Ti(C,N), the reactor operating conditions change to T=1005°C and
p=80 mbar, in order to accommodate the deposition of a-Al;O3. The chemical system used for
the deposition of alumina consists of AlClz—CO,—HCI-H>—H5S. This step takes around 3 hours to
complete [1]. AICl3 acts as the source of Al, while HO produced in situ via the reverse water-gas
shift reaction [72], [73] acts as the source of O for the coating. A more detailed review of the
«-Al>O3 coating step is presented in Chapter 3.

The produced cutting tools are consistently required to maintain cutting capacity for the
prescribed time indicated by the manufacturer. For this reason, the uniformity of the coating
thickness in all production runs, reactors, and production sites is essential, as it contributes to the
uniform longevity of the products [74]. Therefore, it is clear that the main quality metric of the
process is coating thickness.

For the analysis of the process and the prediction of process outcomes, it is essential to develop
models. To this end, it is possible to implement equation-based methods (Chapter 3) or data-driven
methods (Chapters 4 and 5), all centered on obtaining a better understanding of the process and
the important quality metric of the process, namely the deposition thickness. However, developing

such models comes with several challenges, as explained in Chapter 1.

2.2 Equation-based approaches

2.2.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is a subcategory of fluid mechanics that uses numerical
analysis to analyze and solve problems related to flowing fluids. Through the use of computers,
CFD aims to solve the fundamental equations of fluid flow (Navier-Stokes) along with conservation

equations, conservation equations for energy, species and electric potential among others. CFD
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can make all the required calculations that allow for the simulation of the free-flow of fluids as well
as the interactions between fluids and surfaces, which are defined by boundary conditions. Taking
the example of pouring a glass of water, CFD would allow us to simulate the flow of water, along

with the interaction of the water with the inner surface of the glass.

When both fluids and chemical reactions are involved, CFD can still provide answers [75]-[77],
taking into account chemical reaction schemes and conservation of species equations. As will be
shown in Chapter 3, CFD is widely used for modeling and investigating CVD processes, with great

success.

Governing equations

The governing equations for a CFD model usually include the conservation equations of mass,
momentum, and energy. When modeling a chemical process, such as CVD, where several hetero-
geneous and homogeneous reactions determine the outcome of the process, including equations
for the transport of chemical species and chemical reactions becomes necessary. This adds a layer
of complexity to the model. Of course, with some realistic assumptions, these equations can be

simplified, as will be shown in Chapter 3.

e Conservation of mass

3f+v-(pu):o (2.1)

where u denotes the gas velocity vector and p the density of the gas mixture.

e Conservation of momentum

Ju

2
po; tou- V()= -Vp+ V. y(Vu+vuT)—§y(v-u)1 +F (2.2)

where p is the pressure, u is the dynamic viscosity of the gas mixture, I is the identity tensor

and F is the volume force vector.
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e Conservation of energy

oCyp (aaf‘F(“'v)T) :—(V‘Q)—pan<?:+(u'V)P)+Q

2 1
- [y(Vu +Vu') - (V- u)I} : [Z(Vu + VuT)] (2.3)
where C, is the specific heat capacity of the gas mixture at constant pressure, T is the

absolute temperature, q is the heat flux vector and Q contains the heat sources. The :

symbol denotes a double dot product.

e Transport of chemical species

awi
Pt

—I—p(u-V)wi ZRi—V~ji (2.4)

where w; denotes the mass fraction of the i species and j; and R; are the diffusion flux and
the reaction rate of species i, respectively. The diffusion flux (j;) for each component i can

be calculated using a diffusion model (e.g., Maxwell-Stefan).

For a steady-state solution of the above system of equations, only boundary conditions are
required. If solved in transient conditions, initial conditions are also necessary.

Solving the above system of equations requires discretization of both the spatial and tempo-
ral domains. For the discretization of the spatial domain, methods such as the Finite Element
Method (FEM) or the Finite Volume Method (FVM) can be used. For transient problems, there
are implicit discretization options such as BDF and generalized-a and explicit methods such as
Adams—Bashforth or Rugge-Kutta. The selected method always depends on the nature of the

problem and potential resource limitations.

2.3 Machine learning

Taken from the book of Mitchell [78], we can find a definition of machine learning:

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by

13
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P, improves with experience E.

Let us say that we want to predict the outcome of a football match our favorite team is playing.
The possible outcomes are victory, draw, or defeat. An outcome predictor could be a machine
learning algorithm that, given examples of previous matches the team has played (e.g., match
statistics, squad selections, weather, etc.) and the outcome of each match, can learn to predict
the outcome of the upcoming match. The football matches that the algorithm uses to learn are
called the training set. Each training example is called a training sample. In this case, the task
T is to predict the outcome of the match our favorite team is playing, the experience E is the
training data, consisting of the historical performance of the team, and the performance measure
P must be defined; for example, we can use the ratio of correctly predicted match outcomes. This
particular performance metric is called accuracy and is often used in classification tasks.

To perform this task without machine learning, one must intently focus on the historical data,
try to find patterns or rules that result to each of the potential outcomes, and then evaluate the
developed rules based on their performance. It is obvious that this task would be very difficult and
would require immense time resources.

In contrast, ML can autonomously identify patterns in historical data (e.g., a specific player
making a huge difference, the team showing an advantage in adverse weather conditions) and
evaluate them using historical data, eventually ending up with rules that provide the optimal
performance for the given dataset.

Based on the discovered rules, and by interpreting the developed model, we can gain insight
on our favorite team, understand what makes the team win or lose and even appreciate players or
coach decisions that we previously couldn’t fathom.

Football fans, statisticians, and perhaps gamblers alike understand that this task is not as
simple as the example makes it appear. This is mainly due to the stochasticity associated with
football. However, it serves as a great example that shows the strengths of machine learning
approaches in cases where the data is abundant.

Apart from classification tasks, such as the one described above, there are also regression tasks,
where continuous values are predicted. An example of such a task, still relevant to football, would

be the prediction of attendance to the team’s next game. Based on ticket price, attendance in
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previous matches, and current form of the team, the algorithm could output a real number, which
would then be rounded up or down to the nearest integer).

There are also clustering [79] tasks. Let us say that the football team wants to identify
groups of similar fans within their fan base, in order to target them with special offers, events,
and promotions. The algorithm would take the characteristics of the fans as input and provide a
label for each fan, indicating to which cluster they belong. In contrast to the classification and
regression tasks, where validating the output of the algorithm is easy (the outcome of the game is
readily available, as well as the attendance), the output of clustering algorithms cannot be directly
validated and requires further analysis. This lack of actual outcome (or label, as is more commonly
known in ML), classifies clustering as an unsupervised learning [80] method. In contrast, regression
and classification belong to the group of supervised learning methods [81].

To accommodate the different types of tasks, different performance metrics must be imple-
mented. Accuracy is a popular metric for classification, root mean square error is a popular metric
for regression, and within-cluster sum of squares is a popular metric for clustering. Nevertheless,
many more performance metrics are available (or can be constructed) based on the task at hand.

Machine learning is very versatile and can be used in a wide variety of applications where data
are available. Its different disciplines (supervised/unsupervised learning) allow its implementation
for tackling various tasks and gaining insight for several different processes, be it football or

industrial chemical vapor deposition processes.

2.3.1 Unsupervised learning

Clustering

Clustering algorithms function by evaluating the dissimilarity or similarity between data points.
Through this process, they form clusters by grouping similar observations, helping to uncover
patterns or structures in the dataset.

Clustering algorithms usually use a similarity matrix as input, which includes pairwise dissim-
ilarities between all observations. For quantitative variables, the Euclidean distance is the most
commonly used metric, measuring the straight-line distance between two points in feature space.

However, selecting an alternative distance metric may lead to different clustering outcomes [80],
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[82].

Clustering algorithms can be grouped into different families based on their approaches. There
are partitional methods (i.e., k-means clustering), which assign observations to clusters iteratively,
considering distances from centroids. These require an a priori decision on the number of clusters
and are sensitive to initialization [83].

Density-based methods, such as OPTICS and DBSCAN, detect clusters by examining regions
of high density separated by low-density areas. The key parameters for these methods include the
minimum number of points required to form a cluster and the minimum distance between core
points [84]-[86].

Another family of clustering methods are hierarchical methods. These methods link data points
according to specific criteria. Agglomerative clustering starts with a number of clusters equal to
the number of observations and progressively combines clusters until a single cluster remains.
Divisive clustering starts with all observations in one cluster and splits them iteratively until there
are as many clusters as the number of observations. Distance metrics are used to calculate the
dissimilarity between clusters, and the merging (or splitting) of clusters depends on the linkage
criterion used. The choice of distance metric and linkage criterion can significantly influence the

results [87], [88].

2.3.2 Supervised learning

Supervised learning algorithms differ from unsupervised ones as they use labeled data, where the
model inputs (or features) x; are paired with their respective outputs (or responses) y;. These
models leverage data to forecast outcomes for future observations. Supervised learning includes
regression for continuous variables and classification for binary or ordinal outputs [81].

The available supervised learning methods are analyzed in depth in Chapter 4. However, for
the sake of completeness, a brief overview of the methods evaluated for this work is presented here.
Several common supervised learning methods include the following categories: (a) Linear methods,
such as linear regression, lasso regression [89], ridge regression [90], and logistic regression, which
is primarily used for classification tasks. (b) Support vector machines (SVMs) [91], which can

be linear or non-linear depending on the chosen kernel, are commonly applied to classification
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problems. (c) Tree-based methods, which encompass classification and regression trees [92], as
well as ensemble techniques such as random forests [93], gradient-boosted trees [94], extra trees
[95], and XGBoost [34], all of which combine multiple trees to enhance performance [96]. (d)
Artificial neural networks (ANNs), with their various architectures [97], offer flexible approaches
suitable for classification and regression tasks.

Artificial neural networks (ANNs) are a subset of machine learning models that has recently
drawn a lot of attention. ANNs are inspired by the intricate organization of biological neural
networks in the brain. ANNSs consist of interconnected nodes known as neurons, each loosely
modeling its biological counterpart. These neurons are linked by edges, similar to synapses in the
brain. The network architecture involves layers of neurons, with signals flowing from the input
layer to the output layer. Intermediate layers, sandwiched between input and output, are termed
hidden layers. When the number of hidden layers is two or more, the network is classified as a
deep neural network (DNN).

Neurons in each layer receive signals from the preceding layer, process them, and transmit an
output signal to the subsequent layer. The output computation of each layer (with the exception of
the output layers) employs a non-linear activation function. Each neuron has associated parameters,
weights and biases, that are optimized during network training. In supervised learning scenarios
with labeled data, these parameters are fine-tuned to minimize the discrepancy between predicted
and actual target values. ANNs excel at modeling intricate relationships due to their architectural
complexity, rendering them a powerful tool in various machine learning tasks.

The TensorFlow [98] and Keras Python libraries [99] are used for the development and train-
ing of the ANN models presented in this work, and the scikit-learn library [100] is used for the

application of the rest of the ML methods.

2.3.3 Data-driven pipeline

Developing a predictive model is not as simple as training the model. There are several steps
that must be taken to ensure optimal model performance. These steps involve cleaning the
data, obtaining an initial understanding of the data, and determining potential cases for predictive

models. After determining potential cases where supervised learning approaches can be used to
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make predictions, the available features and their relevance to the output must be considered. Not
all features might be relevant to the output. Furthermore, new features based on the available
once might need to be created.

When the time for training the model comes, one must ensure that the model is properly
trained and is able to generalize well on unseen data. Avoiding overfitting is a common goal when
training predictive models and involves several different methods related to the data, the model,

and the learning process, as discussed in Section 2.3.3.

Data "clean-up"

Data, and especially real-world data can often be “dirty”. This means that the data can have
peculiar formats, certain observations might miss certain entries, or certain entries might contain
errors. The model developer must first bring the data in a format that can easily be manipulated
in an environment that allows for model development. Furthermore, the modeler has to decide
whether observations containing missing entries need to be discarded or if the missing entries
should be imputed. Finally, when it comes to potential errors or mistypes within the data, the
modeler should first detect the errors and then decide on taking corrective action or discarding the

observations.

Exploratory data analysis

Following the “clean-up” of the data, it is time to look and see what it seems to say [101].
Exploratory data analysis (EDA) is just that. It involves data visualization, through histograms,
box plots, dot plots, etc., along with basic statistical analysis for the variables present in the
dataset (e.g., calculation of the mean, the median, and standard deviation alongside the quantiles
of continuous variables) [102]. Dimensionality reduction or clustering could also be considered part
of EDA, as they allow for the identification of potential patterns in our data.

EDA allows us to process the data, detect abnormalities, and identify potential patterns in our
data. It allows us to get a comprehensive grasp of our data before jumping into more rigorous

data analysis and modeling.

18



2.3. Machine learning

Feature engineering

Feature engineering is another crucial step that precedes the training of the predictive model. The
performance of most machine learning models greatly depends on the feature vector representation.
Consequently, data scientists invest significant effort in designing preprocessing pipelines and data
transformations [103].

Feature engineering usually takes place in parallel with EDA. It involves the creation of new
features, based on preexisting ones, in an attempt to find the best feature representation for the
predictive model that we wish to develop [104]. These engineered features could, for example, be
the product of two features, the inverse of a feature, the sum of the absolutes of two features, or
the maximum/minimum value between several features.

Last but not least, feature engineering also involves the encoding of categorical variables [105]
and the transformation (e.g., standardization, min-max transformation) of numeric variables, thus

bringing the data in a model-friendly format.

Overfitting and how to avoid it

A very common problem supervised learning approaches suffer from is overfitting. When we say
that a model is overfitting, we mean that the model performs very well on the training data
but nevertheless performs poorly on the unseen test data [106]. The overfitted model effectively
“learns” the data of the training set, without capturing the underlying principles [107], and thus
failing to generalize on the test set.

Overfitting can occur for several reasons. First, it can be caused by the selection of a very
complicated model. Furthermore, it can also be due to the selection of non-informative features
or the selection of more features than necessary for satisfactory prediction performance [106].

Strategies to avoid overfitting can be employed when it comes to data, model characteristics,

and the learning process of the model.

Cross-validation On the data side, cross-validation [108], [109] is one of the most popular
approaches. Cross-validation is used for estimating the prediction error of a model. For example,

in k-fold cross-validation, the dataset is split into k groups. One of the groups is kept unseen by
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the model during training and acts as a test set. The rest of the groups make up the training
set. This procedure is repeated until each of the k groups has been used as the test set. The
predictive performance of the model is then evaluated considering all k test sets, using the mean and
standard deviation of each performance metric. In this way, the performance metrics provided by
cross-validation are more representative of the model's performance than the performance metrics
of the model on a single held-out test set. In general, cross-validation is crucial and should be
incorporated in other steps of model development, where predictive accuracy is of interest (e.g.

feature selection or hyperparameter optimization).

Feature selection and feature extraction Two further measures against overfitting are feature
selection and feature extraction. When machine learning algorithms are applied to high-dimensional
data, the phenomenon of the curse of dimensionality comes into play. This refers to the sparsity of
data in high-dimensional spaces, which negatively affects algorithms designed for low-dimensional
spaces [110], [111].

Feature extraction is based on dimensionality reduction techniques such as PCA [112] or LDA
[113] and reduces the dimensionality of the data by projecting high-dimensional features to a
new low-dimensional feature space. Feature selection, on the other hand, aims at selecting an
important feature subset directly from the high-dimensional space. There are three main categories
of feature selection methods: a) Filter methods which evaluate the importance of features by
examining statistical measures, focusing on their correlation with the target variable. This approach
selects features based on their standalone attributes, independently of any specific machine learning
algorithm used. Examples of filter methods are the calculation of correlation between a variable
and the target output or the chi-square score in the case of categorical outputs. b) Wrapper
methods iteratively take advantage of the learning performance of the predictive model to assess
the quality of selected subset of features. Any algorithm that can actively search for optimal subsets
of features in the complete data set can be considered a wrapper method, from exhaustive search
[114] to evolutionary algorithms [115]. c¢) Embedded methods take advantage of the structure
of the predictive model to select relevant features. Examples of embedded methods are random

forests [93] or Lasso regression [89].
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Data augmentation Data augmentation is another approach on the data side, with the aim of
tackling overfitting and improving model performance and robustness [116], [117]. In principle, the
goal is to artificially enhance the dataset by adding slightly modified versions of existing observations
[118]. In the example of image recognition, the images present in the dataset might be randomly
rotated, mirrored, resized, and cropped in an attempt to improve model performance [119]. For
tabular data, the synthetic minority oversampling technique (SMOTE) [120] and its variants [121]
are widely used in cases of imbalanced classification datasets. Variational Autoencoders (VAEs)

[122] have also been proposed as a data augmentation method for tabular data [123].

Early stopping In supervised learning, model training involves the minimization of a cost func-
tion. When an iterative method (such as gradient descent) is used to determine the model param-
eters (e.g. weights and biases in a neural network) that minimize the cost function, early stopping
[124] can be used as a tool to avoid overfitting. Early stopping, in principle, stops the model
training if the predictive performance on an unseen dataset does not improve for a certain number
of iterations. In this way, the model is deterred from “memorizing” the data of the training set,

and its generalizability is retained.

Regularization Regularization is another concept related to the objective function. In general,
the output of the model can be determined by several features. However, not all of these features
might have limited effect on the model output and might hinder the model’s predictive performance.
One way of limiting this negative influence of these features on the model is feature selection
(discussed above). Another way of limiting the effect of these useless features is through the use
of regularization [125]. A common way to do this is to add a “penalty” term in the cost function
relative to the variable weights of the model. This term is usually the I1- (sum of absolute values)
or 12-norm (sum of squared values) of the variable coefficients. There is usually a user-defined
tuning parameter that multiplies this norm based on the desired regularization effect.

Another regularization method used exclusively in ANNs is dropout. The concept of dropout
refers to the exclusion of certain units, both hidden and visible, within a neural network. This
exclusion involves temporarily eliminating a unit from the network along with its associated incom-

ing and outgoing connections. The selection of units to be dropped is performed randomly with
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a predefined probability. The application of dropout to a neural network is equivalent to sampling
a pruned network from it. At the time of testing, the pruned networks are combined in order to

make the prediction [126].

Hyperparameter optimization The hyperparameters of the predictive models play an important
role in its predictive performance. Optimizing a machine learning model to suit various tasks
requires fine-tuning of its hyperparameters. The selection of an optimal hyperparameter setup
for machine learning models critically influences the overall performance of the model [127]. The
hyperparameters of the model can be related to its architecture (e.g. number of layers and number
of neurons in an ANN, or the maximum depth and number of estimators in a random forest model).
They can also be related to the type of regularization used (dropout, |1 or 12 regularization) or the
learning process (e.g. learning rate) of the model. It is evident that the variable space for these
hyperparameters is not continuous; therefore, the application of gradient-based methods for the

optimization of the model can be challenging, if not forbidding.

Grid search or random search are two widely used gradient-free methods for hyperparameter
optimization. In grid search, the selected numerical hyperparameters are dispersed at uniform
intervals across the user-defined domain, ensuring an exhaustive examination of the parameter
space. For categorical hyperparameters, all values are considered (unless a specific subset is
selected by the user). In grid search, all possible combinations are considered, which can lead to
prohibitive costs, especially as the number of tested hyperparameters increases. Random search
aims to address this problem by randomly selecting combinations of hyperparameters within the
domain, given resource constraints. In these two methods, each hyperparameter configuration is
independently evaluated [128].

Another category of gradient-free methods used for hyperparameter optimization is population-
based methods, such as genetic algorithms and particle swarm optimization [129]. These algorithms
sustain a population, which is essentially a collection of hyperparameter configurations, and en-
hance this population by employing local modifications, also known as mutations. In addition,
they combine distinct members through a process known as crossover to generate a subsequent

generation composed of superior configurations. These algorithms could be particularly suitable for
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hyperparameter optimization problems with large configuration space due to their high efficiency
[128].

Another popular hyperparameter optimization method is Bayesian optimization (BO) [130]. It
is an iterative algorithm whose strategy is to model the relationship between the hyperparameters
and the performance of the model (or the cost function). This relationship is modeled using
Gaussian processes [131] or random forest [132] surrogate models. The cost function is evaluated
for a randomly sampled set of hyperparameters. Subsequently, BO then uses these data to train
the surrogate model, which outputs estimates for the cost function, as well as the prediction
uncertainty. These estimates can produce a predictive distribution for the different hyperparameter
configurations. Based on the predictive distribution, BO establishes a cheap-to-evaluate acquisition
function that balances between exploitation and exploration.Exploration involves the systematic
sampling of instances in regions that have not yet been examined, in order to uncover potentially
significant areas which may have been previously overlooked. In contrast, exploitation focuses on
sampling within the currently identified promising regions. These regions are determined based
on the posterior distribution and are believed to have a higher likelihood of containing the global
optimum [128]. BO models aim to strike a balance between exploration and exploitation to identify
the most probable optimal regions while ensuring that better configurations in unexplored areas
are not overlooked. BO approaches can usually detect near-optimal hyperparameter combinations
in a few iterations [133].

In general, hyperparameter optimization is an indispensable part of model development, as it
can address the problem of overfitting by adjusting several characteristics of the model and the
learning process simultaneously and without requiring a lot of user input. The user is only asked to
select a hyperparameter optimization method and to provide instructions and constraints regarding

the search space.
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Development of an efficient chemistry-enhanced CFD model

Abstract

An efficient CFD model for the deposition of alumina from a gas mixture consisting of AlCls,
CO5, HCI, Hy and H5S in an industrial CVD reactor with multiple disks and a rotating
feeding tube, is proposed. The goal is twofold: (i) to predict the thickness of the deposited
material, (ii) to investigate whether the process rate is determined by the reaction rate or
by diffusion. A reaction model that consists of a gas-phase homogeneous reaction and a
heterogeneous reaction is implemented, with a proposed kinetics rate that includes the effect
of the H,S concentration. The latter has a catalytic effect, but the mechanism is not entirely
understood. The entire reactor geometry (consisting of 40-50 perforated disks) is divided
into appropriately chosen 7-disk sections. The 2D, time-dependent CFD model is validated
using production data for the deposition thickness. The proposed computational tool delivers
accurate predictions (average relative error 5%) for different geometries corresponding to real
reactor set-ups. Extending the functionality beyond prediction, a computational experiment
is performed to illuminate the interplay between species diffusion and chemical reaction rates,
which determines the rate-limiting mechanism. The results indicate that species diffusion is

fast enough and therefore reaction kinetics determine the overall deposition rate.

3.1 Introduction

Chemical Vapor Deposition (CVD), where a solid coating is deposited on a heated surface from
a mixture of gas reactants, is used for various applications, including microelectronics [57], poly-
mers for microfluidics, sensors, and membranes [134] and wear resistant coatings [55], [56]. It
is a complex process involving competing physical phenomena, such as convection, diffusion, and
chemical reactions. The balance established between transport phenomena and chemistry is critical
for determining the efficiency of the process and the quality of the produced material.
Computational Fluid Dynamics (CFD) models of CVD processes that account for the transport
of mass, momentum, and species inside reactors have been proposed in order to elucidate the
interplay between the different mechanisms and its effect on the process [135]-[138]. Such models

have also been used for optimizing the design of CVD reactors [139], [140], as well as for predicting
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reaction rates inside the reactor [141]. Zou et al. [142] successfully tried to analyze industrial CVD
reactors using a porous media approach. This approach was used in order to tackle the difficulty
of explicitly modelling the large amount of substrates in the system by modelling the substrate-
packed drawers of the reactor as porous media. Others have thoroughly investigated the reactant
gas flow regimes inside of the reactors [143], as well as the effect of the flow on the produced
coatings [4], [144]. Mitrovic et al. in a series of publications [3], [145], [146], analyzed the flow
inside a rotating disk reactor for different process parameters using CFD, determined the optimal
parameters for the application and then optimized the reactor design by using the results of the
simulations. Nevertheless, their work did not include a chemistry model and hence it was not
possible to assess the effect of the flow on the deposited film.

Despite the progress in computer-aided analysis of CVD reactors, important challenges remain,

especially in industrial-scale processes:

1. Industrial CVD reactors have a complex geometry in order to increase the coated surface and
the throughput of the process. This translates into time-dependent models involving three-
dimensional computational geometries, often with moving mesh and therefore, increased

level of computational complexity and cost.

2. The actual network of gas-phase and heterogeneous reactions that ultimately lead to depo-
sition, are often not completely known. For example, in the chemical system studied here,
the role of hydrogen sulphide is not entirely understood, although its positive effect of the

deposition rate has been widely observed [147]-[149].

3. Even when there is a well-established chemical network, it often involves dozens of reactions
and intermediate species. Integrating such a chemistry pathway in a CFD model, would make
it computationally intractable. Moreover, even when the chemical system is known, ie. the
specific reactions and their kinetic rates, the effective reaction rates have to be determined

for the particular application and geometry.

4. The geometry of the reactor changes, even in a day-to-day basis in industrial practice. This is

not true for every type of CFD application, but it is particularly true in the industry of cutting
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tools and wear resistant coatings. Therefore, it is important for the usability of the model

to easily accommodate changes in the computational geometry in an almost automatic way.

Points 2 and 3 have been addressed in the past by developing reduced order models of CVD
in conjunction with deposition chemistry models [4], [9], [143], [150], [151]. Nevertheless, these
reduced order strategies require large amounts of data from detailed models which are often
computationally intractable.

In this work we focus on addressing the combination of points 1, 2 and 3 in an industrial-
scale CVD application and illustrate the implementation of an efficient modeling strategy that
hinges CFD with an effective deposition model, validated by production data. The geometry of
the investigated CVD reactor changes on a day-to-day basis, which is why addressing Point 4 is
important and will be the subject of future work. Despite the simplifications of the CFD model, we
present its potential not only as a predictive tool but also as a means of suggesting the dominance
of reaction kinetics in terms of determining the rate-limiting steps of the process. This is an
important contribution, because in the context of an industrial process, it is not always feasible
to measure the deposition rate experimentally in different temperatures and produce an Arrhenius
plot to map out the diffusion and reaction limited regimes.

The application addressed here, is the deposition of alumina onto three-dimensional cemented
carbide cutting tools with a well-established thermal LP-CVD process from a gas mixture consisting
of AICl3, COy, HCI, Hy and H3S [1] in a commercial reactor consisting of several perforated disks
and a rotating inlet tube (Sucotec SCT600TH). Several other suggested CVD processes exist for
the deposition of Al;O3, such as a MO-CVD process utilizing aluminium tri-isopropoxide (ATI)
as a precursor [152] or a PE-CVD process utilizing dimethylaluminum isopropoxide (DMAI) as a
precursor [153]. These processes not only require a lower thermal budget, but also utilize a safer
gaseous atmosphere. However, for our specific application (i.e. wear resistant coatings for cutting
tools) and because of the targeted properties of the alumina coating, the aforementioned thermal
LP-CVD process is used.

Alumina is very popular for wear-resistant coatings [55], [56] because of its properties [154],
[155] and the improved chemical stability and high temperature hardness it provides in Al,O3/

TiCN multilayer coatings [67]-[69]. The effect of process conditions on the growth and texture of
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a-Al03 has been studied [149], since both directly influence the final properties of the a-Al,O3-
coated cutting tools. However, little work has been done on the process of the CVD of hard
coatings.

The following sections are structured as follows: The geometry and operation of the studied
chemical vapor deposition reactor is presented in Section 3.2. The details of the developed CFD
model are discussed in Section 3.3. Subsequently, the results of the CFD model are detailed in
Section 3.4 along with an analysis of the rate-determining step of the process, followed by the

conclusions in Section 3.5.

3.2 Chemical vapor deposition reactor geometry and operation
3.2.1 Reactor set-up and process conditions

This work focuses on the CVD of alumina on cutting tools, referred to henceforth in the text as
inserts. An overview of the phenomena taking place inside a CVD reactor is presented in Figure 3.1.
Inserts have various shapes and sizes (Fig. 3.2a) depending on their use in industrial applications
but are invariably required to maintain cutting capacity for the prescribed time indicated by the
manufacturer [74]. For this reason, the special coatings deposited, such as the alumina coating
studied here, not only increase longevity but also ensure the expected usability of the insert.

The deposition of alumina on the inserts is studied in a commercial, industrial CVD reactor
(Sucotec SCT600TH) which typically consists of 40-50 perforated disks, stacked one on top of
the other shown in Fig. 3.2b. For reasons of clarity, a partial schematic of the reactor, depicting
3 disks is shown in Fig. 3.2c. The inserts are placed on the disks, as shown in Fig. 3.2d, while
carefully designed perforations allow for the transport of the gas reactants between the disks and
around the inserts. For each type of insert, there is a dedicated design of perforated disk, to
accommodate the particular geometric characteristics. The mixture of gas reactants enters the
reactor through a cylindrical tube at the center of the disk structure, through two inlet holes per
disk, placed antipodally (shown in red in Fig. 3.2c). There is a 60° angle difference between the
inlet holes of each disk-level of the reactor and the feeding tube rotates at a constant speed of

2 RPM. The gas mixture exits the reactor through holes in the perimeter of each disk (shown in
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Figure 3.1: Overview of the interplaying mechanisms and phenomena of a CVD process.

blue in the schematic of Fig. 3.2c).

A two step coating process takes place inside the reactor [155]. As a first step, a Ti(C,N)
base layer of about 9 pm is grown on the cemented carbide cutting inserts. An a-Al,O3 layer is
then deposited from AlClI3—CO,-HCI-Hy—H,S at T = 1005°C and P = 80 mbar. The inlet gas
reactant volumetric fractions are 1.7% for AlCl3, 3.7% for CO5, 2.1% for HCl, 92.2% for H, and
0.3% for H,S. The total inlet gas flow rate is 65 L - min~! (P = 80 mbar, T = 1005°C) [1].

3.2.2 Auvailable production data

The production data available to validate the proposed model, are a total of 15 coating thickness
measurements on inserts placed at selected locations inside the reactor, shown in Fig. 3.3.

For each production run, the coating thickness on the inserts at five disks are considered:

1. The top insert-containing disk of the reactor.
2. The 3rd or 4th disk from the top.

3. The middle disk.

4. The 3rd or 4th disk from the bottom.
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Figure 3.2: (a) Examples of the different cutting tool inserts that are coated inside the reactor.
The shapes and sizes of the different inserts coated in the same reactor may differ significantly.
(b) A 3D representation of the entire reactor. (c) A close up representation of a 3-disk part of the
reactor. The rotating inlet tube passes through the center of the stack of disks. The gas reactants
enter through the perforations shown in red. There are two holes per disk level, placed so that
there is a 60° angle between the holes in neighbouring disks. The gas outlets are shown in blue.
(d) An example of a perforated disk loaded with inserts. The inserts are shown in blue.
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5. The lowest insert-containing disk of the reactor.
On each of the aforementioned disks, there are 3 positions of interest. Specifically:

1. The position closest to the inlet, Rq.
2. The position in the mid-distance between the inlet and the outlet, Ry /5.

3. The position closest to the outlet, R.

All measurements are in pym, with a precision of 0.1 pm.

3.3 Description of the CFD model

3.3.1 Governing equations

The governing equations include the conservation of mass and momentum, as well as the equations
for the transport of chemical species and the occurring chemical reactions. A detailed overview of
the system of equations can be found in the publication of Gakis et al. [4].

The reactor’s operating temperature is considered constant in the entire domain. This is due
to the fact that the entire reactor set-up is placed inside a furnace and therefore the entire system
is heated up to a tightly controlled temperature of 1005°C. The ideal gas assumption is made for
calculating the density of the gas mixture. The flow is considered laminar and incompressible. All
calculations are made in transient conditions to account for the rotation of the gas inlet tube.

The equations were discretized with the finite element method and solved using COMSOL
Multiphysics®. Linear basis functions are used for the continuity equation and quadratic functions

for the rest. The computational geometry is presented in detail in the following paragraph.

3.3.2 Computational geometry

The reactor geometry is inherently non-axisymmetric and time-dependent due to the rotation of
the vertical tube and the placement of the inlet holes. Therefore, a fully representative simulation
would have to account for the entire 40-50 disks, in 3D, while also being time-dependent with a

moving mesh. This, however, would come hand in hand with a significant computational cost,
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Figure 3.3: A 2D representation of the entire reactor indicating in red the 15 positions with
available x-Al,O3 coating thickness measurements. The leftmost position is the one closest to the
inlet. The arrows indicate the gas reactant inlets and outlets.

even when excluding the mass balances of the species that participate in the multitude of chemical
reactions that will be discussed in detail in the following paragraph.

A two-dimensional computational geometry is proposed with appropriately selected boundary
conditions. Furthermore, the computational domain does not include all the disks but rather

accounts for parts of the reactor, containing 7 disks (cf. Fig. 3.4). The number of disks in the
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model is determined by gradually decreasing the number of disks (from 11 to 7) and comparing the
deposition thickness in the middle disk with the available production data. By gradually decreasing
the number of disks considered, we are able to select the lowest number of disks for which the
effects of the top and bottom boundary conditions do not affect the prediction of film thickness
at the disk of interest (the middle disk). Another aspect that contributes to efficiency is linked
to the fact that different reactor set ups may have several 7-disk parts in common. For example,
an alternative reactor configuration could contain the same 7-disk sequence. In this fashion, it is
possible to draw conclusions for several combinations of the 7-disk model, that would otherwise
require the solution of new entire reactor models each time.

By using this 7-disk, two-dimensional approach and by simulating for 2 periods (or turning
cycles) of the process, we can in turn average the deposition rates on each insert and obtain an

equivalent deposition rate for several positions of interest inside the reactor.

3.3.3 Boundary conditions

To account for the rotating inlet tube, in the context of a two-dimensional geometry, time-
dependent inlet boundary conditions are applied. The perforations of the rotating tube, through
which the gases are introduced into the reactor are represented by a fixed inlet boundary in the
computational geometry in each disk level. The gas feed velocity is prescribed at each inlet as
a time-dependent function that varies between 0 and Vjax as a pulse that mirrors the rotation
of the inlet tube. The maximum velocity value (Viax) is determined based on the experimental

conditions and the geometry. Specifically, the following are taken into account:

1. The inlet tube rotates with a rotational speed of 2 RPM.
2. The total inlet gas flow rate is 65 L - min~! (P = 80 mbar, T = 1005°C).
3. There is an average of 35 disks per run.

4. There are two perforations on the inlet tube for each disk. These two perforations are

antipodal and their average diameter is 0.002 m.
5. There is a 60° angle difference between the perforations for each disk.

34



3.3. Description of the CFD model

i A |
um,1 \L x\ | \\\ h | \
-
u; fﬂ \‘\ rA\ H
in.2 JMJL\\& 0 OO0 O
— 1 I 1 1 1 1 1
N (3100 0 D 0]
in,3 /‘k H H “ \ 31 1 31 1 1
| E5ESEEEsEREs
\
T N’M// 31 O O D D
Q(_MJLH 1 1 1 1 1 1 %
| //’ D)0 00 O a0 Dg 0
uin | / H (\“ 1 I 1 ] [ 1 1 1 ]
2 Mﬂmh//’ DﬂDﬂDﬂDﬂDﬂi%
1 I 1 | ] [ ] [ ]
| [00a000d %%
Uin6 \ (\ | ,‘\ L 0 ey Sy S s S B
J J‘k )\ Jk
‘ W I
’\ ‘\
Win,7 ‘\ {f\ ‘H‘ /A‘w \‘\\

Figure 3.4: Inlets (highlighted in blue) and applied pulse boundary conditions for each one of them.

The selected outlet boundaries are presented in red.

For the 7-disk geometry, the inlets along with the pulse boundary conditions applied to them are
shown in Fig. 3.4. It should also be noted that the chemical species’ concentrations at the inlet are
calculated using the volumetric percentages found in Section 3.2.1 and the species’ molar fractions

at the inlet are set to 0.0385 for CO», 0.0169 for AICl3, 0.0210 for HCI, 10~® for H,O and CO,

0.9203 for Hy and 0.0033 for H5S.
In order to reflect the actual geometry (cf. Fig. 3.2), where the outlet perforations are not
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aligned, the prescribed outlet pressure boundary conditions are applied at every other disk level.
This means that out of the seven available outlets, only the first, the third, the fifth and the

seventh from the top are considered open (marked in red in Fig. 3.4).

3.3.4 Chemistry model - Modeling the a-Al,O3 deposition

Several authors have studied the CVD of a-Al>O3 from a mixture of AlCI3—CO,—HCI-H>—H>S; for
reasons of completeness, a brief overview is presented. The deposition appears to take place due
to the hydrolysis of AICl3 in the presence of HyO via the following surface reaction [149], [156],
[157]:

2AICl3(g) + 3H20(g) — AL O35 + 6HCl ) (3.1)

while H20O is produced in situ in the gas phase via the water-gas shift volumetric reaction [73]:
Ha(g) + COa(g) = HaO(g) + €Oy (32)

It must be noted, that this direction of the water gas shift reaction is endothermic [158], however,
due to the small amount of CO; in the gas-phase, we expect no changes in the isothermal profile
of the reactor. Another assumption is that the consumption of precursor does not affect the flow,
which is reasonable due to its low concentration in the gas phase.

Although the work of Catoire and Swihart [157] highlights the complex mechanisms of the
deposition kinetics, implementing this chemistry model that consists of 104 reactions and involves
35 species would inflate the computational cost of the CFD model. Given that the computational
geometry is already a discounted representation of the actual reactor, it makes sense to implement
the effective kinetics proposed in the work of Schierling et al. [156]. In their work, Schierling et al.
[156] propose a simple reaction scheme, consisting of four reactions with two possible intermediate
species in the gas phase, namely AICI;OH and AIOCI. The detailed suggested reaction mechanism

is the following:

AICI3 + H,O = AICLOH + HCI (3.3)
AICL,OH = AIOCI + HCI (3.4)
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2A10CI 2 ALO>Cl, (3.5)
Al,O,Cly + H,O &= AlL,O3 +2HCI (36)

According to the authors, the second step (eq. 3.4) is the rate-limiting reaction for the surface
reaction, while the first step (eq. 3.3) is in the state of equilibrium. Based on this reaction
mechanism, the first suggested deposition rate (Rdeplv eq. 3.7) is derived. The authors then
proposed a second empirical rate (Rdepz, eq. 3.8) for an assumed parallel reaction path, with
the aim of closely reproducing their experimental data. However, the rate remains empirical since
the authors were not successful in searching for a second or third possible reaction sequence.
Ultimately, the sum of these two deposition rates (Rdep1 + Rdepz) makes up the total a-Al>O3

deposition rate.

Raep; = k1 paic, - PH0 - Prey (mol-m™2-s71) (3.7)
Raepy = k2 - piicy, - &5, - PR5 - Prey  (mol-m™2-s71) (3.8)

where p; denotes the partial pressure of each reactant i. The kinetic rate for the water gas shift

reaction (eq. 3.2) for a temperature of 1005°C is calculated through equation 3.9 [72]:

d[CO _ 3
Rygs = [dt] = kwgs - € E/(RT)[H,]°5[CO,]  (mol-m™2-s71) (3.9)
where units in brackets denote the concentration of each reactant in mol - m 3, the pre-exponential

factor (kwgs) is equal to 1.2 - 10*m!> - mol =% - s~1 and the activation energy (E,) is equal to

326.36 k] - mol 1.

The homogeneous water-gas shift reaction (eq. 3.2) takes place in the domain of the simulation
as indicated in Fig. 3.5a. Following experimental evidence, a-Al,O3 deposition (eq. 3.1) is
considered to take place on all interior surfaces of the reactor, including the reactor walls, the
inserts and the disks on which the inserts are placed. The only surfaces excluded are the reactor’s
inlets and outlets. A visual representation for the boundaries selected for the deposition can be

observed in Fig. 3.5a. The a-Al,O3 deposition kinetic rate constants, ki (eq. 3.7) and k» (eq.
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3.8) are fitted based on production coating growth data. Due to the lack of production data for
different reaction temperatures, it is not possible to fit both a pre-exponential factor (kg ;) and an
activation energy (E, ;) for each deposition rate. Therefore, the entire deposition kinetic constants
(ki = koexp(—E,;/RT)) are fitted all at once. For the WGS reaction, the pre-exponential factor

is modified during fitting. However, no modification of the activation energy takes place.
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Figure 3.5: (a) Surfaces where a-Al,O3 deposition takes place are shown in purple; the volumetric
Water Gas Shift reaction takes place in the area shown in gray. (b) Examples of the 2D represen-
tation of the inserts and perforated disks, in the computational domain. The arrows indicate the
gas reactant inlets and outlets.

Given the gas flow and reactant concentration profiles inside the reactor, the a-Al,O3 deposition
(hgep) for the entire production time is given by eq. 3.10, integrating the deposition rates on the
deposition boundaries for each insert of interest over the simulated 60s of the deposition process.
The result of this integration is the deposition (in mol - m~?2) that took place in the 60 simulated
seconds (or 1 minute) of the process. By multiplying this result by the ratio of (Ma,0,/0410,)
we obtain the deposition thickness (in m) for the simulated 60s of the process. This result is then
multiplied by the duration of the deposition process in minutes (fqep - in this implementation, 3h),

in order to calculate the deposition thickness for the entire process duration.

My 60s
hdeP = tdep 4505 /Os (Rdepl + Rdepz) dt (m) (3.10)
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where M 41,0, and p 41,0, denote the molecular mass and density of the produced a-Al>O3 coating.
The molecular mass of a-Al,03 (May,0,) is 101.96 g - mol~! and the value of density at 1005°C
is taken from Munro [159] and is equal to 3891 kg - m™~3.

The implementation of the kinetic constants proposed in Tingey [72] for the Water Gas Shift
reaction, results on under-prediction of the overall coating deposition, attributed to low water
availability. This motivated further investigation into the mechanisms that contribute to the in-
situ production of water. Based on the more complex reaction scheme given by Catoire and
Swihart [157], the WGS reaction is not the only water-producing reaction. In fact, three different
pathways (including the WGS reaction) are responsible for the production of water inside the
reactor. All three pathways are able to form water in comparable amounts and are therefore
considered competitive and coupled. The authors also suggest that the AIOCI intermediate plays
a vital role in one of the aforementioned water production channels. In the publication of Tan et
al. [160], the effect of the AIOCI intermediate in water production is also acknowledged. However,
the authors identified this effect as a catalytic effect on the Water Gas Shift reaction. Based on
these previous findings the rate-constant of the Water Gas Shift reaction is fitted to capture the
thickness measurements available in the production data.

Finally, Blomqvist et al. [148] investigated the effect of H,S in the deposition of alumina under
a chemical system similar to the present one. Although the HyS appears to have minimal to non-
existent effect on the Water Gas Shift reaction in the gas phase, the authors claim that H,S as a
true catalyst on the surface of a-Al,O3. However, the true mechanism of this effect is still obscure.
For this reason, we also propose a modified version of equation 3.7, which - if given production
data for different Hydrogen Sulphide inlet concentrations - could allow for the future investigation

of the effect of HyS in the process. The modified reaction rate equation is (eq. 3.11).

Réepl =K\ - PHys - paict - PH,0 - P;Cl (mol -m~2-s71) (3.11)

3.4 Results

Since proprietary industrial production data are used for model validation, absolute thickness and

deposition rate values cannot be presented. Therefore, only relative values are presented. Two
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main metrics are given, considering the predicted (Vprediction) and the actual (Yactual) deposition

thickness values:

1. The relative error (RE), which is calculated by the following formula:

RE — yprediction — Yactual (3 12)
Yactual

2. The mean absolute percentage error (MAPE), which is calculated for each geometry by
averaging the N absolute values (in our case, N = 3) of the relative error per reactor

geometry.

MAPE = l % yprediction,i - yactual,i (313)
N i=1 Yactual i

3.4.1 Parameter fitting and model validation

After conducting a mesh independence study for meshes consisting of 129195, 182609 and 287109
elements, a mesh of 129195 elements was used for the discretization of the combined gas flow / a-
Al>,O3 deposition problem. This resulted in a problem consisting of about 10° degrees of freedom.
Solution time was approximately 3.5 core hours on an 11th Gen Intel(R) Core(TM) i7-1185G7
processor. When compared with the resources required for the 2D, full reactor model (5 - 10°, 66
core hours solution time), an important difference in the required resources can be observed.

An important challenge for this application is the fact that there are no CFD results reported
in the literature. To our knowledge, this is the first attempt and therefore the model can only be
validated using the available production data. For this reason, four different 7-disk parts of the
same reactor are simulated: Geometry A is used for fitting the kinetic parameters of the chemistry
model; Geometries B, C, and D (Fig. 3.6) are used for the validation of the model in set-ups,
i.e combinations of disks and inserts, representing different parts of the same reactor, where the
flow and species concentration distributions are not expected to be the same as in Geometry A.
The four geometries are determined by several factors, such as the shape and size of inserts to be
coated and the geometry of the disks that carry each type of inserts (each insert has a specific
disk geometry). The latter means that the perforations of the disks have a different diameter and

the number of inserts in each disk is different, affecting in this way the overall surface area at each
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Figure 3.6: The four 7-disk geometries used in the CFD simulations. All cases are different parts
of the same reactor.

disk.

The kinetic parameters are adjusted so that the difference between the predicted and the
production deposition thickness values is minimized. The comparison between the production and
predicted thickness values is done in three different positions (cf. Fig. 3.5b): Rg which is closest

to the inlet, Ry, which is mid-distance between inlet and outlet and R, close to the outlet.

The first step towards fitting the kinetic parameters was choosing initial values. The initial
value for the kinetic constant of the Water-gas-shift reaction was taken from the publication of
Bustamante et al. [73]. For the surface reaction kinetic constants k; (eq. 3.7) and k> (eq. 3.8),
the initial values were set to 0.001 s'mol-kg*1 -m~! and 10% mol - m~1%° -5*0'7-kg*0'15

respectively. These values led to a great underestimation of the coating thickness at all positions.
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After trying different values for the kinetic parameters, it became clear that the reason for this
severe underestimation was the value of the kinetic constant of the WGS reaction. This parameter
was then fitted (as mentioned in section 3.3.4) to achieve coating thickness predictions in the
same order of magnitude as the available production data. An increase of this parameter led to
higher coating thickness overall. By making a tenfold increase in the WGS pre-exponential factor,
we obtain results comparable to the production data, however, the deposition thickness at the
position closest to the inlet is overestimated (RE: 33.8% @ Ro, 7.7% @ Ry 5, 13.2% @ R).

The next step was to reduce the overestimation of the deposition thickness at the position
closest to the inlet (Rg). By observing the results of the simulations for different values of kq, it
was clear that this overestimation could be mended by selecting a lower value of the parameter.
Therefore, when setting k1 = 3-107°s - mol - kg~! - m™~! along with a nine-fold increase of the
pre-exponential factor of the WGS reaction, slightly underestimating predictions are obtained (RE:
-6.2% @ Ry, -4.2% @ Ry 5, -5.3% @ R).

After obtaining these results, the authors decided to make the transition from k; to k}, trying
to include in this way the concentration of H5S into the a-Al,O3 deposition rate (via the proposed
rate of eq. 3.11). Based on the average HyS concentration inside the reactor and the value of
ki that yielded the previous results, an initial value of 9-1077s% - mol - kg2 was set for ky. This
led to underestimation of the coating thickness (RE: -23.8% @ Ry, -20.5% @ R/, -21.0% @ R).
Increasing k) to 1.1 - 107%s® - mol - kg2, only slightly amended this underestimation (RE: -20.6%
@ Ro, -20.4% @ Ry/,, -20.8% @ R).

Having observed from previous simulation that an increase WGS reaction pre-exponential factor
helps in reducing the underestimation of coating thickness at all positions, an eleven-fold increase
was made. This yielded promising results (RE: -4.2% @ R, -3.4% @ Ry, -4.3% @ R). With
some further fine-tuning, we ended up multiplying the pre-exponential factor of the WGS reaction
(kwgs) by a factor of 11.25.

The derived kinetic parameter values shown in Table 3.1, lead to prediction error of 2% at
most in each one of the three positions (Ro, Ry/» and R) in Geometry A.

The results, for Geometries B, C and D are presented in Fig. 3.7. Overall, the proposed

CFD model predicts the actual thickness values within a 4% error (with the exception of the Ry,

42



3.4. Results

81 Geometry
HE A
6 - I B
e
D
SR
=
5
5
[5] 2 T
B
=
& 0-
_2 -
_4 -
T T T
RO R1/2 R
Position
()
6
~ 51
§
-
S
=)
o
[
on
<
=
S
o3
a
]
=]
i
£
<
g
>
T
D
Geometry
(b)

Figure 3.7: The developed model is tested for 4 distinct 7-disk geometries. The coating thickness
predicted by CFD simulations is compared to production thickness values in three different positions
(Ro, Ry/2 and R). Geometry A is used for calibration of the chemistry-enhanced CFD model, which
is then tested in Geometries B, C and D. (a) Errors relative to the production data per geometry.
(b) The mean absolute percentage error (MAPE) for each one of the four geometries. The highest
error (observed for Geometry D) does not exceed 5%.
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Table 3.1: The fitted kinetic constants used for the simulation of the a-Al,O3 deposition.

Parameter Value Units Equation
kwgs 1.35- 10 m> - mol 02 .51 3.9
k'y 1.1-10°¢ s> -mol - kg2 3.11
k2 1076 mol - m71.85 . 570.7 . kg70.15 3.8

position in Geometry D which has an error of 8%). In terms of the mean absolute error, during
fitting it is 1.33% in Geometry A while the highest value is in Geometry D (4.33%). For Geometries

B and C, the mean absolute percentage error is 3.67% and 2.33% respectively (Fig. 3.7b).

3.4.2 Investigation of the rate-limiting mechanism

The CFD simulation, allows us to take a closer look at the actual concentration distributions of
the reactants, namely of the precursor (AICl3) and water, in the 4 geometries studied (cf. Fig.
3.6).

When considering the concentration of water (cf. Fig. 3.8), the CFD model predicts almost
uniform distribution above the inserts in the disk where the coating thickness is predicted. Some
regions of high water concentration are predicted, however they are not located above the inserts.
On the contrary, the AICl3 concentration consistently appears to be higher closer to the inlet of the
reactor (cf. Fig. 3.9). This imbalance is not reflected in the thickness of the deposited material
either in the simulations or, in fact, in the production data. This observation motivates further
investigation into the balance between mass transfer (diffusion) and the reaction kinetics, that
ultimately determines the rate-limiting step of the process.

Typically, this study requires altering the temperature and monitoring the change in the depo-
sition rate. For increasing temperature the deposition rate also increases following a linear trend,
which is an indication that the reaction rate is the limiting step that determines the overall deposi-
tion rate. Past a certain temperature, the deposition rate becomes insensitive to further increase of
the temperature, which is a sign that the rate of diffusion of the species on the surface determines
the overall deposition rate. This process is typically described in a so-called Arrhenius plot, i.e.
the plot of the deposition rate versus the inverse of temperature [161].

In the application studied here, where the data are derived from the production process at a
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Figure 3.8: Contours of the concentration of HyO for (a) Geometry A, (b) Geometry B, (c)
Geometry C, (d) Geometry D. The white arrows indicate the velocity at each inlet. The CFD
results suggest a mostly uniform concentration of water above the inserts.

19710

single temperature (1005 °C), it is not possible to derive an Arrhenius plot based on which to
define whether the process is kinetics or diffusion limited. Instead, it is still possible to gain insight
into this balance with the proposed CFD model by means of studying the effect of the precursor
mass fraction on the coating thickness: two computational experiments are performed, based on
Geometry A, one with significantly increased precursor mole fraction at the inlet (by 25%), the
second with significantly decreased (by 25%).

If the process were diffusion limited, then the reactions would be very fast and as soon as

the precursor molecules reach the surface, they would react forming more a-Al,O3 on the sur-
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Figure 3.9: Contours of the concentration of AlCl3 for (a) Geometry A, (b) Geometry B, (c)
Geometry C, (d) Geometry D. The white arrows indicate the velocity at each inlet. The CFD
results suggest highest precursor concentration close to the inlets.

face. Therefore an increase/decrease is expected as an outcome when the AICl3 mole fraction is
increased/decreased respectively. On the contrary, if the deposition rate is affected to a negligible
extent, then this would be a valid indication that the process is in the kinetics-limited regime. This
comparison is shown in Table 3.2 where the “original” experiment, corresponding to the process
conditions in Geometry A, is compared to the CFD results obtained in the same Geometry and
conditions with different mole fractions of precursor at the inlet.

The results indicate that the change in the AICl3 mole fraction leads to negligible fluctuations

in the calculated deposition rate for the insert at the R;/, and R position, which corroborates
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Table 3.2: Difference in the deposition rate for different precursor concentrations at the inlet -
Geometry A. Values are relative to the original simulation.

Position Ro Ry R AICl3 inlet mol. frac.
Relative difference (%) 4.5 -0.4 -0.1 1.25x Original
-73 -03 -01 0.75x Original

the hypothesis that the process is in a kinetics-limited regime. Slight discrepancies appear in
the insert at the Ry position. Specifically, for the experiment with 25% increased precursor mole
fraction, there is a 4.5% increase in the deposition rate for the insert at Rg, when compared to the
original run. For the experiments with a precursor mole fraction of 25% less than the original, the
calculated a-Al,O3 deposition rates for the insert at Rg are 7.3% less than the original experiment.
This finding is not contrary to the hypothesis of a kinetics-limited regime and can be explained
by considering the concentration of the other reactant, water, in the region above the inserts on
interest, summarized in Table 3.3. In the case of increased AlCl3 mole fraction, the concentration
of water is higher above the insert in the Ry position, leading to higher deposition thickness. In
contrast, in the case of decreased precursor mole fraction, water concentration is lower above the
insert in the Ro position, leading to decreased deposition rate. Overall though it could be argued
that this discrepancy in the Ry position of 4.5% increase and 7.3% decrease in the deposition
rate can still be considered minor, taking into consideration that the alteration to the precursor

concentration is by 25%.

Table 3.3: Average H>O concentrations above the inserts of interest for different inlet precursor
concentrations - Geometry A.

Position Ro Ry2 R AICI3 inlet mol. frac.
H,O conc. (10~*mol-m—3) 1.92 195 187 Original
166 159 1.52 1.25-Original
230 253 247 0.75-Original

3.5 Conclusions

This work presents an efficient tool for computational analysis of an industrial-scale CVD reactor

used for the coating of cutting tool inserts. The proposed CFD model addresses three significant
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challenges not only in Chemical Vapor Deposition but also in other processes where chemistry
and transport phenomena co-exist: (i) Complex geometries, (ii) Complicated networks of chemical
reaction which are not completely known, (iii) Competition between the physical and chemical
mechanisms, something that ultimately defines the rate of the overall process.

We demonstrated how this computer-aided approach can predict the thickness of the deposited
film with noteworthy accuracy (with a 5% average error). To do so, we implemented a chemistry
model that with one homogeneous and one heterogeneous reaction, for the sake of efficiency, which
nevertheless takes into account the concentration of hydrogen sulphide. The latter is generally
understood to act as a catalyst but to this date there is no consensus on the actual mechanism.

Despite the simplifications introduced for the sake of economizing on the computational ef-
fort, the proposed model is still able to illuminate important aspects of the interplay of physical
phenomena (mass transport through diffusion) and chemical reaction rates. Results for higher and
lower precursor concentrations in the inlet, point to the fact that the process is in the kinetics-
limited regime, where the overall deposition rate in determined by the relatively slow reaction rate.
Although further investigation is required to determine this fact with certainty, the input of the

proposed model is still a useful “hint” to the direction that should be followed experimentally.
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Chapter 4

Comparison of equation-based and
data-driven modeling strategies for

industrial coating processes
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4.1. Introduction

Abstract

An efficient CFD model for the deposition of alumina from a gas mixture consisting of AlCls,
CO5, HCI, Hy and H5S in an industrial CVD reactor with multiple disks and a rotating
feeding tube, is proposed. The goal is twofold: (i) to predict the thickness of the deposited
material, (ii) to investigate whether the process rate is determined by the reaction rate or
by diffusion. A reaction model that consists of a gas-phase homogeneous reaction and a
heterogeneous reaction is implemented, with a proposed kinetics rate that includes the effect
of the HyS concentration. The latter has a catalytic effect, but the mechanism is not entirely
understood. The entire reactor geometry (consisting of 40-50 perforated disks) is divided
into appropriately chosen 7-disk sections. The 2D, time-dependent CFD model is validated
using production data for the deposition thickness. The proposed computational tool delivers
accurate predictions (average relative error 5%) for different geometries corresponding to real
reactor set-ups. Extending the functionality beyond prediction, a computational experiment
is performed to illuminate the interplay between species diffusion and chemical reaction rates,
which determines the rate-limiting mechanism. The results indicate that species diffusion is

fast enough and therefore reaction kinetics determine the overall deposition rate.

4.1 Introduction

Chemical Vapor Deposition (CVD) processes are popular in a wide range of applications, including
microelectronics [57], sensors [134] and wear resistant coatings [55]. The coating process involves
the nonlinear interplay of physical mechanisms, such as diffusion and convection, with a plethora
of homogeneous and heterogeneous chemical reactions. The competition between the different
mechanisms determines the process outcome and the product quality. It is therefore a fine example
of a process that is too complicated to study with first-principles models, such as Computational
Fluid Dynamics (CFD) and where the data is often not enough to implement sophisticated data-
driven strategies. Taking all of the above into consideration, the objective of this work is to
investigate the potential benefit of simplified CFD process models, accompanied by purely data-

driven predictions using Machine Learning (ML) approaches. Both methods are driven by the size
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and type of the available production data. In the CFD case, the data are used for calibration and

validation and in the ML case for regression.

Computational Fluid Dynamics is a valuable tool for studying deposition processes [7], [32],
[138], [150], [161]-[163], since it allows the investigation of the flow field inside the reactor, as
well as the main physical and chemical pathways that lead to the deposition of thin film coatings.
Nevertheless, modeling industrial-scale deposition applications using CFD presents several chal-
lenges: Firstly, dealing with the complexity of the process, which often has several unknowns and

secondly, the large scale of real applications.

Specifically, the actual chemical reactions that lead to deposition, including their rates, are
often unknown. Therefore, it is not possible to predict the effect of the interplay between transport
phenomena and chemical kinetics on the deposition rate, necessitating the development of a kinetic
model [164]. Even when a chemical reaction scheme is available, some of its parameters may need
to be fitted for the specific application. This parameter fitting involves an increased computational
cost, as it usually requires numerous simulations [4], [8], [143], [151]. Nevertheless, CFD has
been applied to several CVD applications, shedding light on previously “opaque”’ processes [5],
[165], [166] while also allowing to predict their outcomes [2]. Although attempts have been made
towards increasing the efficiency of CFD models by implementing reduced order modeling methods
[8], [9], developing an efficient and accurate model in an industrial setting remains a challenging

and time-consuming task.

In the era of Industry 4.0, digitalization has become one of the main drivers of innovation [167]
and production data are becoming more and more available. The industry is trying to exploit this
data, seeking improvement in several domains, including: maintenance management [168]-[171]
quality management [15], [172]-[175], production planning and control [21], [23], [176]-[178],
supply chain management [26], process outcome predictions [179]-[182] and process optimization
[183], [184]. Furthermore, digital twins [185] are becoming increasingly popular in the process
industry [186]-[188], as well as in other, diverse applications [189], [190]. Although the application
of sophisticated methods such as Deep Neural Networks (DNNs) [191], [192], Physics Informed
Neural Networks (PINNs) [193] and manifold learning [194] has been demonstrated on controlled

small scale problems, several challenges still remain when incorporating ML in everyday industrial
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practice. Addressing these challenges is one of the main objectives of this work.

The industrial application in this work is the coating of cutting tools with a-Al,O3 for increased
wear resistance. Concerning CFD, the goal is to propose the best possible simplified model,
based on the available data which are necessary for verification and validation. This leads to a
2D, time-dependent CFD model, presented in detail in previous work [32]. The proposed model
implements representative boundary conditions and employs a simple reaction scheme for the a-
Al>O3 deposition with the goal of reducing the computational cost.

Concerning ML, the first task is to pre-treat the available data, upon which the choice of
method depends on. Addressing mixed types of data (categorical and numerical) is a common
challenge in many applications, not restricted to deposition processes. Several regression models
are trained to predict the a-Al,O3 coating thickness using characteristics of the reactor set-up and
process conditions as inputs. In this work, the focus lies more on tree-based methods [195] which
are the best-performing for the given data-set.

The two approaches are initially compared in their ability to accurately and efficiently predict
the alumina coating thickness of the cutting tool inserts. Specifically, the advantages and disad-
vantages of each strategy are assessed in terms of accuracy, interpretability, extrapolation ability
and computational cost. As a final step, the two approaches are merged through the implementa-
tion of the Gappy Proper Orthogonal Decomposition (GappyPOD) method [35], [196]. The latter,
is popular for optimal sensor placement, and here it adapted to propose a sufficient number of
known data from which we can infer quantities that are not measurable.

The manuscript is structured as follows: A concise overview of the process and the available
production data is given in Section 4.2. The implemented methods (CFD, ML and GappyPOD)
are presented in Sections 4.3 and 4.4. The results of each method are analyzed and compared in

Section 4.5, followed by the conclusions in Section 4.6.

4.2 Process description

A two-step coating process takes place inside the studied industrial-scale, commercial CVD reactor
(Sucotec SCT600TH). First, a Ti(C,N) base layer of about 9 pm is grown on the cemented carbide

cutting inserts, such as the ones shown in Fig. 4.1a. Subsequently, an alumina layer is deposited
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under a AlCI3—CO2-HCI-Hy—H5S chemical system. The temperature and pressure for the alumina
coating step are T=1005°C and p=80 mbar, respectively [1]. The alumina coating deposition step

of the process takes approximately 3 hours.

The CVD reactor consists of 40-50 perforated disks, stacked one on top of the other, whereon
the inserts are placed. In Fig. 4.1b, a schematic of three such disks is shown for clarity. The
mixture of gas reactants, enters the reactor via perforations on a rotating cylindrical tube, placed
in the center of the structure of the stacked disks. There are two antipodal perforations for each
disk level. There is a 60° angle difference between the axis connecting the inlet holes for each disk
level. The rotational motion of the inlet tube (rotating with a rotational speed of 2 RPM) causes
the process to have an inherent periodic nature. The interior geometry of the reactor changes
from production run to production run, since the geometry of the inserts (and the disks on which

they are placed), changes based on production requirements.

Figure 4.1: (a) Indicative geometries of the coated cutting tools. (b) A 3D representation of a
3-disk part of the reactor. The inlet perforations on the rotating inlet tube are shown in red. The
outlet perforations for each disk are shown in blue.

The main goal of the process is to achieve uniform coating thickness, since this uniformity also
leads to uniform product longevity [74]. Ideally, coating thickness uniformity would be achieved

across all production runs, reactors, and production sites. However, this is not always the case.
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For this reason, a way of predicting the coating thickness of the inserts given the reactor set-up is
needed. Furthermore, coming up with a systematic way of assessing the factors that influence the

coating thickness uniformity is also highly important.

4.2.1 Available data

For the Ti(C,N)/a-Al,O3 multi-layer coating, the thickness measurements are performed via the
Calotest method. A small spherical cavity is ground on the coated inserts using a rotating ball
of known geometry, providing a tapered cross-section of the film when viewed under an optical
microscope [197]. This way, the thickness of both the Ti(C,N) and a-Al,O3 coating layers can
be calculated. Measurements are usually taken for 3 positions on 5 disks of interest. Therefore,
15 thickness measurements are available for each production run. A 2D representation of the
reactor indicating the points where thickness is typically measured is shown in Fig. 4.2. These
measurements allow for not only for the calibration and validation of the CFD model, but also for
several ML approaches.

Apart from coating thickness measurements, the dataset also contains several features con-
cerning the process and the reactor setup, which will serve as inputs to the machine-learning
model. The production “recipe” used for the coating is the available feature providing information
regarding the process. Setup-wise, there is a plethora of available features for each disk of the

reactor, including:
1. The position of each disk inside the reactor.
2. The number of inserts placed on each disk.

3. The type of insert placed on each disk. Each type of insert has different geometrical char-

acteristics.

4. The type of disk used. The type of disk used is always relative to the type of insert placed

on top of it.

5. The surface area of the inserts placed on the disk.
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Figure 4.2: Positions with available a-Al,O3 thickness values from the production data for our test
case. In general, across different production runs, the R position (the one closest to the reactor
outlet) is the one with the highest amount of data. For this reason, the ML models are trained
to make predictions for inserts placed in this position. The arrows indicate the gas reactant inlets
and outlets.
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These features allow for the creation of more features, such as the total surface area and the
standard deviation of the surface area of the inserts that are coated inside the reactor. Another
feature that can be created is the difference between the nominal surface area of the production
“recipe” and the actual insert surface area inside the reactor. Furthermore, for each disk, we can

exploit the information available for its neighboring disks.

This way, we end up with several features, of which thirteen are used as inputs after being
pre-processed. These features are summarized in Table 4.1. Considering the coating thickness
measurements as outputs, we can train several supervised learning models to make coating thick-
ness predictions per disk. In this context, during training, a labeled set of inputs is provided and
specifically here, the inputs are the aforementioned features and the labels are the a-Al>;O3 coating

thickness measurements.

Table 4.1: Summary of the features included in the training of the regression models.

Feature Type Pre-processing

Number of inserts on disk Numerical (integer) standardization
Surface area of inserts on disk ~ Numerical (float)  standardization
Disk position Numerical (integer) standardization

Total surface area of inserts
inside the reactor

Surface area standard deviation ~ Numerical (float)  standardization

|INominal “recipe” surface area
- actual surface area|

Numerical (float)  standardization

Numerical (float)  standardization

Production “recipe” Categorical binary encoding
Insert geometry Categorical binary encoding

Disk geometry Categorical binary encoding

Insert geometry — disk above Categorical binary encoding
Insert geometry — disk below Categorical binary encoding
Disk geometry — disk above Categorical binary encoding
Disk geometry — disk below Categorical binary encoding

57



Comparison of equation-based and data-driven modeling strategies for industrial coating processes

4.3 Computational ingredients
4.3.1 ML methods

For the data-driven approach to the problem, the implementation of an assortment of machine
learning methods for the prediction of coating thickness inside the reactor is investigated. All
methods implemented fall into supervised learning methods.

In supervised learning, each one of the input variables x; is associated with a response (or
output) y; [81]. The goal of the ML strategy is to train a model able to relate the input variables
x; to the output y;. This way, future observations can be predicted and the relationship between
the inputs and the output can be interpreted. Here, the goal is to predict the a-Al,O3 coating
thickness (a continuous target variable) from several inputs, using a regression method. The

specific methods include but are not limited to:
e Linear methods, such as linear, lasso or ridge regression.
e Non-linear methods, such as polynomial regression.

e Tree-based methods, such as regression trees and their ensemble versions: random forests,

gradient boosted regression trees and extreme gradient boosted regression trees.
e Artificial neural networks.

During the early phases of this research, several techniques were utilized, including linear, lasso, and
ridge regression, as well as support vector machines and Gaussian process regression. Preliminary
findings indicated that tree-based methods outperformed the other techniques, and as a result, the
focus of this study is on tree-based methods.

The models’ accuracy will be evaluated via two different metrics, namely the mean absolute
error (MAE) and the mean absolute percentage error (MAPE). When the model is trained or tested
on N observations and for each observation 7 the prediction is ij; while the actual value is y;, MAE

and MAPE can be written as follows:
1 N
MAE = — Y |9 — vl (4.1)
N i=1
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S

Yi—VYi
Yi

1 N
MAPE = — )

N & (4.2)

Two different computational costs pertain to each ML model, the training time (tirain) and the

prediction time (t,req) of the model. Both of these costs are expressed in CPU time.

Tree-based methods

Tree-based methods work by partitioning the space of the inputs X into a set of rectangles.
Afterwards, a simple model (e.g. a constant) is fit in each partition. The process starts by
splitting the entire input space in two based on a variable of the input space and its value. The
optimal variable and split point are chosen in order to achieve an accurate fit. Then, either or
both of the resulting regions are split again in two, once again using the optimal input and split
point. This procedure continues until a stopping criterion has been met. The occurring binary
splits allow for model interpretability since the entire sample space can be described by a single
tree. Tree-based methods can be used for both regression and classification purposes [198].

The prediction accuracy of a single tree is often not as high as that of other methods. Fur-
thermore, a small change in the data can lead to an entirely different tree layout. These two issues
and especially the predictive performance of the trees can be rectified by combining multiple trees
through the implementation of ensemble methods such as bagging and boosting [195].

The concept behind ensemble methods is to build a prediction model by combining a number
of simpler base methods, in two steps: First, a number of base learners must be created from
the available data. The second step involves the combination of these learners into one ensemble
predictor. The most common ensemble tree-based methods are random forests, bagged trees and
gradient boosted trees. These methods, however, have some key differences between them.

Random forests and bagged trees, discussed here, operate similarly. They both build B regres-
sion trees and each tree is trained using bootstrap-sampled (i.e. sample a particular data-point and
then reintroduce it to the dataset), versions of the original dataset. Bagging regression methods
provide a prediction by averaging the outputs of the B trees that they consist of. If ;; is the

prediction of each grown tree, then the final prediction of the bagging method 7; 54, is given by:
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. 1
Tibeg = 5 Y ip (4.3)
=1

Random forests and bagged trees differ only in the amount of input features Njnpy: that are
considered when building each tree. In bagged trees, all available features are considered. On the
contrary, in random forests, a random subset of p input features is considered. This serves the
purpose of de-correlating the individual trees, since the trees are not always built by selecting the
global optimal features, but by selecting the optimal feature from a randomly sampled subset of

the input features [195].

Gradient boosting and extreme gradient boosting are boosting methods. In the case of boosting
methods, contrary to bagging methods, the B base trees are created sequentially. First, the first
tree of the ensemble is created. Afterwards, each created tree is fitted to the difference between
the value predicted by the previous tree and the real output. This way, each tree improves the
shortcomings of the previous one. There is no averaging of the result of the B trees in this case

[199].

Therefore, after building the b'"* tree which outputs 7Yj» and is trained on the residual of the
output of the ensemble after the previous tree has been built, the output of the ensemble f;(x)

can be written as:

J
fb(X> = fb_l(X) +A- Z’y]bl(x € R]m) (44)
=1

where [ is the indicator function, and A is the learning rate of the boosting procedure. A serves
the purpose of scaling the contribution of the output of each tree to the final prediction of the

ensemble.

The result of the model is the output of the ensemble after the final tree has been built.
Boosting methods are more prone to overfitting for large values of B than bagging methods. For

this reason, B needs to be carefully selected through cross-validation.
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Challenges

Applying data-driven methods to a real-world dataset presents several challenges. First and fore-
most, the dataset needs to be “cleaned’”: Given that the production dataset is derived from different
production sites, different reactors, and different people, it is bound to contain some errors. These
errors must be identified and corrected before any type of analysis. Then, there is the question
of the format of the data. Even when the data is neatly organized in an SQL database, it still
needs to be extracted and formatted (using the pandas python library [200], for example) so that it
can be used to train models in a python framework. Afterwards comes the question of data type.
In this particular application, there are both numeric and alphanumeric features (features that
contain names instead of values). Since several of the implemented methods are not compatible
with alphanumeric (categorical) features, those features need to be encoded in a way (i.e. binary
encoding, one-hot encoding [105]) that allows them to be used in our models. Finally, once the
data is ready, the task is to find the best performing model and to determine the hyperparameters
that influence performance. Therefore, a hyperparameter optimization step must also be included.
By following this step-by-step approach, we can establish a data pipeline specific to our data that
allows us to overcome all the aforementioned challenges. This however requires experience, input

from the process experts, along with a clear understanding of the data.

4.3.2 CFD modeling: Implementation and challenges

For this specific application, a digital “replica” of the process would have to be a 3D, time-
dependent full reactor (40-50 disks) model which would include a complex reaction scheme. A
complex reaction scheme, would lead to more degrees of freedom and an increased number of
kinetic parameters that would need to be fitted. Apart from this, given the rotation of the inlet
tube (and therefore the fact that the problem is not axisymmetric) a moving mesh would also need
to be implemented. This would translate into a computationally intractable task. If we consider
that the reactor interior geometry changes on a day-to-day basis, since the geometries of inserts
and the disks on which they are placed change based on production quotas, a computationally
expensive model is not a suitable method to study this industrial application. For this reason,

aiming to drive the computational cost down, the problem was approached as follows:
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e The problem is modeled in 2D.

e The boundary conditions for both the inlet and the outlet are selected in a way that is
representative of their 3D characteristics.

e The model takes into account only 7-disk parts of the reactor in a divide and conquer
approach.

e A simpler reaction scheme that still leads to accurate results is used.

To efficiently tackle the challenges of the process, a 2D, time-dependent model that accounts
for the transport of mass, momentum, and species inside the reactor is proposed. The COMSOL
Multiphysics® software was used for the CFD modeling. The interested reader can seek detailed
information in the recent work of Papavasileiou et al. [32]; here the key points are summarized for

completeness.

A reaction scheme consisting of a homogeneous reaction in the gas phase and a heterogeneous
reaction for the deposition of a-Al,O3 is part of the model. The following assumptions are made:
a) laminar and incompressible flow, b) constant temperature of in the entire reactor domain, c)
ideal gas phase. The CFD model accounts for 7-disk “building blocks" of the reactor, in order
to keep the computational cost low. To account for the rotation of the inlet tube, pulse velocity
boundary conditions are applied at the inlets. To represent the placement of the holes on the
inlet tube in the 2D computational geometry, a phase difference is included between the boundary
conditions of each disk. A similar approach is taken for the outlet perforations. Since they are
not aligned, pressure boundary conditions are applied at every other disk (1st open, 2nd closed
and so forth). In order to model the deposition of a-Al,O3 under the AICI3—COy-HCI-Hy—H3S
chemical system, we implement a simple reaction scheme based on the work of Schierling et al.
[156]. Implementing this simpler scheme results in a lower computational cost. The simulations

account for two full rotations (or periods) of the feeding tube.
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4.4 Combining equation-based and data-driven approaches us-
ing GappyPOD

In this work, the GappyPOD method is used for the reconstruction of several 7-disk reactor snap-
shots acquired using the aforementioned CFD model using limited - or “gappy” data. GappyPOD
was first introduced by Everson and Sirovich [196] and then implemented, among others, to a CFD
airfoil application by Willcox [35] and for non-linear fracture mechanics modeling [201]. Optimal
sensor placement is another problem that can be solved using the GappyPOD method, as indicated
in the works of Willcox [35] and Jo et al. [202]. This is achieved by finding the optimal way of
filling the “gaps” in the data, or in other words, selecting the sensor positions that give the most
information possible.

A concise overview of the method, along with the procedure followed for the acquisition of data

and the metrics used for the evaluation of the method, are presented in the following paragraphs.

4.4.1 Overview

In this section, the GappyPOD method is summarized for completeness. Let's consider a dataset
X of M vectors (represented as d-dimensional real vectors x1,...,xp1). A POD basis, ® € RN*M

of X is computed, such that X can be approximated as a linear combination of p vectors:

- P
X=) do (4.5)
j=1
or in matrix-vector format:
X=®-c (4.6)

The size of the truncated POD basis @® is selected based on the error between the actual vector

X and the reconstructed approximation X :

reconstruction error = || X — X|| (4.7)
Another factor that can be taken into account when selecting the size of the truncated basis
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is the total energy retained by the selected number of modes. For each basis vector j, the relative

importance (E;) is given by:

)\.
]

Ei=—— (4.8)

YiqAi
and therefore, the total energy retained for the k retained modes is given by:

k

Etotal = ZE]' (49)
j=1

Let us consider a vector X’ that is spanned by the same basis ® and that only m values of

/

this vector are known, such that the partial vector X partia

; can be defined:

=m-X',mecR™N (4.10)

/
partial

The goal is to find coefficients ¢/, such that an approximation X’ of the vector X’ can be

defined as :

X=X (4.11)

then:

X:Jartial ~m-X'-c (4.12)

Finding the values of ¢’ that satisfy the above leads to an optimization problem, which results

in the solution of the linear system:

M- = (m ’ (I))/ ’ X:Jartial (413)

with M = (m - ®)" - (m - @)
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4.4.2 CFD data sampling

Snapshots, i.e. vectors containing information regarding the system's state at a specific time, of
12 different 7-disk reactor parts will be used for the implementation of the GappyPOD method.
For each reactor part, there 31 available time-instances (each one with 1 second time difference

from the previous). This way, the full dataset consists of 372 vectors.

At each time-instance, 4 quantities of interest are sampled along the lines connecting inlet-
outlet at each disk level. The points of these lines are then interpolated at 250 specific query points
using linear interpolation. In this manner, 250 evenly spaced points along each line are obtained.
An example of the lines along which the quantities of interest are sampled is demonstrated in

Fig. 4.3.

l

l

l

Figure 4.3: In blue: The seven lines along which the 4 quantities of interest (U, p, Caici,, CH,0)
are sampled. In orange: The disk with available thickness measurements. The thickness measure-
ments, as well as the a-Al,O3 deposition rates at the inserts of this disk, are also included for our
implementation of GappyPOD. The arrows indicate the gas reactant inlets and outlets.

The quantities of interest at each point are:
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1. The velocity magnitude (U).

N

. The pressure (p).
3. The concentration of the precursor AlCl3 (Cajcyy)-
4. The concentration of water (Cp,0).

Furthermore, the deposition rates as predicted by the CFD model along with the available
thickness data for 3 positions (Ro, R1/2, R) for each 7-disk reactor part, are included in each snap-
shot. An overview of the resulting dataset after sampling and organizing the vectors is presented
in Fig. 4.4.

It is worth noting that a plethora of input parameters influences the final product, the most
important of which include the configuration of the reactor’s interior geometry and the production
“recipe’. The latter includes all the steps and chemical species involved in the production of a
single coating layer. In this work, to make the simulations tractable, the focus lies on a single

“recipe” for a single product and various geometries, without loss of generality.

4.4.3 Performance metrics

The performance of the GappyPOD approach will be evaluated using the Root Mean Squared
Error (RMSE) between: a) the GappyPOD reconstruction and the POD reconstruction, b) the
GappyPOD reconstruction and the snapshots of the reactor given by the CFD model. The RMSE

between two values (ij; and y;) for N observations can be written as follows:

RMSE = | =} (¥i = :)? (4.14)

4.4.4 Mask selection

The effectiveness of GappyPOD depends on the condition number of matrix M, which is defined
in Eq. (4.13). The matrix M is created from the inner products of the “gappy” POD vectors,
which are the elements of the original POD vectors corresponding to the known elements of X'.

Since these vectors are no longer orthogonal, the matrix M is fully populated. For orthogonality
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Figure 4.4: The final matrix considered for the GappyPOD method. A total of 31 time-instances
for 12 different reactor geometries have been sampled. These contain all 4 quantities of interest
(velocity magnitude, pressure, precursor concentration (Cy), water concentration (Cy) along with
the calculated deposition rates (D.R) and the coating thickness measurements (h) taken from the
production data. In our case, T = 31 (number of time-instances per reactor) and N = 1750 (total
number of points: 7 lines containing 250 points each).

to be preserved, the known element positions and non-zero elements of M must be appropriately
arranged. Additionally, the diagonal entries of M must not be too small, indicating that the
POD basis element at that point should not be small. The condition number of the matrix M
reflects these requirements, with a smaller condition number indicating greater satisfaction of these
conditions. This analysis is detailed in [35], in the context of optimal sensor placement, and in
[203], [204], which consider the angle between the measurement subspace and the low dimensional

space that spans the data.

To determine the known values of the vector X’ in a more systematic manner, a greedy
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algorithm similar to the one proposed by Willcox [35] is implemented. However, in our case, the
mask elements are selected in a way that reduces the reconstruction error. Considering m known

values of each snapshot X’, then the greedy algorithm implemented works as follows:

1. Initialize by randomly selecting m known values.

2. Starting with the first mask element, loop through all the possible positions for the known

values and calculate the reconstruction error for each resulting mask.

3. Find the position of the element that minimizes the reconstruction error and place the first

element there.

4. Repeat steps 2-3 for all remaining mask elements.

This way, we can efficiently find positions for the mask elements that yield an acceptable
reconstruction error. It should be noted, however, that this does not always lead to the globally

optimal positions.

4.5 Results

451 CFD model

CFD model parameters

To elaborate on the model summary made in Section 4.3.2, further information regarding the CFD
model parameters is given in this section.

The prescribed inlet boundary conditions are inlet velocity conditions. For each disk, the
gas feed velocity is a time-dependent pulse function that mirrors the inlet tube rotation, varying
between 0 and Vinax. There is a phase difference between the pulses of each disk. V. and
the aforementioned phase difference are determined based on the experimental conditions and
geometry, taking into account: a) the 2 RPM rotational speed of the inlet tube, b) the total inlet
gas flow rate, c) the number of disks per run, d) the two antipodal perforations per disk, €) the
diameter of the perforations (0.002 m), and f) the 60° angle difference between the perforations
of each disk.

68



4.5. Results

Outlet pressure boundary conditions are applied at every other disk level. This way, we account
for the real geometry where the outlet perforations are not aligned. This results in a model where
only the first, the third, the fifth, and the seventh outlet from the top are considered open.

Seven different chemical species are considered, along with a simplified reaction scheme for
the deposition of a-Al,03. The molar fractions at the inlet are the following: CO, (0.0385), AICl3
(0.0169), HCI (0.0210), H,O (107%), CO (107%), H, (0.9203), and H,S (0.0033).

The process conditions for the alumina coating step are T=1005°C and p=80 mbar, as indicated

in [1]. Further information can be found in the recent work of Papavasileiou et al. [32].

CFD model predictions

The CFD model has been tested for 4 different 7-disk reactor geometries. All four 7-disk geometries
are building blocks of the test case reactor, whose 2D representation is shown in Fig. 4.2. It is
possible to predict the a-Al,O3 coating thickness with a maximum relative error of 8% and within
5% mean absolute percentage error for each 7-disk geometry, when compared to the available
production data. The maximum observed mean absolute percentage error for the a-Al,O3 coating
thickness is 4.33%. Simulations for each geometry consist of about 10° degrees of freedom. The
solution time for each geometry is approximately 3 core hours on an 11" Gen Intel(R) Core(TM)

i7-1185G7 processor. The results of the CFD simulations are summarized in Fig. 4.5.

4.5.2 Data-driven predictions

We implement the following tree-based methods: a) Regression Trees, b) Random Forests, c)
Gradient Boosting Regression Trees (GBRT) and eXtreme Gradient Boosting Regression Trees
(XGBoost). All the methods have comparable performance. Among them, the best performing is
XGBoost and the results below focus on its predictions.

The dataset contains a total of 6114 observations and is split into a training set and a test
set, using a ratio of 75/25. Each one of these observations contain thickness measurements at
the R position for a particular disk (cf. Fig. 4.2), corresponding to a number of inputs, detailed
in Section 4.2.1. The numerical features were standardized, and the categorical features were

encoded using binary encoding.
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Figure 4.5: (a) Relative error for the CFD predictions for 3 different positions with available
production data inside the reactor. Simulations are performed for four different 7-disk geometries
in total. (b) Mean absolute percentage error (averaged over the 3 positions for which data are
available) for the CFD simulations for the 4 different reactor geometries. (c) Velocity magnitude,
(d) Precursor Concentration and (e) Water Concentration inside the reactor at a certain time
during the deposition.

Hyperparameter selection

Optimal model performance, is influenced by the choice of hyperparameters for each method. The

most important hyperparameters of the implemented tree-based ensemble methods are:
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1. The maximum depth of the trees (dmax), i.e. the number of bifurcations of the main “branch”
of the tree. Selecting too large a tree depth can lead to overfitting, which in essence means

that the model fails to generalize accurately.

2. The number of trees (B). A large number of trees reduces the variance of bagging methods,

however it can lead to overfitting in the case of boosting methods.

3. For boosting methods specifically, another important hyperparameter is the learning rate
(A). The choice of A usually affects the optimal B. For example, a very small A usually

requires a large B to achieve satisfactory performance.

Searching for the optimal model hyperparameters in an exhaustive manner is a computationally
expensive task. The time required for all 5 tree-based methods using an exhaustive grid search
approach performing 10-fold cross-validation was 43 core hours on an 11th Gen Intel(R) Core(TM)
i7-1185G.

To demonstrate here the effect of dpnax, results are shown for fixed values of B and A (cf.
Fig. 4.6). For a constant number of trees (B = 10000), boosting methods show better performance
for low values of dmax. On the contrary, bagging methods indicate better performance for higher
values of dmax.

Overall, for all the hyperparameters tested, boosting methods appear to outperform their
bagging counterparts. Out of the two boosting methods, the XGBoost method displays higher
training and predicting speed. Specifically, for the same training set and the same hyperparameters
(B = 10000, dmax =5 and A = 0.01), the average training time over 10 cross-validation splits is
16.5s for the XGBoost model and 99.5s for the GBRT model. Moreover, the average prediction
time is 20ms for the XGBoost model and 333ms for the GBRT model. Therefore, due to its lower
computational cost, further hyperparameter tuning will take place for the XGBoost algorithm, in
order to find the optimal hyperparameter combination.

After selecting the optimal value of maximum depth, we further investigate the effect of the
number of trees B on the accuracy of the XGBoost model. As indicated in Table 4.2, the accuracy
of the model drastically improves when B > 500, nevertheless, the trade-off is in the form of

increased computational cost.
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Figure 4.6: MAPE vs dnax for all methods after 10-fold cross-validation. B = 10000 for all
ensemble methods. A = 0.01 for the boosting methods. For the base method (regression tree)
and bagging methods (Bagged Trees and Random Forests) increasing the maximum depth of the
trees leads to a reduced MAPE. For the boosting methods (GBRT and XGBoost), the MAPE
increases when increasing the maximum depth of the trees. Random forest regression performing
worse than the simple regression tree can be attributed to the fact that it only considers a subset
of available features when building each tree of the ensemble.

Table 4.2: XGBoost model results after cross-validation for various values of B, where dpax = 5
and A = 0.01. As expected, an increased number of base predictors improves the performance of
the ensemble boosting method. However, it also increases the training time and prediction time
of the model. All metrics are averaged over 10 cross-validation splits.

Number of trees (B) MAPE  Fipain (S)  Fpred (Ms)

10000 3.1% 16.3 20
5000 3.3% 8.0 14
2000 3.4% 3.3 9
1000 3.6% 1.7 9
500 3.9% 0.9 8
200 12.6% 0.4 8
100 33.8% 0.2 10
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Following hyperparameter optimization and tuning, the final values selected for the XGBoost

model are the following: dnax =5, B = 10000, A = 0.01.

Machine learning outcomes

Two more accuracy metrics are introduced here, the mean square error (MSE) and the coefficient
of determination (R?). When the model is trained or tested on N observations and for each
observation i the predicted value is #; while the actual value is y; and the average of the actual

values is 7, MSE and R? can be written as follows:

1 N

MSE = N ):(y;- —y;)? (4.15)
i=1
N A
T (0 —vi)?

R?=1-"55 (4.16)
) (vi —9)?

Il
—

The prediction error of XGBoost regression model for the training set, reaches a MAPE of 0.9%,
versus 3.1% for the test set. The prediction accuracy of the XGBoost model on the training set and
on the test set can be summarized in Figs. 4.7a and 4.7b respectively. Due to the confidentiality
of the production data, absolute a-Al,O3 thickness values cannot be presented. Therefore, only

relative error values and normalized thickness values are presented.

45.3 CFD vs ML

Predictive accuracy

For the test-case reactor set-up presented in Fig. 4.2, the prediction results for the position closest
to the outlet for both methods are given in Table 4.3. Disk position is counted from the bottom
to the top of the reactor.

Despite the significant difference in the computational effort involved in the CFD model in
comparison to the ML regression model, both methods have comparable accuracy on the test-
case. CFD predictions for the test reactor have a mean absolute percentage error of 6%, while

XGBoost makes predictions with a mean absolute percentage error of 4.4%. The high error in the
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Figure 4.7: (a) Training set performance: MSE:0.005 | MAE:0.051 | MAPE:0.9% | R?:0.980. (b)
Test set performance: MSE:0.059 | MAE:0.187 | MAPE:3.1% | R%:0.753.

Table 4.3: XGBoost prediction accuracy vs CFD prediction accuracy for the coating thickness of
inserts closest to the reactor outlet (R position). Errors relative to the available production data
are presented. The high error in the prediction of the CFD model for the 6t reactor disk can
be attributed to the fact that it is the bottom-most disk of the simulated 7-disk geometry, and
therefore the effect of the inlets and outlets that are below it is not taken into account.

Disk position CFD prediction XGBoost prediction
39 3.2% 3.5%
35 1.0% -3.1%
23 -4.0% -7.0%
10 1.0% -5.5%
6 20.6% -2.8%
MAPE 6.0% 4.4%
Total prediction time (s) 43200 0.1

prediction of the CFD model for the 6" reactor disk (20.6%) can be attributed to the fact that
it is the bottom-most disk of the simulated 7-disk geometry and therefore the effect of the inlets
and outlets that are below it is not taken into account. This can be solved by an extra 7-disk
simulation, where the disk of interest won't be in the bottom-most position. This would of course

further increase the computational cost of the CFD approach. The maximum observed absolute
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relative error for the predictions of the XGBoost model on the test-case reactor is 7%.

Computational performance

Although the predictive accuracy of the two approaches is similar, they demonstrate a very no-
ticeable contrast when it comes to their computational performance. Specifically, in the case of
CFD, making predictions for an entire production run would require 4 or 5 7-disk simulations. This
corresponds to a computational cost of 12 to 15 core hours. On the other hand, using the XGBoost
model to make predictions for an entire production run comes with a computational cost of less

than 1 core second. This translates to a reduction of more than 99.99% in required resources.

4.5.4 GappyPOD

Results of our GappyPOD implementation will be presented for two different cases:
1. The case of the full dataset.
2. The case of a single reactor.

In each case, the dataset consists of time-instances of the state vector, over a period of 30
secs. Therefore, the full dataset eventually consists of 372 snapshots, whereas in the single reactor
dataset, it consists of 31 vectors.

In both cases, 87.5% of the available snapshots are used to derive the POD basis of the training
set. The rest of the snapshots (12.5%) are kept and used for the validation of the method. For
both cases, the data are scaled in the range of [0, 1] using min-max normalization.

The number of modes used for the POD basis are selected after checking the energy retained
by the modes and the resulting reconstruction error. The total retained energy for the full dataset
and the single reactor dataset, is shown in Fig. 4.8a and Fig. 4.8c respectively, whereas the

reconstruction error as a function of the basis size is shown in Fig. 4.8b and Fig. 4.8d respectively.

The full reactor dataset requires at least 50 POD modes to capture more than 95% of the
energy of the system, with a corresponding reconstruction error (RMSE) of 0.0059. The single

reactor dataset, is accurately represented by 15 POD modes that reflect more than 98% of the
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Figure 4.8: The energy retained (in blue) and the reconstruction error (in orange) of the POD
approximation using M modes. (a), (b): Energy and reconstruction error for the full dataset. Only
the first 100 modes are shown. (c), (d): Energy and reconstruction error for the single reactor
case.

energy with a reconstruction error (RMSE) of 0.004. Eventually, for the immediate comparison of

the results, the same basis size is considered, equal to 15 POD modes. The corresponding retained
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energy and error are shown in Table 4.4.

Table 4.4: Number of POD modes selected for each case, along with the corresponding retained
energy and reconstruction error.

Case # POD modes Energy retained Recon. error (RMSE)
Full dataset 15 81.69% 0.0373
Single reactor 15 98.70% 0.0040
Single reactor 5 82.74% 0.0456

After selecting the size of the POD basis for each case, the mask elements for GappyPOD are
obtained using the greedy algorithm described in Section 4.4.4. It should be noted that the mask
length should be greater or equal to the size of the POD basis. For all three cases, we allow one
mask element more than the size of the POD basis. It should be noted that in all cases the mask
elements acquired consist of all the quantities of interest (velocity magnitude, pressure, precursor

concentration, water concentration) discussed in Section 4.4.2.

After acquiring the mask elements, the RMSE between the GappyPOD approximation and the
test set, along with the RMSE between the GappyPOD approximation and the POD reconstruction,
can be calculated. Specifically, for the case of the full dataset, the RMSE between the GappyPOD
approximation and the test set is 0.0648 while the RMSE between the GappyPOD approximation
and the POD reconstruction is 0.0512 (cf. Fig. 4.9). For the case of the single reactor, the
RMSE between the GappyPOD approximation and the test set is 0.0099 while the RMSE between
the GappyPOD approximation and the POD reconstruction is 0.0064. If we choose to make a
comparison using the number of POD modes with the same retained energy and reconstruction
error, we choose 5 POD modes (82.74% retained energy and 0.046 reconstruction error) and 6
mask elements for the single reactor case. Then, the RMSE between the GappyPOD approximation
and the test set is 0.0474 while the RMSE between the GappyPOD approximation and the POD
reconstruction is 0.0143.

The performance of the method, is linked to how well the dataset is spanned by the selected
POD vectors, generally implying that a larger POD basis is beneficial for the results. Nevertheless,
since the ambition of this approach is to select only a few measurements as mask elements, it is

more beneficial to work with the smallest possible number of POD vectors.

77



Comparison of equation-based and data-driven modeling strategies for industrial coating processes

B Full dataset (Nppask = 16, M = 15)
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Figure 4.9: On the left: Error between the GappyPOD approximation and the snapshots of the
test set for all cases. On the right: Error between the GappyPOD approximation and the POD
approximation for all cases. It is evident that the single reactor case shows the lowest errors. This
is probably due to the lower variance observed in the dataset of the single reactor when compared
with the full dataset. For the case of the single reactor, using a smaller POD basis (5 modes
instead of 15) leads to an increase in both errors.

4.6 Conclusions

This work presents an overview of the implementation of equation-based and machine-learning
methods in industrial-scale deposition applications. The challenges associated with the complexity
of the process and the characteristics of real production data are discussed and the methods to

overcome them are presented.

In the equation-based approach, a reduced model is presented and validated with production
measurements of the coating thickness. The simplifications introduced and the pertinent assump-
tions upon which they are based are discussed, along with the results. The trade-off between the
computational cost associated with the CFD model and the physical insight obtained, is discussed
and compared to the ML approach. Coating thickness predictions are possible with an average

error of 6%. In addition, the CFD model, predicts the distributions of velocity, and reactive species,
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illuminating thus, the mechanisms that contribute to the final product. Furthermore, it can be
used to predict the thickness achieved in parts of the reactor where there are no measurements.
Moreover, the CFD approach also allows extrapolating for different process conditions and different
inlet reactant concentrations. For the 7-disk CFD approach, the results of Table 4.3, show that
appropriate selection of the 7-disk “building blocks” for the simulations is of high importance for
the accuracy of the prediction.

The ML approach is discussed in detail, as far as the possible specific methods are concerned.
The suitability of each is assessed, based on the data available. Eventually the best performing
ML method, XGBoost, is able to deliver accurate and time-efficient coating thickness predictions,
but cannot provide insight into the transport of species that determines the coating thickness.

The implementation of GappyPOD for this specific application, shows how data-driven meth-
ods and CFD results can be intertwined to provide further insight on the important quantities
of interest inside the reactor. By further analysis of the resulting mask elements, we can ex-
plore the hypothetical scenario of sensor placement inside such reactors. Furthermore, we can
reconstruct entire snapshots from a few measurements inside the reactor, reducing in this way the
computational cost of the problem.

It should be noted that the strategy employed here is not exclusive to CFD modeling. The
same workflow could still be implemented in other applications, regardless of the equation-based
modeling approach used. The only limiting factor would be the amount and type of available data
for the application.

Another important observation is that specific combinations of inputs can lead to the same
outputs. This merits further investigation, due to its importance in the actual production process,
which is the topic of future work.

To conclude, it is clear that each individual approach is a valuable tool in studying a complex
process offering different advantages: physical insight and extrapolation abilities in CFD and time-
efficient, accurate predictions in ML. It is therefore worth investing the effort in each one of
them, and ultimately, in merging them in a hybrid approach with additional benefits. Reduced
representations, or the full state space of the CFD simulations could be used as features for

predictive machine learning algorithms, potentially improving predictive performance. However,
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this would come with the high computational cost associated with conducting the CFD simulations
for all available production runs. lIdeally, the resulting model could combine high accuracy, time-
efficient predictions, and excellent extrapolation ability, moving in this way toward a digital twin

of the process.
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Chapter 5

Integrating supervised and
unsupervised learning approaches to

unveil critical process inputs
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5.1. Introduction

Abstract

This study introduces a machine learning framework tailored to large-scale industrial processes
characterized by a plethora of numerical and categorical inputs. The framework aims to (i)
discern critical parameters that influence the output and (i) generate accurate out-of-sample
qualitative and quantitative predictions of production outcomes. Specifically, we address the
pivotal question of the significance of each input in shaping the process outcome, using an
industrial Chemical Vapor Deposition (CVD) process as an example. The initial objective
involves merging subject matter expertise and clustering techniques exclusively on the process
output, here, coating thickness measurements at various positions in the reactor. This ap-
proach identifies groups of production runs that share similar qualitative characteristics, such
as film mean thickness and standard deviation. In particular, the differences of the outcomes
represented by the different clusters can be attributed to differences in specific inputs, in-
dicating that these inputs are potentially critical to the production outcome. Shapley value
analysis corroborates the formed hypotheses. Leveraging this insight, we subsequently im-
plement supervised classification and regression methods using the identified critical process
inputs. The proposed methodology proves to be valuable in scenarios with a multitude of
inputs and insufficient data for the direct application of deep learning techniques, providing

meaningful insights into the underlying processes.

5.1 Introduction

Chemical vapor deposition (CVD) is a widely used chemical process for producing thin films with
various properties, applied in semiconductor manufacturing [47], [48], membranes [205], [206], pro-
tective [54], [207] and wear-resistant [55], [208] coatings. Although Computational Fluid Dynamics
(CFD) models traditionally explore CVD complexity [4], [5], [146], [150], [151], [161], [164], [209],
[210] their efficiency and adequacy are challenged in cases involving unknown chemical reactions
or intricate reactor geometries. The computational cost of large-scale industrial process models
and the nonlinear nature of competing physical and chemical mechanisms further limit the utility

of CFD as a viable "digital twin”. It is also possible that there are different process outputs arise

83



Integrating supervised and unsupervised learning approaches to unveil critical process inputs

for the same inputs, which is also linked to non-linearity [7], [143].

Recently, Machine Learning (ML) has emerged as a promising alternative in the era of Industry
4.0 with abundant process data. ML applications range from maintenance management [168]-
[170] and production planning [21], [176] to outcome prediction [17], [36], process control [23] and
optimization [22]. ML models can also be developed based on preexisting physics-based models,
in order to further investigate the modeled process [8], [9], [211].

Despite recent advances in explainable Al (XAl), challenges persist in addressing the “black
box" nature of ML models. However, tools such as SHAP (SHapley Additive exPlanations) offer
improved explainability using a game theory approach [37], [212]-[214].

This study utilizes production data from an industrial CVD reactor for the production of wear-
resistant cutting tool coatings. The data encompass details about the reactor setup and the process
inputs; thickness measurements of the Ti(C,N)/a-Al,O3 coating in 15 positions within the reactor
are considered process outputs.

Implementing state-of-the-art (SotA) methods faces challenges that include:
e Process complexity, namely, multiscale interacting phenomena in intricate geometries.

e A multitude of numerical and categorical inputs, with little insight of their impact on the

process outcome.

e Noisy and heterogeneous data, collected over months or years with varying instrumentation

and calibration, which cannot be categorized as “big".

Several different options are available in the literature related to the discovery of important
process parameters and the facilitation of subsequent modeling attempts. Variable Importance in
Projection (VIP) parameters [215], [216], a byproduct of Partial Least Squares (PLS) models, have
traditionally been used to determine the impact of process inputs on the output [216]-[218].

Variable selection tools have been shown to enable improved performance and subsequently
lead to a greater understanding of the importance of input variables on model output [219]. To this
end, several powerful dimensionality reduction techniques based on Principal Component Analysis
(PCA) or Diffusion Maps (DMaps) [220], [221] can lead to the discovery of effective process
parameters [222], [223].
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Despite the effectiveness of existing methods for strictly numerical data, challenges arise when
dealing with datasets rich in categorical features, as seen in this application. This work aims to
propose an ML workflow for the identification of critical process inputs without labeled data, an
essential contribution to control, optimization, and experimental design.

Our approach involves an unsupervised analysis of process outputs to identify clusters of similar
production runs. Subsequently, we analyze relevant process input data to discern distinguishing
characteristics within these clusters. Our findings are supported by subject matter expertise.
Shifting to supervised learning, we use cluster labels to train a classifier for predicting these labels
given specific process inputs. Furthermore, we attempt to create a regression model for predicting
thickness measurements. Finally, we employ SHAP and Shapley values to interpret the model
output.

The manuscript is structured as follows. A brief overview of the process and the available
production data is given in Section 5.2. The various machine learning methods implemented
(supervised, unsupervised) are presented in Section 5.3. The results are discussed in Section 5.4,

followed by concluding remarks in Section 5.5.

5.2 Process overview

The studied process involves two coating steps carried out inside a commercial, industrial-scale
Sucotec SCT600TH CVD reactor. To start with, a Ti(C,N) base layer of approximately 9 ym is
deposited under a chemical system consisting of TiCl;—CH3CN—H,—N,—CO at a temperature of
900°C and a pressure of 100 mbar [70], [71] on cemented carbide cutting tool inserts, shown in
Fig. 5.1a. TiCly is used as the Ti source and CH3CN is used as the source of C and N. The
second step involves the deposition of an alumina layer under specific conditions: T=1005°C and
p=80 mbar, from a mixture of gas reactants that includes AlCI3~CO—HCI-Hy—H>S. This step
takes around 3 hours to complete [1]. For a more detailed review of the a-Al,O3 coating step, the
interested reader is referred to previous work [32].

The CVD reactor consists of 40-50 perforated disks, stacked one on top of the other. The
inserts to be coated are placed on each disk. For illustrative purposes, a schematic of three such

disks is shown in Fig. 5.1b. Specially designed perforations in the cylindrical feeding tube, which is
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placed in the center of the reactor, ensure the uniform distribution of gas reactants over and around
the inserts: the perforations are placed antipodally and there is a 60° angle difference between the
axis connecting the inlets at each disk level. The feeding tube rotates at a fixed rotational speed
of 2 RPM, something that also ensures the uniform distribution of the reactants over and around
the inserts. Signs of deposition can be observed on all surfaces within the reactor, be it inserts,

disks, or walls.

Figure 5.1: (a) Examples of the coated cutting tool inserts. (b) A 3D representation of a 3-disk
part of the reactor. The inserts are placed on each of these disks. In red: inlet perforations on the
rotating inlet tube. In blue: outlet perforations for each disk. The perforations and the rotation
of the inlet tube allow for the even flow of the gas reactants inside the reactor. The deposition
can take place in everywhere within the reactor (disks, inserts, walls etc.). (c) Streamlines for a
snapshot of a 2D time-dependent CFD model for a 7-disk part of the reactor [32]. The wide white
rectangular areas represent the disks, while the smaller white areas of various shapes represent the
inserts.

It is worth noting that each insert has a dedicated disk design which ultimately suggests that

the interior geometry of the CVD reactor changes every time that it is set up.

The desired process outcome is uniform coating thickness distribution for the same insert and
also uniform mean thickness across all production runs, all reactors, and all production sites, as
this ensures consistent product life (quality) [74]. In practice, the desired uniformity is not always
achieved, and therefore a systematic way of identifying the influential aspects of coating uniformity

becomes necessa ry.
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5.2.1 Available data

After each production run, thickness measurements are taken at three positions on five disks of
interest, schematically shown in a representative geometry in Fig. 5.2. The thickness of the Ti(C,N)
and a-Al;O3 coating layers is measured using the Calotest method [197]. In this method, a small
spherical cavity is created on the coated inserts by using a rotating ball with a known geometry,
producing a tapered cross section of the film. When observed under an optical microscope, this
allows the measurement of the thickness of both layers. These measurements have been used
in previous work, both for the development of a CFD model of the process [32], and for the
implementation of ML approaches for the prediction of coating thickness [36].

Coating thickness is a vital measure of product quality for CVD applications. The long-term
experience of the practitioners led to the selection of these 15 measurements for testing the
quality of each production run. It should be noted that in case additional quality-related data (i.e.
roughness of the coating) become available, they can be easily incorporated into the framework
presented in this paper, in conjunction with thickness.

Additionally, the available dataset contains information about a) the process input parameters
and b) the reactor geometry and setup. Some examples of these features include, but are not

limited to:

e The components of the reactor setup that determine the overall interior geometry, i.e. the

sequence according to which the disk/inserts are stacked to form the overall reactor.
e The surface area of the inserts on each disk.

e The production “recipe”’, a feature that encodes several process parameters and steps. We
should note that there can be several versions of one recipe. There are a total of four
base recipes present in the dataset with five versions for each (marked V21, V20, and older

variants). This makes up a total of 20 recipes.
e The serial number of the reactor used for the production run.

An important contribution of this work emerged in the context of data exploration and pre-

processing. It became necessary to engineer additional features based on our intuition (subject
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Figure 5.2: A 2D representation of the CVD reactor. The inlet of the reactants is found on the left
side, and the outlet is located on the right side. The gray area represents the domain where the gas
reactants flow. The white areas represent the stacked disks and the inserts that are coated. Circled
in red, we highlight the 15 locations where inserts are most commonly measured (Rp: locations
closest to the reactor’s inlet, Ry/5: locations around the middle of the disk radius, R: locations
closest to the reactor's outlet). These thickness measurements can be used for several tasks, such
as the development of CFD or ML approaches for the prediction of the process outcome. The
arrows indicate the gas reactant inlets and outlets.

88



5.2. Process overview

matter expertise) regarding the existing inputs. These engineered features include the total surface
area per reactor, the standard deviation of the surface area within the reactor, and the difference
between the nominal and actual surface area within the reactor. The nominal surface area is the
surface area considered by the production recipe and does not always coincide with the actual
surface area. For more information on the available data, its type and its characteristics, the
interested reader is referred to Table 5.1 and to previous work by Papavasileiou et al. [36]. A
comparison of our approach with systematic methods for feature combinations, such as polynomial

combination or even symbolic regression, is underway and outside the scope of this work.

Table 5.1: Available data for each production run. Asterisks denote inputs deemed potentially
important by empirical knowledge.

Feature Origin
Thickness - 15 disks of interest ~ Raw data
Number of inserts per disk Raw data
Surface area of inserts per disk Raw data
Disk setup sequence Raw data
Insert geometry per disk Raw data
*Production “recipe” Raw data
Reactor used Raw data
Year of production Raw data
*Total surface area of inserts :

L Engineered

inside the reactor
*Nominal “recipe” surface area Engineered

- actual surface area|
*Surface area standard deviation Engineered

The availability of data on the outcome of the process in the form of thickness measurements
(mentioned in this section and visually presented in Fig. 5.2), along with information on the
reactor setup, motivates the use of several machine learning methods. Following the data cleanup
and feature engineering steps briefly presented in Fig. 5.3, the data can be easily used for the
implementation of a plethora of ML methods. A detailed overview of the methods implemented

is presented in Section 5.3.
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Figure 5.3: A flowchart indicating the steps leading to the clustering part of the analysis. First,
the raw production data are extracted. Then, the observations with missing values are disregarded
and typographical errors in the entries are corrected. In step 3, the data are divided in inputs and
outputs. This step also includes the engineering of new potentially useful features by using the
existing ones. Subsequently, the production runs are clustered based solely on the outputs (15
thickness measurements). Finally, we attempt to correlate the resulting clusters to differences in
the process inputs.

5.3 Machine learning methods

5.3.1 Unsupervised learning

Unsupervised learning algorithms take unlabeled data as inputs to discover interesting patterns
in the data (e.g. association rule analysis) or try to create subgroups - or clusters - of similar
observations within the dataset [82]. Dimensionality reduction techniques such as the widely used
Principal Component Analysis (PCA), autoencoders [224], and diffusion maps [220], [221] also fall
under unsupervised learning, as they provide a reduced data representation without requiring the
corresponding response. The clustering and dimensionality reduction techniques implemented are

briefly discussed in the following sections.
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Clustering

Clustering algorithms are based on the concept of dissimilarity (or similarity) between observations,
which determines their grouping. Typically, these algorithms use a similarity matrix, where pair-
wise similarities between observations are represented. For quantitative variables, the commonly
employed metric is the Euclidean distance, while alternative distance metrics can also be used [80],

[82].

Clustering algorithms are categorized into various categories. Partitional approaches, such as
the k-means algorithm, involve assigning observations to clusters based on distances to centroids
iteratively, requiring an a priori choice of the number of clusters and sensitive to initial centroid
positions [83]. Density-based algorithms, such as OPTICS and DBSCAN, identify clusters by
considering areas of high density separated by low-density regions. Certain algorithm parameters,
such as the minimum points that form a cluster and the minimum distance between the core
points require specification [84]-[86]. Hierarchical clustering methods link data points according to
criteria, progressively creating clusters until a single cluster is achieved in the case of agglomerative
clustering, or progressively splitting clusters starting until each observation is its own cluster in the
case of divisive clustering. The results depend on the distance metric and the linkage criteria

selected [87], [88]. Additional methods include model-based and spectral methods [225], [226].

Here, we focus on agglomerative hierarchical clustering, implementing a Ward linkage criterion
for merging the clusters. This is an established variance minimization approach [227] that works by
minimizing the sum of squared differences within all clusters. Agglomerative hierarchical clustering
is selected because it provides insight on how the data merges depending on the number of clusters
chosen. This information is readily available in the form of a dendrogram, such as the one presented

in Fig. 5.4a.

For this specific problem, the 15 available thickness measurements of 603 production runs
are used as inputs (cf. Section 5.2.1). The clustering results are then interpreted based on the
characteristics of the resulting clusters. Our goal is to identify production runs that are similar to

each other and to try to uncover the discerning features of these clusters.
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5.3.2 Supervised learning

Supervised learning algorithms, unlike unsupervised ones, require labeled data, associating features
(x;) with responses (y;). Supervised learning tasks include regression for continuous variables and
classification for binary or ordinal responses [81].

The methods evaluated for this work include: (a) linear methods: for regression, lasso [89], and
ridge [90] regression, and logistic regression for classification tasks. (b) Support vector machines
(SVMs) [91] that can be categorized as linear or nonlinear methods based on the kernel used
for classification tasks. (c) Tree-based methods: involving classification and regression trees [92]
and their ensemble counterparts such as random forests [93], gradient-boosted trees [94], extra
trees [95], and XGBoost [34], which combine numerous trees to enhance performance [96]. (d)
Artificial neural networks (ANN), whose diverse architectures [97] can provide valuable options for
both classification and regression tasks.

In this work, logistic regression, random forests, SVM, extra trees, gradient-boosted trees,
XGBoost, and ANNs are implemented for supervised learning tasks. However, only the methods

that demonstrate the best performance for our dataset are presented in Section 5.4.

5.3.3 Shapley values

Shapley values, originally introduced by Shapley [212] and proposed as a tool to analyze machine
learning models in [37], [228] assess the average contribution of each feature's value to predictions,
providing an understanding of how alterations to a variable might influence the ultimate model
output. The fundamental idea of Shapley value-based explanations in machine learning is to fairly
distribute credit for a model’s output among its input features, using principles from cooperative
game theory. To bring machine learning models into a game theory context, each of the inputs
of the model can be considered a player that either joins or does not join the game. Joining the
game means that the input value is known, while not joining the game means that the input value
is unknown. Shapley values have an additive nature. In the context of explaining machine learning
models, this means that the SHAP values for all input features will always total the difference
between the baseline (expected) model output and the actual model output for the prediction

being explained.
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In the context of this work, a SHAP (SHapley Additive exPlanations) analysis is conducted on

the proposed regression models (cf. Sections 5.3.2 and 5.4.5) using the shap Python library.

5.4 Results
5.4.1 Clustering

As mentioned in Section 5.3.1, the agglomerative hierarchical clustering algorithm with a Ward
linkage criterion is implemented for clustering the 603 production runs.

The clustering algorithm utilizes the 15 thickness measurements for each of the 603 production
runs, forming a 603 x 15 matrix. Clusters are then created solely based on the process outputs.
Subsequently, the distinctive features are identified by analyzing the process inputs for each pro-
duction run.

The hierarchical clustering algorithm generates a dendrogram that illustrates cluster levels,
member counts, and dissimilarities. The clusters are depicted as branches of a tree, culminating
in the “trunk”, representing the final cluster (by agglomerating smaller ones). In our case, the
resulting dendrogram is shown in Fig. 5.4a. By selecting a dissimilarity threshold, we can discern
one, two, three, or more clusters. In Fig. 5.4a, the three clusters are colored purple, red, and
green. A higher dissimilarity threshold merges the red and green clusters into a single blue cluster
(as shown in Fig. 5.4a). The resulting clusters are visualized in a reduced three-dimensional space
(through projection on three principal components) in Fig. 5.4b.

As mentioned above, the thickness and its uniformity throughout production runs is a very
effective process performance indicator and product quality metric. Thus, production runs with a
higher average thickness and a lower standard deviation can be considered superior to those with
a lower average thickness and higher standard deviation. We observe that the thickness within
the clusters follows a normal distribution, and therefore we can calculate the first and second
statistical moments (that is, the mean (pmick), and standard deviation (o) and visualize the
thickness distributions as shown in Fig. 5.5. These distributions and their qualitative significance
for the process are the basis for the following sections, where we first try to identify parameters

that potentially cause these qualitative differences (cf. Section 5.4.2) and then try to exploit them
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Figure 5.4: (a) Resulting dendrogram of the clusters output by the implemented agglomerative
hierarchical clustering algorithm using a Ward linkage criterion. The three main clusters of interest
are colored purple, red, and green. We note that by selecting a slightly higher dissimilarity threshold,
the red and green clusters can be merged and viewed as a larger cluster (shown in blue). (b) The
three resulting clusters, visualized in a reduced 3D space. The three clusters appear to be well-
formed. PCA was used for finding the 3D reduced space.

to make predictions for future production runs in Sections 5.4.3 and 5.4.4.

5.4.2 Critical input identification

In this section, the focus shifts to the process inputs whose variation is critical for each cluster.

We propose three different ways for assessing the relative importance of process inputs.

1. Intuition-based approach: By finding characteristics that are predominantly different in each

cluster, we can assess their importance on the process outcome (cf. Section 5.4.2).

2. Supervised learning approach: Classification algorithms are trained using the cluster labels
of the clustering step as outputs and various inputs: some process inputs lead to higher
accuracy, which is an indication of their importance. Conversely, less important inputs have

an adverse effect on the accuracy of the classifier (cf. Section 5.4.3).
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Figure 5.5: Thickness distribution in the case of: a) 2 clusters and b) 3 clusters. High average
thickness and low standard deviation is a measure of process efficiency and product quality. The
production runs in the “purple” cluster demonstrate superior quality characteristics.

3. Shapley value approach: The importance of input features for classification or regression can

be assessed using Shapley values (cf. Section 5.4.5).

Combining clustering and subject matter expertise

When two clusters are considered (Fig. 5.5a), cluster 0 demonstrates superior characteristics, with
the highest average thickness and the lowest standard deviation (Table 5.2). Further examination
reveals that cluster 0 is characterized by production runs predominantly using recipe version V21,
while cluster 1 comprises runs using version V20 and older versions, indicating recipe version as

the main distinguishing feature.

Table 5.2: Characteristics of each cluster in the case of two clusters. The recipe version used for
production is the discerning feature of the two clusters.

Cluster  pwmick (MM)  Oemick (kM) Predominant recipe versions
0 16.35 1.355 V21
1 15.08 1.578 V20 & older
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When three clusters (Fig. 5.5b), are identified by the clustering algorithm, cluster 0 exhibits
superior characteristics, with the highest average thickness and the lowest standard deviation
(Table 5.3). In particular, cluster 0 comprises production runs using recipe version V21, and is
practically the same as cluster 0 in the two-cluster case mentioned in the previous paragraph.
Clusters 1 and 2 predominantly use V20 and older versions and are the result of the splitting of
cluster 1 identified in the two-cluster case. This cluster splitting, in essence, means that even
among production runs using recipe version V20 and older, there are certain cases where favorable
quality characteristics are achieved. This raises the question: which is the critical input that led

to this difference in quality?

Further assessment drew our attention to an engineered feature, the absolute value of the
difference between the nominal and actual total surface area to be coated. The nominal surface
area is the predetermined production setting, specified for increments of 1m?. It is selected to be
as close as possible to the actual total surface area of the to-be-coated inserts within the reactor.
In practice, this nominal surface area rarely matches the actual value of the total surface area and
this discrepancy is evident when comparing the distributions between clusters 1 and 2, as shown in
Fig. 5.6; On average, for the members of cluster 2, the difference between the nominal and actual
total surface area is greater than 0.5m?, while in cluster 1 it is less than 0.5m?. This analysis
suggests that when the value of this difference is less than 0.5m?2, the qualitative characteristics
of the products are superior, thus leading to a clear and cost-free improvement suggestion: define

preset production parameters for increments of 0.5m? (instead of 1m?) of the total surface area.

Table 5.3: Characteristics of three clusters: Discerning features include the recipe version used for
production and the absolute difference between nominal and actual surface area.

|[Nominal recipe surface area

Cluster i m) O m) Predominant recipe versions
Pnick (Hm) - Tiac (um) P - actual surface area| (cm?)

0 16.35 1.354 V21 4892
1 15.53 1.386 V20 & older 4628
2 14.32 1.588 V20 & older 5526
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Figure 5.6: Distributions of [Nominal recipe surface area - actual surface area| for clusters 1 (in

green) and 2 (in red). Cluster 2 includes relatively more observations with values larger than 5000
cm? when compared with cluster 1.

5.4.3 Classification

We train a classifier to predict cluster labels that resulted from the clustering analysis, using
as inputs the dominant features identified in the previous section (clustering). This is useful in
practice to predict the overall quality characteristics of the production run, as these cluster labels

correspond to distinct thickness distributions.

The results for a binary (two-cluster case) and a multi-label classification (three-cluster case)
task are presented. For these tasks, we divide the 603 observations into a training set and a test
set using an 80/20 ratio.

Initially, classification models take as input the two important features identified through clus-
tering. However, these are not the only discernible differences between clusters; other features,
such as the year of production, the reactor used, and the standard deviation of the surface area in
the reactor (i.e., the variation of the insert surface area of each disk inside the reactor), also have

marked differences between clusters. Therefore, these inputs are also considered when training the

classifier.

The initial step involves training a random forest classification model (n_estimators=1000,
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max_depth=6) to predict whether a production run belongs to cluster 0 or 1 in Fig. 5.5a, treating
it as a binary classification problem. The classifier, as shown in the confusion matrices in Figs. 5.7a
and 5.7b, accurately distinguishes between clusters 0 and 1 production runs both for the training
(accuracy = 0.954) and test set (accuracy = 0.958). The calculated accuracy, f1 score, precision,
and recall metrics are presented in detail in Table 5.4.

Subsequently, a random forest classification model (n_estimators=1000, max_depth=6) is
developed to determine if a production run belongs to cluster 0, 1, or 2 in Fig. 5.5b, making
it a multi-label classification problem. As demonstrated in the confusion matrices in Figs. 5.7¢c
and 5.7d, the classifier identifies cluster 0 members very accurately, for both training and test
datasets. However, it sometimes struggles to distinguish between members of cluster 1 and cluster
2, often misclassifying them as members of the other cluster. The accuracy of the classifier on the
test set is 0.793. As in the two-cluster case, all metrics are presented in Table 5.4. Since this is
not a binary classification problem, the f1 score, precision and recall metrics are macro-averaged
[229].

Table 5.4: Classification metrics for the two-cluster and three-cluster cases. The metrics for the
three-cluster case have been macro-averaged.

Accuracy  fl Precision Recall
2-cluster case
Training Set 0.968 0.958 0.954 0.962
Test Set 0.967 0.958 0.958 0.958
3-cluster case (macro-averaged metrics)
Training Set 0.840 0.848 0.844 0.852
Test Set 0.793 0792  0.795 0.790

5.4.4 Regression

In the present work, regression is used as a tool that allows for the prediction of the average
coating thickness for each production run, using fewer measurements than the 15 currently used.
Specifically, we use the features identified through clustering and five thickness measurements (the
closest to the reactor's inlet (Rg)) as inputs. This leads to accurate prediction of the mean coating

thickness (average of Ry, and R) for both training (R? = 0.914) and the test set (R? = 0.722)
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Figure 5.7: Confusion matrices for (a),(c) the training set and (b),(d) the test set of the two-cluster
and three-cluster classification cases, respectively.

(cf. Fig. 5.8). This method proves valuable for streamlined post-production quality control as it

allows for precise quality assessment with only one third of the previously required measurements.

5.4.5 Shapley value analysis

The most influential features that affect the predicted average coating thickness are identified by

computing the SHAP values for the developed regression model. To create a measure of “global”

feature importance, we calculate the mean absolute SHAP values for each input. These values are
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shown in Fig. 5.9b. The five thickness measurements provided along with the year of production
emerge as the most crucial features. Of the five thickness measurements provided, the lowest
contribution comes from the measurement on the first disk from the top of the reactor. They are
followed by the four remaining features, i.e., recipe, difference between the nominal and actual
substrate surface area within the reactor (surf area diff), standard deviation of the surface area
(surface area std) and the reactor used for production. These four features demonstrate a similar

contribution to the model’s predictions.

5.5 Conclusions

This study introduces a data-driven approach for uncovering patterns and influencing process inputs
in an industrial Chemical Vapor Deposition (CVD) process, addressing challenges associated with
process complexity and dataset characteristics.

Our analysis relies on subject matter expertise, combined with supervised and unsupervised

learning methods. The main premise is that the performance of data-driven algorithms, given
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Figure 5.9: (a) 2D representation of the reactor, indicating the positions of the thickness mea-
surements used as inputs for the regression problem. (b) Calculated mean absolute SHAP values
for each of the inputs to the regression model. The five provided thickness measurements along
with the year of production appear to be the dominant features, followed by surf area diff, the
reactor and the recipe used for production and the standard deviation of surface area within the
reactor.

a specific data set, is influenced by and indicative of the importance of the inputs used during
training. This is supported here by intuition about critical process inputs and some knowledge

about the important quality characteristics.

We use unsupervised learning to obtain meaningful data labels that correspond to groups of
production runs of similar quality. We then use these labels, in the context of supervised learning,
to predict the outcome for a new set of inputs, thus providing a cost-efficient shortcut for quality
control.

The importance of features in investigated using Shapley values, which corroborates both sub-
ject matter expertise and also the conclusions drawn from the accuracy of classification methods.
The results of this study offer opportunities to streamline post-production quality control and

contribute to the ongoing refinement of the manufacturing process.
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It is worth noting that this framework is adaptable to other processes, contingent on data
availability. Even in cases with limited data, this approach unveils potential process-determining
inputs, corroborating the insights of process experts in a purely data-driven manner.

Furthermore, consistent and improved data collection in the coming years will not only aid in
validating and enhancing the developed predictive models, but also contribute to the continuous

optimization of the overall process.
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A machine learning framework for
analyzing the impact of reaction
center configurations on astrocyte

metabolic states
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A machine learning framework for analyzing the impact of reaction center configurations on
astrocyte metabolic states

Abstract

This work introduces a machine learning framework that allows the investigation of the influ-
ence of reaction centers on the metabolic state of astrocyte cells. The proposed ML framework
takes advantage of spatial astrocyte metabolic data stemming from numerical simulations for
different reaction center configurations and allows for the following: (i) Discovery of cell groups
of similar metabolic states and investigation of the reaction center configuration within each
group. This approach allows for an analysis of the importance of the specific location of the
reaction centers for a potentially critical metabolic state of the cell. (ii) Qualitative prediction
of the energetic state of the cell (based on [ATP]: [ADP]) and quantitative prediction of the
metabolic state of the cell by predicting the spatial average concentration of the metabolites
or the complete spatial metabolic profile within the cell. (iii) Finally, the framework allows for
the post hoc analysis of the developed quantitative predictive models using a SHAP approach
to investigate the influence of the reaction center positions for further support of the insights
drawn in steps (i)-(iii). Following the implementation of the framework, we observe that a
uniform mitochondrial distribution within the cell results in the most robust energetic cell
state. On the contrary, realizations of polarized mitochondrial distributions exhibit the worst
overall cell health. Furthermore, we can make accurate qualitative predictions regarding cell
health (accuracy = 0.9515 , recall = 0.9753) and satisfactory predictions for the spatial aver-
age concentration and spatial concentration profiles of most of the metabolites involved. The
techniques proposed in this study are not restricted to the dataset used. They can be easily

used in other datasets that include findings from various metabolic computational models.

6.1 Introduction

Understanding the complex interplay of molecules within cells is crucial for advancing fields such
as medicine, biotechnology, and pharmacology. In the intricate landscape of cellular biology,
metabolism is a complex series of interconnected pathways occurring in living cells. It operates
through specific biochemical reactions and produces energy and other essential biochemical com-

pounds. Energy in the form of ATP is the fuel of all living systems, and metabolism is designed
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to optimally regulate it. Metabolism is thus a prerequisite for the optimal function and survival of
cells and, in extension, for the survival of organisms. An example of particularly important cells
are astrocytes (cf. Fig. 6.1), the most abundant glial cells and crucial energetic supporters of
the energy-intensive brain [230]. In general, the study of cellular metabolism has evolved signifi-
cantly, with researchers now employing a multidisciplinary approach that integrates both biological
experiments and computational modeling. Given the intricate nature of metabolism, employing

mathematical models is essential for a comprehensive investigation [231].

Metabolic processes are not uniformly distributed throughout the cell. Subcellular compart-
ments such as mitochondria, endoplasmic reticulum, and cytoplasm exhibit distinct metabolic
activities. In astrocytes, the enzymatic distribution of hexokinase seems to be fundamental for
glucose uptake [232], while the location of mitochondria appears to be crucial for calcium activ-
ity [233]. Thus, the current research direction aims to include spatial cellular information [234]
to spatially quantify metabolites and their dynamics over time. Recent advances in analytical
techniques have contributed to obtaining a snapshot of the cellular status. For example, spa-
tial metabolomics [235] aims to identify and analyze metabolites directly within their -usually-
geometrically complex spatial surroundings. Imaging and image analysis techniques have been
proven to be useful in investigating spatio-temporal intracellular ATP and cellular morphological
changes [236], [237]. In addition, these spatially resolved data contribute to a more comprehensive

understanding of how metabolic processes are compartmentalized and coordinated within the cell.

Complementing the analytical techniques mentioned above, computational approaches have
become a valuable tool for unraveling the complexity of cellular metabolism. Classical metabolic
modeling approaches range from stoichiometric models [238] to kinetic simulations [239]-[241].
These models are capable of predicting and simulating the dynamics of the metabolic system. In
addition, they can help guide experimental design and generate hypotheses. The main limitation
of these models is the assumption of a well-mixed cellular environment, which neglects the spatial
heterogeneity present in the biological systems that we discussed above. Several recent computa-
tional models have proposed spatially resolved kinetic models and agent-based simulations [242],
[243] exploring how metabolite concentrations can vary in spatial dimension in different cellular

morphologies of varying geometric complexity. This modeling approach is particularly valuable as
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it approaches biological reality and is well suited for the study of phenomena such as organelle
crosstalk and the impact of spatial constraints on metabolic fluxes [40], [244]-[247]. Biological
snapshots of metabolite concentrations obtained from in vivo and in vitro cells offer valuable
glimpses into cellular states [248] and can be used as starting points for spatially resolved models.
Although these data can characterize the cellular state at the moment they are collected, they are
unable to capture the dynamic nature of cellular metabolism. Moreover, there is a limit to the data
that can be collected from a cellular sample: staining a cell to gain information on one metabolite
can prevent the investigation of another. Lastly, the lack of comprehensive data on the temporal
aspects of metabolic processes hinders the ability of computational models to accurately simulate
and predict the real-time behavior of cellular metabolism. Bridging these gaps in both experimental
snapshots and computational modeling data is essential for understanding the intricate dynamics

that govern cellular metabolic networks.

Addressing the limitations in our current understanding of cellular metabolism, machine learning
techniques [249], [250] could be applied to bridge the gap between static biological snapshots
and dynamic models. For this purpose, we implement a machine learning approach on a dataset
consisting of the results of a spatially resolved computational metabolic model of an astrocyte [40].
This computational model provides us with spatial information of the metabolites in a simplified
two-dimensional rectangular cellular domain, given different configurations of reaction centers in

the form of coordinates on the x- and y-axes.

The proposed approach aims to discover reaction centers (inputs) that are potentially critical
to the metabolic state of the cell (output). To this end, the following steps are necessary: a)
Discovery of groups of similar metabolic profiles, using only the output of the computational
model (spatial metabolic concentrations at steady state). This is achieved through the use of
clustering algorithms. By analyzing the inputs corresponding to the resulting clusters, we can draw
insights into the relationship between the reaction center position and the metabolic state of the
cell. b) Qualitative prediction of cell health status using only the coordinates of the reaction centers
as input. This is made possible through the use of classification algorithms. The input-output
relationship insights derived from the previous step are expected to greatly influence the predictions

of the classification algorithm used. c) Quantitative prediction of the metabolic state of the cell
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using the coordinates of the reaction centers as inputs. This is enabled by the use of regression
algorithms, in our case, Artificial Neural Networks (ANNs). We are able to predict both the average
concentration of the metabolites in the domain and the spatial profile of the metabolites in the
domain at steady state. Last but not least, d) since the explainability of the developed “black-box”
ANN models is very important for our application, a SHAP analysis [37] can be performed for
the developed regression models. The obtained values can shed more light on the effect of each
input (reaction center coordinates) on model output (spatial metabolite concentration) and further
indicate whether the insights derived in the previous steps are meaningful.

These techniques have the potential to decode the complexity inherent in cellular metabolism,
offering a means to generate more comprehensive and accurate representations of metabolic pro-
cesses. Hopefully, they can also be applied to spatially resolved computational models of higher

metabolic or geometric complexity, which are predominant when it comes to cells.

6.2 Methods

6.2.1 Computational Model

Biochemical Reaction Model

We consider a spatially resolved metabolic model, proposed in [39], [40], which prioritizes the
arrangement of the reaction sites in the domain and the geometries of the domain at the expense
of a more elementary chemical model.

In its simplicity, the model captures the main fundamental metabolic energy pathways in five
chemical reactions: glycolysis, mitochondrial activity, and lactate dehydrogenase. Glycolysis is
described by two chemical reactions named HXK and PYRK. The first one accounts for the en-
zymes: hexokinase, phosphoglucose isomerase, phosphofructose kinase, and fructose bisphosphate
aldolase. HXK consumes glucose (GLC) and adenosine triphosphate (ATP) producing adenosine
diphosphate (ADP) and glyceraldehyde (GLY). The second reaction, PYRK, uses the product
of the first reaction to produce ATP and pyruvate PYR. Now, PYR can either be used by the
lactate dehydrogenase enzyme (LDH) to produce lactate (LAC) or enter the mitochondria and

contribute to mitochondrial activity. Mitochondrial activity accounts for the Krebs cycle and oxida-
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Figure 6.1: (a) A sketch illustrating the crucial location of an astrocyte between a neuron and a
blood vessel, relevant for their metabolism. (b) A concise overview of the metabolic model used to
describe the main pathways in astrocytes. (c) An example of [ATP] concentration profile obtained
solving the metabolic model in a 3D human astrocyte obtained from a confocal microscopy image.
(d) Dynamic evolution of the six considered metabolites averaged inside the 2D domain for three
sampled realizations, one for each distribution of reaction centers. (e) Scatter plot of the spatial
average [ATP] : [ADP] vs spatial average [LAC] for all available cell configurations at steady
state - Clear distinctions between uniform configurations and polarized and polarized log-normal
configurations.

tive phosphorylation, producing ATP. Finally, the energetic production within the cell is balanced

by considering the cellular activity that consumes ATP.

The chemical model is then described as follows:
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HXK := GLC 42 ATP — 2 ADP + 2GLY (6.1)
PYRK := GLY + 2 ADP — 2 ATP + PYR (6.2)
LDH := PYR — LAC (6.3)
Mito := PYR + 28 ADP — 28 ATP (6.4)
act := ATP — ADP, (6.5)

An overview of the model is presented in Fig. 6.1.

Mathematical model

Mathematically, the model is then translated into a reaction-diffusion system [251] through a
set of partial differential equations (PDE), which allows us to a) solve the metabolic model in a
geometrical bounded domain; b) account for the molecules’ diffusivity; c) distribute spatially the

chemical reaction sites inside the domain.

In a bounded 2-dimensional domain, ), we consider a fixed number, M € R™, of reaction
sites for chemical reactions: HXK, PYRK, LDH and Mito, which are spatially distributed using
a spatial reaction rate density, ;. Spatial reaction rates are defined as the product between
classical reaction rates K;, and Gaussian functions defined with a center {x;}M, € Q and variance
0; € RT. The cellular activity, act, operates homogeneously in the domain ) with reaction rate

Kact-

The reaction-diffusion system is defined as follows:
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Digrc V?[GLC] — Krxk [GLC][ATP]? + iq
UATP] = Diaqp) VZ[ATP] — 2K51x [GLC][ATP]? + 2K pyr [ADP]2[GLY]

+28KMito [PYR][ADP]® — Kt [ATP]

A22PL = Diapp) V2[ADP] + 2K1xi [GLC] [ATP]? — 2Kpyr [ADPJ?[GLY]

+Kact[ATP] — 28Kpito [PYR][ADP]?® (66)
ALY — Dy V2[GLY] + 2K [GLC][ATP] — Kpyr[ADPJ2[GLY]
IR = DipygVZ[PYR] + Kpyri [ADP]2[GLY] — K1 pn[PYR]

—Kmito[PYR][ADP]?®

% = D[LAC] VZ [LAC] =+ ICLDH [PYR] — YLAC [LAC]
where:

e The source of GLC is described through a function Ji, : Q x [0, T] — R:

xeR if (x,t) € Oin X [0, T], where O, C QO
]in(x, t) = . (6.7)

0 otherwise.

e The degradation of LAC, which is proportional to the amount of LAC in region Qg C O
is described by the function ypac : Q x [0, T] - R

neR if (x,t) € Qour X [0,T], where Qo CQ
nLac(x, t) = , (6.8)
0 otherwise.

For more details on the mathematical model and parameters, we refer the readers to [40].

6.2.2 Data acquisition

Data were acquired by numerically solving the reaction-diffusion system that arose from the

metabolic model presented in the previous section. We used standard finite element methods
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[252] using the FENICS software [253]. First, the reaction-diffusion system was converted to its
corresponding weak form. Then, we spatially discretize the two-dimensional rectangular domain
by finite elements using the package mshr (number of finite elements 25298 and number of dofs
13207). We temporally discretize the time derivative using a backward Euler scheme with a time
step of 0.15 (s) [254]. The solution of the weak form is defined on the space of piecewise

Lagrangian finite elements of degree one.

We consider a 2-dimensional rectangular domain ([0,1] x [0, L], with width | = 4 pm and
length L = 140 pm) where we place 10 reaction sites per chemical reaction with a spatial extent
of ¢ = 1.0 pm. The input/inlet of the system is the entrance of GLC in the bottom left corner,
while the output/outlet is the outflux of LAC in the opposite corner. To investigate the crucial
role of spatial arrangement in cellular domains, we consider three possible distributions of the
reaction sites: uniform, polarized, and polarized log-normal. The uniform distribution considers
the 10 reaction sites per chemical reaction to be sorted from uniform distributions. The polarized
consider an extreme reaction site configuration supposing that glycolysis is located at the bottom
of the rectangular domain close to the GLC influx while the 10 reaction sites for LDH are sorted at
the top of the rectangular domain. The main difference between polarized and polarized log-normal
lies in the distribution of the mitochondria. In the first case, six reaction sites for Mito are placed
where glycolysis is located, and four reaction sites are at the top of a part of the rectangular domain,
to ensure that some mitochondria can be found throughout the domain. The polarized log-normal
setting uses a log-normal distribution to sort the 10 Mito reaction sites, causing mitochondria
to be located mainly in the lower part of the domain and almost none co-located with LDH.

Examples of the three distributions can be seen in Figure 6.2.

The dataset used in this study is composed of 1,428 uniform, 1,336 polarized, and 1,314
polarized log-normal realizations. The information for each realization are the x and y location of
the reaction center sites, the average concentration of the six metabolites in the domain at steady
state and the spatial concentration at each grid point inside the discretized domain for the six

metabolites at the steady state.
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6.2.3 Unsupervised learning

Unsupervised learning algorithms process unlabeled data to discover interesting patterns within the
data. For instance, they might perform an association rule analysis or create clusters of similar
observations in a dataset [82]. Furthermore, dimensionality reduction techniques such as the
widely used Principal Component Analysis (PCA), autoencoders [224], and diffusion maps [220],
[221] —also fall under the umbrella of unsupervised learning since they provide a reduced data
representation without considering the corresponding response variable (or label) of the data.

In the upcoming sections, we will provide a concise overview of the clustering and dimensionality

reduction techniques that have been implemented.

Clustering

For our clustering study, which aims to discover groups of cells that demonstrate similar metabolic
profiles, we implement an agglomerative hierarchical clustering algorithm [87], [88]. Agglomerative
clustering starts with a number of clusters equal to the number of observations and progressively
merges clusters until a single cluster remains. The way these clusters merge is based on the
dissimilarity metric and the linkage criterion used. Here, the Euclidean distance is implemented
as the dissimilarity metric and a Ward linkage criterion [227]. This criterion minimizes the total
variance within the cluster by merging the clusters in a way that leads to the smallest increase
in variance after each merge. Specifically, it aims to minimize the sum of squared differences
within all clusters. The scikit-learn AgglomerativeClustering module is used for this task [255].
Agglomerative hierarchical clustering is selected because it provides insight on how the data merges
as the number of clusters changes. This information is readily available in the form of a dendrogram,

such as the one presented in Fig. 6.3a.

Dimensionality reduction

Each row spatial concentration data matrix realization has 79,242 columns, one for each of the six
metabolite concentration values at each of the 13,207 grid points. Reducing the dimensionality of
the spatial data will be very beneficial when manipulating the data and when training predictive

models later on. For this task, Principal Component Analysis (PCA) is implemented [112]. PCA
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linearly transforms the original data onto a new coordinate system where PCs can be easily iden-
tified. The amount of PC retained for subsequent analysis depends on user criteria. In this work,
we aim to retain 99.9% of the variance and to keep the reconstruction Root Mean Square Error

(RMSE) below 0.03. The scikit-learn PCA module is used for this task [255].

6.2.4 Supervised learning

Supervised learning algorithms, in contrast to unsupervised ones, are based on labeled data. In
labeled data, the features (x;) are associated with the corresponding responses (1;). These models
use available data to make predictions for future observations. Supervised learning encompasses
regression for continuous variables and classification for binary or ordinal responses [81].

In the present work, the coordinates of the 40 metabolite reaction centers can be considered
as inputs, with the response variables being the spatial metabolite concentrations or the spatial
average metabolite concentrations. Based on these continuous variables, binary variables can also
be engineered (healthy vs. non-energized cell) for classification purposes.

The methods evaluated for this work include: (a) linear methods: for regression, lasso [89], and
ridge [90] regression, and logistic regression for classification tasks. (b) Support vector machines
(SVMs) [91] that can be categorized as linear or nonlinear methods based on the kernel used for
classification tasks. (c) Tree-based methods: involving classification and regression trees [92] and
their ensemble counterparts such as random forests [93], gradient-boosted trees [94], extra trees
[95], and XGBoost [34], which combine numerous trees to improve performance [96]. (d) Artificial
neural networks (ANN), whose diverse architectures [97] can provide valuable options for both
classification and regression tasks.

In the present work, logistic regression, random forests, SVM, extra trees, gradient-boosted
trees, XGBoost, and ANNs are implemented for supervised learning tasks. However, results are
presented only for methods that demonstrate the best performance for our dataset, namely logistic
regression for classification tasks and ANNSs for regression tasks. An overview of the supervised
learning approaches used in this work is presented in Fig. 6.2c.

Logistic regression is implemented for the classification of cells as healthy or non-energized,

based solely on the coordinates of the metabolite reaction centers. The scikit-learn LogisticRe-
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gressionCV module is used for this task [255]. This module also has the added benefit of including
cross-validation and hyperparameter optimization in the training process, thus reducing overfitting.

In terms of the regression tasks of this work, Artificial Neural Networks (ANNs) are implemented
for the prediction of spatial concentration profiles and the spatial average concentrations of the
metabolites. The TensorFlow [98] and Keras Python libraries [99] are used for the development
and training of the ANN models in this work.

As the performance of ANNSs is significantly influenced by their architecture, optimizing the
architecture during the training process is crucial. To achieve this, a Bayesian optimization ap-
proach, based on the work of [130] is employed for hyperparameter tuning in each ANN model.
For this task, we use the keras-tuner Python library [256]. Similarly to other optimization meth-
ods, Bayesian optimization aims to find optimal values for bounded parameters (hyperparameters
in our case), denoted X1, X2, ..., X, € X that minimize an objective function f(X) (equivalent to
the loss function of the neural network). In Bayesian optimization, a probabilistic model is con-
structed for f(X), which allows us to identify the best points in X for evaluating f(X) in subsequent

steps. Unlike local gradient-based methods, this approach considers all available information about

f(X) [130].

6.2.5 SHAP analysis

Shapley values, originally introduced by Shapley [212] in the field of game theory and proposed as a
tool to analyze machine learning models in [37], intricately assess the average contribution of each
feature's value to predictions. In this way, they provide an understanding of how perturbations
of a variable can influence the output of the model, thus shedding light on models that have
traditionally been considered “black boxes".

In this work, a SHAP analysis is performed on 3 of the ANN regression models developed
for the prediction of spatial average metabolite concentrations. The final goal is to discover not
only the inputs have the most influence on model output, but also the type of influence they
have. However, the results of this SHAP analysis only provide information about the relationships
between inputs and model outputs. These results shed light on previously “opaque” ML methods

but should not be used to make causal claims about input/output relationships.
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6.3 Results

As we are aiming to discover different groups of similar realizations, our analysis starts with
the clustering of our realizations, focusing only on the outputs (concentration profiles). After
clustering, we will explore the characteristics of each cluster and analyze the differences in the
inputs corresponding to each cluster with the goal of finding differences between the clusters.
These different inputs could be potentially important for the differences in the clusters and in
extension to the differences in the outputs (concentration profiles) on which the clustering was
based. As we will show, this initial clustering approach can enable a lot of opportunities for further

data-driven approaches.
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Figure 6.2: (a) Samples of the three different types of reaction center configurations: uniform,
lognormal and polarized lognormal. Glucose enters the cellular domain from the origin of the axis,
while lactate exits from the opposite vertex. (b) Distributions of three metabolites of interests
for each type of reaction center configuration. (c) The three implemented supervised learning
approaches. (d) Out of sample parity plots for the spatial average prediction of [LAC] and [ATP].
The concentration units are mM. (e) Out of sample confusion matrix for the prediction of the
energetic state of the cell (non-energized vs healthy).
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6.3.1 Clustering

An agglomerative hierarchical clustering algorithm is used to discover observations with similar
characteristics solely based on the results (outputs) of the computational model. The results
consist of the concentration values of the six metabolites at the 13,207 grid points used for the
computational simulations. A subset of the entire dataset is used for clustering. Subsequently, the
input to the clustering algorithm is a matrix of dimension 1,767x79,242.

Following clustering, we attempt to analyze the resulting realization groups. We investigate
a) the mean spatial averages of the six different metabolite concentrations, b) the mean [ATP] :
[ADP], and c) the distribution of the y coordinates of mitochondria in each cluster. The mean
spatial averages of all six metabolites provide a great overview of the metabolic state of the cell.
The mean [ATP] : [ADP] is an excellent indicator of cell health, as cells that demonstrate a ratio
lower than 1 can be considered non-energized and in a state of deterioration, while cells with a ratio
greater than 1 are considered adequately energized and thus healthy. Finally, by investigating the
distribution of the y-axis coordinates of the mitochondria for each cluster, we can uncover possible
relationships between the metabolic state of the cell and the locations of the mitochondria. Our

analysis reveals the following.

1. Based on the results of Table 6.1, it appears that cluster 1 contains healthier cells, given
the fact that the average [ATP] : [ADP] is the highest of the 5 clusters with a value of
1.910. It also appears that cluster 1 has the lowest values for [GLY] and [PYR], suggesting
that this is the most efficient cluster that consumes these two substrates to maximize ATP
production. Cluster 3 contains fewer energized cells, given its average [ATP] : [ADP] of
0.435. It should also be noted that cluster 1 contains only realizations with a uniform reaction

site distribution. This is also evident in Fig. 6.4d.

2. When comparing the clusters containing realizations of non-uniform reaction center distribu-
tions, we can see that for clusters 2 and 3 the mitochondria are located close to the cell inlet
(and subsequently closer to the glucose entering the cell), whereas the cells for clusters 0
and 4, the mitochondria have better coverage of the spatial domain. This result is visualized

in the histogram of Fig. 6.4d. This is a hint that mitochondrial distribution is a great driver
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of cell health, as clusters 2 and 3 demonstrate a lower average [ATP] : [ADP] (0.852 and
0.435, respectively) when compared to clusters 0 and 4 (1.610 and 1.388, respectively).

3. Last, solely based on the concentration values the algorithm can discern the three main
groups (uniform, polarized and polarized log-normal) of cells available in the dataset. Cluster
1 contains solely uniform realizations, clusters 0 and 4 contain mostly polarized and some
polarized log-normal realizations. Clusters 2 and 3 contain almost exclusively polarized log-

normal realizations.
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Figure 6.3: (a) Agglomerative hierarchical clustering dendrogram. (b) Top 40 logistic regression
coefficients for the non-energized/ healthy cell classification problem. The y-axis coordinates of the
mitochondria appear to be highly influential for the model. Essentially, the dominating coefficient
values of the mitochondrial y-axis coordinates show that a better spread of mitochondria within
the cell -and not close to the cell inlet- increases the probability of a healthy cell.

Following clustering, our objective is to take advantage of the information extracted in this
step to create predictive models that allow for the prediction of the energy state of the cell, as well

as for the prediction of the spatial metabolite concentrations inside the cell.
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Table 6.1: Mean spatial metabolite concentration averages (in mM) in each cluster. Lowest and
highest values for each metabolite are presented in bold.

Cluster [GLC] [ATP] [ADP] [GLY] [PYR] [LAC] [ATPJ:[ADP]

0 0.110 1.961 1.239 0.101 1.260 1.143 1.610
1 0.201 2.097 1.103 0.079 0.150 1.935 1.910
2 0.098  1.457 1.742 0.159 1261 1.179 0.852
3 0.104 0.962 2.238 0.130 1.286 1.221 0.435
4 0.104  1.849 1.351 0.121 1.256 1.148 1.388

6.3.2 Discerning between Healthy and Non-energized cells

As already established, an important indicator of cell health is the spatial average of [ATP] : [ADP]
(ATP-to-ADP ratio) within the cell. When [ATP] : [ADP] > 1, the cell is considered adequately
energized and healthy, whereas when [ATP] : [ADP] < 1 the cell is considered non-energized and
unhealthy.

Given this threshold and the calculated spatial averages of [ATP] : [ADP] for all available
samples, we can convert the continuous output (ratio) to binary (health), where health = 0 when
ratio < 1, and health = 1 when ratio > 1. Using the available reaction center coordinates for each
observation as inputs and the binary variable health as output, we can train a logistic regression
model that can predict the health status of a cell, given only the coordinates of the reaction centers.

The inputs consist of the coordinates (x,y) for 40 different reaction centers (10 of each of
the four types), totaling 80 inputs. Before training the logistic regression model, the inputs are
centered to 0 and scaled by their standard deviation.

Of the 4,078 observations, 85% is used as a training set and 15% as a test set. Checking the
performance of the model on both sets can allow us to avoid overfitting and make sure that the
resulting model generalizes well in unseen data.

The resulting logistic regression model can discern between healthy and non-energized cells
with high accuracy for both the training (0.9412) and the test set (0.9515). Further classification
metrics, such as the f1 score, recall, and precision, are presented in Table 6.2. The confusion
matrices for the performance of the logistic regression algorithm in both the training and the test
set are presented in Fig. 6.2e.

Given the nature of the logistic regression algorithm, we can use the resulting coefficients to
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try to make sense of the connection between the input variables and the output (cell health state).
Observing Fig. 6.3b, it is evident that the y coordinates of the mitochondria highly influence the

model output.

Table 6.2: Binary classification metrics. The trained logistic regression model shows great perfor-
mance for both the test and training sets.

Training Set  Test Set

f1 0.9638 0.9701
Accuracy 0.9412 0.9515
Precision 0.9561 0.9650
Recall 0.9716 0.9753

6.3.3 Predicting spatial metabolite concentrations

Although the prediction of cell health status is already quite valuable, it is often preferable to
have models that can predict a continuous variable rather than a binary variable. Similarly to the
classification problem, the coordinates of the 40 reaction centers can be used to predict contin-
uous variables. These continuous values can be either the spatial averages of the six metabolite
concentrations or, taking it one step further, the spatial profiles of the metabolite concentrations.

As in the binary classification problem, 85% of the 4,078 observations are used as a training

set and 15% as a test set.

Spatial averages

ANN models are used for the prediction of spatial averages of the six metabolite concentrations.
A different model is trained for each metabolite concentration. To ensure optimal performance,

we include hyperparameter optimization in model training. The hyperparameters tested are:
1. The number of network layers (Njayers). Varied between 2 and 5.
2. The number of neurons per layer (Npeurons). Varied between 2 and 100.

3. The activation function used in all of the layers. The functions tested are: a) sigmoid, b)
tanh, and c) Relu. It should be noted that the output layer always has a single neuron using

a linear activation function.
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Figure 6.4: (a) Actual and predicted spatial metabolite concentration (in mM) profiles for randomly
sampled, out of sample reaction center configurations. (b) Absolute relative error (%) between the
actual and predicted metabolite concentrations presented in (a). (c) SHAP values for the spatial
average [LAC]| and [ADP] predictive models. For the [LAC] model, the location of the LDH
reaction centers is the most important for the output of the model, followed by the locations of
HXK and PYRK reaction centers. For the [ATP] model, the location of the mitochondrial reaction
centers is the most important for the model output. (d) Histogram showing the distribution of
the mitochondrial reaction center for each discovered cluster. On the top right, histograms of
the [ATP] : [ADP] for each cluster. Clusters 0, 1 and 4 appear to have more observations with
[ATP] : [ADP]>1, whereas clusters 2 and 3 appear to be more problematic. When investigating
the y coordinates of the mitochondria for each cluster, it is clear that for clusters 2 and 3, the
mitochondria are located primarily close to the input of the cell (ymito = 0), while for clusters 0,
1 and 4 the mitochondria have better coverage of the domain.
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50% of the test set is used as a validation set during training to avoid overfitting through early
stopping. This means that if the validation error does not drop after a certain number of training
epochs (10 in our case), the training stops.

The resulting neural networks, along with their performance in the test set, are presented in
Table 6.3. The models developed for the prediction of [PYR] and [LAC] demonstrate excellent
performance with a R?> = 0.998 and R? = 0.993 respectively. Satisfactory performance is observed
for the predictions of [ADP] (R? = 0.914), [ATP] (R? = 0.894) and [GLC] (R? = 0.862). The

developed [GLY] regression model shows a rather modest performance (R* = 0.595).

Table 6.3: Optimal hyperparameters and spatial average metabolite concentration regression test
set performance metrics for the developed ANN models. Results for [PYR] and [LAC] are excellent.
For [GLC], [ATP] and [ADP], the results are satisfactory. However, the [GLY]| model demonstrates
a slightly worse performance.

Niayers  Nneurons  activation R?2 MAPE MAE MSE

[GLC] 5 82 sigmoid  0.862 9.21% 1.33E-02 3.77E-04
ATP 4 67 sigmoid  0.894 4.63% 7.78E-02 1.14E-02
[ g

[ADP] 4 77 sigmoid  0.914 5.11% 6.94E-02 9.24E-03
[GLY] 3 97 sigmoid  0.595 33.89% 3.58E-02 3.66E-03
[PYR] 5 97 sigmoid  0.998  3.62% 1.64E-02 4.59E-04
LAC 5 97 sigmoid  0.993 1.49% 2.12E-02 8.60E-04
[ g

Spatial profiles

Given the satisfactory performance of the predictive models for spatial average concentrations, we
can go a step further, trying to predict the spatial concentration profiles of the six metabolites
in the cells given only the positions of the 40 reaction centers. Given the nature of the output
vector (length of 79,242 - six metabolite concentration values for each of the 13,207 grid points),
it is clear that dimensionality reduction methods can be useful for reducing the dimensions of the
output space.

A model is developed for the spatial concentration profile of each metabolite. This translates
to an output vector of length 13,207 (1 concentration for each grid point) for each developed
model.

Principal component analysis (PCA) is used for this task, following the centering of the output
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data using their mean and their scaling using their standard deviation. The number of principal
components retained for each output is chosen based on the reconstruction root mean squared
error (RMSE). The number of principal components retained is chosen so that the reconstruction
root mean squared error (RMSE) is lower than 0.03. This leads to a different number of principal
components (PCs) for each metabolite. Specifically, 17 PCs are retained for the spatial [ATP] and
spatial [ADP] models, 5 PCs are kept for the spatial [PYR] and [LAC] models, 9 PCs are retained
for the spatial [GLY] model, and finally, 11 PCs are used for the spatial [GLC] model.

As with the spatial average concentration predictive models, we include hyperparameter opti-

mization when training the spatial profile models. The hyperparameters tested are:

1. The number of network layers (Njayers). Varied between 2 and 5.
2. The number of neurons per layer (Npeurons). Varied between 10 and 650.

3. The activation function used in all of the layers. The functions tested are a) sigmoid, b)
tanh, c) relu, and d) elu. Note that the output layer size is equal to the number of PCs

retained for the model. Furthermore, output neurons always use a linear activation function.

Once again, 50% of the test set is used as a validation set and early stopping is used during
training to avoid overfitting.

The resulting neural networks, along with their performance in the test set, are presented in
Table 6.4. The models developed for the spatial concentration prediction of [PYR] and [LAC]
demonstrate excellent performance with R? = 0.956 and R? = 0.972 respectively. Reasonable
performance is observed for the predictions of [ADP] (R? = 0.698), [ATP] (R? = 0.700) and
[GLC] R? = 0.775). The developed [GLY] regression model shows unsatisfactory performance
(R? = 0.474). It is evident that the performance of the models follows the trend of the models
trained for simpler spatial average concentration predictions.

Some examples of predicted spatial metabolite concentrations are presented in Fig. 6.4, along
with the actual metabolite concentration profile and the absolute relative reconstruction error (%).
It is evident that, while most of the trends are retained, there are certain zones of higher relative

errors for certain models. However, it should be noted that for certain metabolite concentrations,
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Table 6.4: Optimal hyperparameters and spatial profile metabolite concentration regression test
set performance metrics for the developed ANN models. Performance for [PYR] and [LAC] are
excellent. For [GLC], [ATP] and [ADP], the results are reasonable. However, the [GLY]| model
demonstrates a non-satisfactory performance.

Niayers  Nneurons ~ activation R?2 MAPE MAE MSE

[GLC] 2 285 sigmoid  0.775 9.24% 1.34E-02 6.16E-04
[ATP] 3 500 sigmoid  0.700 12.93% 1.69E-01 6.31E-02
[ADP] 3 650 sigmoid  0.698 13.10% 1.69E-01 6.24E-02
[GLY] 5 340 sigmoid  0.474 64.43% 4.40E-02 5.78E-03
[PYR] 5 10 el 0.956 9.33% 2.42E-02 1.47E-03
[LAC] 5 10 el 0972 1.40% 2.17E-02 1.43E-03

the actual values can be quite small, which means that small absolute errors in the prediction can

lead to very high relative errors.

6.3.4 Effect of inputs on model output (SHAP analysis)

Following the training of individual models for both spatial metabolite concentrations and spatial
average concentrations, we would like to investigate the influence of model inputs on model outputs.

For this task, we will focus on three spatial average concentration models. Specifically, we will
perform a SHAP analysis for the spatial average predictive models of [LAC], [ATP], and [ADP)].
The results of the SHAP analysis for [LAC] and [ATP] are presented in Fig. 6.4c.

For the [LAC] model, it appears that the positions of the LDH reaction centers on the y-axis
are the most influential variables for the model output. Furthermore, it appears that when the
reaction centers are located high on the y-axis, the model output is negatively influenced.

For the [ATP| model, it appears that the positions of the mitochondria on the y-axis are
the most influential variables for the model output. Furthermore, we can observe that when the
mitochondria are located close to the inlet of the cell, the predicted spatial average [ATP] is
negatively affected.

For the [ADP| model, it appears that the positions of the mitochondria on the y-axis are
the most influential variables for the model output. Furthermore, we can observe that when the
mitochondria are located close to the outlet of the cell, the predicted spatial average [ADP] is

negatively affected.
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The results of the SHAP analysis for the [ATP] and [ADP] models appear to be mirror images
of each other. It looks like when the mitochondria are located close to the cell inlet, the average
[ATP] of the cell is negatively affected, while the average [ADP] is positively affected. However,
when the mitochondria are located close to the cell outlet, the average [ATP] appears to be
positively affected, while the average [ADP] is negatively affected.

It is worth pointing out that although SHAP analysis can shed light on the relationship between

model inputs and outputs, it cannot be used to make causal claims regarding these relationships.

6.4 Conclusions & Perspectives

Several machine learning methods are implemented to gain insight into metabolism within astrocyte
cells by exploring a dataset consisting of static metabolic images of astrocytes generated from a
reaction-diffusion computational model solved in a two-dimensional geometrical domain.

Hierarchical clustering of the dataset, based solely on the outputs of the computational ex-
periments, results in 5 groups. Each group has its distinctive metabolic characteristics. The
discovered clusters reveal differences not only regarding the average metabolite concentrations of
their members but also on the side of the inputs (reaction centers). By analyzing the reaction
center configurations corresponding to each cluster, we observe that a uniform mitochondrial dis-
tribution results in the best overall cell health. On the contrary, realizations of polarized log-normal
mitochondrial distributions exhibit the worst overall cell health. It is also shown that a high con-
centration of mitochondria close to the cell inlet is not beneficial to the cell, especially compared
to a better coverage of the cell. Our results are in agreement with the discussion presented on the
original model [40].

Following the encouraging results of the clustering analysis, we developed a classification model
able to accurately predict cell health (healthy/non-energized) taking only the reaction center po-
sitions as input. The nature of the logistic regression model used also allows us to confirm the
importance of mitochondrial distribution on cell health.

Moving one step forward and past the binary nature of healthy/non-energized output, we
constructed artificial neural network (ANN) regression models that can satisfactorily predict the

average spatial concentration of the six metabolites of interest. We show that it is also possible to
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recreate the spatial profiles for the six metabolites with satisfactory accuracy. For both regression
problems, the LAC and PYR predictive models perform best, followed by those for ATP, ADP,
and GLC. The GLY models exhibit only a modest performance. In general, regression models
that predict spatial average metabolite concentrations perform better than their counterparts that
predict the full spatial profiles.

Following regression, SHAP analysis allows us to see into the black boxes that are ANNs,
highlighting the importance and influence of different reaction center positions on model output.
Specifically, the positions of the lactate dehydrogenase (LDH) reaction centers greatly influence
the spatial average concentration of [LAC], and the positions of the mitochondria influence the
spatial average concentration of [ATP] and [ADP], consistent with the formulation of the metabolic
model.

Based on these encouraging results, several future steps are possible. The first step would
involve applying a similar approach to more complex computational domains that better represent
actual astrocytic cells. Going further, we could use existing experimental images that provide
mitochondrial location data [257] as initial inputs for our approach, with a suitable choice of com-
putational model. Extending this methodology to different or more detailed metabolic pathways
could also provide insights into a broader range of species that influence metabolism.

While in this paper we have considered a simplified two-dimensional domain and a basic
metabolic model, our machine learning approach can serve as a bridge linking the spatial in-
formation from in vitro or in vivo images with computational models, thereby gaining deeper
insights into metabolic dynamics and cellular states. It should be highlighted that the methods
used in this work are not limited to the dataset presented; they can be readily applied to other

datasets derived from various metabolic computational models.
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Chapter 7

Conclusions

7.1 Summary and conclusions

By proposing a blend of equation-based and data-driven methods, this thesis attempts to answer

the core question presented in Section 1.1:

“How should we approach processes that lack the necessary data to be optimally
modeled by data-driven methods, but are also too complex to be optimally modeled

solely by equation based methods?”

In Chapter 3 we presented an efficient chemistry-enhanced CFD model of the CVD process
used for the a-Al,O3 coating of cemented carbide cutting tools. This CFD model was the first
step taken towards answering the above question, as it allowed for insights of a previously black-
box process, while also allowing for the accurate and prediction of alumina thickness. The model
also allowed for several computational experiments, which were conducted with the aim of better
understanding the rate-determining mechanism of the alumina deposition. The results suggest
that the process is probably in the reaction-limited regime.

In Chapter 4, we presented a comparison between the CFD model developed in Chapter 3
and data-driven approaches that can also provide accurate predictions of alumina thickness. The
developed ensemble tree-based models -the best performer being an XGBoost model- were trained
using only production data, and were able to demonstrate better performance than their CFD

counterparts (MAPE of 4.4% vs. 6.0%). Furthermore, a reduction of around 99.99% was observed

127



Conclusions

when comparing the time required for thickness predictions for an entire reactor using the XGBoost
model with the time required for prediction via CFD. However, the benefits of the data-driven model
were not without drawbacks, as the regression models developed are oblivious to the phenomena
occurring within the reactor and therefore unable to provide relative insights. This chapter was
finalized with the implementation of another data-driven approach, namely GappyPOD [35], which
allowed for the reconstruction of the full state-space of the CFD simulations using only limited
data with satisfactory accuracy.

These two chapters aimed to propose a way of modeling the process in a way that allows for
quick predictions (in applications where it is required, e.g. optimization) while retaining the option
of investigating the physical and chemical complexity of the process. This way, we believe that

question 1 presented in Section 1.2:

“Using this CVD process as a case study, what is the best computational workflow

that allows us to make accurate predictions in a resource-efficient and low-cost way?"

was adequately answered.

With Chapter 5, we proposed a combination of unsupervised and supervised learning techniques
for the analysis of production data and the discovery of potential critical process parameters. By
performing agglomerative hierarchical clustering on the process outputs (thickness measurements),
we were able to identify clusters of production runs with evident qualitative differences. This
was of course due to the qualitative significance that the process outputs (coating thickness
measurements) have for the process. Using the first two statistical moments of thickness (mean
and standard deviation) of the discovered clusters, we discovered significant differences between
the groups. By analyzing the inputs corresponding to each group, we were able to identify inputs
that differed significantly between the groups and can be potentially critical to the process. The
two prominent ones were the production “recipe” and a feature that demonstrates the difference
between the actual substrate surface area within the reactor and the substrate surface area for which
the process operators planned. These inputs were then used, alongside others, to train models
(random forests for classification and XGBoost for regression) for qualitative and quantitative

predictions of future production runs. A SHAP analysis was also performed to quantify the effect
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of each input on the output of the model. The acquired insights were corroborated by subject
matter expertise.

Subsequently, in Chapter 6 we demonstrated the applicability of the framework proposed in
Chapter 5 on an entirely different dataset. Using a dataset consisting of computational experiments
for astrocyte cell metabolism and through the use of agglomerative hierarchical clustering on the
metabolite concentrations output by the computational model, we were able to identify reaction
centers (mitochondria) whose locations are potentially critical for the health (or energy state)
of the cell. Leveraging this insight, we developed models (logistic regression for classification,
ANNs for regression) capable of qualitatively predicting cell health and quantitatively predicting
cell metabolite concentrations. As in the previous chapter, a SHAP analysis was performed, which,
along with subject matter expertise, corroborated our findings.

With these two chapters, we aimed to propose a way of identifying potentially critical parame-
ters using solely data, and to further test the framework on an entirely different application. Thus,

we believe that question 2 posed in Section 1.2:
“Can we determine critical process parameters from the available production data?”

was also adequately answered.
Thus, by answering these two research questions, we believe that the proposed approach can
effectively tackle processes that "are too complex to be optimally modeled by equation-based

methods, but also lack the necessary data to be optimally modeled by data-driven methods."

7.2 Future directions

There is plethora of avenues for the evolution and expansion of the work and the approach presented
in the work. Although the results for the two different applications are encouraging, it would be
worthwhile to try to apply the approach in more real-world applications, with the aim of testing its
versatility even more rigorously. This could be quite straightforward to achieve given the several
examples of complex processes with limited available data, both in industrial and research settings.

Focusing entirely on the data-driven part, it would be interesting to explore how the approach

can be tweaked to handle spatially resolved data from dynamical systems and whether it will be
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able to extract similar insights for the process given such data. Furthermore, for the predictive part
of the approach for spatially resolved dynamical systems, the implementation of more sophisticated
ANN-based models, such as latent neural operators [258] or attention-based architectures (which
are capable of capturing long-range dependencies in sequential data), such as the Perceiver 10
[259] can be investigated.

As causal insights are vital for our understanding of every process, the implementation of dou-
ble/debiased machine learning (DML) approaches [260] alongside other causal inference methods
[261] within the framework would be of great interest and importance.

We believe that this work can assist in modeling complex processes characterized by limited
data and sincerely hope that the proposed approach will prove valuable in a range of distinct

applications.
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