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Abstract

Despite the leaps in quality and quantity of industrial data along with the increased interest in

data-driven approaches brought about by Industry 4.0, there are still processes that are too complex

to be accurately modeled via traditional first-principles methods, yet lack the necessary data for a

purely data-driven approach.

Taking an industrial chemical vapor deposition (CVD) process as a key example, this work

proposes a hybrid computational workflow involving equation-based (computational fluid dynamics

- CFD) and machine learning (ML) methods for the modeling, investigation, and prediction of

such complex processes. First, this work aims to provide a way of predicting process outcomes

while also allowing the exploration of the process and obtaining insights regarding the several

interplaying physical and chemical phenomena that govern it. The proposed CFD model can help

with the exploration of the process and the prediction of the quality quantity of interest, which

is the thickness of the deposited alumina. It can also shed light on the governing phenomena of

the process. However, it comes with a high computational cost, which makes its use in everyday

applications prohibitive. To overcome this, a purely data-driven predictive model which offers

improved predictive and computational performance is proposed. A way of combining process data

and the results of the CFD model is also proposed, via the GappyPOD method.

Subsequently, this work proposes a purely data-driven approach to identify potential critical

process parameters based on a blend of supervised and unsupervised learning approaches. Following

an initial clustering of the available process outcome data and the analysis of the resulting clusters,

the differences between them can be matched to the differences in their respective process inputs,

allowing the identification of potential key parameters. These parameters allow for deeper insight

into the process and can then be used to develop data-driven models for the qualitative and

quantitative prediction of the process. The versatility of this approach is then highlighted by its

application to a vastly different process; the metabolism of astrocyte cells.
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Υβριδικές υπολογιστικές προσεγγίσεις βασισμένες σε εξισώσεις

και οδηγούμενες από δεδομένα για την ανάλυση και πρόβλεψη

βιομηχανικών διεργασιών απόθεσης

Εκτενής Ελληνική περίληψη

Η παρούσα διατριβή πραγματεύεται την συνδυασμένη μοντελοποίηση διεργασιών με με-

θόδους βασισμένες σε εξισώσεις και με μεθόδους βασισμένες στα δεδομένα. Ο απώτερος

σκοπός είναι η πρόταση υπολογιστικών προσεγγίσεων που θα επιτρέπουν την ανάλυση και

την καλύτερη κατανόηση των διεργασιών, αλλά και την έγκυρη πρόβλεψή των εκβάσεών τους

εντός των πιθανών χρονικών (π.χ. ανάγκη πρόβλεψης εντός συγκεκριμένου χρονικού περιθω-

ρίου) και υλικών περιορισμών (π.χ. χαμηλή διαθέσιμη υπολογιστική ισχύς) που υπάρχουν σε

βιομηχανικές συνθήκες.

Στην μηχανική αλλά και σε άλλους τομείς της επιστήμης, οι φυσικές και χημικές διερ-

γασίες που λαμβάνουν χώρα εντός ενός συστήματος μπορούν να είναι καθοριστικές για την

έκβασή τους. Μπορούν να κάνουν την διαφορά μεταξύ προϊόντων που είναι εντός και εκτός

προδιαγραφών και, σε βιολογικά συστήματα, την διαφορά μεταξύ της συντήρησης της ζωτικής

λειτουργίας και της κρίσιμης αστοχίας του συστήματος. Η δυνατότητα ανάλυσης, κατανόησης

και πρόβλεψης αυτών των διεργασιών είναι άκρως σημαντική. Η μαθηματική μοντελοποίηση

έχει αυτές τις δυνατότητες.

Μέσω της μαθηματικής μοντελοποίησης, γίνεται προσπάθεια εύρεσης συσχετίσεων μετα-

ξύ των «εισόδων» του συστήματος και του αποτελέσματος της διεργασίας. Για την επιτυχή

μοντελοποίηση του οποιουδήποτε συστήματος, η ύπαρξη δεδομένων είναι απαραίτητη. Χωρίς

δεδομένα σχετικά με την διεργασία, τις παραμέτρους της και τις ποσότητες ενδιαφέροντος

(Quantities of Interest – QoIs), οποιοδήποτε προτεινόμενο μοντέλο δεν θα μπορούσε ένα επικυ-

ρωθεί και η αντιστοιχία του με την πραγματικότητα θα παρέμενε απροσδιόριστη. Η ποσότητα

των δεδομένων είναι εξαιρετικά σημαντική και το πλήθος των διαθέσιμων δεδομένων είναι κα-

θοριστικό για την επιλογή του τρόπου μοντελοποίησης.

Η «παραδοσιακή» ανάλυση βασίζεται σε εξισώσεις που διατυπώνουν θεμελιώδεις αρχές.

Συνήθως πρόκειται για αρχές διατήρησης ορμής, μάζας και ενέργειας στα συνεχή μέσα όποτε

οι εξισώσεις που προκύπτουν είναι μερικές διαφορικές , δηλαδή διαφορικές εξισώσεις με μερικές

παραγώγους ως προς χρόνο και χώρο. Αυτή η προσέγγιση μπορεί να ονομαστεί προσέγγιση

βασισμένη στις εξισώσεις, προσέγγιση βασισμένη στην φυσική, ή προσέγγιση οδηγούμενη από

υποθέσεις. ΄Οπως προδίδει και το όνομά τους, αυτές οι προσεγγίσεις ξεκινούν από κάποιες

υποθέσεις για την διεργασία, βασισμένες σε ήδη υπάρχουσα γνώση (θεμελιώδεις αρχές). Οι
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υποθέσεις αυτές ακολουθούνται από πειράματα, το αποτέλεσμα των οποίων τις υποστηρίζει ή

τις καταρρίπτει, αναδεικνύοντας έτσι την ανάγκη για διαφορετικές υποθέσεις. Οι απαιτήσεις

αυτών των μεθόδων για δεδομένα ειναι χαμηλές.

Εξίσου χρήσιμες για την ανάλυση διεργασιών αποτελούν οι προσεγγίσεις που είναι βασι-

σμένες αμιγώς στα δεδομένα. Αυτές οι προσεγγίσεις δεν χρειάζονται κάποια προκαθορισμένη

υπόθεση σχετικά με την διεργασία, καθώς δύνανται να εφαρμοστούν απευθείας και έχουν την

δυνατότητα εύρεσης συσχετίσεων και μοτίβων εντός του διαθέσιμου συνόλου δεδομένων. Με

βάση τα μοτίβα και τις συσχετίσεις που ανιχνεύονται μέσω της χρήσης μεθόδων αμιγώς οδη-

γούμενων από δεδομένα, είναι δυνατόν να σχηματιστούν νέες υποθέσεις για την διεργασία.

Να σημειωθεί πως όσο πιο «πλούσιο» το σύνολο των διαθέσιμων δεδομένων, τόσο πιο εύκολη

η εύρεση ουσιαστικών μοτίβων και συσχετίσεων.

Τι συμβαίνει όμως όταν τα διαθέσιμα δεδομένα δεν είναι ούτε λιγοστά ούτε άφθονα; Τότε,

εμφανίζεται η ανάγκη για υβριδικές προσεγγίσεις, οι οποίες προσπαθούν να συνδυάσουν τα

προτερήματα των δύο προαναφερθέντων προσεγγίσεων. Η «ενδιάμεση» αυτή ποσότητα δεδο-

μένων χαρακτηρίζει πολλές εφαρμογές μηχανικής, οπού η έγκυρη και έγκαιρη μοντελοποίηση

είναι αναγκαία, ανεξαρτήτως της πιθανώς υψηλής πολυπλοκότητας των διεργασιών. Η μο-

ντελοποίηση τέτοιου τύπου διεργασιών, συνήθως απαιτεί αρκετές παραδοχές. Επίσης τα δια-

θέσιμα δεδομένα είναι «πραγματικά» και συνεπώς ενδέχεται να περιέχουν λάθη, ανακρίβειες

και ελλείψεις, κάτι που ενδέχεται να δημιουργήσει προβλήματα στην μοντελοποίηση.

Μια τέτοια διεργασία είναι και η Χημική Απόθεση από Ατμό (ΧΑΑ). Στην παρούσα δια-

τριβή, η βιομηχανική απόθεση της πολυστρωματικής επίστρωσης Ti(C,N)/α-Al2O3 πάνω σε

τσιμεντοποιημένο καρβίδιο για την παραγωγή ανθεκτικών κοπτικών εργαλείων χρησιμοποιε-

ίται ως μελέτη περίπτωσης, καθώς αποτελεί μια πολύπλοκη διεργασία που δεν χαρακτηρίζεται

ούτε από παντελή έλλειψη δεδομένων, άλλα ούτε και από αφθονία δεδομένων.

Η ΧΑΑ αποτελεί μια διεργασία κατά την οποία μια επίστρωση αποτίθεται σε ένα θερμό

υπόστρωμα από πρόδρομες ενώσεις που βρίσκονται στην αέρια φάση, μέσω μιας σειράς ομο-

γενών και ετερογενών χημικών αντιδράσεων. Στην διεργασία συνεισφέρει πληθώρα φυσικών

(π.χ. διάχυση, συναγωγή, εκρόφηση) και χημικών φαινομένων και εάν σε όλα αυτά τα φαι-

νόμενα συνυπολογισθεί και ο μεγάλος αριθμός ενδιάμεσων προϊόντων και παραπροϊόντων που

δημιουργούνται κατά την διάρκεια της διεργασίας, η πολυπλοκότητά της γίνεται προφανής.

Οι προσεγγίσεις βασισμένες στις εξισώσεις, και ως επί το πλείστον η υπολογιστική ρευστο-

δυναμική (Computational Fluid Dynamics – CFD) έχουν χρησιμοποιηθεί με επιτυχία στο πα-

ρελθόν για την μοντελοποίησης διεργασιών ΧΑΑ. Ο λόγος πίσω από αυτή την επιλογή είναι η

ικανότητα των μοντέλων υπολογιστικής ρευστοδυναμικής να διατυπώσουν τον τρόπο κατά τον

οποίο τα διάφορα φυσικά και χημικά φαινόμενα που λαμβάνουν ταυτόχρονα χώρα κατά την
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διάρκεια της διεργασίας επηρεάζουν το τελικό αποτέλεσμα. Παρόλα αυτά, η ανάπτυξη ενός

έγκυρου μοντέλου ρευστοδυναμικής για μια διεργασία ΧΑΑ δεν αποτελεί εύκολο έργο. Πολύ

συχνά, οι διάφορες παράμετροι που καθορίζουν τα φυσικά και χημικά φαινόμενα είναι άγνω-

στες και οι τιμές τους πρέπει να βρεθούν μέσω επίπονων διαδικασιών δοκιμής και σφάλματος.

Επίσης, σε ιδιαίτερες περιπτώσεις η γεωμετρία του αντιδραστήρα δύναται να αλλάζει από

μέρα σε μέρα, κάτι που δυσχεραίνει την χρήση ενός μόνο μοντέλου για όλες τις περιπτώσεις.

Τέλος, η ΧΑΑ αποτελεί μια διεργασία εξαιρετικά ευαίσθητη στις συνθήκες ροής, θερμοκρα-

σίας, και πίεσης εντός του αντιδραστήρα. ΄Ετσι, πολύ συχνά, υπάρχει έλλειψη αισθητήρων

εντός του αντιδραστήρα και συνεπώς έλλειψη καίριων δεδομένων για την ανάπτυξη μοντέλων

ακριβείας της διεργασίας.

Παρόλα αυτά, ο ερχομός της τέταρτης βιομηχανικής επανάστασης (Industry 4.0) έχει βοη-

θήσει στην αύξηση των διαθέσιμων δεδομένων στον βιομηχανικό τομέα. Η ποσότητα των

βιομηχανικών δεδομένων, αν και εμφανώς αυξημένη, σε καμία περίπτωση δεν μπορεί να συ-

γκριθεί με την ποσότητα των δεδομένων που είναι διαθέσιμα στα μέσα κοινωνικής δικτύωσης ή

στον χρηματοοικονομικό τομέα. Πέρα από την αύξηση των δεδομένων, η τέταρτη βιομηχανική

επανάσταση έχει συνεισφέρει και στην γενικότερη αύξηση του ενδιαφέροντος για τα δεδομένα

και για τις μεθόδους που είναι αμιγώς βασισμένες σε αυτά. Η αύξηση της ποσότητας δεδο-

μένων αλλά και το μεγαλύτερο ενδιαφέρον για αυτά οδήγησε στην εφαρμογή μεθόδων αμιγώς

βασισμένων στα δεδομένα και για την μελέτη και πρόβλεψη της προαναφερθείσας διεργασίας

ΧΑΑ. Παρόλα αυτά, μιας και η κατανόηση των φυσικών και χημικών φαινόμενων που εμπλέκο-

νται στην διεργασία είναι εξίσου σημαντική, η μοντελοποίηση μέσω μεθόδων οδηγούμενων από

δεδομένα συνοδεύεται από την ανάπτυξη ενός μοντέλου υπολογιστικής ρευστοδυναμικής για

την διεργασία.

Εν τέλει, η διεργασία μοιάζει πολύ περίπλοκη για να μοντελοποιηθεί επαρκώς από κάποιο

μοντέλο υπολογιστικής ρευστοδυναμικής, ενώ το πλήθος των διαθέσιμων δεδομένων δεν ε-

πιτρέπει την βέλτιστη μοντελοποίηση της μέσω μεθόδων αμιγώς βασισμένων στα δεδομένα.

Αυτή η δυσκολία της μοντελοποίησης, σε συνδυασμό με τις ιδιαιτερότητες που χαρακτηρίζουν

τα δεδομένα που προέρχονται από τέτοιου τύπου διεργασίες οδηγεί στο κύριο ερώτημα που

καλείται να απαντήσει η παρούσα διατριβή, το οποίο είναι το πώς πρέπει να προσεγγίζονται

διεργασίες οι οποίες δεν διαθέτουν τα απαραίτητα δεδομένα για να μοντελοποιηθούν βέλτιστα

από μεθόδους αμιγώς βασισμένες στα δεδομένα, άλλα είναι επίσης πολύ υπερβολικά περίπλο-

κες για να μοντελοποιηθούν αποκλειστικά από μεθόδους βασισμένες σε εξισώσεις. Η διατριβή

προσπαθεί να απαντήσει σε αυτό το ερώτημα, απαντώντας σε δύο επιμέρους ερωτήματα:

1. Χρησιμοποιώντας αυτήν την διεργασία ΧΑΑ ως μελέτη περίπτωσης, ποια είναι η κα-
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λύτερη υπολογιστική προσέγγιση που επιτρέπει την ακριβή πρόβλεψη της διεργασίας

κάνοντας αποδοτική χρήση των (χρονικών ή υλικών) πόρων;

2. Με βάση τα διαθέσιμα δεδομένα, μπορούν να προσδιοριστούν πιθανές καίριες παράμε-

τροι της διεργασίας;

Η απάντηση του πρώτου ερωτήματος έρχεται σε δύο μέρη. Το πρώτο μέρος αφορά την απόπει-

ρα μοντελοποίησης της διεργασίας ΧΑΑ της αλούμινας μέσω υπολογιστικής ρευστοδυναμικής,

ενώ το δεύτερο αφορά την μοντελοποίηση της διεργασίας από μεθόδους αμιγώς οδηγούμενες

από δεδομένα, κάτι που συνδυάζεται με την παράλληλη σύγκριση των δύο προσεγγίσεων.

Η μοντελοποίηση της βιομηχανικής κλίμακας απόθεσης της αλούμινας (α-Al2O3) μέσω

υπολογιστικής ρευστοδυναμικής έρχεται με πολλές προκλήσεις, οι οποίες οφείλονται στις ι-

διαιτερότητες του βιομηχανικού αντιδραστήρα, στις απαιτήσεις τις παραγωγής σε συνδυασμό

φυσικά με τις ιδιαιτερότητες της ίδιας της διεργασίας ΧΑΑ.

Ο αντιδραστήρας που χρησιμοποιείται για την διεργασία (Sucotec SCT600TH) χαρακτη-

ρίζεται από μια ιδιαίτερη γεωμετρία, η οποία περιλαμβάνει 40-50 διάτρητους δίσκους που

τοποθετούνται ο ένας πάνω από τον άλλον, γύρω από έναν περιστρεφόμενο σωλήνα ο οπο-

ίος διανέμει τα αέρια αντιδρώντα στον αντιδραστήρα μέσω δύο αντιδιαμετρικών οπών στο

επίπεδο του κάθε δίσκου. Η περιστροφή του σωλήνα προσδίδει στην διεργασία έναν περιοδικό

χαρακτήρα. Με βάση τις απαιτήσεις της παραγωγής, η γεωμετρία του αντιδραστήρα μπορεί

να αλλάξει ακόμα και σε καθημερινή βάση, λόγω των διαφορετικών γεωμετριών υποστρωμάτων

(κοπτικών εργαλείων στην συγκεκριμένη περίπτωση) που χρειάζεται να επικαλυφθούν, αλλά

και επειδή η γεωμετρία και ο τύπος των διάτρητων δίσκων που χρησιμοποιούνται εξαρτώνται

από την γεωμετρία των υποστρωμάτων που επικαλύπτονται.

Πέρα από τις γεωμετρικές και παραγωγικές ιδιαιτερότητες, υπάρχει και το πρόβλημα του

χημικού δικτύου που χρησιμοποιείται για την απόθεση της αλούμινας. Στην παρούσα εφαρμο-

γή, η αλούμινα αποτίθεται από ένα μείγμα αντιδρώντων AlCl3, CO2, HCl, H2, H2S. Η πρόδρομη

ένωση AlCl3 αντιδρά με νερό που παράγεται εντός του αντιδραστήρα μέσω της αντίστροφης

water gas shift αντίδρασης από διοξείδιο του άνθρακα και υδρογόνο. Διάφορα συστήματα α-

ντιδράσεων έχουν προταθεί στην βιβλιογραφία, τα οποία συνδυάζουν έως και 104 αντιδράσεις

μεταξύ 35 ενδιάμεσων προϊόντων. Η χρήση ενός τόσο λεπτομερούς συστήματος αντιδράσεων

σε ένα μοντέλο ρευστοδυναμικής θα οδηγούσε σε μεγάλα υπολογιστικά κόστη τόσο κατά την

ανάπτυξή του (επαναπροσδιορισμός των παραμέτρων των αντιδράσεων), όσο και κατά την

χρήση του (αυξημένα υπολογιστικά κόστη λόγω αύξησης των αγνώστων).

Με βάση τα παραπάνω, μπορεί να γίνει αντιληπτό πώς ένα πολύ λεπτομερές μοντέλο

υπολογιστικής ρευστοδυναμικής για την συγκεκριμένη διεργασία θα περιελάμβανε μια τρισδι-
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(αʹ) (βʹ)

Σχήμα 1: (α΄) Ενδεικτικές γεωμετρίες των προς επίστρωση κοπτικών εργαλείων. (β΄) Τρισ-

διάστατη αναπαράσταση ενός τμήματος του αντιδραστήρα με 3 δίσκους. Τα υποστρώματα

τοποθετούνται σε καθέναν από αυτούς τους δίσκους. Με κόκκινο χρώμα: οπές στον περιστρε-

φόμενο σωλήνα διανομής των αέριων αντιδρώντων. Με μπλε χρώμα: διατρήσεις εξόδου για

κάθε δίσκο. Οι οπές και η περιστροφή του σωλήνα εισόδου επιτρέπουν την ομοιόμορφη ροή

των αντιδρώντων αερίων στο εσωτερικό του αντιδραστήρα. Η απόθεση μπορεί να λάβει χώρα

σε όλες τις επιφάνειες εντός του αντιδραστήρα (δίσκοι, ένθετα, τοιχώματα κ.λπ.).

άστατη γεωμετρία και όλους τους 40-50 δίσκους της διεργασίας. Επίσης, θα ήταν εξαρτώμενο

από τον χρόνο. Επίσης, θα χρησιμοποιούσε ένα λεπτομερές και περίπλοκο σύστημα αντι-

δράσεων. ΄Ολα τα παραπάνω θα οδηγούσαν σε ένα εξαιρετικά ακριβό μοντέλο, καθιστώντας

την χρήση του σε καθημερινή βάση απαγορευτική.

Με σκοπό την υπέρβαση των παραπάνω προβλημάτων που σχετίζονται με το υπολογιστικό

κόστος, προτείνεται ένα δισδιάστατο μοντέλο ρευστοδυναμικής (βλ. Κεφάλαιο 3) το οποίο

λαμβάνει υπόψιν κομμάτια του αντιδραστήρα που αποτελούνται από επτά δίσκους. Επίσης,

το μοντέλο περιλαμβάνει ένα απλουστευμένο σύστημα χημικών αντιδράσεων, κάτι που σε

συνδυασμό με τις γεωμετρικές απλουστεύσεις μειώνει περαιτέρω το απαιτούμενο υπολογιστικό

κόστος. Τέλος, για την προσομοίωση της περιστροφής του σωλήνα παροχής των αντιδρώντων

σε μια δισδιάστατη γεωμετρία, επιλέγονται κατάλληλες περιοδικές οριακές συνθήκες για την

παροχή.

Το προτεινόμενο μοντέλο αρχικά προσαρμόζεται στο πρόβλημα μέσω της προσαρμογής

των κινητικών παραμέτρων των προτεινόμενων χημικών αντιδράσεων, και στην συνέχεια ε-

πικυρώνεται χρησιμοποιώντας τα διαθέσιμα δεδομένα παραγωγής, τα οποία περιλαμβάνουν
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μετρήσεις του πάχους της αλούμινας σε 15 διαφορετικά σημεία του αντιδραστήρα για κάθε

σειρά παραγωγής. Να σημειωθεί πως το πάχος αποτελεί εξαιρετική ένδειξη της ποιότητας

της παραγωγής, μιας και ο στόχος είναι το ομοιόμορφο πάχος απόθεσης για τα υποστρώμα-

τα όλου του αντιδραστήρα. Παρά τον μεγάλο αριθμό παραδοχών και απλουστεύσεων, το

μοντέλο είναι ικανό να δώσει προβλέψεις του πάχους της αλούμινας, με ένα μέσο απόλυτο

ποσοστιαίο σφάλμα της τάξεως του 4%. Πέρα από τις προβλέψεις του πάχους της επίστρω-

σης της αλούμινας, το μοντέλο παρέχει πληροφορίες για το προφίλ της ροής εντός του αντι-

δραστήρα, αλλά και για τις επιμέρους συγκεντρώσεις των διαφόρων αντιδρώντων εντός του

αντιδραστήρα. Μία προσομοίωση για 60 δευτερόλεπτα της διεργασίας (2 περίοδοι – λόγω της

περιστροφής του σωλήνα εισόδου) για ένα κομμάτι 7 δίσκων, απαιτεί περίπου 3 ώρες σε έναν

τυπικό επεξεργαστή. Επιπροσθέτως, το μοντέλο επιτρέπει και υπολογιστικά πειράματα, για

αναλογίες πρόδρομων ενώσεων για τις οποίες δεν υπάρχουν διαθέσιμα δεδομένα. Με βάση

αυτά τα υπολογιστικά πειράματα, λήφθηκαν ενδείξεις για το κινητικό καθεστώς το οποίο κα-

θορίζει την ταχύτητα της απόθεσης, το οποίο φαίνεται να είναι ελεγχόμενο από τις χημικές

αντιδράσεις και όχι από φαινόμενα διάχυσης.

Παρόλη την επιτυχή μοντελοποίηση της διεργασίας μέσω υπολογιστικής ρευστοδυναμικής,

μιας προσέγγισης βασισμένης σε εξισώσεις, το απαιτούμενο υπολογιστικό κόστος για την προ-

σομοίωση ενός ολόκληρου αντιδραστήρα (περίπου 20 ώρες) καθιστά την χρήση του μοντέλου

αδύνατη για καθημερινή χρήση (π.χ. βελτιστοποίηση της αλληλουχίας των δίσκων για την

παραγωγή της ημέρας). Για αυτό το λόγο, εξετάζεται η προοπτική ενός μοντέλου αμιγώς

οδηγούμενου από τα δεδομένα (βλ. Κεφάλαιο 4).

Τα διαθέσιμα δεδομένα παραγωγής, τα οποία περιέχουν πληροφορίες σχετικά με την δι-

άταξη και τις συνθήκες λειτουργίας του αντιδραστήρα, αλλά και σχετικά με το αποτέλεσμα

της διεργασίας (δηλαδή το πάχος της επίστρωσης της αλούμινας), μπορούν να αξιοποιηθούν

για την αμιγώς οδηγούμενη από τα δεδομένα μοντελοποίηση της διεργασίας. Αυτό δύναται να

γίνει μέσω της χρήσης αλγορίθμων μηχανικής μάθησης (Machine Learning - ML) . Οι αλγόριθ-

μοι μηχανικής μάθησης μπορούν να «μαθαίνουν» από τα διαθέσιμα δεδομένα αλλά και να

ανακαλύπτουν μοτίβα. Στην περίπτωση της πρόβλεψης του πάχους της αλούμινας σε κάποια

συγκεκριμένη σειρά παραγωγής, οι προαναφερθείσες λεπτομέρειες διάταξης και λειτουργίας

του αντιδραστήρα μπορούν να χρησιμοποιηθούν σαν μεταβλητές «εισόδου» σε ένα μοντέλο

μηχανικής μάθησης το οποίο έχει μεταβλητή εξόδου το πάχος της αλούμινας σε κάποιον δίσκο

του αντιδραστήρα. Μιας και οι μεταβλητές εξόδου είναι γνωστές, το πρόβλημα αυτό θα λυθεί

με αλγορίθμους που ανήκουν στην κατηγορία της επιτηρούμενης μάθησης.

Φυσικά, τα διαθέσιμα δεδομένα παραγωγής είναι δεδομένα από τον πραγματικό κόσμο.

Συνεπώς, περιέχουν σφάλματα αλλά και παραλήψεις. Επίσης, είναι δεδομένα που περιέχουν
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(αʹ) (βʹ)

(γʹ) (δʹ) (εʹ)

Σχήμα 2: (α΄) Σχετικό σφάλμα για τις προβλέψεις του προτεινόμενου μοντέλου ρευστοδυνα-

μικής για 3 διαφορετικές θέσεις με διαθέσιμα δεδομένα πάχους αλούμινας. Οι προσομοιώσεις

πραγματοποιούνται για τέσσερις διαφορετικές γεωμετρίες 7 δίσκων συνολικά. (β΄) Μέσο α-

πόλυτο ποσοστιαίο σφάλμα (μέσος όρος για τις 3 θέσεις για τις οποίες υπάρχουν διαθέσιμα

δεδομένα) για τις προσομοιώσεις του προτεινόμενου μοντέλου υπολογιστικής ρευστομηχανικής

για τις 4 διαφορετικές γεωμετρίες του αντιδραστήρα. (γ΄) Μέτρο ταχύτητας, (δ΄) συγκέντρωση

της πρόδρομης ένωσης και (ε΄) συγκέντρωση νερού στο εσωτερικό του αντιδραστήρα σε μια

συγκεκριμένη χρονική στιγμή κατά τη διάρκεια της απόθεσης.

πληροφορία με διαφορετικές μορφές (π.χ. ακέραιοι αριθμοί, πραγματικοί αριθμοί αλλά και κε-

ίμενο). ΄Ολη αυτή η πληροφορία πρέπει να μετασχηματιστεί σε μορφή εύκολα διαχειρίσιμη από
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τους αλγορίθμους μηχανικής μάθησης. Επίσης, είναι πολύ σύνηθες να μην χρειάζονται όλες οι

διαθέσιμες μεταβλητές εισόδου για την επίτευξη έγκυρων προβλέψεων. Πολλές φορές, η χρήση

«μη κατατοπιστικών» μεταβλητών εισόδου ενδέχεται να αλλοιώσει την προγνωστική απόδοση

του μοντέλου. Επιπροσθέτως, το μοντέλο που θα χρησιμοποιηθεί και η πολυπλοκότητά του

παίζουν επίσης σημαντικό ρόλο στην εγκυρότητα των προβλέψεων.

΄Ετσι, μετά το «καθάρισμα» των δεδομένων και την επιλογή κατάλληλων μετασχηματισμών

για της μεταβλητές εισόδου (αφαίρεση του μέσου όρου και διαίρεση με την τυπική απόκλιση για

της αριθμητικές μεταβλητές και δυαδική κωδικοποίηση για τις κατηγορικές μεταβλητές), ακο-

λουθεί η επιλογή των μεταβλητών εισόδου που θα χρησιμοποιηθούν. Στην παρούσα περίπτωση,

καταλήξαμε σε 13 μεταβλητές σχετικές με την γεωμετρία και την διάταξη του αντιδραστήρα.

Καθώς εστιάζουμε στην πρόβλεψη του πάχους της αλούμινας ανά δίσκο, είναι σημαντικό να

συμπεριληφθούν πληροφορίες για τα χαρακτηριστικά των γειτονικών δίσκων. ΄Ενα μέρος των

επιλεγέντων μεταβλητών δημιουργήθηκε βασισμένο στις αρχικά διαθέσιμες μεταβλητές και

φαίνεται να προσδίδει στην βελτίωση της προβλεπτικής ικανότητας του μοντέλου. Ενδεικτικά,

2 από τις μεταβλητές που δημιουργήθηκαν, ήταν η συνολική επιφάνεια των υποστρωμάτων

εντός του αντιδραστήρα και η τυπική απόκλιση της ανά δίσκο επιφάνειας απόθεσης εντός του

αντιδραστήρα. Τέλος, απομένει η επιλογή μοντέλου μηχανικής μάθησης. Μετά από προκα-

ταρκτικές δοκιμές, φάνηκε πως το μοντέλο που δύναται να περιγράψει καλύτερα τα διαθέσιμα

δεδομένα είναι ένα μοντέλο βασισμένο σε συστοιχίες δέντρων απόφασης και πιο συγκεκριμένα

ένα XGBoost μοντέλο. Η πολυπλοκότητα του μοντέλου μπορεί να επηρεάσει την προβλεπτι-

κή του ικανότητα, ειδικά αν αυτό είναι περισσότερο ή λιγότερο περίπλοκο από όσο πρέπει.

Εδώ πρέπει να σημειωθεί ότι η προβλεπτική ικανότητα του μοντέλου υπολογίζεται πάντοτε

για προβλέψεις του μοντέλου για ένα σύνολο δεδομένων το οποίο δεν έχει χρησιμοποιηθεί για

την «προπόνηση» του. Η πολυπλοκότητα καθορίζεται από τις διάφορες υπερπαραμέτρους του

μοντέλου (π.χ. το μέγιστο βάθος των δέντρων, ο συνολικός αριθμός δέντρων στην συστοιχία).

΄Ετσι, οι αρχικές δοκιμές οφείλουν να ακολουθηθούν από μια διεργασία βελτιστοποίησης αυ-

τών των υπερπαραμέτρων. Εν τέλει, επιλέγεται ένα μοντέλο παλινδρόμησης XGBoost , ικανό

να προβλέψει το πάχος της επίστρωσης της αλούμινας ανά δίσκο με μέσο απόλυτο ποσοστιαίο

σφάλμα της τάξεως του 3%, δείχνοντας βελτίωση σε σύγκριση με το μοντέλο υπολογιστικής

ρευστοδυναμικής. Πέρα από την βελτίωση στην προβλεπτική ικανότητα, το μοντέλο μπορεί

να κάνει προβλέψεις για έναν ολόκληρο αντιδραστήρα σε περίπου ένα δευτερόλεπτο, πετυ-

χαίνοντας έτσι μια τεράστια βελτίωση στον απαιτούμενο χρόνο πρόβλεψης της τάξεως του

99.99% συγκριτικά με το μοντέλο υπολογιστικής ρευστοδυναμικής. Το μοντέλο αυτό όμως, σε

αντίθεση με το μοντέλο υπολογιστικής ρευστοδυναμικής, δεν δίνει καμία πληροφορία σχετικά

με την ροή και τις συγκεντρώσεις των αντιδρώντων εντός του αντιδραστήρα.
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Σχήμα 3: Απόδοση του προτεινόμενου μοντέλου μηχανικής μάθησης (α΄) στο σύνολο δεδομε-

νων εκπαίδευσης: Μέσο τετραγωνικό σφάλμα: 0.005 ͺ Μέσο απόλυτο σφάλμα:0.051 ͺ Μέσο

απόλυτο ποσοστιαίο σφάλμα: 0.9% ͺ R2
: 0.980. (β΄) απόδοση στο σύνολο δεδομένων δοκιμής:

Μέσο τετραγωνικό σφάλμα: 0.059 ͺ Μέσο απόλυτο σφάλμα: 0.187 ͺ Μέσο απόλυτο ποσοστιαίο

σφάλμα: 3.1% ͺ R2
: 0.753.

Στην συνέχεια, σε μια προσπάθεια να συνδυαστούν τα διαθέσιμα δεδομένα παραγωγής

και τα δεδομένα που παρέχονται από το μοντέλο υπολογιστικής ρευστοδυναμικής, προτείνεται

μια προσέγγιση μέσω της μεθόδου GappyPOD, η οποία επιτρέπει την ακριβή ανακατασκευή

των αποτελεσμάτων του μοντέλου υπολογιστικής ρευστοδυναμικής (τα προφίλ ροής και τα

προφίλ συγκεντρώσεων) με την χρήση περιορισμένου αριθμού δεδομένων τόσο από το μοντέλο

ρευστοδυναμικής, όσο και από τα διαθέσιμα δεδομένα παραγωγής.

Με την ανάπτυξη αυτών των δύο προσεγγίσεων για την μοντελοποίηση της διεργασίας,

έχουν δοθεί δυο διαφορετικοί τρόποι πρόβλεψης για το αποτέλεσμα της διεργασίας, ο καθένας

με τα δικά του προτερήματα και μειονεκτήματα. Διαθέτοντας και τους δύο όμως, υπάρχει η

δυνατότητα και για γρήγορες προβλέψεις, αλλά και για βαθύτερη ανάλυση της διεργασίας.

΄Ετσι, με τα δύο προτεινόμενα μοντέλα, θεωρούμε ότι η ερώτηση 1 που τέθηκε παραπάνω έχει

απαντηθεί.

Στο υπόλοιπο μέρος της διατριβής, ο στόχος είναι η απάντηση της δεύτερης ερώτησης.

Συγκεκριμένα, χρησιμοποιώντας μεθόδους μηχανικής μάθησης, γίνεται προσπάθεια προσδιο-

ρισμού μεταβλητών που πιθανώς να είναι καίριες για το αποτέλεσμα της διεργασίας (βλ.
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Κεφάλαιο 5). Η προσπάθεια αυτή ξεκινάει, με την χρήση των διαθέσιμων δεδομένων για

κάθε σειρά παραγωγής. Οι 15 διαθέσιμες μετρήσεις πάχους αλούμινας για τις 603 διαθέσιμες

σειρές παραγωγής περνάνε από μια διαδικασία ομαδοποίησης (clustering). Η ομαδοποίηση,

είναι μια μέθοδος μηχανικής μάθησης που ανήκει στις μεθόδους μη επιτηρούμενης μάθησης,

μιας και δεν υπάρχει μεταβλητή εξόδου. Σκοπός της ομαδοποίησης είναι να ανακαλύψει ο-

μάδες μεταξύ των διαθέσιμων δεδομένων. Τα μέλη των ομάδων που δημιουργούνται μοιάζουν

πιο πολύ με τα μέλη της ομάδας τους παρά με τα μέλη άλλων ομάδων. Η ομοιότητα αυ-

τή καθορίζεται με βάση κάποια κριτήρια, ένα παράδειγμα των οποίων αποτελεί η Ευκλείδεια

απόσταση. Στην παρούσα δουλειά, χρησιμοποιείται αλγόριθμος συσσωρευτικής ιεραρχικής

ομαδοποίησης (agglomerative hierarchical clustering), βασισμένος στην ευκλείδεια απόσταση.

Στον συγκεκριμένο αλγόριθμο, ο χρήστης καλείται να επιλέξει τον αριθμό των ομάδων.

Κατόπιν της ομαδοποίησης των δεδομένων από τις 603 σειρές παραγωγής, η οποία ε-

ίναι βασισμένη μόνο στα δεδομένα του πάχους απόθεσης, μπορούμε να κάνουμε κάποιες

παρατηρήσεις, με βάση την ποιοτική πληροφορία που περιέχεται στο πάχος απόθεσης. Α-

φού υπολογισθεί ο μέσος όρος και η τυπική απόκλιση του πάχους απόθεσης για την κάθε

ομάδα που προέκυψε, φαίνεται πως οι ομάδες που προκύπτουν κατέχουν διαφορετικά ποιο-

τικά χαρακτηριστικά. Εάν ζητηθεί από τον αλγόριθμο να βρεθούν 2 ομάδες, προκύπτει πως

αυτές έχουν σημαντικές διαφορές, τόσο στον μέσο όρο (ομάδα 0: 16.35 μικρόμετρα, ομάδα

1: 15.08 μικρόμετρα), όσο και στην τυπική απόκλιση (ομάδα 0: 1.355 μικρόμετρα, ομάδα 1:

1.578 μικρόμετρα) του πάχους απόθεσης. Αντίστοιχα, στην περίπτωση των τριών ομάδων,

η ομάδα 1 από την πρώτη περίπτωση φαίνεται να «σπάει» σε 2 επιμέρους. Οι τρείς ομάδες

που προκύπτουν επίσης παρουσιάζουν σημαντικές διαφορές στον μέσο όρο (ομάδα 0: 16.35

μικρόμετρα, ομάδα 1: 15.53 μικρόμετρα, ομάδα 2: 14.32 μικρόμετρα) και την τυπική απόκλιση

όρο (ομάδα 0: 1.354 μικρόμετρα, ομάδα 1: 1.386 μικρόμετρα, ομάδα 2: 1.588 μικρόμετρα) του

πάχους απόθεσης. Στις ΧΑΑ, είναι επιθυμητό να υπάρχει όσο το δυνατόν μεγαλύτερο πάχος

απόθεσης, με την προϋπόθεση να διατηρείται η ομοιομορφία της επίστρωσης μεταξύ όλων των

υποστρωμάτων. Χάρη σε αυτό το ποιοτικό χαρακτηριστικό του πάχους, είναι εμφανές ότι οι

ομάδες που προκύπτουν από την ομαδοποίηση έχουν ξεκάθαρες ποιοτικές διαφορές, με την

ομάδα 0 να αποτελεί την «καλύτερη» ομάδα και την ομάδα 2 να αποτελεί την «χειρότερη».

Εάν στην συνέχεια εστιάσουμε στις μεταβλητές εισόδου της διεργασίας για αυτές τις

ομάδες, μπορούμε να παρατηρήσουμε έντονες διαφορές. Η ομάδα 0, αποτελείται σχεδόν

αποκλειστικά από σειρές παραγωγής που χρησιμοποιούν μια νεότερη εκδοχή της «συνταγής»

παραγωγής. Στην «συνταγή» κωδικοποιούνται διάφορα βήματα που πρέπει να ληφθούν κατά

την διάρκεια της παραγωγής, τα οποία σχετίζονται με τις συνθήκες εντός του αντιδραστήρα

και τις αναλογίες των αντιδρώντων. Οι ομάδες 1 και 2, αποτελούνται από σειρές παραγωγής

xxii



(αʹ) (βʹ)

Σχήμα 4: Κατανομή πάχους στην περίπτωση: (α΄) 2 ομάδων και (β΄) 3 ομάδων. Το υψηλό

μέσο πάχος και η χαμηλή τυπική απόκλιση αποτελούν μέτρο της αποτελεσματικότητας της

διαδικασίας και της ποιότητας του προϊόντος. Οι σειρές παραγωγής της «μώβ» ομάδας επι-

δεικνύουν ανώτερα ποιοτικά χαρακτηριστικά.

που χρησιμοποιούν παλιότερες εκδοχές της «συνταγής».

΄Επειτα, αναζητώντας το τί διαφέρει στις μεταβλητές εισόδου μεταξύ των ομάδων 1 και

2, παρατηρούμε πώς υπάρχουν διαφορές σε μια μεταβλητή που αναδεικνύει το πόσο σωστά

έγινε η διάταξη του αντιδραστήρα με βάση την ονομαστική επιφάνεια απόθεσης (η οποία

επιλέγεται από τον χειριστή του αντιδραστήρα) και την πραγματική επιφάνεια απόθεσης ε-

ντός του αντιδραστήρα. Οι τιμές αυτών των δύο επιφανειών δεν συμπίπτουν πάντα, καθώς οι

επιλογές που έχουν οι χειριστές για την ονομαστική επιφάνεια, δίνονται σε βήματα του ενός

τετραγωνικού μέτρου. Στην πράξη, ο χειριστής στρογγυλοποιεί την πραγματική επιφάνεια

προς τα πάνω κατά την επιλογή της ονοματικής. Οι ομάδες 1 και 2 λοιπόν, παρουσιάζουν

σημαντική διαφορά σε μια μεταβλητή που αντικατοπτρίζει αυτήν την διαφορά μεταξύ ονομα-

στικής και πραγματικής επιφάνειας. Αυτή η μεταβλητή είναι η απόλυτη τιμή της διαφοράς.

Η μεταβλητή αυτή, μαζί με την «συνταγή» διαφέρουν μεταξύ των 3 ομάδων και ενδέχεται να

είναι κρίσιμες για το αποτέλεσμα της διεργασίας.

Στην συνέχεια, χρησιμοποιώντας τις παραπάνω προσδιορισμένες μεταβλητές, μπορούν

να αναπτυχθούν μοντέλα επιτηρούμενης μάθησης. Εάν σαν μεταβλητή εξόδου για αυτά

τα μοντέλα χρησιμοποιηθεί η ομάδα στην οποία θα ανήκει μια παρτίδα, τότε το πρόβλημα
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αποτελεί ένα πρόβλημα ταξινόμησης. Εάν σαν μεταβλητή εξόδου χρησιμοποιηθεί το μέσο

πάχος της απόθεσης, τότε έχουμε μπροστά μας ένα πρόβλημα παλινδρόμησης.

Για το πρόβλημα ταξινόμησης, χρησιμοποιείται ένας αλγόριθμος τυχαίων δασών. Με την

χρήση των μεταβλητών που προσδιορίστηκαν παραπάνω, σε συνδυασμό με κάποιες σχετικές

με τον αύξοντα αριθμό του αντιδραστήρα και την χρονιά παραγωγής αλλά και την τυπική

απόκλισης της επιφάνειας εντός του αντιδραστήρα, μπορούμε να προβλέψουμε την ομάδα

στην οποία θα ανήκει μια παρτίδα με ικανοποιητική ακρίβεια. Η ακρίβεια για την περίπτωση

των δύο ομάδων είναι 96.7%, ενώ για την περίπτωση των τριών ομάδων είναι 79.3%.

Για το πρόβλημα παλινδρόμησης, χρησιμοποιείται ένας αλγόριθμος XGBoost. Με την χρήση

των μεταβλητών που χρησιμοποιήθηκαν στο πρόβλημα της ταξινόμησης, μαζί με 5 από τις 15

διαθέσιμα πάχη επίστρωσης, καταφέρνουμε να προβλέψουμε το μέσο πάχος επίστρωσης με

ικανοποιητική ακρίβεια, ελαττώνοντας έτσι τις απαραίτητες μετρήσεις πάχους κατά 66.7%,

και δίνοντας την δυνατότητα βελτίωσης στα βήματα που λαμβάνονται μετά το πέρας της

διεργασίας για ποιοτικό έλεγχο.

Τέλος, χρησιμοποιώντας τις τιμές SHAP, οι οποίες έχουν την βάση τους στην θεωρία

παιγνίων, μπορούμε να αποδώσουμε σε κάθε μεταβλητή εισόδου μια τιμή, η οποία δηλώνει τη

μέση συμβολή της μεταβλητής στην πρόβλεψη, βοηθώντας έτσι στην κατανόηση του τρόπου

με τον οποίο οι αλλαγές σε μια μεταβλητή μπορεί να επηρεάσουν την τελική απόδοση του

μοντέλου.

Με αυτόν τον τρόπο, αναδεικνύεται πώς μια αλληλουχία μη επιτηρούμενων και επιτηρο-

ύμενων μεθόδων μηχανικής μάθησης μπορεί να επισημάνει πιθανές κρίσιμες μεταβλητές της

διεργασίας. Η προσέγγιση αυτή εφαρμόζεται στην συνέχεια και σε ένα εντελώς διαφορετικό

πρόβλημα· το πρόβλημα του μεταβολισμού στα αστροκύτταρα.

Εκτός του κεντρικού θέματος της διεργασίας ΧΑΑ, στην διατριβή περιλαμβάνεται η με-

λέτη της διεργασίας του μεταβολισμού στα αστροκύτταρα (βλ. Κεφάλαιο 6), με σκοπό την

ανάδειξη σημαντικών παραμέτρων μέσω μεθοδολογίας αντίστοιχης αυτής που εφαρμόστηκε

για την διεργασία ΧΑΑ. Στην περίπτωση των αστροκυττάρων, γίνεται χρήση ενός συνόλου δε-

δομένων που προκύπτει από υπολογιστικά πειράματα. Οι μεταβλητές εισόδου είναι οι θέσεις

των κέντρων όπου λαμβάνουν χώρα χημικές αντιδράσεις εντός του κυττάρου. Οι μεταβλητές

εξόδου, είναι οι συγκεντρώσεις των διάφορων μεταβολιτών, με σημαντικότερους το ATP και

το ADP. Συμπεράσματα για την υγεία και την μεταβολική κατάσταση του κυττάρου μπορούν

επίσης να αντληθούν από τον λόγο ATP προς ADP.

Χρησιμοποιώντας αντίστοιχη αλληλουχία μη επιτηρούμενων και επιτηρούμενων μεθόδων

μηχανικής μάθησης, καταφέρνουμε να προσδιορίσουμε τις θέσεις των κέντρων αντιδράσεων

που επηρεάζουν τις συγκεντρώσεις των μεταβολιτών, με τις θέσεις των μιτοχονδρίων να φα-
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Σχήμα 5: (α΄) Δείγματα των τριών διαφορετικών τύπων διαμορφώσεων κέντρων αντίδρασης:

ομοιόμορφη, λογαριθμοκανονική και πολωμένη λογαριθμοκανονική. Η γλυκόζη εισέρχεται στην

κυτταρική περιοχή από την αρχή του άξονα, ενώ το γαλακτικό οξύ εξέρχεται από την αντίθε-

τη κορυφή. (β΄) Κατανομές τριών μεταβολιτών ενδιαφέροντος για κάθε τύπο διαμόρφωσης

των κέντρων αντιδράσεων. (γ΄) Οι τρεις υλοποιημένες προσεγγίσεις επιβλεπούμενης μάθησης.

(δ΄) Διαγράμματα ισοτιμίας εκτός δείγματος για την πρόβλεψη του χωρικού μέσου όρου των

[LAC] και [ATP]. (ε΄) Πίνακας σύγχυσης εκτός δείγματος για την πρόβλεψη της ενεργειακής
κατάστασης του κυττάρου (μη επαρκώς διεγερμένη ή υγιής).

ίνονται να παίζουν τον σημαντικότερο ρόλο για την ενεργειακή κατάσταση του κυττάρου

(βασισμένη στον προαναφερθέντα λόγο ATP προς ADP). Προτείνεται επίσης ένα μοντέλο λο-

γιστικής παλινδρόμησης για ταξινόμηση, το οποίο λαμβάνει σαν μεταβλητές εισόδου τις θέσεις

των κέντρων αντιδράσεων και προβλέπει εάν το κύτταρο είναι υγιές ή αν δεν έχει επαρκή ε-

νέργεια με εξαιρετική ακρίβεια (95.5%) και ανάκληση (97.53%). Στην συνέχεια προτείνονται

διάφορα νευρωνικά δίκτυα για παλινδρόμηση, τα οποία λαμβάνοντας υπόψιν τις θέσεις των

κέντρων αντιδράσεων, μπορούν να προβλέψουν είτε τις μέσες συγκεντρώσεις των μεταβολιτών

στο κύτταρο, είτε ολόκληρα τα προφίλ συγκεντρώσεων με ικανοποιητικές προβλεπτικές επι-

δόσεις. Στο τέλος χρησιμοποιείται και μια ανάλυση με τιμές SHAP, δίνοντας έτσι και τη μέση

συμβολή της κάθε μεταβλητής στην πρόβλεψη.

Με αυτόν τον τρόπο θεωρούμε πως η ερώτηση 2 που τέθηκε παραπάνω απαντάται επαρ-

κώς, και σε συνδυασμό με την απάντηση στην ερώτηση 1 που έχει ήδη δοθεί, προτείνεται μια
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αξιόλογη απάντηση στην ερώτηση του «πώς πρέπει να προσεγγίζονται διεργασίες οι οποίες δεν

διαθέτουν τα απαραίτητα δεδομένα για να μοντελοποιηθούν βέλτιστα από μεθόδους αμιγώς

βασισμένες στα δεδομένα, άλλα είναι επίσης υπερβολικά περίπλοκες για να μοντελοποιηθούν

αποκλειστικά από μεθόδους βασισμένες σε εξισώσεις.

xxvi



Table of Contents

List of Figures xxxi

List of Tables xxxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Scientific background 9

2.1 Chemical vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Production of wear resistant Ti(C,N)/α-Al2O3 coatings for cutting tools . 10

2.2 Equation-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Data-driven pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Development of an efficient chemistry-enhanced CFD model 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Chemical vapor deposition reactor geometry and operation . . . . . . . . . . . . 29

3.2.1 Reactor set-up and process conditions . . . . . . . . . . . . . . . . . . . 29

3.2.2 Available production data . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Description of the CFD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xxvii



Table of Contents

3.3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Computational geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Chemistry model - Modeling the α-Al2O3 deposition . . . . . . . . . . . . 36

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Parameter fitting and model validation . . . . . . . . . . . . . . . . . . . 40

3.4.2 Investigation of the rate-limiting mechanism . . . . . . . . . . . . . . . . 44

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Comparison of equation-based and data-driven modeling strategies for industrial
coating processes 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Computational ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 ML methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 CFD modeling: Implementation and challenges . . . . . . . . . . . . . . 61

4.4 Combining equation-based and data-driven approaches using GappyPOD . . . . . 63

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 CFD data sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.4 Mask selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 CFD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.2 Data-driven predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.3 CFD vs ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.4 GappyPOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Integrating supervised and unsupervised learning approaches to unveil critical pro-
cess inputs 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Process overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xxviii



Table of Contents

5.3.1 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.3 Shapley values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.2 Critical input identification . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.4 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.5 Shapley value analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 A machine learning framework for analyzing the impact of reaction center config-
urations on astrocyte metabolic states 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.3 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.5 SHAP analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 Discerning between Healthy and Non-energized cells . . . . . . . . . . . . 118

6.3.3 Predicting spatial metabolite concentrations . . . . . . . . . . . . . . . . 119

6.3.4 Effect of inputs on model output (SHAP analysis) . . . . . . . . . . . . . 123

6.4 Conclusions &Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Conclusions 127
7.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 131

xxix



Table of Contents

xxx



List of Figures

1.1 Overview of modeling approaches for varying data quantities . . . . . . . . . . . 2

2.1 An overview of the various interplaying phenomena occurring in a CVD process. . 10

2.2 An overview of the material produced: A multilayer Ti(C,N)/α-Al2O3 coating. . . 10

3.1 Overview of the interplaying mechanisms and phenomena of a CVD process. . . . 30

3.2 Examples of the cutting tool inserts, reactor disks and information about the geo-

metrical characteristics of the reactor. . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 A 2D representation of the reactor along with the locations with available thickness

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Inlets and outlines along with the applied boundary conditions. . . . . . . . . . . 35

3.5 Overview of the deposition surfaces and examples of the 2d representation of the

inserts and disks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 The four 7-disk geometries used for model calibration and validation. . . . . . . . 41

3.7 α-Al2O3 coating thickness predictive performance of the CFD model. . . . . . . . 43

3.8 Water concentration contours for the four geometries. . . . . . . . . . . . . . . . 45

3.9 AlCl3 concentration contours for the four geometries. . . . . . . . . . . . . . . . 46

4.1 Examples of cutting tool insert geometries along a 3D representation of a 3-disk

part of the reactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 A 2D representation of the entire reactor with the 15 positions with available

thickness measurements marked. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Overview of the sampling locations for the GappyPOD approach. . . . . . . . . . 65

4.4 A schematic showcasing the final matrix considered for the GappyPOD approach. 67

4.5 Overview of the CFD results, including alumina thickness predictions alongside flow

and precursor concentration profiles. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Hyperparameter tuning results of the maximum depth for several tree-based methods. 72

xxxi



List of Figures

4.7 Predictive performance of the proposed XGBoost regression model. . . . . . . . . 74

4.8 Energy retained and reconstruction error versus the number of considered POD

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Comparison of the GappyPOD reconstruction with the ground truth and the POD

reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Examples of cutting tool inserts, along with a 3D representation of a 3-disk part of

the reactor and streamlines from a snapshot of a 2D CFD model for 7-disk parts

of the reactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 A 2D representation of the entire reactor with the 15 positions with available

thickness measurements marked. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 A flowchart of the steps leading to the clustering part of the analysis . . . . . . . 90

5.4 Resulting clustering dendrogram alongside the three main clusters of interest. . . 94

5.5 Thickness distributions for the two cluster and three cluster cases. . . . . . . . . 95

5.6 Distributions of |Nominal recipe surface area - actual surface area| for clusters 1

and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Confusion matrices for the two and three cluster classification cases. . . . . . . . 99

5.8 Predictive performance of the proposed XGBoost regression model . . . . . . . . 100

5.9 A 2D representation of the reactor alongside the calculated mean absolute SHAP

values for the proposed regression model. . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Overview of astrocytes, the metabolic model used, and the results of the reaction-

diffusion model by Dr. Farina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Examples of the different reaction center configurations used, alongside the pro-

posed supervised learning approaches and their performance for spatial average

metabolite concentration predictions and health/energy state predictions. . . . . . 115

6.3 Agglomerative clustering dendrogram alongside the top 40 logistic regression coef-

ficients for the classification problem. . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Spatial concentration profiles, alongside the relative error and the results of clus-

tering and the SHAP value analysis. Strong influence of mitochondrial location to

the energy state of the cell is observed. . . . . . . . . . . . . . . . . . . . . . . . 120

xxxii



List of Tables

3.1 The fitted kinetic constants used for the simulation of the α-Al2O3 deposition. . . 44

3.2 Difference in the deposition rate for different precursor concentrations at the inlet

- Geometry A. Values are relative to the original simulation. . . . . . . . . . . . . 47

3.3 Average H2O concentrations above the inserts of interest for different inlet precursor

concentrations - Geometry A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Summary of the features included in the training of the regression models. . . . . 57

4.2 XGBoost model results after cross-validation for various values of number of trees. 72

4.3 XGBoost prediction accuracy vs CFD prediction accuracy for the coating thickness

of inserts closest to the reactor outlet (R position). . . . . . . . . . . . . . . . . 74

4.4 Number of POD modes selected for each case, along with the corresponding re-

tained energy and reconstruction error. . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Available data for each production run. Asterisks denote inputs deemed potentially

important by empirical knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Characteristics of each cluster in the case of two clusters. The recipe version used

for production is the discerning feature of the two clusters. . . . . . . . . . . . . 95

5.3 Characteristics of three clusters: Discerning features include the recipe version used

for production and the absolute difference between nominal and actual surface area. 96

5.4 Classification metrics for the two-cluster and three-cluster cases. The metrics for

the three-cluster case have been macro-averaged. . . . . . . . . . . . . . . . . . 98

6.1 Mean spatial metabolite concentration averages (in mM) in each cluster. Lowest

and highest values for each metabolite are presented in bold. . . . . . . . . . . . 118

6.2 Binary classification metrics. The trained logistic regression model shows great

performance for both the test and training sets. . . . . . . . . . . . . . . . . . . 119

xxxiii



List of Tables

6.3 Optimal hyperparameters and spatial average metabolite concentration regression

test set performance metrics for the developed ANN models. . . . . . . . . . . . 121

6.4 Optimal hyperparameters and spatial profile metabolite concentration regression

test set performance metrics for the developed ANN models. . . . . . . . . . . . 123

xxxiv



List of abbreviations

ANN Artificial Neural Network

ADP Adenosine diphosphate

ATP Adenosine triphosphate

BO Bayesian Optimization

CFD Computational Fluid Dynamics

CVD Chemical Vapor Deposition

GLC Glucose

DML Double/Debiased Machine Learning

DNN Deep Neural Network

EDA Exploratory Data Analysis

FEM Finite Element Method

FVM Finite Volume Method

GLY Glyceraldehyde 3-phosphate

LAC Lactate

ML Machine Learning

MAE Mean Absolute Error

xxxv



List of abbreviations

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

RMSE Root Mean Squared Error

PCA Principal Component Analysis

POD Proper Orthogonal Decomposition

PYR Pyruvate

QoI Quantity of Interest

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

VAE Variational Autoencoder

xxxvi



Chapter 1

Introduction

1.1 Motivation

In engineering and other scientific disciplines, the chemical and physical processes that occur within

a system can dictate outcomes that range from success to failure, from products that meet specifi-

cations to scrap, or even from sustained life to critical failure in biological systems. Understanding,

analyzing, and predicting the behavior of these processes is essential, and mathematical modeling

serves as a powerful tool to achieve these goals.

Mathematical modeling aims to identify relationships between key quantities (inputs and out-

puts) in a system. To do this effectively, data are essential. Without data on processes, their

parameters, outcomes, and other relevant factors, models cannot be validated or produce accurate

quantitative results. This makes it difficult to assess how closely a model reflects reality. The

choice of modeling approach depends on the amount of data available.

When data are limited, an equation-based approach (also known as a physics-based or hypothesis-

driven approach) is commonly used. This method starts with a clear hypothesis and assumptions,

often grounded in existing theories or prior knowledge. First-principles models, which rely on the

fundamental equations of a system, fall into this category. These models require experiments to

test and validate their hypotheses. However, incorrect assumptions in an equation-based model

can lead to significant errors. Furthermore, as modeled systems become more complex and require

greater accuracy, the modeling process becomes more challenging. First-principles models typically

depend on parameters to produce quantitative results, and if these parameters are unknown, they
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must be derived from available data. Additionally, as our understanding of a process evolves or

new factors are introduced, these models must be updated, which requires ongoing maintenance.

When data are plentiful, data-driven approaches can be applied directly. These methods typ-

ically operate without a predefined hypothesis and aim to uncover insights and detect patterns

directly from the available data through computational techniques and statistical analysis. The

insights and patterns discovered can then serve as the basis for generating new hypotheses about

the process. The larger the dataset and the more relevant the information it contains, the easier

it becomes to identify meaningful patterns and relationships.

But what happens when the quantity of data is neither “big” nor “small”? Then hybrid ap-

proaches, which try to get the best of both worlds by combining elements from equation-based and

data-driven approaches, become necessary. This is quite often the case in many engineering appli-

cations, where process insights and outcome predictions are required regardless of the complexity

of the process. The modeling of such processes might require many assumptions. Furthermore,

real-world data can be “dirty”, which means that available process data may lack information or

even contain errors.

Figure 1.1: Modeling approaches for varying data quantities. When data is scarce, equation based
modeling is the most appealing approach. When data is abundant, data-driven modeling can
surpass its equation-based counterpart by extracting process insights directly from the data. When
data are neither “big” nor “small”, hybrid approaches combining both equation based and data-
driven modeling can be used to attempt to get the best of both worlds.

An example of such an application is the chemical vapor deposition (CVD) of multilayer

Ti(C,N)/α-Al2O3 coatings on cemented carbide substrates [1]. This process aims to provide

cutting tools with excellent heat and wear resistance properties, together with excellent cutting

performance. However, as with all CVD processes, it comes with a high complexity, associated

with the interplay of several physical and chemical phenomena (e.g., reactions, diffusion, and con-
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vection) that occur in CVD. Furthermore, CVD processes can be highly sensitive to operating

conditions, making them challenging to model and, in extension, control, optimize, and predict

with accuracy and consistency.

CVD processes, like all processes, can greatly benefit from modeling. Modeling can provide

insight into the process and means to improve it. To this end, several approaches can be taken.

Traditionally, equation-based methods such as Computational Fluid Dynamics have been used for

the modeling of CVD processes [2]–[5], as they can shed light on the way in which the various

phenomena contribute to the outcome of the process. Nevertheless, the development of accurate

CFD models can be a daunting task, as oftentimes the several parameters required for the intro-

duction of the numerous phenomena are unknown. In certain cases, the geometry of the reactor

can change from production run to production run, making the use of a single model less viable.

Additionally, as the process can be very sensitive to perturbations, the use of sensors within the

reactor is often avoided, and therefore, dynamic process data might not be available.

Apart from the constraints enforced by difficulties associated with model development, conduct-

ing computational experiments and making predictions using such models can also be undesirable,

especially in cases where time is of the essence. CFD models of CVD processes that aim to take into

account all of the interplaying phenomena can be highly resource intensive, if not computationally

intractable. Several approaches have been proposed in the literature to overcome these problems,

usually by developing surrogates or reduced-order models [6]–[9]. However, the acquisition of an

adequate amount of CFD simulations is necessary for the development of these surrogate models.

This is a cost (either in resources or time) that needs to be considered before development.

Since the beginning of the Industry 4.0 era, data availability has increased greatly in industrial

settings [10]. Although this increase is evident, the scale of the data still remains orders of

magnitude lower than the scale of social media or finance data. Regardless, this increase in

quantity has led to an increase in the number of applications of data-driven methods in many

aspects of industry and an increase in industrial interest in data (the motto “data is the new

oil” comes to mind). This led to a large number of research works, with several applications in

industrial processes [11]. The topics of focus include maintenance management [12]–[14], quality

management [15]–[19], production planning [20]–[22] and control [23], [24], logistics and supply
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chain management [25]–[28], and engineering design [29], [30]. Applications have even emerged

in management [31].

This increased quantity of data, along with the interest in data-driven approaches and the

limitations of equation-based methods, led to the pursuit of data-driven methods for the analysis

and prediction of a CVD process in the present work. However, because the interpretation of

the interplay between the aforementioned physical and chemical phenomena is of interest, the

implementation of data-driven approaches is accompanied by the development of a CFD model

of the process. However, it appears that the process is too complex to be efficiently modeled by

traditional CFD methods, while also lacking the data required to be optimally modeled by data-

driven approaches. This raises the following question: “How should we approach processes that

lack the necessary data to be optimally modeled by data-driven methods, but are also too complex

to be optimally modeled solely by equation based methods?”.

1.2 Objectives

This work aims to answer the above question by answering the following.

1. Using this CVD process as a case study, what is the best computational workflow that allows

us to make accurate predictions in a resource-efficient and low-cost way?

2. Can we determine critical process parameters from the available production data?

Question number 1 is answered in Chapters 3 and 4, where both CFD and ML models of the

process are proposed. Using this CVD process as a case study, we propose ways of developing an

accurate model of the process, using both CFD (Chapter 3) and machine learning (ML) approaches

(Chapter 4). Question number 2, is answered first in Chapter 5, where a blend of supervised

and unsupervised learning techniques is proposed as a way to identify potential critical process

parameters in real-world data. In an attempt to explore and highlight the versatility of the approach

proposed in Chapter 5, our second question is answered again in Chapter 6, this time for a

completely different application that involves data from a computational model; the metabolism

of astrocyte cells.
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1.3 Thesis Structure

Chapter 2 presents the interdisciplinary scientific background where CVD, the process of interest,

is introduced. Furthermore, a brief introduction to Computational Fluid Dynamics, the equation-

based method implemented for the modeling of the CVD process, is given. Finally, Chapter 2

ends with a slightly more detailed introduction to machine learning methods and the various steps

necessary for the development of data-driven models. This chapter only briefly mentions concepts

that are further analyzed in the following chapters, which are based on the journal publications

derived from my research project.

Chapter 3 presents the first step taken in the investigation of the CVD process. It addresses

the development of a chemistry-enhanced Computational Fluid Dynamics (CFD) model that allows

the prediction of α-Al2O3 thickness along with the analysis of several phenomena, which will be

presented in detail in Section 2.1.1, involved in the deposition process. The developed model is

also used for a series of computational experiments, aiming to get insights regarding the rate-

determining mechanism of the α-Al2O3 deposition. This chapter was published as a journal article

in [32].

Chapter 4 presents a comparison between the developed CFD model and data-driven ap-

proaches that can also provide accurate α-Al2O3 thickness predictions. Here, several supervised

learning algorithms were implemented using only production data, with ensemble tree-based meth-

ods [33] and more specifically XGBoost [34] demonstrating the best performance on the dataset.

The predictive performance for the α-Al2O3 coating thickness is better for the proposed data-

driven approach, with a reduction of more than 99.99% in the required resources, compared to

the CFD approach. This chapter is finalized with the implementation of another data-driven ap-

proach, namely GappyPOD [35]. GappyPOD allows for the reconstruction of the full state-space

of the CFD simulations, using only limited data from the simulations, along with certain thickness

measurements. This chapter was published as a journal article in [36].

Focusing on entire production runs, Chapter 5 proposes a combination of ML methods for

the analysis of the process using historical production run data. We show that when using only

process outputs that are indicative of quality for clustering, the resulting clusters demonstrate clear
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qualitative differences. By analyzing the differences between the process inputs that correspond to

each of the resulting clusters, we can identify inputs that are potentially critical to the outcome of

the process. Following this step and using the identified inputs, supervised learning algorithms can

be proposed for the prediction of the quality of a production run. Finally, a SHAP value analysis

[37] is included to quantify the impact of each input on the output of the process. This chapter

was published as a journal article in [38].

Subsequently, in Chapter 6 we demonstrate the versatility of the framework developed in

Chapter 5, by applying it to an entirely different process; the metabolism of astrocyte cells. Using

a computational model developed in the work of Farina et al. [39], [40], we show that we are able

to determine inputs, in this case reaction centers, that are highly influential on the energy state of

the cell. A classification model is developed for the prediction of the state of the cell (healthy vs.

non-energized), while regression models allowing for the prediction of metabolite concentrations

are also proposed. This chapter is currently in submission and is available as a preprint in [41].

Finally, the results obtained from the different chapters are summarized in Chapter 7, and the

thesis is concluded with a discussion of possible future directions.

1.4 Dissemination

My project has led to the following scientific contributions.

Articles

Peer-reviewed journal articles:

• P. Papavasileiou, E. D. Koronaki, G. Pozzetti, M. Kathrein, C. Czettl, A. G. Boudouvis,

T. J. Mountziaris, and S. P. A. Bordas, “An efficient chemistry-enhanced CFD model for

the investigation of the rate-limiting mechanisms in industrial Chemical Vapor Deposition

reactors,” Chemical Engineering Research and Design, vol. 186, pp. 314–325, 2022. doi:

10.1016/j.cherd.2022.08.005

• P. Papavasileiou, E. D. Koronaki, G. Pozzetti, M. Kathrein, C. Czettl, A. G. Boudouvis, and

S. P. A. Bordas, “Equation-based and data-driven modeling strategies for industrial coating
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processes,” Computers in Industry, vol. 149, p. 103 938, 2023. doi: 10.1016/j.compind.

2023.103938

• P. Papavasileiou, D. G. Giovanis, G. Pozzetti, M. Kathrein, C. Czettl, I. G. Kevrekidis, A. G.

Boudouvis, S. P. A. Bordas, and E. D. Koronaki, “Integrating supervised and unsupervised

learning approaches to unveil critical process inputs,” Computers & Chemical Engineering,

vol. 192, p. 108 857, 2025. doi: 10.1016/j.compchemeng.2024.108857

Submitted preprints:

• P. Papavasileiou, S. Farina, E. D. Koronaki, A. G. Boudouvis, S. P. A. Bordas, and A. Skupin,

Machine Learning-based Predictions of Spatial Metabolic Profiles Demonstrate the Impact of

Morphology on Astrocytic Energy Metabolism, 2024. doi: 10.1101/2024.09.18.613725

Conferences

Oral presentations:

• P. Papavasileiou, E. D. Koronaki, A. G. Boudouvis, S. P. A. Bordas, G. Pozzetti, M. Kathrein,

and C. Czettl, “Development of an efficient CFD model for an industrial scale CVD reactor

with rotating gas feeding system,” presented at the 10th GRACM International Congress on

Computational Mechanics, Virtual conference, 2021

• P. Papavasileiou, E. D. Koronaki, G. Pozzetti, M. Kathrein, C. Czettl, S. P. A. Bordas, and

A. G. Boudouvis, “Assessment of CFD and ML modelling strategies for industrial chemical

vapor deposition reactors,” presented at the 13th PESXM (Panhellenic Scientific Conference

on Chemical Engineering), Patras, Greece, 2022

• P. Papavasileiou, E. D. Koronaki, G. Pozzetti, M. Kathrein, C. Czettl, A. G. Boudouvis, and

S. P. A. Bordas, “A comparison of equation-based and machine learning models of industrial

scale deposition processes,” presented at the ECCOMAS2022 International Congress on

Computational Mechanics, Oslo, Norway, 2022

• P. Papavasileiou, E. D. Koronaki, G. Pozzetti, M. Kathrein, C. Czettl, A. G. Boudouvis, and

S. P. A. Bordas, “An efficient CFD model of an industrial scale CVD reactor allowing accurate
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coating thickness predictions,” presented at the WCCM-APCOM 15th World Congress on

Computational Mechanics and 8th Asian Pacific Congress on Computational Mechanics,

Yokohama, Japan (virtual congress), 2022

Poster presentations:

• P. Papavasileiou, E. D. Koronaki, D. G. Giovanis, G. Pozzetti, M. Kathrein, C. Czettl, A. G.

Boudouvis, and S. P. A. Bordas, “Investigation of defining process inputs using unsupervised

machine learning,” presented at the 14th European Congress of Chemical Engineering and

7th European Congress of Applied Biotechnology, Berlin, Germany, 2023
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Chapter 2

Scientific background

2.1 Chemical vapor deposition

2.1.1 Overview

Chemical vapor deposition (CVD) is a widely used chemical process for the production of solid

thin film coatings. It involves the reaction of a solid substance on a heated substrate via a series

of homogeneous chemical reactions occurring in the gas phase and heterogeneous reactions taking

place between the gas and solid phases.

CVD and its various subcategories are widely applied in various thin film technologies, including

the creation of semiconductors [47], dielectrics [48], conductive oxides [49], passivation layers [50],

[51], and oxidation barriers [52]. They are also crucial in producing coatings that resist heat [53],

corrosion [54], and wear [55], [56]. In microelectronics [57], CVD plays a key role in the growth

of epitaxial layers [58], [59]. Beyond these uses, CVD is employed in the manufacturing of high-

temperature materials such as ceramics [60] and tungsten [61] and the development of solar cells

[62], [63]. Furthermore, CVD is used for the fabrication of high temperature fiber composites [64],

[65] and the generation of particles with precisely controlled sizes [66].

Despite its wide range of applications, CVD can be considered a complex process, as it involves

several competing physical and chemical phenomena. As shown in Fig. 2.1, the main phenomena

that occur are homogeneous (gas-gas) and heterogeneous chemical reactions (gas-solid), gas diffu-

sion, adsorption, desorption, and convection. If the numerous intermediate species and byproducts
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produced from the aforementioned chemical reactions are also considered, then the complexity of

the process becomes evident. As a consequence, CVD processes can be very sensitive to operating

conditions and quite difficult to accurately and reliably model, control, optimize, and predict.

Figure 2.1: An overview of the various interplaying phenomena occurring in a CVD process (Taken
from [32]).

2.1.2 Production of wear resistant Ti(C,N)/α-Al2O3 coatings for cutting tools

The process investigated in the present work is an industrial-scale process of our collaborators at

CERATIZIT. The goal of the process is the deposition of multilayer Ti (C,N)/α-Al2O3 coatings on

cemented carbide substrates via CVD. A simple example of the coating is presented in Fig. 2.2. The

resulting product improves the properties of carbide cutting tools, providing excellent resistance to

heat and wear, as well as improved high-temperature hardness [67]–[69].

Figure 2.2: An overview of the material produced. A multilayer coating of Ti(C,N)/α-Al2O3 is
deposited on a cemented carbide substrate using a two-step coating process.
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This multilayer coating is deposited in a commercial industrial CVD reactor (Sucotec SCT600TH),

using a sophisticated two-step coating approach. First, a base layer of Ti (C,N) of around 9 µm

is deposited using a chemical system consisting of TiCl4–CH3CN–H2–N2–CO at a temperature of

900°C and a pressure of 100 mbar [70], [71]. From the precursors, TiCl4 is used as the Ti source

and CH3CN is used as the source of C and N.

Following the deposition of Ti(C,N), the reactor operating conditions change to T=1005°C and

p=80 mbar, in order to accommodate the deposition of α-Al2O3. The chemical system used for

the deposition of alumina consists of AlCl3–CO2–HCl–H2–H2S. This step takes around 3 hours to

complete [1]. AlCl3 acts as the source of Al, while H2O produced in situ via the reverse water-gas

shift reaction [72], [73] acts as the source of O for the coating. A more detailed review of the

α-Al2O3 coating step is presented in Chapter 3.

The produced cutting tools are consistently required to maintain cutting capacity for the

prescribed time indicated by the manufacturer. For this reason, the uniformity of the coating

thickness in all production runs, reactors, and production sites is essential, as it contributes to the

uniform longevity of the products [74]. Therefore, it is clear that the main quality metric of the

process is coating thickness.

For the analysis of the process and the prediction of process outcomes, it is essential to develop

models. To this end, it is possible to implement equation-based methods (Chapter 3) or data-driven

methods (Chapters 4 and 5), all centered on obtaining a better understanding of the process and

the important quality metric of the process, namely the deposition thickness. However, developing

such models comes with several challenges, as explained in Chapter 1.

2.2 Equation-based approaches

2.2.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is a subcategory of fluid mechanics that uses numerical

analysis to analyze and solve problems related to flowing fluids. Through the use of computers,

CFD aims to solve the fundamental equations of fluid flow (Navier-Stokes) along with conservation

equations, conservation equations for energy, species and electric potential among others. CFD
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can make all the required calculations that allow for the simulation of the free-flow of fluids as well

as the interactions between fluids and surfaces, which are defined by boundary conditions. Taking

the example of pouring a glass of water, CFD would allow us to simulate the flow of water, along

with the interaction of the water with the inner surface of the glass.

When both fluids and chemical reactions are involved, CFD can still provide answers [75]–[77],

taking into account chemical reaction schemes and conservation of species equations. As will be

shown in Chapter 3, CFD is widely used for modeling and investigating CVD processes, with great

success.

Governing equations

The governing equations for a CFD model usually include the conservation equations of mass,

momentum, and energy. When modeling a chemical process, such as CVD, where several hetero-

geneous and homogeneous reactions determine the outcome of the process, including equations

for the transport of chemical species and chemical reactions becomes necessary. This adds a layer

of complexity to the model. Of course, with some realistic assumptions, these equations can be

simplified, as will be shown in Chapter 3.

• Conservation of mass
∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

where u denotes the gas velocity vector and ρ the density of the gas mixture.

• Conservation of momentum

ρ
∂u
∂t

+ ρu · ∇(u) = −∇p +∇ ·
[

µ(∇u +∇uT)− 2
3

µ(∇ · u)I
]
+ F (2.2)

where p is the pressure, µ is the dynamic viscosity of the gas mixture, I is the identity tensor

and F is the volume force vector.
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• Conservation of energy

ρCp

(
∂T
∂t

+ (u · ∇) T
)
= − (∇ · q)− T

ρ

∂ρ

∂T

∣∣∣∣
p

(
∂p
∂t

+ (u · ∇) p
)
+ Q

+

[
µ(∇u +∇uT)− 2

3
µ(∇ · u)I

]
:
[

1
2
(∇u +∇uT)

]
(2.3)

where Cp is the specific heat capacity of the gas mixture at constant pressure, T is the

absolute temperature, q is the heat flux vector and Q contains the heat sources. The :

symbol denotes a double dot product.

• Transport of chemical species

ρ
∂ωi

∂t
+ ρ(u · ∇)ωi = Ri −∇ · ji (2.4)

where ωi denotes the mass fraction of the i species and ji and Ri are the diffusion flux and

the reaction rate of species i, respectively. The diffusion flux (ji) for each component i can

be calculated using a diffusion model (e.g., Maxwell-Stefan).

For a steady-state solution of the above system of equations, only boundary conditions are

required. If solved in transient conditions, initial conditions are also necessary.

Solving the above system of equations requires discretization of both the spatial and tempo-

ral domains. For the discretization of the spatial domain, methods such as the Finite Element

Method (FEM) or the Finite Volume Method (FVM) can be used. For transient problems, there

are implicit discretization options such as BDF and generalized-α and explicit methods such as

Adams–Bashforth or Rugge-Kutta. The selected method always depends on the nature of the

problem and potential resource limitations.

2.3 Machine learning

Taken from the book of Mitchell [78], we can find a definition of machine learning:

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by
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P, improves with experience E.

Let us say that we want to predict the outcome of a football match our favorite team is playing.

The possible outcomes are victory, draw, or defeat. An outcome predictor could be a machine

learning algorithm that, given examples of previous matches the team has played (e.g., match

statistics, squad selections, weather, etc.) and the outcome of each match, can learn to predict

the outcome of the upcoming match. The football matches that the algorithm uses to learn are

called the training set. Each training example is called a training sample. In this case, the task

T is to predict the outcome of the match our favorite team is playing, the experience E is the

training data, consisting of the historical performance of the team, and the performance measure

P must be defined; for example, we can use the ratio of correctly predicted match outcomes. This

particular performance metric is called accuracy and is often used in classification tasks.

To perform this task without machine learning, one must intently focus on the historical data,

try to find patterns or rules that result to each of the potential outcomes, and then evaluate the

developed rules based on their performance. It is obvious that this task would be very difficult and

would require immense time resources.

In contrast, ML can autonomously identify patterns in historical data (e.g., a specific player

making a huge difference, the team showing an advantage in adverse weather conditions) and

evaluate them using historical data, eventually ending up with rules that provide the optimal

performance for the given dataset.

Based on the discovered rules, and by interpreting the developed model, we can gain insight

on our favorite team, understand what makes the team win or lose and even appreciate players or

coach decisions that we previously couldn’t fathom.

Football fans, statisticians, and perhaps gamblers alike understand that this task is not as

simple as the example makes it appear. This is mainly due to the stochasticity associated with

football. However, it serves as a great example that shows the strengths of machine learning

approaches in cases where the data is abundant.

Apart from classification tasks, such as the one described above, there are also regression tasks,

where continuous values are predicted. An example of such a task, still relevant to football, would

be the prediction of attendance to the team’s next game. Based on ticket price, attendance in
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previous matches, and current form of the team, the algorithm could output a real number, which

would then be rounded up or down to the nearest integer).

There are also clustering [79] tasks. Let us say that the football team wants to identify

groups of similar fans within their fan base, in order to target them with special offers, events,

and promotions. The algorithm would take the characteristics of the fans as input and provide a

label for each fan, indicating to which cluster they belong. In contrast to the classification and

regression tasks, where validating the output of the algorithm is easy (the outcome of the game is

readily available, as well as the attendance), the output of clustering algorithms cannot be directly

validated and requires further analysis. This lack of actual outcome (or label, as is more commonly

known in ML), classifies clustering as an unsupervised learning [80] method. In contrast, regression

and classification belong to the group of supervised learning methods [81].

To accommodate the different types of tasks, different performance metrics must be imple-

mented. Accuracy is a popular metric for classification, root mean square error is a popular metric

for regression, and within-cluster sum of squares is a popular metric for clustering. Nevertheless,

many more performance metrics are available (or can be constructed) based on the task at hand.

Machine learning is very versatile and can be used in a wide variety of applications where data

are available. Its different disciplines (supervised/unsupervised learning) allow its implementation

for tackling various tasks and gaining insight for several different processes, be it football or

industrial chemical vapor deposition processes.

2.3.1 Unsupervised learning

Clustering

Clustering algorithms function by evaluating the dissimilarity or similarity between data points.

Through this process, they form clusters by grouping similar observations, helping to uncover

patterns or structures in the dataset.

Clustering algorithms usually use a similarity matrix as input, which includes pairwise dissim-

ilarities between all observations. For quantitative variables, the Euclidean distance is the most

commonly used metric, measuring the straight-line distance between two points in feature space.

However, selecting an alternative distance metric may lead to different clustering outcomes [80],
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[82].

Clustering algorithms can be grouped into different families based on their approaches. There

are partitional methods (i.e., k-means clustering), which assign observations to clusters iteratively,

considering distances from centroids. These require an a priori decision on the number of clusters

and are sensitive to initialization [83].

Density-based methods, such as OPTICS and DBSCAN, detect clusters by examining regions

of high density separated by low-density areas. The key parameters for these methods include the

minimum number of points required to form a cluster and the minimum distance between core

points [84]–[86].

Another family of clustering methods are hierarchical methods. These methods link data points

according to specific criteria. Agglomerative clustering starts with a number of clusters equal to

the number of observations and progressively combines clusters until a single cluster remains.

Divisive clustering starts with all observations in one cluster and splits them iteratively until there

are as many clusters as the number of observations. Distance metrics are used to calculate the

dissimilarity between clusters, and the merging (or splitting) of clusters depends on the linkage

criterion used. The choice of distance metric and linkage criterion can significantly influence the

results [87], [88].

2.3.2 Supervised learning

Supervised learning algorithms differ from unsupervised ones as they use labeled data, where the

model inputs (or features) xi are paired with their respective outputs (or responses) yi. These

models leverage data to forecast outcomes for future observations. Supervised learning includes

regression for continuous variables and classification for binary or ordinal outputs [81].

The available supervised learning methods are analyzed in depth in Chapter 4. However, for

the sake of completeness, a brief overview of the methods evaluated for this work is presented here.

Several common supervised learning methods include the following categories: (a) Linear methods,

such as linear regression, lasso regression [89], ridge regression [90], and logistic regression, which

is primarily used for classification tasks. (b) Support vector machines (SVMs) [91], which can

be linear or non-linear depending on the chosen kernel, are commonly applied to classification
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problems. (c) Tree-based methods, which encompass classification and regression trees [92], as

well as ensemble techniques such as random forests [93], gradient-boosted trees [94], extra trees

[95], and XGBoost [34], all of which combine multiple trees to enhance performance [96]. (d)

Artificial neural networks (ANNs), with their various architectures [97], offer flexible approaches

suitable for classification and regression tasks.

Artificial neural networks (ANNs) are a subset of machine learning models that has recently

drawn a lot of attention. ANNs are inspired by the intricate organization of biological neural

networks in the brain. ANNs consist of interconnected nodes known as neurons, each loosely

modeling its biological counterpart. These neurons are linked by edges, similar to synapses in the

brain. The network architecture involves layers of neurons, with signals flowing from the input

layer to the output layer. Intermediate layers, sandwiched between input and output, are termed

hidden layers. When the number of hidden layers is two or more, the network is classified as a

deep neural network (DNN).

Neurons in each layer receive signals from the preceding layer, process them, and transmit an

output signal to the subsequent layer. The output computation of each layer (with the exception of

the output layers) employs a non-linear activation function. Each neuron has associated parameters,

weights and biases, that are optimized during network training. In supervised learning scenarios

with labeled data, these parameters are fine-tuned to minimize the discrepancy between predicted

and actual target values. ANNs excel at modeling intricate relationships due to their architectural

complexity, rendering them a powerful tool in various machine learning tasks.

The TensorFlow [98] and Keras Python libraries [99] are used for the development and train-

ing of the ANN models presented in this work, and the scikit-learn library [100] is used for the

application of the rest of the ML methods.

2.3.3 Data-driven pipeline

Developing a predictive model is not as simple as training the model. There are several steps

that must be taken to ensure optimal model performance. These steps involve cleaning the

data, obtaining an initial understanding of the data, and determining potential cases for predictive

models. After determining potential cases where supervised learning approaches can be used to
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make predictions, the available features and their relevance to the output must be considered. Not

all features might be relevant to the output. Furthermore, new features based on the available

once might need to be created.

When the time for training the model comes, one must ensure that the model is properly

trained and is able to generalize well on unseen data. Avoiding overfitting is a common goal when

training predictive models and involves several different methods related to the data, the model,

and the learning process, as discussed in Section 2.3.3.

Data "clean-up"

Data, and especially real-world data can often be “dirty”. This means that the data can have

peculiar formats, certain observations might miss certain entries, or certain entries might contain

errors. The model developer must first bring the data in a format that can easily be manipulated

in an environment that allows for model development. Furthermore, the modeler has to decide

whether observations containing missing entries need to be discarded or if the missing entries

should be imputed. Finally, when it comes to potential errors or mistypes within the data, the

modeler should first detect the errors and then decide on taking corrective action or discarding the

observations.

Exploratory data analysis

Following the “clean-up” of the data, it is time to look and see what it seems to say [101].

Exploratory data analysis (EDA) is just that. It involves data visualization, through histograms,

box plots, dot plots, etc., along with basic statistical analysis for the variables present in the

dataset (e.g., calculation of the mean, the median, and standard deviation alongside the quantiles

of continuous variables) [102]. Dimensionality reduction or clustering could also be considered part

of EDA, as they allow for the identification of potential patterns in our data.

EDA allows us to process the data, detect abnormalities, and identify potential patterns in our

data. It allows us to get a comprehensive grasp of our data before jumping into more rigorous

data analysis and modeling.
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Feature engineering

Feature engineering is another crucial step that precedes the training of the predictive model. The

performance of most machine learning models greatly depends on the feature vector representation.

Consequently, data scientists invest significant effort in designing preprocessing pipelines and data

transformations [103].

Feature engineering usually takes place in parallel with EDA. It involves the creation of new

features, based on preexisting ones, in an attempt to find the best feature representation for the

predictive model that we wish to develop [104]. These engineered features could, for example, be

the product of two features, the inverse of a feature, the sum of the absolutes of two features, or

the maximum/minimum value between several features.

Last but not least, feature engineering also involves the encoding of categorical variables [105]

and the transformation (e.g., standardization, min-max transformation) of numeric variables, thus

bringing the data in a model-friendly format.

Overfitting and how to avoid it

A very common problem supervised learning approaches suffer from is overfitting. When we say

that a model is overfitting, we mean that the model performs very well on the training data

but nevertheless performs poorly on the unseen test data [106]. The overfitted model effectively

“learns” the data of the training set, without capturing the underlying principles [107], and thus

failing to generalize on the test set.

Overfitting can occur for several reasons. First, it can be caused by the selection of a very

complicated model. Furthermore, it can also be due to the selection of non-informative features

or the selection of more features than necessary for satisfactory prediction performance [106].

Strategies to avoid overfitting can be employed when it comes to data, model characteristics,

and the learning process of the model.

Cross-validation On the data side, cross-validation [108], [109] is one of the most popular

approaches. Cross-validation is used for estimating the prediction error of a model. For example,

in k-fold cross-validation, the dataset is split into k groups. One of the groups is kept unseen by
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the model during training and acts as a test set. The rest of the groups make up the training

set. This procedure is repeated until each of the k groups has been used as the test set. The

predictive performance of the model is then evaluated considering all k test sets, using the mean and

standard deviation of each performance metric. In this way, the performance metrics provided by

cross-validation are more representative of the model’s performance than the performance metrics

of the model on a single held-out test set. In general, cross-validation is crucial and should be

incorporated in other steps of model development, where predictive accuracy is of interest (e.g.

feature selection or hyperparameter optimization).

Feature selection and feature extraction Two further measures against overfitting are feature

selection and feature extraction. When machine learning algorithms are applied to high-dimensional

data, the phenomenon of the curse of dimensionality comes into play. This refers to the sparsity of

data in high-dimensional spaces, which negatively affects algorithms designed for low-dimensional

spaces [110], [111].

Feature extraction is based on dimensionality reduction techniques such as PCA [112] or LDA

[113] and reduces the dimensionality of the data by projecting high-dimensional features to a

new low-dimensional feature space. Feature selection, on the other hand, aims at selecting an

important feature subset directly from the high-dimensional space. There are three main categories

of feature selection methods: a) Filter methods which evaluate the importance of features by

examining statistical measures, focusing on their correlation with the target variable. This approach

selects features based on their standalone attributes, independently of any specific machine learning

algorithm used. Examples of filter methods are the calculation of correlation between a variable

and the target output or the chi-square score in the case of categorical outputs. b) Wrapper

methods iteratively take advantage of the learning performance of the predictive model to assess

the quality of selected subset of features. Any algorithm that can actively search for optimal subsets

of features in the complete data set can be considered a wrapper method, from exhaustive search

[114] to evolutionary algorithms [115]. c) Embedded methods take advantage of the structure

of the predictive model to select relevant features. Examples of embedded methods are random

forests [93] or Lasso regression [89].
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Data augmentation Data augmentation is another approach on the data side, with the aim of

tackling overfitting and improving model performance and robustness [116], [117]. In principle, the

goal is to artificially enhance the dataset by adding slightly modified versions of existing observations

[118]. In the example of image recognition, the images present in the dataset might be randomly

rotated, mirrored, resized, and cropped in an attempt to improve model performance [119]. For

tabular data, the synthetic minority oversampling technique (SMOTE) [120] and its variants [121]

are widely used in cases of imbalanced classification datasets. Variational Autoencoders (VAEs)

[122] have also been proposed as a data augmentation method for tabular data [123].

Early stopping In supervised learning, model training involves the minimization of a cost func-

tion. When an iterative method (such as gradient descent) is used to determine the model param-

eters (e.g. weights and biases in a neural network) that minimize the cost function, early stopping

[124] can be used as a tool to avoid overfitting. Early stopping, in principle, stops the model

training if the predictive performance on an unseen dataset does not improve for a certain number

of iterations. In this way, the model is deterred from “memorizing” the data of the training set,

and its generalizability is retained.

Regularization Regularization is another concept related to the objective function. In general,

the output of the model can be determined by several features. However, not all of these features

might have limited effect on the model output and might hinder the model’s predictive performance.

One way of limiting this negative influence of these features on the model is feature selection

(discussed above). Another way of limiting the effect of these useless features is through the use

of regularization [125]. A common way to do this is to add a “penalty” term in the cost function

relative to the variable weights of the model. This term is usually the l1- (sum of absolute values)

or l2-norm (sum of squared values) of the variable coefficients. There is usually a user-defined

tuning parameter that multiplies this norm based on the desired regularization effect.

Another regularization method used exclusively in ANNs is dropout. The concept of dropout

refers to the exclusion of certain units, both hidden and visible, within a neural network. This

exclusion involves temporarily eliminating a unit from the network along with its associated incom-

ing and outgoing connections. The selection of units to be dropped is performed randomly with
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a predefined probability. The application of dropout to a neural network is equivalent to sampling

a pruned network from it. At the time of testing, the pruned networks are combined in order to

make the prediction [126].

Hyperparameter optimization The hyperparameters of the predictive models play an important

role in its predictive performance. Optimizing a machine learning model to suit various tasks

requires fine-tuning of its hyperparameters. The selection of an optimal hyperparameter setup

for machine learning models critically influences the overall performance of the model [127]. The

hyperparameters of the model can be related to its architecture (e.g. number of layers and number

of neurons in an ANN, or the maximum depth and number of estimators in a random forest model).

They can also be related to the type of regularization used (dropout, l1 or l2 regularization) or the

learning process (e.g. learning rate) of the model. It is evident that the variable space for these

hyperparameters is not continuous; therefore, the application of gradient-based methods for the

optimization of the model can be challenging, if not forbidding.

Grid search or random search are two widely used gradient-free methods for hyperparameter

optimization. In grid search, the selected numerical hyperparameters are dispersed at uniform

intervals across the user-defined domain, ensuring an exhaustive examination of the parameter

space. For categorical hyperparameters, all values are considered (unless a specific subset is

selected by the user). In grid search, all possible combinations are considered, which can lead to

prohibitive costs, especially as the number of tested hyperparameters increases. Random search

aims to address this problem by randomly selecting combinations of hyperparameters within the

domain, given resource constraints. In these two methods, each hyperparameter configuration is

independently evaluated [128].

Another category of gradient-free methods used for hyperparameter optimization is population-

based methods, such as genetic algorithms and particle swarm optimization [129]. These algorithms

sustain a population, which is essentially a collection of hyperparameter configurations, and en-

hance this population by employing local modifications, also known as mutations. In addition,

they combine distinct members through a process known as crossover to generate a subsequent

generation composed of superior configurations. These algorithms could be particularly suitable for
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hyperparameter optimization problems with large configuration space due to their high efficiency

[128].

Another popular hyperparameter optimization method is Bayesian optimization (BO) [130]. It

is an iterative algorithm whose strategy is to model the relationship between the hyperparameters

and the performance of the model (or the cost function). This relationship is modeled using

Gaussian processes [131] or random forest [132] surrogate models. The cost function is evaluated

for a randomly sampled set of hyperparameters. Subsequently, BO then uses these data to train

the surrogate model, which outputs estimates for the cost function, as well as the prediction

uncertainty. These estimates can produce a predictive distribution for the different hyperparameter

configurations. Based on the predictive distribution, BO establishes a cheap-to-evaluate acquisition

function that balances between exploitation and exploration.Exploration involves the systematic

sampling of instances in regions that have not yet been examined, in order to uncover potentially

significant areas which may have been previously overlooked. In contrast, exploitation focuses on

sampling within the currently identified promising regions. These regions are determined based

on the posterior distribution and are believed to have a higher likelihood of containing the global

optimum [128]. BO models aim to strike a balance between exploration and exploitation to identify

the most probable optimal regions while ensuring that better configurations in unexplored areas

are not overlooked. BO approaches can usually detect near-optimal hyperparameter combinations

in a few iterations [133].

In general, hyperparameter optimization is an indispensable part of model development, as it

can address the problem of overfitting by adjusting several characteristics of the model and the

learning process simultaneously and without requiring a lot of user input. The user is only asked to

select a hyperparameter optimization method and to provide instructions and constraints regarding

the search space.
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Abstract

An efficient CFD model for the deposition of alumina from a gas mixture consisting of AlCl3,

CO2, HCl, H2 and H2S in an industrial CVD reactor with multiple disks and a rotating

feeding tube, is proposed. The goal is twofold: (i) to predict the thickness of the deposited

material, (ii) to investigate whether the process rate is determined by the reaction rate or

by diffusion. A reaction model that consists of a gas-phase homogeneous reaction and a

heterogeneous reaction is implemented, with a proposed kinetics rate that includes the effect

of the H2S concentration. The latter has a catalytic effect, but the mechanism is not entirely

understood. The entire reactor geometry (consisting of 40-50 perforated disks) is divided

into appropriately chosen 7-disk sections. The 2D, time-dependent CFD model is validated

using production data for the deposition thickness. The proposed computational tool delivers

accurate predictions (average relative error 5%) for different geometries corresponding to real

reactor set-ups. Extending the functionality beyond prediction, a computational experiment

is performed to illuminate the interplay between species diffusion and chemical reaction rates,

which determines the rate-limiting mechanism. The results indicate that species diffusion is

fast enough and therefore reaction kinetics determine the overall deposition rate.

3.1 Introduction

Chemical Vapor Deposition (CVD), where a solid coating is deposited on a heated surface from

a mixture of gas reactants, is used for various applications, including microelectronics [57], poly-

mers for microfluidics, sensors, and membranes [134] and wear resistant coatings [55], [56]. It

is a complex process involving competing physical phenomena, such as convection, diffusion, and

chemical reactions. The balance established between transport phenomena and chemistry is critical

for determining the efficiency of the process and the quality of the produced material.

Computational Fluid Dynamics (CFD) models of CVD processes that account for the transport

of mass, momentum, and species inside reactors have been proposed in order to elucidate the

interplay between the different mechanisms and its effect on the process [135]–[138]. Such models

have also been used for optimizing the design of CVD reactors [139], [140], as well as for predicting
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reaction rates inside the reactor [141]. Zou et al. [142] successfully tried to analyze industrial CVD

reactors using a porous media approach. This approach was used in order to tackle the difficulty

of explicitly modelling the large amount of substrates in the system by modelling the substrate-

packed drawers of the reactor as porous media. Others have thoroughly investigated the reactant

gas flow regimes inside of the reactors [143], as well as the effect of the flow on the produced

coatings [4], [144]. Mitrovic et al. in a series of publications [3], [145], [146], analyzed the flow

inside a rotating disk reactor for different process parameters using CFD, determined the optimal

parameters for the application and then optimized the reactor design by using the results of the

simulations. Nevertheless, their work did not include a chemistry model and hence it was not

possible to assess the effect of the flow on the deposited film.

Despite the progress in computer-aided analysis of CVD reactors, important challenges remain,

especially in industrial-scale processes:

1. Industrial CVD reactors have a complex geometry in order to increase the coated surface and

the throughput of the process. This translates into time-dependent models involving three-

dimensional computational geometries, often with moving mesh and therefore, increased

level of computational complexity and cost.

2. The actual network of gas-phase and heterogeneous reactions that ultimately lead to depo-

sition, are often not completely known. For example, in the chemical system studied here,

the role of hydrogen sulphide is not entirely understood, although its positive effect of the

deposition rate has been widely observed [147]–[149].

3. Even when there is a well-established chemical network, it often involves dozens of reactions

and intermediate species. Integrating such a chemistry pathway in a CFD model, would make

it computationally intractable. Moreover, even when the chemical system is known, ie. the

specific reactions and their kinetic rates, the effective reaction rates have to be determined

for the particular application and geometry.

4. The geometry of the reactor changes, even in a day-to-day basis in industrial practice. This is

not true for every type of CFD application, but it is particularly true in the industry of cutting
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tools and wear resistant coatings. Therefore, it is important for the usability of the model

to easily accommodate changes in the computational geometry in an almost automatic way.

Points 2 and 3 have been addressed in the past by developing reduced order models of CVD

in conjunction with deposition chemistry models [4], [9], [143], [150], [151]. Nevertheless, these

reduced order strategies require large amounts of data from detailed models which are often

computationally intractable.

In this work we focus on addressing the combination of points 1, 2 and 3 in an industrial-

scale CVD application and illustrate the implementation of an efficient modeling strategy that

hinges CFD with an effective deposition model, validated by production data. The geometry of

the investigated CVD reactor changes on a day-to-day basis, which is why addressing Point 4 is

important and will be the subject of future work. Despite the simplifications of the CFD model, we

present its potential not only as a predictive tool but also as a means of suggesting the dominance

of reaction kinetics in terms of determining the rate-limiting steps of the process. This is an

important contribution, because in the context of an industrial process, it is not always feasible

to measure the deposition rate experimentally in different temperatures and produce an Arrhenius

plot to map out the diffusion and reaction limited regimes.

The application addressed here, is the deposition of alumina onto three-dimensional cemented

carbide cutting tools with a well-established thermal LP-CVD process from a gas mixture consisting

of AlCl3, CO2, HCl, H2 and H2S [1] in a commercial reactor consisting of several perforated disks

and a rotating inlet tube (Sucotec SCT600TH). Several other suggested CVD processes exist for

the deposition of Al2O3, such as a MO-CVD process utilizing aluminium tri-isopropoxide (ATI)

as a precursor [152] or a PE-CVD process utilizing dimethylaluminum isopropoxide (DMAI) as a

precursor [153]. These processes not only require a lower thermal budget, but also utilize a safer

gaseous atmosphere. However, for our specific application (i.e. wear resistant coatings for cutting

tools) and because of the targeted properties of the alumina coating, the aforementioned thermal

LP-CVD process is used.

Alumina is very popular for wear-resistant coatings [55], [56] because of its properties [154],

[155] and the improved chemical stability and high temperature hardness it provides in Al2O3/

TiCN multilayer coatings [67]–[69]. The effect of process conditions on the growth and texture of
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α-Al2O3 has been studied [149], since both directly influence the final properties of the α-Al2O3-

coated cutting tools. However, little work has been done on the process of the CVD of hard

coatings.

The following sections are structured as follows: The geometry and operation of the studied

chemical vapor deposition reactor is presented in Section 3.2. The details of the developed CFD

model are discussed in Section 3.3. Subsequently, the results of the CFD model are detailed in

Section 3.4 along with an analysis of the rate-determining step of the process, followed by the

conclusions in Section 3.5.

3.2 Chemical vapor deposition reactor geometry and operation

3.2.1 Reactor set-up and process conditions

This work focuses on the CVD of alumina on cutting tools, referred to henceforth in the text as

inserts. An overview of the phenomena taking place inside a CVD reactor is presented in Figure 3.1.

Inserts have various shapes and sizes (Fig. 3.2a) depending on their use in industrial applications

but are invariably required to maintain cutting capacity for the prescribed time indicated by the

manufacturer [74]. For this reason, the special coatings deposited, such as the alumina coating

studied here, not only increase longevity but also ensure the expected usability of the insert.

The deposition of alumina on the inserts is studied in a commercial, industrial CVD reactor

(Sucotec SCT600TH) which typically consists of 40-50 perforated disks, stacked one on top of

the other shown in Fig. 3.2b. For reasons of clarity, a partial schematic of the reactor, depicting

3 disks is shown in Fig. 3.2c. The inserts are placed on the disks, as shown in Fig. 3.2d, while

carefully designed perforations allow for the transport of the gas reactants between the disks and

around the inserts. For each type of insert, there is a dedicated design of perforated disk, to

accommodate the particular geometric characteristics. The mixture of gas reactants enters the

reactor through a cylindrical tube at the center of the disk structure, through two inlet holes per

disk, placed antipodally (shown in red in Fig. 3.2c). There is a 60° angle difference between the

inlet holes of each disk-level of the reactor and the feeding tube rotates at a constant speed of

2 RPM. The gas mixture exits the reactor through holes in the perimeter of each disk (shown in

29



Development of an efficient chemistry-enhanced CFD model

Figure 3.1: Overview of the interplaying mechanisms and phenomena of a CVD process.

blue in the schematic of Fig. 3.2c).

A two step coating process takes place inside the reactor [155]. As a first step, a Ti(C,N)

base layer of about 9 µm is grown on the cemented carbide cutting inserts. An α-Al2O3 layer is

then deposited from AlCl3–CO2–HCl–H2–H2S at T = 1005°C and P = 80 mbar. The inlet gas

reactant volumetric fractions are 1.7% for AlCl3, 3.7% for CO2, 2.1% for HCl, 92.2% for H2 and

0.3% for H2S. The total inlet gas flow rate is 65 L · min−1 (P = 80 mbar, T = 1005°C) [1].

3.2.2 Available production data

The production data available to validate the proposed model, are a total of 15 coating thickness

measurements on inserts placed at selected locations inside the reactor, shown in Fig. 3.3.

For each production run, the coating thickness on the inserts at five disks are considered:

1. The top insert-containing disk of the reactor.

2. The 3rd or 4th disk from the top.

3. The middle disk.

4. The 3rd or 4th disk from the bottom.
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(a) (b)

(c) (d)

Figure 3.2: (a) Examples of the different cutting tool inserts that are coated inside the reactor.
The shapes and sizes of the different inserts coated in the same reactor may differ significantly.
(b) A 3D representation of the entire reactor. (c) A close up representation of a 3-disk part of the
reactor. The rotating inlet tube passes through the center of the stack of disks. The gas reactants
enter through the perforations shown in red. There are two holes per disk level, placed so that
there is a 60° angle between the holes in neighbouring disks. The gas outlets are shown in blue.
(d) An example of a perforated disk loaded with inserts. The inserts are shown in blue.
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5. The lowest insert-containing disk of the reactor.

On each of the aforementioned disks, there are 3 positions of interest. Specifically:

1. The position closest to the inlet, R0.

2. The position in the mid-distance between the inlet and the outlet, R1/2.

3. The position closest to the outlet, R.

All measurements are in µm, with a precision of 0.1 µm.

3.3 Description of the CFD model

3.3.1 Governing equations

The governing equations include the conservation of mass and momentum, as well as the equations

for the transport of chemical species and the occurring chemical reactions. A detailed overview of

the system of equations can be found in the publication of Gakis et al. [4].

The reactor’s operating temperature is considered constant in the entire domain. This is due

to the fact that the entire reactor set-up is placed inside a furnace and therefore the entire system

is heated up to a tightly controlled temperature of 1005°C. The ideal gas assumption is made for

calculating the density of the gas mixture. The flow is considered laminar and incompressible. All

calculations are made in transient conditions to account for the rotation of the gas inlet tube.

The equations were discretized with the finite element method and solved using COMSOL

Multiphysics®. Linear basis functions are used for the continuity equation and quadratic functions

for the rest. The computational geometry is presented in detail in the following paragraph.

3.3.2 Computational geometry

The reactor geometry is inherently non-axisymmetric and time-dependent due to the rotation of

the vertical tube and the placement of the inlet holes. Therefore, a fully representative simulation

would have to account for the entire 40-50 disks, in 3D, while also being time-dependent with a

moving mesh. This, however, would come hand in hand with a significant computational cost,
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3.3. Description of the CFD model

Figure 3.3: A 2D representation of the entire reactor indicating in red the 15 positions with
available α-Al2O3 coating thickness measurements. The leftmost position is the one closest to the
inlet. The arrows indicate the gas reactant inlets and outlets.

even when excluding the mass balances of the species that participate in the multitude of chemical

reactions that will be discussed in detail in the following paragraph.

A two-dimensional computational geometry is proposed with appropriately selected boundary

conditions. Furthermore, the computational domain does not include all the disks but rather

accounts for parts of the reactor, containing 7 disks (cf. Fig. 3.4). The number of disks in the
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model is determined by gradually decreasing the number of disks (from 11 to 7) and comparing the

deposition thickness in the middle disk with the available production data. By gradually decreasing

the number of disks considered, we are able to select the lowest number of disks for which the

effects of the top and bottom boundary conditions do not affect the prediction of film thickness

at the disk of interest (the middle disk). Another aspect that contributes to efficiency is linked

to the fact that different reactor set ups may have several 7-disk parts in common. For example,

an alternative reactor configuration could contain the same 7-disk sequence. In this fashion, it is

possible to draw conclusions for several combinations of the 7-disk model, that would otherwise

require the solution of new entire reactor models each time.

By using this 7-disk, two-dimensional approach and by simulating for 2 periods (or turning

cycles) of the process, we can in turn average the deposition rates on each insert and obtain an

equivalent deposition rate for several positions of interest inside the reactor.

3.3.3 Boundary conditions

To account for the rotating inlet tube, in the context of a two-dimensional geometry, time-

dependent inlet boundary conditions are applied. The perforations of the rotating tube, through

which the gases are introduced into the reactor are represented by a fixed inlet boundary in the

computational geometry in each disk level. The gas feed velocity is prescribed at each inlet as

a time-dependent function that varies between 0 and Vmax as a pulse that mirrors the rotation

of the inlet tube. The maximum velocity value (Vmax) is determined based on the experimental

conditions and the geometry. Specifically, the following are taken into account:

1. The inlet tube rotates with a rotational speed of 2 RPM.

2. The total inlet gas flow rate is 65 L · min−1 (P = 80 mbar, T = 1005°C).

3. There is an average of 35 disks per run.

4. There are two perforations on the inlet tube for each disk. These two perforations are

antipodal and their average diameter is 0.002 m.

5. There is a 60° angle difference between the perforations for each disk.
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Figure 3.4: Inlets (highlighted in blue) and applied pulse boundary conditions for each one of them.
The selected outlet boundaries are presented in red.

For the 7-disk geometry, the inlets along with the pulse boundary conditions applied to them are

shown in Fig. 3.4. It should also be noted that the chemical species’ concentrations at the inlet are

calculated using the volumetric percentages found in Section 3.2.1 and the species’ molar fractions

at the inlet are set to 0.0385 for CO2, 0.0169 for AlCl3, 0.0210 for HCl, 10−6 for H2O and CO,

0.9203 for H2 and 0.0033 for H2S.

In order to reflect the actual geometry (cf. Fig. 3.2), where the outlet perforations are not
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aligned, the prescribed outlet pressure boundary conditions are applied at every other disk level.

This means that out of the seven available outlets, only the first, the third, the fifth and the

seventh from the top are considered open (marked in red in Fig. 3.4).

3.3.4 Chemistry model - Modeling the α-Al2O3 deposition

Several authors have studied the CVD of α-Al2O3 from a mixture of AlCl3–CO2–HCl–H2–H2S; for

reasons of completeness, a brief overview is presented. The deposition appears to take place due

to the hydrolysis of AlCl3 in the presence of H2O via the following surface reaction [149], [156],

[157]:

2AlCl3(g) + 3H2O(g) −→ Al2O3(s) + 6HCl(g) (3.1)

while H2O is produced in situ in the gas phase via the water-gas shift volumetric reaction [73]:

H2(g) + CO2(g) −→ H2O(g) + CO(g) (3.2)

It must be noted, that this direction of the water gas shift reaction is endothermic [158], however,

due to the small amount of CO2 in the gas-phase, we expect no changes in the isothermal profile

of the reactor. Another assumption is that the consumption of precursor does not affect the flow,

which is reasonable due to its low concentration in the gas phase.

Although the work of Catoire and Swihart [157] highlights the complex mechanisms of the

deposition kinetics, implementing this chemistry model that consists of 104 reactions and involves

35 species would inflate the computational cost of the CFD model. Given that the computational

geometry is already a discounted representation of the actual reactor, it makes sense to implement

the effective kinetics proposed in the work of Schierling et al. [156]. In their work, Schierling et al.

[156] propose a simple reaction scheme, consisting of four reactions with two possible intermediate

species in the gas phase, namely AlCl2OH and AlOCl. The detailed suggested reaction mechanism

is the following:

AlCl3 + H2O ⇄ AlCl2OH + HCl (3.3)

AlCl2OH ⇄ AlOCl + HCl (3.4)
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3.3. Description of the CFD model

2AlOCl ⇄ Al2O2Cl2 (3.5)

Al2O2Cl2 + H2O ⇄ Al2O3 + 2HCl (3.6)

According to the authors, the second step (eq. 3.4) is the rate-limiting reaction for the surface

reaction, while the first step (eq. 3.3) is in the state of equilibrium. Based on this reaction

mechanism, the first suggested deposition rate (Rdep1, eq. 3.7) is derived. The authors then

proposed a second empirical rate (Rdep2, eq. 3.8) for an assumed parallel reaction path, with

the aim of closely reproducing their experimental data. However, the rate remains empirical since

the authors were not successful in searching for a second or third possible reaction sequence.

Ultimately, the sum of these two deposition rates (Rdep1 + Rdep2) makes up the total α-Al2O3

deposition rate.

Rdep1 = k1 · pAlCl3 · pH2O · p−1
HCl (mol · m−2 · s−1) (3.7)

Rdep2 = k2 · p0.7
AlCl3 · p0.25

CO2
· p0.2

H2
· p−1

HCl (mol · m−2 · s−1) (3.8)

where pi denotes the partial pressure of each reactant i. The kinetic rate for the water gas shift

reaction (eq. 3.2) for a temperature of 1005°C is calculated through equation 3.9 [72]:

Rwgs =
d[CO]

dt
= kwgs · e−Ea/(RT)[H2]

0.5[CO2] (mol · m−3 · s−1) (3.9)

where units in brackets denote the concentration of each reactant in mol · m−3, the pre-exponential

factor (kwgs) is equal to 1.2 · 1016m1.5 · mol−0.5 · s−1 and the activation energy (Ea) is equal to

326.36 kJ · mol−1.

The homogeneous water-gas shift reaction (eq. 3.2) takes place in the domain of the simulation

as indicated in Fig. 3.5a. Following experimental evidence, α-Al2O3 deposition (eq. 3.1) is

considered to take place on all interior surfaces of the reactor, including the reactor walls, the

inserts and the disks on which the inserts are placed. The only surfaces excluded are the reactor’s

inlets and outlets. A visual representation for the boundaries selected for the deposition can be

observed in Fig. 3.5a. The α-Al2O3 deposition kinetic rate constants, k1 (eq. 3.7) and k2 (eq.
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3.8) are fitted based on production coating growth data. Due to the lack of production data for

different reaction temperatures, it is not possible to fit both a pre-exponential factor (k0,i) and an

activation energy (Ea,i) for each deposition rate. Therefore, the entire deposition kinetic constants

(ki = k0,iexp(−Ea,i/RT)) are fitted all at once. For the WGS reaction, the pre-exponential factor

is modified during fitting. However, no modification of the activation energy takes place.

(a) (b)

Figure 3.5: (a) Surfaces where α-Al2O3 deposition takes place are shown in purple; the volumetric
Water Gas Shift reaction takes place in the area shown in gray. (b) Examples of the 2D represen-
tation of the inserts and perforated disks, in the computational domain. The arrows indicate the
gas reactant inlets and outlets.

Given the gas flow and reactant concentration profiles inside the reactor, the α-Al2O3 deposition

(hdep) for the entire production time is given by eq. 3.10, integrating the deposition rates on the

deposition boundaries for each insert of interest over the simulated 60s of the deposition process.

The result of this integration is the deposition (in mol · m−2) that took place in the 60 simulated

seconds (or 1 minute) of the process. By multiplying this result by the ratio of (MAl2O3 /ρAl2O3)

we obtain the deposition thickness (in m) for the simulated 60s of the process. This result is then

multiplied by the duration of the deposition process in minutes (tdep - in this implementation, 3h),

in order to calculate the deposition thickness for the entire process duration.

hdep = tdep
MAl2O3

ρAl2O3

∫ 60s

0s
(Rdep1 + Rdep2) dt (m) (3.10)
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where MAl2O3 and ρAl2O3 denote the molecular mass and density of the produced α-Al2O3 coating.

The molecular mass of α-Al2O3 (MAl2O3) is 101.96 g · mol−1 and the value of density at 1005°C

is taken from Munro [159] and is equal to 3891 kg · m−3.

The implementation of the kinetic constants proposed in Tingey [72] for the Water Gas Shift

reaction, results on under-prediction of the overall coating deposition, attributed to low water

availability. This motivated further investigation into the mechanisms that contribute to the in-

situ production of water. Based on the more complex reaction scheme given by Catoire and

Swihart [157], the WGS reaction is not the only water-producing reaction. In fact, three different

pathways (including the WGS reaction) are responsible for the production of water inside the

reactor. All three pathways are able to form water in comparable amounts and are therefore

considered competitive and coupled. The authors also suggest that the AlOCl intermediate plays

a vital role in one of the aforementioned water production channels. In the publication of Tan et

al. [160], the effect of the AlOCl intermediate in water production is also acknowledged. However,

the authors identified this effect as a catalytic effect on the Water Gas Shift reaction. Based on

these previous findings the rate-constant of the Water Gas Shift reaction is fitted to capture the

thickness measurements available in the production data.

Finally, Blomqvist et al. [148] investigated the effect of H2S in the deposition of alumina under

a chemical system similar to the present one. Although the H2S appears to have minimal to non-

existent effect on the Water Gas Shift reaction in the gas phase, the authors claim that H2S as a

true catalyst on the surface of α-Al2O3. However, the true mechanism of this effect is still obscure.

For this reason, we also propose a modified version of equation 3.7, which - if given production

data for different Hydrogen Sulphide inlet concentrations - could allow for the future investigation

of the effect of H2S in the process. The modified reaction rate equation is (eq. 3.11).

R′
dep1

= k′1 · pH2S · pAlCl3 · pH2O · p−1
HCl (mol · m−2 · s−1) (3.11)

3.4 Results

Since proprietary industrial production data are used for model validation, absolute thickness and

deposition rate values cannot be presented. Therefore, only relative values are presented. Two
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main metrics are given, considering the predicted (yprediction) and the actual (yactual) deposition

thickness values:

1. The relative error (RE), which is calculated by the following formula:

RE =
yprediction − yactual

yactual
(3.12)

2. The mean absolute percentage error (MAPE), which is calculated for each geometry by

averaging the N absolute values (in our case, N = 3) of the relative error per reactor

geometry.

MAPE =
1
N

N

∑
i=1

∣∣∣∣yprediction,i − yactual,i

yactual,i

∣∣∣∣ (3.13)

3.4.1 Parameter fitting and model validation

After conducting a mesh independence study for meshes consisting of 129195, 182609 and 287109

elements, a mesh of 129195 elements was used for the discretization of the combined gas flow / α-

Al2O3 deposition problem. This resulted in a problem consisting of about 106 degrees of freedom.

Solution time was approximately 3.5 core hours on an 11th Gen Intel(R) Core(TM) i7-1185G7

processor. When compared with the resources required for the 2D, full reactor model (5 · 106, 66

core hours solution time), an important difference in the required resources can be observed.

An important challenge for this application is the fact that there are no CFD results reported

in the literature. To our knowledge, this is the first attempt and therefore the model can only be

validated using the available production data. For this reason, four different 7-disk parts of the

same reactor are simulated: Geometry A is used for fitting the kinetic parameters of the chemistry

model; Geometries B, C, and D (Fig. 3.6) are used for the validation of the model in set-ups,

i.e combinations of disks and inserts, representing different parts of the same reactor, where the

flow and species concentration distributions are not expected to be the same as in Geometry A.

The four geometries are determined by several factors, such as the shape and size of inserts to be

coated and the geometry of the disks that carry each type of inserts (each insert has a specific

disk geometry). The latter means that the perforations of the disks have a different diameter and

the number of inserts in each disk is different, affecting in this way the overall surface area at each
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Figure 3.6: The four 7-disk geometries used in the CFD simulations. All cases are different parts
of the same reactor.

disk.

The kinetic parameters are adjusted so that the difference between the predicted and the

production deposition thickness values is minimized. The comparison between the production and

predicted thickness values is done in three different positions (cf. Fig. 3.5b): R0 which is closest

to the inlet, R1/2 which is mid-distance between inlet and outlet and R, close to the outlet.

The first step towards fitting the kinetic parameters was choosing initial values. The initial

value for the kinetic constant of the Water-gas-shift reaction was taken from the publication of

Bustamante et al. [73]. For the surface reaction kinetic constants k1 (eq. 3.7) and k2 (eq. 3.8),

the initial values were set to 0.001 s · mol · kg−1 · m−1 and 10-6 mol · m−1.85 · s−0.7 · kg−0.15

respectively. These values led to a great underestimation of the coating thickness at all positions.
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After trying different values for the kinetic parameters, it became clear that the reason for this

severe underestimation was the value of the kinetic constant of the WGS reaction. This parameter

was then fitted (as mentioned in section 3.3.4) to achieve coating thickness predictions in the

same order of magnitude as the available production data. An increase of this parameter led to

higher coating thickness overall. By making a tenfold increase in the WGS pre-exponential factor,

we obtain results comparable to the production data, however, the deposition thickness at the

position closest to the inlet is overestimated (RE: 33.8% @ R0, 7.7% @ R1/2, 13.2% @ R).

The next step was to reduce the overestimation of the deposition thickness at the position

closest to the inlet (R0). By observing the results of the simulations for different values of k1, it

was clear that this overestimation could be mended by selecting a lower value of the parameter.

Therefore, when setting k1 = 3 · 10−5s · mol · kg−1 · m−1 along with a nine-fold increase of the

pre-exponential factor of the WGS reaction, slightly underestimating predictions are obtained (RE:

-6.2% @ R0, -4.2% @ R1/2, -5.3% @ R).

After obtaining these results, the authors decided to make the transition from k1 to k′1, trying

to include in this way the concentration of H2S into the α-Al2O3 deposition rate (via the proposed

rate of eq. 3.11). Based on the average H2S concentration inside the reactor and the value of

k1 that yielded the previous results, an initial value of 9 · 10−7s3 · mol · kg−2 was set for k′1. This

led to underestimation of the coating thickness (RE: -23.8% @ R0, -20.5% @ R1/2, -21.0% @ R).

Increasing k′1 to 1.1 · 10−6s3 · mol · kg−2, only slightly amended this underestimation (RE: -20.6%

@ R0, -20.4% @ R1/2, -20.8% @ R).

Having observed from previous simulation that an increase WGS reaction pre-exponential factor

helps in reducing the underestimation of coating thickness at all positions, an eleven-fold increase

was made. This yielded promising results (RE: -4.2% @ R0, -3.4% @ R1/2, -4.3% @ R). With

some further fine-tuning, we ended up multiplying the pre-exponential factor of the WGS reaction

(kwgs) by a factor of 11.25.

The derived kinetic parameter values shown in Table 3.1, lead to prediction error of 2% at

most in each one of the three positions (R0, R1/2 and R) in Geometry A.

The results, for Geometries B, C and D are presented in Fig. 3.7. Overall, the proposed

CFD model predicts the actual thickness values within a 4% error (with the exception of the R1/2
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(a)

(b)

Figure 3.7: The developed model is tested for 4 distinct 7-disk geometries. The coating thickness
predicted by CFD simulations is compared to production thickness values in three different positions
(R0, R1/2 and R). Geometry A is used for calibration of the chemistry-enhanced CFD model, which
is then tested in Geometries B, C and D. (a) Errors relative to the production data per geometry.
(b) The mean absolute percentage error (MAPE) for each one of the four geometries. The highest
error (observed for Geometry D) does not exceed 5%.
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Table 3.1: The fitted kinetic constants used for the simulation of the α-Al2O3 deposition.

Parameter Value Units Equation
kwgs 1.35 · 1017 m1.5 · mol−0.5 · s−1 3.9
k’1 1.1 · 10−6 s3 · mol · kg−2 3.11
k2 10−6 mol · m−1.85 · s−0.7 · kg−0.15 3.8

position in Geometry D which has an error of 8%). In terms of the mean absolute error, during

fitting it is 1.33% in Geometry A while the highest value is in Geometry D (4.33%). For Geometries

B and C, the mean absolute percentage error is 3.67% and 2.33% respectively (Fig. 3.7b).

3.4.2 Investigation of the rate-limiting mechanism

The CFD simulation, allows us to take a closer look at the actual concentration distributions of

the reactants, namely of the precursor (AlCl3) and water, in the 4 geometries studied (cf. Fig.

3.6).

When considering the concentration of water (cf. Fig. 3.8), the CFD model predicts almost

uniform distribution above the inserts in the disk where the coating thickness is predicted. Some

regions of high water concentration are predicted, however they are not located above the inserts.

On the contrary, the AlCl3 concentration consistently appears to be higher closer to the inlet of the

reactor (cf. Fig. 3.9). This imbalance is not reflected in the thickness of the deposited material

either in the simulations or, in fact, in the production data. This observation motivates further

investigation into the balance between mass transfer (diffusion) and the reaction kinetics, that

ultimately determines the rate-limiting step of the process.

Typically, this study requires altering the temperature and monitoring the change in the depo-

sition rate. For increasing temperature the deposition rate also increases following a linear trend,

which is an indication that the reaction rate is the limiting step that determines the overall deposi-

tion rate. Past a certain temperature, the deposition rate becomes insensitive to further increase of

the temperature, which is a sign that the rate of diffusion of the species on the surface determines

the overall deposition rate. This process is typically described in a so-called Arrhenius plot, i.e.

the plot of the deposition rate versus the inverse of temperature [161].

In the application studied here, where the data are derived from the production process at a
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(a) (b)

(c) (d)

Figure 3.8: Contours of the concentration of H2O for (a) Geometry A, (b) Geometry B, (c)
Geometry C, (d) Geometry D. The white arrows indicate the velocity at each inlet. The CFD
results suggest a mostly uniform concentration of water above the inserts.

single temperature (1005 °C), it is not possible to derive an Arrhenius plot based on which to

define whether the process is kinetics or diffusion limited. Instead, it is still possible to gain insight

into this balance with the proposed CFD model by means of studying the effect of the precursor

mass fraction on the coating thickness: two computational experiments are performed, based on

Geometry A, one with significantly increased precursor mole fraction at the inlet (by 25%), the

second with significantly decreased (by 25%).

If the process were diffusion limited, then the reactions would be very fast and as soon as

the precursor molecules reach the surface, they would react forming more α-Al2O3 on the sur-
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(a) (b)

(c) (d)

Figure 3.9: Contours of the concentration of AlCl3 for (a) Geometry A, (b) Geometry B, (c)
Geometry C, (d) Geometry D. The white arrows indicate the velocity at each inlet. The CFD
results suggest highest precursor concentration close to the inlets.

face. Therefore an increase/decrease is expected as an outcome when the AlCl3 mole fraction is

increased/decreased respectively. On the contrary, if the deposition rate is affected to a negligible

extent, then this would be a valid indication that the process is in the kinetics-limited regime. This

comparison is shown in Table 3.2 where the “original” experiment, corresponding to the process

conditions in Geometry A, is compared to the CFD results obtained in the same Geometry and

conditions with different mole fractions of precursor at the inlet.

The results indicate that the change in the AlCl3 mole fraction leads to negligible fluctuations

in the calculated deposition rate for the insert at the R1/2 and R position, which corroborates
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Table 3.2: Difference in the deposition rate for different precursor concentrations at the inlet -
Geometry A. Values are relative to the original simulation.

Position R0 R1/2 R AlCl3 inlet mol. frac.
Relative difference (%) 4.5 -0.4 -0.1 1.25×Original

-7.3 -0.3 -0.1 0.75×Original

the hypothesis that the process is in a kinetics-limited regime. Slight discrepancies appear in

the insert at the R0 position. Specifically, for the experiment with 25% increased precursor mole

fraction, there is a 4.5% increase in the deposition rate for the insert at R0, when compared to the

original run. For the experiments with a precursor mole fraction of 25% less than the original, the

calculated α-Al2O3 deposition rates for the insert at R0 are 7.3% less than the original experiment.

This finding is not contrary to the hypothesis of a kinetics-limited regime and can be explained

by considering the concentration of the other reactant, water, in the region above the inserts on

interest, summarized in Table 3.3. In the case of increased AlCl3 mole fraction, the concentration

of water is higher above the insert in the R0 position, leading to higher deposition thickness. In

contrast, in the case of decreased precursor mole fraction, water concentration is lower above the

insert in the R0 position, leading to decreased deposition rate. Overall though it could be argued

that this discrepancy in the R0 position of 4.5% increase and 7.3% decrease in the deposition

rate can still be considered minor, taking into consideration that the alteration to the precursor

concentration is by 25%.

Table 3.3: Average H2O concentrations above the inserts of interest for different inlet precursor
concentrations - Geometry A.

Position R0 R1/2 R AlCl3 inlet mol. frac.
H2O conc. (10−4mol · m−3) 1.92 1.95 1.87 Original

1.66 1.59 1.52 1.25·Original
2.30 2.53 2.47 0.75·Original

3.5 Conclusions

This work presents an efficient tool for computational analysis of an industrial-scale CVD reactor

used for the coating of cutting tool inserts. The proposed CFD model addresses three significant
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challenges not only in Chemical Vapor Deposition but also in other processes where chemistry

and transport phenomena co-exist: (i) Complex geometries, (ii) Complicated networks of chemical

reaction which are not completely known, (iii) Competition between the physical and chemical

mechanisms, something that ultimately defines the rate of the overall process.

We demonstrated how this computer-aided approach can predict the thickness of the deposited

film with noteworthy accuracy (with a 5% average error). To do so, we implemented a chemistry

model that with one homogeneous and one heterogeneous reaction, for the sake of efficiency, which

nevertheless takes into account the concentration of hydrogen sulphide. The latter is generally

understood to act as a catalyst but to this date there is no consensus on the actual mechanism.

Despite the simplifications introduced for the sake of economizing on the computational ef-

fort, the proposed model is still able to illuminate important aspects of the interplay of physical

phenomena (mass transport through diffusion) and chemical reaction rates. Results for higher and

lower precursor concentrations in the inlet, point to the fact that the process is in the kinetics-

limited regime, where the overall deposition rate in determined by the relatively slow reaction rate.

Although further investigation is required to determine this fact with certainty, the input of the

proposed model is still a useful “hint” to the direction that should be followed experimentally.
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Chapter 4

Comparison of equation-based and

data-driven modeling strategies for

industrial coating processes

This chapter is reproduced from P. Papavasileiou, E. D. Koronaki, G. Pozzetti, M. Kathrein,
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Abstract

An efficient CFD model for the deposition of alumina from a gas mixture consisting of AlCl3,

CO2, HCl, H2 and H2S in an industrial CVD reactor with multiple disks and a rotating

feeding tube, is proposed. The goal is twofold: (i) to predict the thickness of the deposited

material, (ii) to investigate whether the process rate is determined by the reaction rate or

by diffusion. A reaction model that consists of a gas-phase homogeneous reaction and a

heterogeneous reaction is implemented, with a proposed kinetics rate that includes the effect

of the H2S concentration. The latter has a catalytic effect, but the mechanism is not entirely

understood. The entire reactor geometry (consisting of 40-50 perforated disks) is divided

into appropriately chosen 7-disk sections. The 2D, time-dependent CFD model is validated

using production data for the deposition thickness. The proposed computational tool delivers

accurate predictions (average relative error 5%) for different geometries corresponding to real

reactor set-ups. Extending the functionality beyond prediction, a computational experiment

is performed to illuminate the interplay between species diffusion and chemical reaction rates,

which determines the rate-limiting mechanism. The results indicate that species diffusion is

fast enough and therefore reaction kinetics determine the overall deposition rate.

4.1 Introduction

Chemical Vapor Deposition (CVD) processes are popular in a wide range of applications, including

microelectronics [57], sensors [134] and wear resistant coatings [55]. The coating process involves

the nonlinear interplay of physical mechanisms, such as diffusion and convection, with a plethora

of homogeneous and heterogeneous chemical reactions. The competition between the different

mechanisms determines the process outcome and the product quality. It is therefore a fine example

of a process that is too complicated to study with first-principles models, such as Computational

Fluid Dynamics (CFD) and where the data is often not enough to implement sophisticated data-

driven strategies. Taking all of the above into consideration, the objective of this work is to

investigate the potential benefit of simplified CFD process models, accompanied by purely data-

driven predictions using Machine Learning (ML) approaches. Both methods are driven by the size
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and type of the available production data. In the CFD case, the data are used for calibration and

validation and in the ML case for regression.

Computational Fluid Dynamics is a valuable tool for studying deposition processes [7], [32],

[138], [150], [161]–[163], since it allows the investigation of the flow field inside the reactor, as

well as the main physical and chemical pathways that lead to the deposition of thin film coatings.

Nevertheless, modeling industrial-scale deposition applications using CFD presents several chal-

lenges: Firstly, dealing with the complexity of the process, which often has several unknowns and

secondly, the large scale of real applications.

Specifically, the actual chemical reactions that lead to deposition, including their rates, are

often unknown. Therefore, it is not possible to predict the effect of the interplay between transport

phenomena and chemical kinetics on the deposition rate, necessitating the development of a kinetic

model [164]. Even when a chemical reaction scheme is available, some of its parameters may need

to be fitted for the specific application. This parameter fitting involves an increased computational

cost, as it usually requires numerous simulations [4], [8], [143], [151]. Nevertheless, CFD has

been applied to several CVD applications, shedding light on previously “opaque” processes [5],

[165], [166] while also allowing to predict their outcomes [2]. Although attempts have been made

towards increasing the efficiency of CFD models by implementing reduced order modeling methods

[8], [9], developing an efficient and accurate model in an industrial setting remains a challenging

and time-consuming task.

In the era of Industry 4.0, digitalization has become one of the main drivers of innovation [167]

and production data are becoming more and more available. The industry is trying to exploit this

data, seeking improvement in several domains, including: maintenance management [168]–[171]

quality management [15], [172]–[175], production planning and control [21], [23], [176]–[178],

supply chain management [26], process outcome predictions [179]–[182] and process optimization

[183], [184]. Furthermore, digital twins [185] are becoming increasingly popular in the process

industry [186]–[188], as well as in other, diverse applications [189], [190]. Although the application

of sophisticated methods such as Deep Neural Networks (DNNs) [191], [192], Physics Informed

Neural Networks (PINNs) [193] and manifold learning [194] has been demonstrated on controlled

small scale problems, several challenges still remain when incorporating ML in everyday industrial
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practice. Addressing these challenges is one of the main objectives of this work.

The industrial application in this work is the coating of cutting tools with α-Al2O3 for increased

wear resistance. Concerning CFD, the goal is to propose the best possible simplified model,

based on the available data which are necessary for verification and validation. This leads to a

2D, time-dependent CFD model, presented in detail in previous work [32]. The proposed model

implements representative boundary conditions and employs a simple reaction scheme for the α-

Al2O3 deposition with the goal of reducing the computational cost.

Concerning ML, the first task is to pre-treat the available data, upon which the choice of

method depends on. Addressing mixed types of data (categorical and numerical) is a common

challenge in many applications, not restricted to deposition processes. Several regression models

are trained to predict the α-Al2O3 coating thickness using characteristics of the reactor set-up and

process conditions as inputs. In this work, the focus lies more on tree-based methods [195] which

are the best-performing for the given data-set.

The two approaches are initially compared in their ability to accurately and efficiently predict

the alumina coating thickness of the cutting tool inserts. Specifically, the advantages and disad-

vantages of each strategy are assessed in terms of accuracy, interpretability, extrapolation ability

and computational cost. As a final step, the two approaches are merged through the implementa-

tion of the Gappy Proper Orthogonal Decomposition (GappyPOD) method [35], [196]. The latter,

is popular for optimal sensor placement, and here it adapted to propose a sufficient number of

known data from which we can infer quantities that are not measurable.

The manuscript is structured as follows: A concise overview of the process and the available

production data is given in Section 4.2. The implemented methods (CFD, ML and GappyPOD)

are presented in Sections 4.3 and 4.4. The results of each method are analyzed and compared in

Section 4.5, followed by the conclusions in Section 4.6.

4.2 Process description

A two-step coating process takes place inside the studied industrial-scale, commercial CVD reactor

(Sucotec SCT600TH). First, a Ti(C,N) base layer of about 9 µm is grown on the cemented carbide

cutting inserts, such as the ones shown in Fig. 4.1a. Subsequently, an alumina layer is deposited

53



Comparison of equation-based and data-driven modeling strategies for industrial coating processes

under a AlCl3–CO2–HCl–H2–H2S chemical system. The temperature and pressure for the alumina

coating step are T=1005°C and p=80 mbar, respectively [1]. The alumina coating deposition step

of the process takes approximately 3 hours.

The CVD reactor consists of 40-50 perforated disks, stacked one on top of the other, whereon

the inserts are placed. In Fig. 4.1b, a schematic of three such disks is shown for clarity. The

mixture of gas reactants, enters the reactor via perforations on a rotating cylindrical tube, placed

in the center of the structure of the stacked disks. There are two antipodal perforations for each

disk level. There is a 60° angle difference between the axis connecting the inlet holes for each disk

level. The rotational motion of the inlet tube (rotating with a rotational speed of 2 RPM) causes

the process to have an inherent periodic nature. The interior geometry of the reactor changes

from production run to production run, since the geometry of the inserts (and the disks on which

they are placed), changes based on production requirements.

(a) (b)

Figure 4.1: (a) Indicative geometries of the coated cutting tools. (b) A 3D representation of a
3-disk part of the reactor. The inlet perforations on the rotating inlet tube are shown in red. The
outlet perforations for each disk are shown in blue.

The main goal of the process is to achieve uniform coating thickness, since this uniformity also

leads to uniform product longevity [74]. Ideally, coating thickness uniformity would be achieved

across all production runs, reactors, and production sites. However, this is not always the case.
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For this reason, a way of predicting the coating thickness of the inserts given the reactor set-up is

needed. Furthermore, coming up with a systematic way of assessing the factors that influence the

coating thickness uniformity is also highly important.

4.2.1 Available data

For the Ti(C,N)/α-Al2O3 multi-layer coating, the thickness measurements are performed via the

Calotest method. A small spherical cavity is ground on the coated inserts using a rotating ball

of known geometry, providing a tapered cross-section of the film when viewed under an optical

microscope [197]. This way, the thickness of both the Ti(C,N) and α-Al2O3 coating layers can

be calculated. Measurements are usually taken for 3 positions on 5 disks of interest. Therefore,

15 thickness measurements are available for each production run. A 2D representation of the

reactor indicating the points where thickness is typically measured is shown in Fig. 4.2. These

measurements allow for not only for the calibration and validation of the CFD model, but also for

several ML approaches.

Apart from coating thickness measurements, the dataset also contains several features con-

cerning the process and the reactor setup, which will serve as inputs to the machine-learning

model. The production “recipe” used for the coating is the available feature providing information

regarding the process. Setup-wise, there is a plethora of available features for each disk of the

reactor, including:

1. The position of each disk inside the reactor.

2. The number of inserts placed on each disk.

3. The type of insert placed on each disk. Each type of insert has different geometrical char-

acteristics.

4. The type of disk used. The type of disk used is always relative to the type of insert placed

on top of it.

5. The surface area of the inserts placed on the disk.
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Figure 4.2: Positions with available α-Al2O3 thickness values from the production data for our test
case. In general, across different production runs, the R position (the one closest to the reactor
outlet) is the one with the highest amount of data. For this reason, the ML models are trained
to make predictions for inserts placed in this position. The arrows indicate the gas reactant inlets
and outlets.
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These features allow for the creation of more features, such as the total surface area and the

standard deviation of the surface area of the inserts that are coated inside the reactor. Another

feature that can be created is the difference between the nominal surface area of the production

“recipe” and the actual insert surface area inside the reactor. Furthermore, for each disk, we can

exploit the information available for its neighboring disks.

This way, we end up with several features, of which thirteen are used as inputs after being

pre-processed. These features are summarized in Table 4.1. Considering the coating thickness

measurements as outputs, we can train several supervised learning models to make coating thick-

ness predictions per disk. In this context, during training, a labeled set of inputs is provided and

specifically here, the inputs are the aforementioned features and the labels are the α-Al2O3 coating

thickness measurements.

Table 4.1: Summary of the features included in the training of the regression models.

Feature Type Pre-processing
Number of inserts on disk Numerical (integer) standardization

Surface area of inserts on disk Numerical (float) standardization
Disk position Numerical (integer) standardization

Total surface area of inserts
inside the reactor

Numerical (float) standardization

Surface area standard deviation Numerical (float) standardization
|Nominal “recipe” surface area

- actual surface area|
Numerical (float) standardization

Production “recipe” Categorical binary encoding
Insert geometry Categorical binary encoding
Disk geometry Categorical binary encoding

Insert geometry – disk above Categorical binary encoding
Insert geometry – disk below Categorical binary encoding
Disk geometry – disk above Categorical binary encoding
Disk geometry – disk below Categorical binary encoding
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4.3 Computational ingredients

4.3.1 ML methods

For the data-driven approach to the problem, the implementation of an assortment of machine

learning methods for the prediction of coating thickness inside the reactor is investigated. All

methods implemented fall into supervised learning methods.

In supervised learning, each one of the input variables xi is associated with a response (or

output) yi [81]. The goal of the ML strategy is to train a model able to relate the input variables

xi to the output yi. This way, future observations can be predicted and the relationship between

the inputs and the output can be interpreted. Here, the goal is to predict the α-Al2O3 coating

thickness (a continuous target variable) from several inputs, using a regression method. The

specific methods include but are not limited to:

• Linear methods, such as linear, lasso or ridge regression.

• Non-linear methods, such as polynomial regression.

• Tree-based methods, such as regression trees and their ensemble versions: random forests,

gradient boosted regression trees and extreme gradient boosted regression trees.

• Artificial neural networks.

During the early phases of this research, several techniques were utilized, including linear, lasso, and

ridge regression, as well as support vector machines and Gaussian process regression. Preliminary

findings indicated that tree-based methods outperformed the other techniques, and as a result, the

focus of this study is on tree-based methods.

The models’ accuracy will be evaluated via two different metrics, namely the mean absolute

error (MAE) and the mean absolute percentage error (MAPE). When the model is trained or tested

on N observations and for each observation i the prediction is ŷi while the actual value is yi, MAE

and MAPE can be written as follows:

MAE =
1
N

N

∑
i=1

|ŷi − yi| (4.1)
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MAPE =
1
N

N

∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ (4.2)

Two different computational costs pertain to each ML model, the training time (ttrain) and the

prediction time (tpred) of the model. Both of these costs are expressed in CPU time.

Tree-based methods

Tree-based methods work by partitioning the space of the inputs X into a set of rectangles.

Afterwards, a simple model (e.g. a constant) is fit in each partition. The process starts by

splitting the entire input space in two based on a variable of the input space and its value. The

optimal variable and split point are chosen in order to achieve an accurate fit. Then, either or

both of the resulting regions are split again in two, once again using the optimal input and split

point. This procedure continues until a stopping criterion has been met. The occurring binary

splits allow for model interpretability since the entire sample space can be described by a single

tree. Tree-based methods can be used for both regression and classification purposes [198].

The prediction accuracy of a single tree is often not as high as that of other methods. Fur-

thermore, a small change in the data can lead to an entirely different tree layout. These two issues

and especially the predictive performance of the trees can be rectified by combining multiple trees

through the implementation of ensemble methods such as bagging and boosting [195].

The concept behind ensemble methods is to build a prediction model by combining a number

of simpler base methods, in two steps: First, a number of base learners must be created from

the available data. The second step involves the combination of these learners into one ensemble

predictor. The most common ensemble tree-based methods are random forests, bagged trees and

gradient boosted trees. These methods, however, have some key differences between them.

Random forests and bagged trees, discussed here, operate similarly. They both build B regres-

sion trees and each tree is trained using bootstrap-sampled (i.e. sample a particular data-point and

then reintroduce it to the dataset), versions of the original dataset. Bagging regression methods

provide a prediction by averaging the outputs of the B trees that they consist of. If ŷi,b is the

prediction of each grown tree, then the final prediction of the bagging method ŷi,bag is given by:
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ŷi,bag =
1
B

B

∑
b=1

ŷi,b (4.3)

Random forests and bagged trees differ only in the amount of input features Ninput that are

considered when building each tree. In bagged trees, all available features are considered. On the

contrary, in random forests, a random subset of p input features is considered. This serves the

purpose of de-correlating the individual trees, since the trees are not always built by selecting the

global optimal features, but by selecting the optimal feature from a randomly sampled subset of

the input features [195].

Gradient boosting and extreme gradient boosting are boosting methods. In the case of boosting

methods, contrary to bagging methods, the B base trees are created sequentially. First, the first

tree of the ensemble is created. Afterwards, each created tree is fitted to the difference between

the value predicted by the previous tree and the real output. This way, each tree improves the

shortcomings of the previous one. There is no averaging of the result of the B trees in this case

[199].

Therefore, after building the bth tree which outputs γjb and is trained on the residual of the

output of the ensemble after the previous tree has been built, the output of the ensemble fb(x)

can be written as:

fb(x) = fb−1(x) + λ ·
J

∑
j=1

γjb I(x ∈ Rjm) (4.4)

where I is the indicator function, and λ is the learning rate of the boosting procedure. λ serves

the purpose of scaling the contribution of the output of each tree to the final prediction of the

ensemble.

The result of the model is the output of the ensemble after the final tree has been built.

Boosting methods are more prone to overfitting for large values of B than bagging methods. For

this reason, B needs to be carefully selected through cross-validation.
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Challenges

Applying data-driven methods to a real-world dataset presents several challenges. First and fore-

most, the dataset needs to be “cleaned”: Given that the production dataset is derived from different

production sites, different reactors, and different people, it is bound to contain some errors. These

errors must be identified and corrected before any type of analysis. Then, there is the question

of the format of the data. Even when the data is neatly organized in an SQL database, it still

needs to be extracted and formatted (using the pandas python library [200], for example) so that it

can be used to train models in a python framework. Afterwards comes the question of data type.

In this particular application, there are both numeric and alphanumeric features (features that

contain names instead of values). Since several of the implemented methods are not compatible

with alphanumeric (categorical) features, those features need to be encoded in a way (i.e. binary

encoding, one-hot encoding [105]) that allows them to be used in our models. Finally, once the

data is ready, the task is to find the best performing model and to determine the hyperparameters

that influence performance. Therefore, a hyperparameter optimization step must also be included.

By following this step-by-step approach, we can establish a data pipeline specific to our data that

allows us to overcome all the aforementioned challenges. This however requires experience, input

from the process experts, along with a clear understanding of the data.

4.3.2 CFD modeling: Implementation and challenges

For this specific application, a digital “replica” of the process would have to be a 3D, time-

dependent full reactor (40-50 disks) model which would include a complex reaction scheme. A

complex reaction scheme, would lead to more degrees of freedom and an increased number of

kinetic parameters that would need to be fitted. Apart from this, given the rotation of the inlet

tube (and therefore the fact that the problem is not axisymmetric) a moving mesh would also need

to be implemented. This would translate into a computationally intractable task. If we consider

that the reactor interior geometry changes on a day-to-day basis, since the geometries of inserts

and the disks on which they are placed change based on production quotas, a computationally

expensive model is not a suitable method to study this industrial application. For this reason,

aiming to drive the computational cost down, the problem was approached as follows:
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• The problem is modeled in 2D.

• The boundary conditions for both the inlet and the outlet are selected in a way that is

representative of their 3D characteristics.

• The model takes into account only 7-disk parts of the reactor in a divide and conquer

approach.

• A simpler reaction scheme that still leads to accurate results is used.

To efficiently tackle the challenges of the process, a 2D, time-dependent model that accounts

for the transport of mass, momentum, and species inside the reactor is proposed. The COMSOL

Multiphysics® software was used for the CFD modeling. The interested reader can seek detailed

information in the recent work of Papavasileiou et al. [32]; here the key points are summarized for

completeness.

A reaction scheme consisting of a homogeneous reaction in the gas phase and a heterogeneous

reaction for the deposition of α-Al2O3 is part of the model. The following assumptions are made:

a) laminar and incompressible flow, b) constant temperature of in the entire reactor domain, c)

ideal gas phase. The CFD model accounts for 7-disk “building blocks” of the reactor, in order

to keep the computational cost low. To account for the rotation of the inlet tube, pulse velocity

boundary conditions are applied at the inlets. To represent the placement of the holes on the

inlet tube in the 2D computational geometry, a phase difference is included between the boundary

conditions of each disk. A similar approach is taken for the outlet perforations. Since they are

not aligned, pressure boundary conditions are applied at every other disk (1st open, 2nd closed

and so forth). In order to model the deposition of α-Al2O3 under the AlCl3–CO2–HCl–H2–H2S

chemical system, we implement a simple reaction scheme based on the work of Schierling et al.

[156]. Implementing this simpler scheme results in a lower computational cost. The simulations

account for two full rotations (or periods) of the feeding tube.
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4.4 Combining equation-based and data-driven approaches us-

ing GappyPOD

In this work, the GappyPOD method is used for the reconstruction of several 7-disk reactor snap-

shots acquired using the aforementioned CFD model using limited - or “gappy” data. GappyPOD

was first introduced by Everson and Sirovich [196] and then implemented, among others, to a CFD

airfoil application by Willcox [35] and for non-linear fracture mechanics modeling [201]. Optimal

sensor placement is another problem that can be solved using the GappyPOD method, as indicated

in the works of Willcox [35] and Jo et al. [202]. This is achieved by finding the optimal way of

filling the “gaps” in the data, or in other words, selecting the sensor positions that give the most

information possible.

A concise overview of the method, along with the procedure followed for the acquisition of data

and the metrics used for the evaluation of the method, are presented in the following paragraphs.

4.4.1 Overview

In this section, the GappyPOD method is summarized for completeness. Let’s consider a dataset

X of M vectors (represented as d-dimensional real vectors x1, . . . , xM). A POD basis, Φ ∈ RN×M,

of X is computed, such that X can be approximated as a linear combination of p vectors:

X̃ =
p

∑
j=1

cjΦj (4.5)

or in matrix-vector format:

X̃ = Φ · c (4.6)

The size of the truncated POD basis Φ is selected based on the error between the actual vector

X and the reconstructed approximation X̃ :

reconstruction error = ∥X − X̃∥ (4.7)

Another factor that can be taken into account when selecting the size of the truncated basis
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is the total energy retained by the selected number of modes. For each basis vector j, the relative

importance (Ej) is given by:

Ej =
λj

∑
p
i=1 λi

(4.8)

and therefore, the total energy retained for the k retained modes is given by:

Etotal =
k

∑
j=1

Ej (4.9)

Let us consider a vector X′ that is spanned by the same basis Φ and that only m values of

this vector are known, such that the partial vector X′
partial can be defined:

X′
partial = m · X′, m ∈ Rm×N (4.10)

The goal is to find coefficients c′, such that an approximation X̃′ of the vector X′ can be

defined as :

X̃′ = X′ · c′ (4.11)

then:

X′
partial ≈ m · X′ · c′ (4.12)

Finding the values of c′ that satisfy the above leads to an optimization problem, which results

in the solution of the linear system:

M · c′ = (m · Φ)′ · X′
partial (4.13)

with M = (m · Φ)′ · (m · Φ)
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4.4.2 CFD data sampling

Snapshots, i.e. vectors containing information regarding the system’s state at a specific time, of

12 different 7-disk reactor parts will be used for the implementation of the GappyPOD method.

For each reactor part, there 31 available time-instances (each one with 1 second time difference

from the previous). This way, the full dataset consists of 372 vectors.

At each time-instance, 4 quantities of interest are sampled along the lines connecting inlet-

outlet at each disk level. The points of these lines are then interpolated at 250 specific query points

using linear interpolation. In this manner, 250 evenly spaced points along each line are obtained.

An example of the lines along which the quantities of interest are sampled is demonstrated in

Fig. 4.3.

Figure 4.3: In blue: The seven lines along which the 4 quantities of interest (U, p, CAlCl3 , CH2O)
are sampled. In orange: The disk with available thickness measurements. The thickness measure-
ments, as well as the α-Al2O3 deposition rates at the inserts of this disk, are also included for our
implementation of GappyPOD. The arrows indicate the gas reactant inlets and outlets.

The quantities of interest at each point are:
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1. The velocity magnitude (U).

2. The pressure (p).

3. The concentration of the precursor AlCl3 (CAlCl3).

4. The concentration of water (CH2O).

Furthermore, the deposition rates as predicted by the CFD model along with the available

thickness data for 3 positions (R0, R1/2, R) for each 7-disk reactor part, are included in each snap-

shot. An overview of the resulting dataset after sampling and organizing the vectors is presented

in Fig. 4.4.

It is worth noting that a plethora of input parameters influences the final product, the most

important of which include the configuration of the reactor’s interior geometry and the production

“recipe”. The latter includes all the steps and chemical species involved in the production of a

single coating layer. In this work, to make the simulations tractable, the focus lies on a single

“recipe” for a single product and various geometries, without loss of generality.

4.4.3 Performance metrics

The performance of the GappyPOD approach will be evaluated using the Root Mean Squared

Error (RMSE) between: a) the GappyPOD reconstruction and the POD reconstruction, b) the

GappyPOD reconstruction and the snapshots of the reactor given by the CFD model. The RMSE

between two values (ŷi and yi) for N observations can be written as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2 (4.14)

4.4.4 Mask selection

The effectiveness of GappyPOD depends on the condition number of matrix M, which is defined

in Eq. (4.13). The matrix M is created from the inner products of the “gappy” POD vectors,

which are the elements of the original POD vectors corresponding to the known elements of X′.

Since these vectors are no longer orthogonal, the matrix M is fully populated. For orthogonality
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Figure 4.4: The final matrix considered for the GappyPOD method. A total of 31 time-instances
for 12 different reactor geometries have been sampled. These contain all 4 quantities of interest
(velocity magnitude, pressure, precursor concentration (C1), water concentration (C2) along with
the calculated deposition rates (D.R) and the coating thickness measurements (h) taken from the
production data. In our case, T = 31 (number of time-instances per reactor) and N = 1750 (total
number of points: 7 lines containing 250 points each).

to be preserved, the known element positions and non-zero elements of M must be appropriately

arranged. Additionally, the diagonal entries of M must not be too small, indicating that the

POD basis element at that point should not be small. The condition number of the matrix M

reflects these requirements, with a smaller condition number indicating greater satisfaction of these

conditions. This analysis is detailed in [35], in the context of optimal sensor placement, and in

[203], [204], which consider the angle between the measurement subspace and the low dimensional

space that spans the data.

To determine the known values of the vector X′ in a more systematic manner, a greedy
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algorithm similar to the one proposed by Willcox [35] is implemented. However, in our case, the

mask elements are selected in a way that reduces the reconstruction error. Considering m known

values of each snapshot X′, then the greedy algorithm implemented works as follows:

1. Initialize by randomly selecting m known values.

2. Starting with the first mask element, loop through all the possible positions for the known

values and calculate the reconstruction error for each resulting mask.

3. Find the position of the element that minimizes the reconstruction error and place the first

element there.

4. Repeat steps 2-3 for all remaining mask elements.

This way, we can efficiently find positions for the mask elements that yield an acceptable

reconstruction error. It should be noted, however, that this does not always lead to the globally

optimal positions.

4.5 Results

4.5.1 CFD model

CFD model parameters

To elaborate on the model summary made in Section 4.3.2, further information regarding the CFD

model parameters is given in this section.

The prescribed inlet boundary conditions are inlet velocity conditions. For each disk, the

gas feed velocity is a time-dependent pulse function that mirrors the inlet tube rotation, varying

between 0 and Vmax. There is a phase difference between the pulses of each disk. Vmax and

the aforementioned phase difference are determined based on the experimental conditions and

geometry, taking into account: a) the 2 RPM rotational speed of the inlet tube, b) the total inlet

gas flow rate, c) the number of disks per run, d) the two antipodal perforations per disk, e) the

diameter of the perforations (0.002 m), and f) the 60° angle difference between the perforations

of each disk.
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Outlet pressure boundary conditions are applied at every other disk level. This way, we account

for the real geometry where the outlet perforations are not aligned. This results in a model where

only the first, the third, the fifth, and the seventh outlet from the top are considered open.

Seven different chemical species are considered, along with a simplified reaction scheme for

the deposition of α-Al2O3. The molar fractions at the inlet are the following: CO2 (0.0385), AlCl3

(0.0169), HCl (0.0210), H2O (10−6), CO (10−6), H2 (0.9203), and H2S (0.0033).

The process conditions for the alumina coating step are T=1005°C and p=80 mbar, as indicated

in [1]. Further information can be found in the recent work of Papavasileiou et al. [32].

CFD model predictions

The CFD model has been tested for 4 different 7-disk reactor geometries. All four 7-disk geometries

are building blocks of the test case reactor, whose 2D representation is shown in Fig. 4.2. It is

possible to predict the α-Al2O3 coating thickness with a maximum relative error of 8% and within

5% mean absolute percentage error for each 7-disk geometry, when compared to the available

production data. The maximum observed mean absolute percentage error for the α-Al2O3 coating

thickness is 4.33%. Simulations for each geometry consist of about 106 degrees of freedom. The

solution time for each geometry is approximately 3 core hours on an 11th Gen Intel(R) Core(TM)

i7-1185G7 processor. The results of the CFD simulations are summarized in Fig. 4.5.

4.5.2 Data-driven predictions

We implement the following tree-based methods: a) Regression Trees, b) Random Forests, c)

Gradient Boosting Regression Trees (GBRT) and eXtreme Gradient Boosting Regression Trees

(XGBoost). All the methods have comparable performance. Among them, the best performing is

XGBoost and the results below focus on its predictions.

The dataset contains a total of 6114 observations and is split into a training set and a test

set, using a ratio of 75/25. Each one of these observations contain thickness measurements at

the R position for a particular disk (cf. Fig. 4.2), corresponding to a number of inputs, detailed

in Section 4.2.1. The numerical features were standardized, and the categorical features were

encoded using binary encoding.
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(a) (b)

(c) (d) (e)

Figure 4.5: (a) Relative error for the CFD predictions for 3 different positions with available
production data inside the reactor. Simulations are performed for four different 7-disk geometries
in total. (b) Mean absolute percentage error (averaged over the 3 positions for which data are
available) for the CFD simulations for the 4 different reactor geometries. (c) Velocity magnitude,
(d) Precursor Concentration and (e) Water Concentration inside the reactor at a certain time
during the deposition.

Hyperparameter selection

Optimal model performance, is influenced by the choice of hyperparameters for each method. The

most important hyperparameters of the implemented tree-based ensemble methods are:
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1. The maximum depth of the trees (dmax), i.e. the number of bifurcations of the main “branch”

of the tree. Selecting too large a tree depth can lead to overfitting, which in essence means

that the model fails to generalize accurately.

2. The number of trees (B). A large number of trees reduces the variance of bagging methods,

however it can lead to overfitting in the case of boosting methods.

3. For boosting methods specifically, another important hyperparameter is the learning rate

(λ). The choice of λ usually affects the optimal B. For example, a very small λ usually

requires a large B to achieve satisfactory performance.

Searching for the optimal model hyperparameters in an exhaustive manner is a computationally

expensive task. The time required for all 5 tree-based methods using an exhaustive grid search

approach performing 10-fold cross-validation was 43 core hours on an 11th Gen Intel(R) Core(TM)

i7-1185G.

To demonstrate here the effect of dmax, results are shown for fixed values of B and λ (cf.

Fig. 4.6). For a constant number of trees (B = 10000), boosting methods show better performance

for low values of dmax. On the contrary, bagging methods indicate better performance for higher

values of dmax.

Overall, for all the hyperparameters tested, boosting methods appear to outperform their

bagging counterparts. Out of the two boosting methods, the XGBoost method displays higher

training and predicting speed. Specifically, for the same training set and the same hyperparameters

(B = 10000, dmax = 5 and λ = 0.01), the average training time over 10 cross-validation splits is

16.5s for the XGBoost model and 99.5s for the GBRT model. Moreover, the average prediction

time is 20ms for the XGBoost model and 333ms for the GBRT model. Therefore, due to its lower

computational cost, further hyperparameter tuning will take place for the XGBoost algorithm, in

order to find the optimal hyperparameter combination.

After selecting the optimal value of maximum depth, we further investigate the effect of the

number of trees B on the accuracy of the XGBoost model. As indicated in Table 4.2, the accuracy

of the model drastically improves when B ≥ 500, nevertheless, the trade-off is in the form of

increased computational cost.
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Figure 4.6: MAPE vs dmax for all methods after 10-fold cross-validation. B = 10000 for all
ensemble methods. λ = 0.01 for the boosting methods. For the base method (regression tree)
and bagging methods (Bagged Trees and Random Forests) increasing the maximum depth of the
trees leads to a reduced MAPE. For the boosting methods (GBRT and XGBoost), the MAPE
increases when increasing the maximum depth of the trees. Random forest regression performing
worse than the simple regression tree can be attributed to the fact that it only considers a subset
of available features when building each tree of the ensemble.

Table 4.2: XGBoost model results after cross-validation for various values of B, where dmax = 5
and λ = 0.01. As expected, an increased number of base predictors improves the performance of
the ensemble boosting method. However, it also increases the training time and prediction time
of the model. All metrics are averaged over 10 cross-validation splits.

Number of trees (B) MAPE t̄train (s) t̄pred (ms)
10000 3.1% 16.3 20
5000 3.3% 8.0 14
2000 3.4% 3.3 9
1000 3.6% 1.7 9
500 3.9% 0.9 8
200 12.6% 0.4 8
100 33.8% 0.2 10
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Following hyperparameter optimization and tuning, the final values selected for the XGBoost

model are the following: dmax = 5, B = 10000, λ = 0.01.

Machine learning outcomes

Two more accuracy metrics are introduced here, the mean square error (MSE) and the coefficient

of determination (R2). When the model is trained or tested on N observations and for each

observation i the predicted value is ŷi while the actual value is yi and the average of the actual

values is ȳ, MSE and R2 can be written as follows:

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (4.15)

R2 = 1 −

N
∑

i=1
(ŷi − yi)

2

N
∑

i=1
(yi − ȳ)2

(4.16)

The prediction error of XGBoost regression model for the training set, reaches a MAPE of 0.9%,

versus 3.1% for the test set. The prediction accuracy of the XGBoost model on the training set and

on the test set can be summarized in Figs. 4.7a and 4.7b respectively. Due to the confidentiality

of the production data, absolute α-Al2O3 thickness values cannot be presented. Therefore, only

relative error values and normalized thickness values are presented.

4.5.3 CFD vs ML

Predictive accuracy

For the test-case reactor set-up presented in Fig. 4.2, the prediction results for the position closest

to the outlet for both methods are given in Table 4.3. Disk position is counted from the bottom

to the top of the reactor.

Despite the significant difference in the computational effort involved in the CFD model in

comparison to the ML regression model, both methods have comparable accuracy on the test-

case. CFD predictions for the test reactor have a mean absolute percentage error of 6%, while

XGBoost makes predictions with a mean absolute percentage error of 4.4%. The high error in the
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(a) (b)

Figure 4.7: (a) Training set performance: MSE:0.005 | MAE:0.051 | MAPE:0.9% | R2:0.980. (b)
Test set performance: MSE:0.059 | MAE:0.187 | MAPE:3.1% | R2:0.753.

Table 4.3: XGBoost prediction accuracy vs CFD prediction accuracy for the coating thickness of
inserts closest to the reactor outlet (R position). Errors relative to the available production data
are presented. The high error in the prediction of the CFD model for the 6th reactor disk can
be attributed to the fact that it is the bottom-most disk of the simulated 7-disk geometry, and
therefore the effect of the inlets and outlets that are below it is not taken into account.

Disk position CFD prediction XGBoost prediction
39 3.2% 3.5%
35 1.0% -3.1%
23 -4.0% -7.0%
10 1.0% -5.5%
6 20.6% -2.8%

MAPE 6.0% 4.4%
Total prediction time (s) 43200 0.1

prediction of the CFD model for the 6th reactor disk (20.6%) can be attributed to the fact that

it is the bottom-most disk of the simulated 7-disk geometry and therefore the effect of the inlets

and outlets that are below it is not taken into account. This can be solved by an extra 7-disk

simulation, where the disk of interest won’t be in the bottom-most position. This would of course

further increase the computational cost of the CFD approach. The maximum observed absolute
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relative error for the predictions of the XGBoost model on the test-case reactor is 7%.

Computational performance

Although the predictive accuracy of the two approaches is similar, they demonstrate a very no-

ticeable contrast when it comes to their computational performance. Specifically, in the case of

CFD, making predictions for an entire production run would require 4 or 5 7-disk simulations. This

corresponds to a computational cost of 12 to 15 core hours. On the other hand, using the XGBoost

model to make predictions for an entire production run comes with a computational cost of less

than 1 core second. This translates to a reduction of more than 99.99% in required resources.

4.5.4 GappyPOD

Results of our GappyPOD implementation will be presented for two different cases:

1. The case of the full dataset.

2. The case of a single reactor.

In each case, the dataset consists of time-instances of the state vector, over a period of 30

secs. Therefore, the full dataset eventually consists of 372 snapshots, whereas in the single reactor

dataset, it consists of 31 vectors.

In both cases, 87.5% of the available snapshots are used to derive the POD basis of the training

set. The rest of the snapshots (12.5%) are kept and used for the validation of the method. For

both cases, the data are scaled in the range of [0, 1] using min-max normalization.

The number of modes used for the POD basis are selected after checking the energy retained

by the modes and the resulting reconstruction error. The total retained energy for the full dataset

and the single reactor dataset, is shown in Fig. 4.8a and Fig. 4.8c respectively, whereas the

reconstruction error as a function of the basis size is shown in Fig. 4.8b and Fig. 4.8d respectively.

The full reactor dataset requires at least 50 POD modes to capture more than 95% of the

energy of the system, with a corresponding reconstruction error (RMSE) of 0.0059. The single

reactor dataset, is accurately represented by 15 POD modes that reflect more than 98% of the

75



Comparison of equation-based and data-driven modeling strategies for industrial coating processes

(a) (b)

(c) (d)

Figure 4.8: The energy retained (in blue) and the reconstruction error (in orange) of the POD
approximation using M modes. (a), (b): Energy and reconstruction error for the full dataset. Only
the first 100 modes are shown. (c), (d): Energy and reconstruction error for the single reactor
case.

energy with a reconstruction error (RMSE) of 0.004. Eventually, for the immediate comparison of

the results, the same basis size is considered, equal to 15 POD modes. The corresponding retained
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energy and error are shown in Table 4.4.

Table 4.4: Number of POD modes selected for each case, along with the corresponding retained
energy and reconstruction error.

Case # POD modes Energy retained Recon. error (RMSE)
Full dataset 15 81.69% 0.0373

Single reactor 15 98.70% 0.0040
Single reactor 5 82.74% 0.0456

After selecting the size of the POD basis for each case, the mask elements for GappyPOD are

obtained using the greedy algorithm described in Section 4.4.4. It should be noted that the mask

length should be greater or equal to the size of the POD basis. For all three cases, we allow one

mask element more than the size of the POD basis. It should be noted that in all cases the mask

elements acquired consist of all the quantities of interest (velocity magnitude, pressure, precursor

concentration, water concentration) discussed in Section 4.4.2.

After acquiring the mask elements, the RMSE between the GappyPOD approximation and the

test set, along with the RMSE between the GappyPOD approximation and the POD reconstruction,

can be calculated. Specifically, for the case of the full dataset, the RMSE between the GappyPOD

approximation and the test set is 0.0648 while the RMSE between the GappyPOD approximation

and the POD reconstruction is 0.0512 (cf. Fig. 4.9). For the case of the single reactor, the

RMSE between the GappyPOD approximation and the test set is 0.0099 while the RMSE between

the GappyPOD approximation and the POD reconstruction is 0.0064. If we choose to make a

comparison using the number of POD modes with the same retained energy and reconstruction

error, we choose 5 POD modes (82.74% retained energy and 0.046 reconstruction error) and 6

mask elements for the single reactor case. Then, the RMSE between the GappyPOD approximation

and the test set is 0.0474 while the RMSE between the GappyPOD approximation and the POD

reconstruction is 0.0143.

The performance of the method, is linked to how well the dataset is spanned by the selected

POD vectors, generally implying that a larger POD basis is beneficial for the results. Nevertheless,

since the ambition of this approach is to select only a few measurements as mask elements, it is

more beneficial to work with the smallest possible number of POD vectors.
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Figure 4.9: On the left: Error between the GappyPOD approximation and the snapshots of the
test set for all cases. On the right: Error between the GappyPOD approximation and the POD
approximation for all cases. It is evident that the single reactor case shows the lowest errors. This
is probably due to the lower variance observed in the dataset of the single reactor when compared
with the full dataset. For the case of the single reactor, using a smaller POD basis (5 modes
instead of 15) leads to an increase in both errors.

4.6 Conclusions

This work presents an overview of the implementation of equation-based and machine-learning

methods in industrial-scale deposition applications. The challenges associated with the complexity

of the process and the characteristics of real production data are discussed and the methods to

overcome them are presented.

In the equation-based approach, a reduced model is presented and validated with production

measurements of the coating thickness. The simplifications introduced and the pertinent assump-

tions upon which they are based are discussed, along with the results. The trade-off between the

computational cost associated with the CFD model and the physical insight obtained, is discussed

and compared to the ML approach. Coating thickness predictions are possible with an average

error of 6%. In addition, the CFD model, predicts the distributions of velocity, and reactive species,
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illuminating thus, the mechanisms that contribute to the final product. Furthermore, it can be

used to predict the thickness achieved in parts of the reactor where there are no measurements.

Moreover, the CFD approach also allows extrapolating for different process conditions and different

inlet reactant concentrations. For the 7-disk CFD approach, the results of Table 4.3, show that

appropriate selection of the 7-disk “building blocks” for the simulations is of high importance for

the accuracy of the prediction.

The ML approach is discussed in detail, as far as the possible specific methods are concerned.

The suitability of each is assessed, based on the data available. Eventually the best performing

ML method, XGBoost, is able to deliver accurate and time-efficient coating thickness predictions,

but cannot provide insight into the transport of species that determines the coating thickness.

The implementation of GappyPOD for this specific application, shows how data-driven meth-

ods and CFD results can be intertwined to provide further insight on the important quantities

of interest inside the reactor. By further analysis of the resulting mask elements, we can ex-

plore the hypothetical scenario of sensor placement inside such reactors. Furthermore, we can

reconstruct entire snapshots from a few measurements inside the reactor, reducing in this way the

computational cost of the problem.

It should be noted that the strategy employed here is not exclusive to CFD modeling. The

same workflow could still be implemented in other applications, regardless of the equation-based

modeling approach used. The only limiting factor would be the amount and type of available data

for the application.

Another important observation is that specific combinations of inputs can lead to the same

outputs. This merits further investigation, due to its importance in the actual production process,

which is the topic of future work.

To conclude, it is clear that each individual approach is a valuable tool in studying a complex

process offering different advantages: physical insight and extrapolation abilities in CFD and time-

efficient, accurate predictions in ML. It is therefore worth investing the effort in each one of

them, and ultimately, in merging them in a hybrid approach with additional benefits. Reduced

representations, or the full state space of the CFD simulations could be used as features for

predictive machine learning algorithms, potentially improving predictive performance. However,
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this would come with the high computational cost associated with conducting the CFD simulations

for all available production runs. Ideally, the resulting model could combine high accuracy, time-

efficient predictions, and excellent extrapolation ability, moving in this way toward a digital twin

of the process.
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Chapter 5

Integrating supervised and

unsupervised learning approaches to

unveil critical process inputs

This chapter is reproduced from P. Papavasileiou, D. G. Giovanis, G. Pozzetti, M. Kathrein, C.
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Abstract

This study introduces a machine learning framework tailored to large-scale industrial processes

characterized by a plethora of numerical and categorical inputs. The framework aims to (i)

discern critical parameters that influence the output and (ii) generate accurate out-of-sample

qualitative and quantitative predictions of production outcomes. Specifically, we address the

pivotal question of the significance of each input in shaping the process outcome, using an

industrial Chemical Vapor Deposition (CVD) process as an example. The initial objective

involves merging subject matter expertise and clustering techniques exclusively on the process

output, here, coating thickness measurements at various positions in the reactor. This ap-

proach identifies groups of production runs that share similar qualitative characteristics, such

as film mean thickness and standard deviation. In particular, the differences of the outcomes

represented by the different clusters can be attributed to differences in specific inputs, in-

dicating that these inputs are potentially critical to the production outcome. Shapley value

analysis corroborates the formed hypotheses. Leveraging this insight, we subsequently im-

plement supervised classification and regression methods using the identified critical process

inputs. The proposed methodology proves to be valuable in scenarios with a multitude of

inputs and insufficient data for the direct application of deep learning techniques, providing

meaningful insights into the underlying processes.

5.1 Introduction

Chemical vapor deposition (CVD) is a widely used chemical process for producing thin films with

various properties, applied in semiconductor manufacturing [47], [48], membranes [205], [206], pro-

tective [54], [207] and wear-resistant [55], [208] coatings. Although Computational Fluid Dynamics

(CFD) models traditionally explore CVD complexity [4], [5], [146], [150], [151], [161], [164], [209],

[210] their efficiency and adequacy are challenged in cases involving unknown chemical reactions

or intricate reactor geometries. The computational cost of large-scale industrial process models

and the nonlinear nature of competing physical and chemical mechanisms further limit the utility

of CFD as a viable “digital twin”. It is also possible that there are different process outputs arise
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for the same inputs, which is also linked to non-linearity [7], [143].

Recently, Machine Learning (ML) has emerged as a promising alternative in the era of Industry

4.0 with abundant process data. ML applications range from maintenance management [168]–

[170] and production planning [21], [176] to outcome prediction [17], [36], process control [23] and

optimization [22]. ML models can also be developed based on preexisting physics-based models,

in order to further investigate the modeled process [8], [9], [211].

Despite recent advances in explainable AI (XAI), challenges persist in addressing the “black

box” nature of ML models. However, tools such as SHAP (SHapley Additive exPlanations) offer

improved explainability using a game theory approach [37], [212]–[214].

This study utilizes production data from an industrial CVD reactor for the production of wear-

resistant cutting tool coatings. The data encompass details about the reactor setup and the process

inputs; thickness measurements of the Ti(C,N)/α-Al2O3 coating in 15 positions within the reactor

are considered process outputs.

Implementing state-of-the-art (SotA) methods faces challenges that include:

• Process complexity, namely, multiscale interacting phenomena in intricate geometries.

• A multitude of numerical and categorical inputs, with little insight of their impact on the

process outcome.

• Noisy and heterogeneous data, collected over months or years with varying instrumentation

and calibration, which cannot be categorized as “big”.

Several different options are available in the literature related to the discovery of important

process parameters and the facilitation of subsequent modeling attempts. Variable Importance in

Projection (VIP) parameters [215], [216], a byproduct of Partial Least Squares (PLS) models, have

traditionally been used to determine the impact of process inputs on the output [216]–[218].

Variable selection tools have been shown to enable improved performance and subsequently

lead to a greater understanding of the importance of input variables on model output [219]. To this

end, several powerful dimensionality reduction techniques based on Principal Component Analysis

(PCA) or Diffusion Maps (DMaps) [220], [221] can lead to the discovery of effective process

parameters [222], [223].
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Despite the effectiveness of existing methods for strictly numerical data, challenges arise when

dealing with datasets rich in categorical features, as seen in this application. This work aims to

propose an ML workflow for the identification of critical process inputs without labeled data, an

essential contribution to control, optimization, and experimental design.

Our approach involves an unsupervised analysis of process outputs to identify clusters of similar

production runs. Subsequently, we analyze relevant process input data to discern distinguishing

characteristics within these clusters. Our findings are supported by subject matter expertise.

Shifting to supervised learning, we use cluster labels to train a classifier for predicting these labels

given specific process inputs. Furthermore, we attempt to create a regression model for predicting

thickness measurements. Finally, we employ SHAP and Shapley values to interpret the model

output.

The manuscript is structured as follows. A brief overview of the process and the available

production data is given in Section 5.2. The various machine learning methods implemented

(supervised, unsupervised) are presented in Section 5.3. The results are discussed in Section 5.4,

followed by concluding remarks in Section 5.5.

5.2 Process overview

The studied process involves two coating steps carried out inside a commercial, industrial-scale

Sucotec SCT600TH CVD reactor. To start with, a Ti(C,N) base layer of approximately 9 µm is

deposited under a chemical system consisting of TiCl4–CH3CN–H2–N2–CO at a temperature of

900°C and a pressure of 100 mbar [70], [71] on cemented carbide cutting tool inserts, shown in

Fig. 5.1a. TiCl4 is used as the Ti source and CH3CN is used as the source of C and N. The

second step involves the deposition of an alumina layer under specific conditions: T=1005°C and

p=80 mbar, from a mixture of gas reactants that includes AlCl3–CO2–HCl–H2–H2S. This step

takes around 3 hours to complete [1]. For a more detailed review of the α-Al2O3 coating step, the

interested reader is referred to previous work [32].

The CVD reactor consists of 40-50 perforated disks, stacked one on top of the other. The

inserts to be coated are placed on each disk. For illustrative purposes, a schematic of three such

disks is shown in Fig. 5.1b. Specially designed perforations in the cylindrical feeding tube, which is
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placed in the center of the reactor, ensure the uniform distribution of gas reactants over and around

the inserts: the perforations are placed antipodally and there is a 60° angle difference between the

axis connecting the inlets at each disk level. The feeding tube rotates at a fixed rotational speed

of 2 RPM, something that also ensures the uniform distribution of the reactants over and around

the inserts. Signs of deposition can be observed on all surfaces within the reactor, be it inserts,

disks, or walls.

(a) (b) (c)

Figure 5.1: (a) Examples of the coated cutting tool inserts. (b) A 3D representation of a 3-disk
part of the reactor. The inserts are placed on each of these disks. In red: inlet perforations on the
rotating inlet tube. In blue: outlet perforations for each disk. The perforations and the rotation
of the inlet tube allow for the even flow of the gas reactants inside the reactor. The deposition
can take place in everywhere within the reactor (disks, inserts, walls etc.). (c) Streamlines for a
snapshot of a 2D time-dependent CFD model for a 7-disk part of the reactor [32]. The wide white
rectangular areas represent the disks, while the smaller white areas of various shapes represent the
inserts.

It is worth noting that each insert has a dedicated disk design which ultimately suggests that

the interior geometry of the CVD reactor changes every time that it is set up.

The desired process outcome is uniform coating thickness distribution for the same insert and

also uniform mean thickness across all production runs, all reactors, and all production sites, as

this ensures consistent product life (quality) [74]. In practice, the desired uniformity is not always

achieved, and therefore a systematic way of identifying the influential aspects of coating uniformity

becomes necessary.
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5.2.1 Available data

After each production run, thickness measurements are taken at three positions on five disks of

interest, schematically shown in a representative geometry in Fig. 5.2. The thickness of the Ti(C,N)

and α-Al2O3 coating layers is measured using the Calotest method [197]. In this method, a small

spherical cavity is created on the coated inserts by using a rotating ball with a known geometry,

producing a tapered cross section of the film. When observed under an optical microscope, this

allows the measurement of the thickness of both layers. These measurements have been used

in previous work, both for the development of a CFD model of the process [32], and for the

implementation of ML approaches for the prediction of coating thickness [36].

Coating thickness is a vital measure of product quality for CVD applications. The long-term

experience of the practitioners led to the selection of these 15 measurements for testing the

quality of each production run. It should be noted that in case additional quality-related data (i.e.

roughness of the coating) become available, they can be easily incorporated into the framework

presented in this paper, in conjunction with thickness.

Additionally, the available dataset contains information about a) the process input parameters

and b) the reactor geometry and setup. Some examples of these features include, but are not

limited to:

• The components of the reactor setup that determine the overall interior geometry, i.e. the

sequence according to which the disk/inserts are stacked to form the overall reactor.

• The surface area of the inserts on each disk.

• The production “recipe”, a feature that encodes several process parameters and steps. We

should note that there can be several versions of one recipe. There are a total of four

base recipes present in the dataset with five versions for each (marked V21, V20, and older

variants). This makes up a total of 20 recipes.

• The serial number of the reactor used for the production run.

An important contribution of this work emerged in the context of data exploration and pre-

processing. It became necessary to engineer additional features based on our intuition (subject
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Figure 5.2: A 2D representation of the CVD reactor. The inlet of the reactants is found on the left
side, and the outlet is located on the right side. The gray area represents the domain where the gas
reactants flow. The white areas represent the stacked disks and the inserts that are coated. Circled
in red, we highlight the 15 locations where inserts are most commonly measured (R0: locations
closest to the reactor’s inlet, R1/2: locations around the middle of the disk radius, R: locations
closest to the reactor’s outlet). These thickness measurements can be used for several tasks, such
as the development of CFD or ML approaches for the prediction of the process outcome. The
arrows indicate the gas reactant inlets and outlets.
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matter expertise) regarding the existing inputs. These engineered features include the total surface

area per reactor, the standard deviation of the surface area within the reactor, and the difference

between the nominal and actual surface area within the reactor. The nominal surface area is the

surface area considered by the production recipe and does not always coincide with the actual

surface area. For more information on the available data, its type and its characteristics, the

interested reader is referred to Table 5.1 and to previous work by Papavasileiou et al. [36]. A

comparison of our approach with systematic methods for feature combinations, such as polynomial

combination or even symbolic regression, is underway and outside the scope of this work.

Table 5.1: Available data for each production run. Asterisks denote inputs deemed potentially
important by empirical knowledge.

Feature Origin
Thickness - 15 disks of interest Raw data

Number of inserts per disk Raw data
Surface area of inserts per disk Raw data

Disk setup sequence Raw data
Insert geometry per disk Raw data
*Production “recipe” Raw data

Reactor used Raw data
Year of production Raw data

*Total surface area of inserts
inside the reactor

Engineered

*|Nominal “recipe” surface area
- actual surface area|

Engineered

*Surface area standard deviation Engineered

The availability of data on the outcome of the process in the form of thickness measurements

(mentioned in this section and visually presented in Fig. 5.2), along with information on the

reactor setup, motivates the use of several machine learning methods. Following the data cleanup

and feature engineering steps briefly presented in Fig. 5.3, the data can be easily used for the

implementation of a plethora of ML methods. A detailed overview of the methods implemented

is presented in Section 5.3.
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Figure 5.3: A flowchart indicating the steps leading to the clustering part of the analysis. First,
the raw production data are extracted. Then, the observations with missing values are disregarded
and typographical errors in the entries are corrected. In step 3, the data are divided in inputs and
outputs. This step also includes the engineering of new potentially useful features by using the
existing ones. Subsequently, the production runs are clustered based solely on the outputs (15
thickness measurements). Finally, we attempt to correlate the resulting clusters to differences in
the process inputs.

5.3 Machine learning methods

5.3.1 Unsupervised learning

Unsupervised learning algorithms take unlabeled data as inputs to discover interesting patterns

in the data (e.g. association rule analysis) or try to create subgroups - or clusters - of similar

observations within the dataset [82]. Dimensionality reduction techniques such as the widely used

Principal Component Analysis (PCA), autoencoders [224], and diffusion maps [220], [221] also fall

under unsupervised learning, as they provide a reduced data representation without requiring the

corresponding response. The clustering and dimensionality reduction techniques implemented are

briefly discussed in the following sections.
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Clustering

Clustering algorithms are based on the concept of dissimilarity (or similarity) between observations,

which determines their grouping. Typically, these algorithms use a similarity matrix, where pair-

wise similarities between observations are represented. For quantitative variables, the commonly

employed metric is the Euclidean distance, while alternative distance metrics can also be used [80],

[82].

Clustering algorithms are categorized into various categories. Partitional approaches, such as

the k-means algorithm, involve assigning observations to clusters based on distances to centroids

iteratively, requiring an a priori choice of the number of clusters and sensitive to initial centroid

positions [83]. Density-based algorithms, such as OPTICS and DBSCAN, identify clusters by

considering areas of high density separated by low-density regions. Certain algorithm parameters,

such as the minimum points that form a cluster and the minimum distance between the core

points require specification [84]–[86]. Hierarchical clustering methods link data points according to

criteria, progressively creating clusters until a single cluster is achieved in the case of agglomerative

clustering, or progressively splitting clusters starting until each observation is its own cluster in the

case of divisive clustering. The results depend on the distance metric and the linkage criteria

selected [87], [88]. Additional methods include model-based and spectral methods [225], [226].

Here, we focus on agglomerative hierarchical clustering, implementing a Ward linkage criterion

for merging the clusters. This is an established variance minimization approach [227] that works by

minimizing the sum of squared differences within all clusters. Agglomerative hierarchical clustering

is selected because it provides insight on how the data merges depending on the number of clusters

chosen. This information is readily available in the form of a dendrogram, such as the one presented

in Fig. 5.4a.

For this specific problem, the 15 available thickness measurements of 603 production runs

are used as inputs (cf. Section 5.2.1). The clustering results are then interpreted based on the

characteristics of the resulting clusters. Our goal is to identify production runs that are similar to

each other and to try to uncover the discerning features of these clusters.
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5.3.2 Supervised learning

Supervised learning algorithms, unlike unsupervised ones, require labeled data, associating features

(xi) with responses (yi). Supervised learning tasks include regression for continuous variables and

classification for binary or ordinal responses [81].

The methods evaluated for this work include: (a) linear methods: for regression, lasso [89], and

ridge [90] regression, and logistic regression for classification tasks. (b) Support vector machines

(SVMs) [91] that can be categorized as linear or nonlinear methods based on the kernel used

for classification tasks. (c) Tree-based methods: involving classification and regression trees [92]

and their ensemble counterparts such as random forests [93], gradient-boosted trees [94], extra

trees [95], and XGBoost [34], which combine numerous trees to enhance performance [96]. (d)

Artificial neural networks (ANN), whose diverse architectures [97] can provide valuable options for

both classification and regression tasks.

In this work, logistic regression, random forests, SVM, extra trees, gradient-boosted trees,

XGBoost, and ANNs are implemented for supervised learning tasks. However, only the methods

that demonstrate the best performance for our dataset are presented in Section 5.4.

5.3.3 Shapley values

Shapley values, originally introduced by Shapley [212] and proposed as a tool to analyze machine

learning models in [37], [228] assess the average contribution of each feature’s value to predictions,

providing an understanding of how alterations to a variable might influence the ultimate model

output. The fundamental idea of Shapley value-based explanations in machine learning is to fairly

distribute credit for a model’s output among its input features, using principles from cooperative

game theory. To bring machine learning models into a game theory context, each of the inputs

of the model can be considered a player that either joins or does not join the game. Joining the

game means that the input value is known, while not joining the game means that the input value

is unknown. Shapley values have an additive nature. In the context of explaining machine learning

models, this means that the SHAP values for all input features will always total the difference

between the baseline (expected) model output and the actual model output for the prediction

being explained.
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In the context of this work, a SHAP (SHapley Additive exPlanations) analysis is conducted on

the proposed regression models (cf. Sections 5.3.2 and 5.4.5) using the shap Python library.

5.4 Results

5.4.1 Clustering

As mentioned in Section 5.3.1, the agglomerative hierarchical clustering algorithm with a Ward

linkage criterion is implemented for clustering the 603 production runs.

The clustering algorithm utilizes the 15 thickness measurements for each of the 603 production

runs, forming a 603 × 15 matrix. Clusters are then created solely based on the process outputs.

Subsequently, the distinctive features are identified by analyzing the process inputs for each pro-

duction run.

The hierarchical clustering algorithm generates a dendrogram that illustrates cluster levels,

member counts, and dissimilarities. The clusters are depicted as branches of a tree, culminating

in the “trunk”, representing the final cluster (by agglomerating smaller ones). In our case, the

resulting dendrogram is shown in Fig. 5.4a. By selecting a dissimilarity threshold, we can discern

one, two, three, or more clusters. In Fig. 5.4a, the three clusters are colored purple, red, and

green. A higher dissimilarity threshold merges the red and green clusters into a single blue cluster

(as shown in Fig. 5.4a). The resulting clusters are visualized in a reduced three-dimensional space

(through projection on three principal components) in Fig. 5.4b.

As mentioned above, the thickness and its uniformity throughout production runs is a very

effective process performance indicator and product quality metric. Thus, production runs with a

higher average thickness and a lower standard deviation can be considered superior to those with

a lower average thickness and higher standard deviation. We observe that the thickness within

the clusters follows a normal distribution, and therefore we can calculate the first and second

statistical moments (that is, the mean (µthick), and standard deviation (σthick) and visualize the

thickness distributions as shown in Fig. 5.5. These distributions and their qualitative significance

for the process are the basis for the following sections, where we first try to identify parameters

that potentially cause these qualitative differences (cf. Section 5.4.2) and then try to exploit them
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(a) (b)

Figure 5.4: (a) Resulting dendrogram of the clusters output by the implemented agglomerative
hierarchical clustering algorithm using a Ward linkage criterion. The three main clusters of interest
are colored purple, red, and green. We note that by selecting a slightly higher dissimilarity threshold,
the red and green clusters can be merged and viewed as a larger cluster (shown in blue). (b) The
three resulting clusters, visualized in a reduced 3D space. The three clusters appear to be well-
formed. PCA was used for finding the 3D reduced space.

to make predictions for future production runs in Sections 5.4.3 and 5.4.4.

5.4.2 Critical input identification

In this section, the focus shifts to the process inputs whose variation is critical for each cluster.

We propose three different ways for assessing the relative importance of process inputs.

1. Intuition-based approach: By finding characteristics that are predominantly different in each

cluster, we can assess their importance on the process outcome (cf. Section 5.4.2).

2. Supervised learning approach: Classification algorithms are trained using the cluster labels

of the clustering step as outputs and various inputs: some process inputs lead to higher

accuracy, which is an indication of their importance. Conversely, less important inputs have

an adverse effect on the accuracy of the classifier (cf. Section 5.4.3).
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(a) (b)

Figure 5.5: Thickness distribution in the case of: a) 2 clusters and b) 3 clusters. High average
thickness and low standard deviation is a measure of process efficiency and product quality. The
production runs in the “purple” cluster demonstrate superior quality characteristics.

3. Shapley value approach: The importance of input features for classification or regression can

be assessed using Shapley values (cf. Section 5.4.5).

Combining clustering and subject matter expertise

When two clusters are considered (Fig. 5.5a), cluster 0 demonstrates superior characteristics, with

the highest average thickness and the lowest standard deviation (Table 5.2). Further examination

reveals that cluster 0 is characterized by production runs predominantly using recipe version V21,

while cluster 1 comprises runs using version V20 and older versions, indicating recipe version as

the main distinguishing feature.

Table 5.2: Characteristics of each cluster in the case of two clusters. The recipe version used for
production is the discerning feature of the two clusters.

Cluster µthick (µm) σthick (µm) Predominant recipe versions
0 16.35 1.355 V21
1 15.08 1.578 V20 & older
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When three clusters (Fig. 5.5b), are identified by the clustering algorithm, cluster 0 exhibits

superior characteristics, with the highest average thickness and the lowest standard deviation

(Table 5.3). In particular, cluster 0 comprises production runs using recipe version V21, and is

practically the same as cluster 0 in the two-cluster case mentioned in the previous paragraph.

Clusters 1 and 2 predominantly use V20 and older versions and are the result of the splitting of

cluster 1 identified in the two-cluster case. This cluster splitting, in essence, means that even

among production runs using recipe version V20 and older, there are certain cases where favorable

quality characteristics are achieved. This raises the question: which is the critical input that led

to this difference in quality?

Further assessment drew our attention to an engineered feature, the absolute value of the

difference between the nominal and actual total surface area to be coated. The nominal surface

area is the predetermined production setting, specified for increments of 1m2. It is selected to be

as close as possible to the actual total surface area of the to-be-coated inserts within the reactor.

In practice, this nominal surface area rarely matches the actual value of the total surface area and

this discrepancy is evident when comparing the distributions between clusters 1 and 2, as shown in

Fig. 5.6; On average, for the members of cluster 2, the difference between the nominal and actual

total surface area is greater than 0.5m2, while in cluster 1 it is less than 0.5m2. This analysis

suggests that when the value of this difference is less than 0.5m2, the qualitative characteristics

of the products are superior, thus leading to a clear and cost-free improvement suggestion: define

preset production parameters for increments of 0.5m2 (instead of 1m2) of the total surface area.

Table 5.3: Characteristics of three clusters: Discerning features include the recipe version used for
production and the absolute difference between nominal and actual surface area.

Cluster µthick (µm) σthick (µm) Predominant recipe versions
|Nominal recipe surface area
- actual surface area| (cm2)

0 16.35 1.354 V21 4892
1 15.53 1.386 V20 & older 4628
2 14.32 1.588 V20 & older 5526
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(a) (b)

Figure 5.6: Distributions of |Nominal recipe surface area - actual surface area| for clusters 1 (in
green) and 2 (in red). Cluster 2 includes relatively more observations with values larger than 5000
cm2 when compared with cluster 1.

5.4.3 Classification

We train a classifier to predict cluster labels that resulted from the clustering analysis, using

as inputs the dominant features identified in the previous section (clustering). This is useful in

practice to predict the overall quality characteristics of the production run, as these cluster labels

correspond to distinct thickness distributions.

The results for a binary (two-cluster case) and a multi-label classification (three-cluster case)

task are presented. For these tasks, we divide the 603 observations into a training set and a test

set using an 80/20 ratio.

Initially, classification models take as input the two important features identified through clus-

tering. However, these are not the only discernible differences between clusters; other features,

such as the year of production, the reactor used, and the standard deviation of the surface area in

the reactor (i.e., the variation of the insert surface area of each disk inside the reactor), also have

marked differences between clusters. Therefore, these inputs are also considered when training the

classifier.

The initial step involves training a random forest classification model (n_estimators=1000,
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max_depth=6) to predict whether a production run belongs to cluster 0 or 1 in Fig. 5.5a, treating

it as a binary classification problem. The classifier, as shown in the confusion matrices in Figs. 5.7a

and 5.7b, accurately distinguishes between clusters 0 and 1 production runs both for the training

(accuracy = 0.954) and test set (accuracy = 0.958). The calculated accuracy, f1 score, precision,

and recall metrics are presented in detail in Table 5.4.

Subsequently, a random forest classification model (n_estimators=1000, max_depth=6) is

developed to determine if a production run belongs to cluster 0, 1, or 2 in Fig. 5.5b, making

it a multi-label classification problem. As demonstrated in the confusion matrices in Figs. 5.7c

and 5.7d, the classifier identifies cluster 0 members very accurately, for both training and test

datasets. However, it sometimes struggles to distinguish between members of cluster 1 and cluster

2, often misclassifying them as members of the other cluster. The accuracy of the classifier on the

test set is 0.793. As in the two-cluster case, all metrics are presented in Table 5.4. Since this is

not a binary classification problem, the f1 score, precision and recall metrics are macro-averaged

[229].

Table 5.4: Classification metrics for the two-cluster and three-cluster cases. The metrics for the
three-cluster case have been macro-averaged.

Accuracy f1 Precision Recall
2-cluster case

Training Set 0.968 0.958 0.954 0.962
Test Set 0.967 0.958 0.958 0.958

3-cluster case (macro-averaged metrics)
Training Set 0.840 0.848 0.844 0.852
Test Set 0.793 0.792 0.795 0.790

5.4.4 Regression

In the present work, regression is used as a tool that allows for the prediction of the average

coating thickness for each production run, using fewer measurements than the 15 currently used.

Specifically, we use the features identified through clustering and five thickness measurements (the

closest to the reactor’s inlet (R0)) as inputs. This leads to accurate prediction of the mean coating

thickness (average of R1/2 and R) for both training (R2 = 0.914) and the test set (R2 = 0.722)
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(a) (b)

(c) (d)

Figure 5.7: Confusion matrices for (a),(c) the training set and (b),(d) the test set of the two-cluster
and three-cluster classification cases, respectively.

(cf. Fig. 5.8). This method proves valuable for streamlined post-production quality control as it

allows for precise quality assessment with only one third of the previously required measurements.

5.4.5 Shapley value analysis

The most influential features that affect the predicted average coating thickness are identified by

computing the SHAP values for the developed regression model. To create a measure of “global”

feature importance, we calculate the mean absolute SHAP values for each input. These values are
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Figure 5.8: Training set performance metrics: MSE: 0.067, MAE: 0.198, R2: 0.914, MAPE: 1.26%.
Test set performance metrics: MSE: 0.264, MAE: 0.409, R2: 0.722, MAPE: 2.62%.

shown in Fig. 5.9b. The five thickness measurements provided along with the year of production

emerge as the most crucial features. Of the five thickness measurements provided, the lowest

contribution comes from the measurement on the first disk from the top of the reactor. They are

followed by the four remaining features, i.e., recipe, difference between the nominal and actual

substrate surface area within the reactor (surf_area_diff), standard deviation of the surface area

(surface_area_std) and the reactor used for production. These four features demonstrate a similar

contribution to the model’s predictions.

5.5 Conclusions

This study introduces a data-driven approach for uncovering patterns and influencing process inputs

in an industrial Chemical Vapor Deposition (CVD) process, addressing challenges associated with

process complexity and dataset characteristics.

Our analysis relies on subject matter expertise, combined with supervised and unsupervised

learning methods. The main premise is that the performance of data-driven algorithms, given
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(a) (b)

Figure 5.9: (a) 2D representation of the reactor, indicating the positions of the thickness mea-
surements used as inputs for the regression problem. (b) Calculated mean absolute SHAP values
for each of the inputs to the regression model. The five provided thickness measurements along
with the year of production appear to be the dominant features, followed by surf_area_diff, the
reactor and the recipe used for production and the standard deviation of surface area within the
reactor.

a specific data set, is influenced by and indicative of the importance of the inputs used during

training. This is supported here by intuition about critical process inputs and some knowledge

about the important quality characteristics.

We use unsupervised learning to obtain meaningful data labels that correspond to groups of

production runs of similar quality. We then use these labels, in the context of supervised learning,

to predict the outcome for a new set of inputs, thus providing a cost-efficient shortcut for quality

control.

The importance of features in investigated using Shapley values, which corroborates both sub-

ject matter expertise and also the conclusions drawn from the accuracy of classification methods.

The results of this study offer opportunities to streamline post-production quality control and

contribute to the ongoing refinement of the manufacturing process.
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It is worth noting that this framework is adaptable to other processes, contingent on data

availability. Even in cases with limited data, this approach unveils potential process-determining

inputs, corroborating the insights of process experts in a purely data-driven manner.

Furthermore, consistent and improved data collection in the coming years will not only aid in

validating and enhancing the developed predictive models, but also contribute to the continuous

optimization of the overall process.
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Chapter 6

A machine learning framework for

analyzing the impact of reaction

center configurations on astrocyte

metabolic states
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A machine learning framework for analyzing the impact of reaction center configurations on
astrocyte metabolic states

Abstract

This work introduces a machine learning framework that allows the investigation of the influ-

ence of reaction centers on the metabolic state of astrocyte cells. The proposed ML framework

takes advantage of spatial astrocyte metabolic data stemming from numerical simulations for

different reaction center configurations and allows for the following: (i) Discovery of cell groups

of similar metabolic states and investigation of the reaction center configuration within each

group. This approach allows for an analysis of the importance of the specific location of the

reaction centers for a potentially critical metabolic state of the cell. (ii) Qualitative prediction

of the energetic state of the cell (based on [ATP]: [ADP]) and quantitative prediction of the

metabolic state of the cell by predicting the spatial average concentration of the metabolites

or the complete spatial metabolic profile within the cell. (iii) Finally, the framework allows for

the post hoc analysis of the developed quantitative predictive models using a SHAP approach

to investigate the influence of the reaction center positions for further support of the insights

drawn in steps (i)-(iii). Following the implementation of the framework, we observe that a

uniform mitochondrial distribution within the cell results in the most robust energetic cell

state. On the contrary, realizations of polarized mitochondrial distributions exhibit the worst

overall cell health. Furthermore, we can make accurate qualitative predictions regarding cell

health (accuracy = 0.9515 , recall = 0.9753) and satisfactory predictions for the spatial aver-

age concentration and spatial concentration profiles of most of the metabolites involved. The

techniques proposed in this study are not restricted to the dataset used. They can be easily

used in other datasets that include findings from various metabolic computational models.

6.1 Introduction

Understanding the complex interplay of molecules within cells is crucial for advancing fields such

as medicine, biotechnology, and pharmacology. In the intricate landscape of cellular biology,

metabolism is a complex series of interconnected pathways occurring in living cells. It operates

through specific biochemical reactions and produces energy and other essential biochemical com-

pounds. Energy in the form of ATP is the fuel of all living systems, and metabolism is designed
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to optimally regulate it. Metabolism is thus a prerequisite for the optimal function and survival of

cells and, in extension, for the survival of organisms. An example of particularly important cells

are astrocytes (cf. Fig. 6.1), the most abundant glial cells and crucial energetic supporters of

the energy-intensive brain [230]. In general, the study of cellular metabolism has evolved signifi-

cantly, with researchers now employing a multidisciplinary approach that integrates both biological

experiments and computational modeling. Given the intricate nature of metabolism, employing

mathematical models is essential for a comprehensive investigation [231].

Metabolic processes are not uniformly distributed throughout the cell. Subcellular compart-

ments such as mitochondria, endoplasmic reticulum, and cytoplasm exhibit distinct metabolic

activities. In astrocytes, the enzymatic distribution of hexokinase seems to be fundamental for

glucose uptake [232], while the location of mitochondria appears to be crucial for calcium activ-

ity [233]. Thus, the current research direction aims to include spatial cellular information [234]

to spatially quantify metabolites and their dynamics over time. Recent advances in analytical

techniques have contributed to obtaining a snapshot of the cellular status. For example, spa-

tial metabolomics [235] aims to identify and analyze metabolites directly within their -usually-

geometrically complex spatial surroundings. Imaging and image analysis techniques have been

proven to be useful in investigating spatio-temporal intracellular ATP and cellular morphological

changes [236], [237]. In addition, these spatially resolved data contribute to a more comprehensive

understanding of how metabolic processes are compartmentalized and coordinated within the cell.

Complementing the analytical techniques mentioned above, computational approaches have

become a valuable tool for unraveling the complexity of cellular metabolism. Classical metabolic

modeling approaches range from stoichiometric models [238] to kinetic simulations [239]–[241].

These models are capable of predicting and simulating the dynamics of the metabolic system. In

addition, they can help guide experimental design and generate hypotheses. The main limitation

of these models is the assumption of a well-mixed cellular environment, which neglects the spatial

heterogeneity present in the biological systems that we discussed above. Several recent computa-

tional models have proposed spatially resolved kinetic models and agent-based simulations [242],

[243] exploring how metabolite concentrations can vary in spatial dimension in different cellular

morphologies of varying geometric complexity. This modeling approach is particularly valuable as
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it approaches biological reality and is well suited for the study of phenomena such as organelle

crosstalk and the impact of spatial constraints on metabolic fluxes [40], [244]–[247]. Biological

snapshots of metabolite concentrations obtained from in vivo and in vitro cells offer valuable

glimpses into cellular states [248] and can be used as starting points for spatially resolved models.

Although these data can characterize the cellular state at the moment they are collected, they are

unable to capture the dynamic nature of cellular metabolism. Moreover, there is a limit to the data

that can be collected from a cellular sample: staining a cell to gain information on one metabolite

can prevent the investigation of another. Lastly, the lack of comprehensive data on the temporal

aspects of metabolic processes hinders the ability of computational models to accurately simulate

and predict the real-time behavior of cellular metabolism. Bridging these gaps in both experimental

snapshots and computational modeling data is essential for understanding the intricate dynamics

that govern cellular metabolic networks.

Addressing the limitations in our current understanding of cellular metabolism, machine learning

techniques [249], [250] could be applied to bridge the gap between static biological snapshots

and dynamic models. For this purpose, we implement a machine learning approach on a dataset

consisting of the results of a spatially resolved computational metabolic model of an astrocyte [40].

This computational model provides us with spatial information of the metabolites in a simplified

two-dimensional rectangular cellular domain, given different configurations of reaction centers in

the form of coordinates on the x- and y-axes.

The proposed approach aims to discover reaction centers (inputs) that are potentially critical

to the metabolic state of the cell (output). To this end, the following steps are necessary: a)

Discovery of groups of similar metabolic profiles, using only the output of the computational

model (spatial metabolic concentrations at steady state). This is achieved through the use of

clustering algorithms. By analyzing the inputs corresponding to the resulting clusters, we can draw

insights into the relationship between the reaction center position and the metabolic state of the

cell. b) Qualitative prediction of cell health status using only the coordinates of the reaction centers

as input. This is made possible through the use of classification algorithms. The input-output

relationship insights derived from the previous step are expected to greatly influence the predictions

of the classification algorithm used. c) Quantitative prediction of the metabolic state of the cell
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using the coordinates of the reaction centers as inputs. This is enabled by the use of regression

algorithms, in our case, Artificial Neural Networks (ANNs). We are able to predict both the average

concentration of the metabolites in the domain and the spatial profile of the metabolites in the

domain at steady state. Last but not least, d) since the explainability of the developed “black-box”

ANN models is very important for our application, a SHAP analysis [37] can be performed for

the developed regression models. The obtained values can shed more light on the effect of each

input (reaction center coordinates) on model output (spatial metabolite concentration) and further

indicate whether the insights derived in the previous steps are meaningful.

These techniques have the potential to decode the complexity inherent in cellular metabolism,

offering a means to generate more comprehensive and accurate representations of metabolic pro-

cesses. Hopefully, they can also be applied to spatially resolved computational models of higher

metabolic or geometric complexity, which are predominant when it comes to cells.

6.2 Methods

6.2.1 Computational Model

Biochemical Reaction Model

We consider a spatially resolved metabolic model, proposed in [39], [40], which prioritizes the

arrangement of the reaction sites in the domain and the geometries of the domain at the expense

of a more elementary chemical model.

In its simplicity, the model captures the main fundamental metabolic energy pathways in five

chemical reactions: glycolysis, mitochondrial activity, and lactate dehydrogenase. Glycolysis is

described by two chemical reactions named HXK and PYRK. The first one accounts for the en-

zymes: hexokinase, phosphoglucose isomerase, phosphofructose kinase, and fructose bisphosphate

aldolase. HXK consumes glucose (GLC) and adenosine triphosphate (ATP) producing adenosine

diphosphate (ADP) and glyceraldehyde (GLY). The second reaction, PYRK, uses the product

of the first reaction to produce ATP and pyruvate PYR. Now, PYR can either be used by the

lactate dehydrogenase enzyme (LDH) to produce lactate (LAC) or enter the mitochondria and

contribute to mitochondrial activity. Mitochondrial activity accounts for the Krebs cycle and oxida-
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Figure 6.1: (a) A sketch illustrating the crucial location of an astrocyte between a neuron and a
blood vessel, relevant for their metabolism. (b) A concise overview of the metabolic model used to
describe the main pathways in astrocytes. (c) An example of [ATP] concentration profile obtained
solving the metabolic model in a 3D human astrocyte obtained from a confocal microscopy image.
(d) Dynamic evolution of the six considered metabolites averaged inside the 2D domain for three
sampled realizations, one for each distribution of reaction centers. (e) Scatter plot of the spatial
average [ATP] : [ADP] vs spatial average [LAC] for all available cell configurations at steady
state - Clear distinctions between uniform configurations and polarized and polarized log-normal
configurations.

tive phosphorylation, producing ATP. Finally, the energetic production within the cell is balanced

by considering the cellular activity that consumes ATP.

The chemical model is then described as follows:
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HXK := GLC + 2 ATP → 2 ADP + 2GLY (6.1)

PYRK := GLY + 2 ADP → 2 ATP + PYR (6.2)

LDH := PYR → LAC (6.3)

Mito := PYR + 28 ADP → 28 ATP (6.4)

act := ATP → ADP , (6.5)

An overview of the model is presented in Fig. 6.1.

Mathematical model

Mathematically, the model is then translated into a reaction-diffusion system [251] through a

set of partial differential equations (PDE), which allows us to a) solve the metabolic model in a

geometrical bounded domain; b) account for the molecules’ diffusivity; c) distribute spatially the

chemical reaction sites inside the domain.

In a bounded 2-dimensional domain, Ω, we consider a fixed number, M ∈ R+, of reaction

sites for chemical reactions: HXK, PYRK, LDH and Mito, which are spatially distributed using

a spatial reaction rate density, Kj. Spatial reaction rates are defined as the product between

classical reaction rates Kj, and Gaussian functions defined with a center {xi}M
i=1 ∈ Ω and variance

σi ∈ R+. The cellular activity, act, operates homogeneously in the domain Ω with reaction rate

Kact.

The reaction-diffusion system is defined as follows:
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∂[GLC]
∂t = D[GLC]∇2[GLC]−KHXK[GLC][ATP]2 + Jin

∂[ATP]
∂t = D[ATP]∇2[ATP]− 2KHXK[GLC][ATP]2 + 2KPYRK[ADP]2[GLY]

+28KMito[PYR][ADP]28 − Kact[ATP]

∂[ADP]
∂t = D[ADP]∇2[ADP] + 2KHXK[GLC][ATP]2 − 2KPYRK[ADP]2[GLY]

+Kact[ATP]− 28KMito[PYR][ADP]28

∂[GLY]
∂t = D[GLY]∇2[GLY] + 2KHXK[GLC][ATP]2 −KPYRK[ADP]2[GLY]

∂[PYR]
∂t = D[PYR]∇2[PYR] +KPYRK[ADP]2[GLY]−KLDH[PYR]

−KMito[PYR][ADP]28

∂[LAC]
∂t = D[LAC]∇2[LAC] +KLDH[PYR]− ηLAC[LAC]

(6.6)

where:

• The source of GLC is described through a function Jin : Ω × [0, T] → R:

Jin(x, t) =


α ∈ R if (x, t) ∈ Ωin × [0, T], where Ωin ⊂ Ω

0 otherwise.
. (6.7)

• The degradation of LAC, which is proportional to the amount of LAC in region Ωout ⊂ Ω

is described by the function ηLAC : Ω × [0, T] → R

ηLAC(x, t) =


η ∈ R if (x, t) ∈ Ωout × [0, T], where Ωout ⊂ Ω

0 otherwise.
. (6.8)

For more details on the mathematical model and parameters, we refer the readers to [40].

6.2.2 Data acquisition

Data were acquired by numerically solving the reaction-diffusion system that arose from the

metabolic model presented in the previous section. We used standard finite element methods
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[252] using the FEniCS software [253]. First, the reaction-diffusion system was converted to its

corresponding weak form. Then, we spatially discretize the two-dimensional rectangular domain

by finite elements using the package mshr (number of finite elements 25298 and number of dofs

13207). We temporally discretize the time derivative using a backward Euler scheme with a time

step of 0.15 (s) [254]. The solution of the weak form is defined on the space of piecewise

Lagrangian finite elements of degree one.

We consider a 2-dimensional rectangular domain ([0, l] × [0, L], with width l = 4 µm and

length L = 140 µm) where we place 10 reaction sites per chemical reaction with a spatial extent

of σ = 1.0 µm. The input/inlet of the system is the entrance of GLC in the bottom left corner,

while the output/outlet is the outflux of LAC in the opposite corner. To investigate the crucial

role of spatial arrangement in cellular domains, we consider three possible distributions of the

reaction sites: uniform, polarized, and polarized log-normal. The uniform distribution considers

the 10 reaction sites per chemical reaction to be sorted from uniform distributions. The polarized

consider an extreme reaction site configuration supposing that glycolysis is located at the bottom

of the rectangular domain close to the GLC influx while the 10 reaction sites for LDH are sorted at

the top of the rectangular domain. The main difference between polarized and polarized log-normal

lies in the distribution of the mitochondria. In the first case, six reaction sites for Mito are placed

where glycolysis is located, and four reaction sites are at the top of a part of the rectangular domain,

to ensure that some mitochondria can be found throughout the domain. The polarized log-normal

setting uses a log-normal distribution to sort the 10 Mito reaction sites, causing mitochondria

to be located mainly in the lower part of the domain and almost none co-located with LDH.

Examples of the three distributions can be seen in Figure 6.2.

The dataset used in this study is composed of 1,428 uniform, 1,336 polarized, and 1,314

polarized log-normal realizations. The information for each realization are the x and y location of

the reaction center sites, the average concentration of the six metabolites in the domain at steady

state and the spatial concentration at each grid point inside the discretized domain for the six

metabolites at the steady state.
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6.2.3 Unsupervised learning

Unsupervised learning algorithms process unlabeled data to discover interesting patterns within the

data. For instance, they might perform an association rule analysis or create clusters of similar

observations in a dataset [82]. Furthermore, dimensionality reduction techniques such as the

widely used Principal Component Analysis (PCA), autoencoders [224], and diffusion maps [220],

[221] —also fall under the umbrella of unsupervised learning since they provide a reduced data

representation without considering the corresponding response variable (or label) of the data.

In the upcoming sections, we will provide a concise overview of the clustering and dimensionality

reduction techniques that have been implemented.

Clustering

For our clustering study, which aims to discover groups of cells that demonstrate similar metabolic

profiles, we implement an agglomerative hierarchical clustering algorithm [87], [88]. Agglomerative

clustering starts with a number of clusters equal to the number of observations and progressively

merges clusters until a single cluster remains. The way these clusters merge is based on the

dissimilarity metric and the linkage criterion used. Here, the Euclidean distance is implemented

as the dissimilarity metric and a Ward linkage criterion [227]. This criterion minimizes the total

variance within the cluster by merging the clusters in a way that leads to the smallest increase

in variance after each merge. Specifically, it aims to minimize the sum of squared differences

within all clusters. The scikit-learn AgglomerativeClustering module is used for this task [255].

Agglomerative hierarchical clustering is selected because it provides insight on how the data merges

as the number of clusters changes. This information is readily available in the form of a dendrogram,

such as the one presented in Fig. 6.3a.

Dimensionality reduction

Each row spatial concentration data matrix realization has 79,242 columns, one for each of the six

metabolite concentration values at each of the 13,207 grid points. Reducing the dimensionality of

the spatial data will be very beneficial when manipulating the data and when training predictive

models later on. For this task, Principal Component Analysis (PCA) is implemented [112]. PCA
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linearly transforms the original data onto a new coordinate system where PCs can be easily iden-

tified. The amount of PC retained for subsequent analysis depends on user criteria. In this work,

we aim to retain 99.9% of the variance and to keep the reconstruction Root Mean Square Error

(RMSE) below 0.03. The scikit-learn PCA module is used for this task [255].

6.2.4 Supervised learning

Supervised learning algorithms, in contrast to unsupervised ones, are based on labeled data. In

labeled data, the features (xi) are associated with the corresponding responses (yi). These models

use available data to make predictions for future observations. Supervised learning encompasses

regression for continuous variables and classification for binary or ordinal responses [81].

In the present work, the coordinates of the 40 metabolite reaction centers can be considered

as inputs, with the response variables being the spatial metabolite concentrations or the spatial

average metabolite concentrations. Based on these continuous variables, binary variables can also

be engineered (healthy vs. non-energized cell) for classification purposes.

The methods evaluated for this work include: (a) linear methods: for regression, lasso [89], and

ridge [90] regression, and logistic regression for classification tasks. (b) Support vector machines

(SVMs) [91] that can be categorized as linear or nonlinear methods based on the kernel used for

classification tasks. (c) Tree-based methods: involving classification and regression trees [92] and

their ensemble counterparts such as random forests [93], gradient-boosted trees [94], extra trees

[95], and XGBoost [34], which combine numerous trees to improve performance [96]. (d) Artificial

neural networks (ANN), whose diverse architectures [97] can provide valuable options for both

classification and regression tasks.

In the present work, logistic regression, random forests, SVM, extra trees, gradient-boosted

trees, XGBoost, and ANNs are implemented for supervised learning tasks. However, results are

presented only for methods that demonstrate the best performance for our dataset, namely logistic

regression for classification tasks and ANNs for regression tasks. An overview of the supervised

learning approaches used in this work is presented in Fig. 6.2c.

Logistic regression is implemented for the classification of cells as healthy or non-energized,

based solely on the coordinates of the metabolite reaction centers. The scikit-learn LogisticRe-
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gressionCV module is used for this task [255]. This module also has the added benefit of including

cross-validation and hyperparameter optimization in the training process, thus reducing overfitting.

In terms of the regression tasks of this work, Artificial Neural Networks (ANNs) are implemented

for the prediction of spatial concentration profiles and the spatial average concentrations of the

metabolites. The TensorFlow [98] and Keras Python libraries [99] are used for the development

and training of the ANN models in this work.

As the performance of ANNs is significantly influenced by their architecture, optimizing the

architecture during the training process is crucial. To achieve this, a Bayesian optimization ap-

proach, based on the work of [130] is employed for hyperparameter tuning in each ANN model.

For this task, we use the keras-tuner Python library [256]. Similarly to other optimization meth-

ods, Bayesian optimization aims to find optimal values for bounded parameters (hyperparameters

in our case), denoted x1, x2, ..., xn ∈ X that minimize an objective function f (X) (equivalent to

the loss function of the neural network). In Bayesian optimization, a probabilistic model is con-

structed for f (X), which allows us to identify the best points in X for evaluating f (X) in subsequent

steps. Unlike local gradient-based methods, this approach considers all available information about

f (X) [130].

6.2.5 SHAP analysis

Shapley values, originally introduced by Shapley [212] in the field of game theory and proposed as a

tool to analyze machine learning models in [37], intricately assess the average contribution of each

feature’s value to predictions. In this way, they provide an understanding of how perturbations

of a variable can influence the output of the model, thus shedding light on models that have

traditionally been considered “black boxes”.

In this work, a SHAP analysis is performed on 3 of the ANN regression models developed

for the prediction of spatial average metabolite concentrations. The final goal is to discover not

only the inputs have the most influence on model output, but also the type of influence they

have. However, the results of this SHAP analysis only provide information about the relationships

between inputs and model outputs. These results shed light on previously “opaque” ML methods

but should not be used to make causal claims about input/output relationships.
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6.3 Results

As we are aiming to discover different groups of similar realizations, our analysis starts with

the clustering of our realizations, focusing only on the outputs (concentration profiles). After

clustering, we will explore the characteristics of each cluster and analyze the differences in the

inputs corresponding to each cluster with the goal of finding differences between the clusters.

These different inputs could be potentially important for the differences in the clusters and in

extension to the differences in the outputs (concentration profiles) on which the clustering was

based. As we will show, this initial clustering approach can enable a lot of opportunities for further

data-driven approaches.

Figure 6.2: (a) Samples of the three different types of reaction center configurations: uniform,
lognormal and polarized lognormal. Glucose enters the cellular domain from the origin of the axis,
while lactate exits from the opposite vertex. (b) Distributions of three metabolites of interests
for each type of reaction center configuration. (c) The three implemented supervised learning
approaches. (d) Out of sample parity plots for the spatial average prediction of [LAC] and [ATP].
The concentration units are mM. (e) Out of sample confusion matrix for the prediction of the
energetic state of the cell (non-energized vs healthy).
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6.3.1 Clustering

An agglomerative hierarchical clustering algorithm is used to discover observations with similar

characteristics solely based on the results (outputs) of the computational model. The results

consist of the concentration values of the six metabolites at the 13,207 grid points used for the

computational simulations. A subset of the entire dataset is used for clustering. Subsequently, the

input to the clustering algorithm is a matrix of dimension 1,767x79,242.

Following clustering, we attempt to analyze the resulting realization groups. We investigate

a) the mean spatial averages of the six different metabolite concentrations, b) the mean [ATP] :

[ADP], and c) the distribution of the y coordinates of mitochondria in each cluster. The mean

spatial averages of all six metabolites provide a great overview of the metabolic state of the cell.

The mean [ATP] : [ADP] is an excellent indicator of cell health, as cells that demonstrate a ratio

lower than 1 can be considered non-energized and in a state of deterioration, while cells with a ratio

greater than 1 are considered adequately energized and thus healthy. Finally, by investigating the

distribution of the y-axis coordinates of the mitochondria for each cluster, we can uncover possible

relationships between the metabolic state of the cell and the locations of the mitochondria. Our

analysis reveals the following.

1. Based on the results of Table 6.1, it appears that cluster 1 contains healthier cells, given

the fact that the average [ATP] : [ADP] is the highest of the 5 clusters with a value of

1.910. It also appears that cluster 1 has the lowest values for [GLY] and [PYR], suggesting

that this is the most efficient cluster that consumes these two substrates to maximize ATP

production. Cluster 3 contains fewer energized cells, given its average [ATP] : [ADP] of

0.435. It should also be noted that cluster 1 contains only realizations with a uniform reaction

site distribution. This is also evident in Fig. 6.4d.

2. When comparing the clusters containing realizations of non-uniform reaction center distribu-

tions, we can see that for clusters 2 and 3 the mitochondria are located close to the cell inlet

(and subsequently closer to the glucose entering the cell), whereas the cells for clusters 0

and 4, the mitochondria have better coverage of the spatial domain. This result is visualized

in the histogram of Fig. 6.4d. This is a hint that mitochondrial distribution is a great driver
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of cell health, as clusters 2 and 3 demonstrate a lower average [ATP] : [ADP] (0.852 and

0.435, respectively) when compared to clusters 0 and 4 (1.610 and 1.388, respectively).

3. Last, solely based on the concentration values the algorithm can discern the three main

groups (uniform, polarized and polarized log-normal) of cells available in the dataset. Cluster

1 contains solely uniform realizations, clusters 0 and 4 contain mostly polarized and some

polarized log-normal realizations. Clusters 2 and 3 contain almost exclusively polarized log-

normal realizations.

(a) (b)

Figure 6.3: (a) Agglomerative hierarchical clustering dendrogram. (b) Top 40 logistic regression
coefficients for the non-energized/ healthy cell classification problem. The y-axis coordinates of the
mitochondria appear to be highly influential for the model. Essentially, the dominating coefficient
values of the mitochondrial y-axis coordinates show that a better spread of mitochondria within
the cell -and not close to the cell inlet- increases the probability of a healthy cell.

Following clustering, our objective is to take advantage of the information extracted in this

step to create predictive models that allow for the prediction of the energy state of the cell, as well

as for the prediction of the spatial metabolite concentrations inside the cell.
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Table 6.1: Mean spatial metabolite concentration averages (in mM) in each cluster. Lowest and
highest values for each metabolite are presented in bold.

Cluster [GLC] [ATP] [ADP] [GLY] [PYR] [LAC] [ATP]:[ADP]
0 0.110 1.961 1.239 0.101 1.260 1.143 1.610
1 0.201 2.097 1.103 0.079 0.150 1.935 1.910
2 0.098 1.457 1.742 0.159 1.261 1.179 0.852
3 0.104 0.962 2.238 0.130 1.286 1.221 0.435
4 0.104 1.849 1.351 0.121 1.256 1.148 1.388

6.3.2 Discerning between Healthy and Non-energized cells

As already established, an important indicator of cell health is the spatial average of [ATP] : [ADP]

(ATP-to-ADP ratio) within the cell. When [ATP] : [ADP] ≥ 1, the cell is considered adequately

energized and healthy, whereas when [ATP] : [ADP] < 1 the cell is considered non-energized and

unhealthy.

Given this threshold and the calculated spatial averages of [ATP] : [ADP] for all available

samples, we can convert the continuous output (ratio) to binary (health), where health = 0 when

ratio < 1, and health = 1 when ratio ≥ 1. Using the available reaction center coordinates for each

observation as inputs and the binary variable health as output, we can train a logistic regression

model that can predict the health status of a cell, given only the coordinates of the reaction centers.

The inputs consist of the coordinates (x, y) for 40 different reaction centers (10 of each of

the four types), totaling 80 inputs. Before training the logistic regression model, the inputs are

centered to 0 and scaled by their standard deviation.

Of the 4,078 observations, 85% is used as a training set and 15% as a test set. Checking the

performance of the model on both sets can allow us to avoid overfitting and make sure that the

resulting model generalizes well in unseen data.

The resulting logistic regression model can discern between healthy and non-energized cells

with high accuracy for both the training (0.9412) and the test set (0.9515). Further classification

metrics, such as the f1 score, recall, and precision, are presented in Table 6.2. The confusion

matrices for the performance of the logistic regression algorithm in both the training and the test

set are presented in Fig. 6.2e.

Given the nature of the logistic regression algorithm, we can use the resulting coefficients to
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try to make sense of the connection between the input variables and the output (cell health state).

Observing Fig. 6.3b, it is evident that the y coordinates of the mitochondria highly influence the

model output.

Table 6.2: Binary classification metrics. The trained logistic regression model shows great perfor-
mance for both the test and training sets.

Training Set Test Set
f1 0.9638 0.9701
Accuracy 0.9412 0.9515
Precision 0.9561 0.9650
Recall 0.9716 0.9753

6.3.3 Predicting spatial metabolite concentrations

Although the prediction of cell health status is already quite valuable, it is often preferable to

have models that can predict a continuous variable rather than a binary variable. Similarly to the

classification problem, the coordinates of the 40 reaction centers can be used to predict contin-

uous variables. These continuous values can be either the spatial averages of the six metabolite

concentrations or, taking it one step further, the spatial profiles of the metabolite concentrations.

As in the binary classification problem, 85% of the 4,078 observations are used as a training

set and 15% as a test set.

Spatial averages

ANN models are used for the prediction of spatial averages of the six metabolite concentrations.

A different model is trained for each metabolite concentration. To ensure optimal performance,

we include hyperparameter optimization in model training. The hyperparameters tested are:

1. The number of network layers (Nlayers). Varied between 2 and 5.

2. The number of neurons per layer (Nneurons). Varied between 2 and 100.

3. The activation function used in all of the layers. The functions tested are: a) sigmoid, b)

tanh, and c) Relu. It should be noted that the output layer always has a single neuron using

a linear activation function.
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Figure 6.4: (a) Actual and predicted spatial metabolite concentration (in mM) profiles for randomly
sampled, out of sample reaction center configurations. (b) Absolute relative error (%) between the
actual and predicted metabolite concentrations presented in (a). (c) SHAP values for the spatial
average [LAC] and [ADP] predictive models. For the [LAC] model, the location of the LDH
reaction centers is the most important for the output of the model, followed by the locations of
HXK and PYRK reaction centers. For the [ATP] model, the location of the mitochondrial reaction
centers is the most important for the model output. (d) Histogram showing the distribution of
the mitochondrial reaction center for each discovered cluster. On the top right, histograms of
the [ATP] : [ADP] for each cluster. Clusters 0, 1 and 4 appear to have more observations with
[ATP] : [ADP]>1, whereas clusters 2 and 3 appear to be more problematic. When investigating
the y coordinates of the mitochondria for each cluster, it is clear that for clusters 2 and 3, the
mitochondria are located primarily close to the input of the cell (yMito = 0), while for clusters 0,
1 and 4 the mitochondria have better coverage of the domain.
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50% of the test set is used as a validation set during training to avoid overfitting through early

stopping. This means that if the validation error does not drop after a certain number of training

epochs (10 in our case), the training stops.

The resulting neural networks, along with their performance in the test set, are presented in

Table 6.3. The models developed for the prediction of [PYR] and [LAC] demonstrate excellent

performance with a R2 = 0.998 and R2 = 0.993 respectively. Satisfactory performance is observed

for the predictions of [ADP] (R2 = 0.914), [ATP] (R2 = 0.894) and [GLC] (R2 = 0.862). The

developed [GLY] regression model shows a rather modest performance (R2 = 0.595).

Table 6.3: Optimal hyperparameters and spatial average metabolite concentration regression test
set performance metrics for the developed ANN models. Results for [PYR] and [LAC] are excellent.
For [GLC], [ATP] and [ADP], the results are satisfactory. However, the [GLY] model demonstrates
a slightly worse performance.

Nlayers Nneurons activation R2 MAPE MAE MSE
[GLC] 5 82 sigmoid 0.862 9.21% 1.33E-02 3.77E-04
[ATP] 4 67 sigmoid 0.894 4.63% 7.78E-02 1.14E-02
[ADP] 4 77 sigmoid 0.914 5.11% 6.94E-02 9.24E-03
[GLY] 3 97 sigmoid 0.595 33.89% 3.58E-02 3.66E-03
[PYR] 5 97 sigmoid 0.998 3.62% 1.64E-02 4.59E-04
[LAC] 5 97 sigmoid 0.993 1.49% 2.12E-02 8.60E-04

Spatial profiles

Given the satisfactory performance of the predictive models for spatial average concentrations, we

can go a step further, trying to predict the spatial concentration profiles of the six metabolites

in the cells given only the positions of the 40 reaction centers. Given the nature of the output

vector (length of 79,242 - six metabolite concentration values for each of the 13,207 grid points),

it is clear that dimensionality reduction methods can be useful for reducing the dimensions of the

output space.

A model is developed for the spatial concentration profile of each metabolite. This translates

to an output vector of length 13,207 (1 concentration for each grid point) for each developed

model.

Principal component analysis (PCA) is used for this task, following the centering of the output
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data using their mean and their scaling using their standard deviation. The number of principal

components retained for each output is chosen based on the reconstruction root mean squared

error (RMSE). The number of principal components retained is chosen so that the reconstruction

root mean squared error (RMSE) is lower than 0.03. This leads to a different number of principal

components (PCs) for each metabolite. Specifically, 17 PCs are retained for the spatial [ATP] and

spatial [ADP] models, 5 PCs are kept for the spatial [PYR] and [LAC] models, 9 PCs are retained

for the spatial [GLY] model, and finally, 11 PCs are used for the spatial [GLC] model.

As with the spatial average concentration predictive models, we include hyperparameter opti-

mization when training the spatial profile models. The hyperparameters tested are:

1. The number of network layers (Nlayers). Varied between 2 and 5.

2. The number of neurons per layer (Nneurons). Varied between 10 and 650.

3. The activation function used in all of the layers. The functions tested are a) sigmoid, b)

tanh, c) relu, and d) elu. Note that the output layer size is equal to the number of PCs

retained for the model. Furthermore, output neurons always use a linear activation function.

Once again, 50% of the test set is used as a validation set and early stopping is used during

training to avoid overfitting.

The resulting neural networks, along with their performance in the test set, are presented in

Table 6.4. The models developed for the spatial concentration prediction of [PYR] and [LAC]

demonstrate excellent performance with R2 = 0.956 and R2 = 0.972 respectively. Reasonable

performance is observed for the predictions of [ADP] (R2 = 0.698), [ATP] (R2 = 0.700) and

[GLC] R2 = 0.775). The developed [GLY] regression model shows unsatisfactory performance

(R2 = 0.474). It is evident that the performance of the models follows the trend of the models

trained for simpler spatial average concentration predictions.

Some examples of predicted spatial metabolite concentrations are presented in Fig. 6.4, along

with the actual metabolite concentration profile and the absolute relative reconstruction error (%).

It is evident that, while most of the trends are retained, there are certain zones of higher relative

errors for certain models. However, it should be noted that for certain metabolite concentrations,
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Table 6.4: Optimal hyperparameters and spatial profile metabolite concentration regression test
set performance metrics for the developed ANN models. Performance for [PYR] and [LAC] are
excellent. For [GLC], [ATP] and [ADP], the results are reasonable. However, the [GLY] model
demonstrates a non-satisfactory performance.

Nlayers Nneurons activation R2 MAPE MAE MSE
[GLC] 2 285 sigmoid 0.775 9.24% 1.34E-02 6.16E-04
[ATP] 3 500 sigmoid 0.700 12.93% 1.69E-01 6.31E-02
[ADP] 3 650 sigmoid 0.698 13.10% 1.69E-01 6.24E-02
[GLY] 5 340 sigmoid 0.474 64.43% 4.40E-02 5.78E-03
[PYR] 5 10 elu 0.956 9.33% 2.42E-02 1.47E-03
[LAC] 5 10 elu 0.972 1.40% 2.17E-02 1.43E-03

the actual values can be quite small, which means that small absolute errors in the prediction can

lead to very high relative errors.

6.3.4 Effect of inputs on model output (SHAP analysis)

Following the training of individual models for both spatial metabolite concentrations and spatial

average concentrations, we would like to investigate the influence of model inputs on model outputs.

For this task, we will focus on three spatial average concentration models. Specifically, we will

perform a SHAP analysis for the spatial average predictive models of [LAC], [ATP], and [ADP].

The results of the SHAP analysis for [LAC] and [ATP] are presented in Fig. 6.4c.

For the [LAC] model, it appears that the positions of the LDH reaction centers on the y-axis

are the most influential variables for the model output. Furthermore, it appears that when the

reaction centers are located high on the y-axis, the model output is negatively influenced.

For the [ATP] model, it appears that the positions of the mitochondria on the y-axis are

the most influential variables for the model output. Furthermore, we can observe that when the

mitochondria are located close to the inlet of the cell, the predicted spatial average [ATP] is

negatively affected.

For the [ADP] model, it appears that the positions of the mitochondria on the y-axis are

the most influential variables for the model output. Furthermore, we can observe that when the

mitochondria are located close to the outlet of the cell, the predicted spatial average [ADP] is

negatively affected.
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The results of the SHAP analysis for the [ATP] and [ADP] models appear to be mirror images

of each other. It looks like when the mitochondria are located close to the cell inlet, the average

[ATP] of the cell is negatively affected, while the average [ADP] is positively affected. However,

when the mitochondria are located close to the cell outlet, the average [ATP] appears to be

positively affected, while the average [ADP] is negatively affected.

It is worth pointing out that although SHAP analysis can shed light on the relationship between

model inputs and outputs, it cannot be used to make causal claims regarding these relationships.

6.4 Conclusions & Perspectives

Several machine learning methods are implemented to gain insight into metabolism within astrocyte

cells by exploring a dataset consisting of static metabolic images of astrocytes generated from a

reaction-diffusion computational model solved in a two-dimensional geometrical domain.

Hierarchical clustering of the dataset, based solely on the outputs of the computational ex-

periments, results in 5 groups. Each group has its distinctive metabolic characteristics. The

discovered clusters reveal differences not only regarding the average metabolite concentrations of

their members but also on the side of the inputs (reaction centers). By analyzing the reaction

center configurations corresponding to each cluster, we observe that a uniform mitochondrial dis-

tribution results in the best overall cell health. On the contrary, realizations of polarized log-normal

mitochondrial distributions exhibit the worst overall cell health. It is also shown that a high con-

centration of mitochondria close to the cell inlet is not beneficial to the cell, especially compared

to a better coverage of the cell. Our results are in agreement with the discussion presented on the

original model [40].

Following the encouraging results of the clustering analysis, we developed a classification model

able to accurately predict cell health (healthy/non-energized) taking only the reaction center po-

sitions as input. The nature of the logistic regression model used also allows us to confirm the

importance of mitochondrial distribution on cell health.

Moving one step forward and past the binary nature of healthy/non-energized output, we

constructed artificial neural network (ANN) regression models that can satisfactorily predict the

average spatial concentration of the six metabolites of interest. We show that it is also possible to
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recreate the spatial profiles for the six metabolites with satisfactory accuracy. For both regression

problems, the LAC and PYR predictive models perform best, followed by those for ATP, ADP,

and GLC. The GLY models exhibit only a modest performance. In general, regression models

that predict spatial average metabolite concentrations perform better than their counterparts that

predict the full spatial profiles.

Following regression, SHAP analysis allows us to see into the black boxes that are ANNs,

highlighting the importance and influence of different reaction center positions on model output.

Specifically, the positions of the lactate dehydrogenase (LDH) reaction centers greatly influence

the spatial average concentration of [LAC], and the positions of the mitochondria influence the

spatial average concentration of [ATP] and [ADP], consistent with the formulation of the metabolic

model.

Based on these encouraging results, several future steps are possible. The first step would

involve applying a similar approach to more complex computational domains that better represent

actual astrocytic cells. Going further, we could use existing experimental images that provide

mitochondrial location data [257] as initial inputs for our approach, with a suitable choice of com-

putational model. Extending this methodology to different or more detailed metabolic pathways

could also provide insights into a broader range of species that influence metabolism.

While in this paper we have considered a simplified two-dimensional domain and a basic

metabolic model, our machine learning approach can serve as a bridge linking the spatial in-

formation from in vitro or in vivo images with computational models, thereby gaining deeper

insights into metabolic dynamics and cellular states. It should be highlighted that the methods

used in this work are not limited to the dataset presented; they can be readily applied to other

datasets derived from various metabolic computational models.
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Chapter 7

Conclusions

7.1 Summary and conclusions

By proposing a blend of equation-based and data-driven methods, this thesis attempts to answer

the core question presented in Section 1.1:

“How should we approach processes that lack the necessary data to be optimally

modeled by data-driven methods, but are also too complex to be optimally modeled

solely by equation based methods?”

In Chapter 3 we presented an efficient chemistry-enhanced CFD model of the CVD process

used for the α-Al2O3 coating of cemented carbide cutting tools. This CFD model was the first

step taken towards answering the above question, as it allowed for insights of a previously black-

box process, while also allowing for the accurate and prediction of alumina thickness. The model

also allowed for several computational experiments, which were conducted with the aim of better

understanding the rate-determining mechanism of the alumina deposition. The results suggest

that the process is probably in the reaction-limited regime.

In Chapter 4, we presented a comparison between the CFD model developed in Chapter 3

and data-driven approaches that can also provide accurate predictions of alumina thickness. The

developed ensemble tree-based models -the best performer being an XGBoost model- were trained

using only production data, and were able to demonstrate better performance than their CFD

counterparts (MAPE of 4.4% vs. 6.0%). Furthermore, a reduction of around 99.99% was observed
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when comparing the time required for thickness predictions for an entire reactor using the XGBoost

model with the time required for prediction via CFD. However, the benefits of the data-driven model

were not without drawbacks, as the regression models developed are oblivious to the phenomena

occurring within the reactor and therefore unable to provide relative insights. This chapter was

finalized with the implementation of another data-driven approach, namely GappyPOD [35], which

allowed for the reconstruction of the full state-space of the CFD simulations using only limited

data with satisfactory accuracy.

These two chapters aimed to propose a way of modeling the process in a way that allows for

quick predictions (in applications where it is required, e.g. optimization) while retaining the option

of investigating the physical and chemical complexity of the process. This way, we believe that

question 1 presented in Section 1.2:

“Using this CVD process as a case study, what is the best computational workflow

that allows us to make accurate predictions in a resource-efficient and low-cost way?”

was adequately answered.

With Chapter 5, we proposed a combination of unsupervised and supervised learning techniques

for the analysis of production data and the discovery of potential critical process parameters. By

performing agglomerative hierarchical clustering on the process outputs (thickness measurements),

we were able to identify clusters of production runs with evident qualitative differences. This

was of course due to the qualitative significance that the process outputs (coating thickness

measurements) have for the process. Using the first two statistical moments of thickness (mean

and standard deviation) of the discovered clusters, we discovered significant differences between

the groups. By analyzing the inputs corresponding to each group, we were able to identify inputs

that differed significantly between the groups and can be potentially critical to the process. The

two prominent ones were the production “recipe” and a feature that demonstrates the difference

between the actual substrate surface area within the reactor and the substrate surface area for which

the process operators planned. These inputs were then used, alongside others, to train models

(random forests for classification and XGBoost for regression) for qualitative and quantitative

predictions of future production runs. A SHAP analysis was also performed to quantify the effect
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of each input on the output of the model. The acquired insights were corroborated by subject

matter expertise.

Subsequently, in Chapter 6 we demonstrated the applicability of the framework proposed in

Chapter 5 on an entirely different dataset. Using a dataset consisting of computational experiments

for astrocyte cell metabolism and through the use of agglomerative hierarchical clustering on the

metabolite concentrations output by the computational model, we were able to identify reaction

centers (mitochondria) whose locations are potentially critical for the health (or energy state)

of the cell. Leveraging this insight, we developed models (logistic regression for classification,

ANNs for regression) capable of qualitatively predicting cell health and quantitatively predicting

cell metabolite concentrations. As in the previous chapter, a SHAP analysis was performed, which,

along with subject matter expertise, corroborated our findings.

With these two chapters, we aimed to propose a way of identifying potentially critical parame-

ters using solely data, and to further test the framework on an entirely different application. Thus,

we believe that question 2 posed in Section 1.2:

“Can we determine critical process parameters from the available production data?”

was also adequately answered.

Thus, by answering these two research questions, we believe that the proposed approach can

effectively tackle processes that "are too complex to be optimally modeled by equation-based

methods, but also lack the necessary data to be optimally modeled by data-driven methods."

7.2 Future directions

There is plethora of avenues for the evolution and expansion of the work and the approach presented

in the work. Although the results for the two different applications are encouraging, it would be

worthwhile to try to apply the approach in more real-world applications, with the aim of testing its

versatility even more rigorously. This could be quite straightforward to achieve given the several

examples of complex processes with limited available data, both in industrial and research settings.

Focusing entirely on the data-driven part, it would be interesting to explore how the approach

can be tweaked to handle spatially resolved data from dynamical systems and whether it will be

129



Conclusions

able to extract similar insights for the process given such data. Furthermore, for the predictive part

of the approach for spatially resolved dynamical systems, the implementation of more sophisticated

ANN-based models, such as latent neural operators [258] or attention-based architectures (which

are capable of capturing long-range dependencies in sequential data), such as the Perceiver IO

[259] can be investigated.

As causal insights are vital for our understanding of every process, the implementation of dou-

ble/debiased machine learning (DML) approaches [260] alongside other causal inference methods

[261] within the framework would be of great interest and importance.

We believe that this work can assist in modeling complex processes characterized by limited

data and sincerely hope that the proposed approach will prove valuable in a range of distinct

applications.
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