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ABSTRACT The escalating demands of advanced automotive technologies exert considerable pressure
on modern vehicles’ computational capabilities. This scenario underscores the critical need for vehicular
edge computing (VEC) networks, which leverage 5G/6G communications to facilitate computational
offloading. However, providing seamless access to these services while simultaneously adhering to stringent
latency and security requirements presents a formidable challenge. The advent of reconfigurable intelligent
surfaces (RIS) heralds a new era of possibilities, which includes enhancing connectivity, boosting data
transmission rates, consequently reducing delay, and improving the physical layer security of communication
channels. This paper delves into the utilization of zero-energy RIS (ze-RIS) in the context of vehicular
computation offloading. Our primary goal is to ensure secure access while optimizing operational efficiency
in compliance with various task-related and environmental requirements. The ze-RIS-assisted secure task
efficient offloading (DRSTO) scheme is a novel deep reinforcement learning (DRL) framework that cleverly
switches communication connections to optimize task offloading efficiency and security thereby resolving
this issue. At its core, our assessment strategy revolves around the DRSTO model’s secrecy and efficiency
factor which serve as both a performance measure and a reward function. Time efficiency and rate of
confidentiality are used to evaluate this aspect which provides a thorough evaluation of the scheme’s success.
Extensive testing and comparison have shown that theDRSTO scheme’s efficiency factor can be significantly
increased, from 6.05 to 18.10. In addition, the rate of job success has increased dramatically, from 2.12%
to 4.63%. When compared to other models that were evaluated, the DRSTO scheme consistently better on
several metrics including reward, time frames per step (TFPS) ratio and DRL characteristics.

INDEX TERMS Vehicular communication, security, intelligent surfaces, edge computing, DRL.

I. INTRODUCTION
The merging of Internet of vehicles (IoVs), beyond fifth-
generation (B5G) communication, and smart vehicles (SVs)
has enabled sophisticated vehicular edge computing networks
(VECNs) to emerge. This fusion significantly improves the
Quality of Experience (QoE) by enhancing connectivity,
facilitating the exchange of data related to road safety,
and providing real-time information [1]. However, it also
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introduces new challenges, such as latency sensitivity
and greater resource demands, which are beyond the
computational capabilities of modern vehicles. Computation
offloading has gained popularity as a solution to these
challenges. In order to efficiently dispatch jobs, this
method employs vehicular edge computing (VEC) including
multi-access edge computing (MEC). Enhanced network
performance, decreased latency, and reduced energy con-
sumption can be achieved using proximity-based computing
models, which utilize roadside units (RSUs), evolved
node-B (eNB), and parking lots [2]. Interactions between
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vehicles, between vehicles and the edge, and between edges
themselves are integral to the proposed collaborative strategy
to deal with latency and load imbalance.

Numerous technical alternatives exist for carrying out
task outsourcing operations; one example is cellular tech-
nologies, which include 4G Long Term Evolution (LTE),
5G New Radio (NR), and 6G [3]. New developments
in wireless communication system improvement, such as
reconfigurable intelligent surfaces (RIS) have also emerged.
With RIS support, VEC network coverage and reliability
of vehicle-infrastructure communication are both improved.
Coverage in areas with poor connectivity can be improved by
putting RIS on buildings or roadways to create signal reflec-
tion [4], [5], [6]. The integration of vehicles RISs, and VEC
networks results in a win-win situation. Enhanced computing
capacity, better communication, lower latency, and greater
energy economy are all benefits that vehicles can reap from
VEC. On the flip side, RIS simplifies the wireless environ-
ment which leads to better communication and resource uti-
lization. In situations involving automotive edge computing,
the aforementioned collaboration improves network perfor-
mance, service quality for vehicles, and task delegation [7].

Utilizing RIS inVEC networks has the potential to enhance
the energy efficiency and security of vehicle communication
systems. RIS reduces power consumption by reflecting
signals to certain vehicles instead of broadcasting them to
everyone. The system’s overall security is enhanced because
directional signal reflection inhibits unlawful communication
eavesdropping [8]. RIS technology modifies the electro-
magnetic environment of transmitted signals for improved
signal control. A plethora of sensors such as those for
light, temperature, and humidity work in tandem with RIS
to improve the precision of environmental sensing and
data collection. The RIS controller adjusts the reflection
elements based on the data collected from the sensors [9].
The amplitude and phase levels of RIS controllers are
optimized using convex optimization and gradient descent.
Alternatively, DRL approaches enable RIS controllers to
adjust amplitude and phase shift on the fly in reaction
to changing channel and network conditions [10], [11].
Research focuses on passive RIS, which are preferred for
their cost-effectiveness and simpler deployment. Despite
challenges such as the double path fading effect, passive
RIS proves advantageous in low-power, low-complexity
scenarios. While active RIS with amplifiers can overcome
these limitations by boosting signal strength, their higher
cost, increased complexity, and greater energy demands may
limit their practicality [12]. Findings indicate that although
active RIS can enhance performance, passive RIS remains
a viable and effective option for vehicular networks due to
its applicability in current operational contexts [13]. Offload-
ing duties from devices with limited resources requires
energy-efficient data transfer [14]. Sustainable technologies
such as zero-energy devices (ZEDs) and wireless power
transfer (WPT) are essential for 6G networks due to the
increased focus on energy efficiency. These devices transform

radio frequency (RF) impulses into usable energy. In addition
to enhancing outsourcing processes, ze-RIS enhances data
rates, expands coverage, and ensures information privacy,
all of which contribute to the sustainability goals of future
network generations [15], [16].

A. LITERATURE REVIEW
The issue of offloading tasks from vehicles in VEC has been
extensively studied in recent research. Various optimization
techniques have been employed to address this problem.
In [17], a modified Ant Colony Optimization algorithm was
utilized to tackle the task offloading problem. In another
study, [18], approached the computation offloading problem
in VEC as a graph-based job allocation challenge and used a
structure-preserved matching algorithm to solve it. To mini-
mize the overall response time for tasks with dependencies,
a modified genetic algorithm-based scheduling approach was
introduced in [19]. This approach considered the instability
and heterogeneity of VEC. Since executing offloading tasks
consumes a vehicle’s computing resources and energy, some
vehicles might be unwilling to participate. Recent research
has proposed incentive mechanisms to encourage vehicles
to contribute their idle resources. For instance, a contract-
based mechanism was designed in [20], combining resource
contribution and utilization incentives. Moreover, in [21] dis-
cussed a dynamic resource allocation model using software-
defined networking, which utilizes a Stackelberg game theory
approach to optimize interactions between network leaders
and followers, adapting to fluctuations in network demands
and resource availability. This approach is directly applicable
to managing the hierarchical and dynamic nature of vehicular
networks. Another approach, mentioned in [22], introduced
a timeliness-aware incentive mechanism to motivate vehicle
participation while accounting for uncertain travel times.

Wireless offloading can be susceptible to attacks due
to its broadcasting nature, even despite the benefits of
utilizing MEC-enabled IoT networks. This can lead to
information leakage, posing a significant security challenge
for offloading [23], [24]. Ensuring the security of wireless
offloading is crucial for the effectiveness ofMEC. Employing
physical layer security (PLS) methods can be valuable to
maintain the confidentiality of wireless offloading. There-
fore, numerous PLS techniques have been suggested to
establish secure communication, such as employing friendly
jamming signals [25] or cooperative relaying [26]. In [27],
PLS were used in multicarrier systems to ensure secure
computation offloading anMEC system. Still, traditional PLS
methods result in high additional energy consumption and
only passively adapt to the wireless environment without
influencing it. Moreover, when eavesdroppers possess better
channel gains than legitimate users, maintaining satisfactory
secrecy remains difficult, even with these PLS methods [28].
To address the limitations of conventional PLS methods,

the concept of RIS [29], [30], [31] has emerged as a
promising solution for the sixth generation (6G) of wire-
less communication. RIS can enhance spectrum efficiency,
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secrecy performance, and energy efficiency. RIS consists of
a uniform planar array that includes many low-cost passive
reflecting elements, each capable of adjusting its reflection
amplitude and/or phase to improve the characteristics of
electromagnetic waves [29]. This enables the manipulation of
the reflected signal by the RIS to weaken signals at potential
eavesdroppers [30] while strengthening signals for legitimate
devices, thereby effectively ensuring the security of wireless
communications within RIS-assisted networks. To optimize
the secrecy rate in RIS-assisted systems, the authors in [32]
conducted joint optimization of the transmit beamforming
vector and RIS phase shift using an alternative optimization
algorithm. Similarly, [33] employed RIS to strengthen the
physical layer security of wireless communication systems
and devised an optimization-driven approach to optimize
active and passive beamforming techniques simultaneously.

Regarding PLS, many researchers have explored perfor-
mance optimization challenges within secure MEC networks
based on RIS [34], [35]. In [34], scholars delved into
RIS-assisted secure MEC networks and introduced an
iterative optimization approach. This method simultaneously
addresses the design of local computing frequencies, transmit
power, RIS phase shifts, and time-slot allocation. The primary
goal is maximizing secrecy confidential efficiency (SCE)
while adhering to the maximum-min fairness criterion. This
optimization process employed successive convex approx-
imation (SCA), Dinkelbach-type algorithms, and penalty
function-based techniques. In [35], the authors examined
RIS-supported secure MEC systems utilizing NOMA (non-
orthogonal multiple access). They jointly optimized RIS
phase shifts, local computation rates, and offloading power
through an alternative iterative optimization algorithm. The
objective was to maximize the secure offloading rate,
employing semidefinite relaxation (SDR) and Lagrange dual
methods within the optimization process.

The study conducted by [34] and [35] mostly employed
SCA and SDR-based traditional optimization techniques to
jointly optimize resource allocation for secure MEC systems
aided by RIS. However, these methods are impractical for
the following reasons: Firstly, precise mathematical models
exist as the basis of conventional optimization methods,
and accurately specifying RIS-assisted MEC network envi-
ronments with these models may be difficult. Secondly,
as the number of reflecting elements within the RIS grows,
the computational complexity of conventional optimization
methods increases dramatically. This complexity makes
implementation effectively within practical RIS-assisted
MEC network scenarios challenging.

The concept of edge intelligence involves the integration of
artificial intelligence, particularly DRL, into MEC networks
and offers an optimistic approach to achieve efficient and
adaptable real-time services [36], [37], [38], [39]. The
productivity of DRL within MEC systems supported by
RIS has been shown in previous research. For instance, the
researcher in [37] investigated RIS-supported MEC networks
and introduced a method based on deep deterministic

policy gradient (DDPG) for optimizing various parameters
such as computation offloading volume, power control, and
RIS phase shift. In [38], an offloading algorithm utilizing
DRL was proposed to maximize the collective utility of
users in RIS-empowered MEC systems. A deep Q-network
(DQN) algorithm to design computation offloading and RIS
phase shift to minimize long-term total energy consumption
presented in [39]. Furthermore, the work in [40] explored
the integration of machine learning techniques into future
6G networks to enhance bandwidth management, access
capabilities, and reliability. Their findings on machine
learning strategies to optimize network operations could be
critical for implementing secure and efficient edge computing
in vehicular networks.

B. OBJECTIVE AND CONTRIBUTION
The main focus of this work is to enhance task offload-
ing and execution efficiency while maintaining a higher
level of secrecy. However, achieving both improved task
rates and security presents challenges. Although MEC/VEC
can support task offloading in such scenarios, accessing
them promptly, efficiently, and securely remains debatable,
especially in dynamic VECN environments. To tackle these
challenges, we suggest an innovative method referred to as
DRL under the scheme of secure and task-efficient offloading
assisted by ze-RIS, known as DRSTO. ze-RIS and conven-
tional passive RIS differ significantly in terms of power
needs. Unlike conventional passive RIS, which depends on
a constant power supply, ze-RIS functions without external
power, utilizing energy harvesting or wireless power transfer.
Despite their power differences, both types improve wireless
communication by reflecting and adjusting radio waves [15],
[41]. The target of DRSTO is to enhance the optimization
of task offloading decisions by prioritizing task processing
efficiency and secrecy as primary objectives. This scheme
leverages RIS to enhance task offloading efficiency and
ensure secure communication within the VECN. Following
are the main characteristics of DRSTO and contributions.
• This paper introduces an innovative task offloading
scheme called VECN dynamics-aware DRSTO for
task offloading. It utilizes the NR-V2X framework,
which is improved with RIS to enhance security and
efficiency. The DRSTO scheme combines different
wireless technologies and transmission methods in the
sub-6GHz and 28GHz frequency bands. Because of this,
vehicles can submit queries to VEC servers for tasks that
they normally would handle locally or send elsewhere.
There are two ways for vehicles to connect to the VEC
server when they want to discharge: directly, through
a vehicle to RSU to VEC link, or indirectly, through a
vehicle to RIS to RSU to VEC link. The location and
connectivity of the vehicle determine the exact route it
will take.

• Achieving optimal computation outsourcing is the main
goal of this methodology. This will ensure that com-
putational and communication resources are distributed
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efficiently while maintaining anonymity. For this pur-
pose, the optimization objective is defined as a markov
decision process (MDP), and the VECNs’ dynamic
configuration is well-suited for it. The decision-making
process of the DRL agent is guided by a compen-
sation function that emphasizes both task efficiency
and confidentiality. The function takes into account
time savings and the rate of secrecy. In an effort to
optimize latency secrecy rate and offloading decisions
the DRSTO scheme which is supported by DRL uses
the advantage actor critic (A2C) algorithm to boost the
system’s overall efficiency and security.

• It is required to continuously evaluate the state of the
VEC network to maintain and improve the system’s
effectiveness. Central to this assessment should be the
degree to which communication components and local
and peripheral resources are interconnected. To guar-
antee an accurate and fair evaluation of computational
offloading a new factor called task offloading efficiency
and secrecy (TES) has been introduced. Time savings
and secrecy rate are both included in this metric
which provides a thorough evaluation of the offloading
processes performance.

• The simulation results show that the DRSTO scheme
outperforms competing RIS-enhanced DRL-driven task
offloading methods. It achieves higher rewards faster
with lower variation. Furthermore, the DRSTO frame-
work demonstrates shorter learning times, a more
favorable ratio of successful to unsuccessful tasks, and
an increased TES factor.

C. ARTICLE ORGANIZATION
The structure of this article unfolds as follows: Section II
elucidates the system model, encompassing the commu-
nication framework, task and processing decision model,
and the local and edge computing models. Section III and
Section IV delve into the problem formulation and the
proposed methodology, respectively. Section V describes
the simulation setup, presents the results, and provides an
analysis. Lastly, the article concludes in Section VI.

II. SYSTEM MODEL
A collaborative architecture is introduced in this section,
which involves vehicles and edge components, and utilizes
ze-RIS to enhance NR-V2X communications within the
VECN.

A. COMMUNICATION FRAMEWORK
Our communication framework considers next generation
evolved node B (gNB) type RSUs along the roadsides.
Additionally, RISs are installed on the roadsides or buildings
alongside the road, as depicted in Fig. 1. In this setup,
resource-constrained vehicles, denoted as vei, request pro-
cessing of resource-intensive tasks from VEC servers at
RSU rsj.

FIGURE 1. Illustration of the system model showcasing the framework’s
mechanism for task offloading in RIS-assisted symbiotic VECN.

The communication architecture we use in this study is
similar to our previous work [42], [43], and it operates in both
the mmWave and sub-6GHz bands. Legitimate vehicles are
represented as vej, while non-legitimate vehicles or users are
denoted as vek . Both vej, vek are equipped with N antennas,
and the RISs (ril) are equipped with M reflection elements.
Vehicles vej can communicate with each other and with the
VEC server attached to rsi through Uu links or mmWave
links, facilitated by the RSUs (rsi) and RISs (ril). Here, the
variables i, j, k, l ∈ N and N = {1, 2, . . . ,N }.
Incorporating RIS in the system enables vehicles (vej)

to establish direct and reflected links for communication
with RSUs (rsi). Vectors have been boosted by channel
representing the direct link between rsi and vej and vek
are represented by hd,vej ∈ CN×1 and hd,vek ∈ CN×1,
respectively. The channel gainmatrix from rsi to ril is denoted
by Hrsi,ril ∈ CN×M . Furthermore, the channel gain between
ril and vej and vek is defined as gril ,vej ∈ CM×1 and gril ,vek ∈
CM×1, respectively.

The RIS phase shifts are represented by the matrix 2,
which is a diagonal matrix where each diagonal element
corresponds to the phase shift introduced by an RIS element.
The matrix 2 can be denoted as:

2 = diag(θ1, θ2, . . . , θM ) (1)

Here, M represents the number of reflection elements in the
RIS. Each element θm in the matrix 2 is defined as:

θm = βmexp(zφm) (2)

where βm is the reflection coefficient of the mth reflection
element, which determines the amplitude of the reflected
signal. It takes values within the range [0, 1], representing the
proportion of the incident signal power that is reflected. φm
is the phase angle introduced by the mth reflection element
to the incident signal, and its value is restricted within the
range [0, 2π ). This phase angle is crucial for controlling
the direction and constructive interference of the reflected
signals.
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The expression exp(zφm) represents the complex exponen-
tial form of the phase angle φm, where z =

√
−1. This form

is used to describe the phase shift mathematically.
To simplify the analysis, we assume that the reflection

coefficient βm equals 1 for all elements. This assumption does
not compromise generality because it simplifies the phase
shift design by focusing solely on the phase angle φm. Thus,
the phase shift element θm becomes:

θm = exp(zφm) (3)

Remark 1: In RIS-based communication, the synchro-
nization technique mirrors the approach used in traditional
backscatter communication [44]. The vehicle or RSU utilizes
a wireless control link while going through the transmission
phase to send synchronization details, for example an
activation signal for the RIS controller [45]. Afterwards,
synchronization information is interpreted by the controller
based on RIS, at the same time it sets up the reflection state
mode of the RIS. The synchronization stage allows for the
harmonization of the vehicle or RSU with the RIS, hence
promoting effective communication.
Remark 2: The primary emphasis of this study is task

offloading, with no investigation into the potential integration
of RIS with ZEDs. For those interested in comprehending
how ZEDs work in tandem with RISs, we suggest consulting
the studies presented in [15], [16], [46], and [47] for further
insight.

Under the assumption that vej communicates with RSU
rsi through the direct channel, the received signal at RSU ri
can be expressed using the formulation presented in [48] as
follows:

yd,vej = hHd,vejwj sj + n. (4)

In the direct communication scenario, the expression
involves various parameters. The term hd,vej represents
the vector denoting the channel gain of the direct link
connecting RSU rsi and vehicle vej. The vector wj denotes
the beamforming vector specifically allocated to the vehicle
vej. Additionally, sj corresponds to the information signal
intended for vehicle vej, while n signifies the existence of
noise at the receiver that is designed to be uncorrelatedwith sj.
Modeled with an average value of 0 and a standard deviation
of σ 2, n is characterized, i.e., n ∼ CN (0, σ 2). In a similar
manner, when vej communicates with RSU rsi using the
reflected channel, and the RIS ril is employed for signal
reflection, the received signal at RSU rsi can be derived
according to the formulation in [49] as follows:

yr,vej =
(
hHd,vej Hrsi,ril 2 gril ,vej

)H
wj sj + n. (5)

In this context, matrix Hrsi,ril represents the channels
between RSU rsi and RIS ril .2 denotes the phase shift matrix
of RIS ril , which controls the phase shifts of its reflection
elements. Moreover, the vector gril ,vej represents the channels
from RIS ril to vehicle vej. To compute the total received
signal at RSU rsi, the maximum ratio combining (MRC)

approach is used to combine the direct and reflected signals.
Suppose there are J vehicles communicatingwith RSU rsi via
direct and reflected channels. The combined received signal
at the RSU can be expressed as follows:

yi,j =
j∑

j=1

αj yd,vej +

j∑
j=1

βj yr,vej + n. (6)

Here, αj and βj are the weights assigned to the direct
and reflected channels. Both αj and βj are typically between
0 and 1, where αj + βj = 1. Similarly, the direct yd,vek
and indirect yr,vek received signals from vek at RSU rsi
can be calculated by following Eqs.(4) and (5), respectively.
However, the total received signal from vek at the RSU rsi can
be expressed as:

yi,k =
k∑

k=1

αk yd,vek +

k∑
k=1

βk yr,vek + n. (7)

Next we adopt the Shannon capacity formula to describe
the rate of direct and indirect links. This theorem specifies
that the highest data rate (in bit/s) achievable on a commu-
nication channel, given its bandwidth B (in hertz) and its
signal-to-noise ratio (SNR) γ is determined by this theorem
as follows:

R = B log2(1+ γ ) (8)

where γ =

{
γd,j for direct link,
γi,j for indirect link.

(9)

γd,j, and γi,j represent the SNR for the direct and the
indirect links, respectively. To compute the SNR for the direct
link, refer to the formula in (10) as per [50]. Similarly, the
SNR for the indirect link is derived using the formula in (11),
in accordance with [51].

γd,j =

∣∣∣hHd,vejwj

∣∣∣2 Pj
σ 2 , (10)

γi,j =

∣∣∣gHril ,vej2HHH
rsi,rilwj

∣∣∣2 Pj
σ 2 . (11)

hHd,vej and gHril ,vj are the Hermitian transpose (conjugate
transpose) of the channel gain vector associated with
the direct link and the indirect link. wj represents the
beamforming vector designated for vehicle vej. Pj denotes
the transmit power for vehicle vej and σ 2 is noise power. The
hd,vej between rsi, and vej is impacted by the value produced
by a vehicle, such as distance and speed. It can be formulated
as given in [52]:

hd,vej =

√
β0 dα

0,d

dα
rsi,vej

n. (12)

Here β0 is the path loss at a reference distance of d0,d =
1 meter, α is the path loss exponent, and drsi,vej is the distance
between rsi and vej. Additionally,Hrsi, ril corresponds to the
channel gain matrix from rsi to ril . The indirect link channel
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gain is also affected by distances between the vehicle, RSU,
and RIS, as well as vehicle speed. Moreover,2H signifies the
conjugate transpose of the RIS-associated phase shift matrix.
By following [29], the indirect link channel gain among vej
and ril is formulated as:

hi,j = f (dril ,vej , 2,Hrsi,ril ) · n. (13)

Here dril ,vej denotes the distance of a vehicle from the IRS
system. The function f (dril ,vej , 2,Hrsi,ril ) incorporates the
channel gain’s characteristics, which are influenced by both
the distance and phase shifts from the RIS and the vehicle,
along with the channel gain matrixHrsi,ril . The rates Rvej and
Rvek for vehicles vej and vek can be calculated for both the
direct and indirect links by following the (8), (10), and (11).
If we assume that any of the vek vehicles, may attempt to
intercept the communication, then the physical layer security
of vej can be computed using following expression:

Rs
j = max

[
0,

(
Rvej − max

∀j∈jmax

(
Rvek

))]
. (14)

B. TASK AND PROCESSING DECISION MODEL
Each offloading vehicle vej produces τj tasks at the start
of t-time slot. Each offloading task τj consists of a 6-tuple
τj = {cyj, szj, tj, tmaxj , d rsj , d rij }, where cyj = h̄ · szj. Here, cyj
and szj denote the required CPU cycles and task input size
in bits, respectively. In the computing model, the relationship
between cyj and szj is represented by the service coefficient
h̄. tj represents the arrival time of τj, whereas the maximal
permissible execution time available for τj is defined by
tmaxj . Every offloading vehicle is limited to generating a
single task per t-time slot. The determination of generating
tasks’ development follows a Bernoulli distribution, where
the probability is P; thus, the average task arrival rate is
λτ = P/t [53].

Every task τj requires a decision to be made regarding
its processing method, either locally or through offloading.
This decision is represented by dj, which is a binary variable
with values of either 0 (local processing) or 1 (offloaded
processing).

C. LOCAL AND EDGE COMPUTATION MODEL
We assume that all offloading vehicles vej have a similar CPU
frequency, indicated by fcj. In implementing a partial task
offloading mechanism, we utilize the coefficient α̃ to indicate
the portion of task τj that will be processed locally. The α̃ is
subject to the constraint 0 ≤ α̃ ≤ 1. τj is not the sole task
awaiting processing; there are other tasks in the queue of vej
as well, and their respective sizes are cumulatively denoted
by szvj . Calculation of the average local processing delay Tlj
with the help of the equation might be used for szj-sized task
τj.

Tlj = (1− dj)
{(
h̄(α̃szj + szvj )

)
/fcj

}
. (15)

Similarly, concerning the edge computation model,
we assume that each RSU has a multi-CPU VEC server

capable of parallel computing. In each time period, the
number of available CPUs in the VEC network fluctuates in
a dynamic manner. If vehicle vej is unable to finish task τj
within the allotted time tmaxj , it is advisable to offload the
task to the VEC server, the decision value dj is set to 1.
The CPU resources association on the server is influenced
by the incoming tasks τj in each time interval. Due to
the fact that these tasks appear during distinct time slots
and have distinct CPU requirements, different time slots
provide disparate amount of available VEC CPU resources.
For CPU resources distribution, the VEC server prioritizes
tasks τj based on the longest given CPU time within its
associated time slot. If multiple CPUs have the same available
time, one is randomly selected. The aim of this research
is to posit the supposition that the VEC server has ample
computational capability, and each unit in face of vehicles
engaged in offloading can be allocated fce computation
resources. Transmission delays are an essential factor to
consider when processing a task τj on the VEC server. The
processing time Tej for task τj at the VEC server can be
calculated as follows:

Tej = dj
( h̄(β̃szoj )

fce
+

β̃szoj
Rs
j

)
. (16)

The termRs
j is a general reference to the transmission rate,

which applies to either direct or indirect links accordingly.
The variable β̃ denotes the portion of the task to be executed
at the VEC, and its value lies between 0 and 1. It is important
to note that both α̃ and β̃ must satisfy the constraint α̃+β̃ = 1.

III. FORMULATION OF OPTIMIZATION PROBLEM
Here we study the optimization of computational efficiency
and the maximization of secrecy rates in the VEC network.
The main objective is to minimize task processing time
while efficiently using computational resources, thereby
increasing the ratio of total executed tasks. Additionally,
a secondary goal is to enhance the secrecy rate for legitimate
task-offloading vehicles to ensure secure communication.
The primary aim is to balance efficient computation and a
high secrecy rate.

In the dynamic VECN system, where execution time
varies between time slots, fairness and robustness are
critical concerns. The total task processing time is calculated
using (17) to ensure a fair comparison among different
scenarios. To address this variability, the TES factor is
introduced for rational evaluation. The local processing
time, P, of a specific task, τj, is used as a benchmark for
comparison. In accordance with our intended objective, the
total time consumed by an offloading vehicle can be denoted
as follows:

0j =
(
1− dj

)
Tlj + dj · Tej . (17)

A. TASK OFFLOADING EFFICIENCY AND SECRECY FACTOR
The evaluation of the offloading decision’s effectiveness
relies on the TES factor. The TES factor (9) is a
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comprehensive metric used to evaluate the effectiveness of
task offloading decisions. It integrates two critical aspects, the
time efficiency and the secrecy rate. The time efficiency com-
ponent measures the cumulative time saved from offloading
and processing tasks, represented by the difference between
the total potential processing time without offloading and
the actual time used with offloading, adjusted by specific
task-related parameters. The secrecy rate component adds
a security dimension, reflecting the level of data protection
achieved during the offloading process. The formula for
estimating the time saved involves multiplying by P and 0

with the difference of tmaxj and 0, providing a measure of
relative efficiency as

9 =
(
(P− 0j · tmaxj − 0j)+Rs

j

)
. (18)

The metric 9, measures the amount of time that is saved
by processing and offloading a single task, and also considers
the secrecy rate. By computing the average of 9 across all J
tasks, denoted as9avg, we obtain an overall assessment of the
time saved by task processing and offloading, as well as the
corresponding secrecy rates. A higher value of 9avg signifies
a more efficient offloading decision, leading to substantial
time savings and enhanced secrecy rates. Eq (19) represents
the expression for the average relative TES factor.

By averaging the TES factor across all tasks (9avg),
an overall assessment of the time saved and the corresponding
security levels is obtained. A higher average TES factor
signifies a more efficient offloading decision, leading to
substantial time savings and enhanced data security. This
metric provides a balanced evaluation, ensuring that offload-
ing strategies optimize both performance and security in VEC
networks.

9avg =
1
J

J∑
j=1

(
(P− 0j · tmaxj − 0j)+Rs

j

)
. (19)

Hence, the primary goal of optimization is to enhance
the average time savings and achieve an elevated level of
secrecy rate during the execution and offloading of tasks. The
formulation of this objective is outlined as follows:

maximize
9, w,2

1
J

J∑
j=1

9avg,

s.t. C1 : min
{
Tlj , Tej

}
≤ tmaxj ,

C2 : P = mean(fcminj , fcmaxj ),

C3 : Pj ≤ Pmaxj ,

C4 : Rs
j ≥

β̃szoj · fce · dj

dj · β̃szoj · Tej − h̄(β̃sz
o
j )

,

C5 : α̃ + β̃ = 1,

C6 : ∀ dj ∈ {0, 1} and ∀ j ∈ {1, 2, 3, . . . , J}. (20)

Constraint C1 ensures that the minimum value between the
local task processing time Tlj and the VEC processing time
Tej does not exceed the task threshold time tmaxj . Constraint

C2 sets the benchmark timeP as the average of the minimum
local CPU frequency and the maximum local CPU frequency.
Constraint C3 pertains to the vehicle’s transmission power,
which stipulates that the maximum transmission power must
not surpass the power allocated to the vehicle’s transmission
unit during the beamforming and transmission of task raw
data to the VEC server. Constraint C4 ensures that the
minimum secrecy rate Rs

j must be greater than or equal to
the time required to transfer the task’s raw data szoj to the
VEC server during offloading. Constraint C5 corresponds to
the notion that the local portion of the task and the offloaded
part of data together form a complete task. Lastly, constraint
C6 dictates that the decision parameters dj is set to 0 for
local processing. However, if there are no available free CPUs
locally in the given time slot, dj is set to 1.
Upon close examination of the objective function in

optimization problem (20), we notice that it takes the form
of a fraction and incorporates multiple random variables.
Additionally, the constraints in (C1), (C3), and (C4) are
non-convex. Moreover, the variables are interrelated, making
the optimization problem (20) non-convex and inherently
stochastic in nature. Due to these complexities, it is not
feasible to directly solve this problem using traditional
optimization techniques.

IV. DRL METHODOLOGY FOR SOLVING TES
MAXIMIZATION PROBLEM
Improving the propriety across tasks is the optimization
access’s main challenge. This approach uses the way of
reducing the medium processing delay for every J tasks/sub-
tasks coming at each time slot t while simultaneously maxi-
mizing the secrecy rate. However, conventional optimization
methods encounter challenges in fulfilling this goal because
of influences from the dynamic nature of tasks and intricacies
inherent in the VECN system. To overcome these challenges,
we propose a novel strategy known as the DRL-based
ze-RIS-assisted secure task efficient offloading (DRSTO)
approach. This approach leverages the capabilities of DRL to
make effective, time-delay, and secrecy-efficient computation
offloading-based choices. In this section, we formulate
Problem (20) as an MDP, rendering it suitable for the
DRL method to learn the optimal policy within the training
environment.

A. MDP MODEL FORMULATION
An MDP is usually composed of five elements, namely
M = {S,A,P,R, γ }. Each component plays a distinct
role in tackling the issue of task offloading. The following
subsections describe in detail the operations carried out by
elements of MDP.

1) STATE SPACE
The state space is directly associated with the environmental
states in which a DRL learning agent interacts. Our scenario
defines the state space S, where an environmental state at time
slot t is represented as st ∈ S. In line with the task offloading
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environment, the state st for each task τj is described as
follows:

st =
{
(cyj, szj, tj, stloc, stoff , stvec, d rsj , d rij , Rs

j , 9avg)
}

(21)

The DRL agent gathers information on various aspects at
time slot t , including the CPU cycles (cyj), task size (szj), and
arrival time (tj) of τj. Additionally, the DRL agent observes
the states related to processing and offloading, such as the
local processing state (stloc), the data offloading state (stoff ),
and the VEC processing state (stvec). Furthermore, the DRL
agent also observes the inter-vehicle-RSU distances (d rsj ),
vehicle-RIS distances (d rij ), secrecy rate (R

s
j ), and the average

TES factor (9avg) associated with the task τj.

2) ACTION SPACE
The DRL learning agent engages with the environment,
observing the state elements mentioned in (21). After
observing these state elements, the agent takes actions A.
At time slot t , the learning agent performs action at based on
state st . The action at for each task τj is described as follows:

at = {loce, τ off , vece} (22)

The learning agent has three potential actions to take based
on the observed state at time slot t . If there is sufficient CPU
capacity available locally, it can choose the local execution
action (loce). However, if there is a shortage of CPU cycles
locally or no free CPU is available at the same time slot, the
agent selects the task for offloading to the VEC server. In this
scenario, it first takes the offloading action (τ off ) and then
the VEC execution action (vece) in an interleaved manner.
Additionally, the agent examines the communication envi-
ronment before making the offloading and VEC execution
actions to ensure secure communication. Consequently, while
observing the communication environment at time slot t , the
agent selects suitable values for (w) and (2), accordingly.

3) REWARDS
The reward function is of utmost importance as it determines
the state transition quality level. Suppose the action at is taken
by agent at time slot t , leading to a transition from state st to
st+1 and receiving a reward denoted as rt .

R(st , at , st+1) =
(
9avg(st , at , st+1)

)
· w. (23)

The parameter w in (23) serves the purpose of fine-tuning
the magnitude of the rewards within the system. Its role is
to guarantee that the range of rewards is accurately adjusted
to match the intended goals and linked limitations within the
issue.

B. THE DRSTO SCHEME
The proposed DRSTO scheme integrates a VECN envi-
ronment with the A2C algorithm. This scheme comprises
the A2C algorithm, which serves as the central framework
for reinforcement learning, and the DRSTO environment,
which emulates VECN theory. Under the proposed DRSTO

scheme, the components interact with each other, consistently
enhancing secure offloading decision functionality.

The A2C algorithm is a model-free, synchronous method
in reinforcement learning, combining the advantages of both
policy-based and value-based methods. It consists of two
primary components, the Actor and the Critic. The Actor is
responsible for selecting actions based on the policy, while
the Critic evaluates the chosen actions by computing the value
function, which estimates the expected future rewards.

In the DRSTO scheme, The Actor component outputs a
probability distribution over actions, enabling the agent to
make stochastic decisions that are not solely deterministic.
This allows for exploration of the action space, which is
crucial for learning in dynamic VECN environment. The
Critic component calculates the value function, providing
feedback on the quality of the actions taken by the Actor.
The advantage function, which is the difference between
the expected reward of the chosen action and the average
expected reward, helps in reducing variance and stabilizing
the learning process. The agent is equipped with the ability
to optimize its actions using the A2C algorithm, which
considers both the observable environmental conditions and
the rewards obtained. By continuously interacting with the
DRSTO environment, the agent learns to make optimal
offloading decisions based on different VECN scenarios
through training. The synchronous nature of A2C ensures
efficient utilization of computational resources and facilitates
faster convergence compared to asynchronous methods.

1) DRSTO TRAINING ALGORITHM
The DRSTO training procedure initiates by setting up the
actor and critic networks with randomly assigned weights wθ

and wv, respectively. Additionally, critical parameters such
as the learning rate and the target return discount factor are
defined. The initial state is set and the experience buffer
is created. In its iterative process, the algorithm selects
actions, updates the VECN environment, logs transitions in
the experience buffer, and computes target returns as well
as value function targets, utilizing rewards and the discount
factor. The weights wθ of the actor network are then updated
according to the policy gradient method, i.e,

∇θJ ≈
1
|D|

|D|∑
t=0

∇θ log(π (at |st ;wθ )) · A(st , at ;wθ ,wv).

(24)

The process involves determining the advantage function
and policy function of logarithm, which are derived by
averaging the gradient across transitions stored in the
experience buffer D. The weights of the critic network are
updated by using the mean squared error loss, reflecting the
difference between predicted and actual outcomes, i.e,

Lcritic =
1
|D|

|D|∑
t=0

(zt − V (st ;wv))2. (25)
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This update process is based on comparisons between
the estimated value functions and their respective targets.
Through given learning rate and calculated gradients, the
parameters of actor and critic are updated. After completing
this step, the experienced buffer is cleared, and process
continues until convergence, signifying that the algorithm has
reached its optimal performance.

Algorithm 1 A2C Based DRSTO Training Algorithm
Input: 9, 9avg,, stloc, stofld , stvec
Output: secure offloading decision policy dj
Initialize 9 = 9avg = 0 Initialize the actor and critic
network with wθ , wv, and random weights Initialize discount
factor γ , learning rate α, empty buffer D, initial state s
while (notconverged) do

Interact with VECN environment, initialize state s Select
and execute action a on current state s, and observe next
state s′ and reward r Store the transition (s, a, r, s′) in
buffer D Update the current state s to the next state s′

if (episode ̸= over) then
Initialize empty lists G, and z Set Gt for the last time
step as final reward r Set zt for the last time step as
the target returnGt foreach t time step in episode do

Gt = rt + γ · Gt+1
zt = Gt

end
Update weights wθ using (24)
Update weights wv using (25)
wθ ← wθ + α · ∇θJ
wv← wv + α · ∇vLcritic
Reset the experience buffer D

end
end

a: TRAINING OPTIMIZATION
In the phase in training that involves exploration, the agent
randomly selects actions, but not all of these actions are valid
due to constraints related to the system model. To address
this, we introduce a penalty strategy during sampling to
discourage non-legitimate actions and prioritize valid ones.
These penalties are applied to actions like local processing,
offloading, and edge processing if they are not feasible. The
penalty term ϒ is included in the reward function to guide
the agent towards making optimal decisions considering
constraints, as

R(st , at , st+1) =
(
9avg(st , at , st+1)− ϒ

)
· w. (26)

In this context, ϒ can take on one of three values: ϒl , ϒo,
or ϒe. Specifically, ϒl stands for penalties related to local
actions, ϒo represents penalties associated with offloading
actions, andϒe pertains to penalties linked to edge processing
actions. The DRL agent in DRSTO scheme is to train as
a primary objective to make efficient offloading decisions
while adhering to system constraints. The agent operates
within the VECN environment as outlined in Section IV-A.

2) DRSTO ALGORITHM
The environment of task offloading in VECN and DRL agent
is integrated in DRSTO algorithm. The DRL agent operations
is described by algorithm 2 while training environment is
described by Algorithm 1 while algorithm 1 provides a
comprehensive detail of the training method for the DRL
agent. Collectively, these algorithms collaborate coherently
to achieve their shared goal of secure and efficient task
offloading.

The core of the Algorithm 2 operates within a loop,
persisting until the task τj is marked as ‘‘done,’’ signaling
the completion of all tasks. Within this iterative loop, several
key steps are executed. First, the algorithm retrieves the
task offloading decisions from Algorithm 1). It subsequently
computes and returns both the TES factor and the average
TES factor, regardless of local or VEC computation decision.
When the decision dictates local processing dj == 0,
the local state stloc is updated. If the local state reaches
zero, it signifies task completion, prompting the algorithm to
proceed to the next task in the queue.

The algorithm also accounts for offloading decisions.
When the decision points offloading dj == 1, the algorithm
evaluates the vertical distance of the vehicle vej concerning
both the RSU and the RIS. Depending on this comparison,
it calculates values for the vehicle’s stay time tsvej for both
direct and indirect links as

tsvej =



(
2
√(

rsri
)2
− ersi

)
∥ ⃗µvej∥

under RSU,(
2
√(

rirl
)2
− eril

)
∥ ⃗µvej∥

under RIS.

(27)

In this context, ⃗µvej represents the velocity vector of
vehicle vej. The notation ersi refers to vertical distance within
RSU rsi and vehicle vej. Similarly, eril indicates the vertical
distance within RIS ril and vehicle vej. Additionally, rsri and
rirl are used to specify the communication range radius of rsi
and ril , correspondingly.

Then the DRSTO algorithm selects the secrecy rate Rs
j

either for the direct link between the vehicle vej and the
RSU rsj or the indirect link via the RIS ril . To increase the
secrecy rate, a secure beamforming mechanism is adopted
while fine-tuning the beamforming vectors to direct the
main signal precisely toward the intended legitimate receiver,
while simultaneously nullifying signals in the directions of
unauthorized eavesdroppers [54]. We employed the maximal
ratio transmission (MRT) technique to maximize the γ at vej
while minimizing the γ at the vek . Considering the MIMO
configurations the MRT beamforming vector w is calculated
as follows [55]:

w =
hHerx
∥herx∥

(28)

h represents the channel vector, which contains the complex
channel gains from each transmitter antenna to the receiver
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Algorithm 2 The DRSTO Algorithm
Input: Task τj’s tuple, rsj, ril , ersi , eril , R

s
j , t

s
vej

Output: 9, 9avg,, stloc, stofld , stvec
Initialize: τj = !done, 9 = 9avg = stloc = stofld = stvec = 0
while (τj ̸= done) do

fetch dj from Algorithm 1, calculate and return 9, 9avg
if (dj == 0) then

update the state stloc, and return if (stloc == 0) then
set task completion flag of τj = done and move
to next τj

end

else if
(
dj == 1

)
then

if (ersi < eril ) then
select tsvej , and Rs

j of direct vej–rsj link
else

select tsvej , and Rs
j of indirect vej–ril–rsj link

end
if (tsvej > (β̃szoj /R

s
j )) then

update states stofld , stvec, and return if (stofld ==
stvec == 0) then

set flag of τj = done and move to next τj
end

end

end
if

(
tsvej > (β̃szoj /R

s
j ) & dj == 1 & τj == done

)
then

transfer output result to vej else
transfer output result to rsj+1 or ril+1 in headway
of vej

end
end

end

antennas. hH is the conjugate transpose of the channel vector
h. The ∥h∥ is the Euclidean norm of the channel vector h,
and erx is the unit vector representing the receiver’s antenna.
The transmitted signal x using MRT is formed by scaling the
information symbol s with the MRT beamforming vector w
[55]:

x =
√
P · w · s+ n. (29)

Subsequently, the DRSTO algorithm verifies if the vehicle
can remain for an adequate duration to facilitate the
task upload while considering the secrecy rate. When the
conditions align, it updates both the offloading state stofld and
the edge processing state stvec. Task completion is recognized
when both the offloading andVEC states reach zero, allowing
the algorithm to transition to the subsequent task.

Disseminating the task results, if the vehicle’s stay time
proves sufficient, and the offloading decision dj prescribes
VEC execution, in addition to the task completion flag being
set to ‘‘done,’’ the output result is directly conveyed to the
vehicle vej. Alternatively, when any of these conditions are

TABLE 1. Parameters for simulation.

unmet, the output is forwarded to next RSU rsj+1 or RIS ril+1
within the vehicle’s headway.

In an VECN environment the DRL agent progresses,
navigating and interacting, until the learning process reaches
a point of convergence. At this juncture, where the training
process reaches its peak performance, the DRSTO scheme is
deemed to be thoroughly trained and optimized.

V. SIMULATIONS
In this section, we have provided comprehensive information
about the simulation setup, alternative approaches, the criteria
used for evaluation, results and discussion.

A. SIMULATION SETUP
The communication range of the RSUs and ze-RISs in our
vehicular network scenario is 200 meters. Similarly, the
communication range of the vehicles comprising the network
is set at 100 meters. These vehicles are considered to move
randomly along the road at speeds ranging from 10 meters
per second to 20 meters per second. In the described channel
configurations, the ze-RIS utilizes a UPA comprising an
Mx × My matrix of reflection elements. A Rician fading
model is adopted to characterize our channel, accounting for
both LoS and Non-LoS components across the connections
involving RSU-RIS, RIS-Vehicle, and RSU-Vehicle links.
Our path loss model is PL(α, d) = β0 (d/d0)−α , where
β0 is the path loss at d0 = 1 meter, d is the transmission
distance, and the path loss exponent is α. Our configuration
defines the non-LoS component of the RSU-RIS connection
as HLoS

R ∼ CN (0, 1) and the LoS component as HLoS
R =

alaHt . In this context, al and at represent the steering vectors,
which are calculated using the angles of arrival and departure,
respectively, adhering to the methodology described in [56].
Other communication links also use similar channel models,
and we have set the path loss parameter β0 to -40dB, as per
the 3GPPUMimodel.We choose the task size and processing
threshold time randomly from a predefined set of values. The
task size can vary between 1 and 50 megabytes, while the
processing threshold time falls within the range of 200 to
500 milliseconds. Moreover, we have employed the widely
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FIGURE 2. Examining the impact of different learning rate (LR) on the reward obtained per episode.

accepted M/M/1-FCFS queue processing model for task
scheduling.

B. ALTERNATE METHODS AND EVALUATION
The DRSTO scheme is compared against other DRL
algorithms, including DQN, PPO, QRDQN, and DDPG.
Similar to our approach, the DQN-based scheme proposed
in [57] learns from the environment to optimize tasks like
computation offloading, resource allocation, and IRS phase
shift policies. The QRDQN scheme, a modified version
of DQN using quantile regression, provides a distribution
of Q-values, making it suitable for tasks where risk and
uncertainty are significant factors. Meanwhile, the DDPG
scheme, introduced in [58], is another MEC-based secure
task offloading scheme utilizing RIS assistance. Additionally,
the PPO-based task offloading scheme, a variant of DDPG,
is included for comparison due to its stability and reliable
learning process achieved through techniques like advantage
clipping and the use of surrogate objective functions.

We comprehensively evaluated the DRSTO and other
competing approaches, considering two key aspects: the
efficiency of task offloading and learning agents within DRL
effectiveness. In terms of DRL performance, we assessed
learning agents based on their rewards and the ratio of TFPS,
indicating the time taken per environmental step. Regarding
task offloading efficiency, we utilized the average TES factor
to evaluate the joint efficiency of task offloading, considering
factors such as communication and computation delays and
secrecy. Additionally, we employed task success and drop
ratios as quantitative measures to determine the exact number
of tasks that were dropped or completed effectively in the
VECN environment.

C. SIMULATION RESULTS AND ANALYSIS
Within this subsection, we have presented the results and
conducted an analysis concerning bothDRL performance and
task offloading efficiency.

1) DRL PERFORMANCE ASSESSMENT
The performance of the DRSTO scheme is analyzed with
different learning rates, lr-0.0006, lr-0.0007, and lr-0.0008,
focusing on both the reward obtained and the TFPS rate
achieved as shown in Fig. 2 At lr-0.0006, the DRSTO
scheme demonstrated a reward of 56.83, indicating its
effectiveness in optimizing the task offloading process.
Additionally, it achieved a TFPS rate of 487.97, showcasing
its computational efficiency in processing 487.97 TFPS.
A lower TFPS rate often signifies superior performance.
The algorithm achieved an impressive value of 58.56 at lr-
0.0007, showcasing its outstanding performance in incentive.
At the given learning rate, this discovery implied that the
algorithm maximized the combined savings in time and
secrecy rate, leading to a higher reward. It was able to achieve
this reward with a lower TFPS of 478.06 in contrast when
comparing the TFPS rates suggesting a faster implementation
than lr-0.0006. similarly, the algorithm was rewarded with
a notable 57.92 at lr-0.0008. This learning rates TFPS rate
of 480.14 was very closed to the performance achieved at
LR-0.0007. Even though the TFPS rate was slightly higher
the results show that the DRSTO scheme nevertheless
maintained better performance.

Finally, over a range of learning rates the DRSTO scheme
showed a broad variety of performance characteristics. At the
lowest possible TFPS of 478.06 the lr-0.0007 model showed
the highest reward of 58.56 indicating that it performed tasks
more efficiently and made the best possible decisions. On the
other hand the lowest reward was 56.83 and the highest TFPS
rate was 487.97 with lr-0.0006. The goals of maximizing
rewards and decreasing TFPS must be considered while
selecting the ideal learning rate. The findings highlight the
significance of fine-tuning the learning rate for achieving
the best possible balance between learning efficiency and
task processing speed. Therefore, after thorough evaluation,
we identified lr-0.0007 as the most appropriate choice for all
subsequent experiments for the DRSTO scheme.
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FIGURE 3. Investigating how different learning rate (LR) impact the TFPS
for different schemes based DRL.

To further explore the DRL attributes of VECN task
offloading, a comparative analysis is performed that included
the DRSTO scheme and other existing approaches, as shown
in Figs. 3-(b), 4-(a), and 4-(b).

Figure 3-(b) shows a detailed analysis of the TFPS for
each algorithm. At first, all schemes have somewhat larger
over time decreasing TFPS values as learning progress
runs. The DRSTO approach begins with a higher TFPS
but adjusted quickly, eventually achieving the lowest TFPS
rates, averaging at 478.06, which indicates efficient learning.
In contrast, the DQN method starts at high TFPS levels
and, despite shifting to lower rates over time, it consistently
records higher averages than DRSTO, with an average
TFPS of 759.89. On the other hand, the QRDQN scheme,
a variant of DQN, performs better than DQN, achieving an
average TFPS of 652.15. However, DDPG and PPO learning
behaviors are very similar. DDPG has a horizontal trajectory
at the beginning, but it starts learning at TFPS levels that
gradually go down. Despite this, with an estimated mean
TFPS of 706.26, it falls short of PPO, QRDQN, and DRSTO.
The average TFPS of 647.97 shows that the PPO scheme
outperforms the others, with the exception of DRSTO.

In addition to its usage in TFPS evaluation, we consider
episodic reward as a crucial performance metric for making
fair comparisons in task-offloading situations. The rate of
secrecy, processing and communication latency, and other
components make up the reward measure. Section IV-A
explains how to calculate the episodic reward by integrating
the time saved and the rate of secrecy. Fig. 4-(a) and 4-(b)
display the median rewards per episode for each method.
The comparison involves the DRSTO scheme, built on A2C,
against alternatives employing DQN, QRDQN, DDPG, and
PPO in particular. The DRSTO program achieved an average
reward of 57.76, demonstrating remarkable performance.
The average payout for the DDPG scheme was in close
proximity at 55.61. However, DQN earned an average of
32.68 points and QRDQN earned 30.53 average points.
The PPO-based scheme obtained an average reward of
42.82. These results indicate that both DQN and QRDQN
faced challenges in their learning processes, experiencing a
noticeable drop in reward ratios midway through training.
In contrast, DRSTO and the DDPG schemes displayed
consistent reward trends and demonstrated convergence, with
DRSTO ultimately obtaining an average reward that was
slightly greater. Notably, the PPO-based scheme struggled to
progress in reward accumulation, maintaining a consistent
reward level throughout the learning process, suggesting
limited learning.
Summary: In the VECN environment, the results unmis-

takably demonstrate that the DRSTO scheme surpasses
alternative DRL algorithms, excelling in terms of lower TFPS
and higher rewards. The DRSTO scheme efficacy attributed
to the utilization of A2C as its fundamental algorithm.
It provides multiple benefits, such as its straightforwardness,
the integration of policy gradients with value-based methods,
and decreased variability. A2C is especially suitable for
real-time learning situations due to its capabilities, which
allow for faster convergence and the flexibility to adapt to
changing environments. The best DRL algorithm is the one
that reduces TFPS ratios while still achieving better rewards.
Thanks to the DRSTO plan, this is accomplished. As a
result of its constant reward patterns throughout the entire
process, the PPO-based scheme showed the least gain in
reward acquisition and learning, even though it achieved a
lower TFPS. Although it had better TFPS ratios, the DDPG
plan was far less effective at achieving rewards than the
DRSTOprogram. QRDQN andDQN schemes exhibited poor
outcomes in terms of TFPS ratios and reward mechanisms.

2) TASK OFFLOADING PERFORMANCE ASSESSMENT
During this stage, we assess the efficiency of task processing
and transmission, ensuring that the level of confidentiality
conforms to the limitations defined by our DRSTO system
and satisfies the specified criteria. Job completion rates and
the TES factor are significant indicators of performance.
Both the level of confidentiality and the reduction in
hiring expenses are essential factors in evaluating the
TES factor.
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FIGURE 4. Examination of the reward received per episode across different DRL based strategies.

FIGURE 5. Analysis of the task execution efficiency in terms of task
success and drop ratio.

Figure 5 depicts an exhaustive analysis of the pass/fail
rates of several task outsourcing techniques. This research
highlights the differences in performance among the schemes
by providing a thorough understanding of how they compare
with regard to the management of task success and decline
rates. When choosing between running an operation on the
vehicle’s own Local Processing Unit (LPU) and entrusting
it to the VEC server, the evaluation is crucial. To do a
task successfully, one must take into account the work at
hand, any available resources, and make judgments based
on accurate information. Poor decision-making in this setting
could lead to the project’s demise and potential breaches of
confidentiality.

The DRSTO scheme outperforms all other task offloading
schemes in terms of both task success and failure rates.
Demonstrating remarkable efficacy, the DRSTO scheme
attains an impressive success task rate of 95.30% with
a minimal failure task rate of only 4.70%. In contrast,
DQN, QRDQN, DDPG, and PPO obtain task success rates
of 91.62%, 90.67%, 93.18%, and 92.13%, respectively.

FIGURE 6. Aaverage TES factor of all contender schemes Vs. increasing
the number of tasks.

Likewise, the performance degradation (drop rate of the task)
for DQN, QRDQN, DDPG, and PPO are 8.38%, 9.33%,
6.82%, and 7.87%, respectively. While DDPG exhibits
relatively commendable performance compared to other
schemes, it falls behind in comparison to our proposed
DRSTO scheme. The PPO-based scheme ranks third, fol-
lowed by DQN, while the QRDQN-based scheme exhibits
the least favorable performance among all the schemes.

In any task offloading scheme, it is critical to emphasize
reducing delays in task processing and lowering the risk of
secrecy breaches, since these elements significantly impact
the overall effectiveness of task execution. This emphasis
on minimizing processing times and addressing security
concerns is integral for optimizing the effectiveness of task
processing systems. Fig. 6 offers a visual representation of
the average task offloading efficiency and secrecy statistics
with an increasing number of tasks, providing insights into
the scheme’s performance considering these critical factors.
In a comprehensive assessment of the TES factor, our study
engaged in the evaluation of more than 100 tasks, with each
task encompassing a variable range of 1 to 100 randomly
generated sub-tasks. Adherence to the specifications detailed
in Section V was maintained for all parameters, guaranteeing
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FIGURE 7. Average TES factor behavior against increasing task size.

a fair and impartial comparison across different task offload-
ing schemes. Analyzing Fig. 6, reveals the competence of
all task offloading schemes in achieving task offloading
while maintaining secrecy, albeit with varying performance
levels. Notably, for increasing number of tasks in one second,
all schemes tend towards convergence. Significantly, the
proposed DRSTO scheme consistently outperforms the other
schemes, achieving an average TES factor of 44.16. It is
evident that with fewer tasks, the TES factor tends to be lower,
but it increases as the number of tasks grows. The DDPG
and PPO schemes exhibit a similar performance pattern to
that of the DRSTO scheme concerning the TES factor as
the number of tasks increases. However, DDPG attains an
average TES factor of 37.55, while PPO achieves an average
TES factor of 36.07. In contrast, the DQN and QRDQN
schemes achieve average TES factors of 38.11 and 26.06,
respectively. Nevertheless, in this scenario, QRDQN remains
the least effective among the schemes.

The average behavior of TES with respect to different
task sizes is examined in Fig. 7. The task management
patterns of all rival offloading techniques are very similar,
which is interesting because the amount of time saved
usually decreases as the task sizes get higher. At first,
when handling smaller task sizes, all systems get greater
average TES factors. Nevertheless, as the number of the
tasks grows, their efficiency factors gradually decrease. The
DRSTO scheme demonstrates a consistently smooth pattern
throughout this scenario, reaching the highest average TES
factor of 52.67. In this context, the PPO scheme closely
follows a TES factor pattern similar to that of the DRSTO
scheme, getting an average TES factor of 43.82. Conversely,
the DQN and QRDQN schemes attain average TES factors
of 41.09 and 36.11, respectively. Meanwhile, the DDPG
scheme remains competitive with the DRSTO scheme but
falls slightly behind, achieving an average TES factor of
50.43. Besides, the QRDQN scheme once again exhibits the
least favorable performance among all the schemes.

The assessment of task offloading schemes is significantly
influenced by the task threshold time. In our research,
we scrutinized diverse offloading strategies, where the
effectiveness of the schemes is assessed over various task

FIGURE 8. Average TES factor behavior against increasing execution
threshold time.

threshold, as illustrated in Fig. 8. Each scheme exhibited
competence in handling tasks, even when confronted with
themostminimal threshold time.However, their performance,
in terms of the TES factor, showed variation. The DRSTO
scheme significantly improved when the task threshold
time ranged from 50ms to 140ms. However, all schemes,
including DRSTO, did not exhibit substantial progress when
the threshold time was between 230ms and 410ms. Beyond
the 410ms threshold time, all schemes experienced a notable
increase in the TES factor. The DRSTO scheme achieved
the highest average TES factor of 54.83 on average. DQN
and QRDQN schemes achieved nearly identical average TES
factors of 48.96 and 48.33, respectively. The PPO and DDPG
schemes attained average TES factors of 50.78 and 51.39,
respectively. Once again, the QRDQN scheme exhibited the
poorest performance in this scenario. However, the DRSTO
scheme performed well across lower, average, and higher
task threshold times. It consistently achieved the maximum
average TES factor compared to all other schemes.

To evaluate the effectiveness of our proposed DRSTO
scheme in terms of secrecy during offloading, we conducted
an analysis on the impact of eavesdroppers on the average
achievable secrecy rate. The results of this evaluation,
including scenarios with different numbers of eavesdroppers
and a scenario with no eavesdroppers, are presented in
Fig. 9. The analysis reveals that the average achievable
secrecy rate is 1.99 bits/sec/Hz when no eavesdroppers are
present. As we introduce a single eve, the average achievable
secrecy rate slightly decreases to 1.96 bits/sec/Hz. Similarly,
including 2, 3, 4, and 5 eavesdroppers, the average achievable
secrecy rates are 1.93, 1.89, 1.86, and 1.83 bits/sec/Hz,
respectively. Analyzing these results, it becomes evident that
our DRSTO scheme performs consistently well across all
cases, demonstrating a relatively stable performance even in
the presence of eavesdroppers. The variation in secrecy rate
is minimal as the number of eavesdroppers increases. The
discrepancy in achievable secrecy rates across the scenarios
with no eavesdroppers and 1-5 eavesdroppers in our system
is only a degradation of 1.42%, 2.93%, 4.72%, 6.22%,
and 7.92%, respectively. Considering the importance of
maintaining the secrecy of on-road vehicle data during task
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FIGURE 9. Average secrecy rate against increasing number of
eavesdroppers in the system.

offloading, these variations in secrecy rate are manageable
and do not significantly compromise the overall effectiveness
of our scheme.
Summary: The evaluation of task offloading performance,

as seen in Figs. 5 to 9, highlights the unique characteristics of
the DRSTO scheme that enhance its effectiveness inminimiz-
ing delays while ensuring the secrecy rate is maintained. This
scheme considers the dynamic nature of vehicle headway,
allowing it to adapt to variations in inter-vehicle distances and
movement patterns. Furthermore, the architectural preference
for the advanced 5G-NR-V2XRAT gives the DRSTO scheme
a competitive advantage in optimizing delays.

A topic of interest to investigate is the integration of RIS
as the primary tool in all schemes. This introduces a dynamic
selection procedure that relies on the vehicle’s proximity to
either a RIS or an RSU to choose the communication route.
Direct connection is established between the vehicle and the
RSU while they are in close proximity but the path towards
the RIS is decided when the vehicle is closer to it. This
technique plays a vital role in reducing delays and ensuring
the necessary level of secrecy. Using the RIS to communicate
with the edge server is significantly more efficient in terms of
decreasing delays.

VI. CONCLUSION
This paper presents an in-depth analysis of enhancingVECNs
using the DRL-based DRSTO scheme. DRSTO tailored
for 5G-NR-V2X heterogeneous RATs and supported by
zero-energy RIS (ze-RIS) offers vehicles the choice between
local processing and offloading tasks to VEC servers. The
system facilitates two offloading pathways: a route between
vehcile and VEC using RSU which the direct link or between
vehicle to VEC through RSU assisted by RIS which the
indirect link, influenced by the vehicles’ duration of stay.
The TES factor stands out as a significant innovation for
DRL agent acting as a reward mechanism. It merges time
savings with secrecy rates to optimize offloading actions. The
DRL is utilized to reduce delay and simultaneously enhance
secrecy rates during offloading. Extensive evaluations show
that DRSTO significantly improves task success rates, from
2.12% to 4.63%, and elevates the TES factor from 6.05 to
18.10. Compared to other schemes, DRSTO stands out

in reward generation and TFPS ratios, demonstrating its
effectiveness in VECNs.

In light of the promising results of the ze-RIS-assisted
secure task efficient offloading (DRSTO) scheme, we pro-
pose several future research directions. Exploring alternative
DRL algorithms such as Proximal Policy Optimization
(PPO) and Soft Actor-Critic (SAC) could uncover new
optimization techniques and performance enhancements.
Adopting more realistic vehicular mobility models, such
as the Intelligent Driver Model (IDM) or Simulation of
Urban Mobility (SUMO), can better reflect actual vehic-
ular movement, improving the robustness and validity of
simulations. Introducing multi-agent DRL frameworks for
collaborative optimization among vehicles could enhance
scalability and resource management in densely populated
areas. Additionally, incorporating advanced technologies like
non-orthogonal multiple access (NOMA) and full-duplex
communication could improve spectral efficiency and reduce
latency. These directions will further advance the DRSTO
scheme and enhance the effectiveness of vehicular edge
computing networks.
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