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ABSTRACT

This work considers an IoT network comprising of several IoT sen-
sor nodes (SNs), a passive intelligent reflecting surface (IRS), and
a fusion center (FC). Each IoT SN observes multiple physical phe-
nomena, and transmits its observations to the FC for post processing.
This necessitates the need for efficient preprocessing of each SN’s
observations to combat wireless fading effects and optimize trans-
mit power utilization. In this context, this paper presents a novel
approach that jointly designs the transmit precoding matrix (TPM)
for IoT SNs and optimizes the phase reflection matrix (PRM) for
the IRS. The resulting non-convex optimization problem is tackled
through an alternating optimization framework, where the individual
TPM and PRM design subproblems are further addressed using the
majorization minimization (MM) framework. Notably, the proposed
solution yields closed-form expressions for TPM and PRM in each
MM iteration, making it particularly suitable for low-cost IoT SNs.
Numerical results demonstrate the efficacy of the proposed approach
by showcasing significant enhancements in estimation performance
compared to IoT networks lacking an IRS component.

Index Terms— Coherent MAC, IoT network, transmit precoding,
intelligent reflecting surface, majorization minimization.

1. INTRODUCTION

The advent of internet of things (IoT) networks is catalyzing profound
changes across industries. Over 75 billion IoT-connected gadgets are
expected by 2025, transforming operations, urban living, healthcare,
and everyday life. In conventional IoT networks, a number of IoT
sensor nodes (SNs) are deployed in a geographical area to monitor or
sense the unknown quantity of interest. Since, IoT SNs are low cost
devices, they transmit their observations over a wireless channel to
the central entity called fusion center (FC) for the receive processing.
Hence, in order to transmit these observations efficiently, it becomes
necessary to pre-process the IoT SNs’ observations optimally. A
summary of existing works in this context is presented next.

The problem of transceiver design for parameter estimation in an
IoT network was first explored in the seminal work by Xiao et al. [1]
where new schemes were proposed for the estimation of both scalar
as well as vector parameters. However, the authors did not provide
transceiver design for vector parameter estimation when the noise at
the FC is present. This shortcoming was overcome by considering
more general scenarios in [2] and [3] where alternate minimization
based transceiver designs were developed. An innovative minimum
variance distortionless precoding (MVDP) framework was proposed
in [4] for unbiased parameter estimation, which does not require
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a combiner at the FC. Authors in [5] have proposed an interesting
collaboration framework where the SNs prior to transmitting their
observations to the FC, collaborates themselves and then transmits
the cumulative observations to the FC. Taking this paradigm forward.
authors of [6, 7] have developed SN collaboration strategy for tem-
porally correlated and sparsity aware scenarios, respectively. The
authors of [8–12] studied the problem of transceiver design in an
energy harvesting IoT networks where the SNs run on the energy
harvested from the radio frequency signals transmitted by different
access points. Transceiver design in massive multiple input multiple
output (MIMO) IoT networks was also explored in [13–15] where
the FC is equipped with a large number of antennas. Authors of [16,
17] have proposed majorization theory based non-iterative transceiver
designs for the IoT network considering perfect and imperfect chan-
nel state information (CSI) availability, respectively. Authors in [18]
considered the problem of estimating a dynamic parameter under
both total and individual sensor power limitations. Singh and Ra-
jawat [19] proposed a scheme for the transceiver design of a time
varying vector parameter such that the MSE is minimized at the FC
subject to individual SN power constraint. Furthermore, the authors
of [20] proposed both decentralised and distributed sequential linear
minimum mean square error (LMMSE) techniques for static and dy-
namic vector parameter estimation, using time-varying channel and
observation matrices. Joint collaboration and compression design for
estimation and detection in IoT networks was studied in [21] and [22],
respectively. Recently, the authors of [23, 24] studied parameter esti-
mation in mmWave MIMO IoT networks relying on imperfect CSI.
An interesting integrated sensing communication and computation
framework is developed in [25] for the IoT network. However, none
of the works mentioned above considered the scenario when IRS is
employed to increase signal strength at the FC.

Ahmed et. al [26] were the first to study the IRS-aided IoT net-
work and developed joint transmit and reflective beamforming design
for secure estimation of a parameter in the presence of an eavesdrop-
per. Further, a novel decision fusion strategy is devised in [27] for an
IRS-aided sensor network. However, the use of IRS to enhance the
parameter estimation accuracy is yet to be studied, and is the main
objective of this work. In order to improve estimation accuracy, we
develop a novel joint TPM and PRM design using alternate mini-
mization to yield the minimum MSE. The individual TPM and PRM
design problems are also non-convex in nature, which are solved
using the popular majorization minimization (MM) framework [28].
Inspite of the coupling of the various TPMs, our design decouples
it into a simple optimization problem for each IoT SN. Finally, our
solution provides closed-form expressions for the optimal TPMs and
PRM in each MM iteration which is well suited for IoT networks.

Throughput the paper, the matrix A = blkdiag(A1,A2, . . . ,AN )
represents a diagonal matrix A of size N2 ×N2 with the matrices



Fig. 1. System model for parameter sensing and communication in
IRS-aided IoT network.

Ai, for i = 1, 2, . . . , N on its principal diagonal; The trace and
expectation operators are denoted by Tr[.] and E[.], respectively; The
transpose, Hermitian and complex conjugate operations are denoted
by (.)T , (.)H and (.)∗, respectively; a ∼ CN (0,Ra) represents the
circularly symmetric complex Gaussian distribution with mean zero
and covariance matrix Ra; a(i) and A(i, j) represent the ith and
(i, j)th elements of the a and A, respectively.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 depicts an IRS-assisted IoT network, where the multi-antenna
IoT SNs acquire linear observations of the underlying unknown vector
parameter θ ∼ CN (0,Rθ) ∈ Cm×1. The observation vector xk ∈
Clk×1 corresponding to the kth SN is given as

xk = Akθ + vk, (1)

where Ak ∈ Clk×m represents the observation matrix corresponding
to the kth SN, and vk ∼ CN (0,Rvk = σ2

vIlk ) ∈ Clk×1 represents
the observation noise corresponding to the kth SN. In order to combat
the adverse effects of fading wireless channels and to use the available
transmit power at each SN effectively, one needs to precode the
observation vector using the precoding matrix Fk ∈ CNt×lk , and the
precoded observation used for transmission is x̃k = Fkxk. Hence,
the average transmit power of the kth SN is

E
[
||Fkxk||22

]
= Tr

[
Fk

(
AkRθA

H
k +Rvk

)
FH

k

]
= Pk, (2)

where Pk is the transmit power of the kth SN. Next, each IoT SN in
the network transmits its precoded observation vector over a coherent
multiple access channel (MAC), where all the IoT SNs are assumed to
be synchronized such that their precoded signals reach as a coherent
sum at the FC, which is mathematically represented as

y =

K∑
k=1

H̃kFkAkθ +

K∑
k=1

H̃kFkvk + n, (3)

where n ∼ CN (0,Rn = σ2
fcINr ) ∈ CNr×1 is the FC noise vector.

Further, there are two possible paths through which the signals arrive
at the FC, the direct path and the other through reflections from
the IRS consisting of N passive reflection elements as shown in
Fig. 1. The equivalent channel between the kth SN and the FC is
H̃k = Hk +GFIΦGkI ∈ CNr×Nt , where Hk ∈ CNr×Nt is the
direct channel between the kth SN and the FC, while GkI ∈ CN×Nt

is the channel between the kth SN and the IRS, Φ ∈ CN×N is the

PRM, and finally GFI is the channel matrix between the IRS and the
FC. The received signal y ∈ CNr×1 at the FC can be given as

y = H̃FAθ + H̃Fv + n, (4)

where H̃ = [H̃1, H̃2, . . . , H̃K ] ∈ CNr×KNt , l =
∑K

k=1 lk, F =

blkdiag [F1,F2, . . . ,FK ] ∈ CKNt×l, and A =
[
AH

1 ,AH
2 , . . . ,AH

K

]H ∈
Cl×m. Using LMMSE combiner at the FC, the resulting expression
for the MSE is [29]

MSE = Tr

((
R−1

θ +AHF̃HR̃−1
n F̃A

)−1
)
, (5)

where F̃ = H̃F ∈ CNr×l, Rv = blkdiag (Rv1 ,Rv2 , . . . ,RvK ) ∈
Cl×l, R̃v =

(
Rv +ARθA

H
)
∈ Cl×l and R̃n = F̃R̃vF̃

H +

Rn ∈ CNr×Nr . The desired minimization of the MSE at the FC
subject to individual SN power constraints, and the unit modulus
constraint on the IRS elements can be formulated as follows.

minimize
F̃(F,Φ)

Tr

((
R−1

θ +AHF̃HR̃−1
n F̃A

)−1
)

subject to Tr
[
Fk

(
AkRθA

H
k +Rvk

)
FH

k

]
= Pk, 1 ≤ k ≤ K,

Φ(i, i) = 1, 1 ≤ i ≤ N. (6)

This is a non-convex problem with the two design variables coupled.
Hence, one needs to invoke the alternating optimization framework
where TPMs and PRM will be designed in an iterative manner till
convergence is achieved.

3. JOINT TRANSCEIVER-RIS BEAMFORMING DESIGN

This section discusses the joint design of TPMs and PRM wherein the
alternating optimization framework to solve problem (7) is detailed.
When the PRM is fixed, using the matrix inversion lemma [29] for
the subproblem of TPM simplifies the MSE expression in (5) as

MSE = Tr

[
Rθ −RθA

HF̃H
(
F̃R̃vF̃

H +Rn

)−1

F̃ARθ

]
.

Alternatively, optimization can be rewritten as

minimize
F̃,Q

Tr
[
Rθ −RθA

HF̃HQ−1F̃ARθ

]
≜ f(F̃,Q)

subject to Tr
[
Fk

(
AkRθA

H
k +Rvk

)
FH

k

]
= Pk, 1 ≤ k ≤ K.(7)

where Q =
(
F̃R̃vF̃

H +Rn

)
. The function f(F̃,Q) is jointly

concave in (F̃,Q). Within the majorization-minimization (MM)
framework, we have

f(F̃,Q) ≤ f(F̃t,Qt) + Tr
[
PH

t F̃ARθA
HF̃HPt

]
− 2ℜ

{
Tr

[
RθP

H
t F̃A

]}
, (8)

where Pt =
(
F̃tR̃vF̃

H
t +Rn

)−1

F̃tARθ ∈ CNr×m. Now, af-

ter substituting back F̃ = H̃F, defining B = PH
t H̃FAR

1
2
θ and

ignoring the constant term, the majorized problem at the the tth MM
iteration is

minimize
F

f(F) ≜ Tr
[
BBH

]
− 2ℜ

{
Tr

[
RθP

H
t F̃A

]}
subject to Tr

[
Fk

(
AkRθA

H
k +Rvk

)
FH

k

]
= Pk, 1 ≤ k ≤ K.



The optimization objective above can be reformulated as

f(F) = vec(F)H
[(

ARθA
H
)
⊗

(
H̃HPtP

H
t H̃

)]
vec(F)

− 2ℜ
{
vec(F)Hvec(H̃HPtRθA

H)
}

Using the following relations, one can say that((
ARθA

H + IK ⊗Rv

)
⊗ (λt)IKNt

)
︸ ︷︷ ︸

M

⪰
(
ARθA

H ⊗ H̃HPtP
H
t H̃

)
︸ ︷︷ ︸

L

where λt = Tr
(
H̃HPtP

H
t H̃

)
. Furthermore, one can say that

vec(F)HLvec(F) ⪯ vec(F)HMvec(F)

+ 2ℜ
{
vec(F)H (L−M) vec(Ft)

}
+ Const. at point Ft

We can verify that vec(F)HMvec(F) = λt

∑K
k=1 Pk. Thus, the

majorization problem of Eq.(9) at the tth iteration of MM is

minimize
F

2ℜ
{
vec(F)H (L−M) vec(Ft)

}
−2ℜ

{
vec(F)Hvec(H̃HPtRθA

H)
}
≜ g(F)

subject to Tr
[
Fk

(
AkRθA

H
k +Rv

)
FH

k

]
= Pk, 1 ≤ k ≤ K.

The optimization objective g(F) can be further simplified as

g(F) = 2ℜ
{
vec(F)Ha

}
− 2ℜ

vec(F)H vec(H̃HPtRθA
H)︸ ︷︷ ︸

b

 = 2ℜ
{
vec(F)H(a− b)

}
,

where a = (L−M)vec(Ft) can be further simplified as

(L−M)vec(Ft) = Lvec(Ft)−Mvec(Ft)

= vec

H̃HPtP
H
t H̃FtARθA

H − (λtFt(ARθA
H + IK ⊗Rv)︸ ︷︷ ︸

E


Hence a− b can be written as

a− b = vec

E− H̃HPtRθA
H︸ ︷︷ ︸

Ẽ

 = vec
(
Ẽ
)
.

Thus, the optimization problem in (9) can be equivalently written as

minimize
F

ℜ
{
Tr

[
ẼHF

]}
subject to Tr

[
Fk

(
AkRθA

H
k +Rv

)
FH

k

]
= Pk, 1 ≤ k ≤ K.

The above optimization problem can be decomposed into K parallel
subproblems, the kth one is

minimize
Fk

ℜ
{
Tr

[
ẼH

k Fk

]}
subject to Tr

[
Fk

(
AkRθA

H
k +Rv

)
FH

k

]
= Pk, (9)

where Ẽk is defined as the kth block of the block-diagonal matrix
Ẽ = blkdiag

[
Ẽ1, Ẽ2, . . . , ẼK

]
. The above optimization problem

in (9) can be further simplified as

minimize
Fk

ℜ
{
vec

(
Ẽk

)H

vec (Fk)

}
subject to vec (Fk)

H ((
AkRθA

H
k +Rv

)
⊗ I

)
vec (Fk) = Pk.

The optimal solution F∗
k for the above optimization problem is

vec (F∗
k) = −α∗

kvec
(
Ẽk

)
,

where α∗
k are the optimum values where the power constraint is satis-

fied. It can be obtained as the solution of the following optimization
problem

α∗
k =

√√√√ Pk

vec
(
Ẽk

)H

((AkRθAH
k +Rv)⊗ I) vec

(
Ẽk

) . (10)

Solving the K sub-problems to obtain F∗
1,F

∗
2, . . . ,F

∗
K , one can

obtain the F∗ = blkdiag (F∗
1,F

∗
2, . . . ,F

∗
K). Subsequently, by sub-

stituting F̃ = (H+GFIΦGIS)F the optimization objective to
find the optimal reflection matrix Φ is

Tr
[
PH

t (H+GFIΦGIS)FARθA
HFH (H+GFIΦGIS)

H Pt

]
− 2ℜ

{
Tr

[
RθP

H
t F̃A

]}
= Tr

[
CΦHD

]
+Tr

[
DHΦCH

]
+Tr

[
BBH

]
− 2ℜ

{
Tr

[
RθP

H
t HFA

]
+Tr [KΦ]

}
+

+Tr
[
DHΦJΦHD

]
, (11)

where the different matrices are defined as

C = PH
t HFARθA

HFHGH
IS

D = GH
FIPt

J = GISFARθA
HFHGH

IS

S = GFIFARθP
H
t GIS .

, Hence, the optimization problem to find Φ is

minimize
Φ

Tr
[
DCΦH

]
+Tr

[
CHDHΦ

]
+Tr

[
DHΦJΦHD

]
−2ℜ

{
Tr

[
SHΦ

]}
subject to Φ(i, i) = 1, 1 ≤ i ≤ N. (12)

where the constant terms are ignored. It can be further simplified as

minimize
Φ

2ℜ

Tr

(DC− S)H︸ ︷︷ ︸
S̃H

Φ


+Tr

[
DHΦJΦHD

]
subject to Φ(i, i) = 1, 1 ≤ i ≤ N. (13)

This can also be equivalently written as

minimize
Φ

2ℜ
{
vec

(
S̃
)H

vec (Φ)

}
+ vec (Φ)H J̃vec (Φ)

subject to Φ(i, i) = 1, 1 ≤ i ≤ N, (14)
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Fig. 2. MSE versus SNRFC performance comparison with the BCRB

where vec (Φ) = [ϕ1, 0, . . . , 0, 0, ϕ2, . . . , 0, 0, 0, . . . , ϕN ]T , J̃ =(
JH ⊗DDH

)
, and define ϕ = [ϕ1, ϕ2, . . . , ϕN ]T ∈ CN×1. We

can always construct a matrix Ĵ such that

ϕH Ĵϕ = vec (Φ)H J̃vec (Φ) . (15)

Similarly, one can write the term 2ℜ
{
vec

(
S̃
)H

vec (Φ)

}
as

2ℜ
{
vec

(
S̃
)H

vec (Φ)

}
= 2ℜ

{
ŝHϕ

}
, (16)

where once can construct ŝ from the vector vec
(
S̃
)

. Hence, finally
the optimization problem can be written as

minimize
ϕ

ϕH Ĵϕ+ 2ℜ
{
ŝHϕ

}
subject to ϕ(i) = 1, 1 ≤ i ≤ N, (17)

Once again using the MM framework, this problem can be equiva-
lently written as

minimize
ϕ

ℜ
{
f̃Hϕ

}
subject to ϕ(i) = 1, 1 ≤ i ≤ N, (18)

The optimal ϕ can be obtained as ϕ = −ejarg(f̃). Next section
presents the simulation results to verify the performance of the pro-
posed design.

4. SIMULATION RESULTS

This section presents the results of a simulation-based study to vali-
date the model and schemes described. In all experiments, we gener-
ate the channel coefficients as independent and identically distributed
(i.i.d.) samples which follows the distribution CN (0, 1). The path
loss model is µ = ( d

d0
)−ν where µ = −30 dB is the path loss at the

reference distance of 1m. The path loss exponent ν is set to 2 for
all SNs-to-IRS, and IRS-to-FC, and 3 for SNs to the FC links. The
number of SNs in the MIMO IoT network is set to K = 10. The

10 15 20 25

Number of Sensors (K)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
S

E

Optimal TPM Random PRM

BCRB

Optimal TPM and PRM

Optimal TPM without IRS

Fig. 3. MSE versus number of sensors K in the IoT network.

number of observations taken by each SN is lk = 3, the number of
antennas at each SN is Nt = 3, while the number of receive antennas
at the FC is considered to be Nr = 3. The dimension of the unknown
vector parameter θ is m = 3. For simplicity, the observation noise
covariance matrix Rvk for each SN k and the FC noise covariance
matrix Rn are considered as Rvk = σ2

vIlk and Rn = σ2
nINr , where

the quantities σ2
v and σ2

n denote the variances of the observation and
FC noises, respectively. The signal-to-noise ratio (SNR) at the FC
is defined as SNRFC = 1

σ2
n

. Similarly, the observation SNR denoted

by SNROB is set to SNROB = 1
σ2
v

. The Bayesian Cramer Rao bound
(BCRB) is the MSE when all the observations are available directly at
the FC without any loss, and the MMSE estimator is used to generate
the estimate of θ [16].

Fig. 2 plots the MSE against the SNRFC. As anticipated, the MSE
exhibits a downward trend as the SNRFC rises. This may be attributed
to the diminishing impact of noise as the SNRFC grows, hence leading
to enhanced MSE performance. In order to show the effectiveness
of the IRS, we have also plotted the MSE performance with optimal
TPMs and a random PRM, where the PRM is set to a random matrix.
Also, the scenario when the IRS is absent is considered. For instance,
at SNRFC = 5 dB the proposed design has MSE = 0.007, while
the design with optimal TPMs and random PRM has MSE = 0.02,
and the optimal TPM without IRS has MSE = 0.025. Hence, the
proposed design offers 4.56, and 5.53 dB lower MSE than optimal
TPMs and random PRM and optimal TPMs without IRS, respectively.
This shows the effectiveness of employing an IRS to improve MSE
performance.

Fig. 3 depicts the MSE performance of the proposed scheme as a
function of number of IoT SNs K in the network. It can be readily
observed from the figure that as the number of sensors increases in
the network, the MSE performance improves since more observations
are available at the FC, which yields improved MSE performance.
Once again, the MSE performance loss corresponding to the scenarios
when we have optimal TPMs for each IoT SN while we use a random
phase matrix for the IRS and optimal TPMs for each IoT SN without
an IRS is clearly evident in the figure.



5. CONCLUSION

A joint TPMs and PRM design scheme has been developed for an
IRS-assisted IoT network for the efficient estimation of the random
vector parameter. Leveraging the MM algorithm the optimal TPMs
and PRM were designed using an alternating optimization framework.
Simulation results corroborate the analytical finding of this paper.
Future works can consider IoT networks with quantized sensor mea-
surement transmission, sensor collaboration, studying and exploiting
the spatial as well as temporal correlation of the underlying elements
in the unknown parameter vector.
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“Massive MIMO for wireless sensing with a coherent multi-
ple access channel,” IEEE Transactions on Signal Processing,
vol. 63, no. 12, pp. 3005–3017, 2015.

[14] A. Shirazinia, S. Dey, D. Ciuonzo, and P. Salvo Rossi, “Mas-
sive MIMO for decentralized estimation of a correlated source,”
IEEE Transactions on Signal Processing, vol. 64, no. 10, pp.
2499–2512, 2016.

[15] D. Ciuonzo, P. S. Rossi, and S. Dey, “Massive MIMO channel-
aware decision fusion,” IEEE Transactions on Signal Process-
ing, vol. 63, no. 3, pp. 604–619, 2015.

[16] K. P. Rajput, Y. Verma, N. K. D. Venkategowda, A. K. Jagan-
natham, and P. K. Varshney, “Linear MMSE precoder com-
biner designs for decentralized estimation in wireless sensor
networks,” in GLOBECOM 2020 - 2020 IEEE Global Commu-
nications Conference, 2020, pp. 1–6.

[17] ——, “Robust linear transceiver designs for vector parameter
estimation in MIMO wireless sensor networks under CSI un-
certainty,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 8, pp. 7347–7362, 2021.

[18] F. Jiang, J. Chen, and A. L. Swindlehurst, “Optimal power
allocation for parameter tracking in a distributed amplify-and-
forward sensor network,” IEEE Transactions on Signal Process-
ing, vol. 62, no. 9, pp. 2200–2211, May 2014.

[19] R. R. Singh and K. Rajawat, “Online precoder design for pa-
rameter tracking in wireless sensor networks,” in 2015 IEEE
26th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2015, pp. 2061–2065.

[20] J. Akhtar and K. Rajawat, “Distributed sequential estimation
in wireless sensor networks,” IEEE Transactions on Wireless
Communications, vol. 17, no. 1, pp. 86–100, 2018.

[21] X. Cheng, P. Khanduri, B. Chen, and P. K. Varshney, “Joint
collaboration and compression design for distributed sequential
estimation in a wireless sensor network,” IEEE Transactions on
Signal Processing, vol. 69, pp. 5448–5462, 2021.

[22] X. Cheng, B. Geng, P. Khanduri, B. Chen, and P. K. Varshney,
“Joint collaboration and compression design for random signal
detection in wireless sensor networks,” IEEE Signal Processing
Letters, vol. 28, pp. 1630–1634, 2021.

[23] K. P. Rajput, P. Maity, S. Srivastava, V. Sharma, N. K. D. Venkat-
egowda, A. K. Jagannatham, and L. Hanzo, “Robust linear hy-
brid beamforming designs relying on imperfect CSI in mmwave
MIMO IoT networks,” IEEE Internet of Things Journal, vol. 10,
no. 10, pp. 8893–8906, 2023.

[24] K. P. Rajput, S. Srivastava, R. Akarapu, P. Maity, and A. K.
Jagannatham, “Hybrid precoder designs for decentralized pa-
rameter estimation in millimeter wave (mmWave) sensor net-
works with perfect and imperfect CSI,” Physical Communica-
tion, vol. 47, p. 101377, 2021.

[25] K. P. Rajput, L. Wu, and M. R. Bhavani Shankar, “Next-
generation IoT networks: Integrated sensing communication
and computation,” in 2023 IEEE International Conference on
Acoustics, Speech, and Signal Processing Workshops (ICAS-
SPW), 2023, pp. 1–4.

[26] M. F. Ahmed, K. P. Rajput, N. K. D. Venkategowda, K. V.
Mishra, and A. K. Jagannatham, “Joint transmit and reflective
beamformer design for secure estimation in IRS-aided WSNs,”
IEEE Signal Processing Letters, vol. 29, pp. 692–696, 2022.



[27] N. Mudkey, D. Ciuonzo, A. Zappone, and P. S. Rossi, “Wireless
inference gets smarter: Ris-assisted channel-aware mimo deci-
sion fusion,” in 2022 IEEE 12th Sensor Array and Multichannel
Signal Processing Workshop (SAM), 2022, pp. 26–30.

[28] L. Wu and D. Palomar, “Radar waveform design via the ma-
jorization–minimization framework,” in Radar Waveform De-
sign Based on Optimization Theory. IET, 2020, pp. 185–220.

[29] S. M. Kay, Fundamentals of Statistical Signal Process-
ing:Estimation Theory. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1993.


