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Abstract—Radio-based motion behavior recognition is a key
to enabling integrated sensing and communication (ISAC) in the
6G landscape. Data-driven approaches are popular to achieve
human motion identification and most of them are based on
the range-Doppler maps (RDMs) of radar measurements, where
the Doppler and the micro-Doppler (uDop) frequency shifts due
to motion are embedded. In this paper, we characterize the
human motions of the radar signals using typical wireless channel
modeling parameters, e.g., normalized Doppler power spectral
density (ND-PSD) and root-mean-square Doppler spread (RMS-
DS). Specifically, a proposed dynamic ray tracing (RT) based on
Blender is used to simulate time-varying radar channels, where
the real human motions are imported from the motion capture
(MoCap) database, hence the simulated radar channels contain
dynamic real human motion, multipaths of clutters, and also the
interaction between target and the environment. The simulation
results show that the Doppler channel parameters are consistent
with the conventional radar images, besides containing more
semantic information about the human motions and scenarios.
This provides the feasibility of utilizing channel parameters as
training datasets.

Index Terms—Channel modeling, channel parameters, FMCW
radar, human motion recognition, dynamic ray tracing.

I. INTRODUCTION

The emerging integrated sensing and communication
(ISAC) technology is believed to be a key vertical in the
6th generation (6G) communication era. The use of millimeter
wave (mmWave) and terahertz (THz) technology in 6G will
offer radio-based sensing sufficient resolution and accuracy in
indoor applications [1], [2], e.g., monitoring assisted living,
where privacy is paramount [3].

Many of the human-centric sensing applications benefit
from the fact that human limbs move differently from the torso
for different applications, thereby generating characteristic
micro-Doppler (uDop) and Doppler frequency shifts, respec-
tively [4]. Typically, data-driven-based approaches are trained
using the time-varying Doppler and uDop signatures to exploit
these characteristics and to realize behavior identification and
gesture classification. For example, [5] and [6] deploy the con-
tinuous range-Doppler maps (RDMs) of frequency-modulated
continuous wave (FMCW) radar in eating gesture detection,
and classifying human motions, respectively. However, there
are two shortcomings in using RDMs to characterize human
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The hybrid dynamic RT codes are available https://gitlab.com/yuan.liu1/
hybriddynamicrt.

activities. Firstly, these radar images have range-angle-velocity
ambiguities that are dependent on waveforms [7], [8]. Sec-
ondly, many radar image-based training works usually ignore
the multipath effects due to the environment, e.g., [6], while
the ghost targets due to multipath can fade the uDop features
in realistic indoor measurement.

Physics-based channel modeling is another approach to
characterizing human activities. Different from the radar im-
ages, these channel parameters are not constrained to spe-
cific waveforms. These channel parameters include amplitude,
range, and Doppler frequency shift for the different paths,
thereby inherently incorporating the multipath. The statistical
description of the parameters reveals features of channel fin-
gerprint [9], which has been used in data-driven approaches for
indoor localization [10] and outdoor environment identification
[11]. Typically, the training is twofold. Firstly, the high-
resolution parameter estimation (HRPE) algorithm, e.g., space-
alternative generation expectation-maximization (SAGE) [10],
is utilized to estimate each of the multipath. Subsequently, the
channel features are calculated and networks are trained. How-
ever, estimating Doppler parameters of large-scale scenarios
using HRPE has been undertaken in [12], while estimating the
uDop components of human motion is challenging. Because
there are more multipaths in indoor scenarios, while the
multipaths resulting in uDop are typically weak. Further, the
use of measured data to model the features of indoor human
motion requires HRPE algorithms working in low signal-
noise ratios (SNRs). In contrast, the dynamic ray tracing (RT)
simulator can provide the exact parameters of each multipath
based on the built environment and human motions [13].

To the best of the authors’ knowledge, utilizing channel
parameters like Doppler and uDop for human motion modeling
is not well investigated. In this paper, we modify the dynamic
RT channel [13] to be a hybrid of scattering and mirror-
reflecting paths to account for multipath. Subsequently, we
simulate the dynamic channels of five representative human
walking movement scenarios and characterize the time-varying
motions using parameters common in wireless channels, i.e.,
normalized Doppler power spectral density (ND-PSD) and
root-mean-square Doppler spread (RMS-DS) [12]. Further,
we analyze these channel parameters for different motions
and detail the influence of indoor clutter and ghost targets.
Finally, the characterized time-varying channel parameters of
different motions are compared with the conventionally used
time-Doppler maps.
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Fig. 2. Visualization of multipaths using point clouds.

II. DYNAMIC RT SIMULATION

We modify the Blender-based dynamic simulation set-up
proposed in [13] to generate human motion channels. Blender
is an open-source 3-dimensional (3D) modeling tool, where
dynamic animations of the environment can be built. Each
frame of the dynamic animation is rendered into a number
of pixels, where each pixel is regarded as a point scat-
terer/reflector. Then, by setting the locations of the transmitter
(Tx) and receiver (Rx), parameters of the multipath prop-
agation among the Tx, Rx, and the scattering points, e.g.,
distance, path strength, AoA, and Doppler shift of each path
are calculated by the RT engine. Finally, these parameters are
used to generate the radar channel.

To model the characteristics of human-centric motions in
this application, we trigger the simulation in a hybrid way,
i.e., the Z-path in Blender is used to generate the scattering
paths, and the image-rendering based RT is used to simulate
the mirror reflection of the human target. The outline of
dynamic RT simulation is summarized in Fig. 1. The details
of importing real human motions from the motion capture
(MoCap) database and the hybrid multipath simulation will be
elaborated in the sequel. Readers interested in further details
regarding Fig. 1, can kindly refer to [13].

A. Realistic human motions

The MoCap database can provide realistic human (or other
creature) motions of daily activities, originally created to
optimize robotic applications. They use marker-based methods
and inertial sensors to record human body motions, using high-
resolution cameras to track the markers and collect skeletal
velocities. For example, the KIT human motion database [14],

combines a marker with inertial sensors and even records
movements of finger joints during human activities. In our
case, we use AMASS [15], an archive containing 15 different
MoCap databases and up to 11265 realistic motion sequences,
including the KIT database. In our applications, human mo-
tions are imported into Blender using an add-on introduced in
[16] to create dynamic 3D scenarios, so that the propagation
channel of human activities can be simulated under any
environment. Further, it is possible to vary the human models
for all MoCap shots, e.g. heights and shapes can be configured,
providing further variation to expand the available datasets.
MoCap is environment-free, hence the combination of MoCap
and 3D modeling makes it possible to quickly and easily
generate large amounts of channel data for different scenarios.
A snapshot example of a human walking in the corridor is
shown in Fig. 2a, where the Tx and Rx are colocated, the Tx
is omnidirectional, and the Rx is assumed to have uniform
gain in the field of view (FoV) of the camera used in Blender.

B. The hybrid ray tracing

The RT engine in Blender can simulate the multi-bounce
paths, i.e., the paths bouncing among targets/environment
more than once, with the consideration of all the propagation
mechanisms based on the roughness of the material surfaces
of the 3D environment, i.e., scattering, reflection, diffraction,
and transmission [17]. The wave propagation depends on the
frequency band, materials, and the roughness of the surfaces
of humans and environments. Since the Blender simulation
is based on light waves, using it in radio simulation requires
proper modeling and calibration. Hence, the novelty of the
imaging-based approach in the previous work [13] lies in



the geometrical parameter simulations in dynamic scenarios,
especially the Doppler frequency shift.

In this human-centric motion characterization, we propose
the hybrid simulation approach, i.e., calculate the scattering
path channel and the reflecting path channel separately.

Scattering paths: The Blender can output the Z-path of each
pixel, i.e., the exact distance from each pixel (point-target) to
the camera. We utilize the Z-path outputs as the scatterers, and
the reconstructed point clouds are shown in Fig. 2b1.

Reflecting paths: We set the walls to be smooth reflectors,
hence the interaction between targets and the wall are only
reflection paths. Using the image-rendering-based RT in [13],
the outputs of the reflecting paths are visualized as point clouds
in Fig. 2c, where the mirror targets due to reflections of the
left and the right walls are shown, respectively. The mirror
target is also well known as the ghost target in radar systems.

Composite channel: The overall channel is a composition
of scattering and reflecting components, where the points that
contribute to both reflection and scattering paths, are shown
in Fig. 2d.

C. Dynamic signal generation

Once the information from the point clouds is gathered
from the Blender (refer [13] for details), the radar signal for
the FMCW transmissions is generated. While [13] deals only
with the generation of multi-bounce paths based on the image-
rendering approach, this paper extends these calculations to the
proposed hybrid paradigm.

Considering a received signal of the beat-sampled time
division multiplexing (TDM) FMCW signals Z ∈ CL×Ns ,
where Ns denotes the number of samples per chirp, and
L denotes the number of chirps in one coherent processing
interval (CPI). ns = 1, 2, ..., Ns and l = 1, 2, ..., L denote the
index of the samples and chirps, respectively, the (ns, l)-th
entry is the superposition of reflecting paths and scatterings
paths as2

Z(ns, l) =

Npi∑
ls=1

Slse
j2π

2µRls

c

ns − 1

Fs
−2

flvls
c
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+
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c

(l−1)
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L
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,

(1)
where ls = 1, 2, ..., Lpi and lr = 1, 2, ..., Lpi denote the indices
of the scattering paths and reflecting paths, respectively, Lpi
is the number of pixels defined in Blender, fl is the carrier
frequency, µ = B/Tp is the FMCW slope with B represents
the bandwidth, Tp represents one chirp duration, c is light

1The outputs of multipaths are not point clouds. As described in Fig. 1,
they are parameters of each multipaths. Based on the distance and AoA of
each path, we can visualize the scatterers/reflectors as a one-bounce path and
hence reconstruct the point clouds.

2In this paper, we concentrate on range-Doppler simulations, hence we
ignore the phase shift among array elements in (1). Completed MIMO
simulations are provided in [13].
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Fig. 3. Illustration of the simulated motions and scenarios.

speed, Fs is the sampling frequency, Tf is the interval of
two frames defined in Blender, ϕls and ϕlr are random phase
component, Sls and Slr are amplitudes of the scattering path
and reflecting path, respectively, which include the scattering/
reflection coefficient and propagation attenuation, Rls and
Rlr are ranges of the scattering path and reflecting path,
respectively, vls and vlr are radial velocities of the scattering
path and reflecting path, respectively.

The distance parameters Rls and Rlr are obtained directly
from the RT simulation via Z-path and image rendering,
respectively, as shown in the simulation framework of Fig. 1.
The radial velocity parameters vls and vlr are calculated based
on the differential of distance parameters. The path strength
Sls and Slr can be obtained by the RT simulation, or calculated
based on the radar equations using the distance parameters and
proper scattering coefficients, for more details on obtaining
multipath parameters refer to [13].

III. SIMULATION AND DISCUSSION

This section first characterizes the different human motions
illustrated in Fig. 3 and then explores the effects of scattering
paths and reflecting ghosts. All these five motions including
start, moving, and stop three stages.

The comparisons of motions 1 to 4 are in the anechoic
chamber, we simulate four different walking motions and
characterize the Doppler and uDop channel features. In the
anechoic chambers, the multipath contains only the scattering
paths from the human. The Doppler frequency shifts of the
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(c) Motion 3: time-Doppler
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(d) Motion 4: time-Doppler
Fig. 4. Time-Doppler results of motion 1 to motion 4, i.e., walking, stepping, walking without arm-swing, and walking upstairs, respectively.

0 1 2 3 4 5

Time [s]

-1

-0.5

0

0.5

N
o
rm

a
liz

e
d
 D

o
p
 v

e
lo

c
it
y
 P

S
D

 [
m

/s
] Walking

Stepping

Walking without arm-swing

Walking upstairs

(a) Motions 1 to 4: ND-PSD

ND-PSD

(b) ND-PSD V.S. time-Doppler

0 1 2 3 4 5

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
 D

o
p
p
le

r 
s
p
re

a
d
 [
m

/s
]

Walking

Stepping

Walking without arm-swing

Walking upstairs

(c) Motions 1 to 4: ND-PSD
Fig. 5. Doppler PSD and RMS Doppler spread of motions 1 to 4.

TABLE I
SIMULATION CONFIGURATIONS

Contents Configurations
Radar type Monostatic

Central frequency [GHz] 77
Bandwidth [GHz] 3.6

FMCW slope [MHz/us] 60
Frame/CPI duration [ms] 40
NO. of chirps per frame 128
Sampling rates [MHz] 10

NO. of samples per chirp 256
Sensor height [meter] 1.2

Walk speed [m/s] [0.75, 1]
Camera FoV [deg] 75

Motion 1 Walking
Motion 2 Stepping
Motion 3 Walking without arm-swing
Motion 4 Walking upstairs
Motion 5 Walking along a circle

multipath due to limbs and torso vary across the motions,
enabling their characterization. As shown in Fig. 3a, motions 1
and 3 involve a straight walk towards the radar from spot A to
B, covering a distance of 2.5 meters. Note that motion 1 refers
to normal walking (with arms swinging) while there is no arm
swing in motion 3. Motion 2 is stepping at the spot D, which
is 5 meters away from the radar. Motion 4 is walking upstairs,
from spot D to E, where the horizontal movement is around
1 meters and the vertical movement is around 0.8 meters.
In the comparison of motion 5, we compare the effects due
to scattering paths and reflecting mirror targets, respectively.
The motion 5 is shown in Fig. 3b, where the human walks

circularly in front of the sensor, where the distance is 5 meters
and the radius is 1 meters, and a wall on the left of the
walking track is considered in the simulation. The simulation
configurations are listed in Tab. I.

A. Quantification of walking motions

The conventional time-Doppler results of motion 1 to 4
are shown in figures of Fig. 4a to Fig. 4d, respectively. The
clear Doppler frequency shifts due to the torso’s velocity
are observed and match the actual motions. For example,
in motion 1 and 3, the human walks towards the sensor,
hence the Doppler of the torso’s velocity is similar. In the
stepping of motion 2, we observe almost zero Doppler of
the torso. In motion 4, the subject walks upstairs. Since the
measured radial velocity by the radar is the projection of the
product of actual velocity and the cosine of the elevation angle,
the radial velocity decreases as the human gains elevation.
However, uDops of the four different motions are not well
distinguished. Those four walking motions give a similar uDop
from the conventional time-Doppler results. To give quantified
evaluations of the Doppler component analysis, we apply the
channel parameters ND-PSD and RMS-DS [12] to quantify
and characterize the human motions3.

The ND-PSD of the ith chirp is defined as

Di(v) =

∑
li
|Sli |2δ(v − vli)∑

li=1 |Sli |2
, (2)

3Doppler frequency shift is denoted by the term
−2flvl

c
in (1), here we

use Doppler velocity vl for calculation.
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(b) Motion 5: scattering wall
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(c) Motion 5: reflecting wall
Fig. 6. Time-Doppler results of circular walking under three environment scenarios.

Sa

Sc

Sb

SS

(a) Motion 5: ND-PSD

Sb S

S

Sa

Sc

(b) Motion 5: RMS-DS

Site S

Sensor

Site Sa

Site Sb

Site Sc
Starting

(c) Illustration of track
Fig. 7. Doppler PSDs, RMS DSs, and illustration of the walking track of motion 5.

where li denotes the index of the multipath, Sli and vli
denote the amplitude and Doppler velocity of the lith path
in the channel. The ND-PSD denotes the amplitude-weighted
mean Doppler velocity of all multipaths in a channel, i.e.,
the human’s radius velocity in this application. The ND-PSDs
of the four motions are shown in figures of Fig. 5a, i.e., the
velocity of the torsos are shown, which are exactly with the
strongest Doppler curves in Fig. 4. For example, a comparison
of the ND-PSD and time-Doppler map of motion 1 is shown
in Fig. 5b, which validates our assumption.

The second moment of the Doppler velocity is

Ei[v
2] =

∑
li=1 |Sli |2v2li∑
li=1 |Sli |2

, (3)

and the RMS-DS is defined as

Ri =
√
Ei[v2]− Ei[v]2. (4)

The RMS-DS denotes the amplitude-weighted variance of the
Doppler velocity of all multipaths in the channel, i.e., the uDop
in this application. The RMS-DSs of the four motions are
shown in Fig. 5c, where the weighted uDop variations are
quantified. For example, comparing the blue and the orange
curves, the uDop velocity of motion 1 is around 0.05 to
0.1 m/s stronger than motion 3, because of the arm-swing.
Comparing the blue and the purple curves, the RMS-DSs of

motion 1 and motion 2 have the same trends, while motion 1
is stronger than motion 2 because the measured radial velocity
of motion 1 is the vector sum of the torso velocity and the limb
velocities. The motion 4 has the strongest uDop velocity, as
the arm and leg swings are more pronounced when climbing
stairs.

B. The effects of scattering paths and mirror targets

The motion 5 illustrated in Fig. 3b, is analyzed under three
conditions, i.e., without the left wall, considering the left
wall as a scattering clutter, and a mirror reflector. The time-
Doppler results are shown in Fig. 6a to Fig. 6c, respectively.
The three sub-figures share a similar profile in Doppler and
envelope in uDop shift velocities. Compared with Fig. 6a,
the main difference in Fig. 6b is the strong constant zero
velocity due to the consideration of clutter. Fig. 6c is different
from Fig. 6a because the mirror target fades the true target
sometimes while enhancing it some other times, depending on
the geometric position. However, the semantic feature is not
obvious in the time-Doppler figures, because circular walking
is much more complicated than the basic walking motions 1
to 4, where walking, orientation change, and environmental
factors are integrated. The ND-PSD and the RMS-DS of the
three scenarios of motion 5 are presented in Fig. 7a and
Fig. 7b, respectively. Some important sites of circular walking



are denoted in Fig. 7c, where the circular track is denoted by
the sites S → Sa → Sb → Sc → S.

The ND-PSD curves are consistent with the circular walking
track. For example, the radial velocity changes as a sinusoid,
resulting in a similar ND-PSD curve in Fig. 7a. The measured
radial velocity becomes zero at site Sa and Sc because the
human walk orientation is orthogonal to the radar radius
orientation. In contrast, the measured radial velocity value
becomes largest at site Sb, where the human walk orientation
is parallel to the radius orientation. Comparing the black
curve with the blue curve in Fig. 7a, the value of ND-PSD
is relatively small with the scattering paths from the left
wall, because the velocity of multipaths from the wall is
zero. It is also worth mentioning that the two curves become
similar when the subject walks along the track Sc → S,
because most of the scattering paths from the left wall are
occluded. Comparing the black curve with the orange curve
in Fig. 7a, the effects of the mirror target become random as
the geometric position changes.

The curves of RMS-DS in Fig. 7b quantify the variances
of the uDop. First of all, the two peaks of RMS-DS curves
are observed for the three scenarios at sites Sa and Sc. This
shows that the turning motion has the strongest uDop. The
comparisons of the three curves remain consistent with the
analysis of ND-PSD curves. The absolute value of the black
curve is slightly smaller than the blue one because of the zero-
velocity scattering paths. Because of the influence of the mirror
target, the ghost target reduces the RMS-DS around 1 m/s
at the two peaks, while in several places the uDop features
get enhanced, as a result, the orange curve becomes more
fluctuated while flatter. Another interesting observation is the
quantified uDop of the walking in motions 1 to 4 also maps
with the circular walking. Recalling in motion 1, when walking
in a line with the radar, the RMS-DS is 0.2 to 0.3 m/s. At the
sites S and Sb, the walking orientation is in line with radar,
and the blue curve in Fig. 7b is in this range, i.e., around
0.25 m/s. This implies the feasibility of utilizing RMS-DS
for walking orientation identification.

IV. CONCLUSION

In this paper, we utilize the dynamic RT simulator from
our previous work to characterize different human walking
motions. Firstly, four walking motions in the anechoic cham-
ber scenarios under conditions of walking, stepping, walk-
ing without arm-swing, and walking upstairs are exploited.
Then, the circular walking in an anechoic chamber, scattering
clutter, and mirror reflection scenarios are compared. In all
the scenarios, the channel modeling parameters ND-PSD and
RMS-DS are shown and compared with the conventional time-
Doppler results. The ND-PSD and RMS-DS match with the
information provided by conventional Doppler maps. Mean-
while, the channel parameters can provide more quantified
information, e.g., the uDop strength difference due to the arm-
swing by comparing motion 1 and 3, the influence of torso
velocity on uDop velocity by comparing motion 1 and 2,
and the uDop strength in normal walking and climbing by

comparing motion 1 and 4. In mirror target scenarios, the
channel parameters can provide semantic information when the
time-Doppler results are fading, as in the example of motion 5.
Those results show the channel parameters are also useful in
characterizing human motions. This provides the feasibility
of utilizing channel parameters to assist conventional radar
images in training datasets.

REFERENCES

[1] H. Yi, D. He, P. T. Mathiopoulos, B. Ai, J. M. Garcı́a-Loygorri,
J. Dou, and Z. Zhong, “Ray tracing meets terahertz: Challenges and
opportunities,” IEEE Communications Magazine, vol. 62, no. 2, pp. 40–
46, 2024.

[2] Y. Liu, L. Wu, M. Alaee-Kerahroodi, and B. S. M. R, “A 3D indoor
localization approach based on spherical wave-front and channel spatial
geometry,” in 2022 IEEE 12th Sensor Array and Multichannel Signal
Processing Workshop (SAM), 2022, pp. 101–105.

[3] J. Le Kernec, F. Fioranelli, C. Ding, H. Zhao, L. Sun, H. Hong,
J. Lorandel, and O. Romain, “Radar signal processing for sensing in
assisted living: The challenges associated with real-time implementation
of emerging algorithms,” IEEE Signal Processing Magazine, vol. 36,
no. 4, pp. 29–41, 2019.

[4] V. Chen, “Analysis of radar micro-Doppler with time-frequency trans-
form,” in Proceedings of the Tenth IEEE Workshop on Statistical Signal
and Array Processing (Cat. No.00TH8496), 2000, pp. 463–466.

[5] C. Wang, T. S. Kumar, W. De Raedt, G. Camps, H. Hallez, and
B. Vanrumste, “Evaluation of different radar placements for food intake
monitoring using deep learning,” in 2023 IEEE Radar Conference
(RadarConf23), 2023, pp. 1–6.

[6] Y. He, Y. Yang, Y. Lang, D. Huang, X. Jing, and C. Hou, “Deep learning
based human activity classification in radar micro-doppler image,” in
2018 15th European Radar Conference (EuRAD), 2018, pp. 230–233.

[7] N. K. Sichani, M. Ahmadi, E. Raei, M. Alaee-Kerahroodi, B. S. M. R.,
E. Mehrshahi, and S. A. Ghorashi, “Waveform selection for FMCW and
PMCW 4D-imaging automotive radar sensors,” in 2023 IEEE Radar
Conference (RadarConf23), 2023, pp. 1–6.

[8] Y. Liu, W.-X. Long, R. Chen, L. Wu, and M. R. B. Shankar, “Vortex
wavefront FMCW ISAC model: A blender-based evaluation,” in 2023
IEEE 24th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2023, pp. 431–435.
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