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ABSTRACT
Space debris detection and tracking, a key enabler for Space
Situational Awareness (SSA), poses two inherent challenges:
(1) small-sized targets (e.g., 1 − 10 cm) posing detection
difficulties for conventional ground-based radars (GBRs)
and optical measurements; (2) large number resulting in a
costly tracking exercise. To address these, this work uti-
lizes intersatellite link (ISL) in the emerging low earth orbit
(LEO) constellations to opportunistically sense debris. The
spatially dense-distributed debris is modeled as a cluster to
reduce the number of quantities estimated. Using a stochas-
tic geometry-based channel model, a nested expectation-
based SAGE2 is proposed, building on space-alternative-
generation-estimation-maximization (SAGE) to estimate the
cluster-based channel parameters. Finally, the debris clusters
are localized using the ISL forming a bistatic sensing setup.
Simulation results validate the proposed approach and show
the proposed SAGE2 is faster than the conventional SAGE in
clustered multipath channels.

Index Terms— Channel parameter estimation, Debris
sensing, LEO Constellation, SAGE, stochastic geometry.

1. INTRODUCTION
Low earth orbit (LEO) satellite constellations, like Star-
Link and OneWeb, are key enablers in the space-aided next-
generation communication systems [1, 2]. However, with a
large number of assets in space, debris has become imminent
regarding the security and robustness of the satellites. An
additional issue is a large number of tiny debris from colli-
sions, e.g., the hyper-velocity LEO collision events (Iridium
33 and Cosmos 2251) resulted in thousands of untrackable
objects less than 10 cm in diameter [3]. Detecting debris
and estimating its trajectory is central towards avoiding and
creating additional debris. However, the detection of small-
sized objects using ground-based radars (GBRs) and optical
measurements becomes difficult due to the typical 500−1000
km detection distance of LEO debris. Hence, space-based
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Fig. 1: Debris sensing based on ISL.

measurements are needed for detecting small debris. How-
ever, a separate stand-alone debris detection system is costly
and unrealistic given the extent of space.

We consider debris detection to be a twofold system.
Firstly, the existing large LEO constellations are additionally
used as bistatic sensing systems for opportunistic detection.
This would not use extra resources of the inter-satellite com-
munications, and it serves as preliminary localization. Then,
the specific threatening debris will be further refined using a
dedicated monostatic setup. This paper introduces the first
step, i.e., the intersatellite links (ISL) based opportunistic
sensing. A typical hardware architecture of the integrated
sensing and communication (ISAC) satellite system is de-
scribed in [4], where ISLs are used for debris detection. In
particular, Fig. 1 depicts the opportunistic use of ISL for de-
bris detection. This context [4] mainly analyzes the satellite
density needed and the coverage of detection based on link
budget calculation. However, the estimation is not mentioned.

In this work, we convert the debris sensing to parameter
estimation of the non-line-of-sight (NLoS) ISLs. There are
various high-resolution channel parameter estimation algo-
rithms, such as spectral estimation [5, 6], subspace-based
estimation [7, 8], and deterministic parameter estimation
[9], where the iterative expectation-maximization (EM) us-
ing maximum likelihood estimation (MLE) are popular for
parameter estimations of multipath channel. The space-
alternative-generation-EM (SAGE) is an acceleration struc-
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Fig. 2: Cluster-based CIRs and effects of cluster and range-
Doppler coupling in CIR; scenario details in Fig. 3 (a); the
estimation using will be discussed in the simulation part.

ture of EM [10, 11], where parameter subsets are alternatively
estimated in each iteration until convergence. Most of the
SAGE-based channel estimation methods assume the mul-
tipaths are resolvable and estimate individual paths sequen-
tially, however, it can lead to errors due to model mismatches
in cases of multipath correlations [12].

Considering the large number of dense-distributed debris
in our application, the assumption of conventional SAGE
is not realistic. Furthermore, estimating the large number
of multipaths is time costly and not suitable for fast-time-
varying satellite channels. To address these, we model the
spatial dense-distributed debris to be clustered. Then, we
propose a nested expectation (E)-based SAGE (SAGE2) al-
gorithm for the cluster-based channel model, where the path
parameters of the centric path in each cluster are estimated,
and other multipaths are statistically represented, hence es-
timating fewer paths and reducing the iterations than the
conventional SAGE algorithm. By using the estimated chan-
nel parameters, e.g., the propagation delay between different
transmitter (Tx) and receiver (Rx) pairs, the debris can be
localized using classical time-difference-of-arrival (TDoA)
methods [13].

2. SIGNAL MODEL
A scenario with two Tx satellites and an Rx satellite is illus-
trated in Fig. 1. ISLs are established between satellites and
such links can also be used to illuminate debris in the field of
view. In the absence of other scatterers in space, the NLoS
path offers information about the debris. While any satellite
can be Tx/ Rx based on the protocol, the identified Rx satel-
lite receives signals containing multipath information of de-
bris from the adjacent Tx satellites and acts as the data fusion
center for ease of comprehension. This example scenario is
generalized to a multistatic sensing system where M Tx satel-
lites and one Rx satellite are used to sense the L ≥ 1 debris

clusters. For this initial work, no scattering among different
debris clusters is assumed, but bounces within a cluster are
considered. This leads to diffuse multipaths, i.e. clustering
paths are similar in the amplitude and range domains of chan-
nel impulse response (CIR) as shown in Fig. 2.

Let lK ≥ 1 denote the number of scattering paths for the
lth cluster (l ∈ [1, L]). Further, letting hlc denote the path
corresponding to the centroid of the lth cluster (or the equiva-
lent central path), the channel of the lkth (lk ∈ [1, lK ]) debris
can be characterized as amplitude and phase perturbed ver-
sions of the of hlc , i.e.,

hl,lk(t) = hlc(t)∆hl,lk = hlc(t)(1 + ∆αlk)e
j∆φlk , (1)

where ∆αlk and ∆φlk follow the normal distribution N(0, σ2
1)

and N(0, σ2
2), respectively, where σ1 and σ2 are the standard

deviations of amplitude uncertainty and phase shift. Consid-
ering a sampling rate fs with P samples in a burst (or a frame
defined according to the standard), the baseband equivalent
signal model of hlc(t) is

hlc(p) =αlce
−j2πfspτlc︸ ︷︷ ︸

range

e
j2π

fc
fs

vtx
lc
+ vlc
c

p︸ ︷︷ ︸
Range−Doppler−coupling

, (2)

with the sampling index p = 1, 2, ..., P and the αlc is the
receiving power as

αlc = PtGtGrSlc

c2

(4πfcd
td
lc
drd
lc
)2
, (3)

where Pt, Gt, Gr, Slc , fc denote the transmitted power, Tx
antenna gain, Rx antenna gain, scattering coefficient, carrier
frequency, respectively, dtd

lc
and drd

lc
are distances from Tx to

debris and from debris to Rx, respectively, τlc = (dtd
lc
+drd

lc
)/c

is propagation delay, c is light velocity, vlc is the projection
of the debris velocity on the transmission path and, similarly,
vtx
lc

is the projection of the Tx velocity on the path.
The resulting NLoS channel is the superposition of indi-

vidual components from all the clusters, and is denoted as

hNLoS(p) =

L∑
l=1

lK∑
lk=1

hl,lk(p) + z(p) =

L∑
l=1

hl(p) + z(p),

(4)
where z(p) is the white Gaussian noise.

Discussion of range-Doppler coupling: The channel in
(2) has two exponentials, the first of which is due to range.
Further, since the constellation and debris are moving fast, the
second term indicating the range-Doppler coupling effect can
impact the accuracy of distance estimation [14, 15]. An ex-
ample of cluster 2 is illustrated in the orange curve of Fig. 2,
where a relative velocity of debris is 5 km/s and the error
in delay estimation is about 2.6 km. Addressing this cou-
pling could be attempted using waveform design, and multi-
ple frames of data. However, for simplicity, we would pursue



the estimation of approximate delay due to coupling without
additional processing. This serves as preliminary localization,
which can be further refined for specific threatening debris
using a dedicated monostatic set-up.

3. CHANNEL PARAMETERS ESTIMATION
ALGORITHM

Let hNLoS = [hNLoS(1), hNLoS(2), . . . , hNLoS(P )]T denote the
stacking of (4) over the P length burst, where (·)T and (·)H
denote the transpose and the conjugate transpose of a matrix
or vector. The received signal consists of the multipaths from
L clusters, following the concept of EM, this incomplete data
hNLoS ∈ CP×1 can be decomposed into L complete data hl ∈
CP×1 as

hNLoS =

L∑
l=1

hl =

L∑
l=1

(
lK∑

lk=1

hl,lk + βlz

)

=

L∑
l=1

(
lK∑

lk=1

hlc ⊙∆hl,lk + βlz

)
,

(5)

where the entries of the vector hlc ∈ CP×1 defined in (5) and
the entries of the vector ∆hl,lk ∈ CP×1 are defined as ∆hl,lk

in (1), ⊙ denotes the Hadamard products, z ∈ CP×1 is white
Gaussian noise with the variance being σ2

0 , and
∑L

l=1 βl = 1
to satisfy the conservation of noise variance between com-
plete data and incomplete data.

The conventional SAGE algorithm works when the in-
complete data is composed of independent and resolvable
multipaths, i.e., (5) can be thought of

∑L
l=1 lk paths. How-

ever, in this case, the paths within the cluster are correlated in
(1) and are not necessarily resolvable. Further, we have,

hl =

lK∑
lk=1

hlc ⊙∆hl,lk + βlz = lKhlc ⊙

[
1

lK

L∑
l=1

∆hl,lk

]
hl ≈ lKhlc ⊙ E [∆hl,lk ] + βlz,

(6)
where the sum is replaced by the expectation E(·), under
the assumption of the large number of paths within a clus-
ter. As discussed in Section I, the current work omits the
range-Doppler term in (2), leading to

hlc ≈ αlca(τlc), (7)

where αlc is defined in (3) and the delay vector a(τl) ∈
CP×1 = [e−j2πfs1τlc e−j2πfs2τlc · · · e−j2πfsPτlc ]T . Further,

E [∆hl,lk ] = E[ej∆φlk︸ ︷︷ ︸
f(∆φlk

)

+∆αlke
j∆φlk︸ ︷︷ ︸

g(∆φlk
)

]

= E [f(∆φlk)] + E [g(∆φlk)] .

(8)

The expectation of f(∆φlk) is a typical characteristic func-
tion of the Gaussian distribution [16] as

Ef(∆φlk
) = e

−
1

2
σ2
2
,

(9)

where the variance σ2
2 is defined in (1). Because ∆αlk and

∆φlk are independent and follow the normal distribution,

Eg(∆φlk
) = E∆αlk

E
e
j∆φlk

= 0, (10)

where E∆αlk
= 0. Substituting (7) and (8) into (6), we can

characterize the channel of the lth cluster as

hl = l′klKαlca(τlc) + βlz = l′kh̃l + βlz, (11)

where l′k = e
−
1

2
σ2
2 and h̃l = lKαlca(τlc), the parameters to

be estimated are θl = [τlc , αlc , lK ].
While the MLE of θl for the complete data is argmax

θl

{hl(θl)},

the quantity hl is not observable. However, the conditional
expectation E[hl(θl)|HNLoS(θ̂l), θ̂l], has the same depen-
dence on θl as the original MLE function, hence it is used to
estimate ĥl. The iterative EM framework can be utilized with
the ith iteration comprising the following steps:

• E-step: With an initialization θ
(0)
l and following [17],

closed-form expression of E[hl(θl)|HNLoS(θ̂l),θl] is,

ĥ
(i)
l = l′kh̃l(θ

(i−1)
l ) + βl

(
hNLoS −

L∑
l=1

l′kh̃l(θ
(i−1)
l )

)
.

(12)

• M-step: Obtaining the parameters as

θ
(i)
l =argmin

θl

(
ĥ
(i)
l − l′kh̃l(θl)

)(
ĥ
(i)
l − l′kh̃l(θl)

)H
βlσ2

0

i.e.,

τ
(i)
lc

=argmin
τlc

1

βlσ2
0

(
ĥ
(i)
l − l′kh̃l([α

(i−1)
lc

, τlc , l
(i−1)
K ])

)
×
(
ĥ
(i)
l − l′kh̃l([α

(i−1)
lc

, τlc , l
(i−1)
K ])

)H
.

(13)

α
(i)
lc

=
(
h̃l([αlc , τ

(i)
lc

, l
(i−1)
K ])H h̃l([αlc , τ

(i)
lc

, l
(i−1)
K ])

)−1

× h̃l([αlc , τ
(i)
lc

, l
(i−1)
K ])H ĥ

(i)
l .

(14)

l
(i)
K =argmin

lK

1

βlσ2
0

(
ĥ
(i)
l − l′kh̃l([α

(i)
lc
, τ

(i)
lc

, lK ])
)

×
(
ĥ
(i)
l − l′kh̃l([α

(i)
lc
, τ

(i)
lc

, lK ])
)H

.

(15)

In practice, we need to have a phase search to match the exact
path in (15) to estimate l

(i)
K and obtain MLE.

4. SIMULATION
Simulation scenario and CIRs: We use 1 Rx (data fusion cen-
ter) and 3 adjacent Txs in the constellation to sense debris in
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Table 1: Simulation configurations

Configurations Values

Simulation range [km2] 10002

Central frequency fc [GHz] 14 GHz
Sampling rates fs [MHz] 1
Sampling number P 7001
EIRP [dBW] 34
Receiving antenna gain [dB] 30
SNR [dB] 40
Tx velocity [0,−3]] km/s
Debris velocity [5, 0] km/s
Number of debris in Cluster 1 25
Number of debris in Cluster 2 15

a region of 1000× 1000 km2 and a snapshot of the constella-
tion is shown in Fig. 3 (a), where two debris clusters are con-
sidered. Other important simulation parameters are shown in
Table 1. In this simulation, the stochastic graph theory [18] is
utilized to generate the opportunistic multipaths of the ISLs,
hence in Fig. 3 (a), we can observe that random propagation
from Tx to debris, and from debris to Rx. The received CIR
from Tx1 to Rx is also illustrated in Fig. 2, where the two
clusters are observed clearly.

Path estimation and localization: The estimated results
are also shown in Fig. 2, where the estimated paths of cluster
centroid using the proposed SAGE2 are denoted as red stars,
and estimated paths using conventional SAGE are denoted as
yellow dots. Typically, the scatterer localization based on the
conventional SAGE algorithm requires further clustering al-
gorithms [19, 20], because of the large number of estimated
paths. In the proposed method, the cluster centroid is esti-
mated, therefore it can be directly used for localization. The
proposed SAGE2 is well suited to this constellation-based de-
bris sensing. Using multiple adjacent Txs of the Rx, the con-
ventional time-of-arrival can be used for debris localization

[21]. The localization results are shown in Fig. 3 (b), where
the cluster is positioned.

Convergence analysis: The comparison between the
proposed SAGE2 and the conventional SAGE is shown in
Fig. 3 (c). The conventional SAGE algorithm requires prior
information on the number of paths in the channel. The con-
vergent iteration times with the pre-set estimated paths of 5,
15, and 35 are shown in the blue cures in Fig. 3 (c). It shows
that the incorrect number of estimated path settings will lead
to local optima. In our proposed method, the prior infor-
mation on the number of clusters is much easier to obtain.
Besides, the SAGE2 can also predict the number of paths in
each cluster, e.g., the estimated paths of cluster 1 and cluster 2
are 20 and 24. respectively. With correct prior information,
both methods can reach optimal results: the conventional
SAGE provides all the paths at a higher computation, while
the proposed SAGE2 gives the cluster centroid at a lower
time.

5. CONCLUSION
This work proposes an opportunistic debris-sensing approach
based on channel parameter estimation using the ISLs in LEO
constellations. In this approach, the debris is modeled as clus-
ters and the proposed SAGE2 method is used to estimate the
parameters of the cluster-based channel and localize the cen-
troid of the debris cluster based on the estimated delay infor-
mation among different Tx-debris-Rx links. The SAGE2 is
tested using a stochastic channel model with multiple clus-
ters, as well as the convergence comparison with the con-
ventional SAGE algorithm. The results show that the pro-
posed approach works well in debris center localization with
fewer iterations for convergence. The output of the proposed
method can be further used by dedicated mechanisms for fur-
ther identification and accurate tracking of threatening debris.
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