
Demystifying React Native Android Apps for Static Analysis

YONGHUI LIU,Monash University, Australia
XIAO CHEN, University of Newcastle, Australia
PEI LIU, CSIRO’s Data61, Australia
JORDAN SAMHI, CISPA, Germany
JOHN GRUNDY,Monash University, Australia
CHUNYANG CHEN, Technical University of Munich, Germany
LI LI

∗
, Beihang University, China

React Native, an open-source framework, simplifies cross-platform app development by allowing JavaScript-
side code to interact with native-side code. Previous studies disregarded React Native, resulting in insufficient
static analysis of React Native app code. This study initiates the investigation of challenges when statically
analyzing React Native apps.We propose ReuNify to improve Soot-based static analysis coverage for JavaScript-
side and native-side code. ReuNify converts Hermes bytecode to Soot’s intermediate representation. Hermes
bytecode, compiled from JavaScript code and integrated into React Native apps, possesses a unique syntax
that eludes current JavaScript analyzers. Additionally, we investigate opcode distribution and conduct in-
depth analyses of the usage of opcode between popular apps and malware. We also propose a benchmark
consisting of 97 control-flow-related cases to validate the control-flow recovery of the generated intermediate
representation. Furthermore, we model the cross-language communication mechanisms of React Native to
expand the static analysis coverage for native-side code. Our evaluation demonstrates that ReuNify enables
an average increase of 84% in reached nodes within the call graph and further identifies an average of two
additional privacy leaks in taint analysis. In summary, this paper demonstrates that ReuNify significantly
improves the static analysis for the React Native Android apps.
CCS Concepts: • Software and its engineering→ Abstraction, modeling and modularity.
Additional Key Words and Phrases: Android, React Native, Mobile App, Static Analysis
ACM Reference Format:

Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li. 2024. Demystifying
React Native Android Apps for Static Analysis.ACM Trans. Softw. Eng. Methodol. 1, 1 (November 2024), 33 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Mobile apps have become the primary source of digital consumption, with a growing number
of users relying on apps for various purposes such as shopping, entertainment, and communi-
cation. As a result, businesses are investing heavily in mobile app development to reach their
∗Corresponding author.

Authors’ addresses: Yonghui Liu, Yonghui.Liu@monash.edu, Monash University, Melbourne, Australia; Xiao Chen, Xiao.
Chen@newcastle.edu.au, University of Newcastle, Newcastle, Australia; Pei Liu, CSIRO’s Data61, Melbounre, Australia,
Pei.Liu@data61.csiro.au; Jordan Samhi, CISPA, Germany, jordan.samhi@cispa.de; John Grundy, John.Grundy@monash.edu,
Monash University, Melbounre, Australia; Chunyang Chen, chun-yang.chen@tum.de, Technical University of Munich,
Munich, Germany; Li Li, Beihang University, Beijing, China, lilicoding@ieee.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
1049-331X/2024/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

target audience and remain competitive in the market. Many companies are facing the challenge
of needing to build mobile apps for multiple platforms, specifically for both Android and iOS.
This cross-platform mobile app development has gained popularity due to its consistency across
platforms, cost-effectiveness, time efficiency, wide audience reach, and easier maintenance [36].
Nowadays, React Native (used in Facebook, Shopify, Skype, etc.) and Flutter (used in Google

Ads, Reflectly, Alibaba, etc.) have become the two most popular frameworks for cross-platform
mobile app development [37]. Each of these cross-platform solutions has its own capabilities and
strengths [57]. React Native, an open-source framework, gained popularity since its 2015 launch by
combining traditional mobile development with Node.js-based flexibility. The core idea of React
Native is to empower cross-platform JavaScript APIs to invoke platform-specific functions involving
invoking Objective-C/Swift or Java/Kotlin functions to utilize iOS and Android components. This
feature sets it apart from other cross-platform mobile application development technologies which
often end up rendering web-based views. With React Native, developers can create a shared
codebase in JavaScript that works on both Android and iOS. This is achieved by providing a set of
cross-platform APIs and Components that conceal platform-specific native code and abstract the
differences between platforms. React Native is flexible and can be used in existing Android and iOS
projects or to create a new app from scratch [92].
The stats from AppBrain [3] report that among the top 500 Android apps in the US, 14.85% of

installed apps are built with React Native. In fact, in the category of top 500 US Android apps,
React Native is the third most popular framework, right after Kotlin and Android Architecture
Components. While the use of the React Native framework can streamline the app development
process, it also introduces new challenges for app analysis, particularly in terms of static analysis.
The main difficulty with static analysis on React Native apps is their use of multiple programming
languages with varying semantics, along with the complex mechanisms inherent in the React Native
framework. React Native apps now package Hermes bytecode instead of traditional JavaScript
code. This transition poses a further challenge for existing static analyzers, as they cannot interpret
Hermes bytecode. These factors can make it very challenging to thoroughly analyze and fully
comprehend the app’s codebase.
In the last decade, Android app analysis has been a prominent research theme in software

engineering. Static analysis techniques have been implemented by many approaches and tools for
bug detection, security property checking, malware detection, and empirical studies. Unfortunately,
as far as we know, there are no existing techniques or tools for analyzing apps developed with React
Native. Approaches used by the current state-of-the-art app analysis tools, which were intended
for traditional Android apps, are not sufficient for efficiently covering the executable code in React
Native apps [57]. This is due to the complexity of the underlying mechanism of the React Native
framework and the adoption of Hermes bytecode in these apps. In light of these challenges, we
explore a new research direction to enable static analysis of the whole program of React Native
Android apps.

We propose ReuNify, aiming to fill the gap in the whole-app analysis [83]. ReuNify extracts
and unifyies artefacts from both the Java and JavaScript sides of React Native Android Apps into
Jimple [111], the intermediate representation in Soot. To the best of our knowledge, ReuNify is the
first static analyser for React Native Android apps[79]. By transforming JavaScript-side code into
Jimple, ReuNify provides the opportunity for several analyses (e.g., call graph analysis, control
flow graph and taint flow analysis) in the literature to readily account for JavaScript code. By
modelling React Native mechanism, ReuNify increases the coverage of Java-side code analysis.
ReuNify is thus a multi-step static analysis approach that we implement as a framework to enable
the whole-programme analysis for React Native Android Apps. This paper substantially extends
our earlier conference paper on ReuNify [83], providing much more technical details, additional

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 3

(a) React Component (b) Module API

Fig. 1. The structure of React Component and Module API in the developer’s JavaScript side

evaluation, and novel benchmarking for future React Native Android Apps analysis tools. This
research makes the following key contributions:

• We provide the first systematic categorization of the challenges for static analysis on React
Native Android apps. We propose the first effective techniques to facilitate static analysis on
React Native Android apps;

• We propose ReuNify, a novel approach to build a unified model for React Native Android
Apps code. We have implemented ReuNify that generates the Jimple code from both native-
side code and JavaScript-side code, which facilitates the whole program analysis on the React
Native Android app package.

• We investigate the prevalence of Hermes Opcodes in real-world apps and also propose a
benchmark to assess the control-flow sensitivity of the Jimple code generated from Hermes
bytecode.

• We demonstrate that ReuNify can significantly enhance the static analysis coverage of React
Native Android Apps’ native side code. Running ReuNify on real-world malware and popular
apps, the size of callgraph for native side code is significantly enhanced. Using ReuNify in
conjunction with FlowDroid can reveal previously unseen sensitive leaks.

• We release our open-source prototype ReuNify and all artifacts used in our study at:
https://github.com/DannyGooo/ReuNify

The remainder of this paper is organized as follows. We outline the key motivation for this
work in Section 2, and Section 3 presents challenges for static analysis on React Native Android
apps. Section 4 presents key aspects of our approach. Section 5 presents our studied datasets, our
experimental setup, and our experimental results. Section 6 presents the discussion for our research.
Section 7 discusses key related work, and Section 8 summarises this paper.

2 BACKGROUND ANDMOTIVATION

2.1 Background

2.1.1 React Native. React Native, developed by Meta, is an open-source framework that simplifies
mobile app development. It provides a unified platform for iOS and Android app development
without relying on WebView [34], setting it apart from competitors like Ionic [14] and Cordova [9].
React Native is based on the popular React framework [24], which is a Node.js-based JavaScript
library used for creating web user interfaces. Further, it features cross-language communication

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

https://github.com/DannyGooo/ReuNify

4 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

between JavaScript and the native side, blending native app performance with web development’s
flexibility and efficiency.

(a) Old Architecture (b) New Architecture

Fig. 2. Cross-Language Communication Mechanism

in React Native

When developing a React Native applica-
tion, the features (i.e., React’s declarative UI
paradigm and JavaScript.) of React are used to
organize reusable and nestable React Compo-
nents [1] for building the mobile user interface.
Various business logic and Module APIs can be
further used inside the state or lifecycle [19, 35]
of those React Components to attain the desired
features and functionalities. Figure 1 further
categorizes React Components and Module APIs
based on the entity responsible for maintain-
ing them. React Native is equipped with pre-
existing core Components and core APIs that
are readily available for use [92]. In addition,
the React Native team offers documentation on
how to encapsulate native-side functionality
for JavaScript-side code [1, 21]. The React Na-
tive ecosystem has been enriched by a diverse
range of third-party libraries that are actively
maintained by the community [26]. These li-
braries play a significant role in enhancing the overall robustness of the platform.

Fig. 3. React Native’s Cross-Language Implementation

in Developer’s side

2.1.2 Native-side code in React Native Apps.
A React Native app provides access to native-
side code that is not inherently available in
JavaScript. The React Native team has pub-
lished guides for encapsulating native-side fea-
tures in both the Old Architecture [1, 21] and
the New Architecture [22]. While React Native
doesn’t expect this feature to be part of the
usual development process, It is essential that
it exists in case developers want to use code in Objective-C, Swift, Java, or C++. The bridge/JSI can
expose instances of Java/Objective-C/C++ (native) classes to JavaScript (JS) as JS objects, facilitating
cross-language communication inside React Native apps. As demonstrated in Figure 2(a), bridge [38]
was used to facilitate the exchange of information between JavaScript and native side code in the
old architecture of React Native. Bridge allowed JavaScript to interact with the platform-specific
Native Components and Native Modules for building mobile apps. However, this architecture suffers
from issues such as asynchronous behavior, single-threading, and extra overheads (JSON format)
that impact performance and flexibility [38].
To address these issues, the new architecture of React Native adopts the JavaScript Interface

(JSI) [18], as shown in Figure 2(b). The JSI allows a JavaScript object to hold a reference to a C++
object and vice versa, enabling synchronous execution, concurrency, lower overhead, code sharing,
and type safety [38]. This approach provides several advantages over the old architecture and serves
as the foundation of the cross-language communication mechanism for new architecture. With JSI,
developers can use Turbo Native Modules and Fabric Native Components to achieve high-performance
mobile applications on both iOS and Android platforms.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 5

In both the New and Old Architecture of React Native, the cross-language communication
mechanism is built using C++. Furthermore, React Native exhibits compatibility with three distinct
JavaScript engines, namely Hermes [13], JSC [16], and V8 [32], all of which are constructed using
C-based programming languages. Those engines enable the execution of JavaScript code, while
the bridge and JSI serve as channels for the injection of variables, functions, and declaration of
global elements, therefore, augmenting the pre-existing JavaScript code. React Native can leverage
this capability to enable communication between JavaScript and the C/C++ world. The C/C++
code can further communicate with platform-specific native code. On the iOS side, Objective-C is
capable of communication with C/C++ programming languages because it extends the C language.
On the Android side, the Java Native Interface (JNI) is used to establish contact with the C/C++
environment. As shown in Figure 3, JavaScript code can communicate with those platform-specific
native codes through C++. The native-side feature can be encapsulated from C++ code or platform-
specific code. This study only focuses on the Dalvik bytecode generated from Java or Kotlin source
code, which gets investigated by the majority of Android static analyzers [79].

2.1.3 JavaScript-side code in React Native Apps. React Native enables developers to build the app’s
logic and user interface in JavaScript. When one React Native project gets built as a mobile app, the
JavaScript code within the React Native project undergoes bundling using Metro[20], a JavaScript
bundler. This bundler accepts options and an entry file, and in return, it produces a JavaScript file
that includes all the JavaScript files. The bundled JavaScript file would be further compiled into
bytecode, with Hermes selected as the JavaScript Engine. Once the app launches, the code in the
bundled file is loaded and further executed by the JavaScript engine.
Since version 0.70.0 (September 2022), the default JavaScript engine in React Native has been

changed from JavaScriptCore (JSC) [16] to Hermes Engine [13]. Before that, Hermes Engine was
introduced to React Native Android and React Native iOS since version 0.60.4 and version 0.64.0 as
an optional engine, respectively. The legacy JavaScript Engine parses all JavaScript codes using
just-in-time (JIT) compilation. With the inclusion of Hermes engine, JavaScript source code would
be compiled to bytecode ahead of time (AOT), which saves the interpreter from having to perform
this expensive step during app startup and also contributes to a smaller app bundle size. However,
the use of the Hermes engine in React Native can make static analysis much more challenging. The
generated Hermes bytecode is not as easily readable or accessible as the JavaScript code, which
makes the current state-of-the-art tools designed for JavaScript [68, 69, 97] useless in front of
Hermes bytecode. Additionally, current state-of-the-art Android static code analysis approaches
[49, 74, 79, 101] overlook the apps developed with React Native.

2.1.4 Soot. The development of Soot originated from a Java compiler testbed project initiated
at McGill University in the year 2000. Over time, the research community has shown a growing
interest in static code analysis across various applications. Consequently, Soot has come to be the
preferred program analysis framework for both Java and Android. As shown by the proceedings
of international conferences, multiple prototypes rely on Soot to perform their individual static
analysis. Soot has been the most popular program analysis framework for Android apps [79]. The
continued relevance of soot could be attributed to its notable qualities, notably its widely used
intermediate representations (IR).
Soot has supported Java source code, Java bytecode, Dalvik Bytecode, and CIL (Common Inter-

mediate Language) bytecode for program analysis. Soot provides the corresponding front end to
transform those input codes into its main intermediate representation (IR), Jimple [111]. Jimple
is a stack-less, three-address representation which features only 15 instructions. It uses explicit
control flow without nesting, i.e., solely through conditional or unconditional gotos. Any method
code can be viewed as a graph of Jimple statements associated with a list of Jimple local variables,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

6 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

which enables the creation of simple control flow graphs (CFGs). Furthermore, Soot offers multiple
algorithms for constructing call graphs. To enable a more complete static analysis on React Native
Android app, we propose a new front end to transform Hermes bytecode into Jimple to make
those JavaScript-side codes analyzable inside the Soot framework. In addition, we explore the
cross-language mechanism of React Native to increase the reachability of the call graph derived
from Dalvik bytecode.

2.2 Motivating Example

The React Native framework’s complex mechanism conceals a significant portion of the executable
code of Android apps built with it from state-of-the-art static analysis tools [49, 77, 100]. With one
analysis for the React Native Android Apps, Skype, com.skype.raider [29], we make the case that
React Native mechanism should be considered in static analysis approaches.
Skype is a popular app for real-time video calls, with more than one billion installations. This

app is developed with React Native framework. Considering the cross-language communication
mechanism in React Native, we discuss both the JavaScript side code and Java side code. In the
example, we’ve sourced version 8.83.0.411 of the Skype app from APKMirror1.
JavaScript Side: The app, Skype, incorporate version 89 of the Hermes engine, and stores

the JavaScript-side code as Hermes bytecode. This bytecode can be decompiled into a textual
disassembly file containing 3,589,897 lines of text and a file size of 119 megabytes. The disassembly
file contains 87,400 methods and 3,016,341 lines of opcode statements. We propose a new front-end
system to convert Hermes bytecode into Jimple. This transformation will make Hermes bytecode
analyzable within the Soot framework.

Java Side: We generated a callgraph of the app, Skype, using FlowDroid for taint flow analysis.
The callgraph consisted of 5,169 nodes and 18,282 edges, and no privacy leaks were detected. After
examining the call graph, it was found that the Java methods exposed through the Native Module
API (135 Modules, 724 methods) and React Native Components (106 Components, 813 methods)
were not captured in the callgraph. Upon these methods, the call graph expanded considerably to
include 13,629 nodes and 51,395 edges, and three privacy leaks were identified.
This paper presents a novel strategy to address the challenge of the hidden executable code in

React Native Android apps, which has been a gap in the current research. The aim of this paper is
to enable whole program analysis for React Native Android app.

3 CHALLENGES AND ILLUSTRATION

In this section, we discuss the challenges related to code coverage during static analysis for React
Native Android apps, focusing on JavaScript-side and platform-specific code (Java/Kotlin). Although
React Native apps involve C++ code for the framework, including the JavaScript engine and cross-
language mechanism, development documents for creating apps with C++ are rare. Developers
typically use JavaScript and Java/Kotlin, which are the focus of this work.We began by disassembling
Hermes bytecode for manual analysis and exploring the challenges associated with Dalvik bytecode
when using existing static analysis tools.

The process of classifying these challenges into distinct categories involved iterative discussions
among the authors. While it’s worth noting that this methodology doesn’t offer a formal assurance
against the possibility of uncovering more challenges in the future, we are confident that the
importance of these identified challenges presents obstacles to the static analysis of React Native
Android apps.

1https://www.apkmirror.com/apk/skype/skype-skype/skype-skype-8-83-0-411-release/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

https://www.apkmirror.com/apk/skype/skype-skype/skype-skype-8-83-0-411-release/

Demystifying React Native Android Apps for Static Analysis 7

3.1 Challenges related to the Hermes bytecode

The execution of the JavaScript code in Figure 4 would leak the "location" returned from the
Android native-side API to the console.log(). However, understanding its corresponding Hermes
bytecode proves to be challenging. Binary code analysis inherently presents difficulties [91] due
to the complex representation of the compiled code, which hinders proper investigation [72].
Furthermore, binary code analysis not only inherits most of the challenges associated with its
source code analysis but also introduces new obstacles resulting from optimization techniques
applied during the compilation process. As a bytecode variation within the specific JavaScript
VM (Hermes engine in this work), Hermes bytecode naturally inherits most of the well-known
challenges related to JavaScript source code analysis. In this section, we delve into the obstacles that
hinder the static analysis of Hermes bytecode. These challenges are associated with implementing
automated static analysis for large-scale Hermes bytecode.

(a) JavaScript Code

(b) Hermes bytecode

Fig. 4. SootClass and their relationship in Soot

Challenge 1: Framework-Engine Synchro-
nization. The tight coupling between React Na-
tive framework versions and their correspond-
ing Hermes engine versions creates challenges
for static analysis. Each React Native version
requires a specific Hermes engine, and any mis-
match can lead to compatibility issues and un-
expected behavior. During the building process,
JavaScript code must be compiled with the ex-
act Hermes engine version that corresponds to
the React Native framework version in use to
ensure proper functionality. This, in turn, ne-
cessitates the version-specific decompiler for
the targeted version of the React Native app.
By November 2023, over 40 Hermes engine ver-
sions had been released to sync with React Na-
tive framework updates. The evolution of Her-
mes bytecode (e.g., new or altered instruction
format in bytecode), reflected in the change
of textual disassembly from its official disas-
sembler, hbcdump, across versions, necessitates
that static analyzers remain adaptable and in-
formed to interpret the bytecode. The scant
documentation on Hermes bytecode disassem-
bly hinders static analyzer developers from
staying informed with modifications. Conse-
quently, designing, developing, and validating
one static analyzer for various versions of Her-
mes bytecode becomes a demanding, resource-
heavy task necessitating adaptability to version-
specific intricacies.

Challenge 2: Limitation in Offical Decom-
piler. Hermes engine provides a built-in disas-
sembler called hbcdump, but it has limitations.
Firstly, it cannot display the complete value of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

8 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

a string in its textual disassembly if the string’s length exceeds a certain limit. For example, in
Figure 4(a), the string “getAndroidNativeAPI” in the JavaScript code at line 6 cannot be fully repre-
sented in the textual disassembly generated by hbcdump at line 27 of Figure 4(b). This incomplete
representation of the string not only impacts the string analysis but also has implications for
the property names of objects associated with analysis for heap objects. Additionally, it lacks
clear function identifiers in function declaration instructions in textual disassembly. In JavaScript,
developers can define functions with the same name, including duplicate or anonymous functions.
As shown in lines 1 and 5 of Figure 4(a), two separate functions with the same function name,
“functonName”, are defined without any parameters. In the Hermes bytecode, the “CreateClosure”
opcode is utilized to declare a function in a register, programmatically, facilitating the function
declaration in the runtime environment. As demonstrated in lines 3 and 6 of Figure 4(b), functions
with the same name, “functonName”, are stored in registers r2 and r1, respectively. Two code blocks
with the same function name,"functonName" are defined in lines 13 and 25, respectively. The use of
unclear function identifiers at function declaration in textual disassembly, along with the separation
of function declaration and its definition, creates difficulties in relating function declaration and
function definition. Overall, the incomplete display of string values and unclear function identifiers
in function declaration instructions significantly hinder the analysis of Hermes bytecode.

Challenge 3: Interprocedural Analysis. In Hermes bytecode, functions are treated as First-Class
Objects similar to their handling in JavaScript, enabling them to be passed as arguments, returned
from functions, and stored in registers. Function invocations in Hermes bytecode are made through
functions assigned to registers, utilizing an Indirect Function Call for all invocation instructions.
As shown in line 22 in Figure 4(b), “Call2 r1, r2, r3, r1”, invokes the function store at register r2
with arguments (i.e., r3 and r1), and finally the return value would be stored at and overwrite the
value at r1. The type of each register in Hermes bytecode is not stable, as indicated by the multiple
instructions (at lines 14, 21, and 22) assigning different values to the host register r1 demonstrated in
the second function definition at Figure 4(b). This lack of stable types renders type-based call graph
algorithms, like RTA or XTA, inapplicable to Hermes bytecode. Moreover, Hermes can execute
functions from external APIs, like “console.log”, which adds to the uncertainty since these functions
are outside the bytecode file. In React Native, interfaces provided by the C++ and device sides
(Objective-C/Swift for iOS and Java/Kotlin for Android) introduce further uncertainty. Analyzing
Hermes bytecode alone doesn’t reliably predict calls to external APIs without considering the host
environment interactions. The distinctive syntax and optimizations present in Hermes bytecode,
combined with the dynamic characteristics inherited from JavaScript, make interprocedural analysis
more challenging, marking it as an area for future study.

3.2 Challenges Related to Dalvik bytecode

This section examines the challenges impeding inter-procedural static analysis of Dalvik bytecode,
focusing on the shortcomings of state-of-the-art call graph algorithms in capturing the developer’s
Java/Kotlin code implementation for React Native apps. These obstacles stem from the design of
call graph construction algorithms specifically tailored for Android’s Dalvik bytecode.

Challenge 4: Cross-Language Mechanism The cross-language communication mechanism in
React Native enables JavaScript code to access native functionality. Regardless of the architecture
(Old or New), developers encapsulate native functions as JavaScript interfaces, allowing runtime
registration and interaction with JavaScript code. To accurately predict an app’s control flow, static
analyses must consider React Native’s cross-language mechanisms. Developing sound analysis
for mobile apps proves non-trivial and requires specialized algorithms, particularly for apps that
integrate complex frameworks like Android and the not-yet well-explored React Native framework
across at least three programming languages (as depicted in Figure 3).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 9

Fig. 5. Overview of ReuNify.

Challenge 5: Framework Transition. React Native is transitioning from its legacy Architecture
to the New Architecture, altering how developers create Native API and UI Components. Native
Module and Native Components are the established technologies utilized in the legacy architecture,
but they will be deprecated once the New Architecture stabilizes. The New Architecture introduces
Turbo Native Modules and Fabric Native Components as replacements [21]. The transition from
Old Architecture to New Architecture is one continuing process across multiple versions. The
first major milestone of the New Architecture was the introduction of the JSI in React Native
0.59, released in March 2019 [27]. The migration to the New Architecture is still ongoing (April
2024). The transition process would have implications on the implementation for developers, which
would pose challenges for algorithms designed for the identification of those Native APIs and UI
Components.

4 APPROACH

To facilitate the automatic analysis of the React Native Android Apps, a prototype named ReuNify
has been developed. This tool addresses the previously mentioned challenges and aims to improve
static analysis capabilities for React Native Android apps. As depicted in Figure 5, ReuNify contains
two key modules including (1) Jimple Code Generation and (2) Cross-Language Methods
Extraction.
(1) Jimple Code Generation: This module proposes solutions for challenges associated with

the Hermes Bytecode (Challenges 1, 2, and 3). It facilitate the transformation of both Dalvik-side
and JavaScript-side code in React Native Android apps into the unified intermediate representation
known as Jimple. This conversion facilitates a wide range of automated analyses.

(2) Cross-Language Methods Extraction: This module analyzes the Jimple code produced by
the first module to model cross-language communication in React Native Android apps. It tackles
challenges in Dalvik bytecode analysis (Challenges 4 and 5) with the aim of modeling Dalvik
bytecode invocations from the JavaScript side, thereby improving code coverage. The module
achieves this by automatically identifying customized native-side functionality interfaces.
These modules work together to provide a comprehensive solution for analyzing the complex,

multi-language structure of React Native Android applications.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

10 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

4.1 Jimple Code Generation

This module serves as the front end for disassembling React Native Android Apps, aiming to create
a unified intermediate representation (IR) for both Java-side and JavaScript-side code. As discussed
in section 3.1 regarding challenges 1, 2, and 3, the main obstacle in this unification process arises
from React Native’s implementation of Hermes bytecode. To address these challenges, we developed
hermesr, a front-end tool that automates the decompilation of various Hermes bytecode versions
using custom-built decompilers. The module then transforms the decompiled Hermes bytecode
into Jimple format, facilitating intra-procedural analysis. Our proposed Hermes frontend, hermesr,
works in conjunction with Dexpler to automate the generation of Jimple code from input directories
of React Native Android Apps.
This module leverages a divide-and-conquer strategy to facilitate the construction of unified

intermediate representation for the Java-side code and JavaScript-side code in React Native Android
apps. As shown in 1a of Figure 5, the Dalvik bytecode files within the React Native Android app
can be transformed into Jimple by Dexpler[51] that is a front-end dealing with Dalvik bytecode, and
has been integrated into Soot as one module. In the implementation in sub-step 1b of Figure 5,
either JavaScript code or Hermes bytecode can be represented into Jimple. The normal JavaScript
code can be compiled and represented as textual disassemblies by hermesc (i.e. the Hermes compiler),
while the Hermes bytecode can be decompiled and represented as textual disassemblies by hbcdump
(i.e., Hermes bytecode disassembler). Both hermesc and hbcdump can be built from the Hermes
engine project [12]. Additionally, we implement a parser inside hermeser that would be used to
parse and transform the textual disassemblies into Jimple code.
In a typical analysis case, Soot is launched by specifying the target directory as a parameter.

This directory contains the program (one .apk in this example) for analysis. First, the main()
method of the Main class is executed. It calls Scene.loadNecessaryClasses(), where Soot locates the
specified source code files (.bundle file for JS-side React-Native code in this example) from the input
.apk file by SourceLocator.v().getClassesUnder(path). Second, HbcClassSource, is implemented as a
module inside Soot framework to create a SootClass from the corresponding disassembled Hermes
bytecode. When the resolver has a reference to a ClassSource (HbcClassSource), it calls resolve() on
it. SootMethods are then created, and MethodSources (containing the information from the function
in textual disassembly) are distributed for each SootMethod. When a function of textual disassembly
is stored into MethodSource, its opcode instructions are organized into blocks that can link to each
other through the control flow. During the solving of each SootMethod, the Jimple statements would
be created from Hermes opcode instructions within all blocks, then the jump between each block
can be connected. So that the generated Jimple code keeps the same control flow with the Hermes
bytecode.

ReuNify first generates disassembly texts from the located either normal JavaScript or Hermes
bytecode. Subsequent transformations are based on these disassembly texts. The transformation
from one representation to another is inherently complex because it requires an understanding of
the semantics of both representations. The bytecode file contains the bytecode functions, along with
essential metadata and auxiliary data sections, which are imperative for the successful execution in
runtime. The file format is described in the header file BytecodeFileFormat.h [5] at Hermes open
source project. It consists of many parts, including the FILE HEADER, FUNCTION HEADER TABLE,
STRING TABLE&STORAGE, and FUNCTION BYTECODES.
The transformation procedure involves extracting the section for FUNCTION BYTECODES.

Following this, the string from the FUNCTION HEADER TABLE and the STRING TALBE&STORAGE
will be correlated in order to fully reconstruct the whole string used in the FUNCTION BYTECODES
section. Furthermore, we continue to partition the code block for each function serialized in

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 11

Fig. 6. Jimple Code generated from the JavaScript code or Hermes Bytecode in Figure 4(a).

the FUNCTION BYTECODES section. Subsequently, the bytecode instructions pertaining to each
individual bytecode function would be converted into Jimple statements. In order to ensure the
parser’s version awareness, we have accounted for a total of 207 opcode types spanning over 39
distinct versions of the Hermes engine. This comprehensive coverage is achieved by conducting a
thorough review of the version indicator file [7] and opcode list file [6] from the open-source project,
as documented in their git history. We would open source hermeser and continue to maintain it. As
shown in Fig 4(b), one instruction of Hermes bytecode is composed of one or more operands and one
opcode. Hermes bytecode is a register-based bytecode, and it uses registers as operands for opcode
instructions. Hermes bytecode adopts variable-length instructions. Each operand to a bytecode
instruction has a fixed type and width, defined by the opcode. Fixed-type/width instructions enable
the efficient decode process in the interpreter, which also contributes to an efficient implementation
for our parser. A full list of Hermes bytecode opcodes can be found in BytecodeList.def at the
Hermes open source project. [6]
In the transformation process, each Hermes opcode instruction is then mapped to its associ-

ated Jimple statements. The majority of Hermes opcode instructions are transformed into the
corresponding static invoke statement, staticinvoke, on one callee function. Those callee functions
are declared with class Hbc.Opcode, with the same method name as the corresponding Hermes
opcode name, which preserves the original semantics of the program. However, there are opcodes
related to conditional or unconditional gotos, which need to be transformed into corresponding
goto statements in Jimple to keep control flow syntactically and semantically. The Hermes opcode
instructions are arranged into blocks, and these blocks can be interconnected through control flow
statements. As the MethodSource is processed, Jimple instructions are generated for each of the
blocks, and the connections between each block’s jumps are established. This ensures that the
resulting Jimple code maintains the same control flow as the original Hermes bytecode.

To ensure hermeser is capable of analyzing different versions of React Native apps, we invested
significant engineering resources in a thorough examination and further modification of all 38
versions of the source code of the Hermes engine disassembler. Specifically, we delve into the
source code of hbcdump, to eliminate the effects of the length restriction of the string display for
all 38 Linux-based versions of hbcdump, and further, we build our customized hbcdump tool. This

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

12 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

endeavor was crucial for guaranteeing the comprehensive presentation of string values in textual
disassembly. Without this improvement, the engine would default to displaying partial values
when the string length surpassed a particular threshold, potentially impacting the subsequent static
analysis process.

Apart from the challenge posed by partial string values, another perplexing aspect of the program
representation in the textual disassembly of Hermes bytecode is the duplication of function names.
As illustrated in lines 3 and 6 of Figure 4(b), the same function name, "functionName", was employed
to register two distinct functions defined in lines 13 and 25, rendering it impossible to link the
function name to its corresponding function code block. To tackle this issue, we take a proactive
approach during the parsing phase of hermeser by recording all function names. These duplicated
function names are then renamed following a specific strategy, where the new name comprises
"hermesDuplicatedFunction" followed by the original function name and its index (i.e., the order of
appearance) combined with an underscore ("hermesDuplicatedFunction_thefunctionName_index").
For instance, the duplicated name "functionName" would be renamed as "hermesDuplicatedFunc-
tion_functionName_0" and "hermesDuplicatedFunction_functionName_1", respectively. Ensuring
a unique function name for each function code block is vital for effective function identification,
especially in the context of the CreateClosure opcode for interprocedural analysis.

To grab inter-procedural behavior, a control-flow-insensitive strategy was employed to generate
Jimple statements from Hermes opcode instructions, with opcode registers translated into Jimple
local variables. These variables’ types are dynamically assigned and modified as each Hermes in-
struction is processed. For instance, in Figure 6, the return value type evolves from Hbc.GlobalObject
to Hbc.GlobalObject.console.log between lines 13, 18, and 19, leading to a method invocation on
line 21. This approach enables the consistent inference of methods like console.log(). Typically,
Hermes opcodes are converted into Jimple’s staticinvoke statements using Hbc.Opcode for the class
name, with the opcode value as the method name, and return types are dynamically tracked. As the
transformation propagates, the return type for subsequent statements is determined by the opcode’s
semantic significance and the associated register’s type. For example, the opcodes "TryGetById" and
"GetByIdShort" depicted in lines 19 to 20 of Figure 4(b), which serve to retrieve a single value from
an object using a property name. This operation leads to a dynamic adjustment of return types,
as exemplified in lines 18 to 19 of Figure 6, where the types evolve into Hbc.GlobalObject.console
and Hbc.GlobalObject.console.log, respectively. In addition to addressing the load-related opcode
mentioned above, we also abstract the function initialization opcode to enable some level of inter-
procedural analysis. However, it’s important to note that achieving a sound call graph construction
within Hermes bytecode is a complex task, and it falls outside the scope of this current work. We
plan to introduce improved point-analysis techniques in our future research efforts to address this
challenge.

This module addresses key challenges associated with the Hermes engine, specifically focusing
on automated analysis of different bytecode versions. By leveraging custom decompilers, we enable
automatic decompilation of various Hermes bytecode iterations. The module then converts this byte-
code into Jimple format, facilitating intra-procedural analysis. To capture inter-procedural behavior,
we implemented a straightforward control-flow insensitive approach during the transformation
process. While this module successfully tackles Challenge 1 and Challenge 2, the development of a
robust framework for inter-procedural analysis (Challenge 3) remains an open problem. We have
identified this as a promising avenue for future research, acknowledging the non-trivial nature of
this undertaking.

4.2 Cross-Language Methods Extraction

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 13

This module analyzes the Jimple code produced by the first module to properly model cross-
language invocations of Dalvik side from the JavaScript side. As outlined in section 3.2 concerning
challenges 4 and 5, React Native apps allow JavaScript code to access native functionalities through
Dalvik-side function calls. However, existing static analyzers inadequately model these Dalvik-side
code invocations. Moreover, cross-language invocations lack inherent connections between sides.
This module addresses these issues by identifying and extracting these cross-language invocations,
a crucial step towards comprehensive whole-program analysis.

Step 2a: Dalvik-to-Hermes Invocation Extraction. As mentioned in Section 2, React Native
is gradually replacing the legacy Architecture with the New Architecture. The implementation
for developers to create Native API and Native Components is also changed with the update of
Architecture. Native Module and Native Components are the established technologies utilized in
the legacy architecture. They will be deprecated in the future once the New Architecture becomes
stable. The New Architecture uses Turbo Native Module and Fabric Native Components to achieve
similar results [21]. In this case, we take Turbo Native Module as one example to explain step 2a

of ReuNify. (The intuition is that the identification process for Native Module is similar and easier
than the Turbo Native Module.)

Fig. 7. Module API registration example in New Architecture

of React Native.

This step is performed over 5 sub-steps:
1 Analyzing class hierarchy to record
classes that extend ReactContextBaseJava-
Module and also implement both Re-
actModuleWithSpec and TurboModule as
shown in the line 2 and line 3 of Figure 7.
2 Records the name for the method with
@ReactMethod annotation. (as shown in
the line 10 of Figure 7) 3 Track class hier-
archy to detect the classes that extend the
classes recorded in sub-step 1 (as shown in
the line 14 of Figure 7). 4 Go through the
methods in the class recorded in sub-step
3, and retrieve out the methods that over-
write the methods recorded in sub-step 2
(as shown in the line 27 of Figure 7). 5 Re-
trieve the method with the sub-signature,
java.lang.String getName() (as shown in
line 22 of Figure 7), and further extract the
return value of this method (e.g., the re-
turn value is Calendar at line 15 of Figure
7) as the Module API name.

The aforementioned procedure show-
cases ReuNify’s approach for the Dalvik-
to-Hermes Identification within the New
Architecture (i.e., Turbo Native Module).
Implementing the Dalvik-to-Hermes Iden-
tification within the Old Architecture (i.e.,
Native Module) is less challenging than
the aforementioned process. A process re-
sembling sub-step 1 is essential to discover the class that encapsulates the Native Module, where

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

14 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

methods annotated with@ReactMethod would be considered as Module API methods. Subsequently,
sub-step 5 can be carried out to determine the Module API name in the same class. A similar
approach can be used to identify cross-language communication on the Dalvik side for Native Com-
ponents and Fabric Native Components, by tracking the method annotated with either @ReactProp
or @ReactPropGroup. However, due to space limitations, we cannot provide all the technical details
here. For a more comprehensive understanding, please refer to ReuNify’s open-source project.
Step 2b: Hermes-to-Dalvik Invocation Extraction. The Module API name and methods

name retrieved from the Step 2a would be used as the identifier for the cross-language invocation
on the JavaScript side. Compared to Java code analysis, pointer analysis is more challenging in
Hermes bytecode due to the language’s dynamic feature, as Hermes bytecode is compiled from
JavaScript. This means that register values are not determined until runtime, which potentially
leads to instability of the value in function invocation’s callee registers and complicates analysis.
To address this, we use a control-flow-insensitive technique to track the value stored in a register
(variable). As seen in Figure 6, from lines 13, 18, and 19, the value type on the left-hand side changed
from Hbc.GlobalObject to Hbc.GlobalObject.console.log.
In the process of Hermes-to-Jimple transformation, all the registers that are used as callee of

function invocations are recorded. The Module API names and method names retrieved from step
2a are used as a filter to detect the Hermes-to-Dalvik invocation. To implement the cross-language
invocation for the Java-side code from the JavaScript side, one object name will be used on the
JavaScript side to access the object that is exposed from the Java-side code. In the example in
Figure 7, the value, Calendar, which is retrieved by the sub-step 5 at Step 2a , is the object name
exposed to the JavaScript side code. To access the method wrapped into the exposed cross-language
object, the method name would be used to retrieve the value (Java-side function) stored into key-
value pair. The method name, createCalendarEvent, will be used to refer the function at line 27 at
Figure 7. To implement invocation at hbc, the Hermes opcode instruction for function invocation is
used with the callee register. By matching callee register values to Module API and function names,
potential Hermes-to-Dalvik invocations can be identified. The effectiveness of this analysis hinges
on accurate pointer analysis of the callee registers in function invocations. However, Hermes’ use of
First-class Objects for all functions complicates static analysis of program behavior. This complexity
is especially pronounced in sophisticated frameworks like React Native, and is further amplified
when JavaScript bundlers are involved.

This module tackles key challenges in Dalvik bytecode analysis, with a focus on improving
code coverage through automated detection of native-side functionality interfaces. By addressing
Challenge 4 and Challenge 5, we lay the groundwork for more comprehensive analysis of Android
applications. The module’s approach necessitates pointer analysis on Hermes bytecode to enable
effective cross-language analysis. While our current implementation provides a solid foundation for
these tasks, we recognize the need for further advancements. In particular, our future research will
concentrate on developing sophisticated inter-procedural analysis techniques for Hermes bytecode,
aiming to deepen our understanding of complex application behaviors and interactions.

5 EVALUATION

In this section, we commence by undertaking a preliminary study to explore the extent of React
Native’s utilization. Subsequently, we delve into the following research questions to gauge the
significance of our contributions:

• RQ1: What insights can be gained from profiling Hermes opcode usage in real-world apps?
This research question presents the first comprehensive analysis of Hermes bytecode opcode
usage in real-world applications. By examining actual opcode patterns, it aims to illuminate

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 15

the intricacies of Hermes bytecode analysis, providing readers with a deeper understanding
of the challenges inherent in static analysis of Hermes bytecode. This pioneering study not
only sheds light on current complexities but also serves to inform and guide future research
directions in the field of Hermes bytecode analysis.

• RQ2: To what extent does the Jimple code generated by hermeser maintain the original
bytecode’s control flow? This RQ introduces one benchmark to evaluate the control-flow
sensitivity of the transformation from Hermes bytecode to Jimple. This RQ showcases the
capability of the generated Jimple for intra-procedural analysis, highlighting its potential for
various intra-procedural static analysis tasks.

• RQ3: How well does ReuNify enhance Soot-based static analysis on React Native Android
Apps? This RQ investigates the extent to which ReuNify can facilitate static analysis for
both JavaScript-side and Dalvik-side code in real-world React Native Android apps, focusing
on achieving sound code coverage. This RQ aims to demonstrate ReuNify’s ability to provide
comprehensive analysis across the two sides of the React Native framework.

• RQ4:Can ReuNify reveal previously unreachable sensitive data leaks in React Native Android
Apps? The purpose of this RQ is to assess ReuNify’s ability to support downstream analysis,
particularly taint analysis, when applied to real-world React Native Android applications.
By investigating ReuNify’s performance in practical scenarios, this RQ seeks to validate its
extensibility and scalability, demonstrating its potential to enhance the effectiveness of static
analysis techniques for React Native apps.

We ran all of our experiments on a Linux server with Intel (R) Core (TM) i9-9920X CPU @
3.50GHz and 64 GB RAM.

5.1 Preliminary Study

We first conducted a preliminary study to explore the utilization of the React Native framework
across a spectrum of Android apps, encompassing both popular and potentially malicious applica-
tions.
Dataset: To create a dataset of popular Android apps, we began by gathering a list of 15,854

Android apps from ANDROIDRANK [2]. This list included the top 500 apps for each of the 32 app
categories available on Google Play. We then downloaded the latest version of 14,874 out of 15,854
of these apps from AndroZoo [44]. The remaining 980 apps were not available for download.

In addition, we obtained a dataset of 60,618 malware apps from VirusShare [33], which included
Android malware apps collected by VirusShare in 2022. We also gathered 67,135 malicious apps
from AndroZoo. We consider an app to be malicious if at least 10 antivirus engines in VirusTotal
have flagged it.

Table 1. JavaScript-Code format in most popular apps

and malware apps

Category Hermes Bytecode JavaScript Total

Popular 494 574 1 068
Malware 28 413 441
Total 522 987 1 509

Study Design: The React Native frame-
work is developed using multiple programming
languages, including Java, C++, JavaScript,
Objective-C, and others [25]. The framework
code is typically included in the release build
to ensure proper app functionality. To gauge
the extent of React Native framework adoption
in Android apps, we conducted a preliminary study in which we examined the APK file of each
app for the presence of the Java package, com.facebook.react. It is noteworthy that code obfuscation
will not affect this package name [23]. In order to understand the usage scenario of the Hermes
engine, it is necessary to identify the specific file that ends with the extension ".bundle" inside the
resource directory of the unzipped Android Package ("index.android.bundle" is the default file name

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

16 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

for React Native JavaScript-side code.). The file command [10] in the Linux operating system can
be used to ascertain the specific file type. If the file is in Hermes bytecode, the program will display
the file type and the version of the Hermes engine.

Results: As shown in Table 1, our empirical study indicates that 1,068 apps, accounting for

7.2% of those 14,874 most popular apps collected from AndroZoo, were developed using
the React Native framework. Of these React Native Android apps, 494 (46.3%) utilized the Hermes
engine as the JavaScript runtime and compiled the JavaScript into Hermes bytecode. In contrast,
among the 60,618 malware collected from VirusShare, there were 441 apps developed with the

React Native framework. Out of these 441 React Native Android malware apps, only 28 of them
used the Hermes engine.

Within the selection of the 14,874 most popular Android applications, approximately 7.2%
have been created using the React Native framework. The presence of malware has extended
to encompass React Native applications as well. Furthermore, the employment of the Hermes
engine exhibits lower frequency among malware apps in comparison to its prevalence
within popular applications.

5.2 RQ1: What insights can be gained from profiling Hermes opcode usage in

real-world apps?

This research question examines the usage patterns of Hermes opcodes in real-world React Native
apps, initiating the first study of its low-level behavior. By analyzing opcode frequency and patterns
across a range of applications, including popular apps and malware, the study aims to reveal
common programming patterns and features. It addresses the gap between theoretical definition
and practical implementation of Hermes opcode, with a focus on improving static analysis tech-
niques. The findings will guide the development of more efficient and accurate static analyzers and
establish a foundation for understanding how React Native code works in low-level operations.
This investigation sets the stage for future advancements in Hermes bytecode feature modeling,
providing valuable insights for both developers and researchers in the field.

Experimental setup: In order to evaluate the use cases of opcodes in real-world apps, we collect
the opcodes that appeared in both the most popular apps and malware. Table 2 displays opcode
types that have a frequency exceeding 1% for both popular apps and malware. Specifically, we
decompile those 1,068 most popular React Native Android apps, as well as 441 React Native malware
instances, where we further locate the bundle files. The bundle file containing JavaScript source
code or Hermes bytecode can be converted into textual disassembly, allowing for the extraction of
Opcode instructions.
Findings: JavaScript-side bundle files were successfully identified in 337 out of 441 malware

apps and 956 out of 1,068 of the most popular apps. Nevertheless, because of the customized naming
strategy and dynamic distribution of bundle files, 104 instances of malware and 112 popular apps
were unable to locate their JavaScript-side code through the ".bundle" file. In the future, conducting
a more comprehensive analysis of the React Native app build pipeline will be essential to understand
the potential effects of employing a versatile technique on loading JavaScript-side content into
React Native’s runtime.
The average number of opcode instructions gathered from the most popular apps (533,740) is

roughly ten times greater than that observed in malware cases (51,864). The observation that the
number of JavaScript-side codes in malware cases is often smaller than in popular applications might
be attributed to the fact that successful apps tend to provide a comprehensive set of functionalities
and features to accommodate a diversified user population. The incorporation of these functionalities

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 17

Table 2. Distribution of Hermes opcodes for opcodes occurring in more than 1% of both popular apps and

malware.

Popular Apps Malware Apps
Opcode Frequency Opcode Type Frequency

GetByIdShort 8.98% MovLong 8.85%
LoadFromEnvironment 7.15% LoadFromEnvironment 7.31%

Call2 5.84% Mov 7.28%
GetById 5.14% GetByIdShort 6.77%
Mov 3.89% StoreToEnvironment 4.68%

LoadParam 3.55% LoadParam 4.49%
Ret 3.50% CreateClosure 4.21%

PutNewOwnByIdShort 3.46% Call2 3.90%
StoreToEnvironment 3.30% GetById 3.80%

GetByVal 3.08% TryGetById 3.48%
CreateClosure 2.84% Call 3.22%

LoadConstUndefined 2.77% Ret 2.96%
PutById 2.68% LoadConstUndefined 2.57%

LoadConstString 2.68% LoadConstUInt8 2.38%
NewObject 2.61% GetByVal 2.33%

GetEnvironment 2.50% LoadConstString 2.02%
LoadConstUInt8 2.40% PutById 2.00%
PutOwnByIndex 2.27% LoadConstInt 1.99%
PutNewOwnById 2.14% GetEnvironment 1.95%

MovLong 2.12% PutNewOwnByIdShort 1.93%
TryGetById 2.10% NewObject 1.51%

Call3 1.90% Call3 1.25%
JmpFalse 1.24% PutNewOwnById 1.24%
Call4 1.23% NewArrayWithBuffer 1.21%

JmpTrue 1.21% CreateEnvironment 1.15%
Total Above 80.57% Total Above 84.45%

Others 19.43% Others 15.55%

necessitates a greater amount of code implementation, resulting in an expanded codebase. There
are a total of 207 opcodes present in 39 distinct versions of Hermes engines, but our examination
of these Hermes opcodes in real-world applications indicates that there are 169 opcodes in popular
apps and 142 opcodes in instances of malware. We further compiled a list of opcode types in Table 2,
including those with a frequency exceeding 1%. Among these, the top 25 opcodes with a frequency
exceeding 1% collectively account for 80.57% of opcodes in popular apps and 84.45% of opcodes in
malware instances. In the following, we discuss the usage of these opcodes in real-world apps.

As shown in Table 2, Hermes bytecode relies heavily on opcodes for manipulating heap objects,
such as loading values (GetByIdShort,GetById,GetByVal, TryGetById), assigning values (PutNewOwn-
ByIdShort, PutById, PutNewOwnById), and initializing new objects (NewObject). In an analysis of
popular apps, these opcodes accounted for 27.51% of all opcode occurrences, while in malware apps,
they made up 23.06%. The high frequency of opcodes related to loading, assigning, and initializing
heap objects, which account for around one-quarter of all Hermes opcode usage in both popular
apps and malware apps, underscores the critical role that heap object manipulation plays in the
Hermes bytecode program. In addition to the heap object, there are instruction opcodes, such

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

18 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

as PutOwnByIndex and NewArrayWithBuffer, that are used to manipulate the content of arrays.
The widespread use of opcodes for manipulating objects or arrays highlights the significance of
developing abstraction techniques for these manipulations to enhance downstream analyses and
optimizations on the Hermes bytecode program.

The opcode LoadFromEnvironment ranks as the second most frequently employed opcode in both
popular apps and malware. Its primary function is to retrieve values from the closure environment,
a process akin to fetching values from the lexical scope in JavaScript. The Hermes engine provides
four base opcodes for handling value manipulation within a specific environment, which include
LoadFromEnvironment, StoreToEnvironment, GetEnvironment, and CreateEnvironment. These four
opcodes of environment-value manipulation play an important role within the Hermes opcode,
accounting for 13.88% and 15.43% of all opcode occurrences in popular apps and malware, respec-
tively. There are five additional opcodes specifically designed for addressing case scenarios, such
as the retrieval or storage of non-pointer values within an environment, which collectively make
up less than 1% of the total opcode occurrences. As the prevalent usage for closure environment
object manipulation, particular techniques are needed to abstract the manipulation on the Cloure
Environment Object to facilitate reliable analysis.

Table 2 shows that Hermes bytecode includes opcodes for calling functions with different numbers
of arguments: Call2, Call3, Call4, and Call. The numeric suffix denotes the number of arguments
passed per invocation, except for Call, where the last argument specifies the number of arguments.
These invocation opcodes represent 8.97% of opcode usage in popular apps and 8.37% in malware,
with Call2 being the most frequent. Hermes bytecode invocations have one additional argument
compared to their JavaScript counterparts, suggesting that most real-world app function invocations
use a single argument. All invocations across Hermes bytecode call the function stored in registers.
The first-class nature of functions in Hermes bytecode enables the use of indirect function calls.
Within Hermes bytecode, each of its call site statements occurs via indirect function calls, posing
significant challenges for interprocedural analysis because the targeted function is determined only
during runtime. It results in sophisticated analysis techniques to be used to accurately model and
reason about the behavior of the program in the use of indirect functions.

The opcodes "Mov" and "MovLong" were the first and third frequently used opcodes in malware
apps, accounting for 16.13% of all opcodes. In contrast, these opcodes were much less prevalent in
popular apps, where they constituted only 6.01% of the total opcodes. They are used for variable
assignments and data transfers within a computer’s memory or registers. The usage of these
opcodes could potentially indicate the use of Runtime Polymorphism [93], a technique that enables
code to dynamically adapt and change its behavior during execution, making it more difficult to
detect and analyze. It adds further complexity by demanding the analysis of polymorphism.

When comparing the frequency of opcode types between popular apps and malware instances,
a noticeable trend emerges. The varying frequencies of opcode usage often reflect distinct code
combinations that are closely tied to the app’s business logic, which can be viewed as the smells of
a particular category of apps. Although the difference in opcode frequencies between popular apps
and malware can be considered a potential character of malware, it should not be used in isolation.
Instead, it is crucial to combine this feature with other indicators to effectively identify malicious
applications. To further advance the understanding of malware characteristics, a comprehensive
and systematic study is needed. Such research would greatly benefit the cybersecurity community
by providing valuable insights into the telltale signs, or "smells," of malware, enabling more accurate
detection and prevention strategies.

Techniques like points-to analysis, shape analysis, and abstract interpretation can create accurate
and efficient object abstractions, which can be used by static analysis tools and optimizers to reason
about program properties, detect issues, and apply targeted optimizations. This is particularly

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 19

important for the Hermes bytecode program, given its prevalent use of opcodes for object and
array manipulation. While differing opcode frequencies between popular apps and malware can
be a distinguishing feature for identifying malicious code, it should be used in combination with
other relevant features. A comprehensive and systematic analysis of React Native malware features
is crucial for future research, providing insights into the unique characteristics and behaviors of
malicious code within the React Native apps, ultimately contributing to the development of more
effective malware detection techniques.

Answer to RQ1: Hermes bytecode comprises 207 opcodes, with 169 used in popular apps
and 142 in malware. Frequent use of opcodes for object, array, and closure manipulation,
along with indirect function calls, necessitates pointer analysis. Opcode usage frequency
can prioritize technique development. Differences in opcode frequencies between popular
apps and malware suggest variations in their business logic.

5.3 RQ2: To what extent does the Jimple code generated by hermeser maintain the

original bytecode’s control flow?

⃝★ = true, × = not generated, ⃝ = false
Statement. JS_No. HBC Jimple JS_No. HBC Jimple JS_No. HBC Jimple JS_No. HBC Jimple

Control flow

return 00 • ⃝★ 01 • ⃝★ 02 • ⃝★
break 00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★

continue 00 • ⃝★ 01 • ⃝★ 02 • ⃝★
throw 00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 ×
if...else 00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★

00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★switch
04 • ⃝★ 05 • ⃝★ 06 • ⃝★ 07 • ⃝★
00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★try...catch
04 • ⃝★ 05 • ⃝★ 06 • ⃝★ 07 • ⃝★

Iterations

do...while 00 • ⃝★ 01 • ⃝★ 02 • ⃝★
00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★
04 • ⃝★ 05 • ⃝★ 06 • ⃝★ 07 • ⃝★
08 • ⃝★ 09 • ⃝★ 10 • ⃝★ 11 • ⃝★for

12 • ⃝★ 13 • ⃝★ 14 • ⃝★ 15 • ⃝★
00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★
04 • ⃝★ 05 • ⃝★ 06 • ⃝★ 07 • ⃝★for...in
08 • ⃝★
00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★
04 • ⃝★ 05 • ⃝★ 06 • ⃝★ 07 • ⃝★
08 • ⃝★ 09 • ⃝★ 10 • ⃝★ 11 • ⃝★for...of

12 • ⃝★ 13 • ⃝★
00 × 01 × 02 × 03 ×for await...of
04 × 05 × 06 ×
00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★while
04 • ⃝★ 06 • ⃝★ 05 • ⃝★

Complex
Control flow 00 • ⃝★ 01 • ⃝★ 02 • ⃝★ 03 • ⃝★

with Iterations 04 • ⃝★ 05 • ⃝★ 06 • ⃝★ 07 • ⃝★
Table 3. Results of control flow sensitivity evaluation on HermesControlFlow bench.

Our primary aim is to verify the control-flow sensitivity of the generated Jimple code, rather than
validate the full semantic content of the original source. This approach aligns with Intermediate

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

20 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

Representations (IRs) in static analysis, which preserve essential semantics to facilitate easier
automatic analysis instead of directly exposing the full semantic meaning [58, 62, 111]. As detailed
in Section 4.1, our proposed abstraction specifically transforms control flow-related opcodes, while
preserving other opcode names and parameters. This method allows us to grasp the execution’s
control flow and enables future abstraction of other opcodes for specific analysis needs. IRs balance
critical program information with a simplified, standardized format for analysis and optimization.
While semantic preservation can vary based on IR format and analysis goals, IRs maintain the core
logic and structure necessary for meaningful analysis. We provide a more detailed discussion of
our IR generation in Section 6.1. By verifying control-flow sensitivity, we establish a foundation for
future work involving control flow graphs, Single Static Assignment, and downstream techniques
such as intra-procedural taint analysis.
Benchmark construction: The benchmark involves 97 code samples involving both base

cases originating from JavaScript statements and complex cases. We first collected a set of 89
JavaScript code examples, which were developed based on 13 essential JavaScript statements. These
statements were sourced from the Mozilla Developer Network (MDN) documentation on statements
and declarations in the JavaScript language. [40] In the JavaScript documentation on the MDN,
statements and declarations are grouped into five primary categories: control flow, declaring variables,
functions and classes, iterations, and others. For the purpose of this benchmark, we particularly
focus on the statements that impact the intraprocedural analysis breaking the top-to-bottom
execution sequence. We specifically collected 89 code examples from the "Try it" and "Examples"
sub-sections for each of 13 statements belonging to the control flow and iterations categories. The
"Try it" section in each statement’s documentation is designed to provide an interactive code
execution environment, helping readers grasp the functionality of the corresponding statements.
The "Examples" section, on the other hand, emphasizes the diverse applications and use cases of
each statement. This benchmark includes JavaScript code, the corresponding Hermes bytecode,
and the generated Jimple code. The textual disassembly is also provided to aid in comprehending
the transformation process from JavaScript to Hermes bytecode and subsequently to Jimple. It is
important to note that the code examples for the 13 essential JavaScript statements often include
a combination of multiple statement types, rather than solely focusing on the specific statement
itself. Furthermore, to enhance the evaluation of complex intra-procedural behavior, we included an
additional set of 8 code samples that specifically target scenarios involving a combination of control
flow and iteration statements. These complex scenarios enable a more thorough examination of
how our approach handles intricate intra-procedural patterns that arise from the interplay between
different statement types.

Findings: Our experiments involved a total of 97 code samples, and the results are summarized
in TableTable 3. In instances where a red cross (×) is indicated, the Hermes engine encountered
difficulties in generating the corresponding Hermes bytecode. Consequently, Hermeser was unable
to produce the equivalent Jimple code for these cases. Upon closer inspection, it was discovered
that all these code samples (7 samples of for await...of statement and 1 sample of throw statement)
contained the "await" statement. It is crucial to note that the Hermes engine lacks built-in support
for the "await" statement. To retain the functionality of "await", developers must preprocess their
code using a tool like Babel before compiling with the Hermes engine [39]. However, the code
transformed by Babel would include a substantial amount of older JavaScript versions of code to
replicate the functionality of the "await" statement. For instance, code sample 00 in the for await...of
statement consists of 28 nodes in its Abstract Syntax Tree (AST), whereas the code generated
by Babel contains 3,240 nodes for the corresponding AST, which is excessively large for manual
evaluation. The automatic evaluation of generated Jimple code, particularly for large programs, is
left as future work.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 21

Table 4. Average number of Volume of code

Category # apps Soot without ReuNify Soot with ReuNify Difference

Methods # LOC # Methods # LOC # Added Methods # Added LOC
Popular 494 132 093 1 697 294 162 195 2 879 754 30 102 (+22.79%) 1 182 460 (+69.67%)

RN Toy App 1 43 005 476 859 47 209 632 880 4 204(+9.78%) 156 021 (+32.72%)

For all other test cases, the generated Jimple code successfully maintains the same level of control
flow sensitivity as its original JavaScript counterparts.While the generated Jimple code demonstrates
100% accuracy on the given Hermes bytecode, proving that this accuracy holds true across all
real-world scenarios is a challenging task. Nevertheless, based on the evaluated samples, we assert
that the Hermeser tool is effective in handling control-flow analysis. To further validate the control
flow semantic meaning of the generated Jimple code, future work could explore the application of
JavaScript compiler fuzzing techniques. However, designing an automatic verification process to
assess control flow sensitivity at the Intermediate Language level is a non-trivial undertaking.

Answer to RQ2: To evaluate the control flow sensitivity of the Jimple code produced
by hermeser, we developed the HermesControlFlowBench benchmark, which includes all
essential JavaScript statements that disrupt the top-to-bottom execution order. The results
demonstrate that the Jimple code generated by hermeser maintains the same level of control
flow sensitivity as the original code.

5.4 RQ3: How well does ReuNify enhance Soot-based static analysis on React Native

Android Apps?

Our objective with this RQ is to understand how ReuNify enhances the static analysis on React
Native Android Apps in both JavaScript-side code and Dalvik-side code.

Experimental setup:We evaluate ReuNify on those 494 Hermes engine-enabled apps out of the
1,068 most popular React Native Android Apps from two perspectives: 1 the number of generated
Jimple Code, 2 the number of identified Dalvik-to-Hermes invocation. Since the implementation
of Hermes engine impacts the volume of code implemented in React Native framework in Android
apps [11], we focused our analysis on popular apps that adopted the Hermes engine. This approach
was selected to provide a fair and unbiased comparison. Moreover, given that the Hermes engine
has been widely adopted as the primary engine for React Native, our research results provide
significant contributions to the existing knowledge on the present status of React Native Android
applications using the Hermes engine.
To further assess the practicality of ReuNify, we utilized FlowDroid to generate callgraphs for

1,068 popular React Native apps and 441 React Native malware apps, and compared the 3 size of the
callgraphs before and after integrating ReuNify. Because there are extra JavaScript-side code bases
counted with ReuNify, including the JavaScript-side callgraph with ReuNify in the comparison
would be unfair to the callgraph without ReuNify. A wide range of React Native applications
(containing both popular apps and malicious apps) are involved to further demonstrate ReuNify’s
efficacy. A diverse set (including both popular apps and malware apps) of React Native apps can
further prove the effectiveness of ReuNify.

Volumn of Jimple Code: The quantity and quality of static analysis results produced by Soot’s
framework are heavily reliant on the availability of Jimple code.With ReuNify’s hermeser integrated
into Soot framework, an additional class for Hermes bytecode is created. This class comprises an
average of 30,102 SootMethods with 1,182,460 lines of Jimple code. According to Table 4, with the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

22 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

augmentation of ReuNify’s hermeser, there are 70% more Jimple statements generated

compared with 1,697,294 lines of code generated by Soot.

ReuNify successfully generated the additional Jimple statement for 452 out of 494 apps. The
unsuccessful cases were due to the customizable nature of the bundle name [4], which made it
difficult to locate the JavaScript-side bundle file. To improve the reliability of the analysis, future
work should focus on developing more robust techniques for locating bundle files. For the apps
with located bundle files, all of them were successfully transformed into Jimple code from Hermes
bytecode. Moreover, all SootMethods generated by ReuNify’s hermeser passed Soot’s body validation
(<soot.jimple.JimpleBody: void validate()> [17] in Soot), indicating that the generated Jimple code is
valid in the Soot framework. This allows for additional Soot-based analysis on Hermes bytecode.

Table 5. Average number of Native Module API and Native Component UI

Native

Category Apps Module API

Module API

Methods

Component UI

Component UI

Methods

Popular 494 92 532 55 489
React Native Toy App 1 51 213 22 365

Number of Hermes-to-Dalvik invocation: React Native enables accessing methods on the
Java side from the JavaScript side. As shown in Table 5, React Native apps have an average of
93 Native Module APIs, which contain 569 methods accessible to JavaScript code, and 52 Native
React Components comprising 477 methods for setting UI attributes. As shown in Figure 1, the
Native Module APIs and Components can be sourced from the React Native framework, third-party
libraries, or the developer’s own implementation. To determine the extent of Hermes-to-Dalvik
invocations coming from sources beyond the Core Module APIs and Core Components, we build a
Toy app from the project (React Native CLI Quickstart [28]) in React Native version 0.71. This Toy
app only includes the Core Module APIs and Core Components without any developer’s code or
third-party library. According to Table 5, the most popular React Native Android apps have

over twice the number of Native Module API methods (532 methods) compared to the

React Native Toy app (213 methods) using React Native version 0.71. With the use of Native
Module API and Native Components, more powerful functionalities (in terms of performance and
access to system resources) can be exposed to the JavaScript side. It is customary to involve extra
Native Module APIs and Native Components while developing a React Native Android app.
Size of Callgraph: In static analysis models, callgraph is a crucial component as it offers a

complete perspective of the program’s behaviour. To evaluate the effectiveness of ReuNify in
generating callgraphs, we compared the size of callgraphs produced by FlowDroid with and without
the augmentation of ReuNify, for both popular and malicious React Native Android Apps. Out
of the 1,068 most popular React Native apps and 441 React Native malware apps, callgraphs get
generated successfully on 1,007 and 421 apps respectively, with or without the use of REUNIFY.
Nonetheless, in some cases, due to time limitations or obfuscation techniques, Callgraph failed to
be generated on 61 popular apps and 20 malware apps.
Table 6. Average numbers of nodes and edges before and after ReuNify on 1,007 most popular apps and 421

malware apps

Category # apps without ReuNify with ReuNify Difference

Nodes # Edges # Nodes # Edges # Added Nodes # Added Edges
Popular Apps 1 007 9 206 70 344 16 940 102 830 7 734 (+84.01%) 32 486 (+46.18%)
Malware Apps 421 6 465 36 572 9 824 48 460 3 359 (+51.96%) 11 888 (+32.51%)

We first report the average number of nodes (i.e., the number of methods) and edges (i.e., the
number of potential invocations) in the callgraphs obtained before and after having applied ReuNify.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 23

The call-graph augmentations introduced by ReuNify can be seen in Table 6, where the number
of apps affected by the changes is represented by the # apps column. We observe that all apps’
callgraphs are enlarged by the use of ReuNify (1,007 and 421 for popular and malware apps,
respectively). Additionally, we notice that the number of nodes and edges uncovered with ReuNify
is higher for popular apps than for malware apps: 7,734 vs 3,359 on average per app for nodes and
32,486 vs 11,888 for edges. This highlights that traditional static analyzers that do not consider

the executable code in React Native apps miss a substantial number of nodes and edges in
their call graphs.
By considering the mechanism of React Native, ReuNify can identify previously unreachable

Java methods that are now reachable. The number of such previously unreachable methods is highly
correlated with the number of Hermes-to-Dalvik invocations. The discovery of newly reachable
nodes is significant because it allows static analyzers to avoid treating them as dead code.

Answer to RQ3: Soot tends to miss a significant portion of executable code when analyzing
React Native Android apps. However, by converting Hermes bytecode to Jimple, there is a
70% increase in the number of lines of Jimple code in Soot. Taking into account the React
Native mechanism on the Java side, popular apps experience an increase of approximately
84% in new nodes for callgraph, while malware apps experience an increase of around 52%
in nodes for callgraph.

5.5 RQ4: How effective is ReuNify in finding sensitive data leaks in React Native

Android Apps?

In this research question, we demonstrate the capability of ReuNify in finding potential privacy
leaks in real-world React Native Android apps.

FlowDroid
without ReuNify

FlowDroid
with ReuNify

0 10 20 30 40
#. Leaks

(a) Popular Apps

FlowDroid
without ReuNify

FlowDroid
with ReuNify

0 10 20 30 40
#. Leaks

(b) Malware Apps

Fig. 8. Distribution of the number of leaks detected by FlowDroid with and without ReuNify

Experimental setup: In order to evaluate the effectiveness of ReuNify in finding privacy leaks,
we conducted experiments on both popular apps and malware to demonstrate its effectiveness.
Specifically, we tested ReuNify on 1,068 of the most popular React Native Android apps, as well as
441 React Native malware instances detected in the year 2022 and sourced from VirusShare[33]. In
order to ensure a fair comparison, we utilized the default sources and sinks provided by FlowDroid.
However, it should be noted that ReuNify supports custom sources and sinks tailored to specific
needs and interests, such as those pertaining to JavaScript. Sources and sinks in the context of
privacy leaks refer to the entry and exit points in an app’s code where data can enter and leave
the system. FlowDroid is capable of identifying data flows from sensitive sources to potentially
unsafe sinks. It is important to keep in mind that dataflow analysis can be both time and memory
intensive, and therefore, for each app, we set a maximum time limit of 30 minutes for FlowDroid to
complete its analysis.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

24 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

Fig. 9. Sankey diagram of all newly detected privacy leaks.

Findings: FlowDroid was executed successfully on 1,007 out of the 1,068 most popular apps
and on 421 out of the 441 malware apps, with or without ReuNify augmentation. However, due to
time constraints or obfuscation techniques, FlowDroid failed to run on 61 of the most popular apps
and 20 of the malware apps. In total, applying ReuNify resulted in the detection of 2,690

(4,892 − 2,202) additional privacy leaks for popular apps and 827 (3,576 − 2,749) additional

privacy leaks for malware apps, respectively. The average number of leaks is indicated by
the

⊕
labels in Figure 8(a) and Figure 8(b), respectively. On average, Figure 8(a) indicates that

by incorporating ReuNify, an extra 2 privacy leaks (totaling 4 leaks) were identified in popular
apps compared to only running FlowDroid, which could detect only 2 leaks. Similarly, as shown in
Figure 8(b), with the augmentation of ReuNify, an additional 2 privacy leaks were detected on
average, making a total of 8 leaks, compared to only running FlowDroid (i.e., 6 leaks) for those
malware apps. It is not surprising that more leaks are detected from malware apps than popular
benign apps, as the number of leaks is highly reflective of potential issues in an app.

Types of newly detected privacy leaks:After identifying privacy leaks additionally discovered
by ReuNify, we further categorize the sources and sinks according to SuSi’s classification [31] to
facilitate understanding of each privacy leak. For any sources or sinks that were not classified, we
manually assigned categories based on the functionality of their classes and methods. Among them,
the most common sink type was the Replace sink, represented by the method <java.lang.String:
java.lang.String replace(java.lang.CharSequence,java.lang.CharSequence)>. The method, replace, is
frequently used to substitute a particular sequence of characters in a string with another sequence
of characters. However, if sensitive data (e.g., user credentials) is included in either the original or
replacement character sequences, this information can be inadvertently leaked. We found that for
both popular and malware apps, the most common type of leaked information was data stored in the
database. The second most common type of leaked information for popular apps was Wi-Fi-related
information including Service Set Identifier (SSID) and MacAddress. For malware apps, the second
most common leaked type of source information was telephony information, including Device Id,
Line1Number (phone number of the device’s SIM card), subscriber ID, and SimSerialNumber. For

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 25

both popular and malware apps, more than 98% of sources that leaked from the method, replace,
come from the top two most common sources as described above.
To better comprehend and visualize additional privacy leaks discovered by ReuNify, we have

created a Sankey diagram (Figure 9) that includes newly detected leaks for both popular and
malware apps while excluding the leaks with replace as sinks. It can be observed from Figure 9
that the primary sources of privacy leaks are Database, Location, and Telephony. The sensitive
information is predominantly leaked to SharedPreferences, ContentResolver, and Activity. In fact,
our analysis shows that the use of ReuNify resulted in a significant increase in the number of
detected sensitive data leaks for both popular Android apps and malware.

Answer to RQ4: ReuNify is effective for identifying data leaks that were previously unseen.
Specifically, on average, 2 additional potential leaks can be detected in both popular apps
and malware.

6 DISCUSSIONS

6.1 Limitations

Our approach is a step towards realizing the ambition of full code unification for Android static
analysis. Our current prototype of ReuNify, despite promising performances, presents a few
limitations:
Firstly, ReuNify’s implementation depends on existing tools to extract call graphs for native

code and identify mutual invocations between Hermes bytecode and native code. Consequently,
the limitations of these tools are inherited by ReuNify. These limitations include the difficulty in
accurately determining the boundaries of native functions and the unsoundness in app modeling
with FlowDroid caused by reflective calls, multi-threading, and dynamic loading.

Secondly, our prototype currently relies on the suffix of the default name of the JavaScript
side code, which is non-scalable in some cases. Therefore, the JavaScript side code of some React
Native apps was not located due to the unknown customized loading strategy adopted by the app
developers. In the future, conducting a more comprehensive analysis of the React Native app build
pipeline will be essential to understand the potential effects of employing a versatile technique on
loading JavaScript-side content into React Native’s runtime.
Thirdly, ReuNify does not support analysis for C++ code in React Native Android apps. Both

bridge and JavaScriptInterface modules in old and new React Native frameworks serve for cross-
language communication, which necessitates the implementation of C++ code to achieve the
encapsulation of the platform-specific native code. This would impact the thoroughness of our
analysis of code for React Native applications. However, the usage of JSI and C++ is still experimental,
and the implementation of C++ is being gradually automated by the Codegen module [8] in the
React Native framework. Since C++ code is not as prevalent as Java code at present, ReuNify plans
to gradually incorporate support for C++ code in the future.
Fourthly, a significant limitation arises from the dynamic and complex language features of

Hermes bytecode, which limits the effectiveness of advanced interprocedural analyses, such as
points-to analysis, on the generated Jimple code. Our findings from RQ1 revealed that each Hermes
bytecode opcode carries unique semantic meaning. Fully capturing and transforming these opcode
semantics at the IR level is a complex undertaking beyond our current scope, as IR is primarily
designed to facilitate easier automatic analysis rather than directly expose full semantic meaning [58,
62, 111]. In this study, ReuNify focused on interpreting Hermes opcodes related to conditional
branching and function declaration during transformation, and the control-flow sensitivity was
verified in RQ2. This method allowed us to apply advanced static analysis techniques, such as

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

26 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

Single Static Assignment (SSA), Control Flow Graph (CFG), and intra-procedural taint analysis to
the generated Jimple code. These techniques facilitate tracking information flow and observing the
program behavior. Other Hermes opcodes were transformed into Jimple statements, preserving
their original names and parameters. This serves as a foundation for future research to further
explore their syntax and semantics within the Jimple representation. Future work aims to enhance
the abstract interpretation of Hermes opcodes into Jimple, facilitating more sophisticated static
analysis techniques and points-to analysis.

6.2 Threats to Validity

Evaluation of Intra-procedural analysis on Hermes bytecode. To verify the correctness of the
results, we perform a manual verification of the semantic meaning of the branching transformation.
To achieve this, we design the second research question (RQ2) in Section 5.3 by introducing a
benchmark comprising code snippets of branching-related JavaScript statements sourced fromMDN
documentation and curated complex cases. While Hermeser demonstrates complete accuracy across
the benchmarks, guaranteeing 100% control flow sensitivity in all scenarios remains a challenge due
to the countless possible combinations of control flow statements. Future studies could investigate
the use of JavaScript compiler fuzzing techniques to assess the control flow semantic meaning of
the generated Jimple code [63]. However, developing an automated verification process for control
flow sensitivity at the Intermediate Language level is a complex and non-trivial task [117].
Manual Checking. To verify the use of the native side functionality, we manually checked fifty
Android React Native apps. For Dalvik-to-Hermes links, as the symbols were always available
for the apps we checked (since native methods were pragmatically registered), we were able
to confirm the correctness of those links in the callgraph generated by ReuNify. We reverse-
engineered these apps through Java bytecode decompilers (Jadx [15]) and were able to reach the
same conclusions. Regarding Hermes-to-Dalvik links, the method names are represented as strings,
which are not directly available in the native code. Therefore, we faced a challenge to check if the
symbolic execution yielded correct links. However, we present a solution that utilizes a control-flow-
insensitive technique to infer the type of the register value, which can identify some invocations for
the Java-side code and recover build-in API methods (e.g., console.log(), alert(), JSON.parse(), etc.).
Nonetheless, it remains a challenge to verify if the Hermes-to-Dalvik identification has yielded
correct links. One possible way to verify this would be to execute the code section to trigger the
native code and ensure that the correct information is yielded by Hermes-to-Dalvik identification.
However, this is beyond the scope of this study. Therefore, we have made the hypothesis that the
correct results are yielded from Hermes-to-Dalvik identification.

6.3 Future Work

Our research carries several implications and offers recommendations for future direction on React
Native app analysis.
SupportWhole ProgramAnalysis. Expanding the analysis to support C++ code analysis for React
Native applications is crucial for providing comprehensive and in-depth analysis capabilities. By
incorporating C++ code analysis, the framework can offer a holistic view of the entire React Native
application, considering the interactions and dependencies between JavaScript, Dalvik bytecode,
and C++ components. This expansion allows for the detection of cross-language vulnerabilities
and compatibility issues arising from the interplay between these layers. Whole-program analysis
empowers developers to identify and mitigate security risks, optimize performance, and ensure
the overall stability and reliability of the React Native application across all its components. This
comprehensive approach to React Native application analysis ultimately leads to high-quality,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 27

secure, and performant applications while minimizing the risk of vulnerabilities and performance
issues arising from the interaction between JavaScript, Dalvik bytecode, and C++ code.
Static Analysis on Hermes bytecode. The successful application of static analysis techniques to
Dalvik bytecode in native Android apps highlights the importance of analyzing Hermes bytecode in
React Native apps, despite the significant challenges it presents. Binary code analysis is inherently
difficult due to the complexity of representing compiled code in a format suitable for thorough
analysis [72, 91], and it introduces additional complexities stemming from optimization techniques
applied during compilation. Hermes bytecode, being a variant within the Hermes JavaScript virtual
machine, naturally exhibits many well-known challenges associated with JavaScript source code
analysis, further compounded by the optimization techniques employed by the Hermes engine
during compilation. However, the software engineering and programming language research
communities’ extensive investigation of JavaScript code analysis can serve as a valuable foundation
for approaching Hermes bytecode analysis, with techniques specifically designed for analyzing
JavaScript features being adapted and applied to inform the development of Hermes bytecode
analysis methods. Additionally, the adoption of Jimple as an intermediate representation in other
popular static analysis frameworks, such as Doop [53], Tai-e [109], Qilin [64], and SootUp [30],
could extend their advantages to Hermes bytecode analysis.
Support React Native iOS application analysis. Expanding an analysis framework to include
React Native iOS application analysis is essential for achieving Expanding an existing analysis
framework to support React Native iOS application analysis is a crucial step towards providing
comprehensive and platform-agnostic analysis capabilities. React Native’s use of JavaScript and
the same code format across iOS and Android apps motivates the design of platform-agnostic
analysis for the JavaScript-side code. By extending the framework to encompass iOS-specific input,
developers/analyzers can conduct analysis on React Native applications seamlessly across both
platforms, identifying and mitigating platform-specific vulnerabilities, performance issues, and
compatibility concerns. Integrating iOS analysis support streamlines the development workflow,
reduces duplication of efforts, and promotes code reuse and maintainability, enabling organizations
to efficiently detect and resolve issues, ensure adherence to best practices, and maintain a high
standard of quality across their React Native applications on both iOS and Android.
Downstream analysis for React Native programs. Static analysis of Dalvik bytecode, designed
for downstream analysis within Android apps, has proven effective in improving app quality
by identifying various issues, such as privacy concerns [49], permission misuse [52], energy
consumption problems [76], and compatibility issues [80]. With React Native’s growing popularity,
downstream static analysis has become crucial for ensuring the quality, reliability, security, and
performance of React Native apps. The abstraction layer between JavaScript and native components
introduces unique challenges and vulnerabilities that traditional static analysis techniques may not
easily detect. Downstream analysis examines the compiled native code and its interactions with
the platform, enabling analyzers/developers to identify security risks, performance bottlenecks,
and compatibility issues specific to React Native applications. Analyzing Hermes bytecode could
further include advanced Soot-based static analyses for logic bomb analysis [42] for the detection
of security vulnerabilities[41], compatibility issues [80], and fault localization techniques [98].
However, addressing interprocedural analysis challenges related to heap objects and sophisticated
pointer analysis techniques for Hermes bytecode remains a key area for exploration, which can
also enhance optimization strategies within the Hermes engine.

7 RELATEDWORK

Analysis of Multiple Languages in Android App. The research emphasis has been on analyzing
languages used in Android Apps beyond just Java, and also on conducting cross-language analysis.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

28 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

Lee et al. [74] analysed the inter-communication between Android Java and JavaScript and pre-
sented the framework, HybriDroid, to detect bugs and information leaks in hybrid apps. However,
HybriDroid is Android version sensitive and only focuses on the bridge communication between
Android Java and JavaScript (the other communication approach is callback communication). Alam
et al. [41], in 2016, proposed DroidNative, which can perform Android malware detection con-
sidering both the bytecode and the native code. What’s more, NDroid [99], TaintArt [106], and
PolyCruise [81] were proposed for dynamic taint analysis so as to track sensitive information flows.
JN-SAF and Jucify [101, 113] are also proposed as an inter-language static analysis framework to
detect sensitive data leaks in Android apps. The Jimple statements produced by Jucify are insuffi-
cient and unable to capture the complete implementations of the native functions, which poses a
challenge in commencing further research (inter-procedural analysis) on the native code for whole
program analysis. All the aforementioned tools, however, are task-specific. They also, typically,
perform their analyses separately for bytecode and native code, and later merge the outputs to
present unified analysis results. In contrast, ReuNify is proposed to unify the representation before
task-oriented analyses, which empowers popular analysis pipelines to be directly adopted on the
output of ReuNify.
Android Dalvik Bytecode Analysis. Dalvik bytecode is compiled from either Java source code
or Kotlin source code. In the past decade, static analysis of Android apps mostly targeted on
those Dalvik bytecode. Li et al [79] provide a comprehensive survey of Android apps, focusing on
static analysis approaches. Different static analysis approaches are utilized to detect compatibility
issues [80, 88, 107, 108, 115] and other functional or non-functional faults [59, 66, 78, 82, 86, 114, 116]
across different devices [84, 85]. Moreover, static analysis can be leveraged to collect information in
apps towards improving dynamic testing approaches [70, 90, 105, 118], and contribute to learning-
based approach [56, 65, 87, 88, 119]. The popular artifacts adopted by current researchers are
MalloDroid by Fahl et al. [60], which detects improper use of transport layer security in apps;
FlowDroid by Arzt et al. [49], which is able to find privacy leaks by inspecting illicit information
flow; and IccTA by Li et al. [77], which extends FlowDroid by accounting for inter-component
privacy leaks. Instead of focusing on Java-based Android apps analysis, our work has taken a
step forward by proposing an approach to take an additional programming language, Hermes
bytecode/JavaScript (used in React Native Android Apps), into consideration. We expect to provide
the community with a readily usable framework, which enables researchers and practitioners to
complete their analyses on React Native Android Apps.
JavaScript Program Analysis. JavaScript is traditionally used on client-side as the scripting
language and has been studied [48, 54] long before the appearance of Node.js [95, 96]. Cross-site
scripting (XSS) [94, 104, 112] and Cross-Site Script Inclusion attack (XSSI) [75] attacks are well
studied on the client side. The dynamic and reflective nature of JavaScript poses challenges in
building sound static analyses that can efficiently handle large real-world apps [45, 61, 67, 71, 95,
103]. TAJS [67] and JSAI [68] adopt abstract interpretation to analyze JavaScript programs for
type inference. SAFE [73] and its follow-up work SAFEWAPI [50] covert JS to an Intermediate
Representation (IR) for abstract interpretation. JavaScript call graph construction[55, 61, 96, 102]
has been studied for a long time, which may use static [46], dynamic [110], or hybrid [47] analysis.
For example, Nielsen et al. [96] scan Node.js application to construct modular (e.g., inter-file) call
graph graph. Feldthaus et al. [61] design field-based flow analysis for constructing call graphs.
Existing static call graph construction traditionally faces challenging issues for dynamic features,
such as bracket syntax and Promise [43, 89]. Despite their usefulness for JavaScript code, these
tools are not effective when applied to Hermes bytecode due to the unique syntax. In contrast,
Hermeser is a parser designed for Hermes bytecode. By transforming Hermes bytecode into Jimple
within Soot, ReuNify can be used for various control flow-based analyses.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

Demystifying React Native Android Apps for Static Analysis 29

8 CONCLUSION

As React Native gains popularity in Android app development, it’s crucial to include it in static
analysis. This study explores React Native’s impact on Android app static analysis and introduces
ReuNify, a tool that streamlines the process for both JavaScript-side and Dalvik-side code. ReuNify
unify JavaScript-side code into the IR, Jimple, enabling static analysis on Hermes bytecode and
Dalvik bytecode in the same static analysis framework, soot. The investigation of Hermes opcodes
in real-world apps reveals usage patterns in popular apps and malware. The intra-procedural
static analysis on Jimple code generated from Hermes bytecode is validated using the dedicated
benchmark, "HermesControlFlowBench". ReuNify significantly increases the call graph size of Dalvik-
side code in React Native Android apps, enhancing the Soot-based static analyzer’s performance.
Running FlowDroid with ReuNify uncovered an average of two additional privacy leakages in 1,007
popular React Native Android Apps, confirming the approach as a necessary improvement in the
static analysis landscape for these apps.

Our research provides recommendations to improve future analysis of React Native applications.
To begin, extending the scope of analysis to encompass the C++ code would be beneficial, given
the frequent interaction between JavaScript and native C++ code. This broader coverage offers a
more thorough understanding of the application’s behavior. Additionally, enabling precise inter-
procedural analysis on Hermes bytecode is crucial to understand complex interactions within React
Native apps. Supporting the analysis of React Native iOS applications would further expand the
coverage. Lastly, examining downstream analysis scenarios is another critical component to ensure
the high quality and reliability of React Native applications. These enhancements would create a
more robust framework for analyzing and improving React Native applications.

ACKNOWLEDGMENTS

Grundy is supported by ARC Laureate Fellowship FL190100035.

REFERENCES

[1] 2023. Android Native UI Components. https://reactnative.dev/docs/native-components-android
[2] 2023. AndroidRank. https://www.androidrank.org/
[3] 2023. AppBrain’s statistics about SDKs for Android app frameworks. https://www.appbrain.com/stats/libraries/tag/

app-framework/android-app-frameworks?list=top500
[4] 2023. bundleAssetName. https://reactnative.dev/docs/react-native-gradle-plugin#bundleassetname
[5] 2023. BytecodeFileFormat.h. https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/

BytecodeFileFormat.h
[6] 2023. BytecodeList.def. https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/BytecodeList.

def
[7] 2023. BytecodeVersion.h. https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/

BytecodeVersion.h
[8] 2023. Codegen. https://reactnative.dev/docs/next/the-new-architecture/pillars-codegen
[9] 2023. cordova. https://cordova.apache.org/
[10] 2023. file. https://www.ibm.com/docs/he/aix/7.2?topic=f-file-command
[11] 2023. Hermes: An open source JavaScript engine optimized for mobile apps, starting with React Native. https:

//engineering.fb.com/2019/07/12/android/hermes/
[12] 2023. Hermes engine project. https://github.com/facebook/hermes
[13] 2023. Hermes: JavaScript engine optimized for React Native. https://hermesengine.dev/
[14] 2023. ionic. https://ionicframework.com/
[15] 2023. JadX: Dex to Java decompiler. https://github.com/skylot/jadx
[16] 2023. JavaScriptCore. https://developer.apple.com/documentation/javascriptcore
[17] 2023. JimpleBody. https://www.sable.mcgill.ca/soot/doc/soot/jimple/JimpleBody.html
[18] 2023. JSI (JavaScript Interface). https://reactnative.dev/architecture/glossary#javascript-interfaces-jsi
[19] 2023. Lifecycle of Reactive Effects. https://react.dev/learn/lifecycle-of-reactive-effects

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

https://reactnative.dev/docs/native-components-android
https://www.androidrank.org/
https://www.appbrain.com/stats/libraries/tag/app-framework/android-app-frameworks?list=top500
https://www.appbrain.com/stats/libraries/tag/app-framework/android-app-frameworks?list=top500
https://reactnative.dev/docs/react-native-gradle-plugin#bundleassetname
https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/BytecodeFileFormat.h
https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/BytecodeFileFormat.h
https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/BytecodeList.def
https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/BytecodeList.def
https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/BytecodeVersion.h
https://github.com/facebook/hermes/blob/main/include/hermes/BCGen/HBC/BytecodeVersion.h
https://reactnative.dev/docs/next/the-new-architecture/pillars-codegen
https://cordova.apache.org/
https://www.ibm.com/docs/he/aix/7.2?topic=f-file-command
https://engineering.fb.com/2019/07/12/android/hermes/
https://engineering.fb.com/2019/07/12/android/hermes/
https://github.com/facebook/hermes
https://hermesengine.dev/
https://ionicframework.com/
https://github.com/skylot/jadx
https://developer.apple.com/documentation/javascriptcore
https://www.sable.mcgill.ca/soot/doc/soot/jimple/JimpleBody.html
https://reactnative.dev/architecture/glossary#javascript-interfaces-jsi
https://react.dev/learn/lifecycle-of-reactive-effects

30 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

[20] 2023. Metro. https://facebook.github.io/metro/
[21] 2023. Native Modules Intro. https://reactnative.dev/docs/native-modules-intro
[22] 2023. New Architecture. https://reactnative.dev/docs/the-new-architecture/landing-page
[23] 2023. proguard-rules for React Native Android App. https://github.com/typeorm/react-native-example/blob/master/

android/app/proguard-rules.pro
[24] 2023. React. https://react.dev/
[25] 2023. react-native: A framework for building native applications using React. https://github.com/facebook/react-

native
[26] 2023. React Native Directory. https://reactnative.directory/
[27] 2023. React Native framework CHANGELOG. https://github.com/react-native-community/releases/blob/master/

CHANGELOG.md
[28] 2023. Setting up the development environment. https://reactnative.dev/docs/environment-setup
[29] 2023. Skype. https://play.google.com/store/apps/details?id=com.skype.raider&hl=en&gl=US
[30] 2023. SootUp. https://soot-oss.github.io/SootUp/
[31] 2023. SuSi. https://github.com/secure-software-engineering/SuSi/tree/develop/SourceSinkLists/
[32] 2023. v8. https://github.com/v8/v8
[33] 2023. VirusShare. https://virusshare.com/
[34] 2023. WebView. https://developer.android.com/reference/android/webkit/WebView
[35] 2023. WebView. https://legacy.reactjs.org/docs/state-and-lifecycle.html
[36] 2023. What is cross-platform mobile development? https://kotlinlang.org/docs/cross-platform-mobile-development.

html
[37] 2023. What is cross-platform mobile development? https://survey.stackoverflow.co/2022/#most-popular-

technologies-misc-tech-prof
[38] 2023. Why a New Architecture. https://reactnative.dev/docs/the-new-architecture/why#old-architectures-issues
[39] 2024. hermes issues 1089. https://github.com/facebook/hermes/issues/1089
[40] 2024. mdn web docs. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements
[41] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi. 2017. DroidNative: Automating and

optimizing detection of Android native code malware variants. computers & security 65 (2017), 230–246.
[42] Marco Alecci, Jordan Samhi, Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2024. Improving Logic Bomb Iden-

tification in Android Apps via Context-Aware Anomaly Detection. IEEE Transactions on Dependable and Secure
Computing (2024).

[43] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. 2018. Finding broken promises in asynchronous JavaScript
programs. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–26.

[44] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo: Collecting millions of
android apps for the research community. In Proceedings of the 13th international conference on mining software
repositories. 468–471.

[45] Esben Andreasen and Anders Møller. 2014. Determinacy in static analysis for jQuery. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages & Applications. 17–31.

[46] Gábor Antal, Péter Hegedus, Zoltán Tóth, Rudolf Ferenc, and Tibor Gyimóthy. 2018. Static javascript call graphs: A
comparative study. In 2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 177–186.

[47] Gábor Antal, Zoltán Tóth, Péter Hegedűs, and Rudolf Ferenc. 2021. Enhanced bug prediction in javascript programs
with hybrid call-graph based invocation metrics. Technologies 9, 1 (2021), 3.

[48] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. 2011. A framework for automated
testing of JavaScript web applications. In Proceedings of the 33rd International Conference on Software Engineering.
571–580.

[49] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[50] SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. 2014. SAFEWAPI: Web API misuse detector for
web applications. In Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering. 507–517.

[51] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012. Dexpler: converting android dalvik
bytecode to jimple for static analysis with soot. In Proceedings of the ACM SIGPLAN International Workshop on
State of the Art in Java Program analysis. 27–38.

[52] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2014. Static analysis for extracting permission
checks of a large scale framework: The challenges and solutions for analyzing android. IEEE Transactions on Software

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

https://facebook.github.io/metro/
https://reactnative.dev/docs/native-modules-intro
https://reactnative.dev/docs/the-new-architecture/landing-page
https://github.com/typeorm/react-native-example/blob/master/android/app/proguard-rules.pro
https://github.com/typeorm/react-native-example/blob/master/android/app/proguard-rules.pro
https://react.dev/
https://github.com/facebook/react-native
https://github.com/facebook/react-native
https://reactnative.directory/
https://github.com/react-native-community/releases/blob/master/CHANGELOG.md
https://github.com/react-native-community/releases/blob/master/CHANGELOG.md
https://reactnative.dev/docs/environment-setup
https://play.google.com/store/apps/details?id=com.skype.raider&hl=en&gl=US
https://soot-oss.github.io/SootUp/
https://github.com/ secure-software-engineering/SuSi/tree/develop/SourceSinkLists/
https://github.com/v8/v8
https://virusshare.com/
https://developer.android.com/reference/android/webkit/WebView
https://legacy.reactjs.org/docs/state-and-lifecycle.html
https://kotlinlang.org/docs/cross-platform-mobile-development.html
https://kotlinlang.org/docs/cross-platform-mobile-development.html
https://survey.stackoverflow.co/2022/#most-popular-technologies-misc-tech-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-misc-tech-prof
https://reactnative.dev/docs/the-new-architecture/why#old-architectures-issues
https://github.com/facebook/hermes/issues/1089
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements

Demystifying React Native Android Apps for Static Analysis 31

Engineering 40, 6 (2014), 617–632.
[53] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to

analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages
and applications. 243–262.

[54] Yinzhi Cao, Vaibhav Rastogi, Zhichun Li, Yan Chen, and Alexander Moshchuk. 2013. Redefining web browser
principals with a configurable origin policy. In 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 1–12.

[55] Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. 2022. Automatic root cause quan-
tification for missing edges in javascript call graphs. In 36th European Conference on Object-Oriented Programming
(ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[56] Daihang Chen, Yonghui Liu, Mingyi Zhou, Yanjie Zhao, HaoyuWang, ShuaiWang, Xiao Chen, Tegawendé F Bissyandé,
Jacques Klein, and Li Li. 2024. LLM for Mobile: An Initial Roadmap. arXiv preprint arXiv:2407.06573 (2024).

[57] Haonan Chen, Daihang Chen, Yonghui Liu, Xiaoyu Sun, and Li Li. 2024. Are Your Android App Analyzers Still
Relevant?. In Proceedings of the IEEE/ACM 11th International Conference on Mobile Software Engineering and
Systems. 69–73.

[58] Cliff Click and Michael Paleczny. 1995. A simple graph-based intermediate representation. ACM Sigplan Notices 30,
3 (1995), 35–49.

[59] Luis Cruz, Rui Abreu, John Grundy, Li Li, and Xin Xia. 2019. Do energy-oriented changes hinder maintainability?. In
2019 IEEE International conference on software maintenance and evolution (ICSME). IEEE, 29–40.

[60] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and Matthew Smith. 2012. Why
Eve and Mallory love Android: An analysis of Android SSL (in) security. In Proceedings of the 2012 ACM conference
on Computer and communications security. 50–61.

[61] Asger Feldthaus,Max Schäfer, Manu Sridharan, JulianDolby, and Frank Tip. 2013. Efficient construction of approximate
call graphs for JavaScript IDE services. In 2013 35th International Conference on Software Engineering (ICSE). IEEE,
752–761.

[62] James Gosling. 1995. Java intermediate bytecodes: ACM SIGPLAN workshop on intermediate representations (IR’95).
In Papers from the 1995 ACM SIGPLAN workshop on Intermediate representations. 111–118.

[63] Samuel Groß. 2018. Fuzzil: Coverage guided fuzzing for javascript engines. Department of Informatics, Karlsruhe
Institute of Technology (2018).

[64] Dongjie He, Jingbo Lu, and Jingling Xue. 2022. Qilin: A new framework for supporting fine-grained context-
sensitivity in Java pointer analysis. In 36th European Conference on Object-Oriented Programming (ECOOP 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[65] Haonan Hu, Yue Liu, Yanjie Zhao, Yonghui Liu, Xiaoyu Sun, Chakkrit Tantithamthavorn, and Li Li. 2023. Detecting
Temporal Inconsistency in Biased Datasets for Android Malware Detection. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW). IEEE, 17–23.

[66] Yangyu Hu, Haoyu Wang, Ren He, Li Li, Gareth Tyson, Ignacio Castro, Yao Guo, Lei Wu, and Guoai Xu. 2020. Mobile
App Squatting. In The Web Conference 2020 (WWW 2020).

[67] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis for JavaScript. In Static Analysis: 16th
International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings 16. Springer, 238–255.

[68] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gibbons, John Sarracino, Ben Wiedermann,
and Ben Hardekopf. 2014. JSAI: A static analysis platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT
international symposium on Foundations of Software Engineering. 121–132.

[69] Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. 2015. Practically tunable static analysis framework
for large-scale JavaScript applications (T). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 541–551.

[70] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein. 2018. Automated testing of android
apps: A systematic literature review. IEEE Transactions on Reliability 68, 1 (2018), 45–66.

[71] Erik Krogh Kristensen and Anders Møller. 2019. Reasonably-most-general clients for JavaScript library analysis. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 83–93.

[72] Chris Lattner and VikramAdve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In International symposium on code generation and optimization, 2004. CGO 2004. IEEE, 75–86.

[73] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. 2012. SAFE: Formal specification and
implementation of a scalable analysis framework for ECMAScript. In FOOL 2012: 19th International Workshop on
Foundations of Object-Oriented Languages. Citeseer, 96.

[74] Sungho Lee, Julian Dolby, and Sukyoung Ryu. 2016. HybriDroid: static analysis framework for Android hybrid
applications. In Proceedings of the 31st IEEE/ACM international conference on automated software engineering.
250–261.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

32 Yonghui Liu, Xiao Chen, Pei Liu, Jordan Samhi, John Grundy, Chunyang Chen, and Li Li

[75] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. 2015. The Unexpected Dangers of Dynamic
{JavaScript}. In 24th USENIX Security Symposium (USENIX Security 15). 723–735.

[76] Ding Li, Shuai Hao, Jiaping Gui, and William GJ Halfond. 2014. An empirical study of the energy consumption of
android applications. In 2014 IEEE International Conference on Software Maintenance and Evolution. IEEE, 121–130.

[77] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau, and Patrick McDaniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 280–291.

[78] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. Rebooting Research on Detecting Repackaged Android Apps:
Literature Review and Benchmark. IEEE Transactions on Software Engineering (TSE) (2019).

[79] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein,
and Le Traon. 2017. Static analysis of android apps: A systematic literature review. Information and Software
Technology 88 (2017), 67–95.

[80] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid: Automating the detection of api-related
compatibility issues in android apps. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–163.

[81] Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. 2022. {PolyCruise}: A {Cross-Language} Dynamic Information
Flow Analysis. In 31st USENIX Security Symposium (USENIX Security 22). 2513–2530.

[82] Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li. 2022. A first look at CI/CD adoptions in
open-source android apps. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–6.

[83] Yonghui Liu, Xiao Chen, Pei Liu, John Grundy, Chunyang Chen, and Li Li. 2023. ReuNify: A Step Towards Whole
Program Analysis for React Native Android Apps. In 2023 IEEE/ACM International Conference on Automated
Software Engineering.

[84] Yonghui Liu, Xiao Chen, Yue Liu, Pingfan Kong, Tegawendé F Bissyande, Jacques Klein, Xiaoyu Sun, Chunyang Chen,
and John Grundy. 2022. A Comparative Study of Smartphone and Smart TV Apps. arXiv preprint arXiv:2211.01752
(2022).

[85] Yonghui Liu, Li Li, Pingfan Kong, Xiaoyu Sun, and Tegawendé F Bissyandé. 2021. A first look at security risks of
android tv apps. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops
(ASEW). IEEE, 59–64.

[86] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep Learning for Android Malware Defenses: a
Systematic Literature Review. ACM Computing Surveys (CSUR) (2022).

[87] Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and Li Li. 2024. On the reliability and explainability of language
models for program generation. ACM Transactions on Software Engineering and Methodology 33, 5 (2024), 1–26.

[88] Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, Patanamon Thongtanunam, and Li Li. 2022. Automatically
Recommend Code Updates: Are We There Yet? ACM Transactions on Software Engineering and Methodology
(2022).

[89] Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A model for reasoning about JavaScript promises. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1–24.

[90] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for android applications. In
Proceedings of the 25th international symposium on software testing and analysis. 94–105.

[91] Xiaozhu Meng and Barton P Miller. 2016. Binary code is not easy. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. 24–35.

[92] Developers Meta. 2023. Core Components and Native Components. https://reactnative.dev/docs/intro-react-native-
components

[93] Robin Milner. 1978. A theory of type polymorphism in programming. Journal of computer and system sciences 17, 3
(1978), 348–375.

[94] Yacin Nadji, Prateek Saxena, and Dawn Song. 2009. Document Structure Integrity: A Robust Basis for Cross-site
Scripting Defense.. In NDSS, Vol. 20.

[95] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019. Nodest: feedback-driven static analysis
of Node. js applications. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 455–465.

[96] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. 2021. Modular call graph construction for security
scanning of Node. js applications. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 29–41.

[97] Changhee Park and Sukyoung Ryu. 2015. Scalable and precise static analysis of JavaScript applications via loop-
sensitivity. In 29th European Conference on Object-Oriented Programming (ECOOP 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

https://reactnative.dev/docs/intro-react-native-components
https://reactnative.dev/docs/intro-react-native-components

Demystifying React Native Android Apps for Static Analysis 33

[98] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D Ernst, Deric Pang, and Benjamin Keller.
2017. Evaluating and improving fault localization. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 609–620.

[99] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan. 2014. On tracking information flows through jni in
android applications. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
IEEE, 180–191.

[100] Jordan Samhi, Alexandre Bartel, Tegawendé F Bissyandé, and Jacques Klein. 2021. Raicc: Revealing atypical
inter-component communication in android apps. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 1398–1409.

[101] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu Sun, Kevin Allix, Tegawendé F Bissyandé,
and Jacques Klein. 2022. JuCify: a step towards Android code unification for enhanced static analysis. In Proceedings
of the 44th International Conference on Software Engineering. 1232–1244.

[102] Dominik Seifert, Michael Wan, Jane Hsu, and Benson Yeh. 2022. An asynchronous call graph for JavaScript. In
Proceedings of the 44th International Conference on Software Engineering: Software Engineering in Practice. 29–30.

[103] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study of {ReDoS} Vulnerabilities in
{JavaScript-based} Web Servers. In 27th USENIX Security Symposium (USENIX Security 18). 361–376.

[104] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns. 2014. Precise client-side protection
against {DOM-based}{Cross-Site} scripting. In 23rd USENIX Security Symposium (USENIX Security 14). 655–670.

[105] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su.
2017. Guided, stochastic model-based GUI testing of Android apps. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 245–256.

[106] Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level information-flow tracking system for
android runtime. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
331–342.

[107] Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy, and Li Li. 2023. LazyCow: A Lightweight Crowdsourced Testing
Tool for Taming Android Fragmentation. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2127–2131.

[108] Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy, and Li Li. 2023. Taming android fragmentation through lightweight
crowdsourced testing. IEEE Transactions on Software Engineering 49, 6 (2023), 3599–3615.

[109] Tian Tan and Yue Li. 2023. Tai-e: A Developer-Friendly Static Analysis Framework for Java by Harnessing the Good
Designs of Classics. (2023).

[110] Tajkia Rahman Toma and Md Shariful Islam. 2014. An efficient mechanism of generating call graph for JavaScript
using dynamic analysis in web application. In 2014 International Conference on Informatics, Electronics & Vision
(ICIEV). IEEE, 1–6.

[111] Raja Vallee-Rai and Laurie J Hendren. 1998. Jimple: Simplifying Java bytecode for analyses and transformations. no
(1998).

[112] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2007. Cross
site scripting prevention with dynamic data tainting and static analysis.. In NDSS, Vol. 2007. 12.

[113] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018. Jn-saf: Precise and efficient ndk/jni-
aware inter-language static analysis framework for security vetting of android applications with native code. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1137–1150.

[114] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming android fragmentation: Characterizing and detecting
compatibility issues for android apps. In Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. 226–237.

[115] Lili Wei, Yepang Liu, Shing-Chi Cheung, Huaxun Huang, Xuan Lu, and Xuanzhe Liu. 2018. Understanding and
detecting fragmentation-induced compatibility issues for android apps. IEEE Transactions on Software Engineering
46, 11 (2018), 1176–1199.

[116] Haowei Wu, Shengqian Yang, and Atanas Rountev. 2016. Static detection of energy defect patterns in android
applications. In Proceedings of the 25th International Conference on Compiler Construction. 185–195.

[117] Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric. 2024. Java JIT Testing with Template
Extraction. arXiv preprint arXiv:2403.11281 (2024).

[118] Hailong Zhang, Haowei Wu, and Atanas Rountev. 2016. Automated test generation for detection of leaks in Android
applications. In Proceedings of the 11th International Workshop on Automation of Software Test. 64–70.

[119] Yanjie Zhao, Pei Liu, Xiaoyu Sun, Yue Liu, YONGHUI LIU, John Grundy, and Li Li. [n. d.]. Autopatch: Learning to
generate patches for automatically fixing compatibility issues in android apps. Available at SSRN 4254659 ([n. d.]).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2024.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example

	3 Challenges and Illustration
	3.1 Challenges related to the Hermes bytecode
	3.2 Challenges Related to Dalvik bytecode

	4 Approach
	4.1 Jimple Code Generation
	4.2 Cross-Language Methods Extraction

	5 Evaluation
	5.1 Preliminary Study
	5.2 RQ1: What insights can be gained from profiling Hermes opcode usage in real-world apps?
	5.3 RQ2: To what extent does the Jimple code generated by hermeser maintain the original bytecode’s control flow?
	5.4 RQ3: How well does ReuNify enhance Soot-based static analysis on React Native Android Apps?
	5.5 RQ4: How effective is ReuNify in finding sensitive data leaks in React Native Android Apps?

	6 Discussions
	6.1 Limitations
	6.2 Threats to Validity
	6.3 Future Work

	7 Related work
	8 Conclusion
	Acknowledgments
	References

