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Abstract

The transition from fifth-generation (5G) to emerging sixth-generation (6G) wireless net-
works marks a significant evolution in communication technologies, aiming to support a wide
range of services with enhanced performance requirements. Key use cases such as enhanced
mobile broadband (eMBB) and ultra-reliable and low-latency communications (uRLLC) de-
mand robust and flexible network architectures. The Open radio access network (O-RAN)
Alliance introduces a transformative approach by advocating for disaggregated RAN func-
tionality using open interface specifications. Within this framework, traffic steering (TS)
and user association (UA) become crucial use cases, enabling the efficient management
of network resources and the optimization of service delivery. Given the above context,
this dissertation focuses on designing and developing intelligent TS and UA frameworks
for multi-traffic scenarios, thanks to innovative 5G technologies and standardization, to en-
hance network performance and adaptability in dynamic environments via merging machine
learning (ML) models. In particular, the study delves into four key aspects: 1) TS scheme to
efficiently allocate heterogeneous network resources in the presence of known dynamic traffic
demand and fixed numerology; 2) Long-short-term memory (LSTM)-based traffic prediction
strategy for downlink (DL) eMBB and uRLLC coexistence within orthogonal frequency di-
vision multiple access (OFDMA )-based Open RAN architecture in the presence of unknown
dynamic traffic demands and slice isolation; 3) Deep reinforcement learning (DRL)-based
TS scheme in dynamic environments managing diverse services considering slice awareness
technique and flexible numerologies; and 4) Hierarchical optimization-based intelligent UA,
congestion control, and resource scheduling scheme align with the 7.2x functional split (FS)
in Open RAN architecture assuming non-orthogonality between radio units (RUs).

Firstly, we examine the TS scheme for eMBB and uRLLC services, considering known
traffic demand, slice isolation, and fixed numerology, to efficiently allocate heterogeneous
network resources via both small-cell and macro-cell RUs in Open RAN, a promising
paradigm. While we also formulate a rigorous analysis for the end-to-end (e2e) uRLLC
latency, taking account of all factors of computation and communication. Herein, a succes-
sive convex approximation (SCA)-based iterative algorithm is proposed to solve the pro-
posed problem. The results of our simulations demonstrate the effectiveness of our proposed
centralized optimization method compared to other benchmark schemes.
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Secondly, we shift our focus to an intelligent T'S scheme within the proposed disaggre-
gated Open RAN architecture, aiming to optimize resource utilization in the context of
unknown dynamic traffic demands and flexible numerologies. In this setting, we develop
an LSTM-based TS solution that integrates dynamic UA and radio resource management
(RRM). Our findings demonstrate the effectiveness of the proposed algorithms compared
to benchmark schemes, such as fixed numerology and uniform UA, while highlighting the
significance of applying LSTM for predicting traffic demands with minimal measured mean
square error (MSE).

Thirdly, we explore a novel centralized DRL-based intelligent TS algorithm within the
Open RAN architecture, aimed at enhancing overall system performance while reducing
complexity. Our focus is on deploying a multi-layer optimization and learning framework
designed for different timescales within the non-real-time (non-RT') and near-real-time (near-
RT) RAN intelligent controllers (RICs). Optimization on shorter timescales is performed
at the RAN layer, which adapts to dynamic environments by incorporating inferences and
policies from the RICs. The simulation results confirm the system’s effectiveness in in-
telligently steering traffic through a slice-awareness scheme, significantly improving eMBB
throughput.

Lastly, we address critical challenges in the dynamic landscape of NextG wireless net-
works by proposing an intelligent UA, congestion control, and resource scheduling scheme
for a system model based on Open RAN architecture. This study focuses on mitigating is-
sues such as frequent handovers and load balancing, which are exacerbated by varying traffic
demands across different services. By aligning with the 7.2x F'S option recommended by the
O-RAN Alliance, we develop a hierarchical optimization framework incorporating heuristic
methods, SCA, and distributed DRL across various Open RAN components. The simu-
lation results convincingly demonstrate the superior performance of the proposed scheme
compared to centralized approaches, highlighting its effectiveness in optimizing network
operations in dynamic environments.
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review, limitations of existing works, and contributions of this thesis are described. Chap-
ter 2 provides and details common knowledge about the evolution of radio access network
(RAN) over time from distributed RAN (D-RAN) to Open RAN, Open RAN architecture,
and machine learning (ML) applications within Open RAN. Chapter 3 presents a joint RAN
resource allocation scheme to realize enhanced mobile broadband (eMBB) and ultra-reliable
and low-latency communications (WURLLC) coexisting in an orthogonal frequency division
multiple access (OFDMA)-based Open RAN system in the presence of known traffic de-
mands while assuming the fixed numerology. Chapter 4 includes the same scenario with
unknown traffic demands in which a long-short-term memory (LSTM) method is proposed
to predict the dynamic traffics to optimize the network performance. A novel intelligent
traffic steering (TS) framework is proposed and analyzed in Chapter 5, where the benefits of
adding deep reinforcement learning (DRL) to Open RAN’s layers are illustrated to address
challenges like varying channel conditions and unpredictable demand fluctuation. In Chap-
ter 6, a novel intelligent user association (UA), congestion control, and resource scheduling
scheme is proposed and studied to overcome frequent handovers and load balance faced with
the varying traffic demands of different services in dynamic environments. Finally, Chapter
7 provides concluding remarks and future research directions.
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Chapter

Introduction

Fifth-generation (5G) and beyond, often referred to as NextG wireless networks, mark a
significant departure from the radio-focused nature of previous generations of mobile com-
munication systems. These networks represent a transformative shift towards more efficient
architectures, aimed at enhancing the end-user experience and enabling new services, ecosys-
tems, and revenue streams [1]. Designed with advanced capabilities, 5G offers significantly
higher data rates, lower latency, increased capacity, and more efficient spectrum utilization,
which collectively support a wide range of usage scenarios and applications.

The International Telecommunication Union-Radio Communication Sector (ITU-R) [2]
has categorized the potential use cases for 5G networks into three main groups: enhanced
mobile broadband (eMBB), ultra-reliable low-latency communications (WURLLC), and mas-
sive machine-type communications (mMTC), as illustrated in Fig. 1.1. eMBB extends tra-
ditional mobile broadband services by providing high data rates and supporting applications
such as augmented reality, 4K streaming, and enterprise collaboration. These applications
are enhanced through the high-speed connectivity that eMBB delivers. uRLLC is designed
for services that require ultra-high reliability and low latency, such as industrial wireless
control and intelligent transportation systems. These services demand precise control and
safety, which uRLLC ensures through its robust communication protocols [3]. mMTC fo-
cuses on internet of things (IoT) services, characterized by large numbers of devices, such as
those in smart cities and remote monitoring systems. This category prioritizes low device
complexity, long battery life, and extensive coverage while managing a vast array of devices
with relaxed latency and low data rate requirements [4,5].

However, the existing radio access network (RAN) architectures struggle to meet the
diverse requirements of these service categories due to their inflexible, “one-size-fits-all” de-
sign. This rigidity hampers efficient resource allocation and adaptation to varying service
demands, leading to suboptimal performance and user experiences [6]. To overcome these
challenges, the Open RAN architecture has emerged as a promising solution. It enables
network operators to dynamically adjust to changing traffic patterns, latency needs, and
throughput demands across different services [7]. Key use cases for Open RAN include traf-
fic steering (TS) and user association (UA). These involve distributing traffic loads across
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FIGURE 1.1: Overview of the three core service categories in 5G mobile network based on ITU-R.

various radio access technologies (RATs) within the RAN and managing the mobility of in-
dividual user equipment (UE) within the network [8]. Despite the flexibility and intelligence
offered by Open RAN, it faces several challenges, particularly in IMT-2020 infrastructure.
These challenges include unpredictable traffic demands, cell congestion, load balancing,
and frequent handovers in UE-centric multi-traffic scenarios [9]. Addressing these issues
requires the development of intelligent frameworks capable of optimizing RAN performance
in dynamic environments.

1.1 Related Works

In this section, we provide an overview of the most relevant studies that relate to the primary
contributions of this dissertation. Specifically, we discuss the related work in three key areas:
radio resource management (RRM) in multi-traffic scenarios such as coexistence of eMBB,
mMTC, and uRLLC; UA and TS in traditional RAN architectures; and the advancements
in intelligent TS and UA within the context of Open RAN.

1.1.1 Radio Resource Management in Multi-traffic Scenarios

The coexistence of eMBB, mMTC, and uRLLC within a single network supports a range
of applications with varying demands. However, their differing requirements classify them
as heterogeneous services, creating a substantial challenge for RRM to ensure seamless
integration. To tackle this challenge, extensive research has investigated how RRM can
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manage these heterogeneous services within traditional cellular RAN architectures, lever-
aging cutting-edge 5G technologies. Among these, network slicing (NS) offers a solution
by creating customized network slices tailored to meet the diverse requirements of eMBB,
mMTC, and uRLLC services, including data rates, connectivity, latency, and reliability.
For instance, the authors in [10-14] have studied the resource scheduling for coexistence
of three major services i.e., eMBB, mMTC, and uRLLC in 5G networks. In [10], various
NS schemes for uplink performance were analyzed, comparing orthogonal multiple access
(OMA) and non-orthogonal approaches for eMBB, uRLLC, and mMTC services with a
focus on the benefits of rate-splitting multiple access. The authors in [11] investigated the
benefits of non-orthogonal sharing of RAN resources in uplink communications for eMBB,
mMTC, and uRLLC devices using a technique called heterogeneous non-orthogonal multiple
access (NOMA). A scheduling problem of allocating time-frequency resources with differ-
ent numerologies to support heterogeneous services in 5G systems was proposed in [12] to
maximize user scheduling while satisfying their service delay and data transmission require-
ments. The study in [13] proposed a fairness-aware uplink resource allocation scheme for
5G RAN slicing, focusing on uRLLC, eMBB, and mMTC, introducing a new optimization
problem and a hierarchical framework for efficient resource and power allocation. A deep
reinforcement learning (DRL) approach was proposed in [14] to address NS challenges in
beyond 5G networks by handling uncertainties in demand and channel state information
(CSI) to maximize utility for eMBB, uRLLC, and mMTC, proposing a non-convex model
and applying a recurrent deterministic policy gradient algorithm.

Since uRLLC and eMBB are two vital services in 5G networks, recent research has pri-
marily focused on their coexistence using advanced 5G technologies. The inherent trade-offs
between latency, reliability, and spectral efficiency make radio resource allocation between
eMBB and uRLLC a complex scheduling challenge. Numerous studies have recently ex-
plored the coexistence of eMBB and uRLLC under various scenarios such as NS [15-22].
For example, the studies in [15,20] tackled the co-scheduling of eMBB and uRLLC traf-
fic using a puncturing technique. For instance, the optimization problem in [15] aimed to
maximize the minimum expected achieved rate for eMBB users while meeting uRLLC re-
quirements. The approach included a penalty successive upper bound minimization-based
algorithm for eMBB scheduling and a transportation model for uRLLC. While [16] exam-
ined the performance of orthogonal and non-orthogonal multiple access for multiplexing
eMBB and uRLLC users in the uplink of a multi-cell cloud RAN (C-RAN). The authors
in [17] studied a 5G network supporting both uRLLC and eMBB, proposing a dynamic
resource allocation scheme using a two-dimensional bitmap for finer granularity and lower
false cancellation rates. They also introduced a power control method to ensure uRLLC
reliability with minimal impact on eMBB and a dynamic selection mechanism with load
prediction for adaptive scenario handling. In [18], a puncturing scheme was proposed to
address the coexistence of uURLLC and eMBB services in 5G networks by formulating an
optimization problem that maximizes the minimum expected achieved rate of eMBB users
while meeting uRLLC requirements. Besides, balancing both services with conflict re-
quirements in the presence of limited resources is one of the crucial tasks in multi-traffic
scenarios in 5G networks. To this end, to minimize the impact on eMBB users while ensur-
ing uRLLC reliability, the authors in [19] proposed a risk-sensitive approach for allocating
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resources in 5G networks. Besides, to address the scheduling challenges arising from spec-
trum sharing between uRLLC and eMBB services, [20] proposed a co-scheduling approach
using a puncturing technique within multiple-input multiple-output (MIMO) NOMA sys-
tems. The primary objective of [20] was to maximize the eMBB data rate while meeting
uRLLC latency requirements through joint user selection and power allocation scheduling.
Additionally, the stringent latency and reliability demands of uRLLC UEs require explicit
prioritization. To address this, the authors in [21] developed a framework that employs
preemptive priority service at new radio (NR) base stations (BS). This framework aimed
to simultaneously support both services in industrial environments by leveraging stochastic
geometry and queuing theory. Besides, the coexistence of uRLLC and eMBB quality of ser-
vice (QoS) on the same radio spectrum creates a complex scheduling optimization challenge.
This requires novel scheduling solutions that cross-optimize system performance based on a
UE-centric approach rather than the traditional network-centric approach used in current
cellular technologies. Accordingly, the authors in [22] proposed a null-space-based spatial
preemptive scheduler for joint uRLLC and eMBB traffic in densely populated 5G networks
to maximize eMBB ergodic capacity while ensuring uRLLC requirements are met. In [23],
Mehdi et al. proposed a hierarchical deep learning framework to support eMBB and URLLC
network slices in a shared RAN infrastructure. They applied numerology, mini-slot-based
transmission, and punctured scheduling techniques to optimize resource allocation.

Inspired by industrial IoT, [24] proposed using NOMA to enhance the connectivity of
uRLLC devices in the uplink to the same BS, applying this approach to both orthogonal
and non-orthogonal NS scenarios with eMBB devices. In [25], a framework was proposed
that incorporates multiple uRLLC and multicast eMBB slices within a C-RAN;, considering
the finite blocklength capacity to capture the uRLLC delay while utilizing the multicasting
to improve the eMBB throughput. This framework aimed to maximize the C-RAN oper-
ator’s revenue by efficiently managing the admission of RAN slice requests while adhering
to limited physical resource constraints. To enhance efficiency and reduce computational
complexity in radio resource management frameworks, [26,27] also proposed the intelligent
RRM scheme designed to meet the stringent latency, reliability, and high data rate require-
ments for both uRLLC and eMBB services, using DRL-based architecture in two phases,
including eMBB resource allocation in and uRLLC scheduling, by leveraging the puncturing
technique.

To further enhance network performance and ensure more reliable connections in beyond-
5G wireless networks, multi-connectivity (MC) has been developed as an efficient alterna-
tive to the carrier aggregation technique. For example, the authors in [28] examined how
this technique can be applied to meet the strict reliability requirements of downlink (DL)
uRLLC service in 5G networks. Their approach involved utilizing multiple BSs to transmit
to a uRLLC service by preempting time-frequency resources initially allocated to eMBB
UEs. A dynamic MC-based joint scheduling framework with TS for eMBB and uRLLC was
proposed in [29], assuming NS to avoid the queue of uRLLC, which improves the through-
put of eMBB under the guarantee of uRLLC latency. The authors in [30] also introduced
millimeter-wave (mmWave) communications and MC into 5G uRLLC systems to improve
coexistence with eMBB, enhancing spectrum efficiency and reliability. They developed a
resource management strategy that maximizes eMBB throughput while meeting uRLLC’s
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strict requirements.

1.1.2 User Association and Traffic Steering in Traditional RAN

Extensive research has focused on optimizing user association to improve network perfor-
mance. Key studies in this area have explored various strategies, including dynamic user
association algorithms, resource allocation techniques, and their impacts on network effi-
ciency and service quality [31-38]. For instance, [31] addressed the challenge of optimizing
user association in small cell networks to improve capacity by actively directing users to
lighter-loaded tiers via proposing a low-complexity distributed algorithm while achieving
near-optimal performance with minimal loss. A joint user association and resource alloca-
tion problem for the downlink transmission focusing on the QoS demands of uRLLC and
eMBB services was proposed in [32] to efficiently manage IoT applications with strict QoS
requirements in fog networks with limited resources. For example, in [33], a context-aware
user-cell association method was proposed to balance traffic and satisfy QoS requirements in
small cell networks using a novel matching theory-based algorithm. In addition, a joint user
association, admission control, and power allocation problem in heterogeneous C-RAN was
formulated in [35] to maximize network throughput. The problem, categorized as a mixed-
integer non-linear problem (MINLP), was addressed using an outer approximation approach
based on linear programming to simplify the NP-Hard problem. The authors in [36] for-
mulated a user association problem in 5G networks with dense small cell deployment and
mmwave backhaul to maximize both energy and spectrum efficiency while maintaining user
QoS. In [37], a framework was developed to jointly optimize energy efficiency, spectrum
efficiency, and queue length in 5G long-term evolution-advanced (LTE-A) heterogeneous
networks while addressing complex resource allocation, user association, and power con-
trol problems using mixed-integer programming and the drift-plus-penalty approach for
stochastic optimization. In [38] a joint optimization functional split (F'S), centralized unit-
distributed unit (CU-DU) assignment, BS working mode, user association, and routing
scheme were formulated to minimize total expenditure and complexity in virtualized RAN
(VRAN).

To dynamically direct traffic across different cells and BSs to balance loads and improve
overall efficiency, several studies in the literature have primarily focused on investigating
TS in traditional RAN networks [39-44]. Among these efforts, the authors in [39] devel-
oped schemes for dynamic TS and energy-efficient RAN moderation in 5G networks by
leveraging multiple radio links for integrating LTE and 5G networks. The main aims were
to reduce packet delivery time by increasing capacity and reliability while also decreasing
power consumption through efficient network operation. An energy-sustainable TS frame-
work was proposed in [40], which dynamically adjusts the traffic load to align with energy
distributions across both spatial and temporal domains through inter-tier and intra-tier
steering, pushing, and caching. To efficiently address dynamic network conditions, [41]
proposed a network-aided TS technique for 5G mobile systems. This technique leveraged
a machine learning (ML) algorithm to identify dynamic network conditions and manage
traffic across multiple RATSs based on the ratio of measured throughput, thereby enhancing
network efficiency. For instance, in [42], a multiservice-type based transmission strategy for
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optimizing traffic scheduling in multipath transport was developed to enhance both com-
munication throughput and network resilience by effectively managing multiple network
paths while meeting delay QoS constraints. Besides, in [43], a green TS framework was
proposed to conserve energy in green mobile communications. This framework aimed to
reduce overall network power consumption and maximize aggregated throughput by em-
ploying software-defined radio technology, spectrum-based cell zooming techniques, and the
long-term evolution of the licensed assisted access concept. In addition, the authors in [44]
took advantage of the MC technique to present a TS approach that leverages network and
UE performance metrics to maximize the perceived quality of experience (QoE) of eMBB
UEs, focusing on improving throughput and mean opinion score as key QoE metrics.

1.1.3 Intelligent Traffic Steering and User Association in Open RAN

Building on the discussion of traffic steering in traditional RAN, which focuses on opti-
mizing resource allocation and managing service demands through established methods, we
now turn our attention to the advancements in the Open RAN realm. In Open RAN, the
approach to traffic steering is evolving with the integration of intelligent, software-defined
techniques. These new methods leverage advanced data analytics, machine learning, and
network programmability to enhance the flexibility and efficiency of traffic management.
Intelligent T'S uses advanced algorithms, often integrating artificial intelligence (AI) and
ML, to dynamically allocate network resources in real time, focusing on improving network
efficiency. However, it is important to note that research into intelligent traffic steering and
user association specifically within the Open RAN context remains limited. For example, a
joint user association-placement optimization problem under resource and QoS constraints
within Open RAN architecture was formulated in [45] to enhance user admissibility, reduce
deployment costs, and improve fairness. Authors in [46] studied a distributed TS mecha-
nism between LTE and Wi-Fi networks based on a learning mechanism that enables each
UE to select the proper network under dynamic network conditions. In [47], the problem
of resource imbalance caused by overloaded connectivity, which results in excessive requests
to the nearest radio remote head (RRH), was addressed using a dynamic RRH gateway
steering method. This approach employed a lightweight K-Nearest Neighbor (KNN) super-
vised learning algorithm to direct UE requests to the most suitable RRHs, optimizing QoS
in real-time IoT networks. The study in [48] also introduced an inter-slice resource block
(RB) leasing and association adjustment scheme for Open RAN architecture, including a
prediction module for forecasting RB demand, a leasing module for balancing resource iso-
lation and costs using an iterative strategy, and an RB association adjustment module to
ensure interference isolation.

However, these related works mainly focused on optimizing TS via ML algorithms in
traditional RANs that are closed and inflexible in response to heterogeneous networks. To
address this issue, the Open RAN paradigm offers an “open” architecture that enables in-
telligent optimization of the RAN at the UE level due to its nature of architecture, which
empowers the application of AT/ML techniques in each layer. For example, a multi-layer
intelligent TS framework utilizing reinforcement learning (RL), inner approximation, and
bisection search methods was proposed in [49] to efficiently route traffic to appropriate radio
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units (RUs). While the authors in [50] proposed a novel UE-specific O-RAN intelligent TS
framework that leverages convolutional neural networks (CNNs) to optimally assign BSs to
UEs. They implemented this framework within the innovative non-standalone Open RAN
(ns-O-RAN) software and evaluated its performance on a large-scale deployment. In [51],
an intelligent T'S scheme for uRLLC applications within Open RAN was presented to avoid
network congestion while reducing the queuing delay based on a two-layered ML algorithm.
However, existing TS methods suffer from performance degradation due to unnecessary
handovers. To avoid the ping-pong phenomenon, [52] proposed an ML-aided intelligent TS
scheme including UE classification, throughput prediction, and the TS technique guarantee-
ing an even load distribution among cells while maintaining an acceptable throughput level.
Due to the disaggregated nature of the Open RAN architecture, it also enables emerging
federated learning (FL) methods within its layers. To exemplify, [53] proposed a federated
meta-learning-based algorithm for RAT allocation within the Open RAN paradigm. This
algorithm rapidly adapts to dynamically changing environments to meet UE demands and
deliver higher QoS values. In [54], a novel hierarchical RL-aided load-aware TS framework
was proposed to meet the diverse QoS requirements for various traffic types. This frame-
work consists of a meta-controller and a controller: the meta-controller sets thresholds for
load balancing, while the controller handles traffic admission to the appropriate RAT at a
lower level.

1.2 Motivation and Limitations of Existing Works

In this section, we point out some of the disadvantages, limitations, and challenges in
the current literature that directly motivate this dissertation. In the following, the main
limitations of the existing intelligent T'S studies have been raised in three parts to motivate
this thesis to address them.

e The rigidity of traditional RAN, as a monolithic architecture built on black-box hard-
ware, offers limited flexibility in adapting to dynamic network conditions and hetero-
geneous service demands. While traditional RAN supports features like remote config-
uration and management to some extent, it lacks the modularity and programmability
necessary for comprehensive, on-demand reconfiguration and optimization across the
entire network. This rigidity makes it challenging to effectively address the conflict-
ing demands of heterogeneous services in beyond-5G wireless networks, especially in
scenarios requiring a holistic view of network conditions for real-time decision-making
and resource allocation. Hence, one of the best approaches to managing this issue is
to use TS, one of the primary use cases in 5G networks, which routes UE flows by the
most appropriate radio resources. Although a few of the mentioned studies [14, 23]
have employed ML methods to reduce complexity, the majority [10-13,15-22,24-30]
have relied on heuristic methods or difference convex algorithms, which often result in
high complexity and low accuracy due to the coupling between optimization variables
and their combinatorial nature.

e Although TS has been extensively studied in various wireless system models prior
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to Open RAN, further research is needed to explore TS within the Open RAN ar-
chitecture. Such research can provide new insights, enhance network efficiency, and
contribute to the development of fully automated networks. Specifically, the studies
mentioned in [39-44] do not examine TS schemes tailored for multi-traffic downlink
(DL) orthogonal frequency division multiple access (OFDMA) systems in 5G Open
RAN architecture. While these works address network-centric optimization, they fall
short of considering automated control and optimization of network functionalities
that are customized to the specific needs of individual UEs in heterogeneous scenarios.
Moreover, they do not leverage state-of-the-art 5G technologies in a comprehensive
manner. For example, integrating dynamic multi-connectivity (MC), network slicing
(NS), flexible numerologies, mini-slots, and slice-awareness into an optimal TS frame-
work to meet diverse QoS requirements remains largely unexplored in the context of
Open RAN.

e While the features enabled by Open RAN, such as intelligence and closed-control loops
among its nodes, could theoretically be implemented in traditional RAN systems,
the modular and open nature of Open RAN significantly simplifies and enhances
their deployment. Most existing works focus on step-by-step design and development
of Al-based xApps for the near-RT RIC within the O-RAN architecture but often
overlook the mathematical aspects of the models and the integration of cutting-edge
5G technologies. In contrast, studies such as [46,47,49-54] have explored intelligent
TS in Open RAN, leveraging ML algorithms. Open RAN’s centralized RICs provide a
powerful platform for directing traffic effectively, particularly in UE-centric scenarios
targeting individual QoS requirements. However, these studies often fail to address
critical aspects, such as routing, congestion control, dynamic and unpredictable traffic
demands, and UE-centric conditions, which are essential for achieving multi-layer QoS
in Open RAN environments.

This dissertation addresses the challenges of intelligent TS in Open RAN scenarios,
particularly in managing the conflicting demands of heterogeneous services such as eMBB
and uRLLC, handling dynamic and unpredictable traffic conditions, and optimizing resource
allocation while ensuring multi-layer QoS. These challenges are compounded by the need
for scalable and automated solutions that leverage the modular and flexible nature of the
Open RAN architecture. An outline of the contributions made in this thesis is provided in
the following section.

1.3 Thesis Outline and Contributions

The contributions of this dissertation are divided into four main chapters, with each chap-
ter detailing and highlighting its objectives to underscore the key achievements. First, in
Chapter 3, we elaborate a general framework for TS within Open RAN architecture in the
presence of known traffic demand. Then, we study a DL OFDMA-based coexistence eMBB
and uRLLC scenario addressing the unknown dynamic traffic demand via long-short-term
memory (LSTM) model in Chapter 4. This framework has been used within Chapter 5
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exploring a computationally efficient design of intelligent TS by merging a centralized DRL
model into an Open RAN architecture for multi-traffic scenarios. Finally, in Chapter 6,
we investigate an intelligent UA and congestion control framework through a decentralized
DRL model employed in the Open RAN architecture with 7.2x FS.

Chapter 3: Traffic Steering for eMBB and uRLLC Coexistence in Open Radio
Access Networks — Part I: Known Traffic Demand

We investigate a general framework to formulate and address the TS scheme for multi-
traffic scenarios within Open RAN architecture in Chapter 3.

e First, we provide a D, OFDMA TS framework based on MC and NS techniques to
centrally allocate network resources within the Open RAN architecture to maximize
eMBB throughput while minimizing worst user uRLLC latency under known traffic
demands. This framework assumes fixed numerology and isolated slices for both
eMBB and uRLLC services and benefits from both small and macro cells for RUs.

e Second, an efficient iterative algorithm that ensures at least a locally optimal solution
is proposed to address the relaxed optimization problem. This approach is based on
the successive convex approximation (SCA) method.

e Finally, we provide numerical results, proving the fast convergence behavior of the
proposed algorithm and verifying its effectiveness in terms of eMBB throughput and
end-to-end (e2e) uRLLC latency, compared with two schemes: uniform power alloca-
tion and random resource allocation.

The output of this chapter is published in:

[C1] F. Kavehmadavani, V.D. Nguyen, T.X. Vu, and S. Chatzinotas, “Traffic Steering
for eMBB and uRLLC Coexistence in Open Radio Access Networks,” in 2022 IEFEE
International Conference on Communications Workshops (ICC Workshops), Seoul,
Korea, May 2022, Doi: 10.1109/ICCWorkshops53468.2022.9814611.

Chapter 4: Traffic Steering for eMBB and uRLLC Coexistence in Open Radio
Access Networks — Part II: LSTM Traffic Prediction

This chapter provides a joint intelligent traffic prediction, dynamic RAN slicing, flow-
split distribution, and RRM scheme befitting the Open RAN architecture in the presence
of unknown dynamic traffic demands.

e To achieve the maximum eMBB throughput while assuring the minimal uRLLC la-
tency requirement and vice versa, we propose a joint intelligent traffic prediction,
flow-split distribution, dynamic RAN slicing, and RRM framework under unknown
dynamic traffic demands within the OFDMA-based Open RAN architecture. To this
end, two optimization problems are developed, each with a separate objective function
that is fitted to the service while meeting the following constraints: QoS requirements,
slice isolation, power budget, and maximum fronthaul (FH) capacity and queuing
buffer.
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e Then, to adapt to dynamic environments on different time scales, we decompose each
formulated optimization problem into two long-term and short-term subproblems.
The long-term subproblem is mapped into three dependent rAPPs at non-real-time
(non-RT) RIC, aiming to predict dynamic traffic demands, RAN slicing, and flow-split
decisions. By using the SCA method, the resulting non-convex short-term subproblem
deploying at the near-real-time (near-RT') RIC is transformed into a form that is more
computationally tractable.

e Numerical results are presented to illustrate the rapid convergence of the proposed
algorithm and to validate its effectiveness in comparison to the following benchmark
schemes: 1) fixed numerology; 2) equal flow-split distribution; 3) single connectivity;
and 4) the proposed framework under known traffic demands.

The achievement of this chapter is published in the following venue:

[J1] F. Kavehmadavani, V.D. Nguyen, T.X. Vu, and S. Chatzinotas, “Intelligent Traf-
fic Steering in Beyond 5G Open RAN Based On LSTM Traffic Prediction,” in IFEE
Transactions on Wireless Communications, March 2023, Doi: 10.1109/TWC.2023.3254903.

Chapter 5: Empowering Traffic Steering in 6G Open RAN with Deep Rein-
forcement Learning

In Chapter 5, a multi-layer intelligent TS framework assuming slice-awareness technique
within the OFDMA-based Open RAN is presented to centrally address challenges like high
complexity, varying channel conditions, and dynamic traffic demands.

e We introduce a novel intelligent TS framework utilizing dynamic MC, slice-aware RAN
slicing, and mixed numerology multiplexing in both frequency and time domains to
minimize the long-term average queue length of eMBB UEs and the long-term average
uRLLC latency, considering QoS requirements, slice awareness, power budget, and
traffic flow-split decisions.

e This framework handles the lack of complete information such as time-varying CSI
and queue length, reducing computational complexity by making decisions per frame
instead of each time slot through a centralized ML method. Therefore, RICs at the
upper Open RAN layers and DUs at the function Open RAN layer handle a two-stage
optimization strategy on distinct time frames. Customized xAPP at near-RT RIC
handles the long-term subproblem (frame structure), while DUs handle the short-
term subproblem (time slot structure).

e Lastly, using a large-scale simulation set, we evaluate the performance of our method
in comparison to schemes like slice isolation, SCA, etc..

The outputs of this chapter are published in:

[J2] F. Kavehmadavani, V.D. Nguyen, T.X. Vu, and S. Chatzinotas, “Empowering Traf-
fic Steering in 6G Open RAN with Deep Reinforcement Learning,” in IEEE Transac-

tions on Wireless Communications, (Early Access), May 2024, Doi:
10.1109/TWC.2024.3396273.
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[C2] F. Kavehmadavani, V.D. Nguyen, T.X. Vu, and S. Chatzinotas, “On Deep Rein-
forcement Learning for Traffic Steering Intelligent ORAN,” in 2023 IEEE Globecom
Workshops (GC Wkshps), Kuala Lumpur, Malaysia, December 2023. Doi: 10.1109/GCWk-
shps58843.2023.10464606.

Chapter 6: Intelligent User Association and Scheduling in Open RAN with 7.2x
Functional Split: A Hierarchical Optimization Framework

In Chapter 6, we propose a joint intelligent UA, congestion control, and resource schedul-
ing scheme to address two critical challenges: frequent handovers and load balancing within
the Open RAN architecture, assuming a 7.2x F'S. While a classical RAN architecture could
support similar functionalities, the 7.2x F'S offers key advantages in flexibility, modularity,
and efficient distribution of network functions. By separating functions across RAN nodes, it
enables more granular control over resource allocation, dynamic traffic management, and de-
centralized power control, which is critical for minimizing latency. This approach enhances
traffic steering and congestion management, leveraging the capabilities of the near-RT RIC,
DU, and RUs. In this scenario, UEs served by a single RU experience orthogonality in
terms of resource allocation, while interference between different RUs can occur due to
non-orthogonality, impacting the overall performance.

e Aligning with the 7.2x F'S option recommended by the O-RAN Alliance, we proposed
a novel intelligent UA, congestion control, and resource scheduling scheme, cater-
ing to both eMBB and uRLLC services. The formulated problem aims to minimize
eMBB queue lengths and uRLLC latency while considering congestion control, power
budgets, and other practical constraints.

e A hierarchical optimization approach combining heuristic, iterative SCA, and dis-
tributed DRIL-based algorithms is proposed to solve the formulated problem. Dif-
ferent Open RAN’s nodes serve as hosts for each of the aforementioned algorithms,
according to 7.2x FS. To achieve this, the customized UA-xAPP located at near-RT
RIC is in charge of updating UA variables via a heuristic algorithm, while physical
resources are optimized in CUs through SCA method and a distributed DRL-based
algorithm is deployed in RUs to optimize the power.

e Eventually, we provide comprehensive numerical results that demonstrate the superior
performance of the proposed solution compared to the centralized scheme, OFDMA,
and other schemes.

The outputs of these contributions are outlined below:

[J3] F. Kavehmadavani, T.X. Vu, V.D. Nguyen, and S. Chatzinotas, “Intelligent User
Association and Scheduling in Open RAN: A Hierarchical Optimization Framework,”
in IEEFE Transactions on Wireless Communications.

[C3] F. Kavehmadavani, T.X. Vu, and S. Chatzinotas, “Intelligent User Association
and Resource Scheduling in Open RAN with 7.2x Functional Split,” in 2024 IEEE
Globecom Conference, Cape Town, South Africa, December 2024.
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Chapter 7: Conclusions and Future Research

Finally, Chapter 7 provides the conclusions of this dissertation and a discussion about
the potential avenues for future works.
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Background

A mobile network architecture consists of three key components: the core network (CN),
the radio access network (RAN), and the user equipment (UE), as shown in Fig. 2.1 (a) [55].
The CN serves as the backbone of the network, managing access, mobility, and essential
services like interconnectivity to ensure seamless communication across the network. The
RAN connects the UE to the CN through radio links, comprising base stations (BSs) that
include a radio unit (RU) for signal transmission and reception, along with a baseband unit
(BBU) that handles radio resource management. Finally, the UE, such as a smartphone,
is the device that users employ to access the mobile network, typically authenticated via a
subscriber identity module (SIM) card [56].

2.1 Evaluation of RAN before Open RAN

Before Open RAN, traditional RAN architectures—such as distributed RAN (D-RAN),
cloud RAN (C-RAN), and virtualized RAN (vRAN)—were characterized by their propri-
etary and monolithic designs [57]. Created by a small group of vendors, these systems
featured tightly integrated hardware and software, which limited their flexibility and stifled
innovation. However, over the last three decades, BSs have transitioned from these rigid,

(UE H RAN }(CN‘}
D- RAN>C RAI\>VRAI\>O RAN

FIGURE 2.1: The mobile network architecture and the evolution of RAN
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monolithic devices to more flexible configurations that use commercial off-the-shelf (COTS)
hardware [58]. This shift underscores the limitations of traditional RAN and highlights
the need for Open RAN, which aims to provide a more open, flexible, and interoperable
architecture. This section explores the main aspects of traditional RAN and the various
types of BSs to understand the challenges that prompted the development of Open RAN.
The evolution of RAN over time is illustrated in Fig. 2.1 (b).

D-RAN represents one of the first traditional mobile network architecture where the
baseband processing and radio functions are co-located at each cell site, in which they are
directly connected via a common public radio interface (CPRI). In this setup, both the
RU and BBU are housed together, with the BBU typically placed in an air-conditioned
shelter and the RU, sometimes referred to as the RRU, located near the antenna or at
the top of the tower. This proximity offers low-latency communication between the RU
and BBU, but it also presents significant challenges. The independent operation of each
BS makes resource management and coordination across multiple sites difficult, leading
to inefficiencies, especially in densely populated areas. Moreover, the proprietary nature
of D-RAN, where both hardware and software are tightly integrated, restricts flexibility
and increases the cost of network expansions and upgrades [59]. As user demand grew,
requiring more BSs to handle increased traffic, the costs associated with space, cooling, and
specialized hardware became substantial. These limitations highlighted the need for more
scalable and cost-effective solutions, driving the evolution toward centralized architectures
like C-RAN.

In 2009, C-RAN was introduced to overcome the limitations of D-RAN by providing
a more cost-effective solution. In C-RAN, BBUs from multiple BSs are centralized, which
significantly reduces site rental, operational, and maintenance costs. This centralization
allows for the addition of new RRUs without requiring new BBUs at each cell site, thus
meeting increasing traffic demands without a substantial rise in costs [60]. C-RAN also
offers benefits over D-RAN, such as lower operational costs due to the reduced need for
BBUs and the capability to use advanced techniques like coordinated multipoint (CoMP)
transmission and reception. However, like D-RAN, C-RAN still has proprietary interfaces
among BBUs, RRUs, and fronthaul (FH), leading to vendor lock-in and limiting flexibility.
Despite these issues, C-RAN represents a significant advancement toward more scalable
and flexible mobile network architectures, setting the stage for further developments like
vRAN and Open RAN, which aim to further disaggregate network functions and utilize
cloud-based technologies.

vRAN represents a significant advancement in mobile network architecture, evolving
from D-RAN and C-RAN by introducing greater flexibility and scalability. In vRAN, the
proprietary BBU hardware used in earlier architectures is replaced with COTS servers, and
network functions are virtualized through network function virtualization (NFV) principles.
This setup allows network functions to run on virtual machines or containers on general-
purpose servers, enabling resource sharing across multiple sites and potentially cutting data
processing needs by about 50% [61]. Although vRAN offers benefits such as centralized
management and cost savings, it also brings challenges like increased network complexity
and the need for high-capacity fronthaul (FH) connections. Nonetheless, vVRAN provides
a more adaptable and cost-effective approach, paving the way for future developments in
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TABLE 2.1: Comparison of different types of RAN

Types BBU hardware BBU software Virtualization RIC Vendor lock-in

D-RAN  Proprietary H/w  Proprietary S/w - - v
C-RAN  Proprietary H/w  Proprietary S/w - - v
vRAN COTS Proprietary S/w v - v
O-RAN COTS Open v v -

open and interoperable frameworks like Open RAN.

Despite advancements with D-RAN, C-RAN, and vRAN, moving to Open RAN is cru-
cial for future network infrastructure. As illustrated in Table. 2.1, Open RAN provides
a flexible, interoperable approach by using open interfaces and standardized components,
which supports multi-vendor environments and reduces vendor lock-in. Unlike traditional,
proprietary RAN systems, Open RAN’s open architecture fosters innovation and customiza-
tion [62]. This shift enhances resource management, cost-effectiveness, scalability, and
adaptability to new technologies, making it essential for meeting growing demands and
promoting a more competitive industry.

2.2 Open RAN Architecture

Open RAN surpasses VRAN by emphasizing openness, intelligence, and interoperability. It
standardizes key interfaces, such as the open FH between the RRU and BBU, allowing op-
erators to integrate components from various vendors. This flexibility enables operators to
customize their networks more effectively, moving away from the proprietary, single-vendor
constraints of traditional RAN systems like D-RAN and vRAN. Open RAN introduces
a modular design by dividing the traditional BBU into central units (CUs), distributed
units (DUs), and RUs; each component is designed to handle specific functions within the
RAN, collectively enabling efficient and scalable network operations. These units can be
deployed independently and managed centrally. Additionally, by utilizing COTS hardware
and software-defined radio (SDR), Open RAN lowers deployment costs and improves the
network’s adaptability to evolving demands. Another crucial aspect of Open RAN is its ca-
pability to decouple the RAN control plane from the user plane. This decoupling facilitates
more dynamic and efficient network management while integrating advanced, data-driven
intelligence to automate RAN operations. By fostering a more open, flexible, and intelligent
network environment, Open RAN stands out as a pivotal innovation, poised to meet the
complex challenges of modern and future mobile communications. The O-RAN architec-
ture is built on four foundational principles: virtualization, disaggregation, open in-
terfaces, and intelligence, each contributing to a more flexible, cost-effective, and future-
proof mobile network.

e Virtualization is a core tenet of O-RAN, where the RAN functions are decoupled
from proprietary hardware and implemented as software running on generic, off-the-

shelf hardware platforms. This approach not only reduces reliance on specialized
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equipment but also enables operators to scale their networks dynamically in response
to fluctuating demands. Virtualization also simplifies the orchestration and manage-
ment of RAN functions through abstraction layers, ultimately leading to significant
reductions in operational costs and improving overall network efficiency.

e Disaggregation in O-RAN refers to the splitting of traditional BS functions into
distinct, logical units: the RU, DU, and CU. The CU itself can be further divided into
control plane (CU-CP) and user plane (CU-UP) components, enabling more gran-
ular control over where and how network functions are deployed. This separation
allows operators to optimize their networks by distributing these units across differ-
ent locations and hardware platforms, depending on the specific requirements of the
deployment environment.

e Open Interfaces are another critical principle of O-RAN, enabling interoperability
between equipment from various vendors. By adhering to standardized interfaces, O-
RAN allows for a mix-and-match approach to network components, giving operators
the flexibility to choose the best-in-class solutions for their specific needs. This vendor-
agnostic approach not only enhances innovation and competition in the market but
also helps operators avoid the pitfalls of vendor lock-in, ensuring that they can adapt
their networks as new technologies and solutions emerge.

e Intelligence is embedded within the O-RAN framework through the introduction of
the RAN intelligent controller (RIC), which plays a pivotal role in optimizing network
performance. The RIC is available in two forms: the non-real-time (non-RT) RIC
for non-real-time operations and optimization, and the near-real-time (near-RT) RIC
for tasks requiring near-instantaneous response. These controllers provide a platform
for integrating advanced algorithms and artificial intelligence (AI)/machine learning
(ML)-driven applications, enabling more sophisticated management of RAN resources
and the automation of complex tasks such as radio resource management (RRM) and
network optimization.

The main elements in the Open RAN architecture based on O-RAN Alliance are briefly
described below as shown in Fig. 2.2.

In the RAN part, the CU is the hub for higher-layer processing tasks for managing
the control and user plane functions, such as radio resource control (RRC), packet data
convergence protocol (PDCP), and service data adaptation protocol (SDAP). The duties of
CU extend to critical processes like scheduling, mobility management, and encryption, which
are essential for maintaining the integrity and performance of the network. By splitting the
CU into two parts—CU-CP and CU-UP—the architecture allows for a more modular and
scalable network design, enhancing the overall efficiency and flexibility of the RAN. To
support inter-cell coordination, the X2/Xn interfaces connect CUs and DUs across different
sites. The DU plays a crucial role in real-time processing, handling the lower layers of
the RAN, including radio link control (RLC), medium access control (MAC), and aspects
of the physical layer (PHY). Positioned closer to the network edge, the DU is vital for
low-latency communications, making it indispensable for time-sensitive applications. It
manages radio resource allocation, link adaptation, and re-transmissions, ensuring that the
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FIGURE 2.2: High-level architecture of O-RAN

data transmission between the RU and CU is both reliable and efficient. The RU is the front
line of the RAN, directly responsible for the transmission and reception of radio signals.
It includes both the antenna systems and radio frequency (RF) components necessary for
wireless communication. The RU handles the digital front-end processes and parts of the
PHY layer, such as modulation and coding. By converting digital data into radio signals
and vice versa, the RU facilitates the seamless connection between the UE and the broader
network infrastructure. These components form a disaggregated RAN architecture in the
function layer (< 10 millisecond) that offers unprecedented flexibility.

On top of the RAN part, the service management and orchestration (SMO) framework
oversees the orchestration and management of the RAN domain in the O-RAN architecture.
Another hallmark of the O-RAN architecture is the introduction of RICs in both manage-
ment and control layers, which are central to the intelligent management and optimization
of the network. The architecture differentiates between two types of RICs: the non-RT
RIC and near-RT RIC, each with distinct roles and responsibilities. The SMO coordinates
the deployment and operation of RAN components, utilizing interfaces like O1, O2, and
the Open FH M-Plane. It also interacts with the non-RT RIC, providing management
functions across various RAN elements and ensuring the network operates efficiently and
flexibly. The non-RT RIC, embedded within the SMO framework in the management layer,
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handles tasks that do not require immediate response, allowing for strategic, long-term op-
timizations. Operating on a timescale of over one second, it focuses on policy management,
data analysis, and the training of AI/ML models that influence broader network behavior.
The non-RT RIC runs rAPPs; which are modular applications designed to enhance net-
work efficiency and provide services like resource management and trend analysis. These
rAPPs interact with the non-RT RIC via the open R1 interface, ensuring interoperability
and flexibility. Thanks to the A1l interface that connects the non-RT RIC to the near-RT
RIC, facilitating Al-driven optimization, the near-RT RIC is designed for more immediate,
time-sensitive operations, with control loops that range from 10 milliseconds to one sec-
ond. This controller directly interacts with RAN elements like the DU and CU through
the E2 interface, executing near-instantaneous decisions to optimize traffic flow, manage
network load, and enhance user experience. xAPPs, which are micro-services running on
the near-RT RIC, carry out these functions by analyzing real-time data and making swift
adjustments to the network. These xAPPs, similar to rAPPs, are vendor-agnostic and can
be developed by third parties, contributing to the overall agility and adaptability of the
RAN.

To create a more efficient architecture, an optimal functional split (FS) strategy is es-
sential. The various FSs among different components provide significant flexibility and
customization, enabling the optimization of network performance within the Open RAN
architecture, as depicted in Fig. 2.3. A key split in this architecture is the CU-DU split,
where these units, connected via the F1 interface, allow the CU to manage higher-layer
functions such as RRC and PDCP, while the DU oversees lower-layer functions like RLC
and MAC. This division enhances scalability and operational efficiency by separating user
plane and control plane functions, thus accommodating varying traffic demands and reduc-
ing latency. Further refinement is achieved through the CU-UP split, which separates the
CU into CU-CP and CU-UP components, linked by the E1 interface. The CU-CP takes
on RRC and control-plane PDCP functions, whereas the CU-UP manages the user-plane
SDAP and PDCP. Additionally, the DU-RU split introduces another level of granularity.
Although 3GPP has not standardized this split, options like split 7.2x and split 6 are sup-
ported by industry O-RAN Alliances. Split 7.2x involves the DU and RU handling different
layers of the protocol stack, while Split 6 (lower layer split) divides the functionalities differ-
ently. These splits enable further customization of network deployment, tailored to specific
operational and geographical needs.

2.3 Machine Learning in Open RAN

Traditionally, mobile networks relied on static, rule-based methods for tasks such as resource
allocation, interference management, and performance monitoring. However, as networks
become increasingly complex with the introduction of 5G and beyond, these static ap-
proaches are proving inadequate. ML algorithms provide a dynamic solution by analyzing
vast amounts of network data to predict and proactively address issues like congestion,
coverage gaps, and signal interference. Through techniques such as supervised learning for
traffic forecasting and reinforcement learning for spectrum allocation, ML enables networks
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to self-optimize and adapt in real time to changing user behavior and environmental condi-
tions. This shift towards automation and predictive management significantly enhances the
efficiency and reliability of mobile communications, leading to smarter and more adaptable
networks.

In the realm of Open RAN, ML is revolutionizing the way such networks are managed
and optimized by injecting intelligence at every layer of the network. The Open RAN
specifications provide a robust framework for leveraging ML models to enhance various
network functionalities, from QoS optimization to traffic steering, predictive handovers, and
radio fingerprinting. These advancements are enabled by a systematic ML workflow that
integrates seamlessly into the Open RAN architecture. The details of these ML workflow
phases will be discussed further in the following [63].

@ Data Collection and Preparation: The process starts with extensive data collec-
tion, forming the backbone of any successful ML initiative. In the context of Open
RAN, nodes like CUs, DUs, and RUs continuously produce extensive data—such as
traffic patterns and signal quality—which is transmitted to the non-RT RIC via the O1
interface. This raw data is meticulously gathered and curated into large, structured
datasets. The quality of these datasets is vital, as it directly impacts the effectiveness
of the subsequent ML models.

@ Data Analysis: Next, the collected data is explored to extract insights and detect
patterns. This phase involves using data visualization, statistical analysis, and other
exploration techniques to understand the data’s underlying structure. This step is
crucial for choosing the right ML algorithms and identifying relevant features for
model training.

@ Model Querying and Training: With this data in hand, the ML model design
phase begins. Here, engineers carefully select the critical input parameters, such
as network throughput or latency, and determine the output controls, like resource
allocation strategies, RAN slicing policies, or traffic steering. At this stage, the appro-
priate ML algorithm—whether it is a neural network, decision tree, or reinforcement
learning model—is implemented based on the specific use case. After tuning model
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hyper-parameters and training, the model is evaluated and validated to ensure its
accuracy and reliability. This phase is critical to ensuring that the model can accu-
rately predict network conditions and make intelligent decisions. After training, the
model is rigorously tested on unseen data to verify its ability to generalize and perform
effectively even under unforeseen network conditions.

@ Model Deployment: Once validated, the ML model is packaged as an xAPP and
deployed on the near-RT RIC, where it connects to the RAN via the E2 interface. It
integrates with the network operations, accesses relevant data, and provides real-time
predictions or recommendations. The xAPP then makes real-time adjustments to
optimize network performance, such as steering traffic, adjusting slicing parameters,
or managing handovers, while continuously learning from new data.

@ Model Optimization: After deployment, the model requires optimization to en-
hance its performance. This involves real-time performance monitoring, identifying
areas for improvement, and updating the model as needed. This phase is essential for
maintaining the accuracy and reliability of the ML model over time.

@ Model Updating: The final step involves ongoing maintenance of the ML model.
This includes updating the model as needed and ensuring it remains aligned with the
evolving requirements of the O-RAN network operations environment.

By harnessing the capabilities of ML algorithms, network operators can enhance net-
work performance, lower energy usage, and deliver an improved user experience. Practical
use cases of ML in Open RAN highlight its transformative potential [64]. For example,
in vehicle-to-everything (V2X) communications, ML can manage dynamic handovers to
maintain seamless connectivity. It also optimizes quality of experience (QoE) by adjusting
network parameters in real time. Additionally, ML facilitates dynamic resource allocation
for unmanned aerial vehicles (UAVs) by adapting to their flight paths, ensuring efficient use
of network resources. These examples illustrate how integrating ML within Open RAN ar-
chitecture promotes intelligent automation and adaptability, enhancing performance across
diverse and complex network environments.

Various ML models are applied to address complex challenges across these environments,
each offering unique benefits for enhancing performance, resource management, and user
experience [65]. Supervised learning models, such as linear regression and decision trees, are
used to predict traffic patterns, manage user mobility, and detect faults by learning from
labeled data. Unsupervised learning models like k-means clustering and principal compo-
nent analysis focus on finding hidden patterns in data, helping to cluster similar network
behaviors and identify anomalies. These models are especially valuable for understanding
large-scale network dynamics without the need for explicit labeling. Reinforcement learn-
ing takes dynamic decision-making to the next level by training agents to interact with
their environment and learn from feedback. In mobile communications and Open RAN,
RL is crucial for optimizing spectrum allocation, managing network resources, and enabling
self-organizing networks (SONs). Algorithms like Q-learning and deep Q-networks (DQN)
allow for real-time adaptability, helping to balance load, optimize handovers, and reduce
interference.
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Deep learning, with its powerful neural networks, excels at processing large-scale data
and extracting complex patterns. In mobile networks, deep learning models such as conven-
tional neural networks (CNNs) and recurrent neural networks (RNNs) enhance tasks like
signal processing, network performance prediction, and QoE optimization. By leveraging
massive datasets, deep learning can improve critical functions like beamforming and user
satisfaction predictions. Among RNNs, long short-term memory (LSTM) networks stand
out as particularly effective for tasks involving sequential data, such as traffic forecasting
and network anomaly detection. LSTMs are designed to remember long-term dependen-
cies, making them ideal for predicting time-series data like mobile traffic patterns, where
past events heavily influence future behavior. Besides, federated learning offers a privacy-
preserving approach by enabling distributed model training across decentralized devices,
such as smartphones or BSs, without sharing raw data. This collaborative approach is
particularly beneficial in Open RAN, where multiple vendors need to work together while
ensuring data security. Transfer learning further complements this by allowing pretrained
models to adapt to new but related tasks, which is useful for optimizing network operations
across different environments or slices.
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Chapter

Traffic Steering for eMBB and uRLLC
Coexistence in Open Radio Access
Networks — Part I: Known Traflic Demand

Existing radio access network (RAN) architectures lack sufficient openness, flexibility, and
intelligence to meet the diverse demands of emerging services in beyond fifth-generation
(5G) and sixth-generation (6G) wireless networks, including enhanced mobile broadband
(eMBB) and ultra-reliable and low-latency (uRLLC). Open RAN is a promising paradigm
that allows building a virtualized and intelligent architecture. In this chapter, we focus on
traffic steering (TS) schemes based on multi-connectivity (MC) and network slicing (NS)
techniques to efficiently allocate heterogeneous network resources in NextG cellular net-
works. We formulate the RAN resource allocation problem to simultaneously maximize
the weighted sum eMBB data rate and minimize the worst-case uRLLC latency subject
to quality of service (QoS) requirements, orthogonality, power, and limited fronthaul con-
straints. Since the formulated problem is categorized as a mixed integer nonlinear problem
(MINLP), we first relax binary variables to continuous ones and develop an efficient iterative
algorithm based on successive convex approximation techniques. System-level simulation
results demonstrate the effectiveness of the proposed algorithm compared to several well-
known benchmark schemes.

3.1 Introduction

Beyond fifth-generation (5G) and sixth-generation (6G), wireless networks are expected
to meet three major services with different demands, namely ultra-reliability low-latency
communication (uURLLC), enhanced mobile broadband (eMBB), and massive machine-type
communications (mMTC). Different uRLLC, which supports traffics requiring extremely
high reliability (i.e., 99.999%) and very low latency (i.e., less than 1 ms), eMBB requires
high data rate connectivity [11]. Since existing 5G cellular networks are inflexible, closed,
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and aggregated, it is not possible to enable the coexistence of various services on the exist-
ing “one-size-fits-all” 5G architecture. Despite the cost-effectiveness of cloud radio access
networks (C-RAN) and virtual RANs (VRAN), these architectures still lack open interfaces
and non-proprietary hardware and software. Therefore, Open RAN has been recently pro-
posed to address these issues, evolving towards flexible, virtualized, disaggregated, open,
and intelligent NeztG wireless networks [66].

The key objective of Open RAN is to improve the RAN performance by virtualiz-
ing RAN’s elements, disaggregation of their components, software, and hardware, defining
appropriate open interfaces for connecting them, as well as embedding machine learning
(ML) /artificial intelligence (AI) techniques to construct adaptive and smarter RAN lay-
ers in its architecture [67]. Two novel modules, including near-real-time (near-RT) and
non-real-time (non-RT) RAN intelligent controllers (RICs), are defined to enable a central-
ized network abstraction to further reduce cost, network complexity, and human-machine
interaction [68]. Following a disaggregation approach, base station (BS) functionalities
are virtualized as network functions based on third-generation partnership project (3GPP)
functional split and are divided across various network nodes, namely central units (CUs),
distributed units (DUs), and radio units (RUs).

Mobile networks have become increasingly complicated as network capacity and traf-
fic have increased manifold. It is challenging to steer heterogeneous traffics to effectively
improve network efficiency and user experience [69]. Network slicing (NS) has appeared
as a promising solution to allocate resources to various wireless services with different re-
quirements [70]. To meet the strict latency requirement of uRLLC services, 5G new radio
(NR) adopts dynamic numerologies for a short transmission duration and also introduces
the concept of mini-slots by diminishing the transmission time interval (T'TI), which can be
achievable with a larger subcarrier spacing [71]. Multi-connectivity (MC) refers to the abil-
ity for user equipment to simultaneously connect to multiple access points or base stations,
providing improved reliability, increased throughput, and better network performance, par-
ticularly in heterogeneous networks like eMBB and uRLLC. In a 3GPP system, MC is
implemented through techniques like dual connectivity (DC) and carrier aggregation (CA),
where a user can connect to different cells or base stations using multiple bearers. This
approach improves signal-to-interference-plus-noise ratio (SINR), enhances user reliability,
and increases communication coverage, making it ideal for supporting both eMBB and
uRLLC services in Open RAN.

Traffic steering (TS) is crucial to illustrate the practical applicability of Open RAN
architecture. However, the current literature on TS is still sparse and isolated. In [72],
a dynamic MC-based joint scheduling framework with TS for both eMBB and uRLLC
traffics was proposed. Zhang et al. discussed TS in LTE networks with unlicensed bands
in [73]. Due to the impact of the NS technique in multi-services networks, the authors
in [39] analyzed schemes to enable dynamic TS and energy-efficient RAN moderation in
5G. To the best of our knowledge, there are few works in the literature that model TS
within the Open RAN architecture, yet they lack a detailed mathematical investigation of
the topic. For instance, [74] analyzed a study of the TS use case implemented in a modular
way, following the open networking approach.

Unlike typical TS mechanisms that treat all users in the same way without considering
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user demands, in this chapter we propose a novel TS scheme using dynamic MC technique
and RAN slicing scheme to steer traffic flows towards the most suitable cells based on
user-centric conditions. Our main contributions are summarized as follows:

e We develop a joint RAN resource allocation framework as xAPP in near-RT RIC to
dynamically optimize eMBB and uRLLC traffics over the same resources. The utility
function of interest combines the sum eMBB data rate and worst-case uRLLC latency.
In addition, a rigorous analysis for the uRLLC latency model will be provided that
takes into account all factors of computation and communication. Existing RUs in
the site will generate MC clusters, which vary according to the characteristics of the
network. This, in turn, achieves a higher sum eMBB data rate while maintaining the
uRLLC latency requirement.

e We propose an efficient iterative algorithm based on the successive convex approxi-
mation (SCA) method to solve the relaxed optimization problem, which guarantees
at least a locally optimal solution.

e Numerical results are provided to show the fast convergence behavior of the proposed
algorithm and verify its effectiveness, compared with benchmark schemes.

3.2 System Model

We consider a downlink (DL) orthogonal frequency-division multiple access (OFDMA) in
the Open RAN architecture, consisting of one CU and a set N = {1,2,..., N} of N DUs.
These two types of processing nodes run on the general-purpose data centers as virtual
machines (VMs) by virtual network function (VNF') technology, which can process incoming
user packets in parallel, as illustrated in Fig. 3.1. Towards cost-efficient deployment, we
assume that DUs serve non-overlapped geographical areas, i.e., each DU serves a cluster of
RUs.

3.2.1 Network Model

Let M, = {0,1,...,m,..., M,} indicates the set of RUs served by the n-th DU, which
consists of one macro RU (MRU), i.e., RU 0, and M,, small-cell RUs (SRUs), i.e., RU
m € {1,---, M,}. SRUS’ unique ability to handle high-density data makes them the ideal
choice to satisfy demands of services in 5G networks, especially uRLLC. In contrast, the
MRU provides a high data rate and extended coverage to eMBB users. SRUs are also used
to support the control plane and provide a quick response to small packet data sizes [29].

In addition, we denote by %U,, = {1,...,U,} the set of users served by DU n, which can
be further divided into two disjoint sets U;" of U;" uRLLC users and U:™ of U™ eMBB
users. The m-th RU is equipped with K« antennas, while users are equipped with a single
antenna and are randomly distributed across the network area.

Under MC configuration, the MRU’s operating frequency is orthogonal to that of SRUs.
Denote by g and F; the sets of sub-band frequencies operated by MRU and SRUs, respec-
tively. The numbers of sub-bands operated by MRU and SRUs are Fy = |%| and Fy = ||,
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FiGURE 3.1: Open RAN-based system model.

respectively. Each transmission frame is divided into 7" time slots whose duration is equal
to one TTI. The bandwidth of each sub-band defined in 3GPP 5G NR is equal to 360 KHz.
Therefore, one resource block (RB) with the time duration of mini-slot (A; = 0.25 ms)
corresponds to 7 OFDM symbols.

Achievable Rate: Our goal is to optimize the RAN performance in three-dimensional
(3D), encompassing time, frequency, and power domains. The problem casts into assigning
the total (Fy + F1) x T RBs of all RUs covered by the considered DU to its users. Because
of the non-overlapped DUs’ coverage, the resource optimization design at one DU is similar
to that of other DUs. Thus, for ease of presentation, we drop the subscript index of DUs
hereafter.

Let Ay ¢ mu € CHKm>*1 pe the channel vector from the m-th RU to the u-th user equipment
(UE) at the sub-band f and the time slot ¢, including the path loss. Within each frame,
assume that the channel remains temporally invariant, while it may be different across
the sub-bands. In this work, we employ maximal ratio transmission (MRT) to maximize
the received signal-to-noise ratio (SNR), which is also the optimal beamformer under the
considered OFDMA scheme [75]. As a result, the effective channel gain for UE u served by
RU m at sub-band f and time slot ¢ is g; f,m u = |t .m0 |3.

Given the orthogonality constraint, this work considers that each RB of a RU is assigned
to only one single user during one time slot. To introduce this assignment, we define the
decision variables 7'} € {0,1} and 7%, , € {0,1} for eMBB and uRLLC traffics,

f7m7u

respectively. Here, Wf'}‘mu = 1 if the RB associated with time-slot ¢ and sub-band f of
RU m assigned to the u-th eMBB user, and wf'}‘m , = 0 otherwise; similarly definition for

uRLLC users. The achievable rate in bits/s for a given set of channel realizations at the
u-th eMBB user is given by
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where 3, Ny, and p§"% "% mu are the bandwidth of each RB, the power of the additive white
Gaussian noise (AWGN) and transmit power from RU m to UE u for eMBB traffic at sub-
band f at the TTI ¢, respectively. Let us define p*™ £ [pf,’;l’m’u]wy fmu- We note that there
is no inter-user interference in (3.1) since it is cancelled via OFDMA constraints introduced
latter in this section. Furthermore, the transmit power must satisfy p;" T S T o, B e
with PM#* being the power budget at RU m, which guarantees that RU m allocates power to
user w on RB (¢, f) only if nf"} = 1; otherwise ;7 =0 and p{'},, , = 0. As a result,
the sum data rate of eMBB users is given as R*™(p' em) = Zue%em R:™(p*™). The minimum
QoS requirement for eMBB users is guaranteed by the constraint RS™(p®™) > R where
R™ is a given QoS threshold.

In contrast, owing to the finite block length in uRLLC traffics, the Shannon capacity is
no longer used to obtain the data rate for uRLLC users. The achievable rate of u-th user
for uRLLC traffic using the short block-length can be expressed as [76]

ur/,ur __ur p?,r ,m,ugt,f,m,u W;r ,m,u\/vQ_l(Pe)
S S B e

where V, P., and Q~!: {0,1} — R denote the channel dispersion, error probability, and
inverse of the Gaussian Q-function, respectively. It is observed that V = 1

] (3.2)

1 ~
~ sz T L
when the received SNR:W > T'g with I’y > 5 dB. This can be easily achieved in
cellular networks by arranging the uRLLC decoding vector into one possible null space of
the reference subspace [77]. Hence, we consider the constraint - Lomys e < Pifmu <
T f m uP[,'L‘aX to guarantee the approximation V' ~ 1 as well as the blg M formulation theory

to avoid non-convexity of (3.2).

uRLLC Latency Model: Unlike eMBB users, the main aim for uRLLC users is to
minimize their end-to-end (e2e) latency from CU to end users. To meet stringent latency
requirements, uURLLC traffics should be immediately served, resulting in no queuing delay.
As a result, the e2e latency of uRLLC users consists of the processing and transmission
time.

As depicted in Fig. 3.1, after processing, the uRLLC users’s arrival packets at the CU
layer are subsequently routed to VINFs in the DU layer for parallel processing. We adopt
the M/M/1 processing queue model on a first-come, first-serve basis to serve each user’s
packets. The packet process of the u-th arrival packet for uRLLC traffics generated by
the FTP3 model standardized in 3GPP with Z bytes length follows the Poisson process
with the mean arrival rate A\, (packets/frame). It is assumed that each packet has an
identical length, and packet segmentation is not allowed. Suppose that each assigned RB
to the uRLLC user should transmit at least one complete data packet. In contrast, eMBB
users generate continuous traffic with infinite packet size, avoiding packet loss due to buffer
overflow.
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Denote by fe, and fg, the computation capacities of CU and DU (cycles/sec), respec-
tively. Considering the identical packet size, the required computation resource to process
one packet of size Z is C' (number of cycles). As a result, picy = feu/C and pgy = fau/C are
the task rates (1/sec) at CU and DU, respectively. As a result, 1/pe, and 1/p4, represent
the mean service times of the CU and DU layers, respectively. The processing latency of
the uRLLC arrival packet at the CU layer (7&%°) and DU layer (75.°) is computed as

700 =1/(ptew — A) and 75° = 1/ (ptqu — A) (3.3)

where A =} 5w Ay is the total packet arrival rate for all uRLLC users at the CU layer.
We assume that pe, > A and pg, > A to guarantee the queue stability.

Next, the arrival packets A, for the u-th uRLLC user are transported to DU via the
midhauld (MH) link with the maximum capacity CMH (bits/sec). It should be mentioned
that the mean arrival data rate of the DU layer is approximately equal to the mean arrival
data rate of the first layer. By Burke’s theorem, the mean arrival data rate of the second
layer, which is processed in the first layer, is still Poisson with the rate A [78]. Hence, the
data transmission latency of the uRLLC traffic for UE « under the MH limited capacity is

Az
T(Eu,du = CMH" (3.4)

Using the MC technique, the generated traffic per frame for the u-th uRLLC user is
split into several partitions, which are transmitted in separate links, and then aggregated
at this user. The maximum number of paths from DU n to each user is M,. We denote

by b, & [b0.u, 01,0y, b, ) the flow-split indicator vector for the u-th uRLLC user. In
particular, if by, , = 1, RU m € J, is selected to transmit the data of the u-th uRLLC
user; otherwise by, , = 0. In addition, let us denote by ¢, £ [©0,us P1us P2,us "+ » P M) the

flow-split portion vector of user w with > M, Pmu = 1, where ¢, ,, represents a portion
of traffic routed to user u via RU m. Since the packets for the u-th user can be transmitted
by multiple RUs, the effective response time 75¢ = to transport all packets the DU layer
should be computed by the worst average responsé time among its connected fronthaul (FH)
links with maximum capacity CFH (bits/sec), i.e.,

aur Pyl
T = mﬁx{zug%’bF:u - }, vm € My, (3.5)
m

We denote by rp; ,, the data rate from RU m to user u, which can be directly extracted
from (3.2). The transmission latency from RU m to user w is then calculated as

A
7 = max {Som’#}, Yu € U (3.6)
’ m Tmu

Simply put, the e2e latency of uRLLC user u € U"" per frame is computed as

ur __ _pro tx pro tx tx pro pro align
Tu = Tey + Tcu,du + Tdu + Tdu,ru + 7—ru,u + Tru + Tu +7 (37)
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A it align are the process latency at RU m, uRLLC user u, and frame

where 774, , 7, and T

alignment time, respectively. 75, and 7 are bounded by three OFDM symbol durations
that are typically very small, while 728" is upper-bounded by one mini-slot TTT interval
and can be considered negligible. To ensure a minimum latency requirement for uRLLC

user u, the e2e latency is bounded by a predetermined threshold D', i.e., 7" < D'

3.3 Joint Traffic Steering and Resource Allocation Optimiza-
tion

3.3.1 Problem Formulation

Utility function: The main goal is to jointly optimize the RAN slicing and TS to serve
eMBB and uRLLC users, subject to various resource constraints and diverse QoS require-
ments. To do so, the utility function should capture both the sum eMBB data rate and
worst-case e2e uRLLC latency, such as: aRR—eOm — (1 — a) max, {:—'Zr}, where Ry > 0 and
7o > 0 are the reference data rate of eMBB and latency of uRLLC, respectively, which are
used to balance two different dimensions of the two quantities; and « € [0, 1] denotes the
priority parameter. Based on the above definitions and discussions, the problem of joint TS
and resource allocation is mathematically formulated as

em ur

max « — (1 — a) max {L} (3.8)
P,7T,Pp RO u T[)
st. Cl: w7 us Tofma € 10,1}, VE f,m,u (3.9)
C2: Y (7 + ] S 1,¥m =0, f € Fy
t7f7m7u
> T ] S LYM A0, f € Fy (3.10)
t7f7m7u
C3: th T > e Yu €U (3.11)
C4: qu(pi?MM + D ) < PR,V m (3.12)
C5: 0 < pi'tmu < T fmubm s VYt fym,u (3.13)
NOF07Tur m
C6: ———L < ST PV fom (3.14)

gtmf’m’u
C7: M (p™) > R, v € yem

(3.15)
C8: 3" (R, (0™ + Ry, (. )] < CFH vm (3.16)
Co: Ry (" p") > omuuZ, Vm,u € U™ (3.17)
C10: Zm Omu=1, 0< @ma <1, Yu €U (3.18)
Cll: 7 (¢, 7, ) < DV, Vu € U (3.19)
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where ¢, 7 and p are the vectors, encompassing the flow-split portions, sub-band assign-
ments, and power allocation variables, respectively. Here, C2 is the orthogonality constraint
to assure that each RB is allocated to only one user (either eMBB or uRLLC). Constraint C3
refers to QoS requirements for uRLLC users, which expresses that every scheduled uRLLC
user should be assigned at least e}’ = [’\ﬁz} number of RBs from the dedicated uRLLC slice
to empty the available packets in the queues of uURLLC users; and B is the number of bits
that each RB carries. Constraint C4 ensures that the total transmission power is no larger
than the power budget at RU m, denoted by P7®*. The limited capacity of the FH link
between DU and RU m is expressed by constraint C8. Finally, constraint C9 ensures that
each RB assigned to the u-th uRLLC user should transmit a complete data packet with size
Z.

3.3.2 Proposed SCA-based Iterative Algorithm for Solving (3.8)

Challenges of solving problem (3.8): The main challenges in solving problem (3.8)
lie in the non-convexity of 7.)" (appears in the objective function and constraint C11) and
constraint C8 with respect to TS and transmit power variables. Furthermore, the binary
nature of the sub-band allocation variables makes the problem more difficult to solve directly.
Once may employ the mixed integer linear program (MILP) solver, e.g., Gurobi or MOSEK,
to directly solve binary w. However, we argue that the exponential computation complexity
of such MILP formulation limits its practical feasibility, especially when the number of
variables exceeds a few hundred in Open RAN scenarios. To tackle these difficulties, we
first relax binary variables to continuous ones (i.e., the box constraints between 0 and 1)
and transform constraint 7;" and C8 into a more traceable form, which can be efficiently
solved by an SCA-based iterative algorithm.

Penalty function: In order to speed up the convergence of the proposed iterative
algorithm presented shortly, we introduce the following penalty function

Pr) =Y [T + ) = T T = T4 ) (3.20)

t,fm,u

which is convex in 7. It is clear that P(mw) < 0 for any 7 fm € [0,1], which is useful
to penalize the relaxed variables to obtain near-exact binary solutions at optimum (i.e.,
satisfying C1). By incorporating P () into the objective function of (3.8), the parameterized
relaxed problem is expressed as

em ur

max « — (1 — o) max {TL} +yP(m) (3.21a)

o 7.p Ry u (T

st. CL: 7T 0wy T € [0,1], V2, f,m,u (3.21D)
C2- Cl1 (3.21c)

where v > 0 is a given penalty parameter.

Proposition 1. With an appropriate positive value of 7y, problems (3.8) and (3.21) share
the same optimal solution, i.e., (@*, 7", p*).
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The proof is directly followed [79] by showing that P(7) = 0 at optimum in maximizing
(3.21a). It implies that there always exists a constant 7 to ensure that 7 are binary at
optimum, so that the relaxation is tight. In practice, it is acceptable if P(7) < ¢ for a very
small e, which leads to a near-exact optimal solution.

ur

To handle the non-convexity of 7", we introduce new variables t = [t1,%2] to rewrite

(3.21) equivalently as

Rem ,7_Ll|'
max — (1 — @) max { } +P(m) (3.22a)

@ mpt Ry u LT
st.: C1,02-C10 (3.22D)
Cll: 7% < DY, Vu (3.22¢)
Cl12: 1y, > 1/t1, Vm,u (3.22d)

[2)

C13: pmut1 < )\ 7 ,Vm,u (3.22¢)
where 7" = T, o+ T cu,du T po;) + T;;’m +tg + TP + 70 4 r2lien The equivalence between

(3.21) and (3.22) is easﬂy verified by showing equahty of C12 and C13 at optimum. In
problem (3.22), the objective function is non-concave due to P(7), while constraints C8
and C13 are non-convex.

Under SCA method, the function P(7) is linearized at the x-th iteration by the first-
order Taylor approximation as

PO 2 N [r5T, 2T 1) — (N2 o @e ) 1) () )2

t,fym,u
(3.23)
where P(7) > P¥)(x) and P(x(®) > P®) (x( ). For C8, we denote its left hand sight
(LHS) as R, (p ) £5, [ReD, (p°™) + Rar ,(p*")], which is concave in p and can be approx-
imated at p(®) a
(x) Oy T maQ Z )
RE@) 2 Ru(p) = Y flogy () Tnd_ PE famou = Pt fom,)
t,f,u At t frux
gt,f,m,u
{ P ] (3.24)

NO + pt,’f,m,ugtvamyu

where x € {em, ur}. For C13, it is rewritten equivalently as (¢, +11)? < 252, +¢2, ot
where both sides are convex. By the first-order Taylor approximation, we convex1fy C13 as

613 : (‘Pm,u + 751)2

ot
<+ T2 (P t) (3.25)

u

where (I)(K)(‘Pm,w tl) = QSOSSRUQPm,u + QtEH)tl - (@%%)2 - (tgﬁ))%
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Algorithm 1 SCA-based Iterative Algorithm to Solve (3.8)
1: Initialization: Set s := 1 and generate initial feasible points for (¢ 7 p(© ) to
constraints in (3.26)

2: repeat

3: Solve (3.26) to obtain (¢*,7*, p*,t*) and *;

4: Update ("), w(®) p(o) t(0)) .= (o* 7*, p*, t*) and ") := ¢*;

5. Set k=K +1;

6: until Convergence or [¢)(®) — "=V | < § {/*Satisfying a given accuracy level* [}

7. Recover an exact binary by computing 7* = |7(*) 4-0.5| and repeat step 1 to 5 for given

T

8: Output:(p*, 7*, p*, t*).

Bearing all the above approximations in mind, the convex approximate program of (3.22)
solved at iteration « is given as

em —~ur
¢I?;?;it¢(m) = a7§%0 —(1-a) max {%} +4P" (1) (3.26a)
s.t.: C1, C2 - C7, €9, C10,C11,C12, C13 (3.26D)
C8: R¥W(p) < CTH, vm. (3.26¢)

The SCA-based iterative algorithm is summarized in Algorithm 1. To guarantee a
feasible solution to problem (3.8), Step 6 is performed to recover an exact binary solution
and re-run Steps 1-5 to refine the final solution.

Convergence and complezity analysis: Algorithm 1 produces a sequence of improved so-
lutions {), 7w() p(*) ()1 (see [80] for more details) as well as a non-decreasing sequence
of the objective values {1/(")}, i.e., ") > (=D The sequence {1)")}. .o is bounded
above due to the limited bandwidth and power budgets. By the interior-point method, the
per-iteration complexity of Algorithm 1 is O(y/c(v)?), where ¢ = (M, +1) (3U,,(Fo+ F1)T +
T+UY +1) 43U + U™ and v = (M, + 1) (2Un(Fo + F1)T + UY") + 2 are the numbers
of constraints and variables, respectively.

3.4 Numerical Results

In this section, we numerically evaluate the performance of the proposed algorithm. All
users are uniformly and randomly positioned in a circular area with a radius of 500 m.
MRU is located in the center, serving three sectors, each of which includes two SRUs. The
coverage of SRUs is 100 m. The channels are generated as Rayleigh fading with the path-
loss PLyru—ur = 128.1 + 37.6log;,(d/1000) for the MRU-UE channels and PLsgry_ug =
38 + 30log;o(d) for the SRU-UE channels. The number of frequency sub-bands for MRU
and SRUs are Fy = 6 and F'1 = 10, respectively. Unless stated otherwise, other simulation
parameters are given in Table 3.1. For performance comparison, we consider the following
two well-known benchmark schemes:
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3.4 Numerical Results

TABLE 3.1: Simulation Parameters

Parameter Value Parameter Value
No. eMBB users 8 Noise power (Np) -110 dBm
No. uRLLC users 4 uRLLC packet size (Z) 32 bytes
Bandwidth of MRU 20 MHz Length of time-frame 10 ms
Bandwidth of SRU 100 MHz  Time slot (A) 0.25 ms
Bandwidth of subcarriers (8) 360 KHz Predetermined latency (D") 0.5 ms
Power of MRU 46 dBm Error probability (P) 1073
Power of SRU 30 dBm MH capacity 50 Gbps
MRU’s FH capacity 1000 Mbps SRUs’ FH capacity 500 Mbps
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FiGURE 3.2: The sum eMBB data rate and worst-case uRLLC latency versus the number of
SRUs.

e Scheme 1: This scheme optimizes only the traffic steering ¢ and RBs allocation 7
and allocates equal power to all users.

e Scheme 2: The second scheme randomly allocates RBs to users and optimizes only
the traffic steering ¢ and power allocation p variables.

Fig. 3.2 shows the impact of the number of SRUs on the sum eMBB data rate and
worst-case URLLC latency. As expected, the sum eMBB data rate increases and the uRLLC
latency decreases as the number of SRUSs increases. The sum eMBB data rate achieved by
the proposed method is significantly higher than that of benchmark schemes. In addition,
the proposed method clearly provides the lowest latency of uRLLC users comparing two
other schemes, regardless of the number of SRUs. For instance, the proposed method
improves about 50% of the sum eMBB data rate and reduces the uRLLC latency by 90% at
M = 4, compared to Scheme 1 and Scheme 2. These observations confirm the effectiveness
of the proposed joint RAN resource allocation framework.

As mentioned previously, the unique characteristics of MRU and SRUs are to meet
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F1GURE 3.4: Convergence behavior.

uRLLC and eMBB demands, respectively. Therefore, we evaluate the impact of the max-
imum power budgets of these RUs on two services in Fig. 3.3. Fig. 3.3(a) plots the sum
eMBB data rate as a function of the SRUs’ transmit power, while Fig. 3.3(b) shows the
uRLLC latency under the different maximum power of MRU. We can see in both scenarios
that increasing the maximum power of RUs results in an improved sum eMBB data rate
and reduced uRLLC latency, which reveal the impact of P on both objective functions.
In addition, according to the performance gain given in Fig. 3.3, the proposed method offers
the highest performance compared to two considered benchmark schemes. At P22 = 20
dBm of SRUs (i.e., Vm = 1,--- , M), the proposed method achieves 98% and 67% perfor-
mance gains in terms of the sum eMBB data rate, compared to Scheme 1 and Scheme 2,
respectively. Similarly, for Fj*** = 30 dBm, the uRLLC latency of the proposed method
provides about three times less than Scheme 1 and Scheme 2, respectively.
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3.5 Summary

Finally, we examine the convergence performance of the three considered schemes using
Algorithm 1 in Fig. 3.4. It is shown that the proposed algorithm not only converges very
fast, reaching the optimal value in less than 10 iterations, but also greatly outperforms two
benchmark schemes.

3.5 Summary

We have presented a joint RAN resource allocation framework to realize eMBB and uRLLC
coexisting in an OFDMA-based Open RAN system. We have proposed a comprehensive
optimization problem under some practical constraints to maximize the sum eMBB data
rate while minimizing the uRLLC latency. We have conducted an in-depth analytical e2e
uRLLC latency. A new SCA-iterative algorithm has been developed to solve the formu-
lated problem effectively. We have shown that the proposed method based on MC greatly
improves resource utilization compared to benchmark schemes.
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Chapter

Traflic Steering for eMBB and uRLLC
Coexistence in Open Radio Access
Networks — Part II: LSTM Trafhic
Prediction

Open radio access network (O-RAN) Alliance offers disaggregated radio access network
(RAN) functionality built using open interface specifications between blocks. To efficiently
support various competing services, namely enhanced mobile broadband (eMBB) and ultra-
reliable and low-latency (uRLLC), the O-RAN Alliance has introduced a standard approach
toward more virtualized, open, and intelligent networks. To realize the benefits of Open
RAN in optimizing resource utilization, this chapter studies an intelligent traffic steering
(TS) scheme within the proposed disaggregated Open RAN architecture. For this purpose,
we propose a joint intelligent traffic prediction, flow-split distribution, dynamic user asso-
ciation, and radio resource management (JIFDR) framework in the presence of unknown
dynamic traffic demands. To adapt to dynamic environments on different time scales, we
decompose the formulated optimization problem into two long-term and short-term sub-
problems, where the optimality of the latter is strongly dependent on the optimal dynamic
traffic demand. We then apply a long-short-term memory (LSTM) model to effectively
solve the long-term subproblem, aiming to predict dynamic traffic demands, RAN slicing,
and flow-split decisions. The resulting non-convex short-term subproblem is converted to
a more computationally tractable form by exploiting successive convex approximations.
Finally, simulation results are provided to demonstrate the effectiveness of the proposed
algorithms compared to several well-known benchmark schemes.

4.1 Introduction

Next-generation (NextG) mobile communication networks (e.g., beyond fifth-generation
(5G) and sixth-generation (6G)) are designed to accommodate a wide range of service types
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with their own specific demands, such as data rate, reliability, and delay. The mentioned
services are basically categorized into three principal cases: enhanced mobile broadband
(eMBB), massive machine-type communications (mMTC), and ultra-reliability low-latency
communication (uURLLC) [11]. Efficiently supporting the coexistence of these heterogeneous
services is challenging in the NextG wireless networks due to their competing demands. The
existing “one-size-fits-all” 5G architecture makes it very difficult, if not impossible, to en-
able the coexistence of heterogeneous services since the present 5G wireless networks are
aggregated, closed, and inflexible. Despite the cost-effectiveness of centralized/cloud radio
access networks (C-RAN) and virtual radio access networks (VRAN), open interfaces, non-
proprietary hardware, and software are still lacking in these systems. Open radio access
network (Open RAN) is an emerging solution to enable flexible, virtualized, disaggregated,
intelligent, and open NextG wireless networks to support the heterogeneity of wireless ser-
vices [66]. The openness of RAN components not only increases the interoperability between
vendors but also speeds up the delivery of new services, which can be dynamically nominated
to users. Due to the increasing complexity of NextG wireless networks, a self-organizing
network’s optimization, deployment, and operation are increasingly becoming impossible
without intelligence [81], [82].

Accommodating heterogeneous services (URLLC, eMBB, and mMTC) with competing
demands on the identical RAN infrastructure is exceedingly challenging, such that building
numerous physical networks to accommodate distinct services is not practical. Hence, it is
difficult to efficiently route heterogeneous traffic to enhance user experience and network
efficiency [69]. To this end, the concept of RAN slicing has been suggested as a poten-
tial remedy to constantly assign accessible storage, compute, and communication resources
across multiple services whilst guaranteeing their isolation [70]. In this chapter, we concen-
trate on the RAN slicing mechanism’s optimization, which entails the effective allocation
of the physical radio resources such as transmit power and the time-frequency unit. Meet-
ing the multi-traffic coexistence to handle nonuniform requirements is not possible only by
allocating the transmit power and time-frequency unit. Traffic steering (TS), one of the
most efficient approaches, enables network software to steer the traffic in the most proper
paths by routing user traffic through the most suitable radio resources. Nevertheless, the
available research on TS in 5G is still limited and uncompleted. While most existing works
of literature have studied typical TS, which treats all users similarly, regardless of users’
demands and network conditions, meaning that a network operator may even waste its
resources if a simple strategy is implemented. To address this issue, this chapter proposes
a novel TS based on the traffic demands to achieve multi-traffic coexistence. To enhance
data rate and reliability in wireless networks with limited bandwidth, the multi-connectivity
(MC) technique can be used to aggregate multiple links and allow a user to connect to more
than two nodes. In practice, MC has the potential to dramatically reduce interference
and latency of mobility methods, especially at the cell edge [83]. The multi-link capabil-
ity makes MC the most practical method for achieving uRLLC and eMBB coexistence,
whereas the recent proposals for the 5G air interface in 3GPP Release 15 utilize flexible
mixed numerologies [84].

Another great challenge of 5G is achieving low latency in latency-critical applications.
To meet this, 5G new radio (NR) defines a new concept of mini-slot, which consists of
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at most 4 orthogonal frequency division multiplexing (OFDM) symbols to support small
packet transmission sizes. Significantly, this short slot duration reduces the transmission
time. Furthermore, the single numerology that is used in fourth-generation (4G) long-
term evolution (LTE) is not suitable for expected multiservices in 5G wireless networks.
Hence, flexible mixed numerologies have been recently proposed for such wireless networks
in 3GPP Release 15, which enhances flexibility. To this end, this chapter considers mixed
numerologies in a frequency domain such that the assigned services to each slice can select
a proper numerology to allocate its data transmission while guaranteeing each service’s
requirements. It should be mentioned that this new concept introduces new challenges
related to RAN slicing that need to be studied. For instance, the dynamic allocation of the
mixed numerology-based time-frequency units and transmit power is a vital challenge.

Inspired by [85] and [86], this chapter introduces a joint intelligent traffic steering and
slice-isolation radio resource allocation framework for allocating the RAN resources with
mixed numerologies, taking into account the Open RAN architectural requirements, vari-
ous service requirements, and queue status. To present the role of intelligence in Open RAN
architecture, this chapter benefits from the long short-term memory (LSTM) recurrent neu-
ral network (RNN) to learn the network traffic pattern and predict the unknown incoming
traffic packets of the network. LSTM has been introduced as an undeniable state-of-the-
art method within the deep neural networks to overcome the exploding/vanishing gradient
problem, especially in learning long-term dependencies [87]. We outline the compliance of
the overall scheme with the Open RAN requirements later.

4.1.1 Related Works

To improve services for network providers, the work in [88] focused on providing an effi-
cient scheduling scheme to dynamically allocate radio resources in LTE networks. In [89],
the authors proposed a joint resource allocation and dynamic link adaptation scheme for
multiplexing eMBB and uRLLC on a shared channel, which dynamically tunes the block
error probability of uRLLC small payload transmissions in each cell. A control channel
and packet size-aware resource allocation approach was introduced in [90] to enable the
packet scheduling and resource allocation for uRLLC and eMBB traffic coexistence in 5G
NR networks. Although the heuristic algorithm proposed in [90] meets the uRLLC’s re-
quirements by preserving a large number of resources to uRLLC, this method has failed to
isolate the slice, resulting in a reduction of the eMBB data rate compared to high uRLLC
traffic. Wu et al. [91] developed the puncturing method to eliminate the uRLLC queuing
delay for multiplexing of uRLLC and eMBB services. The authors in [92] studied a joint
scheduling scheme to maximize the eMBB data rate while minimizing the utility of uRLLC
to meet the quality of service (QoS) requirements. Since uRLLC services are prioritized in
the puncturing-based schemes and scheduled on the assigned eMBB’s resources, the eMBB
performance (data rate and reliability) significantly decreases when the uRLLC traffic in-
creases. Moreover, the fixed numerology over frequency-time resources for the scheduling
scheme is often considered.

There is significant attention from academia and industry to TS in the literature. In
[73], a TS framework was studied in unlicensed bands on the LTE network in order to
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distribute traffic among radio access technologies, heterogeneous cells, and spectrum bands.
To overcome the puncturing difficulties in multiple services, Praveenkumar et al. in [93]
proposed a slice-isolated RAN slicing scheme with orthogonal frequency-division multiple
access (OFDMA) for the coexistence of uRLLC and eMBB. A joint scheduling and TS
scheme based on dynamic MC and RAN slicing in 5G networks was analyzed in [29], in
which an effective capacity model to evaluate the frameworks’ performance is proposed. To
integrate the LTE into 5G networks, Prasadet al. [39] investigated an energy-efficient RAN
moderation and dynamic TS based on the connectivity by multiple radio links.

The RAN slicing framework over multiple services networks has been recently devel-
oped under frequency-time resources thanks to the flexibility of mixed-numerologies. The
authors in [94] studied a resource allocation optimization problem by considering the flexi-
ble numerology in both frequency and time domains. The work in [12] analyzed the wireless
scheduling optimization problem over the mixed-numerologies to support the heterogeneous
services with different quality of service (QoS) requirements, assuming that mapping the
radio resources (time and frequency) is decoupled from service scheduling. A joint optimiza-
tion of RAN slicing, RB, and power allocation problem for eMBB, mMTC, and uRLLC in
5G wireless networks was considered in [95] under imperfect channel state information (CSI).

However, the aforementioned works have investigated TS with flexible numerology in
the “one-size-fits-all” network architecture, which is not adaptable enough to support het-
erogeneous services. Despite the huge benefit of the intelligence of Open RAN, there are
only a few attempts on the TS in the literature. Solmaz et al. in [68] proposed an intelli-
gent traffic prediction and radio resource management framework to control the congested
cell based on cell splitting in Open RAN architecture for multiplexing uRLLC and eMBB
services. In [67], a systematic analysis for implementing the intelligence in each layer of
Open RAN architecture for data-driven NexztG wireless networks was provided by consider-
ing the closed-control loops between Open RAN components. Furthermore, in our previous
study [85], we have proposed a TS scheme based on MC and RAN slicing technologies to
effectively allocate diverse network resources in Open RAN architecture by assuming fixed-
numerology (i.e., 0.25ms mini-slots) tailored with 5G NR. However, the works mentioned
earlier have not designed a traffic steering and RAN resource slicing scheme for heteroge-
neous traffic applicable to the beyond 5G wireless networks on Open RAN architecture.
The majority of works have investigated the resource allocation scheme for various services
with fixed numerology in the monolithic and inflexible architecture of 4G LTE networks.
Hence, this is the first attempt to investigate the performance efficiency of mixed numerolo-
gies considering the RAN slicing, MC, and mini-slot to achieve multi-traffic coexistence in
Open RAN architecture while guaranteeing the users’ QoS requirements.

4.1.2 Contributions

In this chapter, we develop an intelligent TS framework in the presence of unknown dy-
namic traffic demand to meet the requirements of both uRLLC and eMBB services in
beyond 5G networks based on dynamic MC. Learning an optimal traffic steering policy in
dynamic environments is challenging because fluctuations in traffic demand over time are
non-stationary and unknown, hindering the computation of cost-efficient associations. This
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chapter proposes an intelligent framework by locating rAPPs and xAPP at the non-real-
time (non-RT) RAN intelligent controller (RIC) and near-real-time (near-RT) RIC of the
Open RAN architecture. The existing rAPPs at non-RT RIC include the traffic prediction,
dynamic RAN slicing decision, and flow-split distribution, while the xAPP at near-RT RIC
is radio resource management to schedule the joint resource block (RB) and transmission
power with mixed numerologies based on standardization in 5G NR. To the best of our
knowledge, this is the first work to model intelligent TS in Open RAN architecture and
study TS in-depth detail in Open RAN layers considering the mixed-numerology in the
presence of unknown traffic demands.

To achieve the maximum data rate for eMBB traffic while guaranteeing the minimum
uRLLC latency requirement and vice versa, we propose a joint intelligent traffic prediction,
flow-split distribution, dynamic user association, and radio resource management scheme
befitting the Open RAN architecture. Then, we identify the location of the ML training, Al
server, and inference modules to provide a high-level architecture of deployment scenarios
and end-to-end (e2e) workflow to prove compatibility with Open RAN standards. Our main
contributions are summarized as follows:

e We develop a general optimization framework to jointly optimize intelligent traffic
prediction, flow-split distribution, dynamic user association, and radio resource man-
agement, called “JIFDR”. To maximize the eMBB’s data rate while guaranteeing
the uRLLC latency requirement, or vice versa, we formulate two optimization prob-
lems with different objective designs while satisfying QoS requirements, slice isolation,
power budget, and maximum fronthaul (FH) capacity.

e To effectively solve the formulated problems, we divide each problem into long-term
and short-term subproblems, which are executed on different time scales. The long-
term subproblem is mapped into three dependent rAPPs: traffic prediction, dynamic
RAN slicing decision, and flow-split distribution at the non-RT RIC. In contrast, the
short-term sub-problem is deployed as the radio resource management xAPP at the
near-RT RIC, which is linked to the upper layer through the Al interface.

e The long-term subproblem benefits from the LSTM RNN to learn and predict traffic
patterns and demands. This model is trained offline at the non-RT RIC in the service
management and orchestration (SMO) through the long-term collected data from the
RAN layer via the O1 interface. RNN is utilized to learn the temporal pattern of
the traffic demand from current values in order to forecast future values. Upon the
inference result, two heuristic methods are proposed to optimize the RAN slicing and
flow-split distribution.

e Next, given rAPPs’ outcomes sent from the non-RT RIC via the Al interface, we
propose a successive convex approximation (SCA)-based iterative algorithm to solve
the short-term subproblem, which belongs to a class of mixed-integer non-convex
programming (MINCP) problems.

e Finally, numerical results are presented to demonstrate the proposed algorithm’s quick
convergence behavior and to confirm its efficacy in comparison to benchmark schemes.
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Furthermore, by using a mathematical analysis, convergence and complexity analysis
are studied. The average mean square error (MSE) of the prediction is relatively low
at 0.0033.

The rest of this chapter is organized as follows: Section 4.2 introduces the Open RAN
architecture and system model. In Section 4.3, we present the problem formulation and
overall intelligent T'S deployment architecture and algorithm. Section 4.4 first proposes the
LSTM model and heuristic methods to solve the long-term subproblem and then develops
an SCA-based iterative algorithm to solve the short-term subproblem. Simulation results
and discussions are provided in Section 4.5, while Section 4.6 concludes the paper.

4.2 Open RAN Architecture and System Model

4.2.1 Open RAN Architecture
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FIGURE 4.1: Open RAN architecture based on O-RAN Alliance

The Open RAN architecture based on the O-RAN Alliance is illustrated in Fig. 4.1,
including three main layers (the management, control, and function layers) [96]. To further
reduce the RAN expenditure, Open RAN fosters self-organizing networks by adding two
unique modules of near-RT and non-RT RICs to enable a centralized network abstraction,
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which improves efficiency by cost-reducing the human-machine interaction. Following the
disaggregation concept, BS functionalities are virtualized as network functions based on the
3GPP functional split and are distributed among various network nodes, namely central
unit (CU), distributed unit (DU), and radio unit (RU) [68]. Hence, open interfaces (FH,
A1, O1, E2, F1) are introduced to enable efficient multi-vendor interoperability, where a
network operator can select RAN components from different vendors individually.

The unique feature of RICs is to create closed-control loops (i.e., autonomous action and
feedback loops) between RAN components and their controllers. In order to control traffic
prediction, network slicing, and hand-over management, Open RAN defines three control
loops, namely non-RT, near-RT, and RT running at different timescales ranging from 1 ms
to thousands of ms, enabling real-time control of transmission methods and beamforming.
Following Open RAN Alliance specifications, each loop that works on a timescale of at least
one second is called a non-RT control loop, which involves the coordination between both
RICs through the Al interface. The near-RT control loop operates on a timescale between
10 ms and 1 s while it runs between the near-RT RIC and DU and CU components. The
third loop working on sub-10 ms is labeled as the RT control loop, which is largely relevant
to interactions between elements of DU and cell site.

In particular, the non-RT RIC carries out tasks with a temporal granularity greater
than one second, like service provisioning and training AI/ML models, which rAPPs can be
implemented in this controller. On the other hand, the near-RT RIC manages operations
with timescales of more than 10 ms, hosts external applications (referred to as xApps),
and incorporates intelligence in the RAN by data-driven control loops. RICs may execute
applications created by independent third-party specialized software suppliers as a platform
for hosting software. These applications are known as “rAPPs” and "xAPPs” and act as
key enablers to run on non-RT and near-RT RICs, respectively. rAPPs handle the non-RT
functions that require more than 1 second to be executed, which may take minutes or hours.
While xAPPs are external applications specific to handle radio functions that run between
10 ms and 1 s that interact with RAN elements and the upper layer by open interfaces to
reconfigure some exposed functionality. To this end, Open RAN Alliance strives to steer
the industry toward the development of AI/ML-enabled RICs.

4.2.2 Network Model

We consider a downlink OFDMA multi-user multiple-input single-output (MU-MISO) sys-
tem in the Open RAN architecture, consisting of one CU, the set A = {1,2,...,N} of N
DUs, and the set M = {1,2,..., M} of M RUs. For cost-effective deployment, each DU
serves a cluster of RUs. Let denote by M, = {(n,1),...,(n, My,)} with |4,| = M, and
Y nen Mp = M the set of RUs served by DU n. The m-th RU served by n-th DU is referred
to as RU(n, m), which is equipped with K antennas while users are equipped with a single
antenna. Let us denote by U = {1,...,U} the set of users served by DUs, which can be
further divided into two disjoint sets U"" of U“" uRLLC users and U™ of U*™ eMBB users.
The eMBB users generate the traffic with a large packet of size Z*™ bytes, while the uRLLC
users generate a sequence of small and identical packets of Z!"" bytes. In addition, as shown
in Fig. 4.2, we assume that all data arriving from upper layers is stored in the user-specific
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TABLE 4.1: Summary of Main Notations and Variables

Variable Meaning

aft] Bandwidth-split variable per frame ¢

Omult] Portion of data flow routed to user u via RU m per frame ¢
T (] RB (ts, fi) allocated to user u (WuRLLC or eMBB) via RU m
D g [ts] Transmit power from RU m to user v (uRLLC or eMBB) via RB (¢, f;)
Ault] Traffic demand of user u per frame ¢

Notation Meaning

N, M, My, Sets of DUs, RUs, and set of RUs covered by DU n

AU, UM U™ Sets of all users, uRLLC users, and eMBB users, respectively

B, Bi, B; Total system BW, RB’s BW, and BWP assigned to numerology ¢
A, Frame’s duration and TTI’s duration

Si, Fi Numbers of TTI per frame and subcarriers per TTI

ay[t] Flow-split selection vector for user u

’}m,u,fi [ts} 7~gm,u,fl [ts]
hm',/u‘*,fl [tL hm,u,fi [ts]
Omou,f: [t G, 1 [1]
No, Ny

Channel vector and effective channel gain between RU m and user u
Line-of-sight (LoS) and non-LoS (NLoS) components

Rician factor and large-scale fading

Power of the AWGN

V, P, Q! Channel dispersion, error probability, and inverse of Q-function

I'Ty The received SNR, and minimum received SNR

Amax s A Maximum finite arrival traffic and the total of all traffic demands

Q™ Gmu Maximum queue buffer capacity and queue-length of user u at buffer of RU m
Peujdus Jeujdur C Task rate, computation capacities of CU and DU and number of cycles

ur 7':757 " The e2e latency of uRLLC user u and processing latency of all users at CU/DU

tx tx tx
Tcu,du’ Tdu,rus Tru,u

Dur CM CFH

Transmission latency under MH and FH links and from RU m to user u
Latency requirement of uRLLC traffic and maximum MH and FH capacity

transmission buffers of the RUs till it is time to serve it. The RUs serve the users in the
cell by allocating the frequency-time radio RBs and transmission power to each RB. The
parameters used in this chapter are summarized in Table 4.1.

To meet the demands of exigent latency services, we investigate a mini-slot-based frame-
work where each time slot is broken into two mini-slots. Each mini-slot has a duration of
§ =1/27*! ms and comprises 7 OFDM symbols, where v € {0, 1,2} is the subcarrier spac-
ing (SCS) index. Hereon, we suppose that several RUs operating in MC configuration are
simultaneously providing eMBB and uRLLC services. Following [97], numerology with in-
dex i =1 (i.e., SCS index v = 1) is appropriate for eMBB to meet the requirement of high
data rate, while numerology with index ¢ = 2 (i.e., SCS index v = 2) is more suitable for
the uRLLC service’s applications with the latency-critical and small data packet of uRLLC.
From the mixed-numerologies point of view, eMBB service sorts the numerology ¢ = 1 with
RB’s bandwidth (BW) of f3;];=1 = 360 kHz and §;|;=1 = 0.25 ms of transmission time inter-
val (TTI) duration as the highest priority, and uRLLC service would prioritize numerology
i = 2 with RB’s BW of f3;];—2 = 720 kHz and §;|;=2 = 0.125 ms of TTI duration.

The multiplexing of mixed numerologies in the frequency domain is considered in this
chapter, where the carrier BW that is accessible for the downlink transmissions is divided
into several bandwidth parts (BWPs). According to this, each user is able to alter its
RF bandwidth based on its required data rate by switching between numerous BWPs.
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As illustrated in Fig. 4.3, the desirable BWP design to serve two types of services with
different requirements is established based on the expected queue length of each service
by introducing the BW-split variable aft] € [0,1]. Whereas this method does not call for
tight time synchronization techniques, using various numerologies in the adjacent sub-bands
causes inter-numerology interference (INI). Hence, to reduce INI, a fixed guard band Bg
equal to one RB’s BW (i.e., 180 kHz) is configured between the two neighbor numerologies
(i.e., sub-bands). The scheduled BWP assigned to the uRLLC slice with numerology i = 2
is denoted by Bj[t]|i=2 = «[t]B, to unload the existing packets in the uRLLC slice’s queues
at frame ¢, where B is the total carrier BW. In contrast, B;[t]|;=1 = (1 — a[t])B — Bg the
scheduled BWP assigned to eMBB slice with numerology ¢ = 1.

Assume the proposed system model works in a discrete time-frame indexed by ¢ €
[1,2,...,T], which corresponds to one large-scale coherence time of A = 10 ms duration
for each frame, as shown in Fig. 4.3. Depending on the selected numerology i by each
service, each frame in the time domain is divided into .S; TTIs where the duration of
each TTI denoted by ts = (t — 1)S; + s with s = {1,...,S;} is §;. Thus, based on the
selected numerology ¢, each BWP is partitioned into F; number of sub-bands of frequency
set F; ={1,..., fi,..., F;} in the frequency domain and S; number of TTIs in each frame,
indexed by ts = {(t —1)S; +1,...,(t —1)S;i +s,...,(t —1)S; + S;} in the time domain.
Such that F;[t] = | B;[t]/B8:| and S; = A/d;. Therefore, a total F;[t] x S; number of RBs are
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FIGURE 4.2: System model with the traffic-steering scheme.
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FIGURE 4.3: Time-frequency grid with different numerologies.

accessible for the services using the i-th numerology at each frame ¢ via each RU.

As depicted in Fig. 4.2, the U independent data traffics with different demands at the
CU layer are subsequently routed to virtual network functions (VNFs) in the DUs layer
for parallel processing, referred to as data flows. We adopt the M /M /1 processing queue
model on a first-come, first-serve basis to serve each user’s packets. As it is clear from Fig.
4.2, the maximum number of paths for each user is M. According to the principle of the
TS technique, the CU splits the data flow of the u-th user into several sub-flows, which
are possibly transmitted via the maximum of M paths and then aggregated at this user.
Because of the non-overlapped DUs’ coverage, the resource optimization design at one DU
is similar to that of other DUs. Thus, for ease of presentation, we drop the subscript index
of DUs hereafter. To this end, we define ay[t] £ [an.[t]] as the flow-split selection vector
for the u-th data flow in time-frame ¢. In particular, if a,, ,[t] = 1, the m-th RU is selected
to transmit data of u-th data flow; otherwise, ap, ,[t] = 0. In addition, let us denote by
elt] = {pult], Yul Y, emultl = 1, emult] € [0,1]} the global flow-split decision, in which
wult] [(pm,u [t]]T represents the flow-split portion vector of user w while ) ¢ u[t] = 1,
where ¢, ,[t] € [0,1] indicates a portion of data flow routed to user u via RU m in time ¢
by selecting action a, [t].

Achievable data rate: The channel vector between RU m and the u-th user at the sub-
band f; in TTI ¢, is denoted by R, 4. 1,[ts] € CE*1, which follows the Rician fading model

with the Rician factor g, f[t]. Within each frame, we assume that the channel remains
temporally invariant, while it may be different across each short-time scale TTI. We model

hm7u’fi [ts] as
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Om,u, f; 1 ~
h |+4/———=h [ts]), (4.1
mafi [ ] Cm u7fl \/T " U,fz (Qm,u,fz‘ [t] + ].) modi [ 8]) ( )

where (p, 4.1, [t] is the large-scale fading; i_Lm,% #,[t] and ﬁmu #,[ts] are the line-of-sight (LoS)
and non-LoS (NLoS) components, which follow a deterministic channel and Rayleigh fading
model, respectively. Given the orthogonality constraint, this chapter considers that each
RB of a RU is assigned to only one single user during one TTI, such as 77", . [ts] € {0,1}
and 70 . [ts] € {0,1} for eMBB and uRLLC traffics, respectively. Here, TI'muf [ts] =

1 if the RB(ts, f;) associated with sub-band f; in TTI ¢, of RU m assigned to the u-

th eMBB user, and 7rmu plts] = 0, otherwise; a similar definition is given for uRLLC
users. Let define II[t;] = {Trmufz[ sl g lts] € {0,132, momy i lts] < LiVfits i =

LY o T g lts] < 15V fi ts, i =2} as the RB allocation constraint. This is to ensure the
orthogonahty constraint and QoS constraint for uRLLC service.

Thanks to the MC technique, the main interference of eMBB is eliminated, and the
rest of the interference can be supposed as noise, which is also constant [98]. Hence, the
instantaneous achievable rate in [bits/s] for a given set of channel realizations at the u-th
eMBB user at TTI ¢, is given by

annu fz[ ]gm,u,fi [ts]
No

Rem em Z B; 10g2 )’ (4.2)

fi=1

where 3;, Ny and pm . fi [ts] are the bandwidth of each RB in numerology index i, power of
the additive white Gaussian noise (AWGN), and transmit power from RU m to user u for
eMBB traffic at sub-band f; at the TTI ¢,, respectively; g u,f, [ts] denotes the effective chan-

nel gain, given as gpmu.f; [ts) = [[Rmu.f; [ts)||3- Let us define p*™[t ] = o fi [ts]]s Vi, u,m.
The transmit power must satisfy pi",  [ts| < mpr,  [ts| PR with Pmax being the power

budget at RU m, which guarantees that RU m allocates power to user u on RB(ts, f;) only
if 70, 1 [ts] = 1; otherwise w7 . [ts] = 0 and p§, - [ts] = 0. As a result, the data rate of
eMBB user u € Ollem in TTI ¢ is given as RS (P! m[ s)) = 2 B (P [ts]). The minimum
QoS requirement for eMBB users is guaranteed by the constraint RE™(p®™[ts]) > R™, where
R™ is a given QoS threshold.

In contrast, owing to the finite block-length in uRLLC traffics, the instantaneous achiev-
able rate of u-th uRLLC user (u € U"") from RU m in TTI ¢, using the short block-length
can be expressed as [76]

_ i B; [10g2 <1+p%,u,f¢ [tS]gmyuvfi [ts})—10g2(€) W;Jr;,u,fi [ts]\/VQ_l(Pe) :
No ViBi
(4.3)
where V, P. and Q~!: {0,1} — R denote the channel dispersion, error probability, and
inverse of the Gaussum Q-function, respectively. Let us define p“[ts] = [P .1, [ts] and

Ry o (™ [ts], m"
fi=1
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Ut £ [ u[f][ s)]s [VJ;Z,U m. It is observed that V =1 — (F[t ez ~ 1 when the received
ts)gmu, g [t
Ilts] = P Ng S22 > Iy with Ty > 5 dB. This can be easily achieved in cellular

networks by arranging the uRLLC decoding vector into one possible null space of the ref-
erence subspace; the scheduler can eliminate inter-user interference of uRLLC [77]. Hence,

we consider the constraint #ﬁmﬂ;{ wpilts] < Py plts] < o [t PR to guarantee

the approximation V = 1 as well as the big-M formulation theory to avoid non-convexity of
(4.2). Similar to the eMBB service, the data rate of uRLLC user u € U"" in TTI ¢, is given
as R (p[ts], wi"[ts]) = >, Rur . (p""[ts], ® " [ts]). We have the following power constraint,

m m,u

NoTomi 516

Plts) = {0 < i plts) < 7o, 1 [P, < by g lts] < T PR

gm»uvfi[ts]
2 D Wi ] + pin g lt]) < PR (44)
i fiu

We denote A,[t] in [packets/s| as the unknown traffic demand of user u in time-frame ¢
with the length of Z* bytes with x € {ur,em}, which is i.i.d. over time and upper bound by a
finite constant A™®, such as A, [t] < A\™** < co. We consider that the retained independent
queue at each RU for the u-th user, which is denoted by {@mu[t]\.[t]Z*} as the arrival
processes of sub-flows, is controlled by a congestion scheduler. Thus, the queue-length
of data flow w at RU m in TTI (tsq1) iS gmults) = max{[gmu[ts—1] + @mul[t]Aa[t] 2°A —
R}, .[ts)0:],0}. In order to avoid the packet loss due to buffer overflow in each RU, the
constraint » . gmu[ts] < Q™,Vm is imposed to ensure that the available packets in the
buffer of RU shouldn’t exceed the maximum queue-length of Q™3 for each RU. Let qts] =
[qmvu[ts]]T, Ym, u.

The e2e Traffic Latency for uRLLC: Denote by f., and fz, the computation capacities
of CU and DU [cycles/sec], respectively. Considering the identical packet size, the required
computation resource to process one packet of size Z is C' (number of cycles). As a result,
pew = feu/C and pgy = fau/C are the task rates [1/sec] at CU and DU, respectively.
As a result, 1/pue, and 1/pg, represent the mean service times of the CU and DU layers,
respectively. The processing latency of all data flows at the CU layer (75°) and DU layer

(t97°) is computed as

O] = A[t], and 75°[t] = A—[t], Vn € N, (4.5)
Heu Kdu
where Alt] = >, Au[t]. Next, the arrival packets \,[t] for the u-th user are transported
to the DU layer via the midhaul (MH) link with the maximum capacity CM? [bits/sec]
between CU and DU. By Burke’s theorem, the mean arrival data rate of the second layer,
which is processed in the first layer, is still the same rate [78]. Hence, the data transmission
latency of the traffic flow for user v under the MH limited capacity is

S alt] = T2 (46)
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As mentioned previously, the maximum number of paths from DU n to each user is M.
Since the packets for user u can be transmitted by multiple RUs, the effective response time
Tézﬂ,u to transport all packets in the DUs layer should be computed by the worst average

response time among its connected FH links with maximum capacity C-H [bits/sec], i.e.,

785 pult] = max

{ S e Prsult]Nalt] 247

o } Vm € My, (4.7)

The transmission latency from RU m to user u is then calculated as

T;Z,u [tS} = mﬁx

{ Omult] A [t] 2

ur, 4.
R%,u[ts] }, Yu € U (4.8)

Simply put, the e2e latency of each uRLLC user u € U"" per each TTI is computed as
7o' lt] = TR 4 T ault] + T [+ i ]+ D (et + TRRI]), Vu € U, (4.9)
ts

where 7%, is the process latency at RU m, which is bounded by three OFDM symbols
duration that is typically very small. To ensure a minimum latency requirement for uRLLC
user u, the e2e latency is bound by a predetermined threshold D', i.e., 72"[t] < D"

4.3 Problem Formulation and Overall Intelligent Traffic Steer-
ing Algorithm

4.3.1 Problem Formulation

Utility function: The ultimate goal is to optimize the joint intelligent traffic predic-
tion, flow-split distribution, dynamic user association, and radio resource management
in the presence of unknown dynamic traffic demand to serve eMBB and uRLLC users,
subject to various resources constraints and diverse QoS requirements. Due to the con-
flict of objective functions in both services (i.e., eMBB and uRLLC), the utility function
should capture the eMBB data rate and worst-user e2e uRLLC latency separately such
as R®™ =3 coqpem RY™ (™ [ts]) and max,cqur {7} on two independent optimization prob-
lems. Based on the above definitions and discussions, the JIFDR, problem is mathematically
formulated as two independent optimization problems with common constraints as follows
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P1: max  R*™(p®M[ts]) (4.10a)

A, m,pa
s.t. w[ts] € Its], Vis (4.10Db)
plts] € P[ts], Vits (4.10c)
pult] € [t], Vt,u €U (4.10d)
R (p"[ts]) > R™, Vu € U™ (4.10e)
Z (RS, (p°™[ts]) + Rin (9™ [ts], w7 [ts])] < ORI, ¥m € s, (4.10f)
R%,u(pur[tSL T (ts]) > Omultl N[t ZY,Ym € My, u € U (4.10g)
T (A[L], @[t], w[ts], p[ts]) < D", Yu € U™ (4.10h)
quu o < Q™ Vtg,m € My, (4.10)
Zﬂi < Bilt], i € {1,2} (4.10§)

fi=1
0<aft] <1 (4.10k)

and,
P2 i ur 4.11

Aopa s nd (2]
st. (4.10b) — (4.10k), (4.11D)

where @[t], w[ts] and p[ts] are the vectors encompassing the flow-split portions, sub-band
assignments, and power allocation variables at frame ¢t and TTI t;, respectively. Recall that,
for each BWP with the given numerology, B;[t]|i=2 = a[t]B and B;[t]|;=1 = (1—at]) B—Bg.
Constraint (4.10f) expresses the limited capacity of the FH link between DU n and RU m.
Constraint (4.10g) ensures that each RB assigned to the u-th uRLLC user should transmit
a complete data packet with the size Z".

Challenges of solving JIFDR problem: The main challenges in solving problems
(P1) and (P2) lie in the non-convexity of 7,)" and constraints (4.10f), (4.10g) and (4.10i) with
respect to flow-split portions and transmit power variables. Furthermore, the binary nature
of sub-band allocation variables in constraint (4.10b) makes these problems more difficult
to solve directly, which is generally MINCP. Once may employ the MINCP solvers (e.g.,
Gurobi) to directly solve binary 7. However, we argue that the exponential computation
complexity of such a MINCP formulation limits its practical feasibility, especially when the
number of variables exceeds a few thousand in large-scale scenarios. Besides, the traffic
demand A[t] for the next time frame is unknown in practice. Such that the BW-split «t]
and flow-split vectors [t] for frame ¢ will be decided based on the previous states updated
by the RAN layer and knowledge of the previous traffic demands {A[t — 1]};. In order
to attain high QoE for all users in each TTI, an efficient and adaptable solution to the

76



4.3 Problem Formulation and Overall Intelligent Traffic Steering Algorithm

long-term subproblem of (4.10) and (4.11) is required.

4.3.2 Sub-Optimization Problems

It is clear, both problems (4.10) and (4.11) must be solved on separate time scales, i.e., on
the long-term scale ¢ and the short-term scale ts. To reduce the computational complexity
and information sharing as well as to provide a stable queuing system, the traffic demand
vector A[t], the flow-split decision vector ¢[t] and the BW-splitting variable «[t] are only
solved and updated once per time-frame ¢. In contrast, the power allocation vector p[ts] and
the RB allocation vector 7r[ts] are optimized in every TTI t,, adapting to dynamic environ-
ments. Although having different objective functions, we observe that P1 and P2 can share
the solution development. In particular, the P2’s objective function can be equivalently
transformed to the maximization of the worst rate of the uRLLC services. By approximat-
ing the channel dispersion V' in 4.2 as 1 for proper signal-to-noise ratio (SNR) ranges, the
uRLLC rate has the same concavity as the eMBB rate in 4.1. Since both problems P1 and
P2 have the same set of constraints, hereafter we propose solution development for only P1
to avoid redundancy.

Long-term Subproblem (L-SP): The joint optimization subproblem of the traffic
demand, flow-split distribution, and dynamic RAN slicing at time-scale ¢ is re-expressed as

L-SP : mmax RE™(p*™[ts]) (4.12a)

NN
st wult] € @[t], Vt,u (4.12b)
Ry (0 [ts], 7 [ts]) > omultIAu[t] 24 (4.12¢)
Tu (Alt], [t], 7[ts], plts]) < D, Vu (4.12d)

F;

> Bi < Bilt], i € {1,2} (4.12¢)

fi=1
0<alt] <1 (4.12f)

Although the L-SP (4.12) is non-convex due to the non-convexity of constraints (4.12c)
and (4.12d), it cannot be solved directly by standard optimization techniques because A[t]
is completely unknown at the beginning of each frame. In the next section, three successive
methods are proposed for solving this problem, that predict traffic demand, dynamic BW-
split distribution, and dynamic flow-split variables as A*[t], a*[t] and ¢™*[t] at the beginning
of each frame t, respectively.

Short-term Subproblem (S-SP): Given A*[t], a*[t], and ¢*[t] forwarded from the
non-RT RIC through the A1l interface, the resource allocation problem at time slot ¢5 in
the near-RT RIC is expressed as
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S-SP : max R*M(p*M[ts]) (4.13a)
7T7p
s.t. w(ts] € H[ts], Vis (4.13b)
plts] € P[ts], Vts (4.13c)
R (p*"[ts]) = R™, Vu (4.13d)
> RN [ts]) + R, (P[], w1 [t])] < CRFvm (4.13¢)
Ry (P [ts], ' [ts]) = b, Vm, u (4.13f)
T (7[ts], plts]) < D™, Vu (4.13g)
> tmalts] < QM Yty m € My, (4.13h)

where ¥ = oy, ,[t]\;[t]Z"". The S-SP (4.13) involves both binary () and continuous (p)
optimization variables with nonlinear objective function and non-convex constraint (4.13e)
at time slot ts;, which is still a MINCP problem. Since MINCP problems incorporate
the optimizing challenges under integer variables with managing nonlinear functions, such
problems comprise an immense class of difficult optimization problems.

4.3.3 Overall Intelligent Traffic Steering Deployment Architecture and
Algorithm

In Fig. 4.4, we show the high-level organization of deployment scenarios and the end-to-end
flow of the proposed algorithm within the Open RAN architecture. This is inspired by the
second set of deployment scenarios listed in the technical report [99] by the Open RAN
Alliance.

@ The collected data, including performances/observations and resource updates from
RAN components and near-RT RIC, are collected into a data collector located at the
SMO. This process is done via the O1 interface. Based on these collected data in
SMO, three rAPPs for solving L-SP are carried out at non-RT RIC. For ¢t = 1, we
assume a random traffic demand with a Poisson process and equal flow-split decision
for all paths.

@ Utilizing a data bus like Kafka, the collected data at the SMO is routed to non-RT
RIC in the SMO.

@ The non-RT RIC queries the relevant ML/AI model, which is hosted in the AI server
within the SMO. Once the model has been well-trained on the Al server, non-RT RIC
is notified of the inference.

@ The scheduling xAPP in near-RT RIC is then loaded with inference results and policies
via the Al interface. Applications that are designed specifically for radio functions,
or xAPPs, enable RAN components to be programmed.
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FIGURE 4.4: High-level structure of deploying the proposed intelligent traffic prediction and
JIFDR management scheme within the Open RAN architecture.

@ Given A*[t], a*[t] and ¢*[t], xAPP1 deployed in near-RT RIC controls congestion
through MC technique and optimizes RAN resources and functions in each time-slot

ts by solving S-SP to obtain optimal solutions of RB allocation 7*[ts] and power
allocation p*[t].

@ Subsequently, the RAN Data Analytic component in near-RT RIC updates queue
lengths.

@ Through the E2 interface, the relevant solution is transferred to CU or DU layers.

After S; TTI (i.e., one frame), the performance and observations (e.g. q[t — 1],
A[t — 1]) are updated to SMO through the O1 interface to re-estimate the traffic
demand X*[t + 1] and flow-split decision ¢*[t + 1].

The overall intelligent TS algorithm to solve the JIFDR problem (4.10) is summarized
in Algorithm 2, where the solutions for subproblems will be detailed in Section 4.4. It is
straightforward to develop a similar procedure to solve problem (4.11).

4.4 Proposed Frameworks for Solving Subproblems

We are now in a position to solve the L-SP and S-SP on different time scales. The optimal
solutions for all optimization variables (a ¢, 7 and p) strongly depend on the predicted
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Algorithm 2 Proposed Intelligent Traffic Steering Algorithm to Solve JIFDR Problem
(4.10)
1: Initialization: Set t = 1, t, = 1, p,[1] = 37[1,...,1] and «a[l] = 3; all initial queues are
set to be empty ¢ .[1] =0 and q[1] = 0.
2: fort=1,2,...,T do
3: Traffic demand prediction: Given (A[t—1], g[t—1]), non-RT RIC splits the available
of all RUs” BW and traffic flows of all users by (4.14) and (4.15) based on the predicted
traffic demand (or arrival data rate) A*[t] by solving the L-SP (4.12)
: for t;, =1,2,...,5; with s € {1,2,...,5;} do
5: Optimizing scheduling: Given the queue-length vector q[t;], and all long-term
variables such as (A*[t],a*[t], and ¢*[t]), solve the problem (4.16) by Algorithm 3 to
obtain the RB assignment (7*) and power allocation (p*)
6: Updating queue-lengths: Queue-lengths are updated as

QHL,u[ts—i-l] = max{ [qmu[ts] + @nL,u[t])\u[t]Zxai - T:n,u [t€]5l:| ) 0}

where x € {ur,em}.
7 Set s=s5+1
end for
: Update {q[t], Alt]} = {gmult], Au[t]}, Yu €U, m € M,
10: Set t =t+1
11: end for

traffic demand vector A, which often require prior knowledge of the actual traffic of all
services stored at the data collector in SMO. Moreover, due to the dynamic environment
and data collected from the RAN components being only updated to non-RT RIC on a
long-term scale (i.e., frame), the assumption of complete information is unrealistic. In this
chapter, we aim to leverage observable historical system knowledge gathered over previous
time slots via the O1 interface to build a smoother optimal response to maximize the long-
term utility.

4.4.1 LSTM for Solving L-SP

As mentioned previously, the L-SP cannot be solved directly by standard optimization
techniques since A[t] and q[ts] are often unknown at the beginning of each frame. Besides,
the main challenge in optimizing traffic steering is to predict traffic precisely before the
beginning of the next frame. An optimal policy cannot be implemented with an imprecise
prediction of future traffic. In this section, utilizing a deep learning approach, we develop a
data-driven real-time traffic demand prediction method. We suppose that the queue length
of data flows u in the next frame will depend on the traffic demand of data flows u in the
current and previous ones. Basically, RNN models utilize the current input as well as the
output of one layer as the input for the subsequent layer. In such models, each layer is
fed by the very first layer’s input. This allows the RNN model to learn from the current
and former time steps and then provides more precise predictions for traffic flows. These
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FIGURE 4.5: Implementing the proposed JIFDR management scheme at time-frame ¢.

standard RNN models suffer from short-term memory owing to the vanishing and exploding
gradient problems, which appear with longer data sequences. Due to these difficulties, the
gradient either entirely disappears or explodes to a very high value, which makes it difficult
to learn some long-period dependencies. To address the long-term dependency issue, the
LSTM model has seen extensive use in the field of traffic prediction due to its capabilities
in dealing with long time-series flow data. As a result, we utilize the LSTM RNN to learn
and predict the traffic pattern of all users in the considered Open RAN architecture.

The fact that LSTM includes a memory cell to keep observable data allows them to
handle long-term time series. As shown in Fig. 4.5, the structure of standard LSTM
cells learns through four main gates, namely input (i), forget (fy), cell state-update (cg),
and output (o4), that allow the input data to pass from the previous cells in the learning
procedure. The output calculated by the input gate (iy) and the cell state update (c,)
modify the current cell’s state (c[t]), while the forget gate enables the current cell to discard
or preserve the previous state value. To determine this, we take into account the output of
the previous hidden state (#[t—1]) and the actual input data (A[t—1]). The new cell state’s
value is based on the actual input and previous output of the cell. In contrast to other gates
that employ the Sigmoid function, the cell state update benefits the hyperbolic tangent as
an activation function that yields values between —1 and 1. Eventually, the input, forget,
and cell state update gates are combined to create the current cell state. The current cell’s
output is determined as a function of the previous timestep’s output ([t — 1]), the actual
input data (At — 1]), and the cell state (¢t — 1]) through the output gate. Lastly, after
crossing through an activation function, the prediction value is calculated. Each LSTM
layer comprises a chain of LSTM cells, in which the computed operation of each cell is
transmitted to the next cell as an input. As illustrated in Fig. 4.5, the temporal pattern of
the mentioned parameter is learned through the current and a window of previous traffic
demands value with the length W {A[t — W], A[t — W +1],..., A[t — 1]} to predict future
values.
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The LSTM model is trained at non-RT RIC in the Open RAN architecture, using long-
term data gathered from RAN via O1. The near-RT RIC of the Open RAN is then given
access via the Al interface to the trained model for inference. Upon the inference outcome,
the intelligent TS is applied through the MC technique to enhance the associated key
performance indicators (KPIs). Traffic demand prediction and the corresponding intelligent
TS schemes are continually implemented till the desired KPI values, or the required QoS of
traffic, are met. In the following, the network parameter of data arrival rate A is continuously
monitored across all cells of RUs. Upon predicting the data arrival rate per frame, the
flow-split distribution, dynamic RAN slicing, and radio resource management with the MC
technique can be applied to steer data flows. The weights of the RNN model are eventually
updated depending on the actual parameter’s value to reflect changes and enhance the
performance till the goal KPI criteria are met if the prediction outcome is incorrect.

4.4.2 Heuristic Methods for Predicting aft] and ¢][t]

Upon the inference outcome of the LSTM model, the predicted traffic demands at the next
frame A*[t] are transmitted immediately to two other embedded rAPPs in non-RT RIC
for optimizing the dynamic bandwidth separation, a[t] and flow-split decisions, ¢[t]. For
efficient deployment, these parameters are designed in a longer time scale, i.e., on the frame
basis compared to the time slot basis of power allocation and RB assignment. Therefore, at
the beginning of each frame, a[t] and ¢[t] should be determined upon getting the predicted
traffic demands. Having optimum values of the bandwidth separation and flow split is very
difficult, if not possible, because of the unknown CSI of future time slots in the current frame.
Therefore, we propose an efficient heuristic algorithm to determine aft] and ¢[t] based on
A*[t]. An intuitive way is to allocate the bandwidth to each service proportionally to the
corresponding traffic demands. However, since the amount of uRLLC traffic is much smaller
than the amount of eMBB traffic, this method is not efficient in meeting the stringent latency
requirement of uRLLC applications. To tackle this, we incorporate the maximum tolerable
delays of both services and the total traffic demands. Thus, the bandwidth separation
between eMBB and URLLC services is computed as follows

* em
*[t] _ Zol[“' )\u[t] « TtEr (414)
Doem AG[L] T
where 73 and 73" represent the maximum allowed latency for uRLLC and eMBB services,
respectively.

To plan the flow splitting factor ¢, [t], we consider each DU’s capacity in delivering user
traffic demands u. Because we do not know the data rate for the user in the next frame, we
take the moving average of the rate in the most recent time slots. For a generic user u (can
be a uRLLC or eMBB user), let us define Ry, ,[t] = Zf:t_wﬂ Ry, u[l], where Ry, [l] is
the achievable rate of user u served RU m at time slot I, and W is the window size. The
flow split for user v to RU m is computed as follows

Prnult] = SR , Vm, u. (4.15)
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4.4.3 SCA-based Iterative Algorithm for solving S-SP

To solve the problem (4.13) as a MINCP, we first relax binary variables to continuous ones
(i.e., the box constraints between 0 and 1) and transform constraint (4.13e) into a more
traceable form, which the SCA-based iterative algorithm can efficiently solve.

Algorithm 3 The Proposed SCA-based Iterative Algorithm to Solve S-SP (4.16)

1: Initialization: Set j := 0 and generate initial feasible points for (w©[t,],p@[t,]) :=
(m[ts—1],p[ts—1]) to constraints in S-SP2 (4.19)

2: repeat

3: Solve (4.19) to obtain (mw*[ts], p*[ts]) and =*[ts];

4: Update (wO[t,], pW[t]) := (w*[ts], p*[ts]) and ED[t,] := Z*[t,];

5: Set j:=7+1;

6: until Convergence or |EU)[t,] — EU-V[t,]| < e {/*Satisfying a given accuracy level*/}

7. Recover an exact binary by computing #*[t,] = [7)[t,] +0.5] and repeat step 1 to 5 for

given m*[ts];
8: Output: (7*[t,], p*[ts])-

Penalty function: We bring forward the following penalty function to accelerate
the convergence of the proposed iterative algorithm that will be detailed shortly P(w) =
Dot fim [(anmufl [ts])? + (o g [ 1)? - T filEs] — T 7, [ts]] which is convex in r[t,].
It is clear that P(mw) < 0 for any ), , [t 5] € [0,1], which is useful to penalize the re-
laxed variables to obtain near-precise binary solutions at optimum (i.e., satisfying (4.13b)).
By incorporating P () into the objective function of (4.13b), the parameterized relaxed

problem is expressed as

S-SP1: max RE™ + wP(m) (4.16a)

st. w[ts] e [ty], Vs, Yu €U (4.16D)

(4.13¢) — (4.13h) (4.16¢)

where ﬁ[t]_{ﬂ-mufl[ ] 7Trnufl[ ] [O 1]|Zmu[ mufl[ts]—l_ n;uf,[ H<1} and w > 0

denotes a determined penalty parameter.

Proposition 2. Problems (4.13) and (4.16) share the same optimal solution, i.e., (w*, p*),
constdering an suitable positive value of w.

The proof is directly followed [79] by showing the fact that P(w) = 0 at optimum in
maximizing of the objective function (4.16). It implies that a constant w always exists
to guarantee that 7 are binary at optimum and the relaxation is tight. Practically, it is
acceptable if P(m) < ¢ for a tiny €, which results in a nearly precise optimal solution.

In problem (4.16), the objective function is non-concave due to P(7), while constraint
(4.13e) is non-convex. Based on the SCA method, the first-order Taylor approximation is
used to linearize the function P(7) at the j-th iteration as follows
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PO(m) 2 3 [mem, pltd @D (t,] — 1) — (xS [t,])? + i, gt 2mir ) [t] — 1) -

m7u1fi

where P(w) > PU)(w) and P(x)) = PU) (7)),

To address constraint (4.13¢), we indicate its LHS as Ry, (plts]) = >, [RET, (P [ts]) +
Ryr (p[ts], w"[ts])], which is concave in plts]. Thus, the function R,,(plts]) can be ap-
proximated at the feasible point p@)[t,] as

. A . ;Jr:u Ats Q_l Pe i
RY) (p[t,]) :Rm(p(])[ts])%:ﬂi logz(e)Tr ’ f\[/(;]fﬁ : )+ In

x,(J Im,u,f; ts
Prca i) [ (])f[ | } (4.18)
N0+pmuflgmufz[ ]

Z (p;(n,u,fl [ts] -

u, fi,x

The convex approximate program of (4.16) solved at iteration j is stated as follows,
taking into account all the aforementioned approximations

S-SP2: max EU) £ Rem 4 ;PO (7) (4.19a)
Tr?p

st. (4.13c), (4.13d), (4.13f) — (4.13h), (4.16b) (4.19D)

RY) (plts]) < CFH vm e . (4.19¢)

Algorithm 3 provides a summary of the SCA-based iterative algorithm. Step 6 is used
to recover an exact binary solution, then Steps 1-5 are repeated to refine the final solution
in order to ensure a feasible solution to the problem (4.16). The study gap to the global
optimal solution is not considered in this chapter and is left for future study.

Convergence and complexity analysis: The development of the proposed iterative Al-
gorithm 3 is based on the SCA method [100]. The approximations in (4.17) and (4.18)
satisfy the three key inner approximation properties given in [80], while other constraints
are already linear and quadratic. In particular, the solution of (4.19) is always feasible for
the parameterized relaxed problem (4.16) but not vice versa. In addition, Algorithm 3 gen-
erates a sequence of the improved solutions {7w(), p!)} in the sense that 20U+ > =) v,
By [100, Theorem 1], if the number of iterations is sufﬁmently large, the sequence {7r(3 pl)}
converges to at least a local optimal solution of (4.16), satisfying the Karush-Kuhn-Tucker
(KKT) conditions [100, Theorem 1]. On the other hand, for each numerology 4, the convex
approximate program (4.19) has 2M U F; scalar decision variables and 2MUF; + 4M + 3U
linear and quadratic constraints. As a result, the worst-case computation complexity of
Algorithm 3 in each iteration is estimated as O(v2MUF; + 4M + 3U (2MUF;)3), following
the interior-point method [101, Chapter 6].
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4.5 Performance Evaluations And Numerical Results

4.5.1 Simulation Setup and Parameters

We consider a scenario where all users are uniformly distributed in a circular area with a
radius of 500 m, while the locations of RUs are fixed. One RU is located in the central area,
serving three sectors, each of which includes one RU. The RU-user channels are generated
as Rayleigh fading with the path-loss PLru_usgr = 128.1 4+ 37.61og;,(d/1000) dB. The
penalty factor is set to decrease after each TTI as w[ts] = 20+ 10/(1 4 t5) to guarantee the
convergence of the short-term subproblem. To estimate the future traffic for the upcoming
frames, an RNN model’s parameters, which include 2 fully connected hidden layers and 50
LSTM units (neurons), are trained. The operators can configure these parameters based
on the provided data and its periodicity. In our setup, the Poisson traffic model has been
used to generate traffic for both eMBB and uRLLC services. The RNN training is carried
out over the traffic dataset of the cellular network following a Poisson distribution, with
mean arrival rates of 20 and 2.5 for eMBB and uRLLC traffics, respectively [93]. The mean
arrival rate is a configurable parameter of the simulator. Incoming traffic packets are sorted
in a first-come, first-serve buffer. The dataset contains network measurement in terms of
arrival rate collected from M RUs over a horizon of T' = 10000 traffic observations over a
duration of 100 seconds. The open-source, high-level TensorFlow version 1.13.1 application
programming interface, Keras, is used to implement the RNN model. All experiments are
done on a Dell desktop computer with an Intel R CPU @ 3.0 GHz. Simulation parameters,
including the LSTM model’s hyperparameters, are summarized in Table 4.2.

We put into practice the following five benchmark schemes for performance comparison:

1. Fized numerology (FIX-NUM): In this scheme, the TTI is considered the same for
both services as the LTE standard (i.e., 0.5 ms) with the SCS of 180 kHz. The
resource allocation, flow-split decision, and dynamic BW-split for both traffic follow
Algorithm 2 with some slight modifications.

2. Equal Flow-Split Distribution (EFSD): In order to demonstrate the importance of
optimizing the flow-split distribution per frame, this scheme considers the equal flow-
split for each traffic to RUs, i.e., @4 = ﬁ, Yu € U and follows Algorithm 2.

3. Equal Power Allocation (EPA): The RBs’ allocation 7 is optimized by Algorithm 2
for an equal power allocated to all users and subcarriers.

4. Single Connectivity with wuRLLC Priority (SCUP): To reveal the performance im-
provement of MC in heterogeneous wireless networks, this scheme provides the single
connectivity (SC) scheme with uRLLC priority in the presence of interference. Due to
the stringent requirement of latency, uRLLC will be predominantly guaranteed, and
then the remaining resources will be occupied by eMBB users. In this regard, this
scheme considers M RUs with disjoint dedicated users while following Algorithm 2.

5. Proposed Problem in Presence of Known Traffic Demand (PKTD): This scheme in-
vestigates the performance of both traffics in the presence of known traffic demand
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TABLE 4.2: Simulation Parameters

Parameter Value Parameter Value
No. of RUs 4 Predetermined uRLLC latency (D) 0.5 ms
No. of eMBB users 12 Predetermined eMBB data rate (R™) 1 Mbps
No. of uRLLC users 8 Maximum FH capacity (CTH) 100 Mbps
BW of RU 20 MHz Maximum MH capacity (CMH) 5 Gbps
Error probability (P.) 1073 Maximum RU’s queue-length (Q™**) 10 KB
Power of RU 46 dBm No. of LSTM layer 2

Noise power (Ny) -110 dBm No. of LSTM unit 50
uRLLC packet size (Z"") 1 KB No. of epoch 50
eMBB packet size (Z°™) 125 KB Activation function tanh
Length of time-frame 10 ms Optimizer adam
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FIGURE 4.6: Training and validation loss for the LSTM RNN model.

A. In practice, the obtained results of this scheme in the presence of unknown traffic
demands show the accuracy of the LSTM model of the proposed method.

4.5.2 Numerical Results and Discussions

First, in order to investigate the LSTM’s convergence, we monitor the value of the loss
function as MSE and keep the training process until the training loss is typically identical
to the validation loss after a specific number of epochs. Since the mean arrival rates of both
traffics are not in the same range, we normalize traffic demands in the pre-processing phase
through the MinMaxScaler normalization method from Sklearn. We then divide the data
into two sets, which are 80% for training and 20% for validation. Fig. 4.6 plots the training
and validation losses for the LSTM model with the most suitable turning hyperparameters,
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FIGURE 4.7: Traffic demand prediction in Open RAN.

which converge after 50 epochs. It should be mentioned that setting the desirable number
of epochs prevents model overfitting. From Table 4.3, we find that the activation function
of tanh works better than relu and sigmoid. In the same condition, increasing the number
of LSTM layers and decreasing the number of units per layer do not help reduce the MSE
value. Based on the search result, the adam optimizer converges faster than others, whereas
it takes less time for the model’s training. In our case, the dropout value is 0.01 for both
hidden layers. As a result, Table 4.3 shows the search parameters to find the best parameters
for the final LSTM-RNN model.

The effectiveness of the LSTM RNN model in both traffic demands is represented in Fig.
4.7 to illustrate the performance of the ML model prediction. The actual and predicted
values for one of the eMBB and uRLLC traffic demands in the proposed system model
are shown in Fig. 4.7 (a) and Fig. 4.7 (b), respectively. As it is clear from these figures,
the trained LSTM-RNN model performs outstandingly in capturing the dynamic traffic
demand of services over time. The difference between predicted and actual traffic demands
is entirely small. The MSE value has been calculated as a performance measurement to
validate the accuracy of the implemented LSTM model. For instance, the measured MSE
values of the selected eMBB users in Fig. 4.7 (a) and uRLLC users in Fig. 4.7 (b) are
0.00315 and 0.00323, respectively.

To evaluate the eMBB data rate with different resource allocation schemes, Fig. 4.8
illustrates the sum data rate of eMBB users over different maximum RUs’ power budgets
from 10 to 46 dBm. Unsurprisingly, the PKTD provides the best performance and acts as
the upper bound of all strategies. It can be observed that the gap between our proposed
framework and PKTD is less than 2%, which proves the efficiency of the LSTM RNN model
in predicting the dynamic traffic demand over time. While the proposed method provides
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TABLE 4.3: Hyperparameters for the different Performing LSTM Models

No. of LSTM layers No. of LSTM units No. of epochs Activation function MSE

2 20 30 relu 0.00641
2 50 30 relu 0.00382
3 50 100 relu 0.00493
3 50 30 sigmoid 0.01281
2 50 30 sigmoid 0.00782
2 50 100 tanh 0.00421
3 20 30 tanh 0.00613
2 50 50 tanh 0.00331
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FIGURE 4.8: Average overall eMBB data rate versus P™2*,

the highest eMBB data rate compared to other benchmark schemes in Fig. 4.8. Compared
to SCUP, FIX-NUM, EPA, and EFSD, the proposed method offers 130.89%, 116.32%,
71.92%, and 19.21% gains at the typical power value of P™#* = 30 dBm, respectively.
Furthermore, EPA and FIX-NUM work over P™# > 25 dBm, while they are infeasible
when the maximum RUs’ power is less than 25 dBm. Hence, this phenomenon shows the
advantage of our proposed method over these schemes, especially at a small P™*, Besides,
as we mentioned previously, the MC technique plays a vital role in enhancing the eMBB
data rate. The gap between the JIFDR framework considering the MC technique and SCUP
grows with increasing the maximum power budget of RUs. While the overall eMBB data
rates obtained via JIFDR, EFSD, and SCUP are close at P™* = 10 dBm, by increasing
P the MC-based schemes of JIFDR and EFSD significantly exceed that of SCUP.

In order to show the performance of the proposed method on uRLLC latency, Fig. 4.9
represents the worst-user uRLLC latency under different maximum power of RUs. Similar
to the first optimization problem (P1), increasing the maximum power of RUs significantly
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affects the eMBB data rate improvement, resulting in an efficient reduction of uRLLC
latency in the second optimization problem (P2). As we can see from Fig. 4.9, the uRLLC
latency of the proposed method is almost equal to PKTD, which again confirms the accuracy
of the LSTM RNN model in predicting the dynamic traffic demand. The performance gain
in terms of latency of the proposed method is 181.32% and 49.47% Compared to SCUP
and EFSD at P™#* = 40 dBm. According to the empty region of two benchmark schemes,
FIX-NUM and EPA, in the range P™?* < 25 dBm, results from Fig. 4.9 show that these
schemes are infeasible over the mentioned range of P™?* while having a significant difference
in uRLLC latency with the proposed method. Clearly, the EFSD scheme in Fig. 4.9 greatly
outperforms the SCUP scheme. On the one hand, the uRLLC and eMBB traffic are sliced
in various virtual slices in SCUP, while the size of the uRLLC traffic packet is considerably
smaller than the eMBB packet size. Hence, the assigned slice to uRLLC could meet the
uRLLC traffic’s requirements alone without waiting in a queue. On the other hand, the
SCUP scheme is not able to aggregate multiple links and allow users to connect to more
than one RU to achieve the highest data rate.

Fig. 4.10 depicts the average backlog in the queue under the maximum power budget
of RUs with different benchmark schemes. As can be seen, the higher the power budget
P2 the lower the average queue length. Similar to the two previous figures, results from
the proposed method and PKTD are very close to each other. As expected, the SCUP
scheme yields the worst performance in terms of the average queue length, whereas the
proposed method yields the best one in Fig. 4.10. Two FIX-NUM and EPA schemes are
infeasible when P™®* < 25 dBm. Clearly, the EFSD benchmark scheme performs in a
better way than the FIX-NUM, EPA, and SCUP schemes, while EFSD and EPA provide
very close performance to each other for P™?* > 35 dBm. On the other hand, during the
joint scheduling of uRLLC and eMBB traffics, we have numerically observed that uRLLC
users always prefer to have only one link in various system setups. This issue indicates that
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a single connection is generally the best option for traffic with a small data packet size. In
contrast, the MC technique is typically a nice option for traffic with high data packet size,
i.e., eMBB.

As we mentioned before, the MC is an effective technique to improve the data rate for
eMBB traffic, especially when the system model faces a limited bandwidth. To demonstrate
this, Fig. 4.11 shows the impact of the increasing number of RUs on overall eMBB data rate.
All simulation parameters are assumed unchanged during the simulation of Fig. 4.11, except
the number of eMBB and uRLLC users, which are considered 21 and 14, respectively. It is
clear from Fig. 4.11 that the eMBB data rate rises with the number of RUs, which means
an increase in the number of available RBs. As we expected, the PKTD also works as an
upper bound for all schemes, regardless of the number of RUs. The small gap between our
proposed framework and PKTD (about 2%) shows the high accuracy of traffic prediction by
embedded LSTM in the non-RT-RIC component. Compared to other existing benchmark
schemes, the proposed method offers the highest data rate. Due to the crucial role of MC
in the network, SCUP has the worst performance among all the schemes, with increasing
the number of RUs (M > 3) in the network model. For M = 5, the schemes with MC (i.e.,
the proposed method, EFSD, EPA, and FIX-NUM) have the performance gain of 168.2%,
90.67%, 42.68%, and 19.45% relatively compared to the without MC i.e., SCUP. It should
be noted that the SCUP outperforms FIX-NUM at M < 3, demonstrating the advantage
of mixed numerology over fixed numerology. However, as the number of RUs increases to
M > 3, the SCUP is no longer able to offset the weak performance of the single connection
scheme. Since all users associate with only one RU, the performance of all schemes is almost
the same, while the MC brings a large gap between MC and SCUP by increasing the number
of RUs. It is noted that the gap between the proposed method and other schemes also grows
with the number of RUs.

Finally, we examine the convergence behavior of the proposed Algorithm 2, comparing
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the optimal value through the exhaustive search for P™?* = 30 dBm under the different
number of RUs in Fig. 4.12. It is shown that the proposed algorithm for both problems
(P1) and (P2) converges quickly, taking less than 10 iterations to reach the optimal value
within an increment, which is smaller than a given threshold € = 10™4. As expected, based
on Figs. 4.12(a) and . 4.12(b), as the number of RUs increases in such a network, the eMBB
data rate increases, but it does not affect the uRLLC latency remarkably. As we mentioned
before, uRLLC users frequently tend to link to only one RU because of their small packet
size. There is almost the same convergence speed for both cases with 3 RUs and 4 RUs.
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Nevertheless, the case with 4 RUs needs a little more time for CVXPY to solve the MINCP
in each step due to additional optimization variables.

4.6 Summary

In this chapter, we have developed a novel intelligent TS framework in the presence of
unknown dynamic traffic to meet the competing demands of uRLLC and eMBB services in
beyond 5G networks based on dynamic MC. To achieve the maximum data rate for eMBB
traffic while guaranteeing the minimum uRLLC latency requirement and vice versa, we have
proposed a joint intelligent traffic prediction, flow-split distribution, dynamic RAN slicing,
and radio resource management scheme to schedule joint RBs and transmission power with
mixed numerologies based on standardization in 5G NR. We have carried out a thorough
analysis of e2e uRLLC latency. Due to the execution of the proposed problems in two
different timescales, we have divided them into two long-term and short-term subproblems.
To solve them, the LSTM method and SCA-based iterative algorithm have been developed
to solve the formulated subproblems effectively. Thanks to LSTM, which predicts future
traffic with high accuracy, the proposed method based on MC and mixed numerologies
greatly improves resource utilization by adapting to dynamic traffic demands compared to
benchmark schemes. One of the future works is to deploy more advanced techniques (e.g.,
deep reinforcement learning) to better estimate «[t] and ¢[t].
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Chapter

Empowering Traflic Steering in 6G Open
RAN with Deep Reinforcement Learning

The sixth-generation (6G) wireless network landscape is evolving toward enhanced pro-
grammability, virtualization, and intelligence to support heterogeneous use cases. The O-
RAN Alliance is pivotal in this transition, introducing a disaggregated architecture and
open interfaces within the 6G network. Chapter 5 explores an intelligent traffic steering
(TS) scheme within the Open radio access network (RAN) architecture, aimed at improving
overall system performance. Our novel TS algorithm efficiently manages diverse services,
improving shared infrastructure performance amid unpredictable demand fluctuations. To
address challenges like varying channel conditions and dynamic traffic demands, we pro-
pose a multi-layer optimization framework tailored to different timescales. Techniques such
as long-short-term memory (LSTM), heuristics, and multi-agent deep reinforcement learn-
ing (MADRL) are employed within the non-real-time (non-RT) RAN intelligent controller
(RIC). These techniques collaborate to make decisions on a larger timescale, defining cus-
tom control applications such as the intelligent TS-xAPP deployed at the near-real-time
(near-RT) RIC. Meanwhile, optimization on a smaller timescale occurs at the RAN layer
after receiving inferences/policies from RICs to address dynamic environments. The sim-
ulation results confirm the system’s effectiveness in intelligently steering traffic through a
slice-aware scheme, improving eMBB data rate by an average of 99.42% over slice isolation.

5.1 Introduction

The sixth-generation (6G) wireless networks face a major challenge in supporting vari-
ous services with different key performance indicators (KPIs) on a unified air interface,
including enhanced mobile broadband (eMBB) and ultra-reliable low-latency communica-
tion (uURLLC), each with specific values for latency, reliability, and data rate [102]. The
inflexibility of classic radio access network (RAN), characterized by a “one-size-fits-all”
infrastructure on black-box hardware, challenges reconfigurability and on-demand adjust-
ments without manual on-site intervention. This limitation hinders the accommodation
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of diverse services and competition on the same network functions [103]. The Open RAN
architecture, with its attributes of flexibility, virtualization, disaggregation, openness, and
intelligence, disrupts the traditional RAN approach, ushering in a transformative paradigm
in NextG wireless networks [104].

Combining the above principles results in virtualized and intricate architectures that
enhance RAN performance through programmable and intelligent layers. To improve inter-
operability among vendors, machine learning (ML) and artificial intelligence (AI) methods
are embedded in the architecture. A pivotal aspect of Open RAN involves unlocking net-
work intelligence using two novel modules: the non-real-time (non-RT) and near-real-time
(near-RT) RAN intelligent controllers (RICs). These modules enable closed-loop RAN
control via standardized interfaces, allowing data collection and sharing between differ-
ent components while incorporating centralized network abstraction [105]. These lead to
the effective acquisition of a deep understanding of intricate cross-layer interactions among
components, surpassing typical control heuristics and advancing toward the achievement of
optimal resource management. An essential Open RAN use case is traffic steering (TS),
which distributes traffic load across various radio access technologies (RATSs) in the RAN,
which involves overseeing the mobility of individual user equipment (UE) being served by
the RAN [106].

In multi-traffic scenarios, TS incorporates emerging fifth-generation (5G) technologies
and procedures, including multi-connectivity (MC), network slicing (NS), and handover
management. The availability of network data and analytics in centralized locations (i.e.,
RICs) transforms the traditional handover management of the RAN architecture into an
intelligent TS framework within the Open RAN paradigm. However, this shift also presents
new challenges [107]. Traditional resource management schemes rely primarily on heuristic
approaches that consider channel quality and load thresholds. However, these methods are
less suitable for making user-centric handover decisions in novel use-case scenarios. They
often rely on localized information, which limits their effectiveness [108]. On the contrary,
data-driven solutions at the RIC provide a more centralized perspective, allowing them to
discern intricate relationships among various RAN parameters. This enables customiza-
tion of optimization strategies to meet the unique quality of service (QoS) requirements of
individual users.

Efficiency technologies such as NS and MC are well-regarded for their effectiveness in
achieving optimal traffic management and accommodating the diverse demands of multi-
ple types of traffic [109], [110]. These techniques encompass a spectrum of strategies and
functionalities for resource management and connectivity. This includes dynamic allocation
of radio units (RUs) and resource blocks (RBs) to users based on real-time conditions and
user-specific preferences. Furthermore, MC extends its capabilities to higher-layer options
that play a crucial role in enhancing overall network performance and ensuring an improved
user experience. These higher-layer functionalities encompass various aspects of network
operation, such as efficient handover management, load balancing, and seamless service
continuity, which collectively contribute to the success of MC in modern wireless networks.
MC with multi-link improves reliability and data rate [83]. NS segregates multiple types of
traffic into logical network slices while using the same infrastructure, enabling simultaneous
transmission on one channel [111]. However, meeting the latency-critical requirements of
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the uRLLC service, especially with small packet sizes, poses a challenge beyond the 5G
capabilities. A promising solution to address this challenge is the mini-slot-based frame
structure introduced by the third-generation partnership project (3GPP) on the new radio
(NR) to support transmissions shorter than the regular slot duration [112]. It subdivides
each time slot into two mini-slots, each with 7 orthogonal frequency-division multiplexing
(OFDM) symbols [113], reducing slot duration and transmission/frame alignment time.

5.1.1 Motivation and Main Contributions

Despite the traditional user handover mechanisms in the RAN architecture, which predom-
inantly rely on localized and limited information, an intelligent TS scheme can steer traffic
flow within the RAN components via data-driven solutions in the RICs. RICs leverage a
centralized point of view of RAN components to optimize the QoS requirements of each
user. This requires incorporating intelligence into each Open RAN layer. Therefore, our
research aims to explore intelligence within the Open RAN architecture. To accomplish
this, three essential concerns arise: (i) Predicting future traffic demands based on historical
data. (i) Intelligently distribute traffic flows to steer traffic to end users through appropri-
ate RUs given the predicted traffic demands and data collected from the RAN in RICs; and
(iii) Efficiently schedule radio resources to accommodate heterogeneous traffic with different
demands while meeting QoS requirements, power limitations, and practical constraints.

To address these concerns, we employ recurrent neural network (RNN) long-short-term
memory (LSTM) and novel multi-agent (MA) deep reinforcement learning (MADRL) tech-
niques for traffic prediction and radio resource scheduling, respectively. LSTM handles
high-dimensional and large-space problems [114], while overcoming long-term dependen-
cies and gradient issues [87]. However, the DRL model excels in complicated algorithmic
learning, extreme generalization, and dynamic wireless environments [114]. We will demon-
strate how our scheme complies with Open RAN demands, implementing MADRL- and
LSTM-based closed control loops within Open RAN. Besides, we will present simulation
results illustrating the significant improvement in network performance. In summary, our
key contributions are as follows.

e We introduce a novel framework that optimizes traffic prediction, flow-split distribu-
tion, congestion control, and scheduling for uRLLC and eMBB within an Open RAN
architecture. Utilizing dynamic MC, slice-aware RAN slicing, and mixed numerology
multiplexing, the framework achieves uRLLC latency below 0.5 ms, multiple hundred
Mbps eMBB data rate, and congestion-free operation. Our focus remains on illus-
trating the benefits of MC in a controlled environment, recognizing that real-world
3GPP systems incorporate additional mechanisms for efficient and reliable data trans-
mission. To this end, the objective function simultaneously minimizes the long-term
average queue length of eMBB users (maximizing eMBB data rate) and the long-term
average uRLLC latency, considering QoS requirements, slice awareness, power budget,
and traffic flow-split decisions.

e We propose a comprehensive TS algorithm using novel DRL to address intricate chal-
lenges in decision-making per time slot. It handles incomplete traffic demand, queue
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length, and time-varying wireless channels, relying on previous RAN layer updates.
This framework reduces computational complexity by making decisions per frame
instead of per time slot and addresses incomplete channel state information (CSI)
knowledge. We employ a two-stage optimization approach on different timescales,
handled by RICs at higher Open RAN layers and distributed units (DUs) at the
function Open RAN layer. The xAPP introduced at the near-RT RIC manages the
long-term subproblem (frame structure), including traffic prediction, flow split dis-
tribution, and RB assignment, through the deployment of inferences from trained
models at the non-RT RIC thanks to the data collected at service management and
orchestration (SMO). Simultaneously, DUs handle the short-term subproblem (time
slot structure) for power control and transmission power allocation with mixed nu-
merologies via the closed-control loop between DUs and near-RT RIC following 5G
NR standardization guidelines.

Utilizing historical information and combining tools from the LSTM and MADRL
frameworks, we develop simple yet efficient algorithms to make an empirical distribu-
tion of the system dynamics to facilitate predicting the traffic demand and learning
RB assignment, respectively. Furthermore, we present a heuristic method that relies
on the predicted traffic demand and historical data collected from the RAN compo-
nents stored in the SMO. This method dynamically estimates the ideal RUs to direct
traffic to the end user for each frame. The training of these models takes place offline
within the non-RT RIC of the SMO module. Training data is gathered from the RAN
components through the O1 interface. Subsequently, the standard solver is applied to
solve the short-term subproblem categorized as the convex optimization programming
class.

Finally, we conduct an analysis of the effectiveness of our approach considering slice
awareness by an extensive set of simulations, leading to a notable performance im-
provement of 99.42% compared to slice isolation in terms of data rate.

The subsequent sections of this chapter are as follows: Section 5.2 provides the related

literature on TS in the traditional RAN and Open RAN paradigms. Section 5.3 studies
a general overview of Open RAN’s concept and architecture, while Section 5.4 introduces
the system model. In Section 5.5, the optimization problem is formulated, along with an
overview of the DRL-based intelligent TS algorithm and its structure. Section 5.6 discusses
a mathematical analysis of the proposed framework, including the LSTM model, heuristic
method, and the novel MADRL model to solve the long-term subproblem. Extensive nu-
merical results comparing the proposed approach with benchmark schemes are presented
in Section 5.7. Finally, Section 5.8 concludes the chapter, summarizing key findings and
insights.
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5.2 Related Works

5.2.1 RAN Radio Resource Management

Extensive research studies have explored dynamic RAN resource allocation mechanisms in
the traditional cellular RAN architecture. For instance, [11] and [92] have proposed a joint
scheduling design for uRLLC and eMBB coexistence to maximize the overall data rate of
the eMBB service, while the uRLLC service is designed on the eMBB’s dedicated resources
to meet the uRLLC requirement latency. For wireless access-based NS, [115] has used
a preemptive puncturing approach, assigning contiguous RBs to the uRLLC and eMBB
services. In [91], a dynamic downlink multiplexing was proposed for uRLLC and eMBB
services on the same radio spectrum, in which if the preserved resources are not sufficient
for uRLLC, part of eMBB traffic overlaps with uRLLC traffic. The authors in [29] have
proposed a dynamic MC-based joint scheduling scheme with traffic steering for eMBB and
uRLLC services to achieve high data rates in 5G networks. However, the mentioned punc-
turing approaches lead to poor eMBB performance under high uRLLC traffic, necessitating
joint scheduling of uRLLC and eMBB across distinct network slices to avoid sizable uRLLC
service queues. In addition, in [116] a joint user association and scheduling optimization
scheme was proposed to maximize overall network utilization in the cloud-RAN (C-RAN)
architecture. Due to the coupling between optimization variables and the combinatorial
nature, most of the mentioned problems have utilized heuristic methods or the difference
of convex algorithms to deal with. However, different demands in beyond 5G wireless net-
works cannot be satisfied by only allocating power and subcarriers. However, these efforts
do not focus on enhancing the performance of individual users and do not entirely meet the
requirement for individual user control and optimization.

5.2.2 Traffic Steering in Traditional RAN Architecture

In the literature, there are some studies that have primarily investigated TS in traditional
RAN networks. For example, [44] introduced a TS technique to maximize quality of ex-
perience (QoE) for eMBB users in the MC scenario. In [117], a proposal was presented to
alter user association in overlapped ultra-dense networks. Furthermore, [118] learned user
association policies to direct traffic from different locations to transmitters, minimizing total
delay and load on the wireless downlink in the presence of unknown dynamic traffic demand.
Network slicing is a key innovation to meet diverse needs. In [119], a RAN slicing-based
radio resource allocation scheme was proposed for dynamic TS RAN moderation in 5G.
Praveen et. al. [93] investigated the RAN resource slicing for uRLLC and eMBB in down-
link orthogonal frequency-division multiple access (OFDMA) 5G networks to maximize the
sum rate. All the above-mentioned studies focused on fixed numerology in classic RAN ar-
chitecture for scheduling schemes. Recent studies explore mixed numerologies in time and
frequency domains for resource allocation, catering to services with conflicting demands.
For instance, [94] explored flexible numerologies in the frequency domain to enhance the
capacity of services with nonuniform requirements. Experimental field tests in [120] demon-
strated the effectiveness of multiplexing mixed numerologies in the frequency domain for
the performance assessment of OFDM-based 5G waveforms. In [95], joint optimization of
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power allocation and resource block scheme was investigated to serve heterogeneous traffic
with mixed numerology-based frame constructions. To mitigate inter-numerology interfer-
ence (INI) and prevent resource wastage, [121] suggested selecting a single numerology per
time slot based on service priorities in multi-numerology resource allocation. In [122], a
RAN slicing solution was developed for 5G networks, allocating time-frequency resources
with different numerologies to support different services. Moreover, these studies often
overlook crucial factors such as routing, congestion control, dynamic traffic demands, and
user-centric conditions, which can render the attainment of multi-layer QoS in Open RAN
unfeasible. Therefore, it needs to investigate the TS considering user-centric conditions in
a flexible and intelligent RAN architecture (i.e., Open RAN). Very recently, our previous
work [123] proposed a slice isolation RAN resource allocation with mixed numerologies in
the Open RAN architecture to enable the TS scheme even with imperfectly known traffic
demands aimed at maximizing eMBB data rate while minimizing uRLLC latency.

5.2.3 ML-powered Intelligent Traffic Steering in Open RAN Architecture

ML-based traditional handover schemes were widely investigated and optimized in the lit-
erature. In traditional RAN in [124], a model of actor-critic reinforcement learning (RL)
jointly optimized the selection of communication modes, the RB, and the allocation of
power in the internet-enabled device-to-device communication networks. [125] has proposed
a unified self-management mechanism based on fuzzy logic and RL to tune the handover
parameters of adjacent cells. In [126] and [127], deep Q learning algorithms have solved the
coexistence of uURLLC and eMBB, achieving flexible time slot scheduling. However, these
related works mainly focused on optimizing or predicting RB assignments per time slot in
TS schemes, resulting in high complexity. Existing RICs in Open RAN architecture can
benefit from a centralized point of view to steer the traffic in an efficient way to target
the QoS of each user. To our knowledge, there are only a few works that study intelligent
TS frameworks in the Open RAN architecture. For example, the authors of [50] have pro-
posed a TS-xAPP at near-RT RIC combined with a convolutional neural network (CNN)
architecture, to optimally assign a serving base station to each user in the Open RAN archi-
tecture. [67] has explored the current O-RAN specifications, providing experimental results
of the Open RAN data-driven closed-loop in a large-scale testbed with programmable RAN
components and RICs. In [86], concepts, requirements, and principles of Open RAN pro-
posed by the O-RAN Alliance were introduced, along with a general example of the use case
of intelligent radio resource management. In [49], a multi-layer optimization framework was
proposed to steer traffic in the Open RAN architecture to maximize utility functions.
However, most of the existing efforts did not develop an intelligent TS scheme for multi-
traffic downlink OFDMA 5G systems considering mixed numerologies in the presence of
unknown traffic demands. To achieve fully automated networks with improved control and
optimization, the development of a DRL-based TS framework becomes crucial, supporting
heterogeneous services and adapting to the dynamic wireless environment. To this end,
we propose a multi-layer optimization framework interaction between the cell site and the
higher layers, facilitating the system performance utilizing the closed-control loops between
RICs and RAN components in the Open RAN paradigm. Thanks to the holistic perspective
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FIGURE 5.1: Learning integration in Open RAN architecture based on the O-RAN Alliance.

of RICs, which allows them to consider factors such as traffic loads, user demands, queue
length, channel conditions, etc., our proposed intelligent TS scheme can be centrally coor-
dinated to achieve the required QoS for each user in dynamic wireless environments. This
paves the way for fully automated networks with enhanced control and flexibility.

5.3 Intelligent TS Deployment on Open RAN architecture

5.3.1 Open RAN Background

Fig. 5.1 shows the learning-based Open RAN architecture relying on the O-RAN Al-
liance [96] with three layers: management, control, and function. To simplify human-
machine interaction and network complexity, the O-RAN Alliance establishes two novelty
modules (i.e., near-RT and non-RT RICs) at higher layers for centralized network abstrac-
tion [128]. These components enhance RAN optimization by feedback and action loops
within RAN elements (E2 nodes) and RICs. These modules enable mobile operators to ef-
fectively deploy and manage their Open RAN networks, ensuring interoperability with var-
ious vendors, seamless handovers between cells, intelligent resource allocation, interference
mitigation, and balanced load distribution. The Open RAN architecture facilitates various
networking procedures at multiple network points by boosting and supporting the 3GPP
functional split. This split virtualizes BS functionalities as network functions distributed
across various network nodes, including the RU, DU, and centralized unit (CU) [68]. In
addition, open interfaces (F1, E1, E2, FH, O1, A1) allow connections for disaggregated de-
ployments, ensuring efficient multi-vendor interoperability and enabling network operators
to choose RAN elements from different vendors independently.

According to the Open RAN architecture described in our previous work [123], the sys-
tem model’s layers operate at different timescales, ranging from 1 to thousands of millisec-
onds. Non-RT RIC handles activities such as service provisioning, design, policy definition,
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and AI/ML model training at intervals greater than 1 second, and hosts remote applications
(referred to as rAPPs). However, the near-RT RIC heads tasks with timescales surpassing
10 milliseconds, introduces intelligence into the RAN via data-driven control loops, and
hosts external applications known as xAPPs, enabling the programmability of RAN com-
ponents. Meanwhile, near-RT RIC is responsible for tasks such as real-time traffic and radio
monitoring, QoS control, storing and upkeep of historical traffic demands, handover man-
agement, and collaboration with non-RT RIC. Non-RT and near-RT RICs, situated in the
cloud’s higher layer, connect through Al and O1 interfaces. Meanwhile, CU and DU on the
edge cloud link via the F1 interface, managed by the near-RT RIC through the E2 interface.
At the cell site, the RU is installed and managed by the DU via the open fronthaul (FH)
interface. Finally, for periodic reporting, CU, DU, and RU interact with the non-RT RIC
via the O1 interface.

5.3.2 Deployment of Intelligent Traffic Steering

We outline the end-to-end (e2e) flow of the intelligent TS deployment within the Open RAN
architecture inspired by the O-RAN Alliance and 3GPP specifications (Fig. 5.1).

@ Data pre-processing and cleaning: Collect data from the near-RT RIC and the
RAN components, including user traffic demands, CSI, resource updates, network con-
dition data, etc., periodically over the O1 interface. In addition, data pre-processing
and transferring data into a format that is suitable for ML algorithms are done in this
step.

@ AI/ML model query: The related ML/AI model, hosted on the AI server inside
the SMO, is queried by non-RT RIC. The non-RT RIC queries the AI/ML model from
the SMO’s Al server to apply to some consecutive rAPPs situated at the non-RT RIC.

@ Model training: Once the model is trained offline on the AI server, the inferences
are sent back to the non-RT RIC.

@ Inference transferring: Policies and inference results—all trained ML models—are
forwarded to the near-RT RIC through the Al interface for making long-term deci-
sions, including handover management, load balance, cell congestion, and radio re-
source management.

@ Intelligent TS xAPP Deployment: All inferences are deployed in an intelligent
TS xAPP in the near-RT RIC to make RAN components programmable.

@ RAN data analytics: Afterwards, the RAN data analytic component in the near-
RT RIC updates the queue lengths based on the data/metrics reported from the RAN
components over the E2 interface (E2SM-KPM).!

In O-RAN, E2 Service Models (E2SMs) play a crucial role in defining communication and management
protocols between network functions. Two key E2SMs are E2SM-KPM (Key Performance Management) and
E2SM-RC (Radio Control), addressing performance monitoring and radio resource management, respectively.

101



Empowering Traffic Steering in 6G Open RAN with Deep Reinforcement Learning

@ RAN controlling: Given the actions and policies of the upper layers, the RAN
control (E2SM-RC)* is sent to the RAN components for execution via the E2 interface.
The near-RT RIC continuously monitors the performance of the intelligent TS scheme
at cell sites.

Power adjusting: DU adjusts power levels based on exchange of performance met-
rics, actual traffic demands, local observations, etc., with near-RT RIC through the E2
interface and receiving control actions. Furthermore, DU is not only responsible for
optimizing power allocation on a time-slot basis to deal with dynamic environments
but is also in charge of buffer management.

@ Continuous monitoring: Finally, all updated information, observations (i.e., net-
work conditions, CSI, traffic demands, queue lengths, states, etc.), and performance
metrics (i.e., data rate, latency, and reward values) are reported to the SMO through
the O1 interface on the effectiveness of the intelligent TS scheme. SMO continuously
monitors the network and triggers retraining of ML models and xAPPs in response
to congestion issues, inaccurate traffic predictions, or degraded user QoE.

5.4 System Model

We consider a downlink OFDMA multiuser multi-input single-output (MU-MISO) sys-
tem, which consists of one CU, N DUs, and M RUs (see Fig. 5.1 with the RAN part).
Toward cost-effectiveness, each DU forms a cluster of RUs. Let & = {1,...,N} and
M = {1,...,M} denote the set of DUs and RUs, respectively (M >> N). Each RU
is equipped with K, antennas to serve a set of U single-antenna users U = {1,...,U}
through the shared wireless medium. To deploy the coexistence of uRLLC and eMBB,
we divide the set of users into two disjoint sets: U = {1,...,U"} of uRLLC users and
aem™ £ {1,...,Um} of eMBB users, with U £ Y UU™. The traffic of eMBB users is
generated with a large packet size of Z°™ bytes, while that of uRLLC users is a sequence
of small and identical packet sizes of ZY" bytes (Z°™ >> Z""). Long packet traffic requires
much longer to transmit than short packet traffic. If each RU serves only one type of traffic
at a time, uRLLC users may face significant delays in meeting their low-latency demands.
In the context of MC, RUs can transmit multiple types of traffic in different frequency
bands, making the links between RUs and UEs more flexible than traditional methods.
Moreover, traffic can be sliced and transmitted on independent links based on the MC con-
figuration. For simplicity, we assume that DUs cover the non-overlapped geographical area
with a disjoint set of RUs, such as M, = {(n,1),...,(n,M,)} with }_, . M, = M.

5.4.1 Frequency-time-frame Numerologies

To efficiently cater to all users within the cell, RUs allocate RBs (frequency-time in OFDMA)
while optimizing transmission power for each RB. The details of frequency-time-frame nu-
merologies in three different modes are elaborated below.

Fixed numerology: In this mode (indexed as i = 0) for the upcoming 5G NR systems,
each RB consists of 7 OFDM symbols per transmission time interval (TTI) of 0.5 ms. It
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comprises 12 consecutive subcarriers with a subcarrier spacing (SCS) of 15 kHz. Let 5;
and §; denote the RB’s bandwidth and time duration at the ¢-th frame with a large-scale
coherence time of A (i.e., 10 ms). The frequency-time resource grid consists of F; x T; RBs,
as shown in Fig. 5.2(a). Given the available system bandwidth (BW), denoted by B, we
have Fjli—0 = |B/fi] and T;|;—0 = A/d; indicating the number of subcarriers indexed as
fi=A{1,..., F;} and the number of TTIs per frame indexed as t; = {1,...,T;}, respectively.
Mixed numerology multiplexing in time domain: Unlike 4G-LTE, 5G wireless sys-
tems use scalable numerologies to address the QoS demands associated with different types
of traffic. This entails dividing each frame into multiple time duration parts (TDPs), each
adopting a specific numerology tailored to meet the QoS demands of the corresponding
assigned service slice. While this mode reduces spectrum waste and INI through the uti-
lization of guard bands, it may introduce intermittent temporal gaps between numerologies,
potentially hindering latency-sensitive applications’ efficiency. Therefore, to meet the strin-
gent latency requirements of uRLLC services, which are of utmost priority in our case, the
time division of the frame is structured in such a manner that the first part of the time
horizon is specifically allocated to uRLLC services, as illustrated in Fig. 5.2(b). Here, D"
represents the minimum latency requirement for uRLLC traffic.

Regarding the numerology specifications, the system BW is divided into subcarriers,
and the TDP is further divided into multiple TTIs (mini-slots), maintaining orthogonality
between consecutive RBs. According to the findings in [97], it can be intuitively perceived
how different numerologies can be used to meet the demands of each 5G service class.
Accordingly, intermediate numerologies with index ¢ = 1 are well-suited for eMBB, which
demands higher data rates and significant bandwidth. In contrast, higher numerologies
with index ¢ = 2 are better suited for uRLLC services, particularly for applications with
stringent latency requirements, as they involve the transmission of short bursts of data
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packets. Therefore, the scheduled slices assigned to uRLLC with numerology i = 2 (with
P2 = 720 KHz and d9 = 0.125 ms) and eMBB with i = 1 (with §; = 360 KHz and §; = 0.25
ms) are indicated by T;|;—e = D""/§; and T;|;=1 = (A — D"")/é;. Note that Fi|i—2 = | B/fi]
and F;|;=1 = |B/fi] represent the scheduled number of sub-bands assigned to the uRLLC
and eMBB slices in this mode, respectively.

Mixed numerology multiplexing in frequency domain: Multiple services can be
served in the frequency domain by dividing the BW into multiple bandwidth parts (BWPs)
(Fig. 5.2(c)). The min-slot-based framework and uRLLC sliced from eMBB cater to critical
latency services and prevent uRLLC queuing. To this end, the BW-split variable a € [0, 1]
splits the available BW into two independent BWPs to handle dynamic service demands.
A fixed guard band of 180 kHz (B¢) is implemented between neighboring numerologies to
reduce INT within adjacent sub-bands. The scheduled BWP assigned to the uRLLC slice
with numerology ¢ = 2 with the RB’s BW of j3;|;—2 = 720 kHz and ¢;|;—2 = 0.125 ms of TTI
duration is given as B;|;—o = aB. Next, B;|i=1 = (1 — a)B — Bg is the scheduled BWP
assigned to the eMBB slice with numerology ¢ = 1 and RB’s BW of 3;|,=1 = 360 kHz and
0ili=1 = 0.25 ms of TTI duration. Hence, it follows that F; = | B;/f;] and T; = A/J;.

5.4.2 Transmission Model and Downlink data rate

In Fig. 5.1, U independent data flows at CU are steered to DUs for parallel processing. The
processing queue follows the M/M/1 model, serving packets on a first-come, first-served
basis. Following RIC policies based on MC, CU divides the data flow of each user u into
sub-flows transmitted through a maximum of M, paths and aggregated at the user. The
careful selection of a subset of distinct paths for each data flow w is crucial to optimizing
the system performance. In the discrete time frame indexed by ¢t € {1,2,...,T}, we define

x[t] = [xm,u[t]]amu as the flow-split indicator vector. In particular, if z,,,[t] = 1, RU m
is selected to transmit data of u-th data-flow; otherwise, x,,,[t] = 0. Let us denote by
£ {u[t], Vul Y omedt, Pmalt] =1, omult] € [0,1],Ym, u} the global flow-split decision,

in which ,[t] = [cpmvu[t]]:m represents the flow-split portion vector of the user u. It is
noted that ) 4 @mult] = 1, where ¢, [t] € [0,1] indicates a portion of the data flow
steered to the user u via RU m in time-frame ¢ by selecting flow-split indicator z, ,[t].
The channel vector between RU m and user u per RB(f;, t;) associated with sub-band f;
in TTI ¢; can be modeled as hf,%’,f} =V 1O_P'—mvu/10fz£§ﬁj, where PL,,, ,, is the path loss between
RU m and user u, and ﬁg&ﬁ} € C' K represents the circularly symmetric complex Gaussian
random variables with zero means and umt variances. We consider the correlated channel
during the whole available frames as hmu =P h,f plicl 4 /T= pZ, where Z ~ N (0, Np)
is zero-mean additive white Gaussian noise (AWGN) Without multi-user interference, the
maximum-ratio transmission is an optimal transmission scheme. Let us denote G[t] =

[g%y}] |Vm,u,f; as the channel gain between all RUs” RBs to all users in frame ¢, where

%’t £ ||hf“u |2 is the effective channel gain. We use the binary variable 7Tf“ «[t] € {0,1} to
indicate whether RB(fi,t;) of the m-th RU is allocated to the user u-th eMBB/uRLLC. To
satisfy the orthogonality constraint, RB(f;,¢;) of RU m allocated to the u-th generic user

if wi wt] = 1; otherwise et = o. Tmalt] 2 [m{;fj [t]]T is denoted as the assigned RBs
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to the u-th generic user at the m-th RU in frame t. This chapter defines the RB matrices
w[t] £ [mm, u[t]]am for both services in frame t.

Following the Shannon—Hartley theorem, the downlink data rate of the u-th eMBB user
[bits/s] at TTI ¢; is given as

Mn - fiti firti
R (plti) = Y R (olt]) = Y Z Z B xlog, ( pm}‘f’"“) Vi, u € U™, (5.1)
m=1 i€{1,2} m= 1f;=1 0

where Ny and p,f%f} are the noise power and the transmission power from RU m to user

u, respectively. Next, we consider the scheduling constraint 0 < pf,@fj <l “t’[ t|PM: Yy, €

M to ensure that if 7Tf“ +[t] = 0, then pﬁfjd = 0, where P7®* is the maximum available
transmission power of RU m. Let p[t;] = [pf o) [Vimu, fz To satisfy the QoS of the eMBB

traffic, we impose the constraint » ;¢ oy BTy (P[Li]) = omult |R™ for each eMBB user,
where R™ is a given QoS threshold. Next, the maximum channel coding rate that the
uRLLC user v may achieve at time t; with a certain block-length and error probability is
provided roughly as

R = Y R = Y 33 6  [togs (14222 _ 1o )
b Z m=1 ie{1,2} m=1 f;=1 ' ? NO 2

IV V QY (P.)
V0iBi

where V, Q71 : {0,1} — R, and P, are the channel dispersion, the inverse of the Gaussian Q-

function, and error probability, respectively. Since achieving an signal-to-noise (SNR) (I'"" =
ity Fis

pmugm u’L

N ) higher than 5 dB in the cellular network is highly obtainable, in this chapter we
~ 1 [77]. To meet the Big-M formulation theory and the

}, (5.2)

approximate V =1 — m

approximation V' ~ 1, we impose the constraint NJQ_F ot wt] < p%’d < vt w [t PP Y €
G

U"". Besides, the constraint ) . " fou pf“tZ < PM¥ Yu € 9 guarantees that the total
transmission power is no larger than cach RU power budget, P"®. Accordingly, the power
constraint associated with both services (i.e., eMBB and uRLLC) is defined as

. . Nol''"
P[] = {p[ti]thi 0 < plyli <mlli [P Vu € U, ———mlili[t] < plili < mhli [ PR
Im,u

Vu € UM, Z pr“tl < PP ¥m,ti,u € GM} (5.3)
’Le{l 2} fisu
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5.4.3 Slice-aware RB Allocation

To efficiently exploit radio resources, especially under low traffic demands, we propose a
slice-aware strategy instead of the isolated slice-based radio resource allocation method.
In this approach, the slices share the available radio resources while adhering to specific
constraints. This strategy allows traffic to be assigned to a specific numerology, but it
also permits access to other numerologies, known as “slice awareness”. When there is
increased traffic demand for uRLLC, additional RBs are allocated from the eMBB slice.
Conversely, to enhance eMBB’s data rate, this service may access the underused resources
of the uRLLC slice. While the slice-aware method is more complex to create and operate
than the slice-isolation method, it improves resource utilization by dynamically distributing
resources based on service traffic arrivals.

Let XX[t] [packets/frame] denote the (unknown) traffic demand of the u-th generic user
at the time-frame ¢ with x € {ur,em}. We assume that \}[¢] follows the Poisson distribution
with the mean arrival rate E{\X[t]} = X%, where the size of each packet is identical and
equal to Z*. To respond to the priority of the scheduled uRLLC service, we consider the
following constraint.

Dur/éi F,
SN it = e, Ve ue ui=1, (5.4)
t;i=1 f;=1

where €4 [t] = [ max (AY[t] — Q,[t],0)/2] is the slice awareness for the mixed numerologies

in the frequency domain. Herein, AL [t] and Q,[t] = %<Fz X D" /6;)|i=2 are the number
of available packets in the queue of the u-th uRLLC user and the maximum number of RBs
for each uRLLC user in a dedicated slice of uRLLC per frame. In contrast, the following
constraint allocates all underused RBs of the other slices to eMBB users to increase the

data rate given

T, F;
SN el > e, Vtu € Ui =2, (5.5)

ti=1f;=1

where e$M[t] = max (H(E X Ti) = >y eqpor min( A (2], Qu[t])]/UemJ,O) li=2 is the slice aware-
ness for the mixed numerologies in the frequency and time domain. Herein, min(AU'[¢t], ,,[t])
represents the number of RBs scheduled for the uRLLC user in the ¢-th frame. Further-
more, we impose this constraint ) uw%fj [t] < 1;Vf;, t; to guarantee the orthogonality
restriction of OFDMA systems, i.e., cach RB can only be allotted to a single user. As a

result, we define the set of RB allocation constraints as
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DY/s; F
Al :{ Vt‘ Titift] € {0, 1}, waw S Vfiti > > mlilif] > e[t v,
ti=1 f;=1
we Ui =1; Z wawtz > e2M[t], Vt, u € U™, = 2}. (5.6)

1_1 fz—l

5.4.4 Network Queues and e2e Latency

We denote A[t] £ [} [t]]w . as the total arrival packet rate. We assume that the buffers are

embedded at DUs—i.e., radio link control (RLC)—to store the data arriving in a distinct
queue for each user assigned to a given RU based on the predicted flow-split distribution,
which should not exceed a finite constant A™®* < oo. The queue lengths for updating and
controlling the congestion cell are done at the near-RT RIC through the information feed-
back over the closed-control loop between DU and near-RT RIC based on E2SM-KPM. It
has played a pivotal role in enhancing network performance and adaptability to ensure that
our network can meet the diverse and dynamic requirements of the Open RAN framework.
The queue length [bits] of the generic data flow v at RU m is computed as

gm,ulti] = max (qm wlti = 1+ @mu[tINL [ Z7A — RY, L, (P[ti])0s, O) (5.7)

where ¢, [t]N[t] Z2* (bits/frame) is the sub-flow of user w at RU m. In order to avoid
congestion and packet loss caused by buffer overflow in each RU, the constraint >, ¢m . [ti] <
gm®*, ¥m is imposed to ensure that the available packets in the RU buffer should not exceed
the maximum buffer size of ¢M3. Let us define q[t;] = [qmu[ti]ﬁmu
the proposed model predicts data arrivals and flow-split decisions based on analyzing the
queues’ status and provides the RBs’ allocation accordingly.

The uRLLC e2e latency of user u at time-frame ¢ can be given by

At each frame,

T[] = TEC [t + e ault] + 7 T + T[]+ 7 L[]+ TR, Ve € UM (5-8)

where 7&°(t], THU[E], R[] TE 4ult]s Tawrult] and 7,

o du w.ult] Tepresent the CU process time,
DU process time, RU process time, transmission latency under the midhaul (MH), FH,
and RU-user links, respectively. In addition, we define 78,°[¢t] = >°,, Au[t]/peu and 75 °[t] =
> u Mult]/ thdus where pie, and pg,, are the task rates [1/sec] at the CU and the DU, re-
spectively; and 72 [t] is limited by the duration of the three OFDM symbols, which is
commonly very small and refers to the equipment’s computing capacity [123]. Since eMBB
and uRLLC traffic are served in different slices, the eMBB queue does not affect the uRLLC
queue. uRLLC users have higher priority and are served immediately upon arrival due to
their stringent requirements and small data packet size. Thus, the main factor affecting
uRLLC latency is the RU-user transmission time, which is calculated by the gap (measured
in TTIs) between the time the specific uRLLC packet enters the queue and the time it is

scheduled and leaves the queue, denoted as 7,5, [t] = 0;. argmax,, {nl w[t]} for u € U, To

ruu
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ensure a minimum latency requirement for the u-th uRLLC user, the e2e latency is bound
by a predefined threshold DY, i.e., 727[t] =~ 75 ,[t] < D"".

TU,U

5.5 Problem Formulation

Utility Function: This chapter addresses key questions: how to slice RAN resources,
optimize the distribution of data flows, and allocate resources (subcarrier, power) under
diverse QoS requirements of eMBB and uRLLC users in the presence of unknown traffic
demands and time-varying channels. We propose an intelligent T'S scheme optimizing traffic
demand prediction, flow-split distribution, and scheduling. To do so, the utility function
considers both the eMBB data rate and the worst-user e2e uRLLC latency at the same
time, as follows.

Let gy = limg, 00 tl Ztﬁzl Y m GmulT], Yu € U™ be the long-term average queue length
of the u-th eMBB data flow. It is clear that the shorter queue lengths lead to a higher
eMBB data rate. Besides, controlling congestion to avoid large queues is crucial, especially
for eMBB traffic with large packet sizes. This chapter aims to minimize the overall queue
length for eMBB users and worst-case latency for uRLLC users. In particular, the objective
0;.E¢ ( argmax; {Tr,f,%ff [t]})

function is given as w )", cq/em qf“ + (1 — w) maxy,eqpur , where w € [0, 1]
and E(.) denote the regulatory factor to control the influence of queue length and latency
and the expectation function over time-frame t, respectively. In addition, ¢o > 0 and
To > 0 are the reference queue length of eMBB and the latency of uRLLC, respectively.
These parameters are used to balance the two different dimensions of the two quantities.
Based on the above definitions, the joint optimization problem of traffic demand prediction,

flow-split distribution, congestion control, and scheduling is mathematically formulated as

Qu T
N D o0
st. w[t] € Alt], ¥ (5.9b)
plti] € P[], Vi (5.9¢)
plt] € W], vt (5.9d)
ZR%TU(P[E]) > Omult]RM, Ym € My, u € U™ (5.9¢)
TV (xe[t], plti]) > wfti [T (5.9¢)
7 (w[t]) < D, Yu € U (5.9g)
quu 1< @™, Vi mo€ Mo, u € U (5.9h)

where 7" £ max,cqur B¢ (0;. argmax,, {7rf“ @ [t]}). While o[t], 7[t] and p[t;] represent the
vectors encompassing the flow-split portions, sub-band assignments and power allocation
vectors at frame ¢ and TTI ¢;, respectively. The constraint (5.9f) guarantees that the SNR
of each RB assigned to the user u-th uRLLC via m-th RU must be greater than 7rf“t’[ t|reh
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FIGURE 5.3: A comprehensive workflow for intelligent T'S deployment using ML application in
Open RAN architecture.

where TP represents the given SNR threshold for each RB assigned to the uRLLC service.

Challenges of solving problem (5.9): The non-convexity of constraints (5.9f) and
(5.9h) and the binary nature of the RB assignment variables in constraint (5.9b) make
problem (5.9) NP-hard. Additionally, the stochastic nature of the expected objective func-
tion further complicates the direct solution. Although existing optimization solvers (e.g.,
Gurobi, SCA) can be used to solve mixed-integer non-convex programming (MINCP), their
stochastic nature cannot guarantee a (near)-optimal and feasible solution for all subsequent
TTIs due to dynamic and uncertain channel conditions at the small timescale. Moreover,
the exponential computational complexity of these solvers limits their practical feasibility,
especially in large-scale scenarios with a high number of variables. Additionally, traffic de-
mand, queue length, and wireless channels are initially incompletely known (or unknown) at
each frame. Traffic demand, flow-split decision, and RB assignment rely mainly on previous
states updated by the RAN layer.

Given dynamic traffic with fluctuating packet arrivals between frames, it is essential to
precisely tailor our proposed method for optimizing long-term variables on a frame-by-frame
basis. In this chapter, we consider that the traffic demand vector Aft], the global flow-split
vector ¢[t] and the RB assignment vector 7[t] are only updated once per frame ¢, aiming
to reduce the computational complexity and information exchange and ensuring a stable
queueing system in dynamic scheduling scenarios. On the other hand, the power allocation
vector p[t;] and the achievable instantaneous rate R[t;] are optimized based on the effective
real-time CSI in time slot ¢;, adapting to dynamic environments. To achieve a high QoE
in each frame, an efficient and adaptable solution to the long-term subproblem of (5.9)
is needed. MADRL is a promising technique to solve non-convex optimization problems
with reduced computational complexity. The proposed Algorithm 4 summarizes the overall
approach to solving problem (5.9), with detailed solutions for each step to follow. Fig. 5.3
shows the end-to-end high-level intelligent T'S deployment.
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Algorithm 4 Proposed Intelligent TS Algorithm for Solving Problem(5.9)

1: Inmitialization: Set t = 1, ,[1] = 4 1arx1, Yu, and the initial queues are set to be empty

M
Gm.u[1] = 0.

2: for [/long-timescale] t=1,2,...,T do

3: Traffic demand prediction: Given the sorted data (A[t—1], q[t—1]) at SMO, rAPP1
predicts the traffic demand Aft] based on an LSTM agent.

4: Traffic flow splitting estimation: The heuristic method embedded in rAPP2
splits the traffic flows of all users @[t] by (5.10) based on the moving average of the rate
in the most recent TTTs.

5. RB assignment prediction: Given the sorted data (A[f], @[], q[t — 1], G[t — 1], 7|t —
1],e*[t]) at SMO, rAPP3 with the two DRL agents predicts binary RB assignments #[t].

6: for [/short-timescalelt; =1,2,...,7; do

7 Optimizing power allocation: Given the queue length vector q[t;], and all pre-

dicted long-term variables (A[t],¢[t], and #[t]) solve problem (5.15) to obtain power
allocation p*[t;].
8: Updating queue-lengths: Queue-lengths are updated as:

m.ult] = max { (qm[ti 1] + PN 256 — R, (D" [ti})éi) : o}, x € {ur,em}.

9: end for

10: Update {A[t], ¢[t], q[t — 1], G[t — 1], 7 [t — 1], e*[t]} to the data storage located at SMO
via the O1 interface.

11: end for

5.6 The Proposed Algorithms

In this section, we develop effective algorithms to solve subproblems. An optimal TS pol-
icy relies on accurate predictions of long-term variables such as traffic demand, flow-split
decisions, and RB scheduling. This requires prior knowledge at the non-RT RIC. The data
collected from the lower layer (RAN components) is updated on a long-term scale in the
data storage at the non-RT RIC. The main aim of this chapter is to leverage observable
historical system knowledge via the O1 interface to build a smoother and optimal response.

5.6.1 LSTM Model for Predicting A[t] at rAPP1

The main challenge in the TS scheme is accurately predicting the arrival rate of all services.
Since A[t] and q[t] are incompletely known at each frame, standard optimization techniques
for long-term variables are inapplicable. Furthermore, the queue length of the generic data
flow u in the next frame depends on X\}[t] in the previous and current frames. To address
this, the RNN-LSTM model is adopted to learn and predict the traffic patterns of all users
in the considered Open RAN architecture [123]. LSTM, as a flexible model, can be trained
for any type of traffic model and different network scenarios via fine-tuning to capture the
dynamics of the system.

Once offline training of the RNN-LSTM model is done in non-RT RIC, the inference is
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forwarded to other rAPPs to learn flow-split decisions and RB assignments between traffic
flows. The long-term variable prediction in rAPPs and short-term power allocation in xAPP
are continuously implemented until desired KPI values or required QoS of traffic are met.
To achieve optimal TS with an unknown data arrival rate, the LSTM agent continuously
monitors A[t] throughout the network. The RNN’s weights are updated based on actual
parameters to reflect changes and enhance performance until the goal KPI criteria are met.

5.6.2 The Heuristic Approach for Optimizing the Flow-split ¢[t] at rAPP2

Given the LSTM model’s inference result, the predicted traffic demands for the next frame
A[t] are sent to rAPP2 and rAPP3 at non-RT RIC to optimize and estimate the flow-split
decision lt] and RB assignment 7[t]. At the beginning of each frame, we lack information
on the number of arriving traffic packets. Devising optimal flow-split and RB assignment
policies under service request dynamics is challenging due to unknown future time slot CSI.
As a simple yet efficient solution, we propose a heuristic-based approach to plan the traffic
flow splitting factor l[t]. Considering that the data rate of users in the next frame is
unknown, we use the average data rate in the most recent frames. Let us define Ry, ,[t] =
% Z?zt—W +1 Bmull], where Ry, o [l] is the achievable rate of user u served by RU m at the
frame [, and W is the window size. The traffic flow-split for user v to RU m is computed
as follows

. Ronult]
Pmoult] = = , Vm, . (5.10)
2 mem, Hm.ult]

The choice of window size involves a balance between precision and responsiveness.
A larger window size offers a more stable estimate but might exhibit slower reactions to
changes. Conversely, a smaller window size can respond swiftly but might exhibit more noise
due to short-term variations in packet arrivals. Considering the dynamic nature of network
traffic, it is crucial to periodically assess and, if necessary, adapt the window size according
to evolving network conditions and application demands. The estimated flow-split decision
@[t] is promptly transferred to the embedded rAPP3 to predict the RB assignment 7r[t].

5.6.3 Multi-agent Double Deep Q-Network for Optimizing RB Schedul-
ing «[t] at rAPP3

The most recent works on dynamic scheduling for eMBB and uRLLC have often relied on
assigning RBs per TTI, resulting in high computational complexity. To overcome this, we
adopt a different approach by allocating RBs to all users based on their requirements at
the beginning of each frame. However, the unknown channel behavior and queue length
make it impossible to obtain an optimal RB assignment. To address this issue, we propose
a MADRL-based approach to predict the RB assignment matrix 7[t] per frame, providing
an efficient solution for RB allocation in dynamic scheduling scenarios.

MADRL Framework: DRL combines reinforcement learning with deep learning to
train agents through interactions with the environment. The problem at hand is commonly
modeled as a Markov decision process (MDP), where the agent interacts with the environ-
ment over time steps (or time frames) denoted as t. In this MDP framework, the agent
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resides in a state s[t] € S and selects an action aft] € A at each time-step based on a
policy denoted as II(a[t]|s[t]). Here, S and A represent the state space and the action
space, respectively. This formulation allows for a systematic and decision-based approach
to address the problem. After observing the reward r[t], it transitions to the next state
s[t + 1]. The probability of selecting action a given the state s is expressed by the policy
II(als) := P(s[t + 1] = ¢'|s[t] = s,a[t] = a).

Traditional Q-learning algorithms suffer from slow convergence, especially for problems
with large state/action spaces. Deep Q-networks (DQNs) are used to approximate the Q-
function, but they can sometimes overestimate action values, leading to instability with high
oscillation and variance due to correlations among observations, affecting policy quality. To
address slow convergence and multi-binary action scenarios, we adopt a novel double deep
Q-networks (D2QNs) with a customized activation function introduced in this chapter.

Multi-agent D2QN (M AD2QN)-based Approach: D2QN improves DQN by defin-
ing evaluation and target neural networks, decoupling action selection from evaluation. The
evaluation network () handles action selection and policy evaluation, while the target net-
work g calculates future Q-values. To enhance DQN algorithm stability, we utilize an
iterative update technique. It updates the target network every C steps and uses mean
square loss £(0) to minimize correlations between Q-values and target values. To further
improve the policy and stabilize the learning model, we employ replay memory, as shown
in Fig. 5.3. Hence, the transition (s,a,r,s’) is stored in the replay memory based on the
first-come-first-serve buffer with limited capacity to be used in the training phase.

We denote the Q-function in each time-step ¢ as

Q(s,a;0) + (1 —n)Q(s,a;0) + n(r + ’ymgx@(s’,a; 9)), (5.11)

where n € [0,1], v € [0, 1] and 0 are the learning rate, the discount factor, and the trainable
parameters (weights and biases) of the neural network, respectively. It is necessary to
optimize 6. To do this, we minimize the distance between Q(s,a;8%) and TD-target (or
temporal distance of Q as y = r + vQ(s', argmax, Q(s’,a; 89); 8")), which is expressed as
the loss function £(69)

£(69) =E(y - Q(s,2:69))”, (5.12)

where 0* and 69 are the trainable parameters of the target network and Q-network, respec-
tively. While the target neural network p evaluates the quality of the action, the Q-network
() determines the action. This procedure is in contrast to the vanilla implementation of
DQN, where the target neural network is responsible for both action selection and evalua-
tion.

Unlike single-agent D2QN related to the learning process of only one single agent, our
proposed MAD2QN-based model involves more than one agent, where all agents operate
autonomously and concurrently in a sharing environment. Given the large-scale and inher-
ent intricacies of the proposed wireless network, the development of an efficient MAD2QN
model with specific characteristics is imperative. Moreover, the dynamic nature of packet
arrivals and the constraints of slice awareness within our proposed problem demand that
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Algorithm 5 MAD2QN-based RB Scheduling deployed at rAPP3

1. Initialization: Initialize random weights 6% = 09; set flags F* = 0, replay buffer capacity C™
and reward values to r'[t] = 0.
2: for epoch do

3: Receive initial states for all agents s[1];
4: fort=1,2,...,7T do
5: for agent do
6: Generate a random number rand();
T if rand() < € then
8: Random generating action a'[t];
9: else 4 4
10: Select action a'[t] for s'[t] predicted by i-th Q-network;
11: end if
12: Check action feasibility by passing through the post-process filter;
13: if a’[t] does not satisfy constraints (5.9b) and (5.9g) then
14: Set reward value as r’[t|+= penalty;
15: else if a'[t] satisfies constraints (5.9b) and (5.9g) then
16: Set reward value as r'[t]+= bonus, and set flag i to 1, i.e. F' = 1;
17: else if [],F' =1 then
18: Set reward values via joint action a[t] = {a'[t];Vi} and updates from RAN as
r'[t][+ = global reward;
19: end if _
20: Observe new state s'[t + 1]|vi;
21: Store transition (s'[t],a’[t],r*[t],s'[t + 1])|v; into i-th replay buffer;
22: Sample the random mini-batches of K transitions from i-th reply buffer;
23: Update i-th Q-network @ by minimizing the loss function: L(68%) = E(y —
Q(s',a';69))%;
24: Update the parameters of target neural network p of agent i every C' steps by resetting
0" = 09;
25: end for
26: end for
27: end for

each agent adapts to these fluctuations in the environment. Another challenge in our ap-
proach using MAD2QN is the incorporation of binary actions, which require customized
neural networks to address this specific requirement. This adds to the complexity of our
model while catering to the intricacies of the wireless network.

The Proposed Design: To handle the complex binary multi-action scenario, we as-
sume one agent per slice with index ¢ to exploit the intrinsic properties formulated problem.
Specifically in this learning method, two agents i = {1,2} are defined: an agent with index
1 = 1 for the eMBB slice and an agent with index ¢ = 2 for the uRLLC slice. This approach
simplifies the problem and leads to faster and more stable convergence. Each dedicated
agent takes actions and receives rewards based on its specific state, different from the other
agent in a given time frame. Personalized decision-making is achieved with one agent per
slice, tailored to each slice’s unique requirements. Note that when each agent is motivated
solely by its individual reward, it can exhibit self-centered behavior, potentially causing a
decline in overall network performance [129]. To mitigate this, we introduce a flag system
(one flag for each agent) that facilitates information exchange among agents to obtain the
global optimum. This enables communication and insight into the actions and performance
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of their counterparts per time frame, leading to more informed decisions and a comprehen-
sive understanding of system dynamics. Here, F' € {0,1} shows the flags of slice-1 and
slice-2, respectively.

State and Action Spaces: In particular, each agent i operates within its own state
s'[t] € 8¢ and action a'[t] € A’ space. The state space captures the subset of environment
observations (associated with the assigned slice) that each agent has access to. While the
action space represents the independent set of actions that each agent can choose from. The
joint action a[t] = {a’[t];Vi} is a combination of individual actions, impacting the overall
system dynamics. Distinct state and action spaces allow agents to personalize perception
and interaction with the environment while collaborating toward their objectives. The state
vector s'[t] at frame ¢ is composed of the traffic demand vector at the current frame A[t],
the estimated flow-split distribution ¢[t] in t-th frame, the previous queue length vector
q[t —1], the channel gain matrix of each slice G*[t — 1], the action selected at previous frame
t—1as a'[t — 1] and eX[t] = [e[t]]7, i.e.,

u

§limr = {s'11[s'11] = A1) @l alt — 11, Gt~ 1],a' [t~ 1], 1)},

S'lizz = {21051 = (A1) lt], alt = 1), G2[t = 1], @[t — 1], =" [1]) }. (5.13)

We define A’ as the multi-action space

A%:{wm

alft) = [wfii )i el € 0,11} (5.14)

Note that the transitions are updated to (s?,a’,r’,s") stored in replay memory to be
used to update the Q-networks parameters.

Customized Activation Functions: A customized activation function is designed in the
last layer of the Q-network and target network. This ensures that the Q-values align appro-
priately with our specific action spaces. Fine-tuning the activation function tailors Q-values
to match multi-action requirements and constraints, enhancing compatibility with the ac-
tion selection process and improving overall performance. As illustrated in Fig. 5.4, the
output of the last layer of each neural network per slice with a size of M x U x F; x T;
is divided into F; x T; parts, including M x U cells. Hence every M x U cells belong to
RB(fi, ti). We adopt a Softmaz activation function on given Q-values to convert them into
the range [0, 1] so that the sum of all M x U Q-values equals 1. Then, we apply a post-
process filter to convert Q-values into binary values, making problem (5.9) feasible. The cell
with the highest Q-value is assigned “one”, indicating RB(f;, ¢;) allocation to user u in the
m-th RU. All other cells are assigned “zero”, indicating that there is no RB allocation to
those users. This filter converts continuous Q-values into binary RB allocations, facilitating
straightforward RB scheduling decisions based on the highest Q-values.

Construction of the Reward Function: For an effective reward function, we propose a
penalty-based approach that incorporates action constraints (i.e. (5.9b), (5.9g)). Violating
constraints leads to a negative reward value (penalty) to discourage such behavior, while
satisfying all constraints results in a positive reward value (bonus) and a flag of “one”.
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FI1GURE 5.4: The customized activation function design for ensuring the feasibility of last layer
D2QN outputs per agent.

This approach encourages agents to prioritize decisions that comply with constraints and
accomplish the overarching objectives. Once the flags for all agents are set to 1, the agents
are rewarded with a global reward based on joint actions a[t] aligned with the objective

function of the proposed model as w(zueq‘emeim(p[tiD) —(1- w)(%{)”'{ﬂf})

5.6.4 Solving the Short-term Subproblem at DU

After implementing the inferences of the trained models in the intelligent TS-xAPP in
the near-RT RIC via the Al interface, the given xAPP is in charge of controlling and
managing long-term variables (A[t], @[], #[t]) in dynamic environments. The subsequent
step is optimizing the power control problem at the RAN layer located at DUs thanks to

the closed-control loop between DUs, CU, and near-RT RIC as follows

mgn Z Quti] (5.15a)
st (5.9¢), (5.9¢), (5.9f), and(5.9h). (5.15b)

Problem (5.15) is inherently convex in p[t;]. The worst-case complexity of the interior-
point method [101, Chapter 6] used to solve (5.15) is O(y/c(v)?), where ¢ = M,U(Fy +
F) + MU + 2M,, and v = M,U(F; + F3) are the numbers of constraints and scalar
variables, respectively. It is noted that all the constraints in (5.15) are linear, which can be
effectively solved using the standard convex solvers (i.e., MOSEK, SeDuMi). Furthermore,
the proximity of DUs to RUs ensures minimal latency when transmitting decisions to RUs.
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TABLE 5.1: Simulation Parameters

Parameter Value Parameter Value
No. RUs 4 Pre. uRLLC latency (D) 0.5 ms
No. eMBB users 9 No. of antennas (Kiy) 8

No. uRLLC users 3 Pre. eMBB data rate (R™) 10 Mbps
BW of RU 10 MHz  uRLLC SNR threshold (T'™") 10.6 dB
Error prob. (P, 1e-03 Pre. RU’s queue-length (QM**) 10 KB
Power’s RU (P™®) 43 dBm  Discount factor (7) 0.9
Noise power (Np) -110 dBm Learning rate (1) 0.0001
Packet size (Z"") 32 B Buffer capacity (C™2*) le+05
Packet size (Z°™) 64 KB Batch size 64
Time-frame (A) 10 ms penalty, bonus -10, 5

5.7 Performance Evaluation

This section begins by presenting the simulation setup, parameters, and a set of bench-
mark schemes in Section 5.7.1. Section 5.7.2 provides numerical results and performance
comparisons of the proposed Algorithm 4 against the mentioned schemes, showcasing their
respective strengths and weaknesses in addressing the discussed challenges.

5.7.1 Simulation Setup, Parameters and Benchmark Schemes

We consider a network topology comprising four RUs, nine eMBB users, and three uRLLC
users where each RU serves three sectors, as illustrated in Fig. 5.5. All users are uniformly
distributed within a circular region of a radius of 500 m. The channels between RUs
and UEs undergo both follow Rayleigh fading with a path-loss model given by PL,,, =
128.1 + 37.6log;((d/1000) dB. We employ an RNN model with the activation function,
adam optimizer, and 50 epochs to predict future frame traffic. The model has two hidden
layers (fully connected), each including 50 LSTM units. The traffic arrival process follows
the Poisson process model for uRLLC and eMBB with mean arrival rates of 1.12 and 21.12
[packets/frame] [93], respectively, while the mean arrival rates are configurable parameters.
We assume the inter-arrival time is modeled uniformly (i.e., per frame). We then store
them in a buffer using a first-come, first-serve scheduling policy. The dataset consists
of 10000 traffic observations collected from four RUs over 100 seconds. In the following
experiments, Algorithm 4 is executed for 1000 sub-frames (equivalent to 100 frames in
the 5G NR context). The D2QN model architecture has five hidden layers with neuron
counts of 256, 512, 512, 512, and 256, respectively. The activation function used in the
input and hidden layers is relu, while a customized activation function is used in the last
layer. The training process employs the binary-crossentropy loss function and the adam
optimizer with a learning rate of m. The LSTM RNN and MAD2QN models are
implemented using TensorFlow version 2.12.0 with the Keras API. The simulations are run
on a Dell desktop computer with an Intel(R) core(TM) i7-10610U CPU @ 1.80 GHz and 16
GB of RAM. Table 5.1 summarizes the main simulation parameters used in the experiments.
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F1GURE 5.5: The considered topology with M = 4 RUs, U = 3 uRLLC users and U*™ = 9
eMBB users.

Benchmark schemes: To assess the efficacy of the proposed algorithm, we consider
the following five benchmark schemes:

1.

Successive convex approzimation (SCA): Binary variables 7 are first relaxed to con-
tinuous ones, and then an SCA-based iterative algorithm is developed to solve the
approximate convex program [123]. This scheme also considers mixed numerologies
in the frequency domain and perfect CSI per TTI, which serves as the upper bound
of the proposed method.

Uniform : This scheme aims to highlight the importance of optimizing the flow-split
distribution. We assume an equal flow-split for all traffic to RUs, i.e., oy = ﬁ for
all u € 9, and consider multiplexing in the frequency domain.

Uniform mr: This scheme demonstrates the performance improvement achieved by
predicting RB scheduling using the multi-agent D2QN. RBs are assigned uniformly
to all users in the frequency domain.

Fized numerology: In this approach, the TTI is set to match the LTE standard,
with a duration of 0.5 ms and an SCS of 180 kHz. The flow-split decisions, resource
allocation, and power allocation for both services are determined using Algorithm 4
with slight modifications.

Slice isolation (SI): This scheme examines the performance of multiplexing in the
frequency and time domains. It emphasizes the importance of incorporating awareness
into the NS technique.

The above benchmark schemes are used to comprehensively evaluate the proposed Algo-
rithm 4 to solve the problem 5.9 and demonstrate its superiority over existing approaches.
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FI1GURE 5.6: The actual and predicted traffic demands via LSTM model for both eMBB and
uRLLC services per frame.

These benchmark schemes are employed to provide a comprehensive evaluation of the pro-
posed Algorithm 4 to solve the optimization problem 5.9 and its superiority over existing
approaches.

5.7.2 Numerical Results and Performance Comparison

The performance of the LSTM RNN model in predicting both eMBB and uRLLC traffic
demands is illustrated in Fig. 5.6. Fig. 5.6(a) displays the predicted and actual values for
one of the eMBB users, while Fig. 5.6(b) shows the uRLLC traffic demands. The results
clearly demonstrate the effectiveness of the trained LSTM RNN model in capturing the
dynamic nature of traffic demands over the frames. The predicted values closely align with
the actual values, indicating the model’s ability to accurately forecast traffic demands. The
discrepancy between the predicted and actual values is minimal. To quantify the accuracy
of the LSTM model, the mean squared error (MSE) is calculated as a performance metric.
For selected eMBB users depicted in Fig. 5.6(a), the MSE value is measured to be 0.00232.
Similarly, for the uRLLC users shown in Fig. 5.6(b), the MSE value is calculated as 0.00291.
These low MSE values further validate the accuracy of the implemented LSTM model in
predicting traffic demands for both eMBB and uRLLC services.

In Fig. 5.7, we present a comprehensive visualization of the performance achieved by
Algorithm 5 across different numerologies: Fig. 5.7(a) with the mixed numerologies in the
frequency domain with slice awareness (SA), Fig. 5.7(b) with the mixed numerologies in
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FI1GURE 5.7: The converge behavior of Algorithm 5 in different frequency-time grid numerologies:
(a) mixed numerology in the frequency domain, (b) mixed numerology in the time domain, and (c)
fixed numerology

the time domain with SI, and Fig. 5.7(c) with the fixed numerology with SA. In particular,
when examining mixed numerologies in the frequency domain combined with SA, we observe
a slightly superior performance compared to the fixed numerology combined with SA and
mixed numerologies in the time domain combined with SI. While it is worth noting that some
RBs are wasted in mixed numerologies in the frequency domain due to guard bands between
adjacent numerologies, which can reduce eMBB data rates, the SA scheme stands out as it
offers high performance in terms of eMBB data rates, ultimately leading to the improved
overall system performance. Furthermore, even though the concept of mixed numerologies
in the time domain with SI appears to promise superior performance compared to the
fixed numerology with SA, the opposite holds true. Surprisingly, the SA technique proves
to be remarkably effective, even in a fixed numerology scheme, which is the underlying
reason for this phenomenon. On the other hand, these figures demonstrate the adaptability
of agents in response to dynamic changes in the channel and arrival packets over time
frames. The figures show that agents quickly learn and improve their performance, as
indicated by the increasing average reward during the training episodes for all numerology
schemes. Moreover, a higher number of epochs leads to higher average rewards. Among
these three schemes, the proposed scheme with mixed numerology in the frequency domain
with SA achieves the highest reward under the same conditions. These findings highlight
the effectiveness of the Algorithm 5 and the benefits of considering different numerologies
and SA in optimizing the system performance.

In Fig. 5.8, we assess the performance of Algorithm 4 using various strategies compared
to the above-mentioned benchmark schemes. To assess the eMBB data rate under various
resource allocation schemes, Fig. 5.8(a) presents the total data rate of eMBB users across
the maximum power budget for RUs, ranging from 10 to 46 dBm. As expected, the SCA
strategy demonstrates the highest performance among all the schemes and serves as an
upper bound for comparison. This can be attributed to the fact that the SCA scheme
utilizes perfect CSI in each frame, allowing it to have precise knowledge of the current
frame’s channel gain. In contrast, the proposed method relies on the channel gain of the
previous frame to allocate RB to the current one. However, the performance gap is less than
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F1GURE 5.8: The performance comparison between Algorithm 4 and existing benchmark schemes
versus maximum power budget of RU P™ in terms of (a) average overall eMBB data rate, (b)
worst end-to-end uRLLC users, and (c) backlog queue length.

4%, which showcases the efficiency of the LSTM RNN and MAD2QN models in accurately
predicting dynamic arrival packets and RB scheduling over time. Moreover, the proposed
scheme achieves the highest eMBB data rate when compared to the others. In particular,
the proposed method offers a performance improvement of 99.42%, 43.39%, 40.74%, 11.76%
and 8.57% compared to the time and frequency domain considering SI, fixed numerology,
uniform 7, and uniform ¢, respectively, at the typical power value of P™® = 30 dBm. It
is worth noting that the benchmark scheme of uniform ¢ performs closely to our proposed
method, particularly in lower power budgets. This suggests that allocating equal flow-
split to all users across RUs can effectively meet the QoS requirements when the power
budget is limited. However, as the power budget increases, the advantages of the proposed
method in optimizing resource allocation and maximizing eMBB data rate become more
prominent. Besides, the fixed numerology scheme works well over P™* > 30 dBm, but
becomes infeasible when the maximum RUs’ power is less than 30 dBm. This observation
highlights the advantage of our proposed scheme over the mentioned schemes, particularly at
lower power levels. Lastly, we can observe that the SI schemes exhibit the worst performance
compared to the SA-based schemes, confirming the importance of incorporating awareness
techniques into resource allocation.

In Fig. 5.8(b), the worst-user uRLLC latency is analyzed where all schemes success-
fully meet the required uRLLC latency threshold of 0.5 ms. The fixed numerology scheme
exhibits an empty region for P™® < 30 dBm, since the corresponding problem becomes
infeasible under these power constraints. Figure 5.8(c) presents the average queue backlog
with different maximum power budgets of RUs. As seen, the average queue length decreases
as P™M® increases. Interestingly, the performance gap between the proposed method and
the SCA scheme is negligible. Both schemes can effectively manage the queue length and
demonstrate the ability to handle varying power budgets while maintaining a low average
backlog. On the other hand, the SI-based schemes yield the poorest performance. No-
tably, the proposed method excels and exhibits the most superior performance among all
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FIGURE 5.9: Impact of the rate of uRLLC arrival packets/frame on the overall performance of
eMBB and uRLLC in both SA and SI scenarios with P™®* = 43 dBm.

benchmark schemes. Similarly, the fixed numerology scheme is infeasible when P™* < 30
dBm, and the uniform ¢ benchmark scheme outperforms the uniform 7, fixed numerology
and Sl-considered schemes. Conversely, we have noticed numerically that uRLLC users
consistently tend to maintain only one link in diverse system configurations.

Fig. 5.9 highlights the superiority of the SA scenario, especially in high traffic conditions,
compared to the SI approach. Upon closer examination of Fig. 5.9(c), it becomes evident
that during frames 14 to 19, the packet demands of uRLLC users surpass the available RBs
allocated to their dedicated slice. To address this issue, SA can request additional RBs from
the eMBB slice through preemption. On the contrary, the SI technique was shown to be
infeasible during these frames. As we expected in Fig. 5.9(b), the SI scenario is incapable
of accommodating the uRLLC service during frames in which uRLLC users require more
RBs than what is available in their dedicated uRLLC slice. Meanwhile, Fig. 5.9(a) plots
the average eMBB data rate of Algorithm 4 with SA and SI in different frames. The
figure proves the effectiveness of the SA scenario in achieving a higher data rate compared
to SI. Importantly, it shows that the performance of uRLLC does not negatively impact
the other slice, namely eMBB, in the SI scenarios. This comparison validates that SA
not only increases the eMBB data rate but also enables a response to uURLLC users with
unexpectedly high packet demands. Overall, the insights provided by Fig. 5.9 confirm that
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F1GURE 5.10: Demonstration of RB scheduling to both eMBB and uRLLC services based on
Algorithm 4 considering mixed numerology in the frequency domain. The vertical solid lines separate
the sub-frame from the next sub-frame.

SA is a beneficial technique in improving the eMBB data rate and effectively managing the
demands of uRLLC users that exceed the allocated RBs in their dedicated slice.

In Fig. 5.10, we provide a more detailed visualization of how the SA technique works
in uRLLC preemption and its impact on improving eMBB data rate. The figure focuses
on five sub-frames as an example, illustrating the RBs’ allocation to different services. We
assume that uRLLC users have failed if all packets per frame are not transmitted, and then
it becomes necessary to request extra RBs from another slice. Conversely, eMBB users
are also allowed to access the unused RBs of the uRLLC slice, resulting in a significant
improvement. From Fig. 5.10, we can observe that in sub-frame 3, the uRLLC service
does not require more RBs than what is available in its dedicated slice. However, in the
other sub-frames, the uRLLC traffic requests additional RBs from the eMBB slice to meet
its demand. Note that to meet the minimum uRLLC latency requirement, the agents will
prioritize allocating RBs to uRLLC users at the beginning of each sub-frame. This example
clearly shows how the SA technique facilitates the RB allocation, enabling uRLLC users to
acquire extra resources when necessary and improving the eMBB data rate. By dynamically
adapting the RB allocation based on the various demands, the proposed algorithm optimizes
resource utilization and effectively meets the stringent demands of uRLLC and eMBB.

5.8 Summary

We proposed a novel DRL-aided intelligent T'S scheme within the Open RAN architecture,
aiming to efficiently steer multi-traffic flows. Toward self-optimizing autonomous networks,
variables on various timescales are predicted /optimized in different Open RAN layers. Three
rAPPs with offline-trained agents were designed in non-RT RIC for long-term variable pre-
dictions. The short-term variable was optimized at DUs in the function layer thanks to
the long-term inferences deployed at the intelligent TS xAPP in near-RT RIC. In particu-
lar, we focused on implementing scalable numerology mechanisms for beyond 5G wireless
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networks by leveraging the MC, NS, and multiplexing of numerologies. The chapter pro-
posed a multi-agent scenario with a data-driven MADRL algorithm at the non-RT RIC
to effectively address complex optimization problems with partial observations. Extensive
numerical results were presented to highlight the effectiveness of the proposed approach in
jointly optimizing numerology scenarios, slicing adaptation, and scheduling strategies. They
also reveal valuable insights into data-driven algorithms’ development and their potential
for enhancing network performance in the Open RAN architecture. The current framework
presents a theoretical foundation for integrating ML into the O-RAN architecture, demon-
strating the potential benefits of ML for traffic management and performance optimization
under the assumption that there is negligible latency for exchanging decisions and policies
between RICs and RAN. An intriguing area for future investigation involves analyzing the
scalability and adaptability of the suggested framework within comprehensive simulators,
such as OpenRAN Gym, which encompass all specifications and protocols of the O-RAN
interfaces. To advance our future endeavors, we aim to enhance efficiency by transition-
ing from considering individual RBs to utilizing group RBs, thus alleviating computational
burdens.
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Chapter

Intelligent User Association and Scheduling
in Open RAN with 7.2x Functional Split:
A Hierarchical Optimization Framework

In the ever-evolving landscape of NextG wireless networks, Open radio access network
(RAN) emerges as a transformative paradigm, revolutionizing network architectures and
fostering innovation through its open, intelligent, and disaggregated approach. By integrat-
ing RAN intelligent controllers (RICs), we can seamlessly implement machine learning (ML)
algorithms to cater to diverse vertical applications and deployment environments without
the need for intricate planning. However, this architecture suffers from two critical chal-
lenges: frequent handovers and load balancing amid varying traffic demands of different
services in dynamic environments. To address these issues, this chapter proposes a joint
intelligent user association, congestion control, and resource scheduling (IUCR) scheme.
Aligning with the 7.2x functional split (FS) option recommended by the O-RAN Alliance,
we present a hierarchical optimization framework incorporating heuristic methods, succes-
sive convex approximation (SCA), and a distributed deep reinforcement learning (DRL)
approach across different Open RAN components, such as RICs and RAN layers. The sim-
ulation results convincingly demonstrate the superior performance of the proposed scheme
compared to centralized approaches, validating its effectiveness.

6.1 Introduction

The NextG wireless network landscape is experiencing a surge in demand for diverse services,
such as enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication
(uRLLC). However, current radio access network (RAN) architectures struggle to meet these
varied service requirements due to their rigid, monolithic nature [102,130]. This rigidity
hampers efficient resource allocation and adaptation to diverse service demands, leading
to suboptimal performance and compromised user experiences. In response, the Open
RAN architecture has emerged as a promising solution that enables operators to adapt
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dynamically to changing traffic patterns, latency requirements, and data rate demands
across different services [131].

In an Open RAN architecture, machine learning (ML) methods play the fundamental
roles in enabling intelligent and autonomous optimization of RAN performance. ML-based
optimization within RANs facilitates autonomous deployment by integrating RAN intelli-
gent controllers (RICs). These controllers utilize embedded ML/artificial intelligence (AI)
algorithms to analyze vast amounts of data collected from various RAN components and user
equipment (UE). This analysis enables informed decision-making and dynamic adjustment
of network parameters [107,132]. Key tasks include predictive maintenance, anomaly de-
tection, dynamic resource allocation, congestion management, and quality of service (QoS)
optimization.

In multi-traffic environments with eMBB and uRLLC services, RAN slicing and scal-
able numerologies are crucial [111,133]. RAN slicing customizes network resources for each
service type, ensuring quick and reliable provision of uRLLC with minimal delays. This re-
source segregation prioritizes uRLLC traffic, reducing queueing delays and ensuring timely
data delivery. Scalable numerology techniques, such as the mini-slot concept, further en-
hance uRLLC service efficiency by enabling immediate transmission of small packets without
buffering [134]. By integrating these techniques, network operators can optimize resource
usage, minimize delays, and improve overall network performance and user satisfaction [135].

While Open RAN provides an agile and intelligent framework for IMT-2020 infrastruc-
ture, it faces challenges like cell congestion, load balancing, and frequent handovers in
UE-centric multi-traffic scenarios. Addressing these issues requires an intelligent user as-
sociation (UA) and congestion control scheme to optimize RAN performance in dynamic
environments. To minimize unnecessary handovers, handover parameters such as user data
rate thresholds, queue length capacity, and resource utilization rates should be adapted
to the environment’s dynamics. The 7.2x functional split (F'S) option adds complexity by
distributing tasks like linking UEs to radio units (RUs), allocating physical resource blocks
(RBs), and managing transmission power across different Open RAN components [136].
This necessitates both distributed management and centralized coordination. Fortunately,
Open RAN’s architecture, with its open interfaces and RICs, facilitates communication
among components, making these processes manageable.

6.1.1 Related Works

Numerous research investigations have explored user handover, load balancing, and traf-
fic management issues within the traditional RAN architecture. For instance, in [137], a
joint resource allocation and device-to-device routing problem was proposed to maximize
the total system data rate in an orthogonal frequency division multiple access (OFDMA)
ultra-dense small cell network. The authors in [138] introduced a ping-pong timer to dis-
cern types of handovers induced by movements. In [116], a joint user access control and
scheduling optimization scheme was proposed to maximize overall network utilization in the
cloud RAN architecture. To evenly distribute loads across base stations (BSs), Zhang et
al. [29] proposed a dynamic multi-connectivity-based joint scheduling framework via traffic
steering for eMBB and uRLLC, enhancing eMBB data rate while ensuring uRLLC latency
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requirements are met. The authors in [92] formulated an optimal joint eMBB and uRLLC
scheduler with the dual objectives of maximizing utility for eMBB traffic while satisfying
uRLLC demands. Due to the coupling between optimization variables and their combina-
torial nature, most of these problems have relied on differences of convex algorithms with
high computational complexity or degraded-accuracy heuristic approaches for solutions in
a “one-size-fits-all” architecture.

Moreover, the load-aware user access control scheme was introduced in [139] by exploit-
ing link quality assessments and traffic load data across various BSs to effectively distribute
loads. The authors in [140] proposed a handover skipping technique for highly mobile users
to bypass inefficient handovers. To address non-stationary traffic demand fluctuations over
time, the author of [118] formulated an online learning problem for optimal user association
policies using the online convex optimization framework. Additionally, [141] investigated a
transport-aware mobility load balancing approach integrated into the LTE traffic steering
mechanism to handle radio overload and transport congestion. However, all the mentioned
works have focused on user access control in traditional RAN architecture without consider-
ing heterogeneous services with conflicting requirements. In such deployments, optimizing
user access exclusively within the RAN might become impractical due to excessive com-
plexity and signaling overheads.

Recently, ML-enabled handover schemes have been explored to address traditional meth-
ods’ complexities and inefficiencies. For instance, in [124], an actor-critic reinforcement
learning (RL) model jointly optimizes communication mode selection, RB allocation, and
power distribution in device-to-device networks. Similarly, the offline RL-based handover
control model was studied in [142] to autonomously optimize handover decisions, enhanc-
ing user connectivity and data rate. To manage global network information and frequent
handovers, Cao et al. [143] proposed a deep reinforcement learning (DRL) model to assist
access decision’ users in dynamic network environments. However, individual user perfor-
mance and requirements were overlooked therein. Therefore, intelligent user access (UA)
and resource scheduling, considering user-centric conditions, and congestion control are
necessary to deal with traffic demand fluctuations.

Few works have explored the UA scheme within the Open RAN architecture. For in-
stance, the work in [144] proposed a DRL-based scheme to optimize user access and avoid
frequent handovers in massive BS deployments. The user-specific traffic steering intelligent
handover framework was developed in [50] to maximize the system data rate by selecting
the appropriate new radio (NR) serving cell. The authors in [49] presented a multi-layer
optimization framework to steer traffic through multiple BSs based on the estimated future
demand. However, these studies have not adhered to the practical 7.2x FS in Open RAN
architecture and have not employed cutting-edge technologies available in beyond fifth-
generation (5G), such as slice awareness, mini-slots, multiple numerologies, and others, to
enhance overall network efficiency.

6.1.2 Motivation and Main Contributions

Most existing efforts lack an intelligent UA and resource scheduling scheme for multi-traffic
downlink (DL) sixth-generation (6G) systems that consider O-RAN and 3GPP standards,
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such as mixed numerologies in dynamic environments and function split. On one hand, the
recommended 7.2x FS complicates the joint design of UA and radio resource management
(RRM) so that the existing solutions (e.g., in [49,50,144]) cannot be applied, which requires
a new design strategy for UA and RRM in Open RAN architecture. On the other hand, the
DRL method is essential to enable automated, adaptive, and efficient network management.
It allows networks to self-optimize, dynamically adjust to changing conditions, and improve
overall performance, making it a key component in the evolution of advanced wireless net-
works. Within the Open RAN network, the distributed training process with centralized
coordination is crucial, particularly those tailored to 7.2x FS. This involves multiple DRL
agents sharing local observations and considering actions taken by other agents to ensure
performance convergence [145]. However, such observation-sharing mechanisms can result
in significant communication overhead. This calls for a novel framework that encourages
individual agents to train their local models based on their own observations while being
minimally aware of neighboring agents’ behavior, reducing the need for extensive informa-
tion exchange.

Unlike traditional user handover methods, where decisions are made by the base station
or core network based on fixed criteria like signal strength and signal-to-noise ratio (SNR),
this chapter presents an innovative approach that utilizes a near-real-time (near-RT) RIC
and customized xAPPs. This approach considers factors such as data rate, network load,
QoS, and user behavior, leveraging data-driven solutions to enhance both network perfor-
mance and the user experience. By utilizing RICs, which provide a holistic view of RAN
components, we optimize the user-centric scenarios across diverse traffic types. Building on
these principles, we develop an intelligent UA, congestion control, and resource scheduling,
so-called TUCR, robust against dynamic environments. In summary, our key contributions
are summarized as follows:

e In contrast to the mentioned literature, which has not incorporated 5G cutting-edge
techniques or adhered to the 7.2x FS in Open RAN, we propose a novel IUCR opti-
mization framework that complies with the 7.2x FS and addresses both eMBB and
uRLLC services within the Open RAN architecture. The framework employs RAN
slicing and mixed numerologies multiplexing in the frequency domain, with a slice-
aware approach to optimize resource utilization. A mini-slot-based frame structure,
compliant with 3GPP NR specifications, is incorporated to enable shorter transmis-
sion duration. The formulated problem aims to minimize eMBB queue lengths and
uRLLC latency while considering congestion control, power budgets, and other con-
straints.

e We propose a hierarchical optimization approach combining heuristics, iterative suc-
cessive convex approximation (SCA), and distributed DRL-based algorithms. By
leveraging closed-control loops between RAN components and RICs, the proposed
solution addresses challenges such as incomplete queue lengths, frequent handovers,
channel interference, and partial environmental observations using historical RAN
data. The framework first updates UA variables via a heuristic algorithm that reduces
frequent handovers by assessing cell congestion and focusing on average dynamics.
It then employs a distributed DRL-based algorithm to optimize power distribution,
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guided by an optimized RB assignment centrally determined through the SCA method
in central units (CUs).

e When the network alarms indicate potential cell congestion, the heuristic method at
the near-RT RIC updates UA variables using averaged historical data and sends them
to RAN components. An iterative SCA algorithm located at DUs then schedules RBs
based on these variables, UE traffic demands, and network conditions, using channel
feedback from cell sites. In the distributed DRL-based power allocation scheme, each
RU trains two deep Q-networks (DQNs) with local observations to make decisions. A
reward mechanism and flag system minimize signaling overhead and prevent selfish
behavior, addressing incomplete information.

e We provide extensive numerical results that demonstrate the superior performance of
the proposed solution, leading to a small performance gap of 1.1% compared to the
centralized scheme in terms of eMBB data rate.

The remainder of this chapter is organized as follows: Section 6.2 presents the com-
plete end-to-end (e2e) workflow in the Open RAN architecture with the 7.2x functional
split. The optimization problem of the intelligent user association, congestion control, and
resource scheduling problems is formulated in Section 6.3. Section 6.4 describes the pro-
posed methodology, including a heuristic method, iterative SCA, and a multi-agent DRL
model. Section 6.5 provides extensive numerical results, comparing the proposed approach
to benchmark schemes, while Section 6.6 concludes the chapter.

6.2 System Model

6.2.1 7.2x Functional Split in Open RAN Architecture

Following the O-RAN Alliance principles, the Open RAN architecture in NextG can be
divided into three main components: CUs, distributed units (DUs), and RUs [132]. The
framework includes management, control, and functionality layers, operating on timescales
from over one second to under ten milliseconds. As shown in Fig. 6.2.1, O-RAN specifi-
cations introduce two key modules: the non-real-time (non-RT) RIC and near-RT RIC at
the management and control layers, respectively, connected via the Al interface. All RAN
components are linked to these RICs through the E2 and O1 interfaces. Fig. 6.2.1 illus-
trates the integration of intelligence across components in a disaggregated cellular network.
Each closed-loop control is designed to optimize RAN operations at different timescales,
user counts, and data sources [67]. The non-RT control loop handles resource orchestration
for thousands of devices, coordinating non-RT and near-RT RICs via the A1 interface. The
near-RT control loop connects near-RT RICs to CUs and DUs, managing hundreds of UEs
with xApps for tasks like inference and load balancing. The RT control loop primarily op-
erates within the DU but may also extend to RUs or UEs. O-RAN specifications currently
do not address ML model deployment within DUs, leaving this for future development.
Disaggregation in Open RAN allows the selection of components from different vendors,
making FS a key challenge. To optimize network processes, Open RAN follows 3GPP’s
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FIGURE 6.1: Learning-based control loops in Open RAN architecture.

FS guidelines to virtualize BS functions across CUs, DUs, and RUs. Fully centralized
RANS are impractical due to the high costs and limited availability of high-capacity front-
haul (FH) networks [146]. This has led to flexible architectures with some BS functions
at CUs. However, deciding on the degree of centralization and function allocation among
CUs, DUs, and RUs is complex. Each FS option imposes different computational and data
flow requirements, sometimes necessitating multiple CUs, which increases costs. The 3GPP
Release 14 [147] outlines eight F'S options for distributing functions across RAN components.
In Open RAN, the protocol stack operates as virtual network functions (VNFs) within
virtual machines (VMs) across CUs, DUs, and RUs. Implementing most of the O-RAN
stack as VNFs in the CU increases southbound interface capacity demands, while critical
applications like uRLLC require low latency and high computation at the edge.

We note that the optimal solution for FS involves balancing centralized approaches,
which require a comprehensive network view but also increase overhead and latency. While
the distributed approaches offer lower latency but gather data from fewer sources [148].
This study utilizes the O-RAN Alliance’s 7.2x FS framework to navigate these trade-offs.
In this setup, CU acts as the centralized and virtualized component of the RAN, manag-
ing the Radio Resource Control (RRC), Service Data Adaptation Protocol (SDAP), and
Packet Data Convergence Protocol (PDCP) layers. The DU handles baseband processing,
scheduling, Radio Link Control (RLC), Medium Access Control (MAC), and the upper part
of the Physical Layer (PHY). Finally, RU is responsible for the lower PHY layer process-
ing, including Fast Fourier transform (FFT)/inverse FFT, beamforming, and RF-related
functions.
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TABLE 6.1: Summary of Notations

Notation Definition

N, MU Sets of DUs, RUs, and UEs

N 2% Traffic demand and packet size, x € {ur,em}

B;, A BW of the i-th slice and frame duration

Biy 0; RB’s bandwidth and TTI duration of the i-th slice

T;, F; Number of subcarriers and TTIs per frame in the i-th slice

T, D, RB scheduling, transmission power and UA decision variables

g,h, I Channel vector, channel gain, and interference

Ny The noise power

Py K Number of symbols per RB and number of bits per symbol

ey Number of needed RBs for the u-th uRLLC user per its dedicated slice

ey Number of needed RBs for the u-th user from other slice in slice-awareness scenario
TNV X pProg rproc The packet arrival time, transmission, propagation, and processing latencies

Heu,du CU and DU task rates

qo, T0 The reference values for eMBB queue length and uRLLC latency

W, €, U The regulatory factor, priority factor in the k-th iteration, and priority factor in the reward function
w Window size

K, L The total number of RBs available for the m-th agent and transmission power level
D The I-th transmission power level

Smlt], am[t], m[t], Fm[t] The state, action, reward and flag of the m-th agent per frame ¢

pindv j.com j.neg The individual, common and negative reward values
E{.} Expected value of the given random variable

()" The positive part of the value or function

l.] The largest integer less than or equal to the given value

6.2.2 Network Model

Network Characteristics: We consider a DL cellular network composed of one CU, a
set of N = |[N| DUs, and a set of M = | M| multi-antenna (K) RUs serving a set of
U = |U| single-antenna UEs. We denote U"" and U™ by the sets of uRLLC and eMBB
users, respectively, with & = U"" UU™, U"" = |U""| and U™ = [U*™|. We consider two
slices to serve eMBB and uRLLC services, which request different types of traffic with
different packet sizes Z* [Bytes], with x € {ur,em} (Z*™ >> Z'"). Let XX[t] [packets/frame]
denote the traffic demand of the u-th generic UE in the discrete-time frame indexed by
t € {1,2,...,T}, which is bounded by \™®* < co. We assume that \}[t] follows the 3GPP
model (ez., FTP3 model) with the mean arrival rate E{\:[t]} = XS (A®™ >> AUr), in
which the size of each packet is identical and equal to Z*. For simplicity, we assume
that DUs cover the non-overlapped geographical areas with a disjoint set of RUs, such as
My £ {(n,1),...,(n, My)} with >, o\ My, = M.

We leverage mixed numerologies in the frequency domain to address conflicting service
demands [149]. A RB refers to the smallest time-frequency unit of resources that can be
allocated to a UE and is composed of 12 subcarriers and 7 orthogonal frequency division
multiplexing (OFDM) symbols. Based on this technique, the available bandwidth (BW)
B is divided into two independent parts Bj;i = {1,2} that make two slices to handle
dynamic service demands, each adapting a specific numerology denoted by the index 7. As
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in [149], this chapter selects numerology with indices ¢ = 1 for eMBB and i = 2 for uRLLC
applications. The assigned slices for uRLLC and eMBB are defined by (2 = 720 KHz and
d2 = 0.125 ms) and (81 = 360 KHz and §; = 0.25 ms), respectively. Herein, §; and J;
denote the bandwidth of RB and the duration of the i-th numerology at frame with a large-
scale coherence time of A, respectively. Each RB includes the frequency-time grid, where
F; = |B;/B;i| and T; = A/J; indicate the number of subcarriers indexed as f; = {1,..., F;}
and the number of transmission time intervals (TTIs) per frame indexed as t; = {1,...,T;},
respectively.

Channel Model: We assume that the large-scale fading coeflicients remain constant
throughout frames, while the small-scale fading components are presumed to remain un-
changed during the time frame ¢ but vary independently in the subsequent time frame.
Accordingly, we model the quasi-static channel vector between RU m and UE u on all
TTIs within one frame t as hf,fhu = le*PLm,u/loﬁf;ﬁhu, where PL,,, is the path loss
and ﬁffl,u € CKw represents the complex circularly symmetric Gaussian random vari-
ables with zero means and unit variances, i.e. ﬁ%,u ~ CN(0,I). Let us denote by

A

G[t] = [g,fé,u];Vm, u, f; the channel gain between RBs and all UEs in frame ¢, where
gféjff = g#;u = ||hfé,u]|%;Vti ={1,...,T;} is the effective channel gain.

Achievable Downlink Data Rate: We consider the DL data rate [bits/s| of the
u-th eMBB UE served by RU m at TTI ¢; using the Shannon-Hartley theorem. This
approximation is reliable provided that the channel state information (CSI) is available and
the actual data rates attained by the 3GPP modulation and coding scheme (MCS) schemes
stay within the permitted signal-to-interference-plus-noise ratio (SINR) range that can be

expressed as

Fi Wfivtipfiytigfivti
m,u Pm,u 9m,u
Rf??ju(‘PaP»”) = YPmu § BZ 1Og2 (1 + —ft) (61)
fi=1 NO + Imil,’ul

where ¢, ., No, 71'%:3 € {0,1}, pf,ijff and Iﬂ;f,’ff are the UA decision variable, the noise power,

the binary scheduling variable indicates whether RB(f;,t;) is assigned to u-th UE through
RU m, the transmission power from RU m to UE w in RB(f;, ¢;), and the sum of interfering
signals’ power from adjacent RUs that are using the same RB(f;,t;), respectively. Since
RBs are allocated to each slice, there is no interference between signals transmitted over
different slices. We note that if Wf,’;jff =1, RB(f;,t;) of RU m allocated to the u-th UE;
otherwise Wf,ijfj = 0, in which ), W,]%fo < 1;V¥Vm,t;, f;. Considering interference from other
RUs using the same RB (intra-slice), Ifrfjfj for a generic service can be represented as

it it o Jfisti it
17{’[;:3 = Z Z an’,u’p{n’,u’g{n’,u (62)
m/'eMp\{m} v €U,

where U, is the set of UEs served by RU m/.
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6.2.3 Constraints

Power-related Constraints: The total transmission power assigned to all scheduled RBs
occupied by m-th RU is subject to >, i p,{é u < P™® should not be greater than each RU

power budget, while pf 2w > 0. Thus, the set of the power-related constraints is defined as

pfrzful >0, Z pféﬁz < P?ilnaX’Vm,ti} (6'3)
7:7f’i)u

P[t] £ {pmult]lvm,u

where pp,[t] £ | féuﬂ and p[t] = | m,u[t]]T'

UA Constraints: Let ¢,,, € {0,1} be the UA decision variable. In particular, if
©m,u = 1, RU m is selected to transmit data of the u-th data flow; otherwise, ¢, ., = 0. We
define ¢, = [(pmu] v s the UA vector of the u-th UE, satisfying Y omem, Pmau < 1;Vu.
Hence, the global UA decision is formulated as

My,
v L {%,vu\ Y m < L g € 0,1, vm,u}. (6.4)
m=1

eMBB QoS Constraints: To satisfy the eMBB users’ QoS, each scheduled user must
achieve a minimum data rate, denoted by R™", from the serving RU m per time-frame t as

R (p,p, Z ZRem @, p,m) > R™". (6.5)
m=1t;=1

Scheduling Constraints: We also impose a minimum number of RBs from the dedi-
cated uRLLC slice to vacate the arrival packets of uRLLC users in the queue in the specific
duration of time D" after the arrival time 7", which is known in advance along with A}

This is expressed as Zt[f:rj/a;)/& Zf f“t’ > eUrft]; Vit u € UM, i = 2; eV [t] & {*Agg]ﬁzur},

where p and k represent the number of 5ymbols per RB and the number of bits per sym-
bol, respectively. Given the selected MCS [150], the SINR must be greater than a given

threshold T'th:

N W%’upgé’ug%% .t Tth
Dfls & —rt et mt > T ity myuw € U (6.6)
NO + [mZ:ul

To optimize radio resource use, especially under low uRLLC traffic, we propose a
slice-aware strategy over the traditional isolated allocation method. This approach al-
lows slices to share resources within set constraints, enabling cross-numerology traffic ac-
cess. As uRLLC traffic increases, the eMBB slice can adjust by allocating additional
RBs, and vice versa, improving eMBB data rate by using underutilized uRLLC resources.
While more complex, this method enhances resource efficiency by dynamically adjust-
ing distribution based on traffic demands. To prioritize uRLLC services, we consider
PO ;II;;V sl mlili > et tu € Ui = 1, where el [t] = | (0[] — Qult]) ],
Qut] £ (e4[t]) Y peppr €9 [t]) (F5 x D /&;)]i=2, and (z)* £ max{z,0}. In contrast, the
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FIGURE 6.2: High-level structure of deploying the proposed intelligent user association, congestion
control and resource scheduling considering 7.2x FS in Open RAN architecture.

following constraint allocates all unused RBs of other slices to eMBB users to maximize
the data rate as 37, >, 7 Tt > eeM[t], Vit u € U™, i = 2, where e£™[t] = (L(F, x T; —

+
> weye min (e 2], Quft])) /U emj) li=2 is the slice awareness for the mixed numerologies in

the frequency domain. Herein, min(g¥'[t], Q,[t]) represents the number of RBs scheduled
for the u-th uRLLC user in the ¢t-th frame. Collecting all mentioned constraints makes the
global scheduling vector as

Alt] 2 {wmu[ Vm u‘ It € {0,1}, Zﬂfw < 1;Ym, b, f;,

(Dur+TaN /6 F

Z wa“tl>5 th;Vt,u e Ui = 2,

ti=rav /5, fi=1
(Dur+Taw)/5 F

Z wa“ > e[tV u e Ui =1

,_Tarv/(s fi=1
Z Z mlol > e™[i], Vit u € U™, i = 2} (6.7)
ti=1 fi=1

where ., [t] £ [m’%’i] and 7[t] = [wm,u[t]]T;Vm, u.
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Buffering Queue & e2e uRLLC Latency: As depicted in Fig. 6.2.3, U independent
data flows in CU are steered to DUs, where the processing queue follows the M /M /1 model
to serve packets on a first-come-first-serve basis. The queue length [bits] of waiting data flows
in the buffer of the m-th RU in the ¢-th frame is computed as ¢5,[t] = >, (PmuXs[t]Z27A +
S, @ alti]). where g%, 1] = (851t~ 1]— By, (0.7, p)5)* and o AS[1]2 [bits/frame]
is the data flow of UE uw at RU m.

The e2e latency of the u-th uRLLC UE at time-frame ¢ consists of the propagation
(7P"°8), processing (7P°°), and transmission (7%) delays, which can be written as

7-1:" :Tprog + 7_tx + 7_proc (68)

where 7P is the time of a data flow to reach its destination, including the propagation
latency in FH, midhaul, and backhaul links. In addition, 7P°¢ is the sum of all processing
time at CU, DU, and RU, such as 75°° = > A{[t]/ptew and 75°¢ = > X%/ ptau, where
few and pg, are the task rates [1/sec|] at CU and DU, respectively; and h°¢ is limited
by the three OFDM symbols duration, which is commonly very small and refers to the
equipment computing capacity [151]. Considering propagation and processing latencies may
be redundant because: i) The 300 km distance between the core network and UEs makes
propagation delay negligible [152], and i) CU and DU’s high computing capacity minimize
processing latency. Thus, these factors do not affect the optimization. Thus, we focus on
transmission latency, which encompasses the time to serve packets across the midhaul, FH,
and RU-UE links. Given the high speed of midhaul and FH links, their latency is negligible.
This chapter assumes random packet arrivals, with uRLLC latency mainly determined by
RU-UE transmission time, calculated as the gap (in TTIs) between packet arrival time 72"
and service time 7% = §;. argmaxti{ﬂfzfj [ti]};Vu € U, Since eMBB and uRLLC services
are separate, eMBB queues do not affect uRLLC queues. uRLLC UEs are prioritized and
served immediately, making the total uRLLC latency roughly equal to the RU-UE link
transmission latency: 717 (7) ~ max(7, 72").

To ensure that the u-th uRLLC UE meets its minimum latency requirement, the e2e
latency must be bounded by a predefined threshold DY". Specifically, each packet must be

transmitted no later than DY after arriving at the buffer:

re < () < DY (6.9)

Congestion Control Constraints: Given eMBB’s larger packet sizes compared to
uRLLC, we focus on eMBB queue length for congestion control. To minimize handovers
during congestion and maintain stability, using the average queue length over W lag frames
may be an effective approach, i.e., &7 £ & S w ¢€M[t]. To minimize packet loss due to

buffer overflow, the queue length is constrained as

a"[1] 2 {qfnm T < gm, Vm,t}. (6.10)

We note that @& < ¢m®* is imposed to ensure that the arrival packets in the m-th RU

m
buffer should not exceed the maximum buffer size of g¢,**.
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6.3 Intelligent User Association, Congestion Control, and
Resource Scheduling Problem

6.3.1 Problem Statement

In this section, we present an optimization problem designed to minimize both eMBB
queue length and worst-case uRLLC latency by utilizing 7.2x FS within an Open RAN
architecture, ensuring compliance with each service’s SLAs. The utility function is defined
as

qfnmu[ti] T;jr

w E ——— 4+ (1 —w) max{*} (6.11)
qo ueU' = T

t; ym,u€UE™

where w € [0, 1] is a regulatory factor balancing the influence of queue length and latency.
In addition, gy > 0 and 79 > 0 are reference values for eMBB queue length and uRLLC
latency, respectively. The intelligent UA decisions, congestion control, and resource schedul-
ing (IUCR) optimization problem is then formulated as follows:

em t’L ur

IUCR: min w Z M +(1—-w) max{i} (6.12a)
P, 7,p b4 e q0 ueUY " T

st. (6.3),(6.4), (6.5), (6.6), (6.7), (6.9), and (6.10). (6.12b)

6.3.2 Challenges of Solving Problem (6.12)

The main challenge in solving problem (6.12) is that p and 7 cannot be jointly optimized be-
cause different units manage their optimization under the 7.2x FS framework [153]. Specif-
ically, higher-layer functions in CUs handle scheduling, modulation, and RAN slicing, while
power control is managed by lower-layer functions in RUs. Optimizing the UA variables
( requires a network-wide view and historical data to minimize handovers. Since packet
arrivals for both services vary dynamically and high traffic demands may necessitate ad-
justments to ¢ to avoid cell congestion, frequent updates are impractical. Instead, ¢ is
updated only when congestion is detected, using a heuristic method to optimize RU-UE
connections.

From a mathematical perspective, the binary nature of scheduling and UA decision
variables in constraints (6.4), (6.5)-(6.10), and (6.9), combined with the product term
wm,u.w%fj pf,’ziz in the objective function and some constraints, results in a mixed-integer
non-convex program (MINCP). This makes the problem difficult to solve directly. Standard
solvers like Gurobi, Mosek, and SCA often fail to provide (near)-optimal solutions due to in-
complete queue data, variable network conditions, and RU interference. Additionally, each
RU only has local observations without data from neighboring RUs. The 7.2x FS frame-
work in the Open RAN architecture balances centralization and distribution to meet SLAs.
Thus, RB allocation is managed in the CU based on general feedback to handle congestion
and optimize resource usage, while power control is handled locally at RUs. To ensure high
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QoE in each frame, an efficient hierarchical approach combining heuristics, optimization,
and DRL is needed to solve problems (6.12).

6.3.3 High-Level IUCR Scheme in 7.2x FS-Based Open RAN Architec-

ture

In this section, we outline the high-level organization and end-to-end flow for deploying
the TUCR scheme, aligned with the Open RAN architecture and the 7.2x FS standards
recommended by the O-RAN Alliance, as illustrated in Fig. 6.2.3.

@

©)

®)
@

®

©®

Data Storage: Essential data, including queue length, traffic demands, and network
conditions, is collected from RAN components and stored in the data center at RIC
for preprocessing.

User Association: Utilizing the near-RT control loop (Fig. 6.2.1), the UA-xAPP
heuristic algorithm in the near-RT RIC efficiently assigns UEs to RUs, preventing
congestion. This centralization enhances awareness of traffic loads, queue lengths,
SLAs, and network conditions, ensuring efficient RAN coordination.

Policies/Actions Transfer: Solutions for binary UA variables and updated queue
lengths are transmitted to the CU through the near-RT closed-loop controls.

Resources Scheduling: In line with 7.2x FS, RB scheduling is managed by the
higher PHY layer at the DU, closest to the antennas. The DU uses policies inferred
from the near-RT RIC to dynamically adjust RB allocation based on traffic demands,
minimizing latency for critical applications like uRLLC.

Power Control: Following 7.2x FS, power control is distributed across RUs using
local information. Each RU employs DRL models and trains two DQNs for power con-
trol, optimizing UE-centric power allocation and reducing interference. UEs estimate
CSI and potential interference, providing feedback to the assigned RU.

Continuous Monitoring: Updated data on traffic demands, network conditions,
and queue lengths is sent to the RIC via the E2 interface, facilitating model updates
in subsequent frames to maintain SLAs and monitor network performance.

Algorithm 6 outlines the steps for solving problem (6.12).

6.4

Proposed Solutions

This section introduces algorithms to solve problem (6.12). The optimal resource scheduling
policy requires accurate UA decision variable estimations based on cloud-stored RAN data.
Given random traffic demand per frame, the objective is to use historical system data via
open interfaces for more efficient response handling.
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Algorithm 6 Proposed Algorithm to Solve ICUR Problem (6.12)

1: Initialization: Set ¢ = 1; Initialize ¢,, , with each UE connecting to the nearest RU; the queue
@y, [1] is initialized randomly; and the coordinates of UEs and RUs are denoted by (xYE, yYE),
and (zRY, yRY), respectively.

2: fort=1,2,...,7 do
UA-xAPP: Given the historical data from previous W frames: The average queue length

T = 7w S w @y t]s ©mu(t] and the network conditions;

if ¢, =2, @, > ¢ then
Run Algorithm 7 to update the UA matrix ¢;

end if

RB Scheduler: Given the optimal solution ¢*, the estimated channel gain feedback from
RUs to CU, uniform power allocation, and large-scale interference, 7 is optimized by solving
problem 6.13 using Algorithm 8;
8: Power Control: The proposed D3QN method presented in Algorithm 9 uses M,, agents -
each for one RU to predict the transmission power allocated to each RB based on the optimal
solutions ¢* and 7* as well as the local observation of each agent.

9:  Update queue length as g%, ,[t] = (¢, , [t=1]+@5, N Z A=Y, (RS, ,(¢*, p*[t:], m)8:)) T
10: end for

W

6.4.1 UA-xAPP

Heuristic methods use available data for decision-making based on rules and experience.
Although less dynamic than ML algorithms, they are vital for network optimization in en-
vironments with limited communication between decentralized and centralized components,
aligning with Open RAN principles. Effective for latency-sensitive applications, these meth-
ods enable quick decisions despite interface constraints. We propose a heuristic approach
for assigning each UE to the appropriate RU, considering traffic demands, queue lengths,
and network conditions to meet SLAs. The model is UE-centric with dynamic traffic and
fluctuating packet arrivals. To ensure smooth handovers and minimize frequency during
high traffic, the comparison threshold is based on average dynamics rather than immediate
gains. The SLA metric, defined as the average queue length, facilitates continuous moni-
toring. Network alarms trigger when congestion nears, prompting the UA-xAPP to update
variables. Updates to ¢ are based on average queue length and network conditions, as
outlined in Algorithm 7.

In Algorithm 7, UEs are initially linked to the nearest RU within a circular region,
assuming a random distribution. The algorithm identifies congested RUs and reassigns
UEs to maintain data rates and alleviate congestion. Congestion is detected when the
average RU’s backlog buffer exceeds the given threshold ¢t". A scoring mechanism selects
candidate UEs for reassignment based on their proximity to other RUs with available buffer
capacity.

6.4.2 RB Scheduling

UA-xAPP sends the UA decision variables (¢*) to RAN components via the E2 interface for
execution. Thanks to the closed-loop controls for providing feedback on channel conditions,
efficient RB scheduling enables at CU to meet SLAs. Referring to (6.12), we can optimize
RB scheduling (7r) under uniform power allocation and large-scale interference. As higher
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Algorithm 7 Heuristic-based UA-xAPP Algorithm

1: Initialization: Set U’ = (), M’ = 0, and S = Oy, xyer as the sets of reconnected UEs, congested
RUs, and scores, respectively.
while ¢&™ > ¢*" do
M’ + M'U{m}: measure score S’ , of RU m’ and all UEs (i.e., u € Up,);
form' =1,2,..., M,\{m} do
foru=1,2,...,U,, do
Calculate the normalized distance: d,,’, and the normalized average queue length

—em —em A —em .
qm’ and qu - Zm qm,ua

7 Update S,/ 4 = 61(1+d1m/,u) + @(H%'Tl) + eg(ﬁ), where ¢ is a priority factor
with >, e = 1;
8: end for
9: end for
10: Update UA variables with the maximum score @?max 5y = 1;

11: From Algorithm 6, check g
12: end while
13: Outputs: ™.

eMBB data rates reduce queues and prevent congestion, the utility function focuses on
maximizing the eMBB data rate. Thus, we reformulate the optimization to maximize
eMBB data rates while minimizing worst-user uRLLC latency, solving for the optimal RB
scheduling variables:

o oy
mﬁx(wt. z;uem {Rio} —(1-w) max {T—O ) (6.13a)
st. (6.5),(6.6), (6.7), (6.9), and (6.10) (6.13b)

where Ry is the reference data rate of eMBB. Problem (6.13) is non-convex due to the non-
concavity of the first term of the objective function and non-convexity of constraints (6.5),
(6.6) and (6.10). The binary nature of the RB allocation variables makes (6.13) even more
complex to solve. To address this, we relax the binary variables, i.e., mji’;thj € [0, 1], forming
the new global scheduling vector A[t]. We then reformulate constraints (6.5), (6.6), and
(6.10) into more tractable forms, which can be efficiently solved by an SCA-based iterative
algorithm.

Penalty function: To reduce the uncertainty of the relaxed variables, we introduce the
penalty function P(w) =3_, , + 4 ((717]%2’)2 - Wﬁfj), which is convex in 7. Since P(7) <0
for any Wff;jfj [0, 1], it effectively penalizes relaxed variables, driving them toward near-
binary solutions at the optimum (i.e., satisfying 6.7). Furthermore, We introduce slack
variables z = [zﬁthj]T to make the first term of the objective function more tractable. In-
corporating the penalty function and auxiliary variables, the parameterized relaxed problem

is expressed as
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fisti
em 2 ur
max (wzmuf“t iU T — (1 —w) max {T } +vP(mw )) (6.14a)
™z Ry welv U g
st. e Aft] (6.14b)
Jiste, firti [its
log, (1 + w> > il vy e yem (6.14c)
NO + ITrZ:ul 7
(6.5), (6.6), (6.9), and (6.10) (6.14d)

where v > 0 is a penalty constant.

Proposition 3. With an appropriate positive value of v, problems (6.13) and (6.14) share
the same optimal solution 7*.

The detailed proof can be found in [79]. In problem (6.14), the objective function is
non-concave due to P(m), while constraints (6.14c), (6.5), (6.6), and (6.10) are non-convex.
By SCA principles, the function P(7) is linearized at iteration j by the first-order Taylor
approximation as

PO L 3 [whi @i - 1) - (whin )] (615)

mau’fi)ti

where P(7) > P (w) and P(w)) > PU) (7). To deal with the non-convexity of (6.14c),
we first rewritten it as follows:

10g2 (NO + I%;[Z’L + 7Tf“ f’u fist z) > me i + f( fist z) (616)

where f(ﬂg»iif) £ log, (No + Iﬂ%fj) in (6.16). We approximate f(mféf}) at iteration j as

N (mfiti — (mfitiy @) Fots fits
FO(rlitiy 2 f((nfit)@) + = x Priias G ) (6.17)
1112(N0 + (17{11:1;)(])) (m’E./\%\{m} u’ezum/ )

where (I,{éjﬁi)(j) £ L{{fj(( It )9)). Now, constraint (6.14c) is iteratively replaced by

loga (No+ I + wliiplytiaht) > ol + £ (nfit) (615)

which is convex. Similarly, constraints (6.5) and (6.10) are iteratively replaced by

> Prubilogy (No+ It + wlitiplilights) = B+ 3 b BVl (6.19)
m, fiti m, fit;
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Algorithm 8 The Proposed SCA-based Iterative Algorithm located at DU for Solving
(6.13)

1: Initialization: Set j = 0 and generate initial feasible point for 7(?)[t] := &[t — 1] to constraints
in (6.22).

2: Repeat

3: Solve (6.22) to obtain (7w*,y*, z*) and =*;

4: Update 710) .= 7v* and 2U) := =*;

5: Set j:=j+1; . 4

6: Until Convergence or |E0) — 20~V | < ¢ {/*Satisfying a given accuracy level*/}

7: Recover an exact binary by computing 7* = [70) 4 0.5].

8: OQutput: 7*.

and

D e Bilogs (No+ i + mlilivhiliohls) 2 0+ Y ehafif Ol (6.20)
u fisti m, fiti

respectively, where ¢ = (g™ — ¢2'[t — 1] — 2, @r, AT [t]ZemA)+. Finally, to handle

the non-convexity of constraint (6.6), we introduce the auxiliary variables y = [yf:ifj]T

)

satisfying y%fj < L];{';Z", to approximate it as

fisti firti

(vl + mhis)” < 2mfyly (PRt — No) + 20y Dyl + 2 (elitt) Vel -
(D 9)* = (i 9)". (6.20)

Bearing all the above developments in mind, the convex approximate program (6.14) is
solved at iteration j is given as

max =U) £ wzm’u’fi’tieuem i — (1 — w) max {ir} + P () (6.22a)

™Y,z Ry uelvr L g

st. e Aft] (6.22b)
y,f;f; < I,J:;'”Zi, vm, fi, ti,u € U"" (6.22¢)
(6.9), (6.18), (6.19), (6.20), and (6.21). (6.22d)

The proposed SCA-based iterative algorithm to solve (6.13) assuming large-scale inter-
ference channel gains is summarized in Algorithm 8.

6.4.3 Power Allocation

The next step is to allocate power to each RB assigned to eMBB and/or uRLLC services.
Due to incomplete information on channel conditions and interference, each RU relies only
on local observations, i.e., the channel conditions of its served UEs based on the estimated
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™ without knowledge of interference from adjacent RUs. This scenario requires a decentral-
ized approach for power allocation, where each RU aims to maximize its utility function in
a distributed optimization process. However, channel interference and resource limitations
may hinder optimal performance due to decisions made by other RUs. To address this, the
paper proposes two methods for power control: 1) Distributed power optimization and 2)
DRL-based power control.

1) Distributed Interference-Aware Power Optimization (DIPO): This approach
aims to determine the power allocation for each RU in a distributed manner using optimiza-
tion solvers. It assumes uniform power allocation (pf;;ff £ pmax/ Zl E) as the interference
power from adjacent RUs and accounts for large-scale interference channel gains. Each RU
m optimizes its power allocation by solving the following optimization problem,

em
max Z R, VmeM, (6.23a)
ti,ueuf,?-'
s.t.  (6.3),(6.5),(6.6), and (6.10) (6.23b)

which relies only on its channel gains G, and the optimal RB scheduling of its served UEs
™.
2) DRL-based Power Control (DRL-PC): Since each RU operates with limited
network information, it must infer other RUs when making decisions. This challenge high-
lights the need for an efficient mechanism on the RU side to assess the mutual impacts
of decisions across RUs. An intelligent power control scheme based on DRL is crucial for
tackling these issues, as DRL excels in sequential decision-making. By employing DRL,
each RU can iteratively interact with the dynamic environment to derive an optimal power
policy that maximizes its utility.

In operational Open RAN environments, the state transition probabilities of the Markov
Decision Process (MDP) are often unavailable, requiring predictive estimation through en-
vironmental interactions. Our approach leverages DRL across a set of M,, agents, with each
agent assigned to an RU. This enables each RU to detect hidden patterns based on local
observations. To improve overall performance and reduce signaling overhead, RUs make
decisions using an efficient reward function integrated with a flag system. Given the coop-
erative nature of the system, the flag mechanism allows distributed agents to collaborate
effectively with minimal communication, as they share only their flags. Here, F,,[t] € {0,1}
represents the flags of the agents in frame t.

Proposed D3QN-based Power Control at Each RU: The problem is commonly mod-
eled as an MDP, where each agent m € M,, learns through a transition tuple (s,,[t], an,[t],
rmt], sm[t + 1]). In this framework, agent m selects an action a,,[t] from its action space
A, [t] based on its current state sy,[t] € S,,, with the joint action of all agents denoted
as a = {a1[t],...,ap, [t]}. Each agent then transitions to the next state s,,[t + 1] and
receives a reward r,[t]. It’s important to note that if agents only receive distinct rewards,
this may lead to selfish behavior, reducing overall network performance [129]. To enhance
the overall system performance, we assume agents receive a common reward in addition to
their individual rewards. Consequently, the state, action spaces, and reward functions are
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FIGURE 6.3: The proposed dueling double DQN (D3QN) agent.

defined as follows:

e State: The state of each agent m is designed based on its local observation and flag
system. To further minimize the signalling overheads in information exchange between
the agent and environment, the state of agent m in time-frame ¢ can be defined as the
combination of RBs scheduled to UEs served by RU m (u € U,,) and their channel
gains, the action and flags in the previous time frame, which is expressed as

Smlt] = {ﬂ'm[t] % Gonlt], am[t — 1], F[t — 1]}. (6.24)

e Action: The discrete power domain has become a viable approach for learning-based
dynamic scheduling in multi-traffic scenarios [154]. This method ensures stable con-
vergence and reduces computational complexity for RUs with limited computational
resources. In this context, we use a discrete action space where power is quantized
into L levels, defined as p; = IP"® /L for | = 1,..., L, where p; represents the I-th
transmission power level. Assuming K,, = > ,(T; x F;) is the total number of RBs
occupied by the m-th RU to serve its UEs at time frame ¢, the action for agent m at
time frame ¢ from its action space A,, is defined as

anlt] = {al’l, abmt .,aKm’L} (6.25)

km,

where a¥7! indicates that agent m selects [-th transmission power level for RB index
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Algorithm 9 The proposed D3QN-based Power Control

1: Initialization: Each RU builds two D3QNs, i.e., Q(sm[t], @m[t]; Om), and Q(Sm[t], @m[t]; Om)

with random weights 6,, = ém; set replay buffer D,, with capacity Cn®, Vm, and reward values
to r[t] = Ong, x1, and F[1] = Opz,, x1-
: fore=1,2,...,F do

m

Initialize the network state s, [t], Vm;
fort=1,2,...,T do
form=1,2,..., M, do
All agents select their actions a,[t] € A, Vm based on e-greedy policy as
Generate a random number rand();
if rand() < € then
Random generating actions a,[t];
else
Select actions a,,[t] predicted by both Q-networks;
end if
Agent m takes its action and F,,[t] = 1 if it meets constraint (6.3); Otherwise F,, [t] =

0, then receive the reward r,,[t] as

if [[,,, Fm[t] =1 then

o [t]+ = reem;

[t = s

else
rlt]+ = 7"%;
end if
Update and store the transition of (sp,[t], @m[t], r[t],sm[t + 1]) to the m-th replay
memory.
end for

Sample random mini-batches from replay memory m;
Update 6,,, by minimizing the loss function £(6,,) (6.28); while update 6, every C steps

by resetting 6,,, = 6,,.

end for

: end for

k.. Thus, the action space size of agent m is LK, and the overall action space size
of all agents is determined as (LK,,)"".

o Reward: To design an efficient reward function, this chapter adopts a penalty-based

approach that integrates constraints (6.5) and (6.6) while ensuring the sum of all
distributed powers stays within the bound specified by constraint (6.3). A negative
reward 7"®€ is given to any agent that fails to meet constraint (6.3) indicated by
F.u[t] = 0; Otherwise F,,[t] = 1, and the agent earns an individual reward "% based on

; firti ___Firtipth
. . . Rem _ Rpmin Z ur _(F 1’ i z7 i )
its action a,,[t] as "V £ [t] = UZ“E“em(R;”’“ )+(1—v) EUT Jirts 1“7; -

where v is a priority factor to balance both services and I'y denotes the reference of
uRLLC SINR. To boost overall network performance and prevent selfish behavior,
a common reward r®m £ Y r[t] is shared among all agents if [], Fn[t] = 1.
Throughout learning, agents (RUs) explore the environment to find optimal policies,
despite limited observations like interference, ultimately leading to enhanced network
performance.

Each agent aims to learn a policy II(a[t]|s[t]) that maps observations to actions in

order to maximize the expected total reward, represented by the action-value function:
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Qu(slt],alt]) £ En(XL, v r[l]s,a), where Y1, v~r[l] represents the accumulated
discounted reward and v € [0,1] is the discount factor that balances future and imme-
diate rewards. Once the optimal action-value function is determined: Q*(s[t],a[t]) =
maxp Qr(s[t], alt]), the optimal policy IT*(alt][s[t]) = argmaxqc 4 Q7 (s[t], a[t]) can be de-
rived by acting greedily at each time step ¢.

Traditional DQN models use the same Q-value network for both action selection and
evaluation, leading to an unstable learning process due to overly optimistic Q-value esti-
mates. To address this and enhance convergence and learning efficiency, a novel multi-agent
dueling double DQN (MAD3QN) is introduced in this work. As depicted in Fig. 6.4.3, each
agent in MAD3QN builds its own D3QN model with two Q-networks: an online network
with weights 6, and a target network with 0,,. The last layer of each network is divided
into two parts to evaluate the state value function V'(s,,[t]) and the advantage function
A(smlt], am[t]). V(sm[t]) assesses the value of a state, helping the agent evaluate the po-
tential long-term benefits of staying in that state. A(sy,[t], an[t])[t]) measures the relative
advantage of an action within a state, guiding the agent to select the most favorable action.
These two components are combined to produce the final Q-value function, which directs
action selection in the environment:

Q(smlt], amlt]; O, O 0) = V(smlt]) + Alsmlt], amlt]) — IAlml Y Alswlt] anlt])

a€Am,
(6.26)

where 0 and 64 are the parameters according to state value function and advantage
function parts, respectively. Note that the third term on the right-hand side of (6.26), rep-
resenting the mean of the advantage function over all actions, ensures that the advantage
function is centered around zero, facilitating easier network training. With these consider-
ations, the updated equation for the Q-value function of agent m can be expressed as

Q(simlt), amltl; Om, O, 0) = (1= mQ(smt], @m[t]; O, O3, O1n) + 1(yim[1]) (6.27)

where 7 € [0,1] is the learning rate, and Q (s [t], @m[t]; Om, Y, 02) and Q(sm[t], am[t];

msVYmrYm

O,,,0V éA) are the online Q-network and the target QQ-network that are used to select

my¥ms ¥m

actions and evaluate actions, respectively. In addition, ym,[t] = Tn[t] + YQ(sm[t + 1],
argmax,  [ed,. Q(sm[t + 1},am[t];Hm,ﬁxl,ﬁ,‘%);ém,é%,ég) is known as the TD-target (or
the temporal distance of Q). Clearly, it is necessary to optimize 6,,. To do this, we
minimize the distance between Q(s,,[t], @ml[t]; Om,0Y,04) and the TD-target %,,, which is

msysVmorVm
expressed as the loss function £(6,,):

L(Om) = E(ym[t] — Q(smlt], @m[t]; Om, 0., 02))7. (6.28)

Meanwhile, the target network is used to stabilize the learning process by updating
its parameters 0, by copying the parameters 6,, from the online network after a specified
number of frames, a process known as the parameter update frequency C, as illustrated in
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TABLE 6.2: Simulation Parameters

Parameter Value Parameter Value
No. RUs 3 Pre. uRLLC latency (D"") 0.5 ms
No. eMBB users 14 Pre. eMBB data rate (R™") 10 Mbps
No. uRLLC users 6 Noise power (Np) -137 dBm
BW of RU 5 MHz uRLLC SNR threshold (T'*") 17 dB
No. RBs per sub-frame 52 Pre. RU’s queue-length (¢gn®) 10 KB
BW split variable 0.3 Discount factor () 0.99

No. of antennas (K) 8 Learning rate () 0.0001
Packet size (Z4") 32B Buffer capacity (C™2*) le+05
Packet size (Z°™) 64 KB Batch size 64
Time-frame (A) 10 ms r"ee -2

Fig. 6.4.3. The D3QN-based algorithm is summarized in Algorithm 9.

6.5 Performance Evaluations

6.5.1 Simulation Environment and Benchmark Schemes

We consider a network topology with three RUs and UEs randomly distributed according
to a Poisson process within a 500 m radius. The quasi-static channel vector between RU
m and UE wu for all TTIs within each frame is modeled as h%u = le*P'—mvu/loﬁfﬁ,u,
where PL,,, is the log-distance path-loss. The traffic flows for eMBB and uRLLC follow
the FTP3 model, with mean arrival rates of 21.12 and 2.12 packets/frame, respectively.
Assuming P, = 1073, MCS12 is chosen with T'*" ~ 17 dB, x = 3.90 bits/symbol, and p = 60
symbols/RB, accounting for reference signal overhead. The proposed Algorithm 6 runs for
T = 100 sub-frames based on the 5G NR frame structure. The DRL method is implemented
using TensorFlow 2.12.0 with Keras, and simulations are performed on a Dell desktop with
an Intel Core i7-10610U CPU, 16 GB RAM, and Windows 11. The rest of the simulation
parameters are given in Table 6.2.

Benchmark Schemes: To evaluate the effectiveness of the proposed methods, we compare
them with four benchmark schemes:

1. Centralized: In this scheme, RB scheduling and power allocation are centrally opti-
mized at a server within the RICs of the Open RAN architecture, with full knowledge
of RAN components, channel conditions, and interference. The problem is solved
using the SCA method.

2. Uniform Power: RB scheduling is determined by solving an optimization problem via
the SCA method, assuming equal power allocation for each RU as pf#;’,fj £ pmax/ > Fi

3. Slice Isolation: This scheme explores slice isolation within the Centralized scheme to
demonstrate the effectiveness of slice awareness, particularly in enhancing eMBB data
rate.
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FIGURE 6.4: The convergence analysis of Algorithm 9: (a) with different approaches, (b) with
different transmission power levels, and (c) with different learning rates.

4. OFDMA: Similar to Centralized scheme, this method optimizes RB scheduling and
power allocation but ignores interference effects [149].

These benchmark schemes are used to thoroughly evaluate the proposed methods for solving
the optimization problem 6.12.

6.5.2 Numerical Results

Fig. 6.4(a) shows the convergence behavior during the training phase for the proposed
MAD3QN, multi-agent deep double Q-network (MAD2QN), and random schemes with nor-
malized accumulated rewards over 500 episodes. The Random scheme consistently achieves
the lowest rewards, highlighting its inefficiency in optimizing network performance due to
random power level selection. Among the structured approaches, MAD3QN outperforms
both MAD2QN and Random, with a steady increase in rewards peaking around episode
400 and maintaining a higher average after that. This indicates MAD3QN’s superior abil-
ity to navigate the complex state-action space and dynamic conditions. While MAD2QN
performs better than Random, it still falls short of MAD3QN, underscoring the benefits of
the D3QN approach in providing more accurate value estimations and policy evaluations.
Overall, these results validate the effectiveness of MAD3QN in achieving higher performance
and more stable learning.

Fig. 6.4(b) compares the normalized accumulated rewards of MAD3QN across different
transmission power levels, L. The results show that the higher the power levels, the better
the performance can be achieved. The reason is attributed to the fact that they enable more
nuanced and optimal decisions to enhance network performance. The proposed method
with L = 20 consistently achieves the highest rewards, highlighting the advantage of a
larger state-action space in maximizing the capabilities of DRL algorithms like MAD3QN.
In contrast, L = 4 yields the lowest rewards due to the limitation of a smaller set of power
levels in effectively optimizing network performance in a dynamic environment.

Fig. 6.4(c) shows the normalized accumulated rewards of the MAD3QN algorithm
with two learning rates, 1, over 500 episodes. The lower learning rate (e.g., n = 0.0001)
consistently outperforms the higher rate (e.g., n = 0.001) and achieves higher and more
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FIGURE 6.5: The performance comparison between Algorithm 6 and existing benchmark schemes
to solve ICUR Problem (6.12) versus the maximum power budget of RU P1®* in terms of (a) average
overall eMBB data rate, (b) average backlog eMBB queue length, and (c¢) worst uRLLC latency.

stable rewards. Both learning rates initially show rapid learning, but the lower rate continues
to improve, reaching a higher peak and maintaining stability in later episodes. This suggests
that the lower learning rate enables more precise fine-tuning, leading to better long-term
performance. In contrast, the higher learning rate, while initially competitive, plateaus
at a lower reward level with greater fluctuations. This phenomenon indicates that the
higher learning rate may cause the algorithm to overshoot optimal solutions and struggle
to converge to the best possible policy.

We compare the performance of Algorithm 6 with the benchmark schemes indicated
in Fig. 6.5, employing different techniques. The average eMBB data rate over the max-
imum power budget for RUs P®, which spans from 30 to 46 dBm, is shown in Fig.
6.5(a) to analyze the eMBB data rate under various resource allocation schemes. As an-
ticipated, the Centralized scheme performs the best out of all the schemes and provides a
benchmark for comparison. This is explained by the fact that the Centralized scheme can
jointly optimize RB scheduling and power allocation via the SCA method since, being a
centralized technique, it has access to perfect CSI, interference channel gains, queue length,
and comprehensive RAN information. Conversely, the proposed methods (i.e., DIPO and
DRL-PC), being decentralized methods, depend on the local data of each RU and do not
have access to comprehensive information, such as interference from neighboring RUs and
queue length. However, the performance gap is smaller than 1.1% and 4.8% at P = 43
dBm, demonstrating the effectiveness of the proprietary DIPO and DRL-PC, respectively,
in precisely optimizing power allocation over time in such a dynamic environment. Fur-
thermore, in comparison with the other schemes, the proposed schemes achieve a better
eMBB data rate. Specifically, at the usual power value of P"® = 38 dBm, DRL-PC pro-
vides a performance boost of 11%, 45%, and 92% over Uniform Power, Slice Isolation,
and OFDMA schemes, respectively. Notably, the DRL-PC method performs similarly to
the DIPO method, highlighting the effectiveness of the MAD3QN model. As the power
budget increases, all methods for optimizing RB and power allocation improve. However,
the OFDMA scheme performs the worst compared to the other schemes, emphasizing the
importance of RUs sharing RBs and managing interference power effectively.
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FIGURE 6.6: Effect of number of uRLLC UEs on the eMBB performance with different schemes.

Fig. 6.5(b) shows the average queue length at different maximum power budgets for
RUs. As previously noted, higher data rates in eMBB services correspond to shorter queue
lengths. Since Fig. 6.5(a) indicates that higher P1* results in higher eMBB data rate,
it is expected that higher P would also lead to shorter eMBB queue lengths. This
is confirmed in Fig. 6.5(b), where the average queue length decreases as PJ'®* increases.
Interestingly, there is a small performance gap between the Centralized scheme, the upper-
bound scheme, and the proposed methods (DIPO and DRL-PC). Both proposed methods
effectively manage queue lengths, adjusting to different power budgets while maintaining
a low average backlog. For P®* > 38 dBm, RUs consistently service more packets than
arrive, preventing buffer backlogs. In contrast, the OFDMA scheme performs the worst,
while the Uniform Power and Slice Isolation schemes show significant improvement over
the OFDMA one.

In Fig. 6.5(c), the worst-user uRLLC latency is analyzed, where every scheme meets the
necessary URLLC latency requirement of 0.5 ms. It should be noted that the RB scheduling
phase is responsible for maintaining uRLLC latency within the uRLLC requirement con-
straint immediately after arriving in the buffer, whereas the calculated uRLLC latency is
not significantly affected by changing the power budget, according to the formulated latency
for uRLLC service in (6.9).

Fig. 6.6 depicts the variation in average eMBB data rate as the number of uRLLC
UEs (U"") increases across different methods. The figure demonstrates that as U" rises,
eMBB performance declines due to increased interference from more uRLLC UEs sharing
the same RBs. Additionally, the number of unused RBs in the uRLLC slice available for
eMBB allocation decreases as U"" grows. Despite this, Centralized, DIPO, and DRL-PC
consistently deliver better eMBB performance, with small performance gaps between them,
compared to Uniform Power, Slice Isolation, and OFDMA schemes. As seen in previous
results, the Uniform Power scheme outperforms Slice Isolation and OFDMA.

We now evaluate the impact of Algorithm 7 in managing buffers under congestion with
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FIGURE 6.7: Impact of the UA Algorithm 7 on the average eMBB queue length with different
window sizes W for Pm3 = 38 [dBm] and ¢th = 0.8¢m2x.

different window sizes W. Fig. 6.7 shows the average eMBB queue length per RU over
50 frames. RU 3 is initially overloaded by serving more UEs than other RUs. The red
dashed line marks the queue threshold at 80% of the maximum buffer capacity, triggering a
congestion alarm if reached. When this happens, Algorithm 7 activates to prevent network
outages and packet loss by adjusting UA variables and initiating handovers. The figure
also illustrates how Algorithm 7 identifies congested RUs and reassigns UEs to other RUs,
sharply reducing the congested RU’s buffer below the threshold. However, this causes queue
lengths at other RUs to increase, potentially triggering further congestion alarms. To avoid
excessive handovers, the UA parameter is based on average dynamics rather than instanta-
neous queues, making window size crucial for balancing accuracy and responsiveness. Fig.
6.7(c) shows that a larger window size offers a more stable estimate but reacts slowly to
changes while a smaller window size, as seen in Figure 6.7(a), responds quickly but is more
susceptible to noise, leading to more handovers. Fig. 6.7(b) demonstrates that W = 4
achieves a balance, smoothing queue lengths compared to W = 1 while still responding
adequately to network changes. Given the dynamic nature of network traffic, periodically
reassessing and adjusting the window size is essential, a potential topic for future work.
Fig. 6.8 illustrates the impact of window size W on the average percentage of handovers
during the simulation for the DIPO method. The graph reveals a clear inverse relationship
between window size and handover frequency. A smaller window size leads to a higher
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FIGURE 6.9: Visualization of RB scheduling for both services based on Algorithm 8 considering
mixed numerology in the frequency domain.

percentage of handovers due to the algorithm’s rapid response to instantaneous queue length
changes. Conversely, a larger window size stabilizes the queue length estimates, reducing
the number of handovers but at the cost of slower reactions to network changes.

Lastly, we provide a visualization of RB scheduling for both services based on Algorithm
8, as illustrated in Fig. 6.9. This also provides a detailed illustration of the slice-awareness
method in uRLLC preemption and its impact on enhancing eMBB data rate for a single
RU. We assume that uRLLC packets arrive randomly within the frame and must be served
immediately upon arrival. If uRLLC UEs cannot transmit all packets within the frame, they
request additional RBs from another slice considering mixed numerologies in the frequency
domain [149]. Conversely, eMBB UEs can utilize the unused RBs from the uRLLC slice,
significantly boosting data rate. The figure also shows that UEs with lower indexes represent
uRLLC UEs, which occupy fewer RBs compared to the higher-indexed eMBB UEs. This
method not only improves eMBB data rate but also ensures that uRLLC users can access
additional resources as needed. As can be seen, Algorithm 8 effectively meets the stringent
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requirements of both uRLLC and eMBB services by dynamically adjusting RB allocation
according to varying demands, optimizing resource utilization in the process.

6.6 Summary

We have proposed an intelligent UA, resource scheduling, and power control scheme (IUCR)
designed to minimize the overall queue lengths and uRLLC latency while avoiding frequent
handovers within the Open RAN architecture, leveraging the centralized intelligence of
RICs. The TUCR scheme is specifically designed to navigate the dynamic and complex na-
ture of modern networks, accommodating multiple traffic types like eMBB and uRLLC. The
optimization framework is tailored for the 7.2x FS within the Open RAN architecture, in-
corporating advanced techniques such as RAN slicing, mixed numerology multiplexing, and
a mini-slot-based frame structure. These innovations ensure efficient resource utilization
and adherence to SLAs by reducing eMBB queue lengths and minimizing uRLLC latency.
Additionally, we have proposed a hierarchical optimization strategy that integrates heuristic
methods, iterative SCA, and distributed MAD3QN-based algorithms. This multi-faceted
approach addresses challenges like incomplete queue length information, frequent handovers,
channel interference, and partial environmental observations. By leveraging closed-control
loops between RAN components and RICs, our scheme ensures effective resource manage-
ment even in large-scale networks with limited data. Comprehensive simulations validate
the effectiveness of the IUCR scheme, especially in congested scenarios. Future research
will aim to further enhance the framework’s adaptability and efficiency by integrating ad-
vanced ML techniques such as federated learning, improving decision-making processes in
distributed environments, and bolstering the system’s ability to adapt to evolving network
conditions.
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Chapter

Conclusions and Future Research

In Section 7.1, we provide a summary of the work conducted in this thesis, highlighting key
conclusions. Furthermore, Section 7.2 discusses potential directions for future research.

7.1 Main Conclusions

Open radio access network (RAN) represents a groundbreaking shift in wireless telecom-
munications, aiming to transform traditional proprietary RANs into open, intelligent, and
interoperable systems. Recently, machine learning (ML) applications have gained signifi-
cant attention in Open RAN for their potential to revolutionize network automation and
enable data-driven decision-making, such as intelligent traffic steering (TS). This stream-
lines network management and allows mobile network operators (MNOs) to optimize per-
formance. ML algorithms are crucial for TS research, offering real-time intelligence and
decision-making to enhance traffic flow and overall network efficiency. However, challenges
remain, including handling dynamic environments and unpredictable traffic demands and
patterns, frequent handovers, load balancing, and resource constraints. This dissertation
addresses these issues by focusing on intelligent TS and user association (UA) within the
Open RAN architecture. The core structure of this thesis is summarized as follows:

e Chapter 1 provided a comprehensive introduction and literature review, structured
into three main sections: related works; motivation and limitations of existing works;
and the thesis outline and contributions. The first section investigated the literature
review in three subsections. The first subsection explored radio resource management
(RRM) for multi-traffic scenarios, detailing the strategies and challenges in balanc-
ing these diverse service requirements. The second subsection reviewed UA and TS
approaches in traditional RAN, highlighting established methods and their limita-
tions. The final subsection shifted focus to intelligent TS and UA within Open RAN,
discussing recent advancements and the potential for machine learning to enhance net-
work performance and management. After investigating the limitations of the men-
tioned studies in the second section that motivated this thesis to address them, the
last section highlighted its contributions and achievements. This chapter established
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a foundation for understanding the evolution and current state of traffic management
and resource optimization, setting the stage for further exploration and innovation in
subsequent chapters.

In Chapter 2, we conducted a thorough examination of the foundational elements
pertinent to the dissertation. We began by discussing the traditional RAN architec-
ture, its limitations, and the evolution towards new network paradigms. Next, we
detailed the Open RAN architecture, describing its key components, principles, inter-
faces, functional split (F'S) options, and how it diverges from traditional RAN systems.
Finally, we explored the role of ML within the Open RAN framework, emphasizing
how ML techniques can improve network efficiency, automation, and decision-making.
This chapter set the stage by providing the context and technical background essential
for understanding the advancements and implications of integrating ML applications
into Open RAN.

In Chapter 3, we developed a traffic steering framework within the Open RAN archi-
tecture that optimizes centrally resource allocation for coexistence of enhanced mobile
broadband (eMBB) and ultra-reliable low-latency communication (WuRLLC) services.
This framework utilizes macro and small cells as types of radio units (RUs) and lever-
ages isolation numerology scalability techniques to maximize eMBB throughput while
minimizing uRLLC latency under known traffic demands. To address the optimization
problem, we introduced an efficient iterative algorithm based on the successive convex
approximation (SCA) method, ensuring locally optimal solutions. Numerical results
confirmed the rapid convergence of the algorithm and its effectiveness in enhancing
eMBB throughput and reducing uRLLC latency, outperforming traditional resource
allocation methods.

In Chapter 4, we presented a comprehensive framework for intelligent traffic predic-
tion, dynamic RAN slicing, flow-split distribution, and RRM within the orthogonal
frequency division multiple access (OFDMA )-based Open RAN architecture, address-
ing the challenge of unknown dynamic traffic demands. To maximize eMBB through-
put while ensuring minimal uRLLC latency and vice versa, we formulated two opti-
mization problems tailored to the specific service requirements, subject to constraints
such as quality of service (QoS), slice isolation, power budget, and fronthaul (FH)
capacity. These problems were decomposed into long-term and short-term subprob-
lems based on different time scales, with the long-term subproblems managed by
the non-real-time (non-RT) RAN intelligent controller (RIC) through traffic predic-
tion, RAN slicing, and flow-split decisions, while the short-term subproblems were
addressed using the SCA method at the near-real-time (near-RT) RIC. Numerical
results demonstrated the fast convergence of the proposed algorithm and its supe-
rior performance compared to benchmark schemes, including fixed numerology, equal
flow-split distribution, single connectivity, and the proposed framework with known
traffic demands.

In Chapter 5, we introduced a sophisticated multi-layer intelligent TS framework
designed for slice-aware operations within the OFDMA-based Open RAN architecture.
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This framework centrally tackles challenges such as high complexity, varying channel
conditions, and dynamic traffic demands. By employing dynamic multi-connectivity
(MC) management, slice-aware RAN slicing, and mixed numerologies multiplexing
across both frequency and time domains, we aimed to minimize the long-term average
queue length for eMBB UEs and reduce the long-term average latency for uRLLC,
all while adhering to QoS requirements, slice awareness, power budget, and flow-
split constraints. To address the lack of complete information—such as time-varying
channel state information (CSI) and queue lengths—we introduced a centralized ML
approach that reduces computational complexity by making decisions per frame rather
than at each time slot. This framework implements a two-stage optimization strategy:
long-term decisions are managed by customized xAPPs in the near-RT RIC, and
short-term decisions are handled by distributed units (DUs). Extensive simulations
demonstrate the effectiveness of our method compared to benchmark schemes like
slice isolation and SCA, further validating its superiority in dynamic environments.

e In Chapter 6, we tackled the critical challenges of frequent handovers and load balanc-
ing within the Open RAN architecture by introducing an innovative joint intelligent
UA, congestion control, and resource scheduling scheme aligned with the 7.2x FS.
Building on the non-orthogonality between RUs and guided by O-RAN Alliance rec-
ommendations, our approach seeks to minimize eMBB queue lengths and uRLLC
latency while addressing congestion control, power budgets, and other real-world
constraints. We employed a hierarchical optimization strategy, combining heuristic
algorithms for UA, iterative SCA for resource scheduling, and distributed deep rein-
forcement learning (DRL) for power optimization. These algorithms were strategically
deployed across different Open RAN nodes, with the near-RT RIC handling UA up-
dates via a heuristic algorithm, the central unit (CU) optimizing physical resources
through the SCA method, and RUs managing power allocation distributively via DRL.
The chapter concludes with extensive numerical results showcasing the superior per-
formance of our proposed scheme in comparison to centralized OFDMA and other
existing methods, highlighting its effectiveness in dynamic environments.

7.2 Future Works

Within this dissertation, we addressed several key challenges within the Open RAN archi-
tecture, focusing on intelligent TS, UA, RRM, congestion control, and load balancing for
optimization of the coexistence of eMBB and uRLLC services. Through a series of novel
frameworks, algorithms, and simulation-based validation, we demonstrated how advanced
techniques, such as centralized and decentralized ML algorithms, time-series algorithms,
optimization methods such as SCA, and heuristic methods, can effectively manage dynamic
known/unknown traffic demands, optimize resource allocation, and improve overall net-
work performance. Our work considered both centralized and decentralized strategies, with
particular attention to Open RAN’s 7.2x FS, ensuring that the solutions were adaptable
to real-world constraints like power budgets, fronthaul capacity, and service-specific QoS
requirements. However, despite the advancements presented in this thesis, there remain
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numerous opportunities for future research. Addressing these areas could further enhance
the performance, scalability, and robustness of Open RAN systems. Some potential avenues
for future research include:

e Scalability and Adaptability in Large-Scale Networks: The Open RAN, with
its disaggregated and software-centric design, offers unique opportunities to address
accommodating billions of devices but also introduces new complexities when deployed
at large scales. Future research must focus on enhancing the scalability and adapt-
ability of Open RAN systems to support the seamless growth and evolution of next-
generation networks. One of the key challenges in scaling Open RAN is the efficient
management of resources across a vast number of DUs, CUs, and RUs. As network size
increases, so does the complexity of orchestrating these components, especially when
managing heterogeneous traffic demands across different regions. Future work could
explore the development of advanced orchestration platforms that leverage AI and ML
to dynamically allocate resources, balance loads, and optimize performance in real-
time, even as network size and traffic volumes grow exponentially. These platforms
could enable Open RAN to automatically adjust to changing network conditions, en-
suring that performance remains consistent as the network scales. Another important
aspect of scalability in Open RAN is the ability to efficiently handle a massive number
of devices and connections. As networks expand, they must support not only a grow-
ing number of user devices but also an increasing variety of IoT devices, each with
different connectivity requirements. By dynamically creating and adjusting slices in
response to network demands, Open RAN can maintain high levels of performance and
QoS even as the network scales. Adaptability is equally critical in large-scale Open
RAN deployments. Networks must be able to adapt to a wide range of scenarios, from
sudden surges in traffic due to large events to the rapid deployment of new services
and technologies. To overcome these, the real-time analytics and predictive algorithms
could enable the network to anticipate and respond to changes before they impact per-
formance, such as by reallocating resources, adjusting power levels, or re-configuring
network slices. This proactive approach would allow Open RAN to maintain optimal
performance even in the face of unpredictable and rapidly changing conditions. Addi-
tionally, in large-scale networks, it is essential to ensure that resources are distributed
efficiently to avoid bottlenecks and ensure consistent performance across the entire
network. Hence, future research could investigate the development of decentralized
resource management algorithms that distribute decision-making closer to the net-
work edge, allowing for more responsive and localized control. This approach could
enhance the scalability of Open RAN by reducing the burden on central control units
and enabling more efficient use of network resources.

e Security and Privacy Enhancements for Open RAN: The open and disaggre-
gated nature of Open RAN, while offering significant advantages in terms of innovation
and interoperability, also introduces new vulnerabilities and attack surfaces that could
be exploited by malicious actors. Therefore, one of the most promising directions for
future research involves developing advanced security and privacy frameworks tai-
lored specifically to the Open RAN environment. In traditional RAN architectures,
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security mechanisms are often tightly integrated within proprietary systems, making
them less susceptible to certain types of attacks. However, the shift towards an open
and multi-vendor ecosystem in Open RAN necessitates a rethinking of security strate-
gies. Future research could focus on designing security protocols that are adaptable
to the diverse range of components within Open RAN, including the CU, DU, and
RU, as well as the RICs. These protocols must ensure secure communication, data
integrity, and authentication across all layers of the network, from the physical layer
up to the application layer. Another key area of focus could be the development of
privacy-preserving algorithms for managing sensitive user data within Open RAN. As
the network handles an increasing amount of personal and service-related data, it is
essential to implement techniques that safeguard user privacy while maintaining net-
work performance. This could involve the use of advanced encryption methods, secure
multi-party computation, and federated learning approaches that allow for distributed
data processing without exposing individual data points. Additionally, the integration
of ML into Open RAN, as explored in this thesis, presents both opportunities and
challenges in terms of security. On one hand, Al and ML can enhance threat detection
and response capabilities by analyzing network patterns and identifying anomalies in
real-time. On the other hand, these technologies can also be targeted by adversarial
attacks, where malicious inputs are crafted to deceive the learning models. Future
work could explore the development of robust and resilient AI/ML models that can
withstand such attacks, ensuring the integrity of the decision-making processes within
the RAN. The implementation of a zero trust architecture (ZTA) within Open RAN
could also be a pivotal step towards enhancing security. In a ZTA model, no entity,
whether inside or outside the network, is trusted by default. Every access request is
thoroughly authenticated, authorized, and encrypted, thereby minimizing the risk of
breaches. Research could explore how ZTA principles can be applied to the various
components of Open RAN, creating a secure environment that is resilient to both in-
ternal and external threats. Lastly, the collaborative and multi-vendor nature of Open
RAN requires a coordinated approach to security management. Future research could
investigate the establishment of standardized security frameworks and protocols that
can be universally adopted across different vendors and operators, ensuring a cohesive
security posture throughout the network. This would not only protect the network
from emerging threats but also foster trust and collaboration within the Open RAN
ecosystem. By addressing these challenges through innovative research and develop-
ment, we can build a secure, resilient, and trustworthy Open RAN architecture that
meets the demands of future wireless networks.

e Integration of Non-Terrestrial Networks in Open RAN Architecture: An-
other exciting avenue for future research involves the integration of non-terrestrial
networks (NTN), particularly unmanned aerial vehicles (UAVs), into the Open RAN
architecture. As the demand for ubiquitous connectivity and network flexibility con-
tinues to grow, NTNs offer a promising solution by extending network coverage and
enhancing capacity, especially in hard-to-reach or underserved areas. UAVs, func-
tioning as aerial base stations (BSs) or relay nodes, can dynamically adjust their
position to optimize signal strength and network coverage, making them ideal for
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complementing terrestrial RAN deployments. Integrating UAVs into the Open RAN
framework presents unique opportunities to leverage the existing flexibility and mod-
ularity of Open RAN components. This includes exploring new functional splits that
allow for efficient coordination between ground-based and airborne network elements,
optimizing the use of radio resources across different layers of the network, and en-
suring seamless connectivity in both urban and remote environments. However, the
integration of UAVs and other NTNs into Open RAN also introduces challenges that
require innovative solutions. These include managing the high mobility of UAVs,
dealing with the varying quality of air-to-ground and air-to-air communication links,
and addressing the stringent power constraints of UAVs. Future research could fo-
cus on developing specialized algorithms for policy-based traffic management, TS,
UA, and RRM that take into account the unique characteristics of NTNs. For in-
stance, UAVs could be used to dynamically offload traffic from congested ground
networks, provide temporary coverage during network outages, or enhance capacity
during high-demand events. Additionally, incorporating UAVs into the Open RAN
ecosystem necessitates advancements in network orchestration and management. The
near-RT and non-RT RICs could be extended to include capabilities for managing the
interaction between terrestrial and non-terrestrial components, ensuring that network
policies are efficiently applied across different domains. The use of advanced ML al-
gorithms could further enhance decision-making processes, allowing the network to
autonomously adapt to changing conditions and optimize performance in real-time.
This approach not only promises to improve connectivity in challenging environments
but also opens up new possibilities for innovative services and applications ranging
from disaster recovery to smart agriculture and beyond.

Online Learning for Adaptive TS in Open RAN: Future research could explore
the integration of online learning algorithms to enable adaptive and real-time TS in
Open RAN. Possible solutions include employing multi-armed bandit algorithms to
dynamically balance exploration and exploitation, ensuring optimal resource alloca-
tion even under uncertain and changing network conditions. Another approach could
involve online gradient descent methods, allowing for continuous updates to T'S mod-
els as new data is received. Additionally, reinforcement learning with online updates
could be used to adjust traffic flow and UA in real-time, improving the network’s
ability to respond to fluctuating traffic demands, user mobility, and varying channel
quality. These online learning solutions would enhance the responsiveness and accu-
racy of TS mechanisms, particularly in highly dynamic and unpredictable network
environments.

Validation and Refinement of Intelligent TS Using the OpenRAN Gym
Testbed: A critical next step in advancing our research involves the rigorous testing
and validation of the proposed methods within the OpenRAN Gym testbed. This plat-
form serves as a sophisticated and highly realistic simulation environment tailored to
Open RAN architecture, enabling the emulation of complex, real-world network con-
ditions and scenarios. By integrating our intelligent TS, UA, and RRM strategies
within this testbed, we can conduct comprehensive evaluations of their performance
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under varying traffic loads, service requirements, and environmental dynamics. The
OpenRAN Gym testbed offers the ability to test across a range of configurations,
such as different functional split options, varied fronthaul capacities, and heteroge-
neous service demands. This flexibility will allow us to critically assess the robustness
of our algorithms, particularly in scenarios where service-specific QoS requirements,
such as those for eMBB and uRLLC, must be maintained amidst fluctuating network
conditions. Furthermore, it provides a platform to evaluate the impact of our pro-
posed optimizations on key performance indicators (KPIs) like latency, throughput,
and reliability in a controlled yet realistic setting. Through iterative testing within
this environment, we can refine our models and algorithms, addressing any limitations
identified during simulation. This step is crucial in bridging the gap between theoret-
ical research and practical application, ensuring that the proposed solutions are not
only innovative but also implementable in the context of future wireless networks.

e Ultra-Dense Networks and Small Cell Optimization in Open RAN: As the
demand for higher data rates, increased capacity, and seamless connectivity contin-
ues to grow, ultra-dense networks (UDNs) have emerged as a critical component of
future wireless networks. UDNs involve the deployment of a large number of small
cells in a given area, significantly increasing the network’s density and, consequently,
its ability to handle massive amounts of traffic. However, the integration of UDNs
into Open RAN requires careful consideration of several factors, including interfer-
ence management, resource allocation, load balancing, and mobility management.
The dense deployment of small cells can lead to increased interference, particularly in
environments where multiple cells overlap. While small cells in UDNs are typically
characterized by limited coverage areas and the need for efficient backhaul connectiv-
ity, future research should focus on developing advanced interference mitigation tech-
niques that are tailored to the Open RAN framework. This could involve the design
of intelligent, context-aware algorithms that dynamically adjust transmission power,
frequency allocation, and beamforming strategies to minimize interference while max-
imizing throughput. Besides, load balancing in UDNs is another critical area for
future research. The high density of small cells means that users may frequently
move between different cells, leading to challenges in maintaining consistent QoS.
Open RAN’s disaggregated architecture, with its near-RT and non-RT RICs, offers
a promising platform for implementing dynamic load balancing algorithms. These
algorithms could leverage real-time data on user location, traffic patterns, and net-
work conditions to make intelligent decisions about handovers, resource allocation,
and traffic steering. The goal would be to ensure that the load is evenly distributed
across the network, minimizing congestion and optimizing the user experience. By
addressing challenges such as interference management, load balancing, and mobil-
ity management and by leveraging the flexibility and intelligence provided by Open
RAN’s disaggregated architecture, it is possible to realize the full potential of UDNs.

e End-to-End Latency Optimization for Critical Applications: In the evolving
landscape of wireless networks, the need for ultra-low latency communication has be-
come paramount, particularly for critical applications such as autonomous vehicles,
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industrial automation, remote surgery, and immersive real-time experiences. End-to-
end latency in an Open RAN environment is influenced by multiple factors, including
the protocols and policies implemented at different layers of the network, the impact
of information transfer latency across open interfaces, and the processing delays made
by network functions distributed between the CU, DU, and RU. These components,
connected via open interfaces such as F1 and E1, must operate with minimal delay
to ensure that time-sensitive data is processed and transmitted swiftly. Researchers
could explore the optimization of these protocols, possibly through the development
of streamlined signaling procedures or the introduction of more efficient compression
techniques that reduce the amount of data exchanged without compromising the in-
tegrity of the information. By addressing the various sources of latency, from protocol
inefficiencies to open interface delays, and by integrating these optimizations into a
cohesive, cross-layer framework, it is possible to meet the stringent QoS requirements
of next-generation applications. This work will be crucial in ensuring that Open RAN
can support the demanding needs of future wireless networks, delivering the ultra-
reliable and low-latency performance required for the most critical use cases.

Cross-Layer Optimization and QoS-Aware Network Slicing: As 5G networks
evolve towards 6G and beyond, one promising direction for future research is the de-
velopment of cross-layer optimization strategies within the Open RAN architecture,
aimed at enhancing network slicing capabilities to meet the diverse QoS demands.
Network slicing (NS) allows operators to create multiple virtual networks over a com-
mon physical infrastructure, each tailored to specific use cases such as eMBB, uRLLC,
and mMTC. However, the traditional approach to network slicing, which primarily
operates at a single layer of the network stack, often falls short in efficiently managing
the dynamic and heterogeneous nature of modern wireless services. Future research
could focus on cross-layer optimization techniques that harmonize resource allocation
across different layers of the Open RAN architecture, from the physical and MAC
layers to the network and application layers. This approach would enable a more
holistic view of the network, where decisions made at one layer are informed by the
conditions and requirements of other layers. For instance, the integration of RRM
with higher-layer functions like TS and UA could lead to more intelligent and adap-
tive network behavior, improving the overall efficiency and performance of the system.
Moreover, QoS-aware NS requires sophisticated algorithms that can dynamically ad-
just to varying traffic loads, user mobility, and service-level agreements (SLAs). In
this context, the application of ML techniques, as explored in this thesis, could play
a pivotal role. By leveraging real-time data and predictive analytics, ML algorithms
can enable the network to anticipate changes in traffic patterns and adapt resource
allocation accordingly, ensuring that each network slice maintains the required QoS
levels even under fluctuating network conditions. Future research could investigate
how to optimize the interactions between RAN nodes and RICs to support end-to-
end QoS across the entire network. This could involve the development of advanced
coordination mechanisms between non-RT and near-RT RICs, ensuring that the net-
work can respond swiftly to real-time demands while maintaining overall stability and
performance. By integrating insights from multiple layers and leveraging advanced
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ML techniques, these innovations could pave the way for next-generation wireless net-
works capable of meeting the diverse and dynamic demands of future services and
applications.

In summary, the future of Open RAN research offers a wealth of possibilities for further
enhancing network intelligence, adaptability, and performance. By exploring these poten-
tial avenues, future work can contribute to the evolution of Open RAN as a cornerstone
technology in the next generation of wireless networks.
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