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Abstract

In this thesis, we improve existing orchestration techniques to address the new challenges
the Cloud-to-Edge Computing Continuum raises.

Edge computing is a paradigm that moves computation and storage outside of the
data centers to the edge of the network. The Cloud-to-Edge Computing Continuum
refers to the aggregation of computing resources from traditional data centers to the
edge. Edge Computing extends the capabilities of cloud computing. Deploying servers
close to end users reduces the delays and enables new use cases. However, these
geographically distributed machines create new challenges; they can be addressed by
improving existing cloud computing techniques. In this dissertation, we aim to simplify
application deployment in the Cloud-to-Edge Computing Continuum. We present three
main contributions that help move toward that goal.

In the first part of this dissertation, we describe an experimental methodology to
study orchestration in the Cloud-to-Edge Computing Continuum. We evaluate the
performance of a 5G core network deployed in the Computing Continuum to illustrate
our methodology.

Then, we propose a new orchestration approach for reducing the costs of deploying
applications in the Cloud-to-Edge Computing Continuum. This orchestrator chooses an
optimal location for deploying applications in terms of costs and quality of service. It
also offers a mechanism to update scheduling decisions when the environment changes.
We evaluate this new orchestration approach with a realistic 5G use case: Vehicular
Cooperative Perception.

Finally, we study the performances of container CPU limitation mechanisms. Setting
limitations is essential to maximize the utilization of servers in the Computing Con-
tinuum, especially at the edge, where resources can be more limited. However, the
different CPU limitation mechanisms available offer different performances depending
on the application type. An inadequate setting could lead to negative impacts on the
application’s performance. Therefore, we propose a methodology for automatically
selecting the best CPU limitation mechanism.

iii





Acknowledgments

A PhD is a long journey, which would not have been possible without help.
First and foremost, I would like to express my deepest gratitude to my supervisor, Dr.

Mats Brorsson, for his unwavering support, guidance, and encouragement throughout
my PhD journey.

I am also grateful to my thesis committee members, Prof. Radu State and Dr. Rajarshi
Sanyal, for their constructive feedback and suggestions, which greatly improved the
quality of my work over these last four years. Many thanks to Prof. Pascal Bouvry and
Prof. Vladimir Vlassov for agreeing to review my work. Your time and expertise are
greatly appreciated.

I would like to thank the financial support provided by Proximus Luxembourg and
the Luxembourg National Research Fund (FNR), without which this research would not
have been possible. I would like to extend my special thanks to Rajarshi and Julien from
Proximus for their invaluable inputs and support.

I am deeply thankful to all my colleagues from the SEDAN research group. Your
collective support, collaboration, and camaraderie have been invaluable throughout this
journey. I deeply appreciate your help and friendship.

I am profoundly grateful to my family for their unwavering support and encour-
agement. To my mother, your love have been the foundation of my success. To my
brother and my sister, thank you for always being there for me and for your constant
encouragement.

I would also like to express my wholehearted gratitude to my late father. Your memory
has been a source of strength and inspiration throughout this journey. I dedicate this
thesis to you.

Finally, I am profoundly grateful to Anne-Claire, for your unconditional love, patience,
and understanding. Your belief in me and your constant support have been my anchor
throughout this journey. Thank you for being always there for me.

Thank you all for your support and belief in me.

Samuel Rac
Luxembourg, September 2024





Contents

Abstract iii

Acknowledgments v

List of Figures xi

List of Tables xiii

Acronyms xv

1. Introduction 1
1.1. The Edge Computing Context . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. The Edge-to-Cloud Computing Continuum . . . . . . . . . . . . . . . . . . 6
1.3. Motivations for unified orchestration in the Computing Continuum . . . 11
1.4. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2. Background 19
2.1. Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2. Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3. Orchestration tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2. Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1. Networking virtualization . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2. 5G network software . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3. Other networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4. Multi-access Edge Computing . . . . . . . . . . . . . . . . . . . . . 35

2.3. Orchestration and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1. Scheduling problem formulation . . . . . . . . . . . . . . . . . . . . 37
2.3.2. Main orchestration approaches . . . . . . . . . . . . . . . . . . . . . 38

3. Experimental methodology for orchestration in the Cloud-to-Edge Comput-
ing Continuum 41
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2. Experimental methodology to study orchestration in the Computing

Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



Contents

3.3. 5G system study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1. Principal 5G Network Functions . . . . . . . . . . . . . . . . . . . . 47
3.3.2. System architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3. 5G use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2. Experimental parameters . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Network-aware orchestration in the Computing Continuum for cost mini-
mization 57
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2. Unified orchestration methodology overview . . . . . . . . . . . . 60

4.2. Orchestration methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1. Optimization problem overview . . . . . . . . . . . . . . . . . . . . 63
4.2.2. Service initial placement . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3. Service rescheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4. Implementation on Kubernetes . . . . . . . . . . . . . . . . . . . . . 67

4.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1. Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3. Workload: Vehicular cooperative perception . . . . . . . . . . . . . 73
4.3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5. Understanding CPU Limitation Mechanisms in Containerized Parallel Ap-
plications 91
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2. Setting limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1. Container CPU limitation . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2. Time division and parallel application . . . . . . . . . . . . . . . . . 94

5.3. CPU Limitation Setter (CLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1. CLS methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2. CLS evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

viii



Contents

6. Conclusions 113

A. 5G setup validation 117

B. Detailed application profiles 121

Bibliography 125

ix





List of Figures

1.1. The Edge-to-Cloud Computing architecture. . . . . . . . . . . . . . . . . . 7

2.1. Comparison of virtualization techniques . . . . . . . . . . . . . . . . . . . 23
2.2. WASM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3. Scheduling framework extension points [75] . . . . . . . . . . . . . . . . . 27
2.4. Horizontal and vertical scaling illustration . . . . . . . . . . . . . . . . . . 30
2.5. Control user plane separation illustration . . . . . . . . . . . . . . . . . . . 33
2.6. 5G core software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7. 5G core software architecture with slices . . . . . . . . . . . . . . . . . . . 36

3.1. Edge-to-Cloud environment can be emulated on the public cloud. . . . . 43
3.2. Experimental methodology overview . . . . . . . . . . . . . . . . . . . . . 46
3.3. Baseline architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4. LatOpt architecture: optimized for end-user latency and bandwidth. . . . 49
3.5. AccessOpt architecture: optimized for session throughput. . . . . . . . . . 50
3.6. Average end-to-end latency: AR use case. . . . . . . . . . . . . . . . . . . . 52
3.7. Average end-to-end latency: IIoT use case. . . . . . . . . . . . . . . . . . . 53
3.8. Average duration of different procedures in the MIoT use case. . . . . . . 54

4.1. The Edge-to-Cloud Computing Continuum - Computing resources are in
blue and green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2. Architecture overview of the system. Our scheduling components are
running on control plane nodes. Applications can run anywhere in the
Cloud-to-Edge Computing Continuum. . . . . . . . . . . . . . . . . . . . . 62

4.3. Scheduling workflow: Initial Placement (yellow), Rescheduler (orange) . 64
4.4. Illustration of the CIP scheduler mechanism. The node colors represent

the types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5. Monitoring architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6. Results of the simulation - Costs are detailed in two parts: computing and

networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7. Experimental cluster infrastructure graph (not all physical links between

nodes are represented) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8. Vehicular Cooperative Perception workload illustration . . . . . . . . . . . 75
4.9. Workload architecture: Workload pods and the nodes where they can run 75
4.10. Average of total costs for each approach: Baseline, Latency-based Initial

Placement, and LIP + Rescheduler. Costs are normalized to the baseline
approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



List of Figures

4.11. 95th percentile of the end-to-end latency for each approach: Baseline,
Latency-based Initial Placement, and LIP + Rescheduler. . . . . . . . . . . 79

4.12. Average of total costs for each approach: Baseline (default Kubernetes,
Least Allocated), Most Allocated, Balanced Allocation, Latency-based
Initial Placement, LIP + Rescheduler, Communication-based Initial Place-
ment, and CIP + Rescheduler. Costs are normalized to the baseline
approach. Data-center and edge nodes share the same price. . . . . . . . . 81

4.13. Average of total costs for each approach: Baseline (default Kubernetes,
Least Allocated), Most Allocated, Balanced Allocation, Latency-based
Initial Placement, LIP + Rescheduler, Communication-based Initial Place-
ment, and CIP + Rescheduler. Costs are normalized to the baseline
approach. Data-center nodes are twice as expensive as edge nodes. . . . . 82

4.14. Average of total costs for each approach: Baseline (default Kubernetes,
Least Allocated), Most Allocated, Balanced Allocation, Latency-based
Initial Placement, LIP + Rescheduler, Communication-based Initial Place-
ment, and CIP + Rescheduler. Costs are normalized to the baseline
approach. Edge nodes are twice as expensive as data-center nodes. . . . . 83

4.15. 95th percentile of the end-to-end latency for each approach (ms) . . . . . . 84
4.16. CPU time overhead of the scheduling components . . . . . . . . . . . . . . 85

5.1. Results for a limit of 4 CPU - Embarrassingly Parallel . . . . . . . . . . . . 95
5.2. Results for a limit of 4 CPU - Conjugate Gradient . . . . . . . . . . . . . . 96
5.3. Duration and number of preempt events and execution time for the LU

application for a limit of 2 vCPU . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4. Overview of the CPU Limitation Setter (CLS) . . . . . . . . . . . . . . . . . 103
5.5. Relative speedups - Core division . . . . . . . . . . . . . . . . . . . . . . . 107
5.6. Relative speedups - Time division . . . . . . . . . . . . . . . . . . . . . . . 108
5.7. CPU usage of the CLS and the Kubernetes control plane components . . 109

A.1. UE registration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.2. PDU session establishment procedure . . . . . . . . . . . . . . . . . . . . . 119
A.3. Http requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.4. Ping requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1. Conjugate Gradient (CG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.2. Embarrassingly Parallel (EP) . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3. Discrete 3D fast Fourier Transform (FT) . . . . . . . . . . . . . . . . . . . . 123
B.4. Integer Sort (IS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.5. Lower-Upper Gauss-Seidel solver (LU) . . . . . . . . . . . . . . . . . . . . 124
B.6. Multi-Grid (MG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xii



List of Tables

2.1. Main 5G Network Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1. Use cases and their characteristics. . . . . . . . . . . . . . . . . . . . . . . . 51
3.2. Delays in the system architectures. . . . . . . . . . . . . . . . . . . . . . . . 51
3.3. Workload parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1. Cooperative perception workload characteristics . . . . . . . . . . . . . . . 76
4.2. Cooperative perception workload cluster parameters . . . . . . . . . . . . 77
4.3. Normalized total costs for different approaches . . . . . . . . . . . . . . . 85
4.4. Related work summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1. Setting limits experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2. Image Processing average executions time for Time division (TD), Core

division (CD), and No limitation. . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3. CLS evaluation experimental setup . . . . . . . . . . . . . . . . . . . . . . . 104
5.4. CLS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5. CPU Limitation Mechanism chosen by the CLS. . . . . . . . . . . . . . . . 107

xiii





Acronyms

AR Augmented Reality. 48, 51

CRI Container Runtime Interface. 23–25

CUPS Control user plane separation. xi, 33

eMBB enhanced Mobile Broad Band. 32, 47, 48

FaaS Function as a Service. 26, 28

FPGA Field-programmable gate arrays. 20, 54

gNB gNodeB. 47–50, 52

GPGPUs General-purpose computing on graphics processing units. 13, 20, 23, 44, 54,
114

IIoT Industrial IoT. 32, 48, 49, 52

K8S Kubernetes. 4, 16

MEC Multi-access Edge Computing. 3, 7, 35, 36

MIoT Massive IoT. 32, 48, 49

mMTC massive Machine-Type Communications. 32, 48

NF Network Function. 50, 53

NFs Network Functions. 41, 42, 46–48, 52–54

NFV Network Function Virtualization. 32, 33

OCI Open Container Initiative. 23, 37

PDU Protocol Data Unit. 47–49, 52, 53, 117

QoS Quality of Service. 1, 8, 16, 28, 81, 86, 87, 92

xv



Acronyms

RAN Radio Access Network. 32, 34, 47, 54

SDN Software-defined networking. 31, 33

SLA Service Level Agreement. 37

SLO Service Level Objective. 29, 38, 86, 87

UE User Equipment. 17, 33, 34, 53, 117

UEs User Equipments. 47–50, 52, 54, 117

URLLC Ultra-Reliable Low-Latency Communications. 32, 47, 48

VNF Virtual Network Function. 55

WASM WebAssembly. 21, 22, 24, 25, 29

xvi



Chapter 1.

Introduction

1.1. The Edge Computing Context

Cloud computing has changed the way people develop and use software. With the
arrival of widely available generative AI tools (e.g., ChatGPT, Copilot, Gemini), it
continues to generate interest as the worldwide public cloud service revenue grows by
42% between 2022 and 2024, from 678.8 to 478.3 billion US dollars 20%, according to
the forecast of Gartner [1]. Running the Large Language Models (LLMs) that support
generative AI requires powerful and scalable computing capabilities. However, the
future of cloud computing is not only in larger and denser data centers but also outside.
Outside of the traditional data centers, closer to the end users, at the edge of the network.

The growing adoption of cloud computing can be attributed to its intrinsic features,
including on-demand resource allocation, a pay-as-you-go pricing model, and scalability.
These aspects provide both cost savings and operational advantages for businesses [2, 3].
However, public clouds are not the perfect tool for hosting every kind of application;
there are limitations to what they can offer.

Public clouds offer limited Quality of Service (QoS) to latency-sensitive applications;
it requires special efforts to have decent performances. For example, Cloud Gaming
requires the gamers to be in the same region as the data centers, and these offers do not
have the same latency as dedicated gaming equipment. Cloud gaming is a paradigm
where games run in data centers instead of the gamers’ devices. Gamer’s inputs are sent
to the cloud, and video is streamed back to the players’ devices. It is important that the
gamers and the data center are located in the same area to have low latency. Therefore,
edge computing emerged as a new technology that can enable use cases that require
very low latency (around 1 ms and below).

Edge Computing

Edge computing is a distributed computing paradigm that moves computation and
data storage outside of the data centers, at the edge of the network, where data is
produced. Edge computing solves the delays and limitations of cloud computing. When
an application runs on a server located at the edge, the communication delays between
the server and a user are more likely to be lower than those between a server in a data
center.

1



Chapter 1. Introduction

The definition of the edge varies in the literature. From a cloud provider perspective,
the point of presence that a user connects to is the edge. In a cyber-physical system
(CPS), the edge is likely to be the system to which IoT devices are connected.

The main idea of edge computing is to enable the usage of computing resources that
are closer to end users. Therefore, data can be processed locally, where it is created
at the edge of the network, close to the users. Processing data at the edge enables
lower network delays, reduced bandwidth usage, increased security, and lower energy
consumption. Edge computing enables new use cases that were not possible before due
to the high latency between the cloud and devices at the edge [4].

Edge computing proposes moving computing capacities to the edge of the network,
closer to where data are produced and consumed. However, edge computing raises new
challenges. At the edge, devices are more heterogeneous than in the data center, where
everything is optimized to achieve economies of scale. Edge devices can be mobile, like
a car, which complicates architecture with dynamic topologies. IoT devices produce a
considerable amount of data that can be processed at the edge [5].

In this thesis, our aim is to simplify the adoption of edge computing. We propose
enhancements to some aspects of orchestrating workloads that are enabled by edge
computing.

Edge computing offers many benefits.

Edge computing is a paradigm that moves the computation outside of the data centers
at the edge of the network where the data is generated. It is made for applications with
strong network requirements, such as reliability and strict response time.

The main benefit of edge computing is lower latency [6, 7, 8, 9, 10]. Reduced network
delays are the main consequence of a closer geographical location. For optimal latency
experience, bringing computing resources close to the end user should be done in
addition to performant networking, especially for wireless networking that has more
physical limitations than wired networking with optical fibers. Applications need perfor-
mant networking and edge computing to offer low latency. 5G/6G telecommunication
networks and WiFi 6E are the main wireless networking technologies enabling ultra-low
latency use cases. Wired networks (mainly optical fibers) already offer satisfying delays
for edge computing.

Another benefit of local processing is the reduction of bandwidth usage [6, 7]. Data
can be processed where it is generated. Therefore, it is possible to use data centers
or centrally located servers only for data aggregation. Local processing can also help
reduce network congestion for the same reasons.

Local processing security is a double-edged sword (pun intended). On the one hand,
it improves security, as data are processed locally. Local processing reduces the attack
surface. On the other hand, it can be harder to ensure security at the edge because of the
larger number of heterogeneous devices. Also, if many edge nodes could be federated,
a distributed environment would have a larger attack surface. Therefore, security is one
of the main challenges for edge computing.

2
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Privacy can also be improved with edge computing. Data can be processed locally
where it is created. Therefore, sending only processed and/or anonymized data to cen-
tral locations is possible. This processed data can be anonymized during the processing
on edge devices. In this situation, data will remain private, as well as the entire property
of the tenant. Federated learning is a machine learning technique that can improve user
privacy. It is further described in the next section.

Compliance, it may be necessary to process data locally to comply with some regula-
tions. For example, data privacy laws can stipulate that personal information cannot be
transferred outside of the user’s jurisdiction.

Edge computing commercial offers

Large public cloud providers have started offering edge computing services to complete
the galaxy of services they already provide to their customers. There are three main
categories of edge computing services currently on the market: i) managed hardware, ii)
IoT solutions, and iii) manually installed servers at the edge (at user facilities).

AWS Wavelength [11] is a Multi-access Edge Computing (MEC) product; servers
close to telco data centers. AWS makes embedded storage and computing capabilities
available inside telecommunication providers’ data centers. It enables ultra-low latency
use cases for 5G devices. Google distributed cloud [12] is a general offer that ranges
from managed hardware and software to on-premises offers (servers deployed to their
customer’s facilities). Proposes to compute and storage on edge location, mainly for
AI inference workloads. IBM Edge Application Manager [13] is an IBM product for
orchestrating edge applications. Akamai EdgeWorkers offers to run applications on
their CDN facilities [14]. Intel Smart Edge is Intel offering software orchestration and
hardware for edge computing (meant to be integrated with a 5G core network) [15].

Commercial offerings in edge computing also present various solutions for setting
up local nodes to process data from IoT nodes. These nodes can be connected to IoT
devices for local data processing and AI computations. AWS IoT Greengrass offers
to run serverless functions and containers at the edge on local nodes [16]. Azure IoT
Edge is a similar offer to Greengrass [17]. It can help reduce bandwidth costs and avoid
transferring terabytes of raw data to the cloud. It can pre-process and aggregate data
locally and then only send aggregated data to the cloud for analysis. Alibaba IoT Edge
is another offer similar to Greengrass [18].

Amazon and Microsoft offer hardware as a service at the edge with AWS Outpost [19]
and Azure Stack Edge [20]. This equipment can be installed on-premises and interact
with other cloud services. However, inbound and outbound traffic is a paid service for
these offers.

Large cloud computing providers mostly offer new hardware that can run their cloud
solutions at the edge. However, these solutions are not edge-native and still have strong
dependencies on cloud infrastructure. These proprietary solutions create vendor lock-
in environments that might become problematic for future interconnection between
systems in the Cloud-to-Edge Computing Continuum.
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This section is not an exhaustive collection of all edge computing commercial offers.
However, the creation and development of these commercial offers highlight a growing
interest in edge computing from the major public cloud providers and telecom operators.

Edge computing orchestration frameworks

A whole ecosystem is emerging around edge computing. In addition to commercial
offers for hardware, there are numerous frameworks, open-source projects, and research
initiatives whose goal is to improve edge computing workload orchestration. In this
section, our main interest is to describe existing orchestration tools that help manage
edge services.

Kubernetes (K8S) is the de facto standard for workload orchestration in the cloud
computing industry. It is available at a different level according to users’ needs: user-
managed cluster (hosted on VMs or bare-metal), managed cluster (the users only need
to write the K8S manifests), and serverless (users only provide code or a container,
Kubernetes can be used by cloud providers for managing serverless workloads, but it is
not the only option available).

However, Kubernetes is not ready for orchestration at the edge out of the box. Ku-
bernetes was designed for large data centers where hardware is similar (e.g., mostly
racked servers with x86 CPUs, but it is changing now. ARM-based CPUs are getting
more attention than in previous years), and networking is homogeneous (wired network
between all machines, higher reliability and bandwidth and lower latency than wireless
technologies. Networking is very performant within the same public cloud area).

Although not ready for edge orchestration, it is possible to extend Kubernetes to
support it. Kubernetes has two main limitations for the edge: i) orchestration has to
consider additional information such as networking (delays, available bandwidth, lim-
ited access to the control plane), users’ location, node characteristics (e.g., AI accelerator
available, battery-powered device), ii) lightweight cluster management to run on the
smaller nodes. Also, it is worth mentioning that Kubernetes is not the only tool available
for orchestration at the edge.

Different Kubernetes flavors are tailored for orchestration at the edge. KubeEdge is an
open-source system that extends Kubernetes to support edge and cloud interactions [21].
KubeEdge control plane can support offline mode, which is helpful if an edge node is
temporarily disconnected from the cloud. It also supports IoT protocols such as HTTP
and MQTT. k0s is a single binary Kubernetes cluster [22], a lightweight alternative to
K8S. k3s is also lightweight (also single binary) Kubernetes, made for ARM devices [23].
MicroK8s canonical’s lightweight K8S distribution made for the edge and development
purposes [24]. These three lightweight Kubernetes distributions can easily be executed
at the edge.

This last paragraph presents various alternatives to Kubernetes for orchestration at
the edge. EVE is an initiative from the Linux Foundation to build an Operating System
to orchestrate devices across the Edge-to-Cloud Computing Continuum [25]. Ekuiper is
an edge IoT processing framework that can help link the edge and the cloud. It allows
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data processing at the edge with a very small footprint (low compute and memory
requirements) [26]. Fogflow is an edge computing orchestration framework [27]. Near-
byComputing is an edge orchestration platform for the edge [28]. Nebula Orchestrator is
a container orchestrator for IoT and distributed systems. Nebula is built to run on edge
nodes or CDN facilities [29]. Nomad is an alternative to Kubernetes for orchestrating
and scheduling workloads in cloud computing [30]. Nomad also offers useful features
for edge computing: it is easier to use it to federate multiple regions (which can be at
the edge or in the cloud), and it is better for scaling (it can handle more nodes). It is
also suitable for orchestrating non-containerized applications. According to Hashicorp,
the company developing Nomad, their product is easier to use than Kubernetes, which
makes it a better candidate for the smallest applications. Onap is an orchestration
platform for telco networks [31]. Open Horizon is the Linux Foundation’s initiative
to orchestrate machine learning workloads across the Computing Continuum [32]. It
is a high-level orchestration that can federate and orchestrate many Kubernetes clus-
ters across the Computing Continuum. Openshift at the edge, Redhat orchestration
framework for edge computing [33]. StarlingX is a service for deploying and managing
Cloud infrastructures across the Computing Continuum [34]. StarlingX is a pilot project
from the OpenStack Foundation. OpenStack is one of the most used open-source cloud
software. In [35], the authors explain how it can be extended to support edge computing
and its integration with 5G.

Edge computing problematics

Limited resources are the main problem of edge computing. As described previously,
commercial offerings for edge computing are still in their infancy. Therefore, there is a
lack of resources to enable edge use cases everywhere.

First, computing and storage resources are limited. Edge resources are proposed
as dedicated servers (that can be placed on-site or at telco facilities) or as micro data
centers. Micro data centers are a small-scale replica of what can be found in public
cloud facilities. Then, available resources are limited due to the smaller size of the site.
Consequently, use cases that require heavy computing or to store large data sets could
be limited (without additional resources we can find in the Computing Continuum).

Also, there are geographical disparities between the edge locations. Some areas
might have many available servers, while others have no local micro data center at all.
These disparities are similar to what happens during the deployment of telco’s new
generation of networks. For example, 5G was primarily implemented in dense urban
areas, but it is still missing in some rural areas. We think that edge computing adoption
is following the same pattern. Some areas already have access to it, while others are
going to wait years for it.

The cost might also be problematic; limited resources at the edge might imply higher
costs. Micro data centers are smaller than their public cloud equivalents. Therefore, it is
not possible to have the same energy due to the scale; it is possible to save money in data
centers due to the huge numbers of servers and to achieve economies of scale. However,

5



Chapter 1. Introduction

there is a trade-off to be found between the higher price of computing resources and
saved bandwidth economies. Such trade-offs are explored in chapter 4.

Scalability and orchestration are two other challenges. A good orchestration system
is required to keep up with the increasing number of devices. The industry mostly
offers semi-manual placement methods to its customers; they need to choose the area to
deploy their applications. However, it is not possible to "guess" where end users will be,
so this approach is limited. However, research offers many scheduling techniques to
address this issue, either for developing new systems or extending existing ones.

Interoperability also needs to be addressed to offer edge services to the broadest
geographic area possible. The different platforms and providers need to be interoperable
to offer wide area coverage and enable services in all locations. A large number of
protocols are available in this heterogeneous environment. Establishing robust standards
is crucial to facilitate seamless communication between the diverse equipment at the
edge.

The Computing Continuum and a unified orchestration methodology can help solve
most of these limitations, as described in the following section.

1.2. The Edge-to-Cloud Computing Continuum

Cloud computing allows organizations to use computing resources on demand without
investing in costly hardware. The National Institute of Standards and Technology (NIST)
standardized the cloud computing paradigm in 2011 [36]. We refer to the Edge-to-Cloud
Computing Continuum as an extension of the traditional cloud computing paradigm,
an extension in the sense of the resources managed, a paradigm that includes the
resources from edge and fog computing in addition to the cloud resources. The Edge-
to-Cloud Computing Continuum is a distributed Computing Continuum; it includes
communication (networking), computing, and storage resources from traditional data
centers to the edge of the network [6, 37].

Fog computing is an intermediate computing layer in the Edge-to-Cloud Computing
Continuum, located between the edge and the cloud [38, 6, 7, 39]. The main goal of fog
computing is to extend cloud capabilities to the edge in order to reduce response time
and outbound traffic from the data centers, using servers that are closer to the end users
than the data centers. However, it differs from the Cloud-to-Edge Computing Contin-
uum; fog extends cloud capabilities while the Computing Continuum offers seamless
integration of all resources from the cloud to the edge. Therefore, fog computing is
a part of the Computing Continuum. Fog computing was developed to answer the
increasing demand for processing and storage of IoT devices’ generated data[40]. The
purpose of fog computing is not to replace cloud computing but to complement it [41].

Fog computing shares many problems with edge computing; fog resources are
heterogeneous devices located outside of traditional data centers. Also, a fog orchestrator
must deal with a very large number of geographically distributed nodes. Fog users
mostly use wireless networks to access content or applications. Therefore, strong
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Figure 1.1.: The Edge-to-Cloud Computing architecture.

compatibility is required between the compute, storage, and network layers.
Figure 1.1 represents The Edge-to-Cloud Computing layered architecture. Edge, Fog,

and Cloud are the main layers of this Computing Continuum.
Edge and fog are often used interchangeably (in the scientific literature) to refer

to moving computation outside of the data centers. Even though they both exist to
reduce the amount of data sent to the cloud (or traditional data centers), there are some
differences. Figure 1.1 illustrates these differences. The edge represents the part that is
the closest to the end users (e.g., close to a 5G antenna). The fog part encompasses all
the resources between the edge and the cloud (traditional data centers). The aggregation
of Edge, Fog, and Cloud forms the Edge-to-Cloud Computing Continuum. We can also
refer to this Computing Continuum as the Computing Continuum.

For clarity and conciseness, we prefer to use the terminology Computing Continuum
instead of the Edge-to-Cloud Computing Continnum in the following dissertation. Indeed,
these two terms refer to the same concept.

According to Figure 1.1, software can be deployed at several levels: at a data center in
the cloud, at a data center of another cloud provider, at a micro data center somewhere
in between cloud and edge, at a MEC node (MEC is further described in the next
chapter), at an edge or an IoT device.

The Computing Continuum complements the edge Computing paradigm; it creates
another abstraction layer that includes various computing resources. Building an
orchestration system at the Computing Continuum level would offer a solution to
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address the lack of scalability and resources at the edge. Traditional data centers can
host applications if there are no available resources at the edge. Based on application
requirements, a unified (over the whole Computing Continuum) orchestration system
can deploy applications anywhere in the edge, fog, and cloud layers. It is possible to
reduce the usage of edge resources (that are more limited and expensive than cloud
resources; it is possible to perform economy of scale in traditional data centers) if a
nearby data center satisfies all the requirements of an application.

Therefore, the Computing Continuum enables the same use cases as edge computing;
the Computing Continuum aggregates the compute resources at the edge, and then edge
applications can be deployed in the Computing Continuum. The Computing Continuum
provides a high-level view of available resources over many geographical locations,
which opens a way for addressing scalability and orchestration of edge resources. A
global view of the situation makes orchestration decisions easier; it provides access to
more information. Using this global view can help adopt edge computing, making
edge resources easily accessible. With a performant and unified orchestration system,
deploying applications at the edge (or anywhere in the continuum) should be as easy as
it is in traditional public clouds.

The continuum includes computing, networking, and storage resources, not only
compute capabilities [6, 39]. However, this thesis mainly focuses on computing resources,
even though networking plays an essential role in our placement methodologies. Our
methodologies search for the best way to orchestrate and allocate computing resources
(with networking as a constraint); our goal is not to orchestrate or allocate networking
or storage resources.

Benefits of unification of resources in the Computing Continuum

Offering seamless access to many resources of the Computing Continuum with unified
orchestration has many benefits. These benefits are similar to edge computing benefits
because the Computing Continuum includes the resources at the edge in addition to
those in the cloud. Here are the main benefits of unified orchestration for the Computing
Continuum: lower latency [6, 7, 8, 9, 10, 39], reduced bandwidth usage [6, 7], better
support for mobility, improving context awareness [6, 8], reduced energy consumption
(for IoT and other small battery-powered devices) [7, 10], enhancing the QoS [8], better
integration with telecommunication technologies like 5G [9, 10], and improved resource
utilization with a global approach to orchestrate resources.

Computing Continuum use cases

To better understand the benefits of the Computing Continuum, we think it is important
to know the essential use cases it enables with edge computing. Therefore, this section
presents many use cases but is not exhaustive. Indeed, the primary use case for the
Computing Continuum is latency-sensitive applications. Also, we have the real-time
applications category, which is close to the latency-sensitive ones. Latency-sensitive
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applications are applications with strict networking delay constraints. In addict to
delays, real-time applications have reliability constraints. Data-intensive applications
are another category of use cases. These applications exchange a lot of data with their
users. They have a significant impact on bandwidth usage, and they can lead to network
congestion. Even though we have identified these categories of use cases, it is not easy to
categorize actual use cases. Actual use cases belong to one or many of these categories.

Video processing and data processing is a mature use case of edge computing (and
therefore for the Computing Continuum) [37, 10]. Computing data and video at the
edge helps to save network costs and reduce latency. It is perfect for answering a vast
need for computation to process a huge volume of data and provide real-time or near-
real-time performances. A data processing application can be software that aggregates
data from IoT devices and sends the aggregated data to the cloud. A video processing
application can be, for example, a surveillance camera in a security system that can
use edge resources to enable immediate response to potential threats. For example,
body-worn cameras (BWCs) are embedded devices that law enforcement officers can
wear to help them in their duties. BWC streams can be locally processed at the edge to
help detect hazardous behaviors. Images can be processed at the edge and not be sent
to central locations to preserve people’s privacy.

Federated learning is an important use case that can benefit from edge computing [42,
43]. Federated learning can run at the edge; it improves privacy and security and reduces
bandwidth usage and the computation needs for machine learning training. Traditional
machine learning was developed to provide near-optimal solutions to complex problems.
Tons of data in centralized locations are required to train machine learning models. In
fact, centralized machine learning training has many limitations: i) high computational
load, so training is long, ii) data coming from heterogeneous devices need to be pre-
processed (normalized), iii) sending vast volumes of data to centralized locations raise
security and privacy concerns.

Decentralized machine learning offers two strategies to reduce the computation load
and training time: model parallelism and model aggregation. Model parallelism consists
of training different parts of a model (e.g., different neural network layers) on different
machines. The model aggregation idea is to train a model on different devices, giving
each device a subset of the data and aggregating all of the parameters. In other words,
training a full model on each device with only a subset of the data, and then aggregating
the results. Model parallelism allows shorter training times but still requires uploading
all the data from the devices to central locations. On the contrary, a model aggregation
approach allows us to keep the data on the devices and to upload only the results of
each individual training.

Federated learning is a distributed machine-learning technique that ensures the
privacy of data while training models. The idea is that each node in federated learning
can access a model that is trained with its data and the data from the other nodes. Each
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node first trains its model using its data, then, the parameters of the local models are
frequently pulled from the devices, aggregated, and finally, new parameters can be sent
to all devices. This method allows models to be trained with large datasets (data from
all devices) while ensuring the privacy of each device. The data never leaves the devices;
only the parameter updates are sent. Federated learning also reduces bandwidth usage;
only the parameter updates are sent instead of the full datasets.

Edge computing is particularly helpful for implementing Federated Learning. Devices
at the edge can train models using local data and send parameters to a cloud location.
For example, an autonomous vehicle model can be fine-tuned at the edge. In this case,
video streams from the vehicles are the training datasets. They can be sent to an edge
server using the 5G network to train a model. Training is a compute-intensive task;
it is unsuitable for a car with limited energy and computing capabilities. Therefore,
videos can be sent to a nearby edge node for local training. Then, trained models
can go back to vehicles where they can easily execute the inference of these models.
Federated learning for autonomous vehicles is very helpful; it increases the size of the
datasets while preserving the user’s privacy. These datasets can include a wider variety
of landscapes and weather conditions. Also, traditional vehicle embedding cameras can
be a part of the local training process without negatively impacting the drivers’ privacy,
increasing the global performance of autonomous vehicles.

Autonomous vehicles are an important use case for the Edge-to-Cloud Computing
Continuum. Even though fully autonomous self-driving vehicles are far from commer-
cialization, it is not unrealistic to consider these use cases in the short term. Current
edge computing use cases can be integrated into non-autonomous cars first. They can
improve the actual driving experience by providing extra information to improve safety
and convenience. Then, while already adopted and running in a real environment, these
applications can be the foundation for future generations of vehicles.

Improving vehicle perception is the main benefit of the Computing Continuum for
autonomous vehicles [44]. Edge computing enables cooperative perception for a whole
group of vehicles. Vehicles with embedded GPUs can share the objects they perceive,
while vehicles only equipped with cameras can share video streams instead. Processing
a huge amount of data from video streams in real-time requires edge computing. Also,
processed video streams can include video streams from vehicles as well as streams
for fixed cameras located close to the road (adding interesting view angles). Edge
resources can then be used to run software aggregating this data and broadcast it to
nearby vehicles. Such data can provide additional information about objects or obstacles
located in the vehicles’ blind spots. It provides immediate feedback to the drivers or
driving software. In addition, aggregated data can provide more details about road
anomalies or the locations of Vulnerable Road Users (VRUs). Finally, this data can be
helpful for a city traffic management system.

10



1.3. Motivations for unified orchestration in the Computing Continuum

Augmented Reality and Virtual Reality (AR/VR) are use cases that can be improved
with edge computing. The actual limitations of AR/VR headsets (except for price) are
lack of portability and energy consumption.

AR/VR headsets are worn equipment, so they have limited space. Limited space
implies a trade-off between performance and portability. Headsets need to be battery-
powered to be portable, which greatly impacts autonomy and performance. It is
impossible to embed a powerful chip or GPU without an adequate power source.

To address this issue, offloading the applications outside the headset to the edge
is possible. Edge allows computing-intensive applications to run without the risk
of running out of battery. However, to maintain a similar quality of experience, the
application requires high bandwidth and low latency. Otherwise, the image quality
would be lower, and users might experience motion sickness due to the delays. In
addition to the latest wireless technologies (e.g., 5 G, WiFi 6), edge computing can
achieve good performance without sacrificing autonomy or portability. In the long term,
the mass adoption of AR/VR, powered by edge computing, can enable new paradigms
like the metaverse [45].

Edge computing and the Computing Continuum enable many other use cases than
those presented in this section. We can cite some of the most notable of them: smart
factories (e.g., predictive maintenance using AI inferance at the edge [6], Industrial
IoT [10]), improved health care (e.g., improve medical imaging while keeping data
private), smart agriculture (e.g., using IoT devices to improve efficiency [10], monitor
crop using drones), Holographic Communication [46], Digital Twin (TD) [6]. For
example, an edge device can aggregate data from sensors in a factory and use it to
predict maintenance for some equipment before the break occurs or to reduce the
maintenance frequency. Predictive maintenance helps reduce cost (avoiding unneeded
maintenance), increase the equipment lifespan (identifying issues early), and enhance
safety (quicker identification of failures that could lead to accidents).

1.3. Motivations for unified orchestration in the Computing
Continuum

The Computing Continuum is a resource set that spreads from traditional data centers
to servers at the network’s edge. These resources need easy access to facilitate their
adoption. Also, aggregating resources across the Computing Continuum would help
better distribute workloads. Deploying applications at the edge or in a data center
regarding the application requirements can avoid over-provisioning more limited edge
resources. However, aggregating these resources using a unified approach is challenging.
Ullah et al. have identified six problems to address for building an orchestration system:
lack of standardization support for application description, SLA management, context-
aware resource discovery, proactive runtime reconfiguration, decentralized architectures,
and security management [39].
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The Computing Continuum needs unified orchestration

We think that all Computing Continuum resources should be accessible easily. De-
ploying applications in the Computing Continuum and at the edge should be as easy
as deploying applications in current data centers. Solutions that only integrate edge
resources are unlikely to be sufficient for most users due to limited resources. There is a
need for considering edge, fog, and cloud as a whole, not separate components [6, 37].

Edge computing adoption should be greatly facilitated by software that can run on
every node without requiring additional work from developers, as well as easy access
to resources in the Computing Continuum. Having the same software that can run on
different hardware is a different research problem. Solutions like WebAssembly are
described in chapter 2. The Computing Continuum needs a unified orchestration of
resources to improve access to its resources.

The Computing Continuum needs unified orchestration to improve resource utiliza-
tion. The Computing Continuum is a terminology that describes all the resources we can
find from the traditional data centers to the edge as described in Figure 1.1. However, no
tool permits to access all of the resources seamlessly. There is a need for an orchestration
system for the Edge-to-Cloud Computing Continuum [37, 8]. To deploy software at the
edge, application developers need to choose a service provider and specific regions. The
development of location-aware mechanisms that can deploy services according to the
actual location of the end-user is still in its infancy. Location awareness is necessary in
order to achieve low latency; services and users must be close to each other. A unified
orchestration system (centralized or decentralized) would enable a seamless experience
for application developers; they could easily deploy software at the edge, close to their
users without thinking about it. Therefore, deploying applications at the edge would be
as easy as it is with current public clouds.

Traditional cloud computing techniques are impractical in the context of the Com-
puting Continuum [6, 37, 9, 39, 47]. Cloud computing techniques need to be extended
to support the specificities of the Computing Continuum. New parameters need to be
addressed at the orchestration level: high heterogeneity of the nodes, the geographic
distribution of the nodes, the continuum infrastructure, networking heterogeneities (e.g.,
variable latency and bandwidth between the nodes), automated or seamless integration
of the various resources (from multiple providers and for different tenants/multi-tenants,
multi-cloud), the energy footprint of the nodes.

They are important to consider when building a new unified orchestration system for
the Cloud-to-Edge Computing Continuum. To allow the usage of edge computing at
scale, we need a global approach that considers all the nodes regardless of their location.

The orchestration system should address the dynamic behavior of the resource cluster.
Achieving constant quality of service when users are moving is challenging. User
mobility generates problems unreliable connection problems. Unreliable connections
or energy management (e.g., a node running out of battery) can also be problems for
nodes at the edge. It can cause node churn, resources appearing and disappearing from
the system over time [48, 49]. The orchestration system should address the node churn
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and the user mobility.
Kubernetes is the de facto standard method to deploy an application consisting of

multiple components (i.e., micro-services) in the cloud. To use this container orches-
tration system, the developers can write a descriptive model (named manifests in the
K8S ecosystem; they are written in Yaml 1) to specify the desired state of an application.
Kubernetes works at making sure that the current state matches the desired state even
during disturbances such as node failure and changes of requirements such as sudden
surges in traffic.

Kubernetes works well for applications running in traditional data centers. CPUs and
networking are similar in most nodes in a traditional data center. However, Kubernetes
is not made for deploying applications across multi-layers of a hierarchical cloud,
according to Figure 1.1. All layers outside the traditional cloud are mainly managed
manually without any adaptation to the changing needs of an application. Consequently,
Kubernetes and other orchestration systems need to evolve to support the multiple
layers of the Computing Continuum.

Most of the commercial offers that provide access to edge computing do not offer
seamless orchestration and deployment of applications throughout the whole Computing
Continuum. Some public cloud providers offer to connect their edge resources to their
data centers, but there is no seamless way to deploy applications over the whole
Computing Continuum; defining the data center region or the edge location is necessary.

Computing Continuum unified orchestration challenges

Unified orchestration of the Computing Continuum can improve edge computing
adoption. However, achieving effective unified orchestration over the whole Edge-to-
Cloud Computing Continuum is a whole set of problems.

Unifying the Computing Continuum resources raises many research challenges to
tackle: multi-cloud and tenants, orchestration, security and privacy, context awareness,
low latency and location awareness to geographically distributed nodes, mobility, a
vast number of nodes, predominant role of wireless access, strong presence of network
intensive and real-time applications, scalability, node and networking heterogeneity,
cost-effectiveness, regulatory compliance [39, 8, 50].

The first issue for unified orchestration in the Computing Continuum is heterogene-
ity [10]. There are two kinds of heterogeneity: computing and networking. In traditional
data centers, networking is mostly homogeneous (same bandwidth and latency between
the nodes). The networking conditions might vary significantly at the edge or in the
Computing Continuum. That makes a tool like Kubernetes unsuitable for scheduling
workloads in heterogeneous environments. Also, the Computing Continuum is an
aggregation of various resources that are geographically distributed. Among them,
we can find servers with different CPU architectures and various accelerators such as
General-purpose computing on graphics processing units (GPGPUs), TPUs (Tensor Pro-

1https://yaml.org/
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cessing Units, mainly used for machine learning workloads), ASICs (Application-specific
integrated circuits), or FPGAs (Field-programmable gate array). Software needs to adapt
to these different platforms to use most of their capabilities and have better performance
and energy efficiency. Developing for this heterogeneous infrastructure landscape is
difficult and may lead to cloud vendor lock-in, infrastructure over-provisioning, and
inferior performance and/or power consumption characteristics.

Location awareness is another issue. In order to deliver ultra-low latency, application
placement needs to be aware of the geographical location of the nodes and of the end
users. Therefore, orchestration can make decisions based on available computing and
networking resources. It is harder to manage a geographically distributed infrastructure.

Reacting to volatility and mobility in the Computing Continuum changes is chal-
lenging. In the Computing Continuum, end users can be mobile (e.g., a 5G device),
and networking requirements need to be monitored and watched to keep a constant
QoS. Available resources may also vary in the Computing Continuum. A node might
become unavailable in case of network failure, or a new node might become available
when a resource-intensive application finishes its computation. As a result, a unified
orchestration approach for the Computing Continuum should be able to react to changes
to maximize resource utilization and ensure the QoS. Predictive approaches might also
be a good complement to reactive approaches, especially to minimize the number of
application migrations and avoid wasting time and resources by reacting to a stimulus
that could have been predicted. For example, anticipating patterns of utilization (e.g.,
time and location) of some applications to adjust the scheduling decisions.

A unified orchestration system for the Computing Continuum should be able to scale
to address the increasing number of edge devices and the future adoption of edge
computing use cases. Either centralized or distributed, such an orchestration system
requires to be scalable. Also, privacy and security deserve special attention in the
continuum [6]. Micro data centers improve privacy and security by lowering the attack
surface. In contrast, a unified orchestration system will increase the attack surface; more
accessible devices are more accessible either for users or malicious actors. A trade-off
needs to be found between usability and security. Security is an essential challenge for
the Computing Continuum. Distributed systems are known to be harder to defend: they
have a larger attack surface and are more complex.

Also, the scalability of an orchestration approach needs to be investigated to cope
with an increasing number of nodes and end users.

Finally, interoperability is a significant challenge for unified orchestration in the
Computing Continuum. It is very unlikely that cloud (and edge) providers offer edge
resources in every geographic area. Therefore, companies will need services from
multiple providers to make their applications available to most people. Then, resource
management standards will be very beneficial for deploying applications using a single
interface. Moreover, standards would help create a unified orchestration approach to de-
ploy applications using resources from multiple providers. Currently, edge services are
dependent on the implementations of a few cloud computing companies. Overcoming
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vendor locking might be crucial to the adoption of edge computing and the unification
of resource orchestration in the Computing Continuum.

1.4. Research Questions

In this thesis, we propose investigating optimization and orchestration in the Cloud-to-
Edge Computing Continuum. We are interested in effectively studying the Continuum
with a reliable and reproducible method to reduce costs/energy in the whole Continuum
and how to adapt to a changing environment (e.g., when users are moving or computing
resources are freed).

This thesis aims to facilitate access to resources across the Edge-to-Cloud Computing
Continuum. We want to improve and contribute to current proposals to make a unified
orchestration possible for the Edge-to-Cloud Computing Continuum. There are two
main problems to make this possible: i) making hardware more accessible through
unified orchestration systems, and ii) having software that can run on all different
hardware without extra difficulties for developers.

In this thesis, we explore how to make hardware more accessible. First, build an
experimentation methodology to ensure future orchestration or scheduling approaches
are usable in real-world conditions. Then, we explore some orchestration strategies that
aim to reduce deployment costs or energy consumption. Lower costs are an incentive
to maximize the usage of resources and avoid wasting them. Finally, we implemented
these approaches by extending Kubernetes, the de facto industrial standard for container
orchestration. Following that standard, our methodology can easily be used on any
cluster.

The research presented in this thesis focuses specifically on two tasks related to
orchestration in the Edge-to-Cloud Computing Continuum: creating a methodology
for evaluating scheduling and orchestration strategies in the Cloud-to-Edge Computing
Continuum and providing orchestration strategies.

Effective experimentation is necessary for developing new orchestration methodolo-
gies. Maia et al. highlight the need for experiments in a real environment; simulations
often lead to low performances in real environments [6]. They also insist on the need
for datasets that are as complete as possible for machine learning-based solutions
experimented in simulated environments.

Building an evaluation platform for the Edge-to-Cloud Computing Continuum can be
both expensive and time-consuming. It prompts our first research question:

Research Question 1 (RQ1)

How can orchestration in the Cloud-to-Edge Computing Continuum be efficiently
evaluated?

Palomares et al. highlight many challenges to be addressed, among them: scalability,
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cost-effectiveness, and resource utilization [8].
In this thesis, we explore different possibilities for improving the performance of

orchestration in the Edge-to-Cloud Computing Continuum in an effort to answer the
following research questions:

Research Question 2 (RQ2)

How to reduce costs and energy consumption while ensuring QoS?

Research Question 3 (RQ3)

How to adapt scheduling decisions to a changing environment?

Research Question 4 (RQ4)

How to orchestrate applications in a heterogeneous cluster?

An heterogeneous cluster (as mentioned in RQ4) is a set of computing resources of
different kinds (e.g., different CPU architectures), all connected by networking links that
can have various characteristics (e.g., different bandwidth and latency).

1.5. Contributions

We first propose a methodology for evaluating resource orchestration in the Cloud-to-
Edge Computing Continuum. Moreschini et al. highlight the fact that K8S support is
important [7]. In [9], the authors state that Kubernetes support is a critical feature for
automation. This evaluation technology is based on a Kubernetes cluster. It helps build
a reliable testbed without spending too much time and money. Testbeds can be set up
in traditional cloud environments.

We also develop an orchestration methodology that helps reduce the costs of deploying
applications in the Computing Continuum. It tries to answer the above-mentioned
problems with a network-aware approach and a solution that reacts to the dynamicity
of the Computing Continuum environment.

Our vision here is to create a seamless Edge-to-Cloud Computing experience. Unlike
many approaches where data centers (traditional or located at the edge) are managed
independently, we want to propose a global approach where any resources from the
continuum can be accessed. We do not categorize nodes into edge or cloud types.
Our orchestration methodology is based on the node’s characteristics (e.g., number of
available CPUs, networking delays with some locations). Our methodology is made
with the Edge-to-Cloud continuum in mind, but it can fit any cluster, either in public,
private, or hybrid cloud.
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Finally, we investigate the performances of container CPU limitation mechanisms.
Tuning and selecting CPU limits and limitation mechanisms can significantly impact the
performance of parallel applications. Therefore, we study the performances of the two
main limitation mechanisms and build a tool to automatically select the best mechanism
to save computing resources and energy. Saving resources is particularly important at
the edge, where resources can be more limited than in a traditional data center. We also
make sure that our methodology also works on heterogeneous clusters.

1.6. Overview

This section presents an overview of this thesis.

Chapter 2 presents the background. This chapter is based on the following publication:

• Rac and Brorsson. “At the Edge of a Seamless Cloud Experience”. 2021. [51].

Chapter 3 presents our experimental methodology. Building a Cloud-to-Edge Com-
puting Continuum testbed is costly and time consuming. It requires different computing
equipment to reflect the diversity we can find in the Continuum. In addition, networking
with various properties is necessary to reflect the challenges they induce. To answer this
problem, we propose a methodology for building testbeds and studying orchestration
in the Edge-to-Cloud environment. To illustrate our methodology, we implement a 5G
network (with a simulated radio part) to ensure the performance and quality of our
methodology. This 5G network includes both the core side with the 5G Network Func-
tions and the client side with the User Plane Function and the User Equipments (UEs).
We implement a scenario with many UEs, moving from one 5G cell to another, using
the 5G control plane with a data-intensive workload (high-resolution video streaming).
We also study different topologies for the 5G core to assess how different placements of
5G NFs can impact the 5G core performances. This chapter is based on the following
publication:

• Rac, Sanyal, and Brorsson. “A Cloud-Edge Continuum Experimental Methodology
Applied to a 5G Core Study”. 2023. [52].

Chapter 4 presents our work to optimize application placement in the Cloud-to-
Edge Computing Continuum. In that part, we use a monetary cost, but that work
can be extended to other costs and metrics, such as energy consumption. We present
a scheduling methodology that can react to dynamic situations, e.g., when UEs are
moving (we need to move the application to ensure low latency) and when new nodes
are available (ending a job frees some space for new applications). This chapter is based
on the following publications:

• Rac and Brorsson. “Cost-Effective Scheduling for Kubernetes in the Edge-to-Cloud
Continuum”. 2023. [53].
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• Rac and Brorsson. “Cost-aware Service Placement and Scheduling in the Edge-
Cloud Continuum”. Mar. 2024. [54].

Chapter 5 presents our study of container CPU limitation mechanisms. It first
describes the performance difference we observe between the two main CPU limitation
mechanisms. Then, it presents our tool for automatically setting CPU limitations. This
chapter is based on the following publications (still under review):

• Rac and Brorsson. “Understanding CPU Limitation Mechanisms in Containerized
Parallel Applications”. 2024. [55].

Chapter 6 finally concludes this dissertation by summarizing the main results and
discussing future research directions.
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Chapter 2.

Background

This chapter presents the necessary background to understand better the work presented
in this thesis.

This chapter is based on the following publication:

• Rac and Brorsson. “At the Edge of a Seamless Cloud Experience”. 2021. [51].

This chapter first presents computing and cloud-native technologies that are the
foundations for edge-native technologies. Then, it introduces networking technologies
that are important for building the Computing Continuum. Networking is key for
connecting nodes in the Computing Continuum between various locations. Finally, it
presents the orchestration and scheduling techniques in the Computing Continuum.

2.1. Computing

This section presents the main tools and techniques that can be used for deploying
and managing applications in the Computing Continuum. Most of these tools were
initially built for cloud computing. However, they are also very helpful for the Com-
puting Continuum, even if they need some improvement to support the Computing
Continuum specificities. This section first presents available hardware in the Computing
Continuum. It shows the virtualization technologies that can help deploy applications in
the Computing Continuum. Finally, it explains the main orchestration tools for building
the Computing Continuum.

The Edge-native concept was first introduced by Satyanarayanan et al. in 2019 [56];
it is to edge computing what cloud-native is to cloud computing: a set of technologies
with edge computing support at their core.

2.1.1. Hardware

One characteristic of the Edge-to-Cloud Computing Continuum is heterogeneity. This
section explains the three main categories of hardware: CPUs, Accelerators, IoT devices,
and micro-controllers
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CPU architectures

All kinds of CPUs can be found in the Computing Continuum; therefore, it is important
to deploy software that can support all of them. If only one kind of edge node is available
in an area (e.g., ARM architecture), it is important to be able to support it. Virtualization
helps support these various hardware. For example, building a container image for
each CPU architecture is possible. Then, Kubernetes can select the one corresponding to
each node. Another solution would be to use WebAssembly modules on every device
without needing to compile for each architecture. The most common CPU architecture
is x86, which can be found in Intel and AMD CPUs. However, ARM-based CPUs are
increasingly used due to their better energy efficiency. Finally, RISC-V, a new open-
source architecture, is getting increasing interest from both industrial and academic
words [57, 58]. The main benefits of RISC-V chips are its cost-effectiveness (due to open
source standards), its power and energy efficiency, and its security [59].

Accelerators

Edge computing has to manage a growing demand in data processing while reducing
latency. CPU alone can not meet this increasing demand, especially for use cases that
involve image processing or AI inference. Hardware accelerators respond to this chal-
lenge by designing circuits for specific use cases. In their field of applications, hardware
accelerators are really better than CPUs and can consume less energy. It is also possible
to virtualize accelerators to make the most of their capabilities [60]. Virtualization brings
flexibility in utilization. GPGPUs, FPGA, and ASIC are the main accelerators for edge
computing. They can be used together with CPU to form heterogeneous platforms [61].

GPGPU General Purpose Graphics Processing Units (GPGPUs) are circuits designed to
execute parallel applications faster. They were initially designed to process images and
are used in a multitude of applications like Artificial Intelligence or Machine Learning.
They can be found everywhere: in data centers, personal computers, or embedded
devices. Frameworks like OpenCL or CUDA can be used to program GPGPUs.

ASIC Application-specific integrated circuits (ASIC) are circuits designed for a specific
purpose. They propose high performance and security for small sizes and lower power
consumption. [62]. ASICs are the best alternative for a specific task, but the flip side is
their lack of flexibility. They are totally incapable of doing anything different than what
they were designed to do.

FPGA Field-programmable gate arrays (FPGA) are circuits designed to be reconfigured
after manufacturing. Reconfiguration can be static, i.e., before program execution, or
dynamic, i.e., during runtime. Reconfiguration can be partial or global depending on
the circuit [61]. Although they are designed to achieve specific tasks like ASICs, they are
more versatile and can be reconfigured for many other uses. FPGAs provide low latency

20



2.1. Computing

and power consumption, making them suitable for edge or embedded devices. Public
cloud providers propose access to FPGA; analogous access could be made available for
edge computing. FPGAs are secure devices from an external perspective, but giving
access to reconfigurable hardware in a multi-tenant environment could raise security
issues. FPGAs’ reconfigurability can be very useful for a scheduler at the edge. An
FPGA can be dynamically reconfigured to execute a new task if a computing unit is
missing or unavailable. Hardware description language (HDL), like VHDL, can be used
to configure FPGAs.

IoT devices

IoT devices are important components of the Computing Continuum. These little devices
collect most of the data, which is later processed in the continuum. IoT hardware mainly
consists of small microcontrollers with limited power. These tiny devices are well suited
for embedded with a small size and low energy consumption. However, they are not
our primary interest for this thesis. Embedded devices are usually designed with one
particular goal in mind. Therefore, they are not made to run various applications like a
traditional server. It is, however, to run WASM on some microcontrollers. It then raises
new opportunities for efficiently deploying the applications on these devices. They are
important components of the Computing Continuum; they are the data collector for
many use cases.

Facilities

The hardware described above can be located in various facilities. The size of these
hardware components can range from a single-board computer to a full-scale data center.
Micro data centers, despite their smaller size, are capable of providing local computation.
Additionally, cloudlets or servers can be found directly at the user’s application facilities.
Even within a factory, small servers can be found.

Cloudlet Cloudlet is a terminology that describes a server or a micro data center
between the edge and the cloud or among the fog resources. It is part of the Computing
Continuum and can enable some edge computing use cases. The usage of this termi-
nology is less common now, but we present it here as it is an important concept for the
understanding of chapter 3.

Cloudlet can be a server, a computer, or a little cluster located at the edge of the
network, typically at one hop of the devices. With mobile devices and cloud, they
achieve a 3-tier continuum architecture [63]. Cloudlets are designed to provide services
to mobile devices [64]. The key idea of Cloudlet is to enable mobile devices to offload
computation in their vicinity. Energy consumption is one of the significant parameters
for offloading on these devices. Cloudlets must be close to mobile devices to satisfy the
Quality of Service (QoS). Cloudlets should also be able to work without the Internet.
Working in a local area would also avoid congestion in the core network.
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2.1.2. Virtualization

Virtualization is an essential technology for maximizing resource utilization in the
Computing Continuum, as it does for cloud computing. With sandboxed software
execution, it offers the necessary security for sharing hardware between multiple tenants,
reducing under-provisioned servers. Virtualization is a layer of abstraction that allows
the virtual division of hardware resources like servers into multiple shares. Each share
can be allocated for dedicated usage.

Virtual Machines (VMs) are the first level of virtualization. Many VMs can run on
one physical host, and each VM runs a full Operating System (OS). Therefore, the VM
virtualization process has a significant CPU and memory overhead; the host runs many
Operating Systems at the same time.

Containers are the second level of virtualization. They are lightweight VMs that share
libraries with the host system. Sharing libraries instead of running a full Operating
System significantly reduces resource usage compared to VMs. However, containers’
runtime is strongly dependent on the host’s OS (they use the same libraries). For
example, Linux containers cannot run on a Windows computer without the Windows
subsystem for Linux (WSL) installed. Containers are also dependent on the CPU
architecture of their host. A container supports only one architecture. Developers
targeting many CPU architectures need to build many container images, one for each
supported architecture. However, there are many different containers, all following the
same standards.

WebAssembly (WASM) is a third virtualization level that can be used in the Com-
puting Continuum. It is a technology that can be used everywhere, not only in web
environments. It was first proposed for the web but now goes outside of the browser.
It implements the WASI standards to interact with machines that are similar to POSIX
[65]. WebAssembly is a binary file that can be executed on almost every device, from
traditional x86 CPUs to tiny microcontrollers. WebAssembly is a compilation target
for major high-level programming languages such as Rust, Go, and C/C++. WASM
can run on every hardware that supports at least one WebAssembly runtime and on
every major web browser (e.g., firefox, chrome, safari, edge). The key advantages of
WebAssembly (WASM) technology lie in its ability to compile software once and run
it everywhere (it is very important for the Computing Continuum where devices are
mostly heterogeneous), its speed, and its inherent security. With sandboxed execution
as its default setting, it ensures a high level of security, a crucial aspect in today’s digital
landscape.

Figure 2.1 compares the different virtualization techniques to a server without virtual-
ized components.

WebAssembly is also a technology to consider in an edge computing environment.
It brings lightweight and fast execution, like containers, but in a more secure way by
providing sandboxing and architectural independence. Security is fundamental in a
multi-tenant context where providers execute untrusted codes on their platforms.
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Figure 2.1.: Comparison of virtualization techniques

Containers

Containers are different from Virtual Machines (VMs). They are built on top of an
Operating System (OS) and share libraries with their OS. Sharing libraries makes them
much lighter than VMs, which use shared resources. It is easier to run more of some,
and it is very low-cost (in terms of memory and CPU) compared to a VM.

Containers are rapidly becoming the standard deployment technology in cloud com-
puting. They allow better resource management and make application development/de-
ployment easier. Container technology can also be considered for edge computing.

According to Hong and Varghese, [66], containers propose good performance for edge
computing. However, they are not ready to deal with heterogeneity. Even if containers
support GPGPUs, they do not support specific hardware like data processing units
(DPU), tensor processing units (TPU), or field-programmable gate arrays (FPGA). Those
hardware accelerators are essential to achieve ultra-low latency on specific applications
at the edge. However, building containers for multiple targets requires additional steps.
Containers strongly depend on their host; e.g., a Linux image cannot be directly executed
on a Windows host; it needs access to the Windows Subsystem for Linux (WSL).

Kata containers [67] are really lightweight VMs that can be managed like a container
(e.g., in Kubernetes). Using them permits workload isolation and better security. Com-
bining VMs and containers could be a solution to manage hardware accelerators and
security.

Container standards are helpful to build container orchestrater. These standards
enable orchestrators such as Kubernetes to use different container runtimes. There
are two major standards for containers: Open Container Initiative (OCI) that defines
standards for container images, runtime, and distribution [68] and Container Runtime
Interface (CRI) which is an API to define how Kubernetes can use different runtimes
[69].

OCI standardizes container images, runtimes, and distribution (container registry).
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Runc is the default container runtime for Kubernetes. The CRI defines how Kubernetes
interacts with container runtimes. The default container runtime interface is Containerd
(previously Docker engine [70]. CRI-O is a lightweight alternative to Containerd [71].

These container standards help define edge-native applications and use traditional or-
chestrators made ready for the edge. Following these standards should make application
deployment easier.

Live migration between edge devices is an important mechanism. Some devices at
the edge can be mobile, and their applications have to follow them to always be as close
as possible. Xu et al. [72] present a Docker container live migration tool. They explain
that container migration is more complicated than VM migration. Docker container
migration needs to migrate image, runtime, and context.

WebAssembly

WebAssembly (also called WASM) is a new technology design for web applications
that rapidly gains interest outside the web. The idea behind WASM is to create a new
assembly standard that proposes a unique binary that can run on every processor with
good performance. WASM also comes with a memory-safe structure and lightweight
sandboxed execution that allows a high-security level and an efficient execution. It is
compatible with most high-level programming languages (e.g., Rust, C/C++, golang).

WebAssembly could have a significant contribution to edge computing. WASM can
help developers maintain a single code-base and address most devices with a single
binary. Considering that edge devices will have different architectures, WebAssembly
could become a game-changer. WebAssembly applications could seamlessly be deployed
on every edge device without worrying about the platform or architecture.

The major web browsers (Chrome, Edge, Firefox, and Safari) all support WebAssembly.
WASM can run outside browsers using one of the many available runtimes.

WebAssembly Standard Interface (WASI) aims to propose standards to facilitate
communication between WebAssembly conceptual machine and its host system [65].
WASI has an objective similar to POSIX.

The flexibility and performance of WebAssembly are strongly linked to its runtime.
WebAssembly can be interpreted; it supports more platforms but has lesser performance.
Some runtimes support Just In Time Compilation (JIT), performances are better for
heavier tasks, but binaries are larger. Then, Ahead-Of-Time (AOT) compilation provides
the best performances. Execution performance really depends on the runtime because
they do not have the same level of optimization. Runtimes evolve quickly and often;
therefore, it is not so easy to evaluate WASM performance.

In [73], Kakati and Brorsson describe the performances of Webassembly Modules
outside of the web browsers. The different execution and compilation options make
WASM suitable for many use cases. Just as the standardization efforts (WASI) to bring
as many POSIX features available make us think it could be a good candidate for
orchestration at the edge. Also, WASM can run on most available hardware: most CPU
architectures (x86, ARM, and even RISC-V), microcontrollers, and other IoT devices. In
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addition to portability (which is very helpful in the context of the Cloud-to-Edge Com-
puting Continuum, WebAssembly also has security features that provide sandboxing
and isolation.

Running WebAssembly everywhere WebAssembly binary can be executed on almost
every CPU architecture (e.g., x86, ARM, RISC-V) and platform (e.g., laptop, smartphone,
Single Board Computers like a Raspberry Pi, or microcontroller unit (MCU) like Arduino)
with runtimes like wasm31. This wide support means that the same software can run on
almost every device in the Computing Continuum, even with limited resources.

Figure 2.2 shows the different platforms and architectures that can be targeted.

Figure 2.2.: WASM

Kubernetes can also orchestrate WebAssembly applications just like any other con-
tainer. The CRI Containerd can manage WebAssembly application [74]. This means
that Web Assembly applications can easily be deployed on Kubernetes clusters, even
with nodes of different architectures; the same binary can run everywhere. However,
hardware support for accelerators (e.g., Tensor Processing Unit) still needs to be added
to WASI and Kubernetes. It would be an appreciated addition to AI inference use cases.

1https://github.com/wasm3/wasm3
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2.1.3. Orchestration tools

In this section, we present the main orchestrators and their associated monitoring tools.
Then, we present the serverless (FaaS) and auto-scaling paradigms.

Kubernetes

Kubernetes is the de facto industry standard for container orchestration. It manages pods,
which are groups of one or more containers deployed together on a node. A pod is the
atomic deployable unit in Kubernetes. Kubernetes offers a variety of useful features,
such as:

i) auto-healing: Kubernetes can automatically restart failed or crashed pods, or pods
move them to another node if their current node crashes.

ii) rolling updates: This feature allows pods to be updated one by one to avoid service
disruption. A new pod is started with the updated version, and Kubernetes ensures the
new pod is healthy before terminating the previous instance.

iii) Scalability: Kubernetes supports horizontal scaling, which involves deploying
more replicas of a pod. This can be done manually or automatically based on CPU
utilization. Kubernetes also supports vertical scaling as an experimental feature, which
involves allocating more resources (e.g., CPU, memory) to a pod.

iv) Service Discovery and Load Balancing: Kubernetes can expose containers using
DNS names or IP addresses and distribute network traffic to ensure stable deployments.

v) Namespace Isolation: Kubernetes supports namespaces to divide cluster resources
between multiple users, which is useful in large organizations.

Also, Kubernetes supports multiple CPU architectures, including x86, ARM, and
others. This allows for a diverse set of hardware environments, making it flexible
for various use cases in the Computing Continuum. However, Kubernetes has built-in
support for GPUs but none for other accelerators. GPU support is essential for workloads
that require heavy computational power, such as machine learning, scientific computing,
and video processing. This allows specific pods to be scheduled on nodes equipped
with GPUs, optimizing resource utilization for these intensive tasks. Another significant
benefit of Kubernetes is its extensibility. It is designed to be easily improved and
customized to meet specific needs. This feature is particularly important for adapting
Kubernetes for edge computing environments.

Kubernetes is not the only software that can be used to manage container life cycles.
In chapter 1, we present some of these alternatives. However, Kubernetes is the de facto
industrial standard. This is why most of the research presented in this thesis relies on
Kubernetes.

Kubernetes scheduling framework

The Kubernetes scheduling framework is built to be entendable [75]. This framework
has a pluggable architecture that is easily extendable. It is possible to implement a new
plugging without re-implementing the whole scheduler. The scheduling framework
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allocates pods (i.e., a set of at least one container) on nodes on the cluster. The exten-
sibility of this component is important to make it support the Computing Continuum
specificities.

Figure 2.3.: Scheduling framework extension points [75]

Figure 2.3 show the Kubernetes scheduling framework extension points. The frame-
work architecture has two main parts: the scheduling and the binding cycle. The
scheduling cycle selects nodes to host the new pods, and the binding cycle applies
the scheduling decision. In this thesis, the main interest is in the scheduling cycle.
Extending some of these plugins to implement new scheduling policies designed for the
Edge-to-Cloud Computing Continuum is possible.

The goal of the scheduling cycle is to assign a node to each new pod. First, the nodes
are filtered: all nodes that cannot host the pod (e.g., insufficient resources) are removed
from the list of allocatable nodes. Then, the remaining nodes are ranked. The default
ranking method is to give better scores to the least allocated nodes. Then, the scores are
normalized, and the node with the highest rank is selected to host the pod. If two (or
more) nodes have a similar score, one of the nodes is randomly selected. Using different
ranking plugins simultaneously is possible, and then an average score will be computed.
Finally, the selected node is reserved for the pod, which will be deployed on the selected
node after the binding cycle.

Tracing and monitoring

It is important to monitor workloads for optimal orchestration. Accurate data is,
therefore, very helpful. Data collection can be automated; open telemetry[76] defines
standard APIs for monitoring applications. Having standards avoids vendor lock-
in from one cloud provider. It standardizes the way applications can export traces,
logs, and other numerical metrics. In addition to boosting application performance
(e.g., detecting and fixing problems and identifying performance issues), it facilitates
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application debugging. From a research perspective, monitoring tools are helpful for
collecting experimental results. There are open-source tools for collecting the metrics
defined by open telemetry. Prometheus [77] is a tool for collecting numerical metrics
about applications or cluster states. Jaeger [78] is a tool for collecting distributed
traces and logs from applications. Although these tools are designed for Kubernetes
integration, they are also helpful for VM or serverless workloads.

Serverless

Serverless, or Function as a Service (FaaS) is an abstraction that allows running code
without managing any servers or VMs [79]. According to [80], serverless technology
is increasingly used. Developers can upload code (either in a container or just source
code) to define a function; that function will be executed each time an end-user uses
it. So, the FaaS provider charges the developers only when the application is triggered.
This abstraction removes the decision-making for scaling; a new function is created on
demand each time it is triggered. For example, a data processing application can run a
pre-processing function each time it receives new data; a new function is instantiated
for each new request.

Serverless removes the tedious task of managing servers or complex orchestration
systems from the developers. Developers can specify Quality of Service requirements
during the function definition. QoS requirements can include latency or bandwidth
requirements. Serverless can help deploy workloads in the Computing Continuum. It
removes the need to define resource requirements for an application developer.

Resource definition is even more complicated in the Computing Continuum due to the
vast number of possible locations where applications can be deployed. Also, applications
have to be placed regarding users’ location. With serverless, developers only have to pay
attention to their code. Resources and infrastructure are dynamically provided according
to the application’s needs. To better utilize the edge nodes’ capabilities, it is possible to
extend these requirements with new parameters, such as location awareness. Serverless
is, therefore, very helpful; developers specify only the application requirements without
the need to select the right location. Serverless is helpful to implement seamless offload
from edge devices to data centers if needed [10].

At first glance, serverless is more cost-effective than dedicated resources; users only
pay for what they use. However, serverless is less suitable for long-running tasks. The
cost per hour of FaaS is higher than the cost of dedicated resources. Serverless is an
event-driven paradigm; an external event triggers the application execution. Serverless
is cheaper when there are many short tasks because resources are not always used.
Resources are charged only for some events when using serverless. When execution
times become longer, serverless becomes more expensive. Dedicated servers are better
candidates for long-run resource-intensive execution. This is why serverless is well
suited for data processing pipelines. A new function can be instantiated and charged
only when new data arrives. Then, the function is deleted. There are no idle resources
to pay for when using serverless.
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Sledge is an open-source framework for ServerLess at the EDGE [81]. It is designed
to run on a single-host server; with WASM support, it can run on most servers, from
the smallest, like Raspberry Pi, to the more powerful ones. Sledge bypasses the kernel
scheduler to achieve ultra-low latency and takes advantage of WASM. This helps to
have a rapid startup time. Sledge uses a custom compiler and runtimes aWams. WASM
also provides benefits in terms of security with process isolation and sandboxing. With
WASM, executing the same binary on all platforms running Sledge is possible. We-
bAssembly could be a key enabler for serverless at the edge. WASM permits developers
to stay focused on their application without worrying about available architectures.
Then, every application could be deployed at the edge.

Nuclio [82], OpenFaaS [83], and Knative [84] are other frameworks for serverless at
the edge. Unlike Sledge, they are not based on WASM but on container technology.
They can run on multiple platforms and be scheduled by Kubernetes.

Autoscaling

Auto-scaling is a method to adjust the amount of resources allocated dynamically. This
method can be applied at different levels, such as deploying more physical machines or
application instances. It first helps to scale up applications: add or remove resources to
adapt to changing workloads (e.g., more or fewer clients connected to an application
server). Auto-scaling also helps to reach SLOs, offering expected performances to the
users. Then, it helps to reduce the costs of idle resources. It allocates only the necessary
resources. Therefore, it reduces overprovisioning.

There are two main forms of scaling: vertical scaling and horizontal scaling. Vertical
scaling allocates more resources from a server to an application. Horizontal scaling
allocates more servers to host application replicas. Figure 2.4 illustrates the difference
between horizontal and vertical scaling.

Major cloud providers offer auto-scaling as a service for their resources. Kubernetes
has a built-in auto-scaler [85]. It is a reactive auto-scaler. The Horizontal Pod Autoscaler
(HPA) deploys more or less pod replicas. The Vertical Pod Autoscaler (VPA) adjusts the
resources allocated to a pod. It is only available in beta; it is not fully operational like the
HPA. The Cool Down Time parameter sets the duration between two scaling operations
up or down. It prevents the auto-scaler from making new decisions before observing
the effects of the previous actions. The cluster scaling adjusts the number of nodes in
the Kubernetes cluster. It offers API compatible with most cloud providers. The default
mode of the VPA and the HPA is to monitor resource usage (CPU and memory) to make
auto-scaling decisions. However, it is also possible to use custom metrics.

Auto-scaling behavior can be proactive or reactive [86]. Proactive scaling techniques
try to anticipate the load variations to adapt the allocated resources accordingly. Reactive
scaling reacts to load variations based on predefined rules. For example, reactive scaling
techniques can increase allocated resources when CPU usage is above a 90% threshold.

29



Chapter 2. Background

Figure 2.4.: Horizontal and vertical scaling illustration

2.2. Networking

There are two parts to reduce user delays: computing and communication delays. In
this part, we explore networking delays. Networking is an important part, even if it is
not the main interest of this thesis.

Network-aware orchestration approaches are important for orchestrating the hetero-
geneous resources of the Computing Continuum. Networking is a keystone in the
construction of an Edge-to-Cloud Computing Continuum. A reliable network architec-
ture is required for running distributed applications. The development of paradigms
like microservices architectures also shows dependence on the network. In addition,
networking devices can have an active role in edge computing. In-network computing is
a paradigm in which applications are distributed through the network infrastructure [60].
For example, a switch or router could become a small edge node and propose comput-
ing power to run small applications. This section describes the network virtualization
technologies we use in the Computing Continuum. Then, we provide details about
the 5G network software. It is important to understand its features, components, and
architecture to understand better chapter 3. This chapter demonstrates our testbed envi-
ronment using a 5G core as a workload; it is an example of a distributed application that
can be deployed at multiple locations in the Computing Continuum. Edge computing
enables some 5G use cases. One goal of edge computing is to provide low latency and
location-aware services. Therefore, edge computing also benefits the Telco (Telecom
Operator) industry by enabling use-cases with 5G [9] [10]. Edge computing servers and
the 5G network are two necessary components for many use cases.
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2.2.1. Networking virtualization

This section presents the definitions of the main networking technologies used in the 5G
core. The 5G core software is detailed in the next section.

Virtualization is not only for computing resources but also for networking resources
(equipment, NFs, and even bandwidth with slicing)

Networking virtualization is crucial for understanding this and thesis the 5G tech-
nologies. Virtualization technologies result in the main software benefits of 5G over 4G
(LTE). As described in the previous section, virtualization technologies are capital for
cloud computing to improve resource utilization and simplify application management.

Networking resources can be virtualized, too; these techniques are not limited to
computing hardware.

Virtual Network Function
Virtualization is increasingly important in networking. With Network Function

Virtualisation (NFV), network function (NF) can be managed like a VM; it does not need
to run on specific, dedicated hardware. According to [87], NF can be containerized, and
VNF should become Containerized Network Functions (CNFs). Containerization allows
even more flexibility and enables Kubernetes-based networking.

SDN
Software-defined networking (SDN) represents a set of techniques to bring virtual-

ization to networking hardware. Instead of having a device dedicated to one task, it is
possible to reconfigure it on the fly to run different functions (e.g., router, firewall). SDN
techniques allow separating the Control Plane and the User Plane [88]. This considerably
simplifies the configuration of networks.

SDN will make networking easier to deploy for telco operators. There will be less
need for specific and expensive hardware thanks to virtualization. Also, resources will
be mutualized for better performance.

Software-defined networking (SDN) is a technology that can provide seamless net-
working configuration. Configuring networking takes time; devices are configured
manually (e.g., routers and firewalls). SDN permits the automation of networking
configuration and management. The idea of SDN is similar to Operating System, adding
abstraction on top of hardware to simplify uses. SDN has a separation between the
control plane and the user plane to increase network management flexibility.

Edge devices can be mobile, have intermittent connections, or have limited bandwidth.
Therefore, it is important to easily manage networking to adapt to this dynamic topology.

SDN flexibility allows having a service-centric architecture [89]. Networking can be
dynamically adapted to the task’s needs. The SDN controller has a high-level view of
the network that helps deploy an application and its networking. If the application
needs to scale up or down, networking will dynamically follow its needs.

SDN flexibility is important to achieve mobility of the end-user devices. For example,
routing will be dynamically adapted if a mobile device goes from one access point to
another. If this device has offloaded a task to the cloud or a cloudlet, the results will be
delivered directly to its new position; this will avoid unnecessary traffic.
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Network slicing
Network slicing is a technique for building virtual networks on top of physical

networks. This technique relies on the Network Function Virtualization technology
[90]. With slicing, building a private network for different tenants is easier. With
network slicing, it is possible to define slices that are part of the bandwidth reserved
for specific applications. For example, we can define applications with low latency or
high bandwidth requirements. Using a network slice ensures that enough resources
are available for the resources; resources are reserved and dedicated to this application
to ensure the application’s QoS. A slice can have dedicated NF in addition to reserved
resources.

Network slicing allows for a more dynamic and flexible infrastructure. Network slices
can be designed for a particular purpose, e.g., reserve resources to achieve ultra-low
latency on one slice and manage many users on another. Slices can guarantee some
levels of Quality of Service (QoS).

Network slicing is an important feature of the 5G network that can benefit edge
computing. Slices are virtual network partitions; they are virtual resources that can be
reserved. For example, it is possible to create a slice that reserves some bandwidth for
one kind of device. It is possible to set up slices for specific use cases (MIoT, IIoT). A
slice is a set of virtual networking resources that can be reserved for a use case. Each
slice can have different service level agreements, depending on the use case. In [37],
Tusa and Clayman extend the notion of slice to end-to-end slice. With this definition, a
slice can be either computing, storage, or networking elements. Any of these elements
can be deployed in the Computing Continuum.

Radio Component Virtualization
Virtualization can even be used in the Radio Access Network (RAN), with virtualized

RAN (vRAN). Open RAN is non-proprietory software for RAN; these initiatives were
created to avoid vendor lock-in and develop multi-tenancy cooperation. The O-RAN
Alliance is one of the major contributors to Open RAN initiatives. Virtualization of
RAN goes one step further with cloud RAN (cRAN). The idea is to distribute RAN
functions on cloud infrastructure using cloud-native tools and practices. cRAN brings
cloud flexibility to the telco universe.

2.2.2. 5G network software

The 5th generation of the cellular network (5G) brings higher data rates (enhanced
Mobile Broad Band (eMBB)), lower latency (Ultra-Reliable Low-Latency Communi-
cations (URLLC)), and greater connectivity supporting a large number of simultane-
ous connections (massive Machine-Type Communications (mMTC)), mMTC is particu-
larly important for massive IoT use-cases (i.e., intermittent connection of many small
battery-powered devices). These new features enable a new range of data-intensive
or latency-sensitive applications. Together with edge computing and, more generally,
with resources of the Computing Continuum, it is a key component for any application.
This thesis is about the software side of 5G technologies. The hardware improvements
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(e.g., new antennas, modulation techniques, beamforming) are not described in this
thesis as it is unnecessary for developing our orchestration methodologies. These new
hardware technologies are crucial for delivering the expected performance. However, a
high-level view of this capability (e.g., delays, jitter, or bandwidth between two points in
the network) is enough for our needs. Even if we do not describe the hardware’s new
features, there is much to say about the software. Also, in the scope of this thesis, we
only describe standalone 5G (5G SA). Non-standalone 5G relies on a 4G network core
and does not offer the 5G improvements we want to study.

5G has a new software architecture compared to 4G; 5G has a micro-service based
architecture, while 4G has a monolithic architecture. Network Function Virtualization
(NFV) and SDN are the features that enable a micro-service based architecture. Control
user plane separation (CUPS) is a major feature the micro-service based architecture
enables. Figure 2.5 illustrate how CUPS can improve data throughput and lower
networking delays. With CUPS, user and control plane data can have separate dedicated
routes. Therefore, application data can be routed directly to the application servers
without being sent back to telco facilities. This shorter trip reduces delays and reduces
network congestion, two features necessary to enable data-intensive and latency-sensitive
use cases. It becomes very interesting when a server is located at the edge; application
data can reach this server directly. NFV make it possible to use cloud computing
techniques like containerization to improve how NFs are deployed and managed.

Figure 2.5.: Control user plane separation illustration

Figure 2.5 illustrate the Control user plane separation (CUPS). On the left side, user
traffic must go to Telco facilities before reaching applications in data centers. On the
right side, user traffic can reach applications directly without going through Telco
facilities. Using CUPS reduces the networking delays.

Table 2.1 presents the main network functions of the 5G core. This table highlights
the principal network functions involved in the UE registration and the PDU session
establishment procedures. These are important procedures for chapter 3. The first
procedure corresponds to the process of connecting a UE to the network, for example,
when it turns on. The latter procedure establishes a communication channel for the
device. Appendix A presents the detailed traces of these procedures, as recorded during
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Table 2.1.: Main 5G Network Functions
NF Name

AMF Access and Mobility management Function
AUSF Authentication Server Function

N3IWF Non-3GPP Interworking Function
NRF Network Resource Function

NSSF Network Slice Selection Function
PCF Policy Control Function
SMF Session Management Function
UDM Unified Data Management
UDR Unified Data Repository
UPF User Plane Function

our experiments. We use the open-source 5G core network (5GC) (based on the 3GPP
Release 15 definition) 2, 5G UE and RAN (gNodeB) simulator3 for these experiments.

Figure 2.6 presents the 5G core software architecture. Most of the network functions
are deployed in a data center at a central location in telco facilities. 5G NFs are micro-
services inter-connected using the HTTPS protocol. The User Plane Function (UPF) is a
router that handles user equipment traffic. The user’s traffic goes to a Data Network
(DN), which can be an edge node (or MEC) or the Internet. GNodeB (GNB) provides
connectivity to the 5G devices and handles the radio traffic; it is the equivalent of an
eNobdeB for 4G. DB is not a standard 5G component defined by the 3GPP; it is a
database that stores 5G core information such as subscriptions or slice configurations.
To ensure the quality of service, 5G NF can have many instances, each dedicated to
a slice. Figure 2.7 show an example of a configuration with three slices (S1, S2, S3),
and four User Equipments. It is important to note that each NF is a microservice and
can be containerized. Therefore, the Computing Continuum techniques and resources
can be used to improve the 5G core performances and orchestration. Also, 5G network
information (e.g., UE cell location, handover/user mobility) can be used to improve
application placement in the Cloud-to-Edge Computing Continuum.

2.2.3. Other networks

The 5G networks are not the only network available for edge computing. Bluetooth
(IEEE 802.15.1) and ZigBee (IEEE 802.15.4) [91] are energy-efficient technologies well
suited for IoT [92].

Wi-Fi 6E (i.e., 802.11ax [93]) offers performances of throughput and latency approach-
ing 5 G (i.e., around 1ms of latency and many Gbps of throughput). Wi-Fi has the benefit
of being much cheaper to deploy than a private 5G network. However, the coverage for

2https://github.com/free5gc/free5gc
3https://github.com/aligungr/UERANSIM
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Figure 2.6.: 5G core software architecture

Wi-Fi is much smaller.
The 3GPP is also already working on 6G specifications, the successor to 5G. The main

improvements include a higher throughput and reliability, and a lower latency [94].
It should also include improved satellite communication support and more network
intelligence.

Low Power Wide Area Networks such as Sigfox [95] and LoRa (LoRaWAN)[96] should
also be considered. Fog nodes can be IoT gateways to devices using these networks to
exchange small amounts of data. However, these small amounts of data might be more
significant due to the large number of devices.

2.2.4. Multi-access Edge Computing

Multi-access Edge Computing (MEC) is a paradigm where servers are deployed at
the edge of mobile networks (e.g., close to 5G antennas) or sometimes in telecom
provider’s facilities [6, 9, 97]. ETSI has standardized this paradigm and its integration
with 5G networks [98]. The purpose of MEC is to enable some 5G use cases. To achieve
high throughput and ultra-low latency, the physical proximity of the servers matters.
Therefore, 5G networks and edge computing are two necessary components to enable
use cases with demanding throughput and latency requirements. MEC has a key role in
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Figure 2.7.: 5G core software architecture with slices

edge computing. It is a link between Cloud and Telco environments.
MEC helps achieve ultra-low latency, high bandwidth, and Real-Time performance at

the edge. These technologies enable many applications, such as gaming, Virtual Reality
(VR), Augmented Reality (AR), the Internet of Things (IoT), or Vehicle-to-everything
(V2X).

MEC is also helpfull for application offloading and data aggregation [99]. Tasks can
be offloaded from small devices to more powerful ones at MEC facilities. Offload might
concern whole applications or only a few tasks (e.g., power-intensive tasks). There are
three kinds of offloading: partial offloading (at the edge), full offloading (at the edge),
partial/full offloading (at the edge and at the cloud) [7]. Energy is another essential
criterion for offloading. A battery-powered device can offload a task to save battery.

2.3. Orchestration and Scheduling

Orchestration includes a set of tools and techniques for handling and managing applica-
tions over the Computing Continuum during their life cycle. The main orchestration
techniques for cloud computing are described at the beginning of this chapter. This sec-
tion describes the main specificities of orchestration for the Edge-to-Cloud Computing
Continuum.

Deploying edge-native applications over the continuum brings new challenges. For
orchestration of the Computing Continuum, we consider a dynamic set of resources.
Auto-discovery mechanisms can update the list of managed resources. New nodes can
appear and join the cluster, and others can leave it. Intermittent connections can affect
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the availability of nodes and, therefore, their place in the cluster. Some of this cluster’s
nodes can also be mobile, e.g., inside a vehicle. Therefore, we need to update the set of
orchestrated resources periodically.

Standards are needed to federate resources from edge to cloud and form a Computing
Continuum. Standards are helpful for building schedulers and orchestrators. Standards
can define the way we package applications and how we deploy them. Container
standards like the one defined by the Open Container Initiative are a good starting
point. They are compatible with Kubernetes, which is the de facto industrial standard for
container orchestration. Vergara et al. also highlight the fact that the lack of formalization
makes the federation between cloud and edge harder [41].

In this thesis, we start with existing cloud computing techniques and tools and try to
extend them to address the Computing Continuum challenges. Tools like Kubernetes
can be extended to manage heterogeneous nodes, which sometimes appear or disappear.
Scheduling algorithms can be extended to manage volatility (of nodes and of users),
connection uncertainties, geographic distribution, heterogeneous resources, and the
additional parameters (e.g., delays, energy) that need to be part of the decision.

In this section, we first introduce the formulation of the scheduling problem and its
complexity. Then, we present the decision parameters and optimization objectives of
scheduling in the Computing Continuum. Finally, we present the main orchestration
approaches.

2.3.1. Scheduling problem formulation

There are many ways to formalize the resource allocation problem, but the main idea
remains the same. On one side, we have applications. Applications are made of many
interconnected services. Each service has computing resource requirements (e.g., CPU,
memory) and network requirements (i.e., communication needs with other services or
end-users). On the other hand, we have servers with various characteristics (e.g., CPU,
memory). The goal of resource allocation is to map services on servers. It is possible to
choose one or many optimization objectives. The usual approach to optimize more than
one metric is to include the other objectives as constraints. For example, the allocation
that minimizes networking delays or monetary costs. Vergara et al. present a formal
description of the scheduling problem [41]. Here are the most common optimization
objectives in the literature.

• Reducing network delays [6] [41]

• Minimizing energy consumption [6] [86] [41]

• Lowering monetary cost [6] [86]

• Maximizing resource Usage [6]

• Guaranty of SLA [6] [86]
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• Increasing throughput [6] [41]

The application placement problem is not easy to solve. In literature, we find the
problem formulations that are NP-hard or NP-complete. Eidenbenz et al. propose a
formulation for a task allocation problem [100]. They demonstrate that it is NP-hard.
Kwok et al. describe an NP-complete formulation of the DAG scheduling problem
[101]. Cohen et al. model a deployment and migration problem [102]. They prove it is
NP-hard. The application placement complexity explains why we use approximation.
Scheduling decisions need to be quick when implementing a Kubernetes scheduler.

2.3.2. Main orchestration approaches

In order to efficiently place applications in the Computing Continuum, we can use
various resolution strategies. Then, we can use these techniques to build orchestrators.
There are, however, additional constraints to consider, like the control topology or the
type of scheduling. Finally, scalability is important to consider when choosing a strategy.
Scheduling in the Computing Continuum should be quick to ensure SLOs and offer
low latency. The number of nodes in the Computing Continuum can be significant. The
topology of a compute cluster can be dynamic or static (nodes can appear or disappear)
[41].

Resolution strategies

To resolve the above-defined problems, we can use various resolution strategies. Vergara
et al. classify these strategies into the following categories: exact solution, approximation,
heuristic, meta-heuristic, and other [41]. Exact solutions are not commonly used for
such complex problems, but they can be helpful in smaller instances or very specific
cases. Heuristic methods, like greedy first, are the most commonly used methods. These
methods give satisfying trade-offs at a much lower complexity. They provide good
approximation at the cost of finding meaningful heuristics. Meta-heuristic methods
are also widely used. Techniques like Tabu search or simulated annealing are often
used. Bio-inspired methods, including genetic algorithms or ant colony optimization
algorithms, have proven to be beneficial as well. Finally, other techniques can be used.
Machine learning, and more specifically, Reinforcement Learning or Deep Reinforcement
Learning, has become very common. Game theory also offers some solutions. Other
optimization techniques can also be used, such as Bayesian optimization, Markov
Decision Process, Lyapunov optimization, or constrained optimization (e.g., mixed
integer linear programming or nonlinear programming).

Centralized, decentralized, and distributed control topology

An orchestrator can have various control topologies based on the resolution strategies for
solving the allocation problem. An orchestrator control can be centralized, decentralized,
or distributed [86]. The centralized approach is the most common one. It is easier to
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design and implement. However, the centralized approach has the following limitations:
lack of scalability, it is a single point of failure, and it can be a central target for cyber-
attacks [39]. A distributed approach helps to tackle scalability. Decentralized approaches
fix most issues of centralized ones, but they are much more complex to elaborate.

Reactive and proactive scheduling

Scheduling consists of allocating services to servers. There are two main approaches to
scheduling. Proactive and reactive scheduling are two approaches to deal with dynamic
resource allocation. The proactive scheduling principle involves forecasting future
computing resource needs and allocating resources based on this prediction. The main
benefit of a proactive approach is better resource allocation. However, this approach
relies heavily on accurate forecasting. Scheduling decisions are far from optimal if
estimations are not accurate. Reactive scheduling adapts to the current resource needs
and adjusts resource allocation accordingly. The main benefit of a reactive approach is
its flexibility. It can quickly react to unexpected situations. However, the key issue of the
reactive approach is the reaction delays between the time an action is needed and the
time the action is executed. A reactive system might be prone to oscillation if it takes too
much time to respond. Also, real-time processing constraints often lead to suboptimal
solutions.
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Experimental methodology for orchestration
in the Cloud-to-Edge Computing Continuum

This chapter presents an experimental methodology for orchestration in the Cloud-to-
Edge Computing Continuum. Running orchestration experiments in the Computing
Continuum is challenging. It needs all specificities of this environment (e.g., node
heterogeneity, networking delays) to produce accurate results. Current orchestration
approaches need to be adapted for the Cloud-to-Edge Computing Continuum. However,
building an entire experimental testbed is expensive because it requires the geographical
distribution of the nodes. It is also time-consuming. The experimental methodology
presented in this chapter tackles this issue. It offers a way to run orchestration experi-
ments in the Cloud-to-Edge Computing Continuum at a lower cost in a traditional cloud
infrastructure. Anyone who wants to study orchestration or the impact of deploying an
application over the Computing Continuum on performance can use this experimental
methodology. Any containerized application can be deployed using that methodology.
It is not a methodology for building a simulator but realistic testbeds.

In addition to the experimental methodology, this chapter studies the impact on
the performance of deploying a 5G core network in the Computing Continuum with
various geographical locations. It presents the variations of performances of the 5G
core network according to different system architectures. When using network slicing,
allocating Network Functions (NFs) at different geographic areas is possible. Therefore,
it is possible to study the impacts on performances of different geographical placements
of the 5G NFs. This performance study is important for Telco providers to understand
better where to place NFs over the Computing Continuum. Also, the experimental setup
can be easily reproduced to study different configurations or 5G procedures.

Finally, this methodology is the basis on which relies chapter 4. Chapter 4 presents
new orchestration approaches that are evaluated using the methodology presented in
this chapter.

This chapter first presents the experimental methodology for orchestration in the
Computing Continuum. Then, it shows an application of the methodology to study the
performances of the 5G core network.

This chapter is based on the following publication:

• Rac, Sanyal, and Brorsson. “A Cloud-Edge Continuum Experimental Methodology
Applied to a 5G Core Study”. 2023. [52].
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3.1. Introduction

Unified orchestration of the resources in the Computing Continuum should improve
the adoption of edge-native technologies. Unified orchestration ensures that applications
have the resources available to run; if nothing is available at the edge, traditional
data centers can be used instead. This process should be seamless for the application
developers. Chapter 1 details the benefits and challenges of unified orchestration with
the Computing Continuum.

However, the geographical distribution of the nodes in the Computing Continuum
makes the elaboration of unified orchestration challenging. Therefore, experimental
methodology for replicating the Computing Continuum infrastructure and challenges is
valuable for developing new orchestration systems. Building a real infrastructure with
distributed nodes can be costly and time-consuming. Hence, this chapter presents a
methodology for experimenting with orchestration and scheduling approaches using
real applications while considering the constraints of the Edge-to-Cloud Computing
Continuum.

To validate our experimental methodology’s performance, we study the 5G core net-
work. It is a complex distributed application that can run in the Computing Continuum.
We choose to experiment with placing the 5G Network Functions (NFs) at different
geographical locations in the Computing Continuum. This experiment has two main
objectives: i) ensuring that the setup built using our methodology behaves as expected,
and ii) providing helpful insights to Telco providers to configure their 5G infrastructures.

In this chapter, we make the following contributions:

Contributions

1. Propose an experimental methodology for testing unified orchestration and
analyze the effects of running applications over the Computing Continuum.

2. Validate that methodology with a 5G core study.

3. Provide insights to Telco providers about the impact of the placement of
5G Network Functions (NFs) in the Computing Continuum and provide
information for building a similar setup to study and analyze other 5G
procedures and use-cases.

3.2. Experimental methodology to study orchestration in the
Computing Continuum

This section presents an experimental methodology for studying orchestration in the
Computing Continuum. The Computing Continuum has additional constraints com-
pared to traditional data centers. Nodes are geographically distributed, which impacts
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the way we orchestrate applications. Therefore, we need a specific methodology to study
the Computing Continuum environment.

This experimental methodology is designed to be easily reproducible. Any set of
servers can be used to implement it. Once nodes with the right characteristics are
selected, anyone can set up a testbed using our guidelines and open-source tools.
Testbeds built with this methodology can easily be deployed in public clouds. More
details about the cloud-native technologies we use can be found in chapter 2 section 2.1.
The tools and scripts needed for this are publicly available on github [103].

Figure 3.1 illustrates the testbeds that can be created using our experimental method-
ology. In this figure, the targeted infrastructure is the system we want to study. It is the
set of servers deployed at various geographical locations. The servers have different
characteristics and compute performances. In this example, the targeted infrastructure
has three nodes of different sizes at various locations. The white boxes on the figure are
the services of an application deployed over the Computing Continuum. The emulated
infrastructure is a testbed built using our experimental methodology. The emulated
infrastructure mimics the characteristics of the targeted infrastructure. The nodes of the
emulated infrastructure are real servers that can run the same applications as the tar-
geted infrastructure. Nodes are labeled according to their characteristics to facilitate the
definition of orchestration policy. Networking delays vary according to the geographical
location of the nodes. They are longer between Edge and Datacenter nodes than between
Edge and Cloudlet. Networking characteristics between nodes are configurable on the
emulated architecture.

Figure 3.1.: Edge-to-Cloud environment can be emulated on the public cloud.

Orchestrator and workload definition

Our methodology for studying orchestration in the Cloud-to-Edge Computing Con-
tinuum is built upon Kubernetes. Kubernetes is the de facto industrial standard for
container orchestration. New orchestration approaches developed on our testbed can
be easily used on production clusters. There is no need to implement the orchestrator
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again because we are using the same software for production and experiments. Also, as
it is widely used, it is easier to compare new approaches to existing ones in the state of
the art.

Another benefit of using Kubernetes is that it can run any containerized application.
This is an important feature because we want our methodology to be able to deploy real
applications. Kubernetes supports most CPU architectures (e.g., x86, ARM) and also
GPGPUs.

Compute and storage

Running real applications is an essential part of this experimental methodology. Testbeds
assembled using our methodology use real hardware. Any server can be used to build
testbeds, from private to public cloud. Therefore, most CPU architectures and server
sizes are available. Then, in our testbeds, any kind of node representative of the Edge-
to-Cloud Computing Continuum is possible. It is possible to use small nodes with low
energy requirements with an edge device’s characteristics. It can also be a powerful
node like the ones in traditional data centers. Accelerators like GPGPUs can also be part
of the compute resource. Nodes in testbeds are labeled using their characteristics (e.g.,
CPU architecture, available hardware accelerator, geographical location). These labels
are then useful for defining custom orchestration policy.

Networking

Configurable networking is the key to this methodology. With the proper network
configuration, any topology can be created, and the effects of geographic distribution
can be emulated. This methodology explains the fine-grain configuration of network
throughput, latency, and other parameters.

We propose to use traffic control(tc) to parameter networking. This utility program
can reconfigure the Linux kernel packet scheduler. Therefore, it can delay packets and
create artificial latency. Additional delays help simulate the interaction with a distant
node. Theoretically, the more distance there is, the longer the delays will be. Then,
communication between an edge node and a node in a data center should have more
delays than communication between two nodes in the same data center. It can also
reduce the maximum bandwidth or simulate packet loss (following a given distribution).
We can run this program in each pod as a sidecar container1 to configure each pod
networking. Finally, we develop scripts to configure each pod to set up any global
topology.

1sidecar containers are containers running in the same pod as a primary application. They offer additional
services like monitoring or logging.
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Monitoring

Monitoring helps collect experimental data. We want to embed monitoring as a part of
our methodology to facilitate experimenting. Logs, metrics, and traces about software
running on the testbed can be automatically collected and stored.

In addition to applications, we can monitor the cluster state with these tools. For
example, monitoring node utilization or network congestion. It is important not only for
experimental purposes but also for orchestration. An up-to-date overview of the cluster
is helpful for making scheduling decisions.

Monitoring is an integral part of our experimental methodology. Monitoring tools
are automatically deployed when creating a testbed with our scripts. In addition to
monitoring tools presented in chapter 2 section 2.1.3, we propose to deploy sidecar
container to access additional data. For example, a sidecar container can access additional
networking data such as current throughput or complete network traces.

Orchestration policy definition

Orchestration policy defines on which node a pod should run. We can define orchestra-
tion policies using Kubernetes features. The Kubernetes scheduler is the component that
decides which node will host each pod. The default policy of the Kubernetes scheduler
is to select the least allocated node in the cluster. Adding rule-based policies on top of
the default scheduler or implementing custom policies is possible.

Rule-based policies affect pods according to pod and node labels and a pre-defined
set of rules. Taints, Tolerations, and Pod affinity Kubernetes tools for defining rule-based
policies. They favor or avoid placing pods on some kinds of nodes or collated with some
kinds of pods. The kind of a node or pod depends on its labels Taints and tolerations
can prevent pods from running on some nodes. For example, it prevents applications
from running on the control plane nodes. Affinities help or prevent co-hosting pods.

Advanced policy involves implementing a new Kubernetes scheduler (at least some
parts of it). Chapter 2 section 2.1.3 describes the plugin architecture of the Kubernetes
scheduler. Implementing a new plugin creates a new orchestration policy. These
advanced policies can use any extra metrics available in the cluster.

Testbed configuration and deployment

A testbed is defined by a set of manifest files, scripts, and configuration files.
The configuration file stores information about network parameters (e.g., latency or

bandwidth) configuring each instance of tc (traffic control) running as a sidecar. It also
stores cluster information (e.g., master node IP, pod subnetworks) and node parameters
(e.g., taints, tolerations, labels). It defines the cluster’s desired state and the manifests
needed to deploy the application. A script initializes the cluster state based on the
configuration file.

The Kubernetes manifests (YAML files) store information about the applications to
deploy on the testbed, as well as a description of the orchestration policy. Application
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affinities and tolerations are defined in manifests and the selected scheduler. Additional
scheduler and monitoring tools deployments are also defined in these manifests.

Finally, a sequence of scripts set up the cluster and the experiment’s life cycle. For
example, they deploy application pods, start pcap (Wireshark) trace recording, stop the
experiments (deleting the pods), and collect the results.

Figure 3.2.: Experimental methodology overview

Figure 3.2 summarizes our experimental methodology.

3.3. 5G system study

To demonstrate the effectiveness of our experimental methodology, we study a 5G
system. A 5G system is a typical application that can be deployed in the Computing
Continuum. 5G users are, by definition, at the edge.

In addition to testing our methodology, we want to study the 5G core and see how
different system architectures (i.e., 5G Network Functions running at various locations
in the Computing Continuum) affect the performances of a set of key 5G procedures
we select. 5G is a distributed application, unlike the previous generations of cellular
networks. It is then possible to deploy each of its services (i.e., Network Functions)
at various geographical locations, including the edge, traditional data centers, and
computing resources between the two. Chapter 2 section 2.2 describes the 5G network
and the main network technologies.

This section details the 5G system we study with our experimental methodology. This
section first presents the main 5G Network Functions (NFs) involved in the procedures
we study. Then, we introduce the system architectures we reproduce with our method-
ology. Finally, we describe the three 5G use cases we use as a workload for our 5G
core.
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3.3.1. Principal 5G Network Functions

A complete description of a 5G System (Radio Access Network, devices, and core) is
out of the scope of this thesis. However, some familiarity with the core components is
necessary to understand the study. The 5G core consists of several Network Functions
(NFs). The gNodeB (gNB) represents the Radio Access Network (RAN) to which User
Equipments (UEs) (e.g., a mobile phone) is connected over cellular radio. Most of the
details about 5G NFs are not important for this study, but we detail three of them: AMF,
SMF, and UPF. These are essential to understanding how the system architectures are
defined.

AMF (Access and Mobility management Functions) handles incoming connections and
session requests of UEs and manages mobility (handover between two 5G cells).

UPF (User Plane Function) handles user data traffic. The UPF is directly connected to a
Data Network (i.e., the Internet or an Application Server).

SMF (Session Management Function) establishes PDU sessions (Protocol Data Unit) for
the UEs. A PDU session is a data tunnel that links a UE to a data network (DN)
through a UPF.

3.3.2. System architectures

We define three system architectures to study the 5G core. The first architecture is our
baseline; it is the most common architecture for deploying a 5G core. All 5G Network
Functions are running in traditional data centers, far from the edge. The second
architecture is designed to reduce the latency between edge nodes (hosting applications)
and the end users. The last architecture is built to reduce the duration of the Protocol
Data Unit (PDU) session establishment procedure. The last two architectures propose
deploying the AMF, UPF, and SMF at various locations in the Computing Continuum.

We build these architectures using three kinds of nodes: Data center, Edge, and Cloudlet.
We define the kind of a node based on its geographical location. Cloudlet nodes represent
servers located between the edge and the traditional data centers. Cloudlet nodes can be
micro data centers. These three kinds of nodes are all part of the Computing Continuum.

Figures 3.3, 3.4, and 3.5 represent the three architectures we study. For each archi-
tecture, the RAN elements (i.e., gNB and UEs) are deployed on separate nodes. These
nodes are dedicated to RAN elements; they cannot host any of the 5G NFs. We call N2
to N6 the network links between the nodes following the 3GPP naming definition [104].

The Baseline architecture, represented in Figure 3.3, is the most common architecture
for the 5G core. All 5G NFs runs in traditional data centers. However, this architecture
does not effectively support the use cases of the eMBB and URLLC. Cloud gaming or
AR/VR applications require ultra-low latency and high bandwidth. The UPF needs to
run at the edge to achieve ultra-low latency or high throughput.

The LatOpt system architecture, shown in Figure 3.4, is designed to reduce latency and
increase throughput between UEs and applications. The UPF is deployed at the edge,
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Figure 3.3.: Baseline architecture.

close to gNBs and UEs. The other 5G NFs runs in traditional data centers. Deploying
the UPF at this location should significantly lower latency and improve throughput on
the link N3. This architecture should enable the use cases of the eMBB and URLLC.

The AccessOpt system architecture, illustrated in Figure 3.5, has similar benefits as
the LatOpt architecture. In addition, AccessOpt should reduce the time to complete
the PDU session establishment procedure. This architecture is designed to be a simpli-
fied implementation of a multi-layered 5G architecture. AMF and SMF are deployed
on cloudlet nodes to reduce the delays with the UEs and handle UE connection, ses-
sion management, and mobility procedures quicker. Extra performances and quicker
execution help handle use cases with many connections or mobility requests.

3.3.3. 5G use cases

To experiment with our 5G setup, we introduce three 5G use cases: Augmented Reality
(AR), Industrial IoT (IIoT), and Massive IoT (MIoT). We choose them to test the main 5G
features (eMBB, URLLC, and mMTC). Using the above-described system architectures
should produce different performances for each use case. Studying these use cases
is helpful for i) building a 5G infrastructure with network slices at the edge and ii)
developing new orchestration methodologies for deploying NFs in the Computing
Continuum.

Siriwardhana et al. describe the AR and IIoT use cases in [105]. We adapt the workload
to the capabilities of our testbed. Our study uses real production-grade 5G core and
NFs, not simulated components.

In the Augmented Reality use case, the User Equipments recieve high-quality video
with low latency. We monitor the end-to-end latency to evaluate the different system
architectures. The LatOpt architecture should improve this metric by reducing the
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Figure 3.4.: LatOpt architecture: optimized for end-user latency and bandwidth.

distance between the UPF and the gNB.

In the Industrial IoT use case, the User Equipments are sensors in a smart factory.
In this industrial use case, we consider that the UEs are mostly statics; they stay in
the same network cell most of the time. However, they create a new connection each
time they turn on. These devices are periodically turning on and off in this scenario.
This routine consists of turning on, collecting data, establishing a connection with the
nearby antenna, establishing a data session with the UPF, sending the data to a server for
local processing, and turning it off. We monitor the end-to-end latency to evaluate the
performance of this use case. This metric includes the time to establish a PDU session,
send the data, and get a response from the server. The AccessOpt architecture should
lower the E2E latency for this use case. Deploying the AMF and the SMF on a Cloudlet
node should reduce the PDU session establishment time, while a UPF closer to the gNB
should reduce networking delays for the data session.

In the Massive IoT use case, the User Equipments are small battery-powered IoT
devices that periodically connect to the cellular network. These devices turn on and off
periodically to send data and spend most of the time in energy-saving mode. The 5G
core needs to quickly handle the procedures generated by the devices turning on and
off or moving to another 5G cell. We monitor the time to complete the registration and
the PDU session establishment procedures to evaluate the performances of the different
system architectures. The AccessOpt architecture, with the SMF and the AMF deployed
on Cloudlet nodes, should improve the completion time of these procedures.

Table 3.1 summarizes the use cases we study. It presents which part of the 5G
infrastructure is tested and the metrics we use to evaluate performance.
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Figure 3.5.: AccessOpt architecture: optimized for session throughput.

3.4. Evaluation

This section evaluates our experimental methodology with a 5G workload. We first
present our experimental setup and parameters. Then, we present the results of our 5G
study.

3.4.1. Experimental setup

We run all the experiments in a public cloud environment. We use a self-managed
Kubernetes cluster with one master node and seven worker nodes. All of these machines
have 2 CPUs and 4 GB of RAM. On this cluster, we run the open-source 5G core
free5G [106]. Every 5G Network Function (NF) runs inside its pod. The User Equipments
(UEs) and gNodeBs are emulated using an open-source RAN simulator [107].

To validate our approach and ensure our results, we analyze the pcap traces of
these experiments. These records ensure that this 5G core open-source implementation
behaves as expected. We compare the recorded procedures to the one defined by the
3GPP [108]. We present more details about these procedures in Appendix A.

3.4.2. Experimental parameters

System architecture parameters

Table 3.2 presents the delays we configure for the various system architectures defined
in section 3.3.2. We use our experimental methodology to set up these artificial latencies
between the nodes of our testbed cluster. The artificial latencies presented in this table
are additional delays we add to the existing ones in the data center infrastructure.
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Table 3.1.: Use cases and their characteristics.
Use cases Favoured System

architecture
Type of workload KPIs

AR (Smart Factory) Baseline or LatOpt High data rate on
the User

Plane (UP)

E2E latency

IIoT (Smart
Factory)

Baseline or
AccessOpt

PDU session
establishment

process + Low data
rate the UP

E2E latency

MIoT (Massive
IoT)

Baseline or
AccessOpt

Registration +
PDU session

establishment
process + Low data

rate on the UP

Time to register +
establish a PDU

session

Table 3.2.: Delays in the system architectures.
System
Architecture

N2 (ms) N3 (ms) N4 (ms) N6 (ms) DC-
Cloudlet

(ms)

Baseline 12.5 12.5 0 0 0
LatOpt 12.5 1 12.5 0 0
AccessOpt 3.5 1 3.5 0 9

Workload parameters

Table 3.3 summarizes the use cases’ workload parameters of the different experiments.
The workload of the IIoT and MIoT use cases should mainly be managed by the control
plane (respectively, on SMF and AMF). In contrast, the User Plane (UPF) should support
the AR use case workload.

3.4.3. Results

In this section, we analyze and compare the performances of an open-source 5G core
when using different system architectures. These results provide insights into which
architecture performs best for each use case. Figures 3.6, 3.7, and 3.8 show the mean
KPI values for each use case according to the chosen architecture.

Figure 3.6 presents the results for the AR use case experiment. That experiment
compares the end-to-end latency of the application when using the baseline and the
LatOpt architectures. We observe that the average end-to-end latency is four times
lower when using the LatOpt architecture. With the LatOpt architecture, the UPF is
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Table 3.3.: Workload parameters.
Use Case Workload size #UEs

AR 460 Mbit of video stream sent to the UE 3
IIoT PDU session establishment requests + 640 kB of data 20
MIoT UE registration requests + 50

PDU session establishment requests + 100 kB of data

closer to the gNB (the delays on the link N3 are lower), which explains the lower end-to-
end latency. This first experiment shows that the testbed built with our methodology
successfully reproduced a well-known result.

Figure 3.6.: Average end-to-end latency: AR use case.

Figure 3.7 shows the average end-to-end latency, data session latency, and duration of
the PDU session establishment procedure for the IIoT use case. The end-to-end latency
is four times lower for the AccessOpt architecture than the baseline. The AccessOpt
architecture reduces the time to complete the PDU session establishment procedure
and the data traffic duration (i.e., networking delays and processing time). Lower
latency on the N3 link explains the reduced data session latency. The AMF and SMF
are the main NFs involved during the PDU session establishment procedure. Lower
the communication delays between these two NFs and the UEs shorter the procedure
duration. During the procedure, almost half of the requests from AMF or SMF go to data
center nodes, and the other half go to the edge. Having AMF and SMF on a Cloudlet
reduces the duration of the whole procedure. The AccessOpt architecture reduces the
end-to-end latency for the IIoT use case.
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Figure 3.7.: Average end-to-end latency: IIoT use case.

Figure 3.8 presents the average duration of the UE registration and PDU session
establishment procedures. The total time to complete these two procedures is 13 times
faster on the Baseline compared to the AccessOpt architecture. Also, the UE registration
procedure is 14 times faster on the Baseline architecture than on AccessOpt. However, the
PDU session establishment procedure is ten times faster on the AccessOpt architecture.
The UE registration procedure is significantly longer than the PDU session establishment.
The session establishment represents only 0.06% of the total time for AccessOpt and 8%
for Baseline. Therefore, the PDU session establishment procedure duration has a limited
impact on AccessOpt architecture’s total performance. The UE registration procedure
strongly impacts global performance. The AMF exchanges requests mainly with the
NFs running on data center nodes during the UE registration procedure. Therefore,
the delays for each request are longer when the AMF is running on a Cloudlet node.
Placing the AMF closer to the edge improves the performance of the PDU session
establishment procedure. However, it negatively impacts the performance of the UE
registration procedure. Using our experimental methodology helps detect issues with
architecture. For example, a procedure becomes longer to complete if one of the NF is
placed at the edge without other Network Functions.

Our experimental methodology helps to choose the best architecture for each 5G
use case. Placing the UPF at the edge reduces the latency on the link N3 in every
configuration tested. The optimal position of the AMF depends on the use case’s
procedures. AMF improves KPIs for the PDU session establishment procedure when
placed at the edge (or nearby), while results are better for the UE registration procedure
when it stays in the data center.
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Figure 3.8.: Average duration of different procedures in the MIoT use case.

3.5. Limitations

This section presents the main limitations of our experimental methodology and 5G
study.

We do not demonstrate the usage of accelerators with our 5G study. However, they
are supported by our methodology. Kubernetes can easily handle GPGPUs, and it is not
a problem to adapt scheduling for selecting nodes that have them if necessary. It can
also support other accelerators like FPGA [109]. However, our experiments with the 5G
system do not demonstrate these capabilities.

Our 5G study has two main limitations: we do not experiment with real 5G RAN,
and the size of the cluster and the workload are limited. Using a real 5G RAN might
change the values of the KPIs we record. However, they do not change our conclusion
about the placement of the Network Functions. Additional testing on a larger cluster
and with more User Equipments can improve the strength of our results. However,
our experimental methodology will remain the same. It is open-sourced and easily
reproducible. Therefore, it is possible to reproduce these experiments on any scale.

3.6. Related work

This section presents the related work of this chapter. Related works include other
testbed studies, 5G architectures, and other 5G testbeds.

Goshi et al. describe a testbed that highlights Inter-NF dependencies [110]. Kube5G
is a cloud-native 5G testbed designed to handle the whole 5G stack [111]. COPA is an
orchestration framework for networking running above the Kubernetes layer [112]. These
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three testbeds (and the one mentioned in their studies) do not aim to investigate how the
various topologies of the Computing Continuum impact application performance. These
studies do not offer the possibility of configuring networking between the cluster’s
nodes to create different architectures.

[113, 114, 115, 116] describe multi-layered 5G architectures similar to the AccessOpt
architecture presented in section 3.3.2. It is a common 5G architecture with network
slices deployed at different geographic locations. Sarrigiannis et al. describe a two-tier
architecture (Cloud and Edge) for virtual NF placement with a VNF orchestrator [117].
They are not using the benefits offered by Kubernetes for their VNF orchestrator. Ejaz
et al. present a three-tier architecture (Cloud IoT, Edge IoT, and Local Edge IoT) to
improve reliability for mission-critical processes, based on iFogSim simulator [118]. This
study helped us to define our system architectures. However, the iFogSim simulator
does not allow deploying a real containerized application.

Edgenet, as described by Şenel et al. [119], uses a Kubernetes cluster. However, it
is unsuitable as a testbed for 5G core or other edge-based applications as networking
cannot be configured, and there is no access to the Edge nodes. Enoslib [120] is another
suggestion to facilitate experimentation with distributed systems. It is a general tool
to facilitate reproducible experimentation and is thus orthogonal to our methodology,
which could be used as the backend in an Enoslib experiment.

To the best of our knowledge, there is no methodology for studying the performances
of applications running over the Cloud-to-Edge Computing Continuum. Simulations do
not offer to run the actual software, so we cannot access real performances. Testbeds
offer no way to replicate the various architectures of the Computing Continuum or the
effects of its geographically distributed nature on performance.

3.7. Conclusion

This chapter presents a new experimental methodology for studying the orchestration
of applications in the Edge-to-Cloud Computing Continuum. We ensure the efficiency
of this methodology by conducting a 5G core study. That study adds valuable input to
understanding 5G systems and provides guidance for building new infrastructure. A
Telco operator can reproduce and extend our experiments to study new infrastructure
at a lower cost without deploying expensive hardware over the Computing Continuum.

In the next chapter, we use this experimental methodology to design and investigate
new unified orchestration approaches for the Computing Continuum.
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Chapter 4.

Network-aware orchestration in the
Computing Continuum for cost
minimization

This chapter presents a unified orchestration approach for the Cloud-to-Edge Computing
Continuum. It is a network-aware approach that aims to reduce the costs of deploying
applications in the Computing Continuum.

This chapter is based on the following publications:

• Rac and Brorsson. “Cost-Effective Scheduling for Kubernetes in the Edge-to-Cloud
Continuum”. 2023. [53].

• Rac and Brorsson. “Cost-aware Service Placement and Scheduling in the Edge-
Cloud Continuum”. Mar. 2024. [54].

This chapter is organized as follows. Section 4.1 presents the main concepts and
definitions of this chapter and an overview of our unified orchestration approach for
the Computing Continuum. Our orchestration methodology is exposed in section 4.2.
In section 4.3, we present our experimental results. Our experiments are based on a
vehicular cooperative perception workload running on a Kubernetes cluster. Then, we
present the limitations of our approach and the relevant related work in section 4.4 and
section 4.5. Finally, we present our conclusions and future work directions in section 4.6.

4.1. Introduction

Edge computing can help reduce the costs of deploying an application. Cloud providers
offer their resources as Everything as a Service (XaaS) [121]. Therefore, the customers
pay only for the resources they use. For example, customers pay an hourly rate for the
server they use. In addition, cloud providers also charge for the traffic that goes outside
of their data centers. Deploying network-intensive applications at the edge may save
the outgoing network costs; data stays local, and traffic between the edge and the data
center is not charged.

To minimize the cost of deploying applications in the Computing Continuum, we built
a system that automatically finds a trade-off between computing and networking costs.
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We call our approach network-aware because we minimize the total costs (i.e., compute
and communication) based on an estimation of network traffic. Deploying applications
at the edge should be as simple as it is for data centers to facilitate the adoption of
edge computing. Our orchestration approach should help make application deployment
at the edge easier. Application developers do not need to specify where applications
should run using this system. The system will choose a location to minimize the costs
and dynamically update that choice if the situation changes.

We propose two schedulers1 to lower the costs of deploying distributed applications in
the Cloud-to-Edge continuum. We consider applications that consist of several services
that need to interoperate. To make application deployment easy and as close as possible
to industrial standards, we implement our methodology as a Kubernetes scheduler
plugin [75] based on network requirements and costs. Any containerized application can
be deployed and make use of our schedulers. We want to leverage local data processing
to reduce the costs of running applications to save bandwidth costs.

When end-users (e.g., a phone, a vehicle, or a camera connected to an application
hosted in the Computing Continuum) are moving, the delay to connect or communicate
with a service of the application may become longer. This means that the optimal location
of a service may vary over time. We need to be able to move services automatically
when users move; otherwise, the Quality of Service (QoS) will deteriorate. Therefore, we
also propose a rescheduler to monitor the application and trigger service migration when
needed. Our rescheduler is a background process that periodically checks costs and KPIs
to identify better nodes on which a service can be deployed. If the rescheduler detects
an improvement, it will automatically migrate the service pod2. Also, when a cheaper
resource becomes available, the rescheduler can detect it and move the associated service
to reduce the costs (provided the QoS is not negatively affected).

We make the following key contributions in this chapter:

Contributions

1. Design and implementation of two cost-aware Kubernetes scheduling plug-
ins. One based on latency between a service and an end-user (or another
service), and the second based on communication patterns.

2. Design and implementation of a network-aware rescheduler to keep appli-
cation placement decisions optimal when end users are moving.

3. A performance evaluation of our scheduling plugins and the rescheduler
methodology using a realistic 5G use-case of cooperative perception for
autonomous vehicles.

From our experiments, we have verified that our custom schedulers can achieve, in

1We use the Kubernetes terminology here as they are strictly not schedulers but rather placement algorithms.
2A pod is the smallest schedulable unit in Kubernetes, containing at least one container
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most cases, about 10% to 25% lower costs than the default Kubernetes scheduler. It is
worth noting that this is not a simulation study. We have made real scheduler plugins
demonstrated in a real Kubernetes cluster.

4.1.1. Definitions

This section defines the main terminology of this chapter. In this, we use a simplified
representation of the Computing Continuum. We use only cloud and edge nodes to
simplify our explanations and modelization. However, it is possible to use any type
of node in practice. Only the characteristics of the nodes matter for our orchestration
approach.

We define the Edge-to-Cloud Computing Continuum as the aggregation of servers located
at the edge of the network and those in traditional data centers (cloud). The edge nodes
are servers located at the edge of the network, outside of the data centers, e.g., near 5G
base stations. Figure 4.1 represents such an Edge-to-Cloud-Computing Continuum. The
blue servers are the cloud nodes, and the green ones are the edge nodes.

Figure 4.1.: The Edge-to-Cloud Computing Continuum - Computing resources are in
blue and green.

Different kinds of nodes could be added to this Computing Continuum. The schedul-
ing decisions are based on node characteristics such as available resources, bandwidth,
latency, or costs. We use static node types like edge and data center nodes to understand
the Computing Continuum behaviors better.

End-users (e.g., vehicles, phones, cameras, or smart sensors) are connected to services
hosted in the Computing Continuum. The end-users may be connected directly to cloud
centers or to an edge node. Some end-users can be mobile, and in this case, their closest
node changes over time.
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We are considering distributed applications, made of services, to be deployed on this
Cloud-to-Edge Computing Continuum. A service can run on an edge node as well as on
a cloud node. A scheduler maps the services to the nodes. The rescheduler is a background
process that can update a service allocation. It can move a service to another node in
the cluster.

There are two kinds of costs in our edge to data center Computing Continuum: in-
stance cost (price paid by hours and number of CPU used), and communication costs
(per GB). It is possible to define additional costs like storage (per GB), but these are
outside of the scope of this study.

Communication costs represent the price to pay to transfer data from the edge to
a data center. We are not counting the transfer price between an edge node and its
end-user (e.g., through 5G). This parameter can be optimized by choosing an internet
provider or a telco operator, but it is outside of the scope of this study. Also, if two
data center nodes are part of one data center, we are not counting communication costs.
Nevertheless, communication costs apply for transfers between two edge nodes.

4.1.2. Unified orchestration methodology overview

We think that Kubernetes is one of the best candidates for orchestrating applications over
the whole Cloud-to-Edge Computing Continuum. Kubernetes is the de facto industrial
standard for container orchestration. It is not only limited to Docker containers [122],
but it can manage any artifact following the Open Container Initiative (OCI) specifica-
tion [123]. Using standard containers is important to ensure compatibility with most
of the different hardware (e.g., with different CPU architectures) we can find in this
Computing Continuum. Also, it is easier for the industry to adopt this technology if
they can continue using the same containers they already have. Chapter 2 section 2.1
provides more details about Kubernetes and container technology.

However, Kubernetes is not yet ready to orchestrate resources over the whole Cloud-
to-Edge continuum. The default scheduling approach of Kubernetes is to spread the
containers over the cloud, choosing the least allocated server. This is good practice in a
traditional data center as it avoids server overload. However, this is not applicable to
edge nodes. It is important to consider the geographical location of the servers in order
to achieve low latency to access the services. Therefore, it is not possible to efficiently
place services in the whole Computing Continuum without considering the networking
resources.

We propose to use and extend Kubernetes to orchestrate applications deployed in the
Cloud-to-Edge Computing Continuum. With a network-aware scheduling approach,
we think it is a good candidate for orchestrating heterogeneous resources. Using the
Kubernetes self-healing mechanism also helps improve the reliability of the system. If
an edge node fails or if it has networking issues, its pods can be redeployed on another
available node.

In this heterogeneous Kubernetes cluster, we define a cost policy based on two values:
CPU and network usage. Instance price is based on the time and the number of CPUs
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used. Networking costs are charged based on the amount of data transferred. If data
stays in the same geographical location, networking costs do not apply. They only apply
when data is transferred from one region to another, e.g., from one edge location to a
central data center. This cost policy is in line with what public cloud providers use.

We use the Kubernetes scheduler framework [75] to implement our scheduling
methodology for the Edge-to-Cloud Computing Continuum. The Kubernetes scheduling
framework is easy to extend. Every scheduling stage is defined as a plugin; we can
write new plugins to replace the default ones.

There are four main scheduling stages in the kube-scheduler: filter, score, normalize
score, and reserve. The scheduling pipeline first selects an unallocated pod (i.e., a set of
containers, the atomic schedulable unit in Kubernetes) from the scheduling queue. Then,
un-schedulable nodes (e.g., reserved nodes, control plane only, out of resources) are
filtered and removed from the possible nodes. After the filtering stage, the remaining
nodes are scored, and the scores are normalized to between 0 and 100. Normalization is
necessary to get an average score when using many scoring plugins. The node with the
highest score is selected and reserved for the pod. If two nodes get the same score, one
of them is randomly selected.

We propose to extend Kubernetes to offer a unified orchestration to the Computing
Continuum. Our Kubernetes extension is a twofold solution: a service initial placement
method and a rescheduler (RS). The service initial placement assigns a node to every
service. The rescheduler watches the existing services and migrates those that are not
in an optimal location. When the optimal solution changes over time, a rescheduling
process is necessary to adapt the service locations. For example, when end-users move,
the optimal solution changes over time.

We propose two methods for the service initial placement: One based on latency and
the other based on communication patterns.

The latency-based initial placement method assigns unscheduled services to nodes. To
select which node will host a service, we rank the nodes using both their costs and their
latencies to other nodes. In the scope of this study, the cost is the money paid to a cloud
provider to run a service. Other quantities, such as energy (to power the servers and the
network equipment), can also be considered and minimized using this methodology,
which we will do in future work. Checking the delays with other nodes helps to reduce
the end-to-end latency of an application and ensure the quality of service.

The communication-based initial placement method also assigns unscheduled services
to nodes. However, it chooses to host services using a different approach. Instead of
using latency, this scheduler uses the communication patterns between services (inter-
service traffic) and their end-users. The scheduler uses the communication patterns of
previously deployed services to predict the behavior of the new services. It assumes
that new services with the same code will behave similarly.

The rescheduler is a background process that re-evaluates the initial placement
decision of the services and moves the services to different nodes if a better solution is
found. The optimal solution changes over time; users can be moving, or new resources
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may become available. Using the rescheduler ensures keeping the costs low by taking
new placement decisions; moving the services to a cheaper node if it is possible.

We include a monitoring system in our placement methodology to support the
scheduler and the rescheduler. The monitoring system collects metrics about the cluster
state and the applications running in the cluster. Also, it stores the metrics and serves
them to the scheduling components. The monitoring system can serve raw data or
aggregated data, e.g., using basic statistical functions such as an average or a median.
The implementation of the monitoring system relies on open-source components. It is
described in section 4.2.4.

Figure 4.2 presents a high-level view of our system. We run a custom scheduler
to deploy applications in the Edge-to-Cloud Computing Continuum. There are two
versions of this custom scheduler: one implementing the latency-based approach and the
other implementing the communication-based approach. We use the custom scheduler to
orchestrate workloads, but the default scheduler is still usable for deploying the control
plane and the monitoring functions. In the cluster, we reserve nodes for the control
plane (in a traditional data center) and nodes for deploying workloads (at the edge or in
traditional data centers). The custom scheduler and the rescheduler are running on the
control plane nodes of the cluster. These nodes are located in a traditional data center.
Applications can run on nodes located either at the edge of the network or in traditional
data centers.

Figure 4.2.: Architecture overview of the system. Our scheduling components are
running on control plane nodes. Applications can run anywhere in the
Cloud-to-Edge Computing Continuum.
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4.2. Orchestration methodology

In this section, we are presenting an overview of the optimization problem we are
solving. Then, we present the algorithms for i) the scheduler scoring plugin, and ii) the
rescheduler. Finally, we expose how we implement this scheduling methodology on a
Kubernetes cluster.

4.2.1. Optimization problem overview

This chapter presents an orchestration methodology that minimizes the cost of deploying
applications in the Cloud-to-Edge Computing Continuum. We are considering two
different kinds of costs: i) computing costs and ii) networking costs.

Computing cost is the price to pay to use a server from a cloud provider. It is usually
charged by hour or month and depends on the characteristics of the machine. In this
chapter, we assume that every node in the Computing Continuum uses the same pricing
policy: an hourly rate that depends only on the characteristics of the instance. Note
that we are not labeling the edge nodes as special nodes; all the nodes are the same for
the scheduler. Only the instance characteristics (e.g., processors, memory, geographical
location) and its networking capabilities (e.g., latencies with other machines, available
bandwidth) matter for the scheduling decision.

Networking cost is the price to pay to send data over the network. This price depends
on the quantity of data sent and its destination. Data traffic is not charged for machines
in the same data center. However, if data goes outside of the data center to the edge, then
traffic is charged. Also, no additional network cost is charged if edge data is processed
locally. However, if data traffic is sent to a data center, then network traffic is charged.

Our objective is to find a trade-off between paying computing resources and network-
ing costs. Depending on the workload characteristics, deploying the application in a
data center or at the edge can be cheaper. For instance, deploying a network-intensive
workload at the edge where data is produced is cheaper than in a data center since data
stays local.

Equation 4.1 presents the optimization problem we are solving; it is the minimization
of the total costs (i.e., the computing and the networking costs).

Equation 4.2 details the computing costs, and equation 4.3 details the networking
costs. Equations 4.4, 4.5, and 4.6 are the constraints for, respectively, the maximum
allocation per server, CPU limit, and memory limit.

min(Ccomp + Cnetw) (4.1)

Ccomp =
N

∑
n=1

M

∑
m=1

cpuPrice(sn)× cpuReq(σm)× I(sn, σm) (4.2)

Cnetw =
M

∑
m=1

M

∑
m′=1

ν(σm, σm′)× commPrice(σm, σm′)) (4.3)
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s.t.

∀n ∈ [1, N],
M

∑
m=1

I(sn, σm) ≤ 1 (4.4)

∀n ∈ [1, N],
M

∑
m=1

cpuReq(σm)I(sn, σm) ≤ cpuCap(sn) (4.5)

∀n ∈ [1, N],
M

∑
m=1

memReq(σm)I(sn, σm) ≤ memCap(sn) (4.6)

With:
Server: sn, n ∈ [1, N]

Service: σm, m ∈ [1, M]

Amount of data sent from the services σmto σm′ : ν(σm, σm′)

I(sn, σm) =
{1 if σm is allocated on sn

0 otherwise
We are using heuristic optimization to find an approximate solution to the above-

mentioned problem. Figure 4.3 presents a high-level view of the scheduling workflow
of our solution. The first part details the initial placement stage, where the scheduler
assigns an unallocated pod to a node. Then, the rescheduler periodically checks in the
background to see if a better node can be found for this pod.

Figure 4.3.: Scheduling workflow: Initial Placement (yellow), Rescheduler (orange)
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4.2.2. Service initial placement

The objective of service initial placement is to associate the unallocated pods from the
scheduling queue with a node in the Edge-to-Cloud Computing Continuum. The first
step is to build a list of nodes where the pod can run. We remove from that list the
nodes that cannot host the pod (e.g., those reserved for the control plane, or those with
insufficient resources). Then, the nodes are scored, and the best one is selected to host
the pod.

We propose two Service Initial Placement algorithms that share the objective of
minimizing the total costs.

Latency-based Initial Placement

Algorithm 1 describes the node scoring method of the Latency-based Initial Placement
(LIP) approach. The LIP scheduler runs the corresponding scoring method for each
schedulable node. The scoring method sorts the nodes using the networking delays and
their price (i.e., the hourly price paid to use a server). We choose a node close to the
connected services to improve the end-to-end latency and lower the networking costs
(saving bandwidth).

Algorithm 1 Latency-based Initial Placement (LIP) Scheduler: Scoring

Require: α > 0, β > 0, Pod, Node
ns ← 0 ▷ Node score
for service in Pod.dependencies do

λ← GetLatency(Node, service)
if λ < α then

ns ← ns + β

end if
end for
ns ← ns +

1
Node.Price

return ns

Nodes that are close to connected services get a higher score. To reduce the distance
between a pod and the connected services, we defined a list of these services for each
pod: pod.dependencies. Then, we get a list of the nodes where these services are deployed.
We do not add the server to the list if the service is not deployed yet. Once the server list
is built, we evaluate the latencies between these servers and the evaluated node. If the
latency is lower than α, we add β to the final score (α is a latency distance in ms, and β

is a score modifier.). The more connected services in a radius of α, the higher the score.
To lower the deployment costs, we add the inverse of the node price to the final score.

The lower the node price, the higher the score.
The values of α and β should be chosen regarding the cluster characteristics. α should

be chosen relative to the values of the latencies between the nodes. β should be chosen
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relative to the values of the inverse of the node price.
In every case, this algorithm selects a node for the pod to deploy. If two nodes get the

same score, one is randomly selected by the scheduler.

Communication-based Initial Placement

The Communication-based Initial Placement (CIP) approach uses the knowledge gained
from the communication patterns of already deployed pods to estimate the networking
costs accurately. The Communication-based Initial Placement scheduler can choose
the cheapest node using this information. I.e., with the lowest sum of instance and
networking costs.

The main component of the CIP approach is the traffic exporter. It estimates the
networking costs and makes that information available to the scheduler. Section 4.2.4
presents the implementation details of this component.

The traffic exporter needs to access previous communication patterns to provide
accurate estimations. The first services are placed using only the instance prices. Then,
once there is enough data for the traffic exporter to build an estimation, the scheduler
places the following pods using instance and networking prices. The first services placed
only with instance prices can be migrated later by the rescheduler if there is a better
place for them.

Initial placement methods comparison

The CIP approach presents many benefits over the LIP approach. CIP does not require
a manual setting of its parameters, while we need to set LIP parameters: connected
services, α, and β, which are not always trivial to choose. Also, using an estimation of
the networking costs (in the CIP approach) leads to better performance.

However, the CIP approach needs to collect some data before it can be effective. The
CIP scheduler starts collecting data when the first pod is deployed. In practice, this
startup time is not an issue, according to experimental results presented in section 4.3.4.

Future work may, however, investigate a hybrid approach: using the LIP scheduler
while the CIP is collecting the initial data and then using the CIP scheduler. The LIP
scheduler could be used to deploy the first instance of each pod, and the CIP scheduler
could be used to deploy the following instances.

4.2.3. Service rescheduling

The rescheduler is a background process that periodically checks if a better node is
available to host a pod. We build the service rescheduler for two main reasons: i) the
best location for a service varies over time (e.g., node availability changes depending on
the current load, end-users are moving), ii) we can use data collected when the service
is running to improve the scheduling decision. If the rescheduler finds a better node for
a pod, it will migrate the pod to the better node.
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Algorithm 2 describes the rescheduling process. This function is called periodically.
The algorithm iterates over every workload pod in the cluster. The first step of this
algorithm is to estimate the current cost of the evaluated pod. This evaluation includes
the computing and networking costs. Then, all of the other schedulable nodes are
evaluated similarly; we keep the node with the best score. If it is the same as the original
one, there is nothing to do; if it is a different node, the rescheduler will migrate the pod
toward this node.

The estimation of networking costs is crucial to this algorithm. Computing costs are
easy to evaluate; they are static and known. However, networking costs depend on
each service behavior and are not known a priori. Using the monitoring setup described
in 4.2.4, we can consult how much data was sent to which destination. Using this
information, we can estimate future data usage and networking costs.

Algorithm 2 Rescheduler: Background routine

for pod in WorkloadPods do
podc_cost ← podCPU× pod.node.Price
podn_cost ← GetNetwCostEstimation(pod.node)
bestscore ← podc_cost + podn_cost

bestnode ← pod.node
for node in SchedulableNodes do

podc_cost ← podCPU×node.Price
podn_cost ← GetNetwCostEstimation(node)
nodescore ← podc_cost + podn_cost

if nodescore < bestscore then
bestscore ← nodescore

bestnode ← node
end if

end for
if pod.node ̸= bestnode then

pod.MigrateTo(bestnode)
end if

end for

4.2.4. Implementation on Kubernetes

This section describes how we implemented the above-described methodology to make
it usable on a Kubernetes cluster with any containerized workload.

We use the default Kubernetes plugins for the Filter and Reserve Node phases. The
default Filter plugin removes nodes with a taint that the pod does not tolerate (e.g., the
master mode has the taint "master" to prevent workload pods from running with the
control plane node) from the list of the schedulable nodes. It also removes nodes that
do not have enough resources to host the pod. The default Reserve Node phase updates
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ETCD [124], the Kubernetes internal database. Then, the selected node will start the pod
deployment based on the information in this database.

Latency-based initial placement

For the Latency-based Initial Placement (LIP), we use the scheduler plugin framework,
[75], which we have extended with our scoring plugin for latency-based initial placement.
We collect the necessary latencies using the open source tools described in section 4.2.4.

Communication-based Initial Placement

The Communication-based Initial Placement (CIP) method scores nodes based on an
estimation of the cost of deploying a pod on that node. This estimation includes both
networking and instance costs. Knowing how much data will be transmitted is essential
to estimate the networking costs. The traffic exporter is a component that provides an
estimation of the network traffic that the pod will generate and sends it to the scoring
plugin. The network traffic estimation includes communication with the other pods and
communication with the end-users.

In order to estimate the communication patterns, we look at the previous communica-
tion. Based on the previous data, we try to predict the next ones, assuming a similar
communication pattern in the future. The traffic exporter relies on two graphs: an abstract
graph and a real communication graph. The abstract graph contains the prediction
of communication patterns. The choice of the estimator depends on the nature of the
workload and the characteristics of its communication patterns. The real communication
graph represents all the volume of data exchanged between two pods or between a
pod and its user. The vertices are the pods, and the edges contain the volume of data
exchanged. We use the real communication graph to build the abstract graph. Once the
abstract graph is generated, we can use it to estimate data traffic. That estimation is
important to estimate the networking costs and, therefore, the total cost of using a node.
Using the cost estimation of each node, we can rank the nodes and choose the cheapest
one. If two nodes have the same cost, we choose one randomly.

The traffic exporter is doing three independent tasks:

1) Record the traffic the traffic exporter gets the traffic between the pods and stores it
as the Real Communication Graph.

Each pod is a vertice in this graph. The edges represent the amount of data exchanged
between two pods or between a pod and its end user. On each vertice, it stores the hash
of the container images of the pod. It uses this hash as an identifier (a pod type). Two
pods running the same software have the same type. The traffic exporter also attributes
a type for each end-user.

2) Generate communication patterns The traffic exporter builds an abstract repre-
sentation of the traffic to summarize the information in the measured communication
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graph.
The traffic exporter constructs an abstract graph using the type of pods. The objective

is to extract a common data traffic pattern from pods of the same type. The abstract
graph uses the types of nodes as vertices and the traffic as edges. To build this graph, the
traffic exporter aggregates the traffic using an aggregation function (e.g., the average).

The CIP training process corresponds to the steps of recording the real traffic and
building the abstract. The training starts as soon as one pod is deployed. Then, the
following pods with the same type can benefit from that learning.

3) Serve the communication patterns The traffic exporter provides communication
patterns for a given type when the CIP scoring plugin requests it. The scoring plugin
requests communication patterns based on the type of the evaluated pod.

Figure 4.4 illustrates the CIP mechanisms. The traffic exporter extracts communication
patterns from running pods and serves them to the CIP scheduler. We store the graphs
of the communication patterns in a graph database. Then, we expose them using
Prometheus API. The Prometheus server collects them periodically, and the scheduler
can request the Prometheus server. We provide more details on the monitoring setup
and Prometheus in section 4.2.4.

Figure 4.4.: Illustration of the CIP scheduler mechanism. The node colors represent the
types.

Rescheduler

The Rescheduler is a Go application running in a dedicated pod. We use the Kubernetes
and Prometheus libraries to collect all the necessary information. The traffic estimation is
using linear regression. Future work can investigate more complex prediction methods
to address different workloads.

To migrate a pod, the rescheduler updates its deployment manifest. This automatically
triggers a rolling update with no downtime to the service. A new pod is deployed on
the best node, and the old pod is deleted when it is up.
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The duration of the rescheduling routine depends on the time needed to evaluate
each pod configuration and the time needed to complete all pod migrations. Although
we can manually set the rescheduling frequency, how often the rescheduler calls the
rescheduling routine. This frequency can be low if the cluster state does not evolve
quickly or higher if necessary. However, the rescheduling period cannot be lower than
the duration of the rescheduling routine.

Monitoring setup

We use open-source tools to collect data about the cluster and the workload state and
make it available for scheduling decisions.

Figure 4.5 presents the monitoring workflow and how data are collected and made
available for scheduling decisions. This methodology can support any containerized
workload.

Figure 4.5.: Monitoring architecture

Prometheus [77] is the main monitoring component. It periodically pulls many metrics
about the cluster state (about the nodes, the pods, and the containers). Then, this data
can be requested from the scheduling modules or a monitoring dashboard.

In addition to the standard Prometheus metrics, we collect specific metrics about our
workload and the network state. We can expose Key Performance Indicators (KPIs) such
as the End-to-End latency. To ensure that the metrics are collected even if the pod is
killed, we use the Prometheus PushGateway [125]. Data is pushed from the pods of the
workload to this component. Then, Prometheus can periodically pull the PushGateway
like any other module.

We have built a module: CostExporter to compute and export the costs. It is a Go
application that exposes metrics that are accessible through Prometheus. It exports the
costs of using a server and networking traffic.
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The cluster latency matrix (i.e., a matrix that summarizes the latency between every
node in the cluster) is a key metric in our methodology. To collect this metric, we are
using a DaemonSet (i.e., a Kubernetes tool that ensures that every node in the cluster
runs a copy of a pod) that deploys a pod that pings all other nodes in the cluster. These
latency probes [126] make the latency matrix directly available through Prometheus.

This monitoring system is designed to have limited overhead on the workload execu-
tion. Most of the monitoring services are running outside of the workload application.
Cluster state sensors run in dedicated pods. Communication probes run in sidecar
containers3. A sidecar container has access to the same network as the containers of
the workload application. It can export networking metrics to Prometheus. However,
the KPIs probes run inside the workload application. A dedicated thread (to avoid
interruptions) pushes the KPIs to the Prometheus push gateway.

4.3. Evaluation

To demonstrate the potential and effectiveness of our approaches, we have devised a
workload that mimics the computational need and communication of a real vehicular
cooperative perception application. This workload is a distributed application consisting
of multiple services that are deployed in a real Kubernetes cluster in a public cloud. We
control the latencies between nodes to emulate a cloud-edge continuum infrastructure.
We then conducted experiments to evaluate the latency-based initial placement (LIP),
communication-based initial placement (CIP), and rescheduling (RS) algorithms in a
realistic environment.

This section first presents our preliminary results. It is a simulation we ran to evaluate
the potential of our approach before its implementation on Kubernetes. Then, we
describe the first set of experiments to evaluate the parameters of the LIP method. Finally,
we compare all scheduling methods to some baselines and evaluate the limitations and
overhead of these methods.

4.3.1. Preliminary results

We first build a proof of concept of our scheduling methodology before implementing
it on a Kubernetes cluster with a realistic workload. We start experimenting with our
scheduling methodology through simulation to understand its potential and the room
for improvement.

Our service initial placement method and our rescheduler can help reduce the total
costs of running an application in the edge to data center Computing Continuum. We
can illustrate how to perform cost optimization with the following example. We have a
car connected to a video processing service that detects other vehicles. There are three
main configurations for placing this service: on a data center node (paying the data
center instance price and the communication), on the edge node close to the car (paying

3a container running in the same pod as an application

71



Chapter 4. Network-aware orchestration in the Computing Continuum for cost minimization

only the instance price), or on a different edge node (paying the edge node instance
price and the communication). Video processing is a bandwidth-intensive application;
choosing the edge node with no communication costs (because the data stays local)
is cheaper. We need the service initial placement method to find a trade-off between
paying instance costs and communication costs. However, when the car is moving, the
previously selected edge node is no longer optimal; it stops processing local data. We
need a background process (rescheduler) to watch the cluster state and migrate the
services when necessary; e.g., when a car is moving, we need to move the service to the
edge node close to the car.

We designed a simulation experiment using our scheduling methodology to un-
derstand the room for improvement of distributed applications in a Cloud-to-Edge
Computing Continuum. This simulation demonstrates the benefits of our scheduling
methodology on a larger cluster (around 50 nodes).

The simulator is a C++ program that can generate random graphs with data center
and edge nodes. We adapt the Erdős–Rényi model [127] to generate graphs with a
similar topology to the Computing Continuum (e.g., interconnected data-center nodes
and some edge nodes). We use a synthetic workload, a simple application with an
end-user client located at the edge (e.g., a car) communicating with a server (e.g., a
video processing service). The server service can be deployed anywhere in the simulated
Edge-to-Cloud Computing Continuum. The clients randomly move between different
edge nodes, and new clients randomly arrive, following a Poisson distribution.

We ran an experiment with graphs containing 20 data center nodes and 30 edge nodes
on which we deployed 10 to 20 services. In this scenario, we consider the edge nodes
to be more expensive (i.e., higher price per CPU and per hour) due to their limited
resources. We are comparing three different approaches in this simulation: i) a greedy
approach (choosing the cheapest node at each time step), ii) a latency-based initial
placement (LIP) described in section 4.2.2 iii) the latency-based initial placement, and
the rescheduler (LIP+RS) described in section 4.2.3. The LIP approach minimizes the
latency between the client and the server.

Figure 4.6.: Results of the simulation - Costs are detailed in two parts: computing and
networking

Figure 4.6 presents the cost of running the workload for different approaches. Given
that the simulation is a randomized process, we ran each experiment ten times and
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reported the average. The lower the cost, the better. The latency-based initial placement
with or without the rescheduler outperforms the greedy strategy. Greedy is taking
the best decision at each time step; however, this does not lead to a globally optimal
solution. Using our methodology, we can find a better global solution. The rescheduler
chooses more expensive nodes to save data transfer costs, which explains why it gets
better results than the initial placement approach alone.

This simulation shows that our methodology outperforms a greedy strategy on a large
graph (50 nodes) with a simple workload. Using servers at the edge to save networking
costs can lower the costs of running applications. This encouraged us to implement a
real solution suitable for Kubernetes integration.

4.3.2. Experimental Setup

We build an experimental cluster using public cloud resources. We use Virtual Machines
(VMs) to have cluster nodes with different characteristics (e.g., different number of
processors and amount of memory), and we add artificial delays between them to
simulate the physical distances between the nodes. The details on how this is done can
be found in chapter 3. We deploy a Kubernetes cluster using all these nodes. In this
infrastructure, only the latencies are emulated; we deploy the Kubernetes cluster on real
nodes.

Figure 4.7 shows the infrastructure graph of the experimental cluster with all nodes
and latencies between them. Our experimental cluster includes one node for the control
plane and one for the monitoring tools. A workload cannot be deployed on these two
nodes. The edge and data center (DC) nodes host the workload services. End-user
nodes host the end-user application workload. In a real-life environment, end-user
nodes would be replaced by dedicated equipment such as a smartphone or a car.

The physical distances between the edge nodes induce networking delays. These
delays are not represented as direct links on the graph to improve readability. The graph
summarizes the delays as they are experienced by the different nodes. E.g., there is a
delay of 25ms between the nodes E1 and E3.

The difference between edge and DC nodes is the geographical location and the
available resources. The nodes are AWS instances. The edge nodes have 4 CPUs and 16
GiB of memory. Other nodes have 8 CPUs and 32 GiB of memory.

4.3.3. Workload: Vehicular cooperative perception

The vehicular cooperative perception workload leverages computer vision to help detect
nearby vehicles. As described by Xu et al. in [128], vehicles are sharing videos they
record with their cameras to improve global knowledge of the positions of all nearby
vehicles. Knowing the positions of close vehicles is helpful for drivers who cannot see
others in their blind spots. Also, this technology is important for self-driving vehicle
implementation, where perception is a major challenge. Getting accurate positions of
surrounding vehicles helps to reduce the collision risk.
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Figure 4.7.: Experimental cluster infrastructure graph (not all physical links between
nodes are represented)

We implement a synthetic workload that mimics the behavior of the above-described
application. The originally described application is a monolith. We break it into three
services that we can deploy anywhere in the Computing Continuum. By splitting the
application, we can include vehicles with limited computing resources; the services that
cannot run on these vehicles can be hosted on a server at the edge or in a data center.
Also, we can place the component that aggregates the data from multiple vehicles in a
central location.

Three services compose the workload application. The vehicles generate a video stream
and send it to a feature extractor (FE). The FE extracts the features from the video stream
and sends it to a feature fusion (FF). FF merges the features to get accurate positions of
the vehicles. Finally, the FF broadcasts the positions to nearby vehicles.

Figure 4.8 illustrates the structure and functioning of the application. This application
aims to combine multiple video streams to get the accurate positions of vehicles. First,
the video streams from the embedded cameras are processed to extract features. Then,
features are combined to estimate the positions of the vehicles. Finally, the positions are
broadcasted to nearby vehicles.

In our experiments, we have two kinds of vehicles: the ones with embedded computing
capabilities (e.g., GPU) and the ones without them. The vehicles without computing
capabilities send video-stream to the Feature-Extractor. The vehicle with computing
capabilities sends features (already extracted) directly to the Feature-Fusion.
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Figure 4.8.: Vehicular Cooperative Perception workload illustration

Figure 4.9 shows the interactions between the Vehicle, Feature-Extractor (FE), and
Feature-Fusion (FF) services. There are three different kinds of nodes in our experi-
ment: Data-Centre (DC), Edge (E), and End-User (EU). End-user nodes are hosting the
vehicles only. The vehicles cannot be deployed on different nodes. Vehicles without
GPU are sending a video stream to the FE. Vehicles with GPU are sending the features
directly to the FF. FE and FF services can run only on Edge or DC nodes.

Figure 4.9.: Workload architecture: Workload pods and the nodes where they can run

There is only one instance of FF for the whole experiment, it aggregates the features
from all of the vehicles. There are many vehicles, and each of them without a GPU is
connected to one FE. We suppose that the vehicles are connected to the same network as
the other services. However, the network delays depend on the geographic location of
the vehicles.

For this workload, an end-user node represents a neighborhood or a 5G cell area
where vehicles can go. In the experiment, vehicles are moving from one end-user node
to another over time. A json configuration file defines all the movements of the vehicles
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when they are starting up or shutting down when they are moving from one area to
another.

We benchmark the original application to build our synthetic workload. Table 4.1
summarizes the parameters we use to configure our application. This application is
using CPU instead of GPU. Future work may adapt this scheduling approach to consider
accelerators such as GPU or FPGA. In this synthetic application, the CPUs are running a
load generated by the stress-ng tool [129]. Services send randomly generated data over
the network using the sizes defined in Table 4.1.

Table 4.1.: Cooperative perception workload characteristics
Parameter Value

Processing time (FF) 100 µs
Processing time (FE) 100 µs
Frames size 731kB
Features size 64 kB
Frame rate 35 FPS

4.3.4. Results

In this section, we evaluate our orchestration methodology on a Kubernetes cluster. We
present the costs and the end-to-end (E2E) latency of the vehicular cooperative perception
workload when using the Kubernetes default scheduler and our methodology to place
the services.

We first evaluate the LIP approach separately. The LIP algorithm has two heuristic
parameters: α and β. We run a first set of experiments to understand how these
parameters change the output of the experiments. We also run experiments to see how
cost changes affect the decisions of the LIP approach. Then, we evaluate and compare
all our approaches. Finally, we discuss the performances of the CIP approach when
using initial data or not, and the CPU consumption overhead of running our scheduling
components.

LIP approach evaluation

In this section, we evaluate the LIP approach. We use a cluster with three data centers
and three edge nodes for these experiments. We define a scenario in which two vehicles
embed a GPU (to extract the features locally), and three vehicles use a feature-extractor
(FE) deployed in the Computing Continuum. There is one feature-fusion (FF) instance
for all the vehicles.

We evaluate this scenario using three scheduling approaches. Baseline: the default Ku-
bernetes scheduler. Latency-based Initial Placement (LIP): the initial placement algorithm
described in section 4.2.2. LIP + Rescheduler (LIP+RS): the initial placement algorithm in
addition to the rescheduling methodology described in section 4.2.3.
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For each approach, we are testing different cluster configurations. Table 4.2 summa-
rizes the experimental parameters and defines the different experiments. Experiments 1
to 3 test different α parameters, and experiments 4 and 5 explore different node costs.
Since the experiments are run on real machines, there is significant variability between
each execution. Therefore, we repeat each experiment ten times and use the average
value in the figures here.

Table 4.2.: Cooperative perception workload cluster parameters
Experiment DC cost Edge Cost Network cost α β

(per CPU) (per CPU) (per GB) (ms)

1 0.0472 0.0472 0.01 20 1000
2 0.0472 0.0472 0.01 15 1000
3 0.0472 0.0472 0.01 40 1000
4 0.0472 0.0944 0.01 20 1000
5 0.0944 0.0472 0.01 20 1000

For every experiment, we measure the total costs of running the workload. The total
costs are the sum of the computing and networking costs.

In addition to the costs, we also record the end-to-end latency (E2E latency) of each
experiment. This is a key performance indicator (KPI) to check if the quality of service
varies when performing cost optimization. The E2E latency is the duration between the
time when a frame is recorded and the time when the vehicle receives the corresponding
positions of the nearby vehicles. This value aggregates the network delays between each
service, the duration required to send the video stream and the features, the processing
time for extracting the features, the time to fusion the features, and the time to broadcast
the positions.

Figure 4.10 presents the average of the total costs. The total costs are normalized to
the baseline approach. Error bars represent the 95% confidence interval. The lower the
costs, the better.

Figure 4.11 shows the 95th percentile of the end-to-end latency for the different
experiments. We can use this figure to ensure that the Quality of Service remains at the
same level.

By analyzing the node allocation of the services over time, we observe that the
baseline approach is choosing data center nodes in most situations. Data center nodes
have more computing resources; they are the least allocated nodes. The LIP and the
LIP+RS approaches use both edge and data center nodes (it depends on the cluster
configuration).

Experiments 1 to 3 use different values of α. The LIP and the LIP+RS approaches
show lower costs than the baseline approach. The LIP+RS provides an improvement of
around 20%. According to the confidence intervals, the LIP+RS costs are significantly
lower than the baseline approach. In these three experiments, the computing cost is
the same for all kinds of nodes. Therefore, computing costs are the same for every
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Figure 4.10.: Average of total costs for each approach: Baseline, Latency-based Initial
Placement, and LIP + Rescheduler. Costs are normalized to the baseline
approach

approach. The total costs can be lower only if the networking costs are lower because
the computing costs are constant. The LIP and the LIP+RS get lower total costs because
they managed to get smaller networking costs.

In experiment 4, the edge nodes are twice as expensive as the data center nodes.
By analyzing the allocation of the services, we observe that most of the services are
deployed in data centers. Data center nodes are the best solution in this configuration.
Since the three approaches all choose data center nodes, the results are very similar.

In experiment 5, the data center nodes are twice as expensive as the edge nodes.
When using our methodology, the services are mostly placed at the edge. The LIP and
the LIP+RS achieve an improvement of around 40% compared to the baseline approach.
They are significantly lower.

For each experiment, the E2E latency is similar for every approach. Even if our
methodology lowers costs, the E2E latency is not impacted, and this KPI remains the
same. However, the LIP approach has higher costs due to the huge optimization in
experiment 5. This approach chooses only cheaper edge nodes with low latency, but
the vehicles are moving, and the services stay at the same location. This location at the
edge is too specific and provides higher E2E latency. Using a central location like a data
center may help to avoid this issue. To benefit from the cost optimization of using edge
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Figure 4.11.: 95th percentile of the end-to-end latency for each approach: Baseline,
Latency-based Initial Placement, and LIP + Rescheduler.

nodes, we need to use the rescheduler to keep the same quality of service.
Computing costs are the same for each approach; this is the expected behavior, as all

instances have the same cost. Networking costs are lower for the LIP and the LIP+RS
approaches, which leads to lower total costs. The LIP+RS approach performs better than
the LIP approach.

The results show that we can have lower costs when running the same services
with the same end-to-end latency. Our scheduling methodology can lower the costs of
deployment of the Edge-to-Cloud Computing Continuum. However, to ensure lower
costs, it is better to use the rescheduler in addition to our initial placement approach. α

and β should be chosen respectively to the inter-node latencies and the node compute
costs.

All approaches evaluation

This section evaluates the scheduling approaches presented in section 4.2.
We use a cluster with four data centers and five edge nodes for these experiments.

We define a scenario in which five vehicles embed a GPU (to extract the features locally)
and use a feature-extractor (FE) deployed in the Computing Continuum. There is one
feature-fusion (FF) instance for all the vehicles.

We evaluate this scenario using seven scheduling approaches. Baseline: the default
Kubernetes scheduler (least allocated node). Most Allocated node (MA). Balanced allocation
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(BA): a Kubernetes approach to balance the resource usage among the nodes [130].
Latency-based Initial Placement (LIP): the initial placement algorithm described in sec-
tion 4.2.2. LIP + Rescheduler (LIP+RS): the initial placement algorithm in addition to
the rescheduling methodology described in section 4.2.3. Communication-based Initial
Placement (CIP): the communication-based initial placement algorithm described in
section 4.2.2. CIP + Rescheduler (CIP+RS): the initial placement algorithm in addition to
the rescheduling methodology described in section 4.2.3.

We use three different cluster configurations for each approach: i) all nodes have the
same instance cost, ii) data-center nodes are twice as expensive as the edge nodes, and
iii) edge nodes are twice as expensive as the data-center nodes. The instance cost is
somewhat arbitrarily chosen to 0.0472 per CPU.h, and the communication cost to 0.01
per GB. The actual values are not so important for the performance evaluation, but
they are still chosen to be in the realistic realm. Since the experiments are run on real
machines, there is significant variability between each execution. Therefore, we repeat
each experiment ten times and use the average value in the figures here with error bars
representing 95% confidence interval.

For the LIP approach, we set α = 20 and β = 1000. We set α in relation to the observed
latencies in the cluster. It is lower than the average delay between two edge nodes and
higher than the average delay between a DC and an edge node. If the α value is too
small, the condition with α will never be satisfied, and the LIP will select the node
with the lowest instance cost. Respectively, if α is too big, the condition will always be
satisfied, and the LIP will choose the cheapest node. We set β in relation to the instance
costs in the cluster. It is significantly bigger than the inverse of the average instance cost.
That way, LIP first ranks the nodes by the number of α constraints satisfied and then
selects the cheapest node among those that satisfy the maximum number of constraints.

For every experiment, we measure the total costs of running the workload. The
total costs are the sum of the computing, networking, and rescheduling costs. The
rescheduling cost is the price to pay to migrate a pod from one node to a different one.

In addition to the costs, we also record the end-to-end latency (E2E latency) of each
experiment. This is a key performance indicator (KPI) to check if the Quality of Service
(QoS) varies when performing cost optimization. The E2E latency is the duration
between the time when a frame is recorded and the time when the vehicle receives
the corresponding positions of the nearby vehicles. This value aggregates the network
delays between each service, the duration required to send the video stream and the
features, the processing time for extracting the features, the time to fusion the features,
and the time to broadcast the positions.

Figure 4.12, 4.13, and 4.14 presents the average of the total costs for different scenarios:
same instance cost for all nodes, data center nodes twice as expensive as edge nodes
and edge nodes twice as expensive as data center nodes. The total costs are normalized
to the optimal approach. Error bars represent the 95% confidence interval. The lower
the costs, the better.

Figure 4.15 shows the 95th percentile of the end-to-end latency for the different
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Figure 4.12.: Average of total costs for each approach: Baseline (default Kubernetes,
Least Allocated), Most Allocated, Balanced Allocation, Latency-based Initial
Placement, LIP + Rescheduler, Communication-based Initial Placement,
and CIP + Rescheduler. Costs are normalized to the baseline approach.
Data-center and edge nodes share the same price.

experiments. We can use this information to ensure that the Quality of Service remains
the same.

By analyzing the node allocation of the services over time for all scenarios, we observe
that the baseline approach is choosing data center nodes in most situations. Data center
nodes have more computing resources; they are the least allocated nodes. The LIP, CIP,
CIP+RS, and CIP+RS approaches use both edge and data center nodes (it depends on
the cluster configuration).

For the first scenario where all nodes have the same instance cost, our approaches have
total costs that are 7 to 23% lower than the baseline (the default Kubernetes scheduler).
The optimal approach is 30% lower than the baseline approach. Our best approach is
CIP; its total cost is 8% above the optimal. In this scenario, the instance costs are the
same for every approach. It is the expected behavior; the node price is the same for
every node. Only lower networking costs lead to lower total costs. Rescheduling costs
are negligible in this experiment. They correspond to the price to pay to run the two
pods during the migration; the old pod is killed only when the new one is running.

For the second scenario, where the data center nodes are twice as expensive as edge
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Figure 4.13.: Average of total costs for each approach: Baseline (default Kubernetes,
Least Allocated), Most Allocated, Balanced Allocation, Latency-based Initial
Placement, LIP + Rescheduler, Communication-based Initial Placement,
and CIP + Rescheduler. Costs are normalized to the baseline approach.
Data-center nodes are twice as expensive as edge nodes.

nodes, our approaches have a total cost of 19 to 29% lower than the baseline. The baseline
chooses the least allocated nodes, which are the data center nodes. The baseline chooses
only expensive nodes in this scenario, which leaves a lot of room for improvement. CIP
and CIP+RS have similar performances using two different placement strategies. In
this situation, the CIP approach uses more DC nodes (that are more expensive) than
the CIP+RS. The rescheduler is using more edge nodes to save both computing and
networking costs. However, the un-optimal rescheduling routine duration (described in
section 4.4) leads to higher networking costs. CIP uses DC nodes for the feature fusion;
it is more expensive than CIP+RS, which uses Edge nodes.

In the last scenario, where edge nodes are twice as expensive as the data center nodes,
there is less room for improvement. The baseline chooses data center nodes because they
are the least allocated nodes, and it gets results similar to those of the LIP and LIP+RS
approaches. However, the CIP approach manages to find 9% lower total costs. But, these
cost improvements imply an impact on the end-to-end latency. CIP+RS performs better
than the baseline with a limited impact on the QoS.

The Balanced Allocation approach is not appropriate for the Edge-to-Cloud Comput-
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Figure 4.14.: Average of total costs for each approach: Baseline (default Kubernetes,
Least Allocated), Most Allocated, Balanced Allocation, Latency-based Initial
Placement, LIP + Rescheduler, Communication-based Initial Placement,
and CIP + Rescheduler. Costs are normalized to the baseline approach.
Edge nodes are twice as expensive as data-center nodes.

ing Continuum. It provides higher total costs and lower QoS than the baseline in every
scenario. Using Balanced Allocation on heterogeneous resources is inefficient.

The Most Allocated node approach can have lower total costs than the baseline in two
scenarios. The QoS of the MA approach is lower than the baseline in every scenario. The
major issue of this approach is that it does not adapt to different cluster configurations.
It always chooses the edge nodes (which are the most allocated nodes), even if they are
not close to the end users. A first edge node is picked randomly and then filled at its
maximum capacity, then the next one is selected. If the first edge node picked is close to
the end users, the overall results will be better than the baseline. This approach will be
even less performant if we add more edge nodes in the cluster. This method has a lot
of variability due to randomly picked edge nodes. It makes that approach less reliable
than our methodology.

The End-to-End latency is similar for most of the approaches, except for the above-
mentioned case. Overall cost improvement does not negatively impact the Quality of
Service.

The CIP approach is the best of our approaches to minimizing the total costs. However,
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Figure 4.15.: 95th percentile of the end-to-end latency for each approach (ms)

there is one scenario (when edge nodes are twice as expensive as data-center nodes)
where the QoS is impacted by cost optimization. The LIP approach performs less
aggressive cost optimizations, and results are lower than CIP but never negatively
impacts the QoS. The rescheduler helps reduce the costs or improve the QoS. But, to
propose the best performances possible, the rescheduling routine needs to be shorter
than the systems evolve.

CIP performances and initial data

The performance of the CIP scheduler varies according to the available data. To quantify
this variation, we run an experiment where we use the CIP with and without initial
data. Table 4.3 presents the normalized total costs for different approaches. When the
CIP scheduler can access initial data, the total cost is 12% lower than it is without initial
data. However, the CIP approach outperforms the LIP approach in all cases, with and
without initial data.

The CIP approach performs better when it already has data about the application it is
deploying.
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Table 4.3.: Normalized total costs for different approaches
Approach Optimal LIP CIP (without initial data) CIP (with initial data)

Normalized cost 1 1.32 1.22 1.10

Custom scheduler and rescheduler overhead

We measure the overhead of using our custom scheduling methodologies. It is important
to ensure that the cost of running our approaches is lower than the savings they can
achieve.

Figure 4.16.: CPU time overhead of the scheduling components

Figure 4.16 presents the execution time of the scheduling components relative to the
experiment duration for each approach studied. Using our scheduling approaches has
a limited impact on CPU consumption. The CPU time of the additional scheduling
components is below 4% of the experiment duration. The scheduling components are
idle most of the time. Our custom schedulers consume around 1.5 times more CPU than
the default Kubernetes scheduler.

Overall, saving 10 to 25% of the costs of running the experiment is worth the expense
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of 4% of a CPU core for the duration of the experiment.
It is worth noting that the scheduling overhead does not impact any applications in

any negative way as it is executed on a separate node.

4.4. Limitations

This section presents the main limitations of our scheduling methodologies and their
evaluation.

Workload

In this set of experiments, we consider that Edge and Cloud have the same processing
speed (but with different numbers of CPUs). The workload consists of handling a
video stream in real-time; more computing capabilities cannot make it faster, but it can
improve accuracy. Further studies may investigate different framerate and resolutions,
or test other workloads.

Rescheduling

The rescheduling routine sometimes is too long for optimal performance. It could be
counter-intuitive that a static approach (CIP) outperforms the dynamic one (CIP+RS).
The explanation is that the system evolves faster than the rescheduler can react.

For example, when a pod is placed on node E3 to be close to a vehicle located on E-U4,
this solution is optimal at this given time. Nevertheless, if the vehicle moves to E-U6,
the solution is no longer optimal. If the rescheduler takes a minute to move the pod to
E5, the pod stays in an inadequate location for one minute, and the costs grow higher
very fast. If the rescheduler cannot react fast enough, it can be better to have a static
approach without a rescheduler or to improve the reactivity of the rescheduler. To avoid
these situations, the period of rescheduling should be significantly lower compared to
the changes that occur in the clusters (vehicle movement or new node availability).

The minimum duration of the rescheduling routine is fixed by execution and migration
time. Section 4.2.4 provides more details about the rescheduling duration. Future works
may investigate ways to improve the rescheduling speed.

Quality of Service

Even if our proposed methodology has similar or better Quality of Service (QoS) than
the baseline, there is no mechanism to ensure that Service Level Objectives (SLOs) are
met.

The LIP approach minimizes inter-service latency to lower communication costs. It
reduces the end-to-end latency and improves the QoS. However, there are no hard
requirements to avoid choosing nodes with high latency if it is the only choice possible.
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The CIP approach minimizes the total costs. If the nodes of the cluster have similar
prices, this approach will minimize the data traffic. Otherwise, it will choose a trade-off
between the instance and the communication costs. Reducing data traffic by processing
data locally reduces the end-to-end latency, and improves the QoS.

The CIP approach can reach lower total costs than the LIP approach, even if the QoS
is lower. The LIP approach performs less aggressive optimizations, it can get higher
QoS.

Future work can investigate adding a node filter in the scheduler and the rescheduler
to remove the nodes that do not meet SLOs from the list of schedulable nodes.

4.5. Related work

In this section, we present some research related to the scheduling of services in
the Edge-to-Cloud continuum. In this study, we define the scheduling of services
as the mapping of a service to a server where it can run. We organize the different
scheduling methodologies into three categories: cost-aware, network-aware, and QoS-
aware scheduling.

Cost-aware scheduling Lai et al. present a cost-aware scheduler in [131]. They use
a heuristic approach (most capacity first) to maximize the number of allocated edge
users while minimizing the number of necessary servers at the edge. This work has no
mechanism to move applications when end-users are moving. In addition, scheduling
on edge nodes is outside of the scope of this study.

The authors of articles: [132, 133] present approaches to reduce costs by improving
the Kubernetes scheduler. However, their main interest is in cloud computing and
cannot be extended over the whole continuum without additional work. Li et al. [132]
present a meta-heuristic-based scheduler that minimizes the energy costs of CPU, RAM,
and network usage in addition to the networking costs of offsite nodes. They also
propose a rescheduler to monitor changes in business requirements. This study only
focuses on the cloud environment, where computing resources and resources are mostly
homogeneous (e.g., same kind of server hardware, same latency between the nodes).
Also, the scheduling decision does not consider any latency requirements. Zhong et
al. [133] propose a scheduling methodology that reduces the number of allocated Virtual
Machines when using the Kubernetes Autoscaler to lower the instance costs. To save
costs, they propose to use a background process that checks if it is possible to shut
down a server and migrate its pods to another node. They try to maximize resource
utilization to save costs. This approach would have a limited impact on the scope of
edge computing; node geographical location is an important parameter to consider in
order to lower latency or reduce backhaul networking costs. In addition, this work does
not consider the costs of the traffic going outside of data centers. Outgoing traffic is
expensive when a network-intensive application is not deployed in the same location as
its end users.
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Network-aware scheduling Kaur et al. [134] present a scheduling algorithm that
minimizes inter-service communication delays. It relies on two heuristic approaches:
a greedy and a genetic algorithm. This study makes the assumption that data traffic
between the services of the application is known. It is not the case in practice with most
applications. Additional work would be required to specify or learn the data traffic
pattern. This limitation makes their approach difficult to use with real applications. Also,
this study does not use any background process to monitor the movements of the end-
users at the edge. Marchese et al. have proposed using a rescheduling mechanism [135,
136]. In [135], they present a network-aware scheduler plugin and a descheduler that
checks if a node with a better score can be found. The proposed scoring method is not
effective for initial placement. It relies on the input from previous data traffic that is null
at the initialization. It is worth mentioning that our scheduling approach is not based
on this work; we independently built similar experimental setups (based on common
open-source software).

In [136], the authors present a network-aware scheduler plugin to extend the Inter-
PodAffinity module from their previous work. Their approach automatically updates
the static Kubernetes manifest with real-time data collected from the cluster. In addition,
they are using a Kubernetes controller that updates the manifests and triggers rolling
updates if an improvement can be found. However, initial placement is not as good as
the default approach in some cases. They need a few iterations or a larger workload to
be better than the default approach.

Wojciechowski et al. [137] present a data traffic-aware scheduler that minimizes inter-
node communications. This study does not handle the case of moving user equipment.
Also, it does not consider latencies between the nodes.

In [138], Toka presents a latency-aware scheduler that maximizes resource utilization
at the edge. He also introduces a rescheduler that can improve application placement
over time. However, the inter-service data traffic is not considered in this work.

QoS-aware scheduling Mattia and Beraldi [139] present a reinforcement learning based
scheduling approach that improves the stability of the frame rate of AR/VR applications.
The experimental results are limited to a simulation; applying this methodology on a
real Kubernetes would require a large dataset for the training stage.

The Polaris scheduler is presented in [140]. It is an SLO-aware (Service Level Objective)
scheduler that considers many network metrics. The authors extend many Kubernetes
scheduler plugins (pre-filter, filter, and score) to consider the topology of the cluster, the
dependencies of the services, and the SLOs. However, no rescheduling mechanism is
presented in this study. Also, the long computing time for placement is a problem in a
dynamic environment where application placement needs to be often reevaluated. In
[141], Orive et al. present a scheduling approach to minimize the application end-to-end
(E2E) latency and maximize E2E reliability. They propose an architecture to define the
application requirements. Their Kubernetes scheduler plugin uses these requirements to
score the nodes. Nautilus [142] is a run-time system that maps micro-services to nodes
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based on communication overhead, resource utilization, and IO pressure.
Table 4.4 summarizes the different scheduling methodologies described in this section.

Table 4.4.: Related work summary
Approach Cost-aware Network-aware QoS-aware Rescheduling Using

mechanism Kubernetes

Kubernetes [75] - - - - ✓

[131] ✓ - - - -
[132, 133] ✓ - - ✓ ✓

[134] - ✓ - - -
[135, 136, 137, 138] - ✓ - ✓ ✓

[139] - - ✓ - -
[140, 141, 142] - - ✓ - ✓

Our approach ✓ ✓ - ✓ ✓

4.6. Conclusion

We propose a cost-effective orchestration methodology that simplifies the deployment
of distributed applications in the Cloud-to-Edge Computing Continuum as it does not
need manual placement of edge services. Doing that significantly lowers the costs of
running the applications while keeping the same Quality of Service. This orchestration
methodology works for clusters that aggregate resources from traditional data centers
and the servers located at the edge of the network. We implement our orchestration
methodology on a Kubernetes cluster and demonstrate its benefits using a realistic
workload: a vehicular cooperative perception. Experiments on this workload show that
using our approach reduces costs by 10% to 25% compared to the default Kubernetes
scheduler for the same quality of service. Also, it is possible to use our methodology
with any containerized workload.

Although we use monetary cost as our optimization target, any measurable metric
could be used, e.g., energy consumption can be minimized instead.

In chapter 5, we study the performances of container CPU limitation mechanisms and
present our tool to set CPU limitations automatically.
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Chapter 5.

Understanding CPU Limitation Mechanisms
in Containerized Parallel Applications

This chapter presents a detailed study of the container CPU limitation mechanisms and
their impact on application performance. We propose a methodology for automatically
selecting the best CPU limitation mechanism, and we evaluate this methodology on a
Kubernetes cluster.

This chapter is based on the following publication (under review):

• Rac and Brorsson. “Understanding CPU Limitation Mechanisms in Containerized
Parallel Applications”. 2024. [55].

This chapter is organized as follows: Section 5.1 presents the main concepts of
container CPU limitations. Section 5.2 presents the differences in performances we can
observe on parallel applications when using Time division or Core division. It provides
some guidelines for setting CPU limitations. Section 5.3 describes our CPU Limitation
Setter (CLS). CLS is a methodology for automatically choosing the best CPU limitation
mechanism. It also updates the number of allocated CPUs to avoid waste of resources,
it allocates more CPUs only if they provide a significant speedup of the execution time.
For example, allocating one more CPU core to an application if it provides a speedup
of execution time of only 1% could be considered as a waste of resources. This section
also describes the CLS implementation and evaluation on a Kubernetes cluster. Then,
section 5.4 describes related work. Finally, we present our conclusions and future work
directions in section 5.5.

5.1. Introduction

The ability to containerize applications has tremendously simplified the deployment
of software applications. Containers package all dependencies in one artifact, and
developers can then know that an application will execute as intended on any container
runtime, provided that the architecture is the same. This also applies to parallel
applications, which can use multiple CPU cores to solve a particular problem faster or
a larger problem at the same time. Most container runtimes provide the possibility to
specify limitations in resource usage in order to facilitate multi-tenancy of containers in
the same server or to help the container orchestration system find the right sized server.
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An example of resource limitations is CPU limits, which play a critical role in CPU
resource allocation. They ensure that the CPU resources allocated to an application
can be used only by this application. Having known limitations supports building
efficient scheduling policies and maximizing resource utilization. Maximizing resource
utilization is particularly important for edge computing, where resources are the most
limited in the Computing Continuum. However, it is a challenging task to define CPU
limits: allocating too many resources to an application results in unused resources, and
not allocating enough CPUs deteriorates the performance of the application and lowers
its Quality of Service.

Time division and Core division are the two main mechanisms to limit container CPU
usage. Time division gives access to all cores in a CPU to the application based on a
fraction of a time slot, which provides a very flexible and fine-grained resource allocation.
It is also the default CPU resource limit mechanism in Docker and Kubernetes, therefore
used by the majority of users. In contrast, Core division divides a CPU vertically and
gives an application the entire core(s) allocated to it. As we will see, Core division can
offer better performance for parallel applications for some use cases, as dedicating cores
to the application helps to guarantee performance.

Some parallel applications (described in the next section) have a faster execution
time when using Core division instead of Time division, even if the same number of
CPUs is allocated to the application. Since Time division is the default CPU limitation
mechanism, it is essential to understand how it works and what impacts its performance
to avoid wasting resources. Furthermore, we wanted to investigate the possibility of
automatically choosing the right CPU limit mechanism as it is not always easy for
developers to understand what would be the best depending on the architecture of the
available nodes in a Kubernetes cluster, for instance. Finally, we think that containers
are one of the best options for deploying applications in the Computing Continuum;
therefore, understanding container performances is important. Accordingly, this con-
tainer performance study includes different types of CPUs, and we also experiment
with our methodology on a heterogeneous cluster.

We make the following key contributions in this chapter:

Contributions

1. Explain the differences in performances according to the CPU limitation
mechanism

2. Provide guidelines to set CPU limitations: using the most efficient limitation
mechanism

3. Present a method to automatically set CPU limitations and its evaluation on
a Kubernetes cluster.
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5.2. Setting limits

This section describes the main container CPU limitation mechanisms and the perfor-
mance difference we observe between the two when running parallel applications.

5.2.1. Container CPU limitation

Containers have two main mechanisms to limit CPU usage: Time division and Core
division. Control group (cgroup) [143] is the Linux kernel mechanism that limits container
resource usage. Cgroups can be used to restrict CPU usage, in addition to memory, IO,
and other resources.

The default mechanism to limit CPU usage is Time division. This mechanism gives
an application access to the whole CPU for a fraction of the time. There are two
main scheduling strategies to allocate time between the different tasks: Completely
Fair Scheduler (the default scheduler) and Real-Time scheduler. Period and quota are
the two parameters to use for defining a Time division rule for the CFS scheduler. A
containerized application limited by Time division can use the whole CPU for quota
microseconds each period microseconds. Once the quota is spent, the application needs to
wait until the period to access the CPU again. The default period is 100000 microseconds.
The maximum quota is equal to 100000 microseconds times the number of vCPU on the
machine. Allocating 1.2 vCPU to an application sets the period to 100000 microseconds
and the quota to 120000 microseconds.

The cpu-set is the Core division implementation of cgroups. This mechanism limits the
container to use only one or many CPU cores. For example, it can limit an application
to access only the cores 0 and 1 of a CPU. In addition, it is possible to restrict many
applications simultaneously to use cores 0 and 1. However, Kubernetes offers exclusivity
guarantees. When using Kubernetes static CPU management policy, pods are getting
exclusive usage of the CPUs restricted with cpu-set [144]. If a pod is given core 1,
the Kubernetes scheduler will not allocate this core to any other pod on the node.
Nevertheless, this exclusivity is only for other pods on the node; other processes, like
the container runtime, can continue to run on these reserved cores.

Time division and the CFS is the default approach for most containerized workloads,
it is the default configuration of Docker and most Kubernetes container runtimes. It
allows fine-grain CPU allocation; allocating a fraction of a CPU core is possible. The
notation mCPU refers to one-thousandth of CPU time. For example, allocating 500
mCPU to a pod means allocating half a core to the pod. On the contrary, Core division
is coarse-grain. It is only possible to allocate full cores, not a fraction of a core.

Time and Core divisions perform similarly most of the time. However, we note that
performances are different for parallel applications.
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5.2.2. Time division and parallel application

We observe that containerized parallel applications can be significantly slower when
using Time division. A parallel application’s default number of threads varies from
one framework or programming language to another. The default value can be set to
the number of cores of the machine or a pre-defined setting. This is problematic when
running parallel applications with the Time division mechanism. When the number
of CPUs allocated with Time division is below the number of threads created by the
parallel application, we observe performance degradation. That degradation is higher as
the difference between the number of allocated CPUs and the number of threads created
increases. A solution is to set that number of threads lower, but there is no general
API or a global variable to set it for every parallel framework. Therefore, deploying
a parallel application on a Kubernetes cluster with limits and default configuration
impacts performance.

However, running the same application and configuration but using Core division
instead of Time division changes the application performance. When using Core
division, the application does not create more threads than the CPU limits; this improves
execution time.

The rest of this section evaluates the impacts of choosing time or Core division on
execution time, power consumption, and energy consumption. It also explains the
difference in performance between time and Core division.

Experimental methodology

Table 5.1 describes our experimental setup. We are using Docker v27.1 and Linux v6.8.

Table 5.1.: Setting limits experimental setup
Intel Xeon

Microarchitecture Skylake 8175M
Architecture x86_64
#Sockets 2
#Phys. Cores 48 (24 + 24)
#Threads 96
Clock speed 2.5 GHz
L1 Cache I/D 1.5 MiB/1.5 MiB
L2 Cache 48 MiB
L3 Cache 66 MiB
Main memory 384
Node name intel

We measure the execution time, power consumption, and energy consumption for
several benchmark applications. We use the RAPL (Running Average Power Limit)
sensor available in intel processors for power and energy consumption. For the initial
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benchmarks, we use the NAS Parallel Benchmark (NPB), C++ implementation [145]
parallelized using OpenMP.

NAS parallel benchmarks

In the first experiment, we compare execution time, power, and energy consumption
when we have static CPU limits but varying the number of threads, and with different
CPU limitation mechanisms: No limit, Time division, and Core division. Figure 5.1
and Figure 5.2 present the results for the Embarrassingly Parallel (EP) and Conjugate
Gradient (CG) benchmarks from NPB. OpenMP programs will, by default, use as many
threads as there are cores on the host CPU. In this experiment, we use the environment
variable OMP_NUM_THREADS to control the number of threads.

(a) Execution time (b) Power Consumption

(c) Energy Consumption

Figure 5.1.: Results for a limit of 4 CPU - Embarrassingly Parallel

For these two applications, we note that the average execution time is similar when the
number of threads is lower or equal to the CPU limits. However, it is different when the
number of threads is strictly higher than the CPU limit. Execution is then considerably
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(a) Execution time (b) Power Consumption

(c) Energy Consumption

Figure 5.2.: Results for a limit of 4 CPU - Conjugate Gradient

slower when using Time division compared to Core division. For the EP application, the
execution is faster when there are no limitations. That is the expected behavior; without
limitations, more resources are available. For the CG application, the execution is the
same when using the Core division or when there are no limitations, indicating that we
have reached the practical limit of parallelism. For both of these programs, we observe a
slower execution time when using Time division when the number of threads is higher
than the CPU limit.

When the number of threads is below the CPU limit, the power consumption is similar
for all mechanisms and and also with no limit set. However, as with execution time, the
power consumption differs when the number of threads is larger than the CPU limit.
Without limitation, the power consumption is almost twice as high as it is for the Time
division. For Core division, power consumption is higher than Time division for EP, but
it is similar for CG. We also observe that the power consumption increases when more
threads are added.

The energy values are similar when using fewer threads than the CPU limit. Using
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no limitations leads to higher energy consumed in every case. The energy consumed is
much lower in Core division than in Time division for CG. Longer execution times lead
to higher energy consumption.

Image processing workload

We also experiment with an image processing workload to confirm our observations
on the NAS parallel benchmarks. We build this image processing workload using
Yolov8 [146], a computer vision model. This model implementation uses PyTorch [147],
one of the main machine learning frameworks. The application processes images from a
video stream of a driving scene. The application identifies elements and their locations
in the images. These can be helpful for autonomous driving; an embedded camera could,
therefore, extract elements around the car and their locations. We want to observe if
this parallel application using a framework different from the NAS benchmark presents
similar performance variations when changing the CPU limitation mechanism.

Table 5.2 presents the execution times of the Image processing workload for various
CPU Limitation mechanisms. We run these experiments on the Intel node.

Table 5.2.: Image Processing average executions time for Time division (TD), Core divi-
sion (CD), and No limitation.

Average Inference Time (ms)
CPU Limit TD CD No Limitations

1 798 93.2

46.2

2 251 60.9
3 52.4 46.6
4 42.5 41.6
5 43.7 43.0
6 43.8 43.7
7 42.6 44.1
8 44.1 44.2

We observe a significant difference in performance between Time division and Core
division when the CPU limit is equal to 3 vCPUs or less. From 4 vCPUs to 8, there is
no significant difference. By default, we observe that the image-processing application
creates 4 threads. When using the Time division approach, there are more threads than
CPU allocated. The application adjusts the number of threads created when using the
Core division approach. Bellow 4 vCPUs allocated, it creates a number of threads that
matches the number of allocated vCPUs. For 4 vCPUs and above, it allocates only 4
threads. Without limitations, the application creates only 4 threads. It cannot use all the
processing power of the Intel node.
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Linux kernel preempt events

This section investigates why execution is slower when using the Time division mecha-
nism. The two previous experiments have shown that parallel applications are slower
when using more threads than the number of allocated CPUs and selecting Time division
instead of Core division. To explain the performance difference, we study the Linux
kernel preempt events. We trace the execution of the LU application from the NAS
parallel benchmark suite.

Figure 5.3 shows the duration and the number of the preempt events and the execution
time of the LU application when using different CPU limitation mechanisms and a limit
of 2 vCPU. We compare the results when using the default number of threads to the
case where we manually set the number of threads to 2. We study Time division (TD),
Core division (CD), and No-limit set (No). Figure 5.3a presents the duration of the
preempt events, and Figure 5.3b their number of occurrence. Figure 5.3c shows the total
execution time for the different CPU limitation mechanisms.

The duration is similar when the number of threads is set to the same value for each
approach. This confirms our previous observations. The pre-empted duration is the
same for all CPU limitation mechanisms, and so are the execution times. However, the
number of preempt events differs, even when the same number of threads is set.

When the number of threads is set to default, we observe different behaviors for each
limitation mechanism.

Execution time is much faster for the No-limit approach as it can use the 96 available
CPUs. Then, using Core division over Time division gives an execution time that is 13
times faster.

Preempted duration corresponds to the sum of each preempt event duration for each
thread. The No-limit approach has a longer preemption duration than the Core division
approach because it uses 96 threads, while the Core division uses only 2. Then, when
all threads are preempted, the total preempt duration is longer, but the execution time
is still lower. However, that preempt duration is very long for Time division. First,
this duration is longer because of the 96 threads, like the No-limit approach. Then, all
of the 96 threads are sharing the same time budget of 2 vCPU. That means that each
thread has only a very limited time to run. When the time budget is spent, the Linux
kernel scheduler runs other processes. Therefore, the threads spend most of their time
switching contexts and processing them with limited time. Finally, we think that small
measurement inaccuracy might inflate the total duration of preemption. The application
and the tracing software are running in the same pod with a limit of 2 CPUs. That
might affect the precision of the measures. However, we run all these experiments in
the same conditions, with the tracing software always running with the application in a
CPU-limited container.
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(a) Duration of preempt events (b) Number of preempt events

(c) Execution time

Figure 5.3.: Duration and number of preempt events and execution time for the LU
application for a limit of 2 vCPU

Conclusion

We observe similar effects between these experiments. When the default number of
threads is higher than the CPU limit, there is a negative impact on performance when
using Time division. Using Core division adjusts the number of allocated threads. Then,
we do not observe such a significant impact on performances. When the default number
of threads is lower or equal to the CPU limit, Time division and Core division perform
similarly. In this case, we recommend using Time division. Time division enables more
flexibility in resource allocation. Also, Time division supports the in-place resize feature
of the CPU limits. That helps update CPU limits without restarting the application.
Core division also supports this feature in cgroup and Docker containers but not in
Kubernetes. However, using in-place resize for Core division does not update the
number of created threads. Therefore, the application needs to be restarted nonetheless
to update the number of created threads.
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In summary, using Core division helps improve performance when deploying parallel
applications on Kubernetes. It is primarily essential when deploying applications on
processors with a large number of cores and allocating only a few of them to the
application.

5.3. CPU Limitation Setter (CLS)

This section describes our CPU Limit Setter (CLS). It is a tool that automatically adjusts
the CPU limits (i.e., the number of allocated CPUs and the CPU limit mechanism). It
selects limits based on the results of the previous section. Setting resource limitations
is helpful for scheduling, even if it is not mandatory in Kubernetes. It helps maximize
resource utilization while ensuring enough resources for applications to run. It is
essential for edge computing, where computing resources are more limited than in
traditional data centers.

We designed the CLS to be integrated into a Kubernetes cluster as it is the de facto
standard for container orchestration. Setting limits can be tedious; setting limits too
low leads to performance issues, and setting limits too high results in the waste of
resources. We design the CLS to adjust resources automatically to find a trade-off
between performance and resource utilization. According to the previous section,
having well-set resources also helps reduce energy consumption. Therefore, a tool that
automatically sets limits for Kubernetes deployment can be beneficial for application
developers.

CLS can determine how many CPUs to allocate and which limitation mechanism
to use, realizing a quick application profiling. It creates a copy of the deployment
to evaluate its performances with various parameters (e.g., number of CPU allocated,
limit mechanism). Then, profiling the application does not disturb the execution of
the original application. In addition to ad hoc profiling, the CLS records the actual
application’s performances to increase the profiling’s accuracy without additional costs.
CLS makes sure not to profile the same application twice. It checks the hash of the
container image to make sure there are no existing profiles about it. Profiles can be
reused for different types of nodes at the cost of a lower accuracy. It helps reduce the
number of resources required to profile an application.

The CLS proceeds as follows: it first detects which limitation mechanism to use and
then profiles the application using the selected mechanism. Finally, it updates the
number of CPUs allocated to the application and its CPU limitation mechanism. It only
increases the number of allocated CPUs if there is an actual speedup.

Applications are profiled once and run multiple times. Then, it is possible to use
application profiles multiple times. Spending a few resources to benchmark the applica-
tion once and get the benefits of well-adjusted limits for all instances is an acceptable
trade-off. We could even extend this approach to share profiles between multiple clusters,
but it is outside of the scope of this study.
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5.3.1. CLS methodology

This section describes our CPU Limitation Setter (CLS) methodology, its main algorithm,
and its integration into the Kubernetes ecosystem. The main idea of this approach is to
profile applications while they run and execute the additional tests in the background.

First, the CPU Limitation Setter (CLS) watches each workload running in the cluster.
It maintains a list of profiled applications and already optimized pods. CLS uses
the hash of the container image and the command of containers to recognize which
applications are already profiled. Therefore, if an application has already been profiled,
it is unnecessary to do it again. Different instances are automatically detected even if
they are using different deployments. When the application is updated, the container
image hash will be different, and the CLS will detect it as a new application to profile.

Profiles are stored in a database, using the hash of the container and its command as
the key for the entry. A profile is a set of performance measurements (i.e., execution
times, power consumption) with different labels (i.e., type of node, CPU limitation
mechanism used). Once they are recorded, this measurement can be used for any
application deployment. The more instances an application has deployed, the lower the
cost of profiling is. We aim to profile applications that are deployed multiple times to
achieve economies of scale.

We use a copy of the production deployment for profiling applications without
disturbing the production pods. The idea is to create one or more pods similar to the
production pod in the background. We can then change the CPU limitation mechanism
and CPU limit of the application without disturbing the production environment.
Updating the CPU limitation mechanism requires restarting the pod. Restarting the
application multiple times would negatively impact the production environment.

We profile the application to detect the right CPU limitation mechanism. It runs two
additional deployments, one using Core division and the other using a Time division.
Then, it measures performance. These new deployments run in the background and
do not affect the production deployment. CLS uses, by default, Time division unless
it is more than ϵ percents (e.g., 5%) slower than Core division. It is better to use Time
division when it does not negatively affect the performance because it can allocate
fractions of a CPU. It helps maximize resource usage and set finer grain limits. However,
we use Core division if there is a performance gap between the limitation mechanisms.
In this case, the Core division can perform better with the same resources reserved.

The CLS starts benchmarking the application once the CPU limitation mechanism is
set. It deploys new pods and measures performances similarly to the CPU limit selection
process. Then, once the profiling is done, the CLS stores all the metrics in a database.
We do not want to benchmark the application multiple times. The CLS can reuse this
profile the next time it detects another instance of the same application. These profiles
could even be available for different clusters.

When the application profile is available, the autoscaler can adjust the CPU limit and
limitation mechanism of the deployment. CLS ensures that allocating more CPUs to the
application really improves the execution time. The rule is to add one more CPU to the
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limit only if the execution time speedup is greater than η percent (e.g., 5%). This rule
avoids wasting CPU resources.

Finally, the CLS continues iterating about the workloads in the cluster, adjusting limits
to the objectives.

Algorithm 3 presents the algorithm of the CLS. The CLS watches the workload
deployments in the cluster. First, it checks if the deployment pods are already profiled. If
not, it starts selecting the proper limitation mechanism. Then, it profiles the application
for various CPU values. To select the proper limit mechanism and benchmark the
application, CLS creates a copy of the deployment to avoid disturbing its execution. After
the measurements, it deletes all the deployments it used for profiling the application.
All the profiles are stored in a dedicated database. The pod must be restarted when
changing the CPU limitation mechanism (e.g., from Time division to Core division).
However, updating the number of CPUs allocated using the Time division in-place
resize feature is possible without restarting the application. There is no similar method
available for the Core division mechanism.

Algorithm 3 CPU limitation setter

Require: ϵ > 0, η > 0
for each deployment in cluster do

if deployment not profiled then ▷ check container image hash
profile← CreateDeploymentCopy(deployment, td, 1) ▷ Use Time division

and set CPU limit to 1
profile.save()
profile← CreateDeploymentCopy(deployment, cd, 1) ▷ Use Core division

and set CPU limit to 1
profile.save()
if |GetProfile(deployment, td, 1)−GetProfile(deployment, cd, 1|

max(GetProfile(deployment, td, 1),GetProfile(deployment, cd, 1) < ϵ then
profile.limitationMechanism← TD

else
profile.limitationMechanism← CD

end if
cpuLimits← 2
while cpuLimit ≤ MaxCPULimit AND profile.lastSpeedup > η do

profile ← CreateDeploymentCopy(deployment, pro-
file.limitationMechanism, cpuLimit)

profile.save()
cpuLimits← cpuLimits + 1

end while
end if
profile← getProfile(deployment)
updateLimits(deployment, profile.LimitMechanism, profile.NumberCPU)

end for
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Kubernetes implementation The CLS is a Go application deployed in a Kubernetes
cluster in a dedicated pod. It can access the Kubernetes APIs to create, update, and
delete deployments. It can also create copies of deployments, modifying only some
parameters like CPU limits. CLS can pull monitoring data from Prometheus and other
software described in chapter 2 section 2.1.3. Then, it stores the software profiles in a
dedicated database. Each profile is identified with the hash and the command of the
container of the profiled application. A profile contains information about the execution
time, CPU characteristics, CPU limitation mechanism, and allocated resources. The CLS
uses the profiles to set appropriate limits when deploying a new application. Profiles are
created when the first instance of the application is deployed. Then, profiles are updated
continuously while application instances are running. Future work can investigate
rescheduling mechanisms similar to the previous chapters to update limits based on the
profile updates. However, profile updates are helpful when deploying new instances of
an existing application.

Figure 5.4 presents an overview of the integration of the CLS into the Kubernetes
ecosystem.

Figure 5.4.: Overview of the CPU Limitation Setter (CLS)

5.3.2. CLS evaluation

Experimental setup

We use the NAS benchmark C++ implementation [145] for these performance experi-
ments. It uses OpenMP APIs.

Table 5.3 describes our experimental setup. All nodes use the same software configu-
ration: Docker v27.1, Kubernetes v1.28, and Linux v6.8.
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Table 5.3.: CLS evaluation experimental setup
Intel Xeon AMD EPYC AWS Graviton

Microarchitecture Skylake 8175M EPYC 7R13 Graviton 2
Architecture x86_64 x86_64 aarch64
#Sockets 2 2 1
#Phys. Cores 48 (24 + 24) 96 (48 + 48) 64
#Threads 96 192 64
Clock speed 2.5 GHz 2.6 GHz 2.5 GHz
L1 Cache I/D 1.5 MiB/1.5 MiB 3 MiB/3 MiB 4 MiB/4 MiB
L2 Cache 48 MiB 48 MiB 64 MiB
L3 Cache 66 MiB 384 MiB 32 MiB
Main memory 384 768 256
Node name Intel AMD ARM

We use the RAPL (Running Average Power Limit) sensor to measure power and
energy consumption. This sensor is only available on x86 processors from Intel and
AMD. Therefore, there is no energy data available for the ARM processor.

During these benchmark experiments, we compare the execution time, power, and
energy consumption.

Appendix B presents the detailed profiles of the application studied in this section.

Results

Table 5.4 presents the CLS results. It compares the execution speedup, the energy
consumed, and the resource allocated for six applications from the NAS benchmark
suite [145]: CG - Conjugate Gradient, EP - Embarrassingly Parallel, FT - discrete 3D fast
Fourier Transform, IS - Integer Sort, LU - Lower-Upper symmetric Gauss-Seidel, MG -
Multi-Grid on a sequence of meshes.

We compare the performance of each application using different CPU limitation
strategies, using the Time division mechanism (the default Kubernetes approach) and
comparing it to our CPU Limit Setter (CLS). The CLS can choose either Core division or
the Time division mechanism. We present execution time speedup normalized relatively
to the execution time of the application with only one CPU allocated.

We reproduce this experiment on three different CPUs (Intel, AMD, and ARM). We
use the RAPL sensor to record power and energy consumption. This sensor is only
available on Intel and AMD x86 chips. Therefore, we have energy values to discuss
for the ARM node. We report the total energy consumed during the execution of each
application.

For these applications, the CLS chooses the Core division mechanism every time.
The CLS has the highest execution time speedup for every application and each CPU.

The higher the execution time speedup, the better. CLS gets a higher speedup than the
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default approach of Kubernetes, even when they are using the same number of CPUs.
That can be explained by the fact that CLS chooses to use Core division instead of the
Time division mechanism. The Core division mechanism offers better performance for
these parallel applications.

The CLS uses the maximum CPU for most of the cases. The lower the resources
allocated, the better. It uses the most CPU possible, but there is still a significant speedup
when adding more. For the Conjugate Gradient application, the AMD node gets the
faster speedup with only five CPUs. For the Multi-Grid application, the AMD node gets
the faster speedup with only three CPUs. The CLS allocates fewer CPUs because the
relative speedup between five and six, and between three and four CPUs was less than
5%.

The CLS consumes less energy than any other approach. The lower the energy
consumption, the better. The power consumption is similar when using Time division or
Core division, as described in the previous section. However, the execution time when
using Core division is much lower; therefore, the energy consumption is lower.

Table 5.4.: CLS Results
Execution Time

Speedup
Resource utilization

(vCPU)
Energy Consumed

(J)

CG Intel AMD ARM Intel AMD ARM Intel AMD ARM
TD 1 1,00 1,00 1,00 1 1 1 1,01 103 1,47 103 -
TD 2 2,08 1,08 1,87 2 2 2 9,73 102 2,72 103 -
TD 4 3,76 1,82 3,91 4 4 4 1,08 103 3,24 103 -
TD 8 23,3 4,17 8,03 8 8 8 3,48 102 2,83 103 -
CLS 141 235 13,7 8 5 8 5,77 101 3,14 101 -

EP Intel AMD ARM Intel AMD ARM Intel AMD ARM
TD 1 1,00 1,00 1,00 1 1 1 1,59 102 1,41 102 -
TD 2 2,19 2,93 2,01 2 2 2 1,45 102 9,62 101 -
TD 4 4,63 6,27 4,01 4 4 4 1,37 102 8,99 101 -
TD 8 9,50 14,0 8,09 8 8 8 1,34 102 8,07 101 -
CLS 11,2 17,9 8,09 8 8 8 1,14 102 6,29 101 -

FT Intel AMD ARM Intel AMD ARM Intel AMD ARM
TD 1 1,00 1,00 1,00 1 1 1 2,83 102 2,49 102 -
TD 2 2,30 2,33 1,95 2 2 2 2,46 102 2,14 102 -
TD 4 5,12 5,61 3,57 4 4 4 2,21 102 1,77 102 -
TD 8 14,0 11,3 7,15 8 8 8 1,62 102 1,76 102 -
CLS 45,5 62,9 8,99 8 8 8 4,98 101 3,17 101 -

IS Intel AMD ARM Intel AMD ARM Intel AMD ARM
TD 1 1,00 1,00 1,00 1 1 1 1,44 101 2,04 101 -
TD 2 1,00 1,61 1,89 2 2 2 2,88 101 2,53 101 -

105



Chapter 5. Understanding CPU Limitation Mechanisms in Containerized Parallel Applications

Execution Time
Speedup

Resource utilization
(vCPU)

Energy Consumed
(J)

TD 4 1,94 2,93 3,65 4 4 4 2,98 101 2,79 101 -
TD 8 12,8 5,53 6,20 8 8 8 9,00 100 2,96 101 -
CLS 40,5 127 13,1 8 8 8 2,85 100 1,29 100 -

LU Intel AMD ARM Intel AMD ARM Intel AMD ARM
TD 1 1,00 1,00 1,00 1 1 1 2,66 103 7,69 103 -
TD 2 0,71 4,33 1,15 2 2 2 7,51 103 3,55 103 -
TD 4 0,39 5,82 5,40 4 4 4 2,73 104 5,29 103 -
TD 8 13,8 32,8 19,2 8 8 8 1,54 103 1,87 103 -
CLS 115 697 33,0 8 8 8 1,85 102 8,83 101 -

MG Intel AMD ARM Intel AMD ARM Intel AMD ARM
TD 1 1,00 1,00 1,00 1 1 1 3,37 102 9,04 102 -
TD 2 2,11 1,83 1,87 2 2 2 3,19 102 9,88 102 -
TD 4 3,22 4,89 3,91 4 4 4 4,18 102 7,40 102 -
TD 8 7,20 6,14 8,03 8 8 8 3,74 102 1,18 103 -
CLS 41,17 99,26 13,73 8 3 8 6,54 101 2,73 101 -

Transferable profiles

In this section, we study how to reuse application profiles when deploying new applica-
tion instances on a different CPU type (e.g., with a different clock speed, generation,
constructor, or even architecture). It is important to support heterogeneous clusters to
be able to use the CLS in the Computing Continuum. The idea is to avoid profiling the
application on every type of node in the cluster, using an approximation based on the
initial profiles. Over time, profiles become increasingly complete as they also include
information about the new instances running (and sometimes running on different types
of nodes). Reducing the number of nodes to profile enables economies of time, costs,
and energy.

To understand how similar profiles can be between two different types of CPU, we
study i) the decision of the CLS for the CPU limitation mechanism and ii) the relative
execution time speedups when increasing the number of allocated vCPUs. We compare
these decisions and speedups for the Intel, AMD, and ARM nodes.

Table 5.5 presents the chosen mechanisms between Time division (TD) and Core
division (CD) for each application and CPU type. The decision of the CLS is the same
for all CPU types and applications except for the EP application on the ARM node.
There is no significant difference between TD and CD execution time. That is why CLS
chose TD over CD. However, with similar performances between TD and CD, choosing
CD instead of TD is not problematic. For these six applications, the choice of the CPU
Limitation Mechanism can be the same for every node. There are no negative impacts if
the decision of the CLS from another node regarding the CPU Limitation Mechanism is
reused.
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Table 5.5.: CPU Limitation Mechanism chosen by the CLS.
Chosen CPU Limitation Mechanism

Application Intel AMD ARM
CG CD CD CD
EP CD CD TD
FT CD CD CD
IS CD CD CD

LU CD CD CD
MG CD CD CD

Figure 5.5 and Figure 5.6 present the relative speedups when allocating one more
CPU. Results are different for Core division and Time division.

For Core division, speedups are mainly similar from one CPU to another. The results
of the CLS would be the same except for two applications (CG and MG) on the AMD
node.

(a) CG, EP, and FT - Core division (b) IS, LU, and MG - Core division

Figure 5.5.: Relative speedups - Core division
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For Time division, speedups are different from one node to another. It would be
difficult to predict the results for a different node. However, these are parallel applica-
tions; CLS chose to use Core division because of the performance difference between the
two mechanisms. If CLS had chosen the Time division, we could expect performances
to be similar to or better than the Core division (otherwise, the Core division would
have been chosen). If performance is similar between the two, we could expect to have
results similar to Core division where reusing CLS decisions for another node is not
problematic.

(a) CG, EP, and FT - Time division (b) IS, LU, and MG - Time division

Figure 5.6.: Relative speedups - Time division

Using a profile from a different type of node seems to be a promising trade-off. In
most cases, the CLS decision does not change from one node type to another. The
error due to the profile transfers could have a more negligible impact on resource
utilization than systematically profiling applications on every node. In addition, profiles
are updated with production data. That means that transfer profile approximations are
only necessary until one instance runs or has run on every node type.
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CLS overhead

Figure 5.7 shows the CPU usage of the Kubernetes Control Plane and CLS pods. We
observe that the total CPU usage of the CLS is close to 0%. It is significantly lower than
other components we can find in Kubernetes clusters. The CLS application has a very
limited impact on resource usage.

However, the copies of the deployments have a larger impact. It depends on the
number of CPU limits tested, but in the worst case, it doubles the resources currently
allocated to the application for a few minutes. This additional usage of resources is not
negligible, but applications are only profiled once and deployed multiple times often.

Figure 5.7.: CPU usage of the CLS and the Kubernetes control plane components

In summary, using the CLS has a cost associated with using additional resources
to profile the applications. This cost should be observed in relation to the number
of instances of the application that will be running. Profiling applications can save
resources overall if they are deployed multiple times.

5.4. Related work

This section briefly overviews existing work related to container resource limitations.
Auto-scaling is a method for automatically adjusting allocated resources. Chapter 2

section 2.1.3 provides a general overview of autoscaling techniques and describes the
Kubernetes Pod Autoscaler. Holoscale presents an approach that mixes horizontal and
vertical scaling to reduce delays when creating new Virtual Machines [148]. Quattrocchi
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et al. compare their two autoscaling methods to existing methods of major cloud
providers [149]. One of their autoscaler is based on control theory, and the second
is based on queuing theory. [150] uses machine learning to predict how many pod
replicas should be deployed to achieve the expected response time. [151] predicts the
pod resource limits using decision tree regression.

There are many approaches to finding a suitable number of threads. De Lima et
al. use Artificial Neural Networks to predict thread count combinations that provide
optimal energy-delay product [152]. Da Silva et al. present an autoscaler that first
tunes the number of threads during the runtime to find a trade-off between energy
consumption and performance and then reallocates freed resources (if any) to other
containers [153]. One limitation is that this approach only supports OpenMP workloads.
Balla et al. have created an adaptative autoscaler to adjust CPU limits to have just
enough processing power to be below execution time requirements [154]. [155] uses
machine learning to automatically tune the degree parallelism for query optimization.

Performances of containers and the Linux CFS has been studied in different studies
[156, 157, 158, 159]. [156] proposes to extend the notion of namespace to include more
detailed information about available resources to the containers. This could improve
resource management for parallel runtimes and programming languages. Zhang et al.
propose a joint optimization of CPU scaling and core sharing to address a limitation of
the CFS [159]. The CFS forces threads from different containers to share cores, which
can waste resources. Liu et al. observe performance degradations in multi-tenant
environments [157]. They find that containers are not getting all the resources they
requested due to the CFS forcing the threads of different containers to share CPU cores.
[158] studies limitations of the CFS for burstable containers. The authors present two
OS mechanisms to mitigate the performance issues.

5.5. Conclusion

This chapter analyzes the performances of different Container CPU limitation mecha-
nisms. We observe that the Core division limitation mechanism performs better than
Time division for some containerized parallel applications. Using Core division can
provide lower execution time and energy consumption for the same CPUs allocated.

We propose a CPU Limitation Setter (CLS) method for automatically selecting the CPU
limitation mechanism that offers the best performance. Our Kubernetes implementation
of this method demonstrates faster execution time and lower energy consumption
compared to the default approach using the Time division mechanism.

Profiling applications with the CLS has an overhead worth paying when deploying
many instances of the same application. In addition, profiles are updated over time with
already deployed applications to reduce this overhead. Also, using a profile for different
machines is a reasonable approximation. Transferring profiles from one machine type
to another helps support heterogeneous clusters with different kinds of servers. Sup-
porting heterogeneous clusters is important for achieving unified orchestration over the
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Computing Continuum. Computing resources at the edge might be different from those
in traditional data centers.

Future work can investigate ways to update CPU limitation decisions during applica-
tion runtime to react to workload variation. New CPU limitation decisions could rely
on data acquired during runtime to improve the accuracy of the decision.
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Chapter 6.

Conclusions

In this dissertation, we studied new tools and methods to improve the experience of
deploying applications in the Cloud-to-Edge Computing Continuum. In our vision, de-
ploying applications at the edge or anywhere in the Computing Continuum should be as
easy as deploying applications in traditional data centers. Traditional cloud computing
techniques need to evolve to address the new challenges of the Computing Contin-
uum. Traditional orchestration techniques are unsuitable for handling geographically
distributed nodes. For example, orchestration methods for the Computing Continuum
should be aware of networking and end users’ locations to offer ultra-low latency.

First, in chapter 3, we improved how we can evaluate orchestration methods in
the Cloud-to-Edge Computing Continuum. We built an experimental methodology
to evaluate new orchestration methods efficiently without dedicating much time and
money to building a realistic testbed from scratch. Evaluating orchestration methods for
the Computing Continuum requires to experiments with the effects of the geographic
distribution of nodes. Testbeds built using this methodology can include any kind of
nodes and then constitute a heterogeneous cluster. We conducted a 5G core study to
illustrate this experimental methodology. This 5G study provides advice for setting up
5G infrastructure in the Computing Continuum. Also, telecommunication actors can
quickly reproduce our experimental setup to run additional experiments.

Then, we developed a new orchestration approach to minimize the costs of deploying
applications in the Cloud-to-Edge Computing Continuum in chapter 4. This methodol-
ogy includes a rescheduling mechanism that can update scheduling decisions to adapt
to changing environments. Our approach is cost- and network-aware in adapting to
specificities of the Computing Continuum, like geographically distributed nodes. This
approach works for heterogeneous clusters; any kind of node can be managed, and only
the characteristics of the node matter for this scheduling approach. We evaluated this
approach with a realistic 5G use case: vehicular cooperative perception. Our scheduling
approach finds a trade-off between networking costs to transfer video streams and
computing costs to process the frames from the video streams. It shows its adaptability
by reactively moving the video processing application from one node to another when
vehicles move.

Finally, in chapter 5, we evaluated CPU limitation mechanisms and their performance
when running containerized parallel applications. Also, we propose a methodology
to automatically choose the best CPU limitation mechanism and set limits that do
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not waste computing resources. Maximizing resource utilization is important in the
Computing Continuum because resources can be limited in some areas, for example,
at the edge. Therefore, allocating the correct number of CPUs is important to avoid
over- or under-provisioning. We observe that when deploying parallel applications in a
containerized environment, the choice of the CPU limitation mechanism is crucial for
performance. Then, we built a tool that automatically set the mechanism that offers
the best performance. Also, our CPU Limitation Setter Tool only allocates more CPUs
to an application if it really improves its performance. Finally, we studied how this
methodology works on heterogeneous clusters. It is important that our method works
for clusters with different types of nodes to simplify access to the Computing Continuum
resources.

In summary, this dissertation presents many tools and methodologies to facilitate
the adoption of edge computing. The tools presented help improve testing, scheduling,
and setting CPU limits in the Computing Continuum. We make sure that all the tools
we built can work with Kubernetes, the de facto standard for container orchestration.
We think it is important to facilitate the usage of these tools by other academic and
industrial actors.

Future research directions

We conclude this manuscript with a presentation of possible future research directions.
It is not an exhausting list, but ideas we find interesting.

Better accelerator support Orchestration and scheduling techniques could be improved
to offer better support to accelerators in the Cloud-to-Edge Computing Continuum.
Orchestration frameworks like Kubernetes already support accelerators like GPGPUs and
FPGAs, but this support needs to be extended for the Computing Continuum. Chapter 4
shows that the geographical position of the nodes is crucial for orchestration in the
Computing Continuum. These techniques could be extended to support accelerators
in addition to CPUs. The geographical location of these devices is essential to achieve
ultra-low latency.

Accelerator-aware orchestration approaches should be able to map applications to
available accelerators in the Computing Continuum, close to the end users. Orchestration
could reprogram FPGAs to replace a missing accelerator when nothing else is available
in an area. Finally, future research can investigate software that can run on most
accelerators without additional compilation.

Running the same software everywhere Running the same software everywhere
would help distribute software in the Cloud-to-Edge Computing Continuum. We can
find different kinds of processors in the Computing Continuum, and a wide variety of
accelerators. WebAssembly could be a good candidate for running the same binary code
everywhere. It would avoid creating a container image for each different type of device
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in the Computing Continuum. Its smaller size is beneficial for small devices at the edge.
WebAssembly modules would be easier to distribute than other containers.

Scheduling approaches could be runtime-aware to ensure the QoS when executing
WebAssembly workloads in the Computing Continuum. There are many WebAssembly
runtimes; they offer different performances depending on the host architecture and
the compilation parameters (i.e., Interpreted, Just In Time, Ahead of Time). These
various parameters have a direct impact on the application performance. Therefore, a
runtime-aware scheduler could select nodes and adjust allocated resources to ensure the
QoS. Larger nodes could run different runtimes to offer more versatility; smaller nodes
would be limited in the choice of runtime they can run. Future research in orchestration
systems for selecting the best runtime, node, and resources to allocate would be valuable
to facilitate the adoption of edge computing technologies.

Users or nodes mobility prediction In chapter 4, we presented an orchestration
methodology that reactively moves applications when it detects that users are in a
different location. Future research can investigate proactive methods that can predict
where users will be when they are moving. That way, an application can be moved to
the new areas before the users. Having applications always close to traveling users is
helpful to keep ultra-low latency, even during mobility. For example, people on a train
are more likely to be in a position following the railway. Modeling a train could help
to estimate the traveler’s movement reasonably. Similar estimations could be done for
vehicles and highways.

Optimal CPU limitations Future research could investigate a way to create software
profiles for the CPU Limitation Setter described in chapter 5 using source code or
binaries. Using resources to profile applications is worth it when they are deployed
multiple times. However, it is more expensive to use it when applications do not have so
many replicas or when they are updated very often (e.g., many times per day). Therefore,
using machine learning techniques or large language models could help predict the
performance of an application on a dedicated processor using the source code or the
binary of the application. They also might be able to automatically detect the best CPU
limitation mechanism to choose without running the application.

Cluster federation Future research could investigate cluster federation and distributed
orchestration algorithms to help deploy workloads anywhere in the Cloud-to-Edge
Computing Continuum. Federated clusters can help to make the Computing Continuum
resources more accessible. However, cluster federation raises challenges like preserving
users’ privacy, reliability, or scalability. The geographical position of the users and
resources must be known to achieve ultra-low latency, but these should not be globally
available to ensure privacy.
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Appendix A.

5G setup validation

This section presents procedures based on the traces recorded for the experiments of
chapter 3.

Figure A.1 presents the User Equipment (UE) registration procedure.
Figure A.2 presents the Protocol Data Unit (PDU) session establishment procedure.
Figure A.3 and Figure A.4 illustrate how UEs can access data networks. A data

network can be the internet or a local network host edge nodes. A UE sends a package
to the gNB using the radio network. Then, the gNB transmits the package to the UPF
using the GTP protocol. Finally, the UPF transfers the package to the data network.
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Appendix A. 5G setup validation

Figure A.1.: UE registration procedure
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Figure A.2.: PDU session establishment procedure
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Appendix A. 5G setup validation

Figure A.3.: Http requests

Figure A.4.: Ping requests
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Appendix B.

Detailed application profiles

Figure B.1, Figure B.2, Figure B.3, Figure B.4, Figure B.5, and Figure B.6 presents the
profiles of six applications from chapter 5 experiments. The experimental setup is
described chapter 5 section 5.3.2.
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(a) Execution time for intel (b) Execution time for amd (c) Execution time for arm

(d) Execution time for time
division
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(f) Execution time for no lim-
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Figure B.1.: Conjugate Gradient (CG)
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Figure B.2.: Embarrassingly Parallel (EP)
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Figure B.3.: Discrete 3D fast Fourier Transform (FT)
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Figure B.4.: Integer Sort (IS)
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(a) Execution time for intel (b) Execution time for amd (c) Execution time for arm
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division
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itation

Figure B.5.: Lower-Upper Gauss-Seidel solver (LU)
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Figure B.6.: Multi-Grid (MG)
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