
Software-Based Memory Erasure with relaxed
isolation requirements

Sergiu Bursuc∗ Reynaldo Gil-Pons∗ Sjouke Mauw∗ Rolando Trujillo-Rasua†
∗University of Luxembourg †Rovira i Virgili University

{sergiu.bursuc,reynaldo.gilpons,sjouke.mauw}@uni.lu rolando.trujillo@urv.cat

Abstract—A Proof of Secure Erasure (PoSE) is a
communication protocol where a verifier seeks evidence
that a prover has erased the memory on a given
device within the time frame of the protocol execution.
Designers of PoSE protocols have long been aware that,
if a prover can outsource the computation of the memory
erasure proof to another device, then their protocols
are trivially defeated. As a result, most software-based
PoSE protocols in the literature assume that provers are
isolated during the protocol execution, that is, provers
cannot receive help from a network adversary. Our
main contribution is to show that this assumption is
not necessary. We introduce formal models for PoSE
protocols playing against provers aided by external
conspirators and develop two PoSE protocols that we
prove secure in this context. We reduce the requirement
of isolation to the more realistic requirement that
the communication with the external conspirator is
relatively slow. Software-based protocols with such
relaxed isolation assumptions are especially pertinent
for low-end devices, where it is too costly to deploy
sophisticated protection methods.

Index Terms—security protocols, formal verification,
memory erasure, distant attacker

I. Introduction
Internet of Things (IoT) devices are specially vulnerable

to malware infection due to their ubiquity, connectivity
and limited computational resources [32]. Once infected,
an IoT device becomes both a victim and a useful weapon
to launch further attacks on more advanced infrastructure
and services. Detecting whether an IoT device is infected
with malware is thus essential to maintaining a secure
computer network. The challenge for the defender is
operating within the resource constraints of IoT devices,
which make them ill-suited for active security defences and
health monitoring [31].

A pragmatic approach to ensure the absence of malware
is secure erasure, consisting of putting a device back into
a clean state by wiping out its memory. This approach
was first introduced in [34] as a prerequisite for secure
software update. Although memory erasure can be achieved
via direct hardware manipulation, here we are interested
in Secure Erasure protocols (PoSE), whereby a verifier

Reynaldo Gil-Pons was supported by the Luxembourg National
Research Fund, Luxembourg, under the grant AFR-PhD-14565947.
Rolando Trujillo-Rasua was funded by a Ramon y Cajal grant from
the Spanish Ministry of Science and Innovation and the European
Union (REF: RYC2020-028954-I).

instructs a resource-constrained device, called the prover,
to erase its memory and to prove that it indeed has done
so. Notice that a PoSE protocol is not a data erasure
tool [25], despite both being aimed at erasing memory. The
latter is meant to erase sensitive data from memory in an
irreversible manner, i.e., in a way that is unrecoverable by
advanced forensics techniques. The former is a lightweight
communication protocol whereby a verifier attests whether
a (possibly) compromised prover has filled its memory with
random data.

Because provers are potentially infected with malware,
PoSE protocols in general cannot rely on cryptographic
secrets stored in the prover. The exception are protocols
that rely on secure hardware [9], such as a Trusted Platform
Module. Not all devices are manufactured with secure
hardware, though. Examples are those designed for low
price and low energy consumption. Hence, in this article,
we don’t assume secure hardware on provers and we seek
a software-based solution.

In the absence of cryptographic secrets, software-based
PoSE protocols have historically relied on the assumption
that provers are isolated during the protocol execution,
that is, provers cannot receive external help. The isolation
assumption has been deemed necessary so far to prevent
a malicious prover from outsourcing the erasure proof
to another device. Ensuring isolation is cumbersome,
though. It requires closing all communication channels
between provers and potential conspirators, for example,
by jamming or using a Faraday cage.

The goal of this work is to reduce the requirement
of isolation to the more realistic requirement that the
external conspirator (which we call a distant attacker)
is further away from the verifier than the prover (see
Figure 1 for an illustration). That is, we do not restrict the
communication capabilities of the (possibly corrupt) prover
with the external adversary, but their position relative to
each other. In practice, this can be accomplished relying on
round-trip-time measurements, to ensure that the responses
received to a sequence of challenges come from the device
whose memory we aim to erase. Such measurements are
used in distance-bounding protocols, whose goal is to ensure
the authenticity of communication with a nearby device [24].
For ensuring our distant-attacker assumption, we can
therefore build upon the principles of design in distance-
bounding protocols, of which there exist already various

https://orcid.org/0000-0002-0409-5735
https://orcid.org/0000-0003-1804-3319
https://orcid.org/0000-0002-2818-4433
https://orcid.org/0000-0002-8714-4626

proof-of-concepts and real-life implementations. While the
messages exchanged in classic distance-bounding protocols
typically consist of single bits [37], recent progress in the
communication infrastructure allows fast exchange of longer
messages. This was proved feasible in [14], assuming that
attackers are using only commercial off-the shelf hardware.
Furthermore, the relay resistant protection mechanism
in the EMV protocol [22] and later improvements [36]
measure the round-trip-time of 32-bit packets in order to
bound distance. In the context of electric vehicle charging
systems, [17] also considers a bigger than binary alphabet
for their messages. In our proposed protocols, we will
exploit this feature in order to challenge random blocks of
the device’s memory, rather than bits.

DeviceVerifier DeviceVerifier

Attacker

Figure 1: The isolation assumption (on the left) assumes
no interference in the prover-verifier communication. The
distant attacker assumption (on the right) lets the attacker
interfere from far away.
Overview and contributions. To demonstrate that secure
memory erasure is possible without assuming isolation, we
introduce and formalize a class of PoSE protocols that
employs a distance-bounding mechanism, which we call
PoSE-DB, and put forward two protocols in this class
together with formal security proofs against a corrupt
prover that communicates with an external attacker. PoSE-
DB protocols will have an interactive phase consisting of
several challenge-response rounds. For each round, they
will measure the round-trip-time between the challenge
and response, and verify that the response is correct,
aiming for two security goals. First, the prover cannot
relay its messages to the distant attacker without failing the
distance-bounding check, compelling the prover to compute
the responses locally. Second, if the prover locally computes
the responses to the verifier’s challenges, then it must have
erased its memory even if aided by an external attacker.
The first contribution of this work is a formalization of
those security requirements (Section III).

Our second contribution is the development of two PoSE-
DB protocols with formal security proofs. The first protocol
(Section V) is based on a straightforward idea, already used
in the first secure erasure protocol proposed by Perito and
Tsudik [34]: the verifier sends a random sequence of bits
to the prover, who should store it in its memory; then the
verifier queries random memory blocks to check that they
are stored. We adapt this idea into a PoSE-DB protocol,
where we query one random block per round, checking that
the reply is correct and is received within the specified

time bound. Our main contribution in this case is a formal
security proof without resorting to the device isolation
assumption. Although the protocol is simple, the proof
is not trivial, and we introduce general proof methods in
Section IV that help the analysis by allowing to focus on
a single challenge-response round.

Sending a sequence of bits as large as the prover’s
memory may be undesirable in some contexts, e.g. when the
communication channels have limited capacity. Instead, in
our second protocol (Section VI), the verifier sends a small
seed to the prover, which uses it to compute the labelling
of a suitably chosen graph and store the labels of some
nodes. In the interactive phase, we run several fast rounds
to verify that those labels are stored. We identify a depth-
robustness property for the graph that ensures the security
of our proposed protocol: we show that a cheating prover
needs to spend significant time to recompute any missing
labels, so it will be caught by our time measurement.

Although graph-labelling techniques have been used in
related works, e.g. for memory hardness [5, 6], proofs of
space [21, 11, 35], and classic secure erasure [20, 27], none of
them can be directly applied in our context. This is because
we want to erase the full memory of the device, and we
consider a stronger attacker model. In all the previous
protocols, the gap between the memory filled by the prover
and the full memory of the device is too high, either because
they consider a different case study where this is not a
concern (e.g. for proofs of space), or because the class of
graphs is not strong enough (e.g. the proof in [27] can
only erase 1

32 of the full memory because of this reason).
Furthermore, the protocols that directly target memory
erasure, i.e. [20, 27], are also not adequate for our attacker
model; they either assume protected memory [20] or the
isolation assumption [27]. Indeed, [20] assumes at least
part of a secret key not to be leaked, while in our model
we allow full compromise of the memory content. In the
protocol from [27], the prover needs to compute the graph
labelling on the fly after being challenged to return a label,
which is unsuitable for distance bounding.

We therefore propose a new class of graphs that allows
our protocol to proceed in two phases, first compute
and store the labels, and then reply to several rounds
of challenges, thus proving the labels are stored. We prove
that the resulting protocol can securely erase all but a
small proportion of the prover’s memory. Furthermore, our
protocol provides its security guarantees in the presence
of a distant attacker, without resorting to device isolation
or protected memory assumptions. The undirected graph
we propose (Section VII) satisfies a classic property of
depth-robustness and can be computed in-place, i.e. by
using only a constant memory overhead for the prover. This
tightness constraint for the graph is especially important if
we want to erase the full memory of the device. Our graph
is tighter in this respect than other depth-robust graphs
used recently in the literature [27, 21, 5, 35], and we believe
this makes the graph of interest in other domains too, such

as proof of space and memory hardness.

II. Related Work
We review memory erasure and attestation protocols

for resource-constrained devices that do not use secure
hardware. See [30] for a review of protocols that use it.
We will see that the main limitation of current software-
based protocols, as highlighted in a recent survey [9], is the
assumption that there is a secure communication channel
between verifier and prover, called the isolation assumption.
Software-based memory isolation. Some protocols use
software-based memory isolation techniques that continu-
ously monitors the programs running on the device. In this
class, SPEED[8] and SIMPLE[7] perform memory erasure
and attestation, respectively. These protocols could, in
theory, achieve our security goals. In practice, they add
a significant overhead to any program running on the
platform, as the software TPM continuously monitors the
platform to ensure memory isolation at all times. Since
memory erasure can start from any state of the device, we
do not need to impose constraints on programs running
on it. SPEED uses distance-bounding to ensure that only
a nearby verifier can start the memory erasure procedure.
We use distance-bounding in the opposite direction, where
the verifier is the one aiming to ensure the prover is near.
Time-optimal memory erasure routine. SWATT is an
attestation protocol [39] based on computing a checksum
function over the memory of the prover within a prescribed
amount of time. The idea is that, had the prover’s memory
been compromised, the prover would take noticeably longer
to generate the correct attestation proof. Several attacks
on SWATT were shown in [16], the main problem being
that the checksum function and the timing constraints are
rather ad hoc. This problem was later treated in [10], which
proposes a formal model of software-based attestation and
a generic protocol similar to SWATT, but, this time with
a formal security proof. The problem here is that, if the
local device is not isolated, the attacker could compute the
response on a separate device and return it in time. Another
problem is that the global running time of the erasure
procedure is too high in order to detect small changes to
the memory. The attacker could use the available time
to optimize procedures and recompute the data that is
missing. That is why [10] suggests the idea of a multi-
round protocol, requiring shorter computation time in each
round. This is an idea we develop further in this paper as
part of a distance-bounding mechanism.

The first protocol for secure memory erasure based
on cryptographic techniques is introduced in [34]. The
paper proposes a protocol based on computing a (time-
optimal) MAC over randomly generated data that fills the
memory of the prover, along with an informal adversarial
model and argument of security. This protocol uses a high
bandwidth to transmit the random data and cannot prevent
the computation to be delegated to an external attacker
without isolating the device, like in [39, 10].

Graph pebbling games. A recent series of papers use graph
pebbling techniques to achieve time-memory trade-offs, e.g.
in proofs of secure erasure [20, 27], proofs of space, or
memory-hardness results. The works aiming for memory
erasure cannot be applied in our context, as discussed in
the introduction. We should mention, in addition, that [27]
also proposes an erasure protocol that is not based on
graphs, but on hard-to-invert hash functions. In addition
to assuming device isolation, the security of this protocol
is proved assuming that, in the memory challenge phase,
the adversary cannot query a hash function. We are not
aware how this could be enforced in practice.
Distance-bounding techniques. A PoSE protocol that relies
on distance bounding in a spirit similar to ours was
proposed in [40]. It uses a cyclic tree automaton that
occupies the full prover’s memory. To obtain the erasure
proof, the verifier asks the prover to transition into a new
state of the automaton, based on random input chosen
by the verifier, and to transmit the label of the new state.
This round of exchanges is timed by the verifier to bound
its distance to the prover. However, we observe that the
fact that the response comes fast in each round is not
sufficient to counter pre-computation attacks or an adaptive
attacker. For example, depending on previous challenges,
the adversary can get rid of states in the automaton that
are unreachable by future verifier’s challenges. This attack
was overlooked because the protocol was analysed within
a symbolic model, rather than a computational model as
we do in this paper.

As summarized in Figure 2, there does not exist in the
literature a software-based memory erasure/attestation
protocol whose security can be formally proven without
relying on the isolation assumption. Section V and Sec-
tion VI in this article introduce the first two protocols of
this type.

Protocol No Isol. No Hw. Comm.
[39] ✗ ✓ O(1)
[28] ✓ ✗ O(1)
[34] ✗ ✓ O(n)
[33] ✓ ✗ O(1)
[11] ✗ ✓ O(1)
[27] ✗ ✓ O(1)
[26] ✗ ✓ O(n)
V ✓ ✓ O(n) +O(r)
VI ✓ ✓ O(1) +O(r)

Figure 2: Comparison of erasure and attestation protocols
in terms of their communication complexity (Comm) and
their capacity to avoid the use of the device isolation
assumption (No Isol.) and specialised hardware (No Hw.).
The value of n refers to the memory size and r is a security
parameter that refers to the number of rounds during the
fast phase (see Section III).
Formal security definitions. We briefly review existing
security definitions related to our problem to motivate

the need for a new definition in the context of the distant
attacker. The definition of memory attestation in [10] con-
siders an experiment where a computationally unbounded
adversary A produces a computationally bounded prover
P which represents the state of the device to be attested.
The protocol is run between a verifier V and P, where V
aims to ensure that P is in a desired state; it is deemed
secure if a cheating prover would be caught with high
probability. This model has built-in the device isolation
requirement, since the local prover P does not interact
with A throughout the protocol. Since we are interested
in memory erasure and not attestation, in addition to
strengthening the attacker model, we may also relax the
requirement on the state of the prover, requiring only that
it should utilize enough memory at some point in the
protocol. The definition of secure memory erasure in [27]
makes this relaxation on the prover state. However, as
in [10], the prover P is assumed computationally bounded,
which amounts to the isolation assumption. In order to
lift this assumption, it is not sufficient to simply make P
computationally unbounded, but we need to consider two
adversaries A and P that can communicate throughout
the protocol, and make A’s memory unbounded.

A symbolic Dolev-Yao style model for secure erasure
is proposed in [40]. Their main contribution is a formal
proof of the necessity of the distant attacker assumption
in some situations and a construction of a protocol that
can be proven secure symbolically. However, the symbolic
model in [40] cannot be used to quantify the size of the
adversarial state, or the adversary’s probability of success.
Hence, it cannot be used to faithfully analyse existing PoSE
protocols, which use information theoretical constructions
rather than symbolic ones.

III. A Formal Model for PoSE-DB protocols
In this section, we introduce a class of memory erasure

protocols that aim to resist collusion between a corrupt
prover and a distant attacker, and a formal model that
allows to prove their security. We call this class of protocols
Proofs of Secure Erasure with Distance Bounding (PoSE-
DB). We denote by [n] the set {1, . . . , n}, by a←$ A the
uniformly random sampling of a from the set A and by
o ← F (x, . . .) the output of an algorithm F running on
given inputs. For two bitstrings a, b ∈ {0, 1}∗, we denote
by a∥b their concatenation. An adversary is a probabilistic
Turing machine, generally denoted byA. It may be endowed
with oracles for restricted access to some resources. In
Section VI-A, we will use the random oracle methodology
to model and reason about the access of the adversary to a
hash function [12]. An adversary with access to a (possibly
empty) list of oracles O is denoted by AO.

A. Proof of Secure Erasure with Distance Bounding
The key feature of a PoSE-DB protocol is the use of

a distance-bounding mechanism over several challenge-
response rounds to prevent the prover from outsourcing the

erasure proof to the distant attacker. Figure 3 depicts the
generic scheme that we consider for a PoSE-DB protocol.
We consider the following protocol parameters as global
constants: block size (w), size of memory in blocks (m),
number of rounds (r) and time threshold (∆). The size of
the memory to be erased is therefore m · w. The time
threshold is chosen at deployment so that the distant
attacker assumption holds within round-trip-time bounded
by ∆. In a setup phase which happens once before the
protocol sessions, the verifier is instantiated with certain
additional parameters necessary to run the protocol: the
space used to draw initialization parameters for each session
(I, which could be a set of bitstrings or hash functions)
and some auxiliary data (ρ) common for all sessions. Each
PoSE-DB session then runs in three phases:
Initialization phase: the local device (playing the role
of the prover) has to perform a prescribed sequence of
computation steps and store its result σ in its internal
memory. Such a value is meant to fill the prover’s memory,
leaving no room for data previously stored in the device.
Interactive phase: verifier and prover interact over a number
of challenge/response rounds; the verifier measures the
round-trip-time of those exchanges and stores all the
challenges and their corresponding responses.
Verification phase: the verifier accepts the proof if all
challenge/response pairs from the interactive phase satisfy
a prescribed verification test, and if the round-trip-times
are below the time threshold ∆.

Prover[ρ] Verifier[ρ, I]

. Initialisation phase .

σ ← Precmp(ρ, Υ) Υ Υ←$ I

. Interactive phase .

for i := 1 to r xi ← Chal(ρ)

xi tb
i ← clock()

yi ← Resp(ρ, σ, xi) yi te
i ← clock()

. Verification phase .

∀i : Vrfy(ρ, Υ, xi, yi) = true
∀i : te

i − tb
i < ∆

Figure 3: PoSE-DB protocol session

Notice that there are no identities exchanged during the
protocol, nor pre-shared cryptographic material. Like in
existing software-based memory attestation and erasure
protocols, we assume the existence of an out-of-the-band
authentication channel, such as visual inspection, that
allows the verifier to identify the prover. In Definition 1, we
formally specify PoSE-DB protocols as a set of algorithms
to be executed by the prover and the verifier. We do not
specify the way in which messages are exchanged or the

time verification step. These are handled by the security
definition as described below, considering a Dolev-Yao
model with a distant attacker that cannot act within the
challenge-response round.

Definition 1. A proof of secure erasure with distance
bounding (PoSE-DB) protocol is defined by a tuple of al-
gorithms (Setup,Precmp,Chal,Resp,Vrfy) and parameters
(m,w, r,∆) as illustrated in Figure 3. We have:
• (ρ, I)← Setup(m,w): computes some data ρ necessary

to run the protocol and a parameter space I to be
used for instantiating protocol sessions;

• Υ ←$ I: sample data uniformly from I for each
protocol session; some protocols may instantiate a
hash function at this step;

• σ ← Precmp(ρ,Υ): computes a value of size m · w, to
be stored in memory;

• x← Chal(ρ): generates a uniformly random challenge;
• y ← Resp(ρ, σ, x): computes the response to the

challenge. This should be a very lightweight opera-
tion consistent with the design principles of distance
bounding, such as a lookup operation.

• Vrfy(ρ,Υ, x, y): determines if y is the correct response
to challenge x

Example 1. As a running example, consider the simple
idea (similar to Perito and Tzudik’s protocol [34]) of
filling the memory of the device with random data, then
challenging it to return randomly chosen blocks of that data
during the interactive phase. We call this the unconditional
PoSE-DB protocol, as its security proof in Section V does
not rely on cryptographic assumptions. For such a protocol,
the parameter space I is set to {0, 1}m·w. This means that
every protocol session will start with a random sequence
of length {0, 1}m·w, which is equal to the memory size of
the prover. The specification of this protocol is as follows.

Definition 2 (The unconditional PoSE-DB protocol).
• Setup(m,w): return ρ = ∅, I = {0, 1}m·w

• ψ ←$ {0, 1}m·w

• Precmp(ρ, ψ): parse ψ as t1∥ . . . ∥tm with ti ∈ {0, 1}w,
return σ = t1∥ . . . ∥tm

• Chal(ρ): return x←$ [m]
• Resp(ρ, σ, x): return tx, which was stored in σ
• Vrfy(ρ, ψ, x, y): return true iff y = tx

Note that the erasure procedure itself running on the
local device cannot be overwritten by σ. Hence, in practice,
the device should allocate memory to store and execute the
erasure procedure, and the goal should be for this procedure
to introduce minimal memory overhead. This is a necessary
condition in any memory erasure protocol. The erasure
procedure for the unconditionally secure protocol consists
in simply storing and fetching blocks from the memory.
We expect its memory overhead to be minimal. For the
graph-based protocol that we introduce in Section VI, the
in-place property we devise for the graph in Section VII is
aimed at keeping this overhead as small as possible.

B. Formalizing Secure Erasure Against Distant Attackers

V A1 A0

Υ Υ

σ1x1
x1∆ y1 σ2x2
x2∆ y2 σ3

Figure 4: The y-axis denotes a timeline. Because A0 is
far, A1 cannot relay the verifier’s challenge to A0 and wait
for a response. A0 does help A1 in the other phases of the
protocol execution.

To define secure erasure, we formally split the adversary
in two: we use A0 to denote the distant attacker, and A1
to denote the local (possibly corrupt) device. Like in a
Dolev-Yao model, our adversary A = (A0,A1) is in full
control of the network and can corrupt agents. It can
eavesdrop, inject and modify messages sent to the network.
One limitation for the pair of attackers is given by the
physical constraints of the communication medium, which
are leveraged by the distance-bounding mechanism, and
the assumption that A0 is distant, i.e. sufficiently far from
the device. In our security definition we abstract away
from the distance-bounding check by not letting A0 act
between the sending of the challenge and the receipt of
the corresponding response in each round. The intuition of
this abstraction is illustrated in Figure 4: because A0 is far
and the function Resp should be computed fast, A0 does
not have time to respond to the verifier’s challenge in time.
We do allow A0, before each round of the fast phase, to
precompute some state σi to be used by A1 during the ith
round of the fast phase. Assuming that σi is computed by
A0 is without loss of generality, since A0 is unbounded and
has at least as much knowledge as A1, which forwards all
information to A0. Therefore, we assume that right before
the challenge xi, the attacker’s available memory on the
device is filled by σi and this is the only information that
A1 can use to compute the response in the ith round of
the fast phase.

(ρ, I)← Setup(m, w); Υ←$ I
for i := 1 to r do :

σi ← A0(1w, ρ, Υ, {xj |j < i})
xi ← Chal(ρ); yi ← AO

1 (1w, ρ, σi, xi)
return ∀i : Vrfy(ρ, Υ, xi, yi) = true

Figure 5: Security experiment Expm,r,w
A0,A1

.
Figure 5 formalizes the environment described above in

the form of a security experiment. As A1 is acting within
the fast phase, we may bound its number of computation
steps. This is especially interesting for protocols that may
rely on computational security assumptions. The only
computational assumption that we will use in this paper is
the random oracle assumption for one of our two protocols.

Therefore, in the security definition, if A1 has access to a
hash function, we will restrict its use through an oracle
and will count the number of calls A1 makes to it. This
restriction is formalized by the parameter q in Definition 3
that bounds resources for an adversary. A second parameter
in this definition is M , which bounds the size of the memory
used by A on the device throughout the protocol, i.e.
the maximum value of σi in the security experiment. We
consider an attacker successful if it passes the protocol
while not erasing a significant proportion of the m · w bits
of memory on the device. Assume the portion of memory
that is needed by the adversary to store malware or any
other information is y. If the adversary needs to use more
than m·w−y bits to successfully execute the protocol, then
the device becomes “clean”, as the memory required by
the attacker is erased. Therefore, the goal of the attacker
is to use at most M = m · w − y bits of space during the
protocol execution.

Definition 3. An adversary A = (A0,A1) against the
memory challenge game is called (M, q)-bounded iff in any
execution of Expm,r,w

A0,A1
and any round i we have that |σi| ≤

M and A1 makes at most q queries to O.

To evaluate the security of a given PoSE-DB protocol,
we will consider the class of (M, q)-bounded adversaries
and determine the probability of any adversary from this
class to win the security game.

Definition 4 (PoSE-DB security). Assume some fixed
parameters (m, r,w) for the experiment from Figure 5.
An adversary (A0,A1) wins the memory-challenge game
with probability ζ iff Pr

[
Expm,r,w
A0,A1

= true
]

= ζ, where
probability is taken over the randomness used by the
experiment.

There are similarities between our security definition
presented above and the definition of proof of space [21,
35], the main difference being that in the latter A1 is
isolated from A0 in the interactive challenge phase. We
discuss more details about this relation and our modelling
choices in the extended version [15].

IV. Initial results
Before specifying and analysing our two PoSE-DB pro-

tocols, we provide useful initial results on the security of
PoSE-DB protocols in general. Concretely, we show that
PoSE-DB security increases proportionally to the number of
rounds. This will allow us to simplify the security analysis
by proving a level of security for the protocol executed in a
single round, and then generically deriving the correspond-
ing security guarantees over multiple rounds. Throughout
all our proofs we consider deterministic adversaries A. This
is without loss of generality: since our security definition
upper-bounds the success probability of A, we can always
consider that A is initialized with its best random tape.
In this setting, by fixing its best-case random-tape, we
can consider A deterministic. This idea is well known

and has been applied elsewhere [41]. Note that we still
have randomness left in the security experiment, coming
from probabilistic choices in honest algorithms and, when
applied, from the random oracle.

Let Υ be an element from the initialization space I of a
PoSE-DB protocol. For an adversary A = (A0,A1), denote
by Pr

Υ←$I
[Ar] the probability that A wins the memory game

with r rounds. For a fixed Υ, we denote the corresponding
winning conditional probability by Pr[Ar |Υ]. We say that
an adversary A = (A0,A1) playing the memory challenge
game with fixed Υ ∈ I is uniform if, for any sequence of
challenges x1, . . . , xr, A0 returns the same state σi in each
round, i.e. σ1 = · · · = σr. The following lemma allows us to
focus on uniform adversaries when proving the security of a
PoSE-DB protocol. The main idea of the proof is that, since
the challenge in each round is chosen independently, the
best that A0 can do in any round is to choose a state σµ

that maximizes the success probability of A1 for a random
challenge. The proof of this lemma is in the appendix. All
results we state without proof in the rest of this work have
proofs in the extended version [15].

Lemma 1. For any (M, q)-bounded adversary A against
the PoSE-DB security experiment, there is a uniform (M, q)-
bounded adversary Ā that wins the experiment with at
least the same probability: Pr

Υ←$I
[Ar] ≤ Pr

Υ←$I
[Ār].

Next, we show that there is a direct relationship between
the winning probability of an adversary in one round and
the winning probability in multiple rounds. The analysis
is simplified by the fact that we can focus on uniform
adversaries, according to Lemma 1. If the initialization
parameters are fixed, it follows immediately that running
the experiment for r rounds exponentially decreases the
cheating ability of the adversary.

Lemma 2. For any uniform adversary A and any Υ ∈ I,
we have Pr[Ar |Υ] = Pr

[
A1

∣∣ Υ
]r.

When lifting this lemma to uniformly chosen parameters
from I, it will be necessary to account for the fact that the
(one-round) adversary may be lucky on a small proportion
of those random choices. The following definition and propo-
sition tolerate this, by bounding the success probability of
the adversary only for a subset of good parameters, and
showing the effect after r rounds.

Definition 5. For a set Igood ⊆ I and a value ζ < 1, we
say that A’s winning probability is bounded by ζ within
Igood iff ∀Υ ∈ Igood : Pr

[
A1

∣∣ Υ
]
≤ ζ.

If the proportion of cases I \Igood in which the adversary
is lucky is negligible, then for a large enough number of
rounds the success probability of the adversary is also
negligible, as shown by the next proposition.

Proposition 1. Given ζ < 1, Igood ⊆ I and a uniform
adversary A whose winning probability is bounded to ζ
within Igood, we have Pr

Υ←$I
[Ar] ≤ ζr + |I\Igood|

|I| .

V. The unconditional PoSE-DB protocol
This section provides the security analysis for the

unconditional PoSE-DB protocol presented in Section III,
Definition 2. Since this protocol does not use any hash
function, the bound on the number of oracle calls by A1
is not relevant. Such an adversary is (M,∞)-bounded. As
a consequence, there is no computational bound on the
adversary A1, but only a memory bound. Recall that the
value y = m · w −M is the amount of memory that the
adversary cannot erase (where it may store malware).

Theorem 1. Assume that the unconditional PoSE-DB
protocol is instantiated with parameters (m, 1, w). Let A
be any adversary with measure (M,∞). Then, there exists a
set I1

good ⊆ I such that A’s winning probability is bounded
to 1 − m−1 within I1

good and
∣∣∣I1

good

∣∣∣ ≥ 2m·w · (1 − 2−y).
Furthermore, if y ≥ m+w, then there exists a set I2

good ⊆
I such that A’s winning probability is bounded to 1 −⌈

y−m−w+1
w

⌉
m−1 within I2

good and
∣∣∣I2

good

∣∣∣ ≥ 2m·w · (1 −
(m2 +m) · 2−w).

Proof. Let σ be a bitstring of size M . Let Rσ = {ψ1, . . . ψk}
be the set of all bitstrings such that A0(1w, ρ, ψi) = σ. We
will lower-bound the number of queries related to elements
in Rσ for which A1 gives an incorrect answer. To prove the
first result, we count for how many bitstrings there is at
least one error. Call this set I1

good. Let ψ′ be the concatena-
tion of the blocks in {A1(1w, ρ, σ, 1), . . . ,A1(1w, ρ, σ,m)},
i.e. a bitstring of size m · w. Since ψ′ can be equal to at
most one string in Rσ, A1 is wrong for at least one input
q ∈ {1, . . . ,m} for at least |Rσ| − 1 of the bitstrings in Rσ.
Summing up for all possible sets R and for all possible σ,
we deduce that A1 is wrong for at least one query w.r.t. at
least 2m·w−2m·w−y bitstrings (as there are at most 2m·w−y

different sets Rσ). We obtain
∣∣∣I1

good

∣∣∣ ≥ 2m·w ·(1−2−y) and:

∀r ∈ I1
good : Pr

q←$[n]
[A1(1w, ρ, σ, q) is correct |σ] ≤ 1−m−1

where σ ← A0(1w, ρ, ψ). For a proof of the second result
of the theorem, see the extended version in [15].

From Proposition 1 and Theorem 1, we obtain:

Corollary 1. If we execute the unconditional PoSE-DB pro-
tocol for r rounds in presence of any (M,∞)-bounded ad-
versary, then Pr

[
Expm,r,w
A0,A1

= true
]
≤ (1−m−1)r+2M−m·w.

Furthermore, when M ≤ m ·w−m−w the bound improves
to (1−

⌈
m·w−m−w−M+1

w

⌉
·m−1)r +m · (m+ 1) · 2−w.

VI. PoSE based on depth-robust graphs
While the unconditional PoSE-DB protocol offers in-

teresting security properties, it comes at the cost of a
high communication complexity, since the verifier needs to
transmit a nonce of length equal to the size of the prover’s
memory. This section offers an alternative protocol where
the prover computes the labelling of a graph in its memory,

starting from a small random seed transmitted by the
verifier.

A. Graph-based notation and PoSE scheme
We first introduce the general notion of graph-labelling

and discuss its use in the literature. We let H be the set of
all functions from {0, 1}κ to {0, 1}w, for a suitably large
κ. Each new session of the protocol will rely on a hash
function h instantiated randomly from this set. Elements
from the set H are also called random oracles, since we
will make the random oracle assumption for h drawn from
this set. Given a directed acyclic graph (DAG) G, the
list of successors and predecessors of the node v in G are
respectively Γ+(v) and Γ−(v). If Γ−(v) = ∅ then v is an
input node. For a node v of G, we let llp(v,G) be the length
of the longest path in G that ends in v. If R ⊆ V (G), we
denote by G \ R the graph obtained after removing the
nodes in R and keeping all edges between the remaining
nodes.

Definition 6. Given a hash function h and a DAG G,
l : V (G)→ {0, 1}w is an h-labeling of G if and only if for
each v ∈ V (G):

l(v) := h(v∥l(v1)∥ . . . ∥l(vd)) where (v1, . . . , vd) = Γ−(v)

If a node v has no predecessor, then l(v) = h(v). We also
let ℓ−(v) = v||ℓ(v1)|| . . . ||ℓ(vd).

Graph labelling as defined above is a well established
technique used in protocols for proofs of space [21, 11,
35], memory hardness [5, 6, 2, 3, 4] and classic secure
erasure [20, 27]. The typical structure of these protocols is
as follows:
• the verifier sends a nonce to the prover, which is used

as a seed to determine the hash function h;
• the prover uses h to compute the labelling of an agreed-

upon graph G, and stores a subset of the resulting
labels, denoted O(G);

• the verifier challenges the prover to reply with the
labels of several randomly chosen vertices in the graph,
and accepts the proof if these labels are correct.

Let m be the size of O(G). The general goal of this
technique is to ensure that any cheating prover that uses
less than m words of memory to compute the responses
can only do so correctly by paying a noticeable amount
of computational time. This has been achieved by using
depth-robust graphs [23, 35], which are graphs that contain
at least one long path, even if a significant proportion of
nodes have been removed. Intuitively, in the corresponding
protocol, this means that the label for at least one of the
verifier challenges will be hard to compute if the prover
has cheated.

Given a DAG Gm, a hash function h ∈ H (which we
model as a random oracle) and a list of nodes O(Gm) ⊆
V (Gm) of size m, we define our remote memory erasure
protocol as follows:

• Setup(m,w): return ρ = (Gm, O(Gm)), I = H
• h←$ H
• Precmp(ρ, h): compute the labels of the nodes in
O(Gm), and output the concatenation of these labels
σ = l(o1)∥ . . . ∥l(om) where (o1, . . . , om) = O(Gm)

• Chal(ρ): return a random vertex in O(Gm)
• Resp(ρ, σ, x): responds with l(x), which was stored in
σ

• Vrfy(ρ, h, x, y): return true iff y = l(x)
In order to prove our graph based PoSE-DB secure, there

are several issues we need to address. First, as we need fast
responses, our verifier can query only one random challenge
node per round. This means that it is not sufficient to
have a single long path in the graph in order to catch
a cheating prover; we will thus strengthen the depth-
robustness property to require at least a certain number of
long paths to be present. Another constraint, particularly
relevant to memory erasure, is that we should be able
to compute the graph labelling with minimal memory
overhead, so that as much memory as possible can be
erased from the device. We call this property in-place,
since intuitively it means that the set of labels to be stored
should be computed in almost the same amount of space as
their total size. To our knowledge, no graph in the literature
exists that satisfies these two properties. We design one in
Section VII.

Definition 7. A graph G can be labelled in-place with
respect to a list of nodes O(G) ⊆ V (G) if and only if there
is an algorithm that outputs the list of labels for all nodes
in O(G) using at most |O(G)| · w +O(w) bits of memory.

A second issue that we address lies in the tightness of
the security bound, i.e. how big is the gap between the
memory erased by a cheating prover and the memory it
is supposed to erase. In our case study, this gap could be
used to store malware, so it should be as small as possible.
We improve upon previous security bounds for protocols
based on graph labelling, first by performing a fine-grained
and formal security analysis, and second by identifying a
restricted class of adversaries, that simplifies the proofs
while also further improving the security bound. We relate
this class to previous restrictions in this area and argue
that it is a strictly more general notion, resulting in weaker
restrictions for the adversary and therefore stronger security
guarantees.

B. Depth-robustness is sufficient for security
We show that a variation of the classic graph depth-

robustness property [23, 35] is sufficient to prove security
for the PoSE scheme from Section VI-A. As explained above,
while depth-robustness in all previous works requires the
existence of one single long path after some nodes have been
removed, we require the existence of several long paths. The
computation required by a cheating prover in this context
is proportional to the depth of the longest remaining path.
While in most previous works the length is linear in the

size of the graph, we will tolerate graphs with slightly
shorter paths, i.e. of sublinear size. On the one hand, this
is useful in practice, since it will allow us to construct a
class of depth-robust graphs that can be labelled in-place
efficiently. On the other hand, we show that this does not
affect security, as long as the computational power of the
adversary during the interactive phase is constrained in
proportion to the prescribed path length, which can be
done by the time measurements we described in Section III.

Definition 8. Let G be a DAG and let O(G) ⊆ V (G) with
|O(G)| = µ. We say G is (µ, γ)-depth-robust with respect
to O(G) iff for every set R ⊂ V (G) such that |R| < µ, there
exists a subset of nodes O′ ⊆ O(G) with |O′| ≥ µ − |R|
such that for every node v ∈ O′ there is a path in G \ R
of length at least γ that ends in v, i.e. llp(v,G \R) ≥ γ.

The security bounds obtained using such a depth-robust
graph in the graph-based PoSE scheme are presented in
Corollary 2, which can be obtained by a direct application
of Theorem 2 and Proposition 1. For this protocol, the
oracle O in Figure 5 gives to A1 oracle access to the
hash function h resulting from the initialization phase.
The first part of Corollary 2 shows that we obtain better
security bounds if we consider a notion of graph-restricted
adversaries, which will be discussed in the next subsection.
Note that the parameter m for the number of memory
blocks in the experiment and the bound q < γ on the
number of oracle calls by A1 are related to the pair (m, γ)
determined by the depth-robustness of the graph.

Corollary 2. Assume that the graph-based PoSE scheme
is instantiated with parameters (m, r, w) and an (m, γ)-
depth-robust graph G. Then, for any (M, q)-bounded
adversary (A0,A1), with q < γ, we have:

Pr
h

[Expm,r,w
A0,A1

= true] ≤ (M ′/m)r + 2−w0 where:

• if A is graph-restricted: w0 = w and M ′ = ⌈M/w⌉
• else: w0 = w − log(m)− log(q) and M ′ = ⌈M/w0⌉

Intuitively, the previous result shows that the attacker’s
success probability is proportional to M : the smaller the
state it uses to reply to our challenges, the higher the
probability that it will fail to pass the verification test.
This result is not far from optimal, as this bound can
actually be achieved by an adversary that stores M

w of the
labels in O(G).

For example, if we would like to erase a malware of size
at least 6 KB from a device with total memory 100 KB,
then the parameters would be w = 256,m = 100·213/256 =
3200,M = (100 − 5) · 213 = 778240. If we wanted to be
certain that any graph-restricted attacker can pass the
protocol without erasing malware with probability at most
10−3, then we need to execute the protocol for 112 rounds.

C. Graph-restricted adversary
Several works studying protocols based on graph la-

belling related to ours consider restricted classes of ad-

versaries in order to obtain tight security bounds and
reductions to graph pebbling [19, 21, 5]. In all these notions,
the adversary can only make oracle calls corresponding to
valid labels in the graph and, in addition, the adversary
is restricted in the type of computation that it can apply
to get a state to be stored in memory, e.g. it can only
store labels [19, 21] or so-called entangles labels [5]. The
notion that we consider in Definition 9 is more general,
considering the full class of graph-restricted adversaries
that can perform any computation to obtain the state to
be stored.

Definition 9. We say thatA = (A0,A1) is graph-restricted
to G if and only if all oracle calls done by A1 correspond
to valid labels (equal to ℓ−(v) for some node v), and its
responses to the verifier challenges are always correct.

A graph-restricted adversary may compute arbitrary
functions (for example compression, cut labels into pieces,
entangle them with new algorithms, etc), but it doesn’t
do any guessing while making oracle queries nor when
responding challenges. The assumption is that the adver-
sary knows what it is doing, i.e. knows that an oracle
query would be useless or that a particular response to
the challenge would be wrong. The notable difference with
respect to the previous classes of graph-playing adversaries,
e.g. the pebbling adversary from [21] or the entangled
pebbling adversary from [5], is that we have no a priori
restriction on how the labels of values are processed and
stored. We discuss these notions in more detail in the
extended version [15].

D. Security proof: first step

The following theorem will be the main ingredient for
proving Corollary 2. We split its proof in two steps. The
first step is presented in this subsection and is independent
of the adversarial class. The second step is simpler for
graph-restricted adversaries. We present the proof for that
case in the next subsection and for the case of general
adversaries in appendix. Our proof strategy builds upon
the proofs from [5] and [35]. Relying on our new notion
of depth-robustness, we combine ideas from both proofs,
improve on their security bounds, and adapt them to graph-
restricted adversaries and to the case where we only ask
one challenge from the prover.

Theorem 2. Assume that the graph-based PoSE scheme is
instantiated with parameters (m, 1, w) and with a (m, γ)-
depth-robust graph G. Let A be any (M, q)-bounded
adversary, with q < γ. There exists a set of random oracles
Hgood ⊆ H such that A’s winning probability is bounded
by M ′

m within Hgood, where:
• M ′ =

⌈
M
w

⌉
and |Hgood| ≥ |H| · (1−2−w) if A is graph-

restricted
• else: M ′ =

⌈
M
w0

⌉
and |Hgood| ≥ |H| · (1− 2−w0), where

w0 = w − log(m)− log(q).

Consider an adversary A = (A0,A1) against the memory
challenge game for our PoSE instantiated with a graph G.
Let σ = A0(1w, ρ, h). Let O(G) = {o1, . . . , om} be the set
of all challenge vertices that can be given to A1 during
the experiment. For this protocol the adversary A1 has
access to the random oracle h through O, which we make
clear in the notation onwards by calling the oracle function
Oh. A query Q from A1 to Oh is good if ∃v : Q = ℓ−(v).
For every i ∈ {1, . . . ,m}, considering the execution of
AOh

1 (1w, ρ, σ, oi), we let:
• Qi,j be the input to the j-th oracle call made to Oh

by A1 in this execution;
• ti be the total number of oracle calls made by A1 in

this execution;
• Qi,ti+1 be the output of A1 on this execution.

Definition 10 (Blue node). We say that a node v ∈ V (G)
is blue if and only if there exists v′ ∈ V (G), i ∈ {1, . . . ,m}
and j ≥ 1 such that:

1) v ∈ Γ−(v′) and Qi,j = ℓ−(v′)
2) ∀i′ ∈ {1, . . . ,m}∀j′ < j. Qi′,j′ ̸= ℓ−(v)

We say that v is a blue node from iteration j, and that
Qi,j is the query associated to v. Denote by Bj all blue
nodes in iteration j, and by B the set of all blue nodes.
A bitstring is a pre-label if it is equal to ℓ−(v) for some v,
and a possible pre-label if it is the concatenation of a node
v and w · |Γ−(v)| bits.

The first point above implies ℓ−(v′) = v′∥y1∥ . . . ∥ym and
ℓ(v) ∈ {y1, . . . , ym}. The second point will ensure that we
can extract the labels of blue nodes for free, i.e. without
querying them to the random oracle, by running A1 in
parallel for all possible challenges on the state σ computed
by A0. Let Ti = ti if the response to the challenge oi by
A1 is correct, or infinite otherwise. The strategy for the
proof of Theorem 2 will be the following:
• First step: prove that the success probability of the

adversary is smaller than the fraction between the
number of blue nodes, whose label it has stored, and
the total number of labels it is supposed to store.

• Second step: prove an upper bound on the number of
blue nodes; for graph-restricted adversaries, this will
be

⌈
M
w

⌉
, matching the value M ′ from Theorem 2.

First, we show that to answer a challenge correctly, A1
needs to recompute the labels of the longest path to any
node that is not blue:

Lemma 3. ∀i ∈ {1, . . . ,m} : Ti ≥ llp(oi, G \ B), i.e. the
time it takes to compute the label of oi is at least the
length of the longest path llp(oi, G \B).

Furthermore, if the graph is (m, γ)-depth-robust, such
paths are with high probability longer than γ if M is
significantly smaller than m · w.

Lemma 4. If the graph G is (m, γ)-depth-robust, then:

Pr
i←$[m]

[Ti ≥ γ] ≥ 1− |B|m−1

Given the previous results, we can bound the probability
of success of the adversary in proportion to the number of
blue nodes, as shown in the following lemma. This way we
conclude the first step of the proof of Theorem 2.

Lemma 5. Given an (M, q)-bounded adversary A, with
q < γ, and a random oracle h ∈ H such that |B| ≤ B̄,
then its probability of success is bounded by B̄ ·m−1.

Proof. From Lemma 4 we deduce that the probability that
Ti ≥ γ is at least 1− |B|m−1 ≥ 1− B̄m−1. But given that
q < γ, it follows that the adversary cannot reply to these
challenges on time, which implies that its probability of
success is bounded by B̄m−1, as claimed.

E. Security proof: second step for graph-restricted A
Next we show that, with high probability over the choice

of the random oracle, we obtain the desired upper bound
on the number of blue nodes. That is, for a big proportion
of (good) random oracles, |B| is smaller than the number
of blocks stored by A0 in σ. This will help us bound the
prediction ability of a cheating adversary that did not store
enough memory. Recall that H is the set of all random
oracles from {0, 1}κ to {0, 1}w. We will rely on the following
well-known result. Intuitively, relying on the adversary A
and its set of blue nodes, we will construct an encoder and
a decoder to which we will be able to apply Lemma 6 to
derive the desired bounds.

Lemma 6 (adapted from Fact 8.1 in [18]). If there is
a deterministic encoding procedure Enc : H → {0, 1}s

and a decoding procedure Dec : {0, 1}s → H such that
Pr

x←$H
[Dec(Enc(x)) = x] ≥ δ, then s ≥ log|H|+ log δ.

Definition 11 (Good oracle). We say that h ∈ H is a
good oracle for a graph-restricted A if |B| ≤

⌈
M
w

⌉
.

Let S be the oracle machine in Figure 6. It executes
A1 in parallel for all possible challenges. Notice that S
executes basically the same operations as A1 and does not
make repeated queries to the oracle. S terminates when
it has finished processing all parallel executions of A1. In
each round, S processes the respective oracle calls of each
instance of A, and outputs all calls to the environment at
the end of the round. In the next lemma S will be used
by the encoder and decoder that we construct, which will
observe its outputs and process all the oracle calls of S.
The encoder will answer the oracle calls by looking directly
at h, while the decoder will obtain the desired values from
the encoded state. The fact that A1 is graph-restricted
helps the decoder determine blue nodes directly.

Lemma 7. Let A be an attacker with parameters (m, 1, w)
and Hgood ⊆ H be the corresponding set of good oracles.
Then |Hgood| ≥ (1− 2−w) · |H|.

Proof. We show there exist an encoder and a decoder
algorithm that using A are able to compress a random
function from H, as long as the size of B is greater than

run AOh
1 (1w, ρ, σ, o1), . . . ,AOh

1 (1w, ρ, σ, om) in parallel :
for j = 1 to max {t1, . . . , tn}+ 1 : Let L be an empty list
for i = 1 to m :
if AOh

1 (1w, ρ, σ, oi) has not finished :
run AOh

1 (1w, ρ, σ, oi)until the j-th query (or output) Qij

- if Qij is an output, add (0, i, Qij) to L

- if Qij is repeated, answer with the previous response
- if Qij is a possible pre-label of v, add (1, v, Qij) to L

- else ask Oh(Qij), relay the answer to A1 and store it
for each (t, v, q) in L : (ordered in inverse topological
output (t, v, q) order w.r.t. G)
if t = 1 ask Oh(q), relay the answer to A1 and store it

Figure 6: Procedure for SOh

A (1w, ρ, σ)⌈
M
w

⌉
, i.e. the function is not in Hgood. Then we apply

Lemma 6 to obtain an upper bound for the number of
functions for which this is possible.

The encoder works as follows: for a function h, first run
A0 to obtain σ. Second, run S with input σ and keep track
of its outputs. As the adversary is graph-restricted, all
these outputs are either tuples that correspond to labels
of challenge nodes, or pre-labels. In both cases, store the
blue nodes in order. Once S finishes, if the number of blue
nodes stored is less than or equal

⌈
M
w

⌉
, output nothing.

Else, output σ, the responses c to all oracles calls made by
S in order (except the ones associated with blue nodes),
and all the remaining oracle values c′ (not asked by S, nor
labels of blue nodes) in lexicographic order. Note that the
labels of blue nodes are not stored explicitly but encoded
in σ.

The decoder works as follows: given σ, c, c′, it will output
the whole function table for h. First, it executes S with
input σ. When S makes an output, as the adversary is
graph-restricted, the decoder can deduce the labels of the
blue nodes associated to it (if any), and store these values.
When S makes an oracle call, if the response to the oracle
call is known (because it is the label of a node that was
stored before, or is a repeated call), then respond with that
value. Else respond with the next value from c. When S
finishes, read all the remaining values in the input c′. At
this point the decoder knows the whole table for h, and
outputs it.

The size of the encoding is exactly M + log|H| − |B| ·w,
and it is correct with probability δ, which is the proportion
of functions h such as the number of blue nodes is more
than

⌈
M
w

⌉
(oracles not in Hgood). From Lemma 6 we deduce

M +log|H|− |B| ·w ≥ log|H|+log(δ) which, together with
|B| >

⌈
M
w

⌉
, implies δ ≤ 2−w. We conclude that |Hgood| =

(1− δ) · |H| ≥ (1− 2−w) · |H|.

Putting together Lemma 7, Definition 11 for good oracles
and Lemma 4, we obtain immediately the statement of
Theorem 2 for graph-restricted adversaries. The proof for
general adversaries is similar and presented in appendix.
The main difference is that the decoder will need some

additional advice to detect where the blue nodes are, which
will imply worse bounds when applying Lemma 6.

VII. Depth-robust graphs that can be labelled
in-place

In this section we look for a family of depth-robust
graphs w.r.t. a subset of nodes that can be labelled in-
place w.r.t. the same subset of nodes. Although some
classes of graphs from previous works, e.g. [27, 11], satisfy
pebbling-hardness notions related to depth-robustness and
can be labelled in place, they don’t satisfy the strong depth-
robustness property that we require. We therefore propose
a new construction. Our construction is based on the
graph in [38], where a simple and recursively constructible
depth-robust graph w.r.t. edge deletions was proposed. The
recent results in [13] showed that it is possible in general
to transform an edge depth-robust graph into a vertex
depth-robust graph where only one single long path is
guaranteed to exist after node deletions, but not several as
required by our notion. Inspired by these results, although
using a different (and ad-hoc) transformation on the graph
from [38], we designed a new class of graphs with the
properties by the protocol in Section VI. The main result
of this section is the following:

Theorem 3. There exists a family of DAGs {Gn} where
Gn+1 hasO(2n·n2) nodes and a subset of nodes O(Gn+1) ⊂
V (Gn+1) of size 2n such that:

1) Gn+1 is (2n, 2n)-depth-robust w.r.t. O(Gn+1);
2) Gn+1 can be labelled in-place w.r.t. O(Gn+1).

If Γ is a graph, we say that a graph G is a fresh copy
of Γ if it is isomorphic and disjoint, and denote it by
G ∼= Γ. Let Ln be a list of 2n nodes. For any DAG G, let
In(G), Out(G) its input and output nodes respectively. If
Y and Z are two disjoint lists of nodes of the same size,
denote by X = Y : Z the concatenation of both lists. If
X = (x1, . . . , xn) and Y = (y1, . . . , yn) are lists of nodes
of size n, then X → Y = {(xi, yi) | 1 ≤ i ≤ n}.

In our construction we use graph with high connectivity,
so-called connectors.

Definition 12. A directed acyclic graph with bounded
indegree, n inputs, and n outputs is an n-connector if for
any 1 ≤ k ≤ n and any sequences (s′1, . . . , s′k) of inputs
and (t′1, . . . , t′k) of outputs there are k vertex-disjoint paths
connecting each s′i to the corresponding t′i.

Next, we introduce notation for connecting two lists of
nodes using a connector graph. Let Hn be a 2n-connector.
Given two lists of nodes I and O of size 2n, and a fresh copy
of Hn named C, we denote by I H→ O the graph with nodes
I∪O∪V (C) and edges E(C)∪(I → In(C))∪(Out(C)→ O).

Now we are ready to construct our graph family. For
each graph Gn from our family, we also define a list of so-
called base nodes, which will serve for connecting Gn with
other graphs in order to construct the graph Gn+1. We
define G0 to be the graph formed of a single node. Then,

Gn+1 is constructed from two copies of Gn and a copy
of Hn, which we connect with a set of additional edges.
First, every base node in the first copy of Gn is connected
through an edge to a corresponding input node in the copy
of Hn. Second, the copy of Hn is connected to the second
copy of Gn through a recursive edge construction described
below and illustrated in Figure 7. Formally, we have:
• G0: V (G0) = {v}, E(G0) = ∅ and Base(G0) = (v).
• Gn contains three components (L,C,R), denoted

by Left(Gn), Center(Gn), Right(Gn), where L ∼=
R ∼= Gn−1, and C ∼= Hn−1. We let Base(Gn) =
Base(L) : Base(R) denote the base vertices.

• The operator ▷ denotes a recursively defined subgraph,
X ▷ G0 = X → Base(G0), and:

(X1 : X2)▷Y = (X1▷Left(Y))∪(X2
H→ In(Center(Y)))

The vertices of Gn are:

V (Gn) = V (L) ∪ V (C) ∪ V (R) ∪ V (Out(C) ▷ R)

The edges of Gn include the edges in the components
L,C,R, plus two new sets of edges: the first from
Base(L) to In(C), and the second from Out(C) to R:

E(X) = E(L) ∪ E(C) ∪ E(R)
∪ (Base(L)→ In(C)) ∪ E(Out(C) ▷ R)

Gn

Hn

Hn−1

Gn−1 Gn−1
Gn+1

H

Figure 7: Gn+1, continuous arrows represent simple edges
→, H arrows represent connector subgraphs H→ and dashed
arrows represent the operator ▷.

The next result is essential for our construction. It states
that if some nodes are removed from a connector with the
objective of disconnecting input/output pairs, then it is
always possible to do so by just removing inputs or outputs.
For a set of nodes R, let Con(R) be all pairs of nodes (v, w),
where v is an input and w is an output, such that all paths
from v to w contain at least one node in R.

Lemma 8. Let Cn be an n-connector and R ⊂ V (Cn) be
a subset of its nodes with |R| < n. Then there exists a
subset of nodes R′ containing only input and output nodes,
such that |R′| ≤ |R| and Con(R) ⊆ Con(R′).

Proof. Consider a bipartite graph BR with n nodes on each
side such that two nodes are connected iff the corresponding
pair is in Con(R). Consider a maximum matching M and
the minimum vertex cover V C in this graph. From König’s

theorem [29] we deduce that |M | = |V C|. Moreover, from
the connector property of Cn we deduce that |M | ≤ |R|:
otherwise, using the connector property between the sets
of nodes in the matching, we would find |R|+ 1 disjoint
paths from the input to the output, and those cannot be
covered by the nodes in R. Then, |V C| ≤ |R|. Consider the
set R′ = V C. If these nodes are removed from Cn, consider
the bipartite graph BR′ (analogous to BR). Clearly BR

is a subgraph of BR′ by the vertex cover property. This
implies that Con(R) ⊆ Con(R′), as claimed.

To prove the depth-robustness of Gn, we will prove
first that after removing some nodes, there remains a long
path containing nodes from Base(Gn).

Theorem 4. Consider Gn and any subset of nodes R ⊂
V (Gn), with |R| < 2n. There is a path L in Gn \ R such
that |V (L) ∩ Base(Gn)| ≥ 2n − |R|.

proof sketch. First, by using Lemma 8 we reduce the
problem by showing that if there is a counterexample set
R, then there is also a counterexample set R′, but for
which no node removed is strictly inside any connector
graph, i.e. they must be part of the input or output. To
conclude, we prove by induction a stronger statement,
in which not only the path L exists, but the nodes in
V (L) ∩ Base(Right(Leftk(Gn))) also must be reachable
from the nodes in In(Center(Leftk(Gn))) for 0 ≤ k ≤ n.
This property makes possible to glue together paths while
proving the induction hypothesis. For the full proof see
Section IX-C.

Corollary 3. Gn+1 is (2n, 2n)-depth-robust w.r.t.
Base(Right(Gn+1))

Proof. Consider a set R of size less than 2n and the path
L given by the previous theorem (the theorem would be
applicable even if 2n ≤ |R| < 2n+1, but we are only using
a restricted result). Then V (L)∩Base(Gn+1) ≥ 2n+1−|R|.
Let M = V (L)∩Base(Right(Gn+1)). Then |M | ≥ 2n − |R|
given:

2n + |M | = |Base(Left(Gn+1))|+ |M |
≥ |V (L) ∩ Base(Gn+1)| ≥ 2n+1 − |R|

We conclude that the 2n − |R| rightmost elements (with
respect to L) in M contain each at least 2n+1−|R|− (2n−
|R|) = 2n predecessors in L, as claimed.

As connectors we use the butterfly family of graphs [13],
which can be easily labelled in-place, and allow the next
result to hold:

Lemma 9. Gn can be labelled in-place w.r.t. Base(Gn+1),
and w.r.t. Base(Right(Gn+1)), in O(2n · n2) time.

proof sketch. We apply induction on both statements at
the same time. For the induction step of the first statement,
notice that to label Gn+1 with respect to its Base, we can
first label Left(Gn+1) ∼= Gn using 2n · w +O(w) memory.

Then, while keeping the previous labels stored, compute
the labels of In(Center(Gn+1)) using 2n · w +O(w) extra
memory. From these we can compute in-place the labels of
the nodes in Center(Gn+1) and later Out(Center(Gn+1)) ▷
Right(Gn+1), as these subgraphs only contain copies of
butterfly graphs, which can be easily labelled in-place.
Then, by the induction hypothesis, compute the labels of
Base(Right(Gn+1)) using the same memory as before. The
proof for the induction step for the second statement is
the same, except that the labels of Base(Left(Gn+1)) are
not stored, so this memory is overwritten afterwards.

The proposed protocol for memory erasure depends on
a graph and a subset of its nodes O(G). In particular, the
memory size in words needs to be the same as the O(G).
Thus, the graphs constructed previously can only be used if
the memory size is a power of two, which may not be true
in practice. The next results solve this issue: they show how
to construct depth-robust graphs that can be labelled
in-place with respect to a subset of nodes of arbitrary
size.

Theorem 5. Let m be any memory size, and let n be the
smallest integer such that 2n+1 ≥ m. Then there exists an
(m, 2n)-depth-robust graph G w.r.t. O(G) that can be
labelled in-place w.r.t. O(G).

Proof. Take G = C1 ∪ C2 where C1 ∼= C2 ∼= Gn+1 (as
defined in our construction). By Corollary 3 and Lemma 11,
G is (2n+1, 2n)-depth-robust w.r.t. O(C1) ∪O(C2). Let
O′ be a subset of O(C2) with size m− 2n, and let O(G) =
O(C1)∪O′. Then by Lemma 12 G is (m, 2n)-depth-robust
w.r.t. O(G). Furthermore, by Lemma 9 and Lemma 13 G
can be labelled in-place w.r.t. O(G), as claimed.

A brief discussion on performance and feasibility. We
provide a prototype implementation of the algorithm from
Section VI with the goal of showing that our depth-robust
graphs can indeed be labelled in-place. Our prototype
implementation in two languages (python and C) can be
found at 1. To estimate memory overhead, we compiled our
prototype to a 32-bit architecture, obtaining a program of
size 3.4KB including the space necessary to store the hash
values used for graph-labelling. To estimate computational
time, we ran our prototype in a standard desktop computer
and simulated the erasure of 32KB of memory, which took
0.25s. As far as communication overhead is concerned,
we did not directly test the speed of the fast phase.
But, taking into account the results obtained in a similar
setting, that of performing distance-bounding via Bluetooth
communication [1], we estimate that 128 rounds of the fast
phase should take around 10 seconds. While recognizing
the limitations of our performance analysis, we believe
these preliminary values are promising and leave for future
work a throughout performance analysis of software-based
erasure protocols, including ours.

1https://gitlab.uni.lu/regil/memory-erasure

https://gitlab.uni.lu/regil/memory-erasure

VIII. Conclusions
We presented the first two provable secure PoSE protocols

capable of deterring provers from outsourcing the erasure
proof to an external conspirator. One protocol is simple to
implement but suffers from high communication complexity;
the other one asks the prover to label a depth-robust graph
from a random seed. Because the labelling algorithm is im-
plemented by a resource-constrained device, we introduced
a class of graphs with depth-robust properties that can be
labelled in-place using hash functions. Both protocols were
proven secure within a formal model. Notably, we proved
security bounds for both protocols guaranteeing that all
the prover’s memory, except for a small part, is erased.
Those security bounds are tighter against a restricted, yet
plausible, adversary. Hence, future work directed to closing
such gap is needed.

References
[1] Aysajan Abidin et al. “Secure, Accurate, and Prac-

tical Narrow-Band Ranging System”. IACR Trans-
actions on Cryptographic Hardware and Embedded
Systems (2021).

[2] Joël Alwen, Jeremiah Blocki, and Ben Harsha. “Prac-
tical Graphs for Optimal Side-Channel Resistant
Memory-Hard Functions”. Proceedings of the 2017
ACM SIGSAC Conference on Computer and Com-
munications Security. 2017.

[3] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak.
“Depth-Robust Graphs and Their Cumulative Mem-
ory Complexity”. Annual International Conference
on the Theory and Applications of Cryptographic
Techniques. Springer, 2017.

[4] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak.
“Sustained Space Complexity”. Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer, 2018.

[5] Joël Alwen et al. “On the Complexity of Scrypt
and Proofs of Space in the Parallel Random Oracle
Model”. Annual International Conference on the
Theory and Applications of Cryptographic Techniques.
Springer, 2016.

[6] Joël Alwen et al. “Scrypt Is Maximally Memory-
Hard”. Annual International Conference on the The-
ory and Applications of Cryptographic Techniques.
Springer, 2017.

[7] Mahmoud Ammar, Bruno Crispo, and Gene Tsudik.
“Simple: A Remote Attestation Approach for Re-
source Constrained Iot Devices”. 2020 ACM/IEEE
11th International Conference on Cyber-Physical
Systems (ICCPS). IEEE, 2020.

[8] Mahmoud Ammar et al. “Speed: Secure Provable
Erasure for Class-1 Iot Devices”. Eighth ACM Con-
ference on Data and Application Security and Privacy.
2018.

[9] Sigurd Frej Joel Jørgensen Ankergaard, Edlira
Dushku, and Nicola Dragoni. “State-of-the-Art
Software-Based Remote Attestation: Opportunities
and Open Issues for Internet of Things”. Sensors
21.5 (2021).

[10] Frederik Armknecht et al. “A Security Framework
for the Analysis and Design of Software Attestation”.
Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security. 2013.

[11] Giuseppe Ateniese et al. “Proofs of Space: When
Space Is of the Essence”. International Conference
on Security and Cryptography for Networks. Springer,
2014.

[12] Mihir Bellare and Phillip Rogaway. “Random Oracles
Are Practical: A Paradigm for Designing Efficient
Protocols”. Proceedings of the 1st ACM Conference
on Computer and Communications Security. 1993.

[13] Jeremiah Blocki and Mike Cinkoske. “A New Connec-
tion Between Node and Edge Depth Robust Graphs”.
12th Innovations in Theoretical Computer Science
Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. 2021.

[14] Ioana Boureanu et al. “Security Analysis and Imple-
mentation of Relay-Resistant Contactless Payments”.
Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. 2020.

[15] Sergiu Bursuc et al. Software-Based Memory Erasure
with relaxed isolation requirements: Extended Version.
2024. arXiv: 2401.06626 [cs.CR].

[16] Claude Castelluccia et al. “On the Difficulty of
Software-Based Attestation of Embedded Devices”.
Proceedings of the 16th ACM Conference on Computer
and Communications Security. 2009.

[17] Mauro Conti et al. “Evexchange: A Relay Attack
on Electric Vehicle Charging System”. Computer
Security–ESORICS 2022: 27th European Symposium
on Research in Computer Security, Copenhagen,
Denmark. Springer, 2022.

[18] Anindya De, Luca Trevisan, and Madhur Tulsiani.
“Time Space Tradeoffs for Attacks against One-Way
Functions and PRGs”. Annual Cryptology Conference.
Springer, 2010.

[19] Cynthia Dwork, Moni Naor, and Hoeteck Wee. “Peb-
bling and Proofs of Work”. Annual International
Cryptology Conference. Springer, 2005.

[20] Stefan Dziembowski, Tomasz Kazana, and Daniel
Wichs. “One-Time Computable Self-Erasing Func-
tions”. Theory of Cryptography Conference. Springer,
2011.

[21] Stefan Dziembowski et al. “Proofs of Space”. Annual
Cryptology Conference. Springer, 2015.

[22] E. M. V. EMVCo. “Contactless Specifications for
Payment Systems”. Book C-2, Kernel 2 (2021).

[23] Paul Erdos, Ronald L. Graham, and Endre Szemerédi.
“On Sparse Graphs with Dense Long Paths”. Comp.
and Math. with Appl 1 (1975).

https://arxiv.org/abs/2401.06626

[24] Reynaldo Gil Pons et al. “Is Eve Nearby? Analysing
Protocols under the Distant-Attacker Assumption”.
IEEE Computer Security Foundations Symposium,
August 7-10, 2022, Haifa, Israel. 2022.

[25] Peter Gutmann. “Secure Deletion of Data from
Magnetic and Solid-State Memory”. 6th USENIX
Security Symposium (USENIX Security 96). San Jose,
CA: USENIX Association, July 1996.

[26] Ghassan O. Karame and Wenting Li. “Secure Erasure
and Code Update in Legacy Sensors”. International
Conference on Trust and Trustworthy Computing.
Springer, 2015.

[27] Nikolaos P. Karvelas and Aggelos Kiayias. “Efficient
Proofs of Secure Erasure”. International Conference
on Security and Cryptography for Networks. Springer,
2014.

[28] Chongkyung Kil et al. “Remote Attestation to
Dynamic System Properties: Towards Providing
Complete System Integrity Evidence”. IEEE/IFIP
International Conference on Dependable Systems &
Networks. 2009.

[29] Dénes Konig. “Graphs and Matrices”. Matematikai
és Fizikai Lapok 38 (1931).

[30] Boyu Kuang et al. “A Survey of Remote Attestation
in Internet of Things: Attacks, Countermeasures, and
Prospects”. Computers & Security 112 (2022).

[31] Francesca Meneghello et al. “IoT: Internet of
Threats? A Survey of Practical Security Vulnerabili-
ties in Real IoT Devices”. IEEE Internet of Things
Journal 6.5 (2019).

[32] Lily Hay Newman. An Elaborate Hack Shows How
Much Damage IoT Bugs Can Do. https://www.wired.
com/story/elaborate-hack-shows-damage-iot-bugs-
can-do/. 2010.

[33] Bryan Parno, Jonathan M. McCune, and Adrian Per-
rig. “Bootstrapping Trust in Commodity Computers”.
IEEE Symposium on Security and Privacy. IEEE,
2010.

[34] Daniele Perito and Gene Tsudik. “Secure Code
Update for Embedded Devices via Proofs of Secure
Erasure”. European Symposium on Research in Com-
puter Security. Springer, 2010.

[35] Krzysztof Pietrzak. “Proofs of Catalytic Space”.
10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10-12, 2019, San
Diego, California, USA. Ed. by Avrim Blum. Vol. 124.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2019.

[36] Andreea-Ina Radu et al. “Practical EMV Relay
Protection”. 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022.

[37] Kasper Bonne Rasmussen and Srdjan Capkun. “Real-
ization of RF Distance Bounding.” USENIX Security
Symposium. 2010.

[38] Georg Schnitger. “On Depth-Reduction and Grates”.
24th Annual Symposium on Foundations of Computer
Science (Sfcs 1983). IEEE, 1983.

[39] Arvind Seshadri et al. “SWATT: Software-based At-
testation for Embedded Devices”. IEEE Symposium
on Security and Privacy, 2004. Proceedings. 2004.
IEEE, 2004.

[40] Rolando Trujillo-Rasua. “Secure Memory Erasure
in the Presence of Man-in-the-Middle Attackers”.
Journal of Information Security and Applications 57
(2019).

[41] Dominique Unruh. “Random Oracles and Auxiliary
Input”. Annual International Cryptology Conference.
Springer, 2007.

IX. Appendix
A. Reduction to uniform adversaries and to one round
Lemma 1. For any (M, q)-bounded adversary A against
the PoSE-DB security experiment, there is a uniform (M, q)-
bounded adversary Ā that wins the experiment with at
least the same probability: Pr

Υ←$I
[Ar] ≤ Pr

Υ←$I
[Ār].

Proof. It is sufficient to prove that, for any fixed Υ ∈
I, we have Pr[Ar |Υ] ≤ Pr

[
Ār

∣∣ Υ
]
. In this case, since

A = (A0,A1) is deterministic and Υ is fixed, for every
i the stateσi+1 returned by A0 is uniquely determined
by the sequence of challenges x1, . . . , xi in the experiment
Expm,r,w
A0,A1

. Let Σ be the set of all possible states σi that can
be output in any round by A0 over all possible sequences
of challenges. We denote by Pr[A1 |Υ, σ] the probability
that A1 answers a single challenge correctly when given
the state σ as input:

Pr[A1 |Υ, σ] = Pr
[
Vrfy(ρ,Υ, x, y)

∣∣∣ x←Chal(ρ)
y←AOh

1 (1w,ρ,σ,x)

]
where the probability is taken over the randomness used by
the challenge generation algorithm. We define σµ to be the
state in Σ for which the probability of winning given a ran-
dom challenge is maximal σµ = arg maxσ∈Σ Pr[A1 |Υ, σ].
Let Ā = (Ā0,A1), where Ā0 always returns σµ, indepen-
dent of the set of challenges it obtains as input. Note that Ā
is (M0, q)-bounded, since the state returned by Ā0 is among
the possible states returned by A0, and the adversary A1
is the same. We will now show that Ā achieves at least
the same probability of success as A. If x̄k is a sequence
of challenges {x1, x2, . . . , xk} we denote by:
• Pr

[
Ak

∣∣ Υ, x̄k

]
the probability that the adversary A

gets a correct answer in the first k rounds given that
the first k challenges are x̄k. As A is deterministic,
this probability is either 0 or 1.

• Pr[At(x̄k) |Υ, x̄k] the probability that the adversary
A gets a correct answer in t successive rounds starting
from round k+ 1 given that the challenges in the first
k rounds are x̄k.

• Pr[x̄k |Υ] the probability, taken over the randomness
used by the challenge algorithm, that the first k
challenges are x̄k.

https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/
https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/
https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/

For a vector of challenges x̄k we have Pr
[
A1(x̄k)

∣∣ Υ, x̄k

]
=

Pr[A1 |Υ, σ, x̄k] where σ ← A0(x̄k) and:

Pr[A1 |Υ, σ, x̄k] = Pr[A1 |Υ, σ] ≤ Pr[A1 |Υ, σµ]

where the equality comes from the independence between
A1 and x̄k given Υ, σ; the inequality follows by definition of
σµ. Using the inequality above, we prove by induction that,
for any k ≥ 0, we have Pr

[
Ak+1

∣∣ Υ
]
≤ Pr

[
Āk+1

∣∣ Υ
]
. The

case k = 0 is trivial. For k > 1, we obtain:

Pr
[
Ak+1 ∣∣ Υ

]
=

∑
x̄k

Pr[x̄k |Υ] · Pr
[
Ak

∣∣ Υ, x̄k

]
· Pr

[
A1(x̄k)

∣∣ Υ, x̄k

]
≤

∑
x̄k

Pr[x̄k |Υ] · Pr
[
Ak

∣∣ Υ, x̄k

]
· Pr[A1 |Υ, σµ]

= Pr
[
Ak

∣∣ Υ
]
· Pr[A1 |Υ, σµ]

≤ Pr
[
Āk

∣∣ Υ
]
· Pr[A1 |Υ, σµ] = Pr

[
Āk+1 ∣∣ Υ

]
Lemma 2. For any uniform adversary A and any Υ ∈ I,
we have Pr[Ar |Υ] = Pr

[
A1

∣∣ Υ
]r.

Proof.

Pr[Ar |Υ] = Pr[Ar |Υ, σ ← A0] = Pr[A |Υ]r

Proposition 1. Given ζ < 1, Igood ⊆ I and a uniform
adversary A whose winning probability is bounded to ζ
within Igood, we have Pr

Υ←$I
[Ar] ≤ ζr + |I\Igood|

|I| .

Proof. From Lemma 2, we have:

Pr
Υ←$I

[Ar] = 1
|I|

∑
Υ∈I

Pr[Ar |Υ] = 1
|I|

∑
Υ∈I

Pr[A |Υ]r

To reduce notation in what follows, we let pΥ = Pr[A |Υ]
and omit Υ ∈ I when we sum over all Υ in I. We have:∑

Υ
Pr[A |Υ]r =

∑
Υ
pr

Υ =
∑

Υ,pΥ>ζ

pr
Υ +

∑
Υ,pΥ≤ζ

pr
Υ

≤
∑

Υ, pΥ>ζ

1 +
∑

Υ
ζr ≤

∑
Υ, pΥ>ζ
Υ∈Igood

1 +
∑

Υ, pΥ>ζ
Υ/∈/Igood

1 +
∑

Υ
ζr

≤ 0 + |I \ Igood|+ |I| · ζr

where for the last inequality we use that A’s winning
probability is bounded to ζ within Igood to deduce that
the first sum is empty. Combining the two results above,
we deduce Pr

Υ←$I
[Ar] ≤ ζr + |I\Igood|

|I| as claimed.

B. Reduction of PoSE security to depth-robustness
Lemma 3. ∀i ∈ {1, . . . ,m} : Ti ≥ llp(oi, G \ B), i.e. the
time it takes to compute the label of oi is at least the
length of the longest path llp(oi, G \B).

Proof. Fix i. If the response to the challenge oi is not
correct, then the claim is trivial (Ti is infinite). The case
oi ∈ B is also trivial. Assume oi /∈ B and that the answer
to the challenge oi is correct. Consider the longest path

ending in oi, let it be (v1, v2, . . . , vk−1, vk = oi), where k =
llp(oi, G \B). As none of the nodes in this path are blue,
all their labels were computed by asking the oracle for the
corresponding value. Let fj be the smallest index such that
Qx,fj

= ℓ−(vj) for some x. As vk = oi, then ti ≥ fk.
We prove that ∀j : 1 ≤ j < k we have fj < fj+1. Each

inequality can be proved using the same argument, so we
prove only f1 < f2. As v1 is not blue and v2 is a successor
of v1, then the query ℓ−(v2) in round f2 (which contains
the label of v1) must have happened after the query ℓ−(v1)
in round f1. This implies f2 > f1, as needed.

As ∀i : fi ≥ 1 then fk ≥ k =⇒ Ti ≥ k.

Lemma 4. If the graph G is (m, γ)-depth-robust, then:

Pr
i←$[m]

[Ti ≥ γ] ≥ 1− |B|m−1

Proof. We can assume |B| < m, since the result trivially
holds otherwise. Therefore, from the definition of depth-
robustness, there exist a set O′ ⊆ {oi} \ B with |O′| ≥
m− |B| s.t. ∀oi ∈ O′ : llp(oi, G \ B) ≥ γ. From Lemma 3,
we deduce ∀oi ∈ O′ : Ti ≥ γ. Therefore, we deduce

Pr
i←$[m]

[Ti ≥ γ] ≥ Pr
i←$[m]

[oi ∈ O′] ≥ 1− |B|m−1

The next definition and lemma hold for general adver-
saries.

Definition 13 (Good oracle). We say that h ∈ H is a
good oracle for an adversary A = (A0,A1) if we have
|B| ≤

⌈
M

w−log(m·q)

⌉
.

Lemma 10. If A has parameters (m, 1, w) and Hgood ⊆ H
be the corresponding set of good oracles. Then |Hgood| ≥
|H| · (1− 2−w+log(m·q)).

Proof. The proof follows closely the one of Lemma 7, but
must be extended for general adversaries.

As before, the encoder will output 0 if h ∈ Hgood. Else,
it will output σ, p, c, c′, where the new value p is a list of
indices, where each index ai corresponds to the i-th output
of S, and indicates that it contains the first appearance
of the label of a blue node. Each of these pairs can be
encoded using log(m · q) bits.

The decoder will also execute S as before. The difference
is that when S outputs a value, only if the corresponding
index is in p, it will extract and store the labels of the blue
nodes associated with that output. At the end of execution,
the decoder will have stored all labels of blue nodes.

As the size of p is at most the number of blue nodes, the
size of the encoding is at most M+|B|·log(m·q)+log|H|−
|B|·w, and it is correct with probability δ = 1−|Hgood|/|H|.
From Lemma 6 we deduce:
M + log|H| − |B| · (w − log(m · q)) ≥ log|H|+ log(δ)

=⇒ δ ≤ 2−w+log(m·q) from |B| >
⌈

M

w − log(m · q)

⌉
Hence |Hgood| = (1− δ) · |H| ≥ (1− 2−w+log(m·q)) · |H|.

C. Graph construction
Theorem 4. Consider Gn and any subset of nodes R ⊂
V (Gn), with |R| < 2n. There is a path L in Gn \ R such
that |V (L) ∩ Base(Gn)| ≥ 2n − |R|.

Proof. Assume the contrary, there exists a set R such that
there is no path containing 2n − |R| nodes from Base(Gn).
Consider the partition B∪R1∪ . . .∪Rk of the vertices in R
such that the nodes in each partition Ri belong to exactly
one subgraph Hi (defined by some H→, or the Center of
some component) and B = R ∩ Base(Gn). If R′i is the set
of nodes guaranteed to exist by Lemma 8, then removing
R′i instead of Ri doesn’t increase the connectivity between
nodes in Base(Gn). We deduce that if the result is true for
R′, then after removing the nodes in R′ = B∪R′1∪ . . .∪R′k
from Gn, there is a path containing 2n − |R′| ≥ 2n − |R|
nodes from Base(Gn). The vertices in R′ are either in the
input or output of some Hi, or in Base(Gn).

It remains to prove that if the nodes in R′ are removed,
there is a path with the required features. We prove this
by induction in a stronger statement: in Gn \ R′ there
exists a path L with the required properties such that the
nodes in V (L)∩Base(Right(Leftk(Gn))) are reachable from
In(Center(Leftk(Gn))) for 0 ≤ k < n.

The base cases G0 and G1 can be checked manually.
For the induction step assume in R′ there are l, r, c
nodes from Left(Gn+1), Right(Gn+1) and Center(Gn+1) ∪
(Out(Center(Gn+1)) ▷ Right(Gn+1) \ Right(Gn+1)), respec-
tively. By the induction hypothesis, there is a path
Ll in Left(Gn+1) with the required properties, i.e.
|V (Ll) ∩ Base(Left(Gn+1))| ≥ 2n − l. There is also Lr in
Right(Gn+1).

We will finish the proof by case analysis. If r + c ≥ 2n,
then 2n− l ≥ 2n+1−|R′| and L = Ll has the required prop-
erties. Else, r + c < 2n. Let ci = |R′ ∩ In(Center(Gn+1))|.

Next we prove that there is a list of nodes F ⊆ V (Lr)∩
Base(Right(Gn+1)) such that |F | ≥ 2n − r − c + ci and
all nodes in F are reachable from at least one node in
Out(Center(Gn+1)).

Consider a node v ∈ V (Lr) ∩ Base(Right(Gn+1)). Let
k be the largest such that v ∈ Leftk(Right(Gn+1)), and
Gv = Leftk(Right(Gn+1)). If k = n, then the only way that
this node is not reachable from Out(Center(Gn+1)) is if its
predecessor in that set belongs to R′. If k < n, then by
the induction hypothesis, given that v ∈ Base(Right(Gv)),
then v is reachable from a node in In(Center(Gv)), call
this node w. The only way that v is not reachable from
Out(Center(Gn+1)) through w is if all paths in the connec-
tor H̄ (which is isomorphic to Hn−k−1) from this set to w
are covered by nodes in R′. As w is not covered, this is only
possible if all nodes from Out(Center(Gn+1)) connected to
In(H̄) are in R′, which are exactly 2n−k−1 nodes. But there
are at most 2n−k−1 nodes in Base(Right(Gv)). Applying
the previous deduction for all v, we deduce that the number
of nodes in V (Lr)∩Base(Right(Gn+1)) not reachable from
Out(Center(Gn+1)) is at most the number of nodes that

were removed from Out(Center(Gn+1)). As this number is
at most c− ci, the claim follows.

Consider now the path PF determined by the list of nodes
F . All these nodes are reachable from Out(Center(Gn+1)).
Furthermore, as ci ≤ c + r < 2n, these nodes are also
reachable from some node in In(Center(Gn+1)). We will
concatenate this path with a suitable subset of Ll. Let D ⊆
Ll∩Base(Left(Gn+1)) be the set of nodes that are connected
to a node in In(Center(Gn+1)). Then |D| ≥ 2n − l − ci.
Consider the path PD determined by the list of nodes D.
This path can be extended with PF and the resulting path
contains at least 2n − l− ci + 2n − r− c+ ci = 2n+1 − |R′|
nodes in Base(Gn+1), as was needed.

Lemma 11. Let G be (a, b)-depth-robust w.r.t. O(G).
Then the graph defined by the disjoint union of two copies
of G, G1 and G2, is (2a, b)-depth-robust w.r.t. O(G1) ∪
O(G2).

Proof. Let R be a set of nodes with |R| < 2 · a. Let r1 =
|R ∩ V (G1)| and r2 = |R ∩ V (G2)|. If r1 < a then by the
depth robustness of G1 there are at least a− r1 nodes v
in G1 \R with llpv > b. We conclude by case analysis:
• if r2 ≥ a =⇒ r1 < a, from which the result follows

given that a− r2 ≥ 2 · a− r1 − r2
• if r1 ≥ a the result follows by symmetry with the

previous case
• else r2 < a ∧ r1 < a, and we can find a− r2 paths in
G2 and a− r1 paths in G1 with length greater than b,
ending in different vertices in O(G1) ∪O(G2).

Lemma 12. Let G be (a, b)-depth-robust w.r.t. O(G).
Let O′ be a subset of O(G) of size a′. Then G is (a′, b)-
depth-robust w.r.t. O′.

Proof. Let R′ be a set of nodes with |R′| < a′. Let R =
R′∪ (O(G)\O′). Notice that |R| < a. Then the nodes with
longs paths guaranteed by the depth robustness of G in
G\R will also be nodes with long paths in G\R′. Moreover,
by definition of R these nodes are in O′ and there are at
least a− |R| = a′ − |R′| such nodes, as needed.

Lemma 13. Let G be a graph that can be labelled in-
place w.r.t. O(G), and G′ the graph defined by the disjoint
union of two copies of G, G1 and G2. If O′ is a subset of
O(G2), then G′ can be labelled in-place w.r.t. O(G1)∪O′.

Proof. First compute the labels of O(G2) in-place. Then
keep storing only the labels from O′. With the space left,
compute the labels of O(G1) in-place.

	Introduction
	Related Work
	A Formal Model for PoSE-DB protocols
	Proof of Secure Erasure with Distance Bounding
	Formalizing Secure Erasure Against Distant Attackers

	Initial results
	The unconditional PoSE-DB protocol
	PoSE based on depth-robust graphs
	Graph-based notation and PoSE scheme
	Depth-robustness is sufficient for security
	Graph-restricted adversary
	Security proof: first step
	Security proof: second step for graph-restricted A

	Depth-robust graphs that can be labelled in-place
	Conclusions
	Appendix
	Reduction to uniform adversaries and to one round
	Reduction of PoSE security to depth-robustness
	Graph construction

