
Testing Updated Apps by Adapting Learned Models

CHANH DUC NGO, SnT Centre, University of Luxembourg, Luxembourg
FABRIZIO PASTORE, SnT Centre, University of Luxembourg, Luxembourg
LIONEL BRIAND∗, Lero SFI Centre for Software Research, University of Limerick, Ireland and School of
EECS, University of Ottawa, Canada

Although App updates are frequent and software engineers would like to verify updated features only,
automated testing techniques verify entire Apps and are thus wasting resources.

We present Continuous Adaptation of Learned Models (CALM), an automated App testing approach that
efficiently test App updates by adapting App models learned when automatically testing previous App versions.
CALM focuses on functional testing. Since functional correctness can be mainly verified through the visual
inspection of App screens, CALM minimizes the number of App screens to be visualized by software testers
while maximizing the percentage of updated methods and instructions exercised.

Our empirical evaluation shows that CALM exercises a significantly higher proportion of updated methods
and instructions than six state-of-the-art approaches, for the same maximum number of App screens to be
visually inspected. Further, in common update scenarios, where only a small fraction of methods are updated,
CALM is even quicker to outperform all competing approaches in a more significant way.

CCS Concepts: • Software and its engineering→ Software verification and validation.

Additional Key Words and Phrases: Model Reuse, Android Testing, Regression Testing, Update Testing,
Model-based Testing

ACM Reference Format:
Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand. 2024. Testing Updated Apps by Adapting Learned Models.
1, 1 (April 2024), 41 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Software applications for mobile devices (i.e., Apps) are updated frequently, mainly to improve the
user experience and fulfill marketing strategies [8, 13, 29]. Our industry partners highlighted that
in such scenario, where the time dedicated to development and testing is limited, it is important to
focus testing effort on the features that have been modified and introduced in the new App version.
Unfortunately, automated App testing techniques do not target updated features but exercise

whole Apps and cover their implementation only partially (e.g., they exercise around half of the
App methods [11, 48]). When coverage is limited, regression test selection techniques [10, 38] are
unlikely to help engineers in selecting test cases that exercise the updated features. Therefore,
the automated testing of updated features remains an open problem. Further, existing techniques
detect only crashes or data loss [36] though a recent study on functional faults affecting Android
∗Part of this work was done while affiliated with University of Luxembourg.

Authors’ addresses: Chanh Duc Ngo, SnT Centre, University of Luxembourg, JFK 29, Luxembourg, Luxembourg, chanh-
duc.ngo@uni.lu; Fabrizio Pastore, SnT Centre, University of Luxembourg, JFK 29, Luxembourg, Luxembourg, fabrizio.
pastore@uni.lu; Lionel Briand, Lero SFI Centre for Software Research, University of Limerick, Tierney building, Limerick,
Ireland and School of EECS, University of Ottawa, Ottawa, Canada, lionel.briand@lero.ie.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
XXXX-XXXX/2024/4-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: April 2024.

ar
X

iv
:2

30
8.

05
54

9v
2

 [
cs

.S
E

]
 1

7
A

pr
 2

02
4

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Apps reports that 95% of the failures likely require visual inspection to be detected. Among these,
content related issues account for 21%, structure related issues 40%, incorrect interaction 19%,
and functionality not taking effect 12%) [49]. Unfortunately, visual inspection of App outputs is
practically infeasible when automated testing tools generate a large number of test inputs, each
one leading to a new output screen to be inspected.

Our previous work has shown that static and dynamic program analyses drive model-based App
testing towards maximizing the coverage of updated methods while using a limited number of
test inputs [30]. We named our previous approach ATUA; for a same number of App screens to be
exercised, it outperforms state-of-the-art (SOTA) approaches in terms of code coverage.

Although ATUA demonstrated to be more effective than approaches not focused on App updates,
it does not reuse App models across versions, which makes the test process inefficient (e.g., for every
App version, it may resort to random exploration to trigger Window transitions not identified by
static analysis). In the literature, inferred models have been reused to repair test scripts [15], execute
test cases on different platforms [22, 42], and automate regression testing [16]. Unfortunately, the
only approach reusing models across versions is Fastbot2 [27], a recent approach that reuses a
probabilistic model learned in a previous version to drive testing in a newer version. However,
our empirical results (see Section 4) show that, since it does not integrate static analysis, it cannot
effectively target updated features.
We present Continuous Adaptation of Learned Models (CALM), an App testing technique that

efficiently tests updated Apps by relying on models learned with previous App versions. CALM
leverages ATUA to select test inputs that exercise updated methods. However, CALM improves
over ATUA by combining dynamic and static program analysis to adapt and improve the model
learned when testing a previous App version. The reuse of an existing model enables CALM to
efficiently use the test budget to exercise updated methods rather than to determine, with random
exploration, how to reach Windows already reached in previous App versions. Like ATUA, CALM
aims at detecting functional faults leading to erroneous App outputs but is not targeting crashes.
Since crashes can be automatically detected, existing approaches (e.g., Monkey) can readily be
used for that purpose. CALM, instead, optimizes the test budget not only to quickly reach the App
states enabling the execution of updated methods but also to minimize the number of outputs to be
inspected by engineers to detect functional faults.

Before testing a new App version, CALM relies on static program analysis to identify changes in
the App GUI that should be reflected in the App model. This includes, for example, removing state
transitions triggered by Widgets no longer present in the updated App. In addition, it integrates
heuristics for the runtime adaptation of App models to make model reuse effective. Precisely, it
introduces layout-guarded abstract transitions to deal with non-determinism; it derives probabilistic
Action sequences to deal with state explosion; it detects model states that are new but compatible
with previously executed Action sequences (i.e., backward-equivalent); it relies on online and offline
model refinement to identify and remove obsolescent model states. Finally, CALM identifies and
provides engineers with only the output screens rendered by the App after an updated method had
been exercised, thus greatly minimizing test oracle costs.

Our empirical evaluation shows that, for a one-hour test budget, CALM exercises a significantly
larger percentage of updated methods and instructions than SOTA tools (ATUA, Monkey [4],
APE [17], Fastbot2, TimeMachine [14], and Humanoid [24]). For a same maximum number of screen
outputs to be visualized, CALM outperforms the second-best SOTA approach by 6 percentage
points (pp). Most importantly, this difference keeps increasing with the test budget and is even
larger (13 pp) for quick test sessions with updates of small size, which are by far the most frequent.

Section 2 introduces background technologies. Section 3 describes the proposed approach. Sec-
tion 4 reports on the results of our empirical evaluation. Section 5 discusses related work. Section 6

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 3

concludes the paper.

2 BACKGROUND
2.1 Model-based App Testing with ATUA
Most of the App testing automation approaches reported in the literature are model-based (i.e., they
infer an App model that is used to drive testing [43]). They differ for the type of analysis used to
identify states and transitions (i.e., dynamic [6, 39] or static [51]), the abstraction functions used
(i.e., predefined [6, 39] or adaptable [17]), and their model exploration strategy (i.e., offline [39] or
online [6]).

We rely on ATUA [30], a recent model-based solution that integrates multiple analysis strategies.
To focus on updated (modified and new) methods, it combines static analysis (to determine the
inputs that execute updated features) and random exploration (to overcome the limitations of static
analysis). To generate a reduced set of test inputs, it relies on dynamically-refined state abstraction
functions (to determine when distinct inputs lead to a same program state) and information retrieval
techniques (to identify dependencies among App features).

The testing activity performed by ATUA is driven by an App model whose metamodel is shown
in Figure 1. It consists of three parts: (1) an Extended Window Transition Graph (EWTG), (2)
a Dynamic State Transition Graph (DSTG), and (3) a GUI State Transition Graph (GSTG). The
EWTG is extracted by relying on the static analysis tool Gator [51]; it models the sequences of
Windows being visualized after triggering specific Inputs (Events or Intents). The EWTG extends
Gator’s WTG with, for every Input, the list of target methods that may be invoked during the
execution of the input handler. The GSTG captures the GUITree (i.e., the hierarchy tree of widgets
and their properties) that might be visualized after an Action is performed on the GUI. An Action
is an instance of an Input (e.g., click on a specific Button widget). Finally, the DSTG models the
AbstractStates of the visualized Windows and the AbstractStateTransitions triggered by events.
AbstractStates are identified by a state abstraction function. The DSTG helps determine a valid and
minimal sequence of Actions necessary to reach a specific Window.

The App model is used to drive testing with the objective of exercising a set of target methods (i.e.,
the methods introduced or modified in the updated App version). To test an App, ATUA identifies
the sequence of Actions necessary to reach a target Window, that is, a Window in which some
Actions (hereafter, target Actions) may trigger the execution of target methods. Precisely, ATUA
identifies the shortest Action sequence by relying on a breadth-first traversal that considers both
WindowTransitions (in the EWTG) and AbstractTransitions (in the DSTG). AbstractTransitions
are prioritized because more accurate. Indeed, a certain WindowTransition may be enabled only if
the App is in a specific state; instead, AbstractTransitions indicate that a certain Window can be
reached from a certain AbstractState, based on previous testing results. Once in a target Window,
ATUA triggers target Actions.

During testing, ATUA identifies AbstractStates through abstraction functions that are automati-
cally selected for each Window of the App under test. To this end, ATUA relies on a predefined set
of reducers (see Table 1), i.e., functions that extract the value of a widget property [17]. For each
Widget, ATUA keeps track of the applied reducers and their outputs in a map, called AttributeVal-
uationMap (AVM). The AVM has a cardinality attribute indicating how many Widgets have the
same attribute valuations. Two AbstractStates differ when at least one value differs across their
respective AVMs.
To minimize non-determinism in the DSTG, during testing, when ATUA observes that a same

Action may bring the App into two distinct AbstractStates, it refines the abstraction function for
the Window in which the Action had been triggered. Refinement is performed by increasing the

, Vol. 1, No. 1, Article . Publication date: April 2024.

4 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS
UNREGIS

+widgets

+target

+source

+destination

+triggeredBy

+isComposedOf

+target

+parent

0..1

+children *
* +represents

1
+exercises

*

+represents0..1

AttributeValuationMap

+attributes: Map<Attribute,Value>

Widget

+resourceId
+classType

«enumeration»
Attribute

ResourceId
ClassType
Clickable
LongClickable
Scrollable
Text
...

AbstractTransition

+actionData
+coveredModifiedMethod

+source

+destination

OutOfApp LauncherActivity Dialog OptionsMenuContextMenu

Window

+classType: String
+/targetWindow: Boolean
+name: String

Input

+targetMethods: String[0..*]
+/targetInput: Boolean
+handlers: String[0..*]

InputEvent

+action

Intent

WindowTransition

+/targetTransition: Boolean

AbstractState

HiddenHandler

+targetMethods: String[1..*]

+isComposedOf

+parent

+derivedFrom

Widget

+/hashId

+derivedFrom1..*

Action

+actionData

+source
+destination

GUITreeTransition +triggeredBy
GUITree

+/hash
+currentActivity: String
+properties +derivedFrom

1..*

+instanceOf

WidgetAction
+target

WindowAction

MetaState

+avmProb:
Map<AttributeValuationMap,
Double>

MetaTransition+destination«override»

+instanceOf

Screenshot

+imagePath

+sourceScreenshot
+destinationScreenshot

1..*

Fig. 1. App Model Metamodel. Colors are used to group classes belonging to a specific metamodel component:
GSTG (orange, top), DSTG (green, middle), EWTG (light blue, bottom). Classes in red are specific to CALM.

Table 1. ATUA reducers and abstraction functions. L4 and L5 match L2 but they apply L1 and L2 reducers
to Widgets’ children, respectively.

Reducer Property extracted Function
𝑅𝑅𝐼𝐷 Resource ID. L1,L2,L3
𝑅𝐶𝑁 Class name. L1,L2,L3
𝑅𝐶𝐷 Value of Content description. L1,L2,L3
𝑅𝑃 Value of Password. L1,L2,L3
𝑅𝐶 Value of Clickable. L1,L2,L3
𝑅𝐿𝐶 Value of Long Clickable. L1,L2,L3
𝑅𝑆 Value of Scrollable. L1,L2,L3

𝑅𝐶ℎ Value of Checked. L1,L2,L3
𝑅𝐸 Value of Enabled. L1,L2,L3
𝑅𝑆 Value of Selected. L1,L2,L3
𝑅𝐼 True if it is an input field. L1,L2,L3
𝑅𝑇 Value of Text. L2,L3

𝑅𝐻𝐶 True if the widget contains one or more children. L3

number of reducers used to extract the information captured in AVMs. It relies on five different set
of reducers for the state abstraction function; they are named as L1 to L5 and described in Table 1.

In ATUA, testing is performed in three phases, the first aims at maximizing the number of target
transitions being exercised (i.e., it triggers every Input once), the second aims at increasing testing
of the less exercised target transitions (i.e., it triggers again Inputs that may reach target methods
not fully covered), the third aims at exercising target Windows that depend on specific App states
reached in related Windows (i.e., it exercises a target Window just after a related Window).

ATUA uses part of the test budget to overcome the limitations of static analysis through dynamic
analysis. Indeed, ATUA resorts to random exploration when WindowTransitions are infeasible

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 5

(i.e., when it is necessary to find the AbstractState in which they are enabled) and when Windows
are unreachable (e.g., if static analysis does not detect any WindowTransition reaching a specific
Window). Also, ATUAoften refines abstraction functions to eliminate non-determinism. In summary,
the AbstractStates and AbstractTransitions identified during testing complement the information
captured in the EWTG. Note that our previous empirical results [30] have shown that the integration
of static and dynamic analysis implemented by ATUA leads to higher test effectiveness than dynamic
analysis alone (i.e., what implemented by DM2 [6], the backbone of ATUA). Unfortunately, by
creating App models from scratch for every App version, ATUA may perform the same model
refinements when testing each App version thus wasting test budget that could be used to increase
code coverage.

2.2 RCVDiff
To reuse App models across versions, CALM must identify what App GUI components were left
unchanged. To this end, it identifies the differences in the EWTGs of two App versions by relying on
RCVDiff, which is a toolset for the identification of model differences [7, 44]. RCVDiff processes two
RCVModels; an RCVModel is a collection ofMElements, which containMAttributes andMReferences.
Mapping a UML object diagram to an RCVModel is straightforward.
RCVDiff relies on a tree-matching algorithm that is applied to a tree data structure derived

from the RCVModel. The transformation is enabled by the tree-like structure of the RCVModel,
following sub-elements relations. The matching algorithm works in three steps. First, RCVDiff
proceeds bottom-up to identify, for each element in the first model, a list of corresponding elements
in the second model. The lists is obtained by identifying, for each element, a set of elements with
matching attributes, references, and sub-elements. To identify matching attributes, RCVDiff relies
on a set of predefined similarity functions and thresholds. References match when the referenced
elements’ attributes match. In the second step, RCVDiff proceeds top-down with the objective of
maximizing the number of matching pairs. Finally, it relies on a bottom-up pass to identify changed,
added, and deleted Elements.

3 PROPOSED APPROACH: CALM
CALM supports engineers in testing updated Apps by relying on App models that are incrementally
constructed and adapted, version after version. Similar to ATUA, CALM aims to exercise all the
target methods (see Section 2) of an App version. For the first version of the App under test, CALM
treats each method as a target method, and starts from an empty App model. For every App version
following the first, CALM relies on the App model produced for the previous App version (base
App).

Since App updates may change or remove the GUI Windows and Widgets being visualized, thus
changing how one interacts with different versions of an App, the App model should not include
any information that is obsolete, not to undermine test effectiveness. For example, it should not be
possible to select Action sequences that traverse Windows that are no longer present in the updated
App version. In practice, the App model derived from a previous App version cannot be reused
as-is. However, CALM should maximize the amount of information that is preserved from previous
App models; specifically, since App updates may include refactorings (e.g., renaming Windows and
moving Widgets across Windows), instead of simply identifying what App model elements are
missing in the updated App, CALM should determine what App model elements match across two
App versions.

To decide what elements of the App model should be reused across App versions, we should also
take into account how testing is driven in ATUA, which is the backbone of CALM. In ATUA, the
selection of Action sequences is based on the EWTG, which provides information about what Inputs

, Vol. 1, No. 1, Article . Publication date: April 2024.

6 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Layout-guarded abstract transitions

Probalistic Action Sequences
Backward-equivalent abstract states

Online App model refinement

ATUA algorithm

Phase 1

Phase 2

Phase 3

App Model obtained
after testing

Test reports

Refined App Model

CALM extensions

Remove uncovered states

Re-execute test sequences

Refine the App model

Step 4

apk

Initial adapted
App Model

apk

Sets of Windows, Widgets,
and Transitions being

Added, Deleted, Modified.

Generate updated App Model

Step 2

Automated testing with Runtime adaptation of DSTG

Step 3

Compare App Models with
Extended GATOR and RCVDiff

Step 1

Fig. 2. CALM App testing process

of a Window may trigger a target method, and the DSTG, which indicates in which AbstractStates
a certain Input is enabled (e.g., a button is visualized). The GSTG, instead, is used to keep track of
the App screens visualized during testing when manual investigation is needed. Also, the GUITrees
in the GSTG are used to refine AbstractStates (i.e., to split one AbstractState using a refined L).
Since the GSTG includes cosmetic information (e.g., the position of a Widget), it is very likely
to change across versions. Further, GSTG elements are used only to refine abstract states, which
implies that reusing GSTG elements from previous versions may lead to AbstractStates that no
longer exist. Therefore, CALM discards the GSTG of the inherited App model. The EWTG and
DSTG should instead be kept because they capture high-level information that is likely to remain
unchanged across versions. Since any change in the EWTG is reflected on the DSTG (e.g., we
cannot have AbstractStates for a Window no longer present in the App), CALM needs to determine
what elements belonging to the EWTGs of the previous and updated App versions match, in order
to determine what information (i.e., Transitions, AbstractStates, and AbstractTransitions) should be
preserved in the DSTG. Further, since some changes can be determined only at runtime (i.e., what
elements are visualized), CALM further refines the App model during testing, as we outline next.

CALM works in four steps, shown in Figure 2. In Step 1, CALM relies on an extension of RCVDiff
to compare the EWTGs generated by ATUA’s extended Gator for the base and updated App.

In Step 2, CALM relies on the identified differences to generate an updated Appmodel by adapting
the EWTG and the DSTG of the base App model. By reusing the DSTG generated for the base App,

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 7

Fig. 3. Example of action output provided to the end-user

CALM aims to optimize testing efficiency by minimizing the effort spent to generate AbstractStates
and AbstractTransitions for the updated App.

In Step 3, CALM relies on an extended version of the ATUA testing process to test the updated
App. CALM’s extensions maximize the effectiveness of model reuse by enabling the execution
of Action sequences derived from previous App models, even when the AbstractStates observed
in the two versions present differences. Further, CALM updates the App model to reflect the
actual behaviour of the App under test. CALM inherits from ATUA the capability of relying on
random exploration to overcome some limitations of static analysis; specifically, it relies on random
exploration when it cannot reach a desired target Widget, which could happen for Windows
introduced by the updated App or when the behaviour of the updated App changed. However,
since CALM leverages the DSTG generated for the base App, which includes the information (i.e.,
AbstractStates and AbstractTransitions) collected from previous random explorations, the test
budget spent to perform random exploration with CALM is lower than with ATUA.

The output of Step 3 is an App model for the updated App version. CALM generates a report with
a set of triples <GUI screenshot, target action, GUI screenshot> reporting for every target Action
(see Section 2 for definition) triggered by CALM the screenshot before and after the execution of
the action. An example is shown in Figure 3. To avoid wasting engineers’ time, only actions that
increase code coverage are reported; we refer to such actions as Unique Target Actions (UTAs). The
generated triples support crowdsourcing-based oracles (e.g., they can be shared among a set of
App users to determine if the output is functionally correct or not [34]). Further, engineers can also
visualize, from the GSTG, the sequence of inputs and outputs terminating with the triple shown in
the report. Determining the best strategy to support end-users in fault detection is future work.
In Step 4, after testing, CALM refines the App model to eliminate infeasible paths due to Ab-

stractStates that are unreachable. Those are either AbstractStates from the base App model not
observed when testing the updated App or AbstractStates introduced when testing the updated
App but becoming quickly obsolete. The output of Step 4 is a refined App model to be used when
testing the next App version.

In the following Sections, before detailing the CALM steps, we first discuss how model reuse can
exacerbate state abstraction’s limitations and reduce testing effectiveness.

3.1 Step 1: Detect EWTG differences
To determine what App model elements match, CALM compares the EWTGs of the previous and
updated App versions by relying on RCVDiff. To this end, it generates an RCVModel instance
that captures the EWTG elements. To identify differences, we extended the RCVDiff algorithm as
follows. First, our RCVDiff extension looks for elements (Window, Widget, Transition) that present

, Vol. 1, No. 1, Article . Publication date: April 2024.

8 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

matching attributes and references. Second, to determine what elements of the base App model
had been replaced in the updated App model, our RCVDiff extension looks for additional elements
that may correspond (e.g., because of a class renaming) by relying on the following:

• Since a Widget could be moved to another container (i.e., its parent changed), two Widgets
correspond when all their attributes, except parent, match. Also, since a Widget could be replaced
with another one implementing similar features (e.g., a button replaced by a clickable image),
they correspond when all their attributes, except className, match.

• To correspond, two Windows should extend the same Window Type and other properties should
match (e.g., class).

• To correspond, two Transitions should start from matching sources (i.e., Windows) and trigger
the same action on a matching Widget (e.g., a Button). When the destination does not match, the
updated transition simply reflects a change in the App behaviour.

• To correspond, element attributes should have high string similarity; precisely, we rely on
the Levenshtein ratio with a threshold of 40%. The chosen threshold has been empirically
demonstrated to be appropriate [33], as it enables handling cosmetic changes (e.g., fixing typos
in labels). For XPaths, which capture the position of a Widget in the containing Window, we use
a token-based distance: we split each string into tokens (separator is ‘/’) and compute the cosine
similarity distance [53] between the two token sets.

CALM processes the RCVDiff output to identify Windows, Widgets, and Transitions being added,
removed, or replaced; replaced elements are elements of the base App model with a corresponding
element in the updated App model. Figure 4 shows an example output.
When comparing the EWTGs of the base and updated versions, CALM ignores elements (e.g.,

Widgets, Windows, and WindowTransitions) that remain undetected by Gator but are observed at
runtime thanks to dynamic analysis and random exploration. Such solution prevents CALM from
considering such elements as deleted simply because they are not identified with static analysis.
A common case is that of Dialogs; indeed, unlike Activities, which are declared explicitly in the
Android manifest file, Dialogs are triggered in different ways. For example, if a dialog is created by
an imported library, Gator cannot identify it.

3.2 Step 2: Generate an Updated App model
CALM performs four tasks to create the updated App model to be used when testing the updated
App: (1) copies the base App model, (2) removes all the GSTG elements, (3) replaces the base
EWTG with the updated EWTG, and (4) updates the DSTG. Since the first three activities are
straightforward, below, we describe how CALM updates the DSTG.

CALM removes from the DSTG all the items associated to the elements deleted from the EWTG,
which are: all the AbstractStates associated with deleted Windows, all the AVMs associated with
deleted Widgets, all the AbstractTransitions associated with deleted Transitions. Further, it removes
all the elements that become disconnected from the rest of the DSTG.

Window replacements are caused by Windows renaming; therefore, CALM assigns the replaced
Window’s AbstractStates to the replacing Window. Similarly, we assign replaced Widgets’ AVMs
to replacing Widgets. For Transition replacements, since they indicate a change in the source or
destination Window but there is no mean to determine the mapping to an AbstractState for that
Window, we simply remove the AbstractTransitions associated to the replaced Transition.

Added elements do not lead to any update of the DSTG because they were not present in the
base App.
Figure 5 demonstrates how CALM integrates the DSTG of a base App model into an updated

App model by relying on the information provided by the RCVDiff model (i.e., the one in Figure 4,

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 9

RCVModel of Base Model Va

+-
+

R2

Rx- +Deleted element Added element

RCVModel of Updated Model Vb

Replacement of an element on Va
with one on Vb

R2

R1
R1

+

Note: Our RCVDDiff extension reports that the Windows named MainActivity in𝑉𝑎 and HomeActivity in𝑉𝑏 correspond
because they have the same type and their other properties match (they are not listed in the Figure); it indicates that the
Window has been renamed. CALM thus correctly records that the WindowMainActivity in𝑉𝑎 has been replaced by Window
HomeActivity in𝑉𝑏 . Further, our RCVDDiff extension reports that the Widget named addNewItem in𝑉𝑎 corresponds to the
homonymous widget in𝑉𝑏 because all their attributes except their class name match; since the className attribute of the
widget addNewItem has been changed from Button to ImageView, it indicates that a button Widget has been replaced by an
image. CALM thus records that the Widget addNewItem in𝑉𝑎 has been replaced by the Widget addNewItem in𝑉𝑏 . Finally,
RCVDDiff detects that, in the EditActivity Window, a Widget has been deleted (i.e., the TextView named createdTime), while
a Widget (i.e., the Button named cancel) and a transition triggered by it have been added.

Fig. 4. An example of RCVDiff Model of EWTGs belonging to two App versions.

in this example). In the updated App model, the AttributeValuationMap createdTime (i.e., avm5)
is removed from the AbstractState 𝑠2 because, in the base App model, avm5 was associated with
the Widget 𝑤7, which has been removed from the updated App. In the updated App model, the
AbstractState 𝑠1 is reassigned to the HomeActivity Window because the HomeActivity Window
replaces the MainActivity Window of the base App model. Still in the updated App model, the
AttributeValuationMap addNewItem (i.e., avm2) is reassigned to the widget 𝑤8, which has type

, Vol. 1, No. 1, Article . Publication date: April 2024.

10 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

R2

Base App Model after removing its GSTG
Updated App Model with DSTG updated

accordingly to the RCVDiff model

R1 R1

R2 R2

- +

EW
TG

DSTG Element in Base App model that is removed
in Updated App Model

Fig. 5. Illustration of how DSTG of Base App model is adapted in Updated App model accordingly to the
RCVDiff model in Figure 4

ImageView; such change depends on𝑤8 being a replacement for Widget𝑤3, which is of type Button.
Please note that preserving AVMs enable CALM to preserve the AbstractTransitions 𝑎𝑡1, which
brings the App to the AbstractState 𝑠2 from 𝑠1 when clicking on the addNewItem widget. Finally,
since Widget𝑤9 was added to the updated App model, it has no DSTG element assigned to it. The
other DSTG elements in the updated App model remain associated to the same elements in the
base App model; or, more precisely, they are associated to EWTG elements of the updated App
model that match the ones in the base App Model.

3.3 Step 3: Automated testing with runtime DSTG adaptation
During testing, CALM, like ATUA, derives a sequence of Actions to be triggered to reach a target
Window (in Phase 1) or a target AbstractState (in Phases 2 and 3). Such sequence also specifies the
AbstractState that is expected after every Action; if this expected state is not reached (e.g., because
of non-determinism), the rest of the sequence is not executed. Indeed, it makes no sense to execute
Actions whose preconditions (e.g., a visible Widget) do not hold. When such state mismatch is
observed, CALM derives a new Action sequence that reaches the target Window/AbstractState from
the current AbstractState. Unfortunately, when models are reused, state abstraction mechanisms
often lead to such state mismatches. In this Section, we describe the solutions integrated into the
CALM testing step to prevent such state mismatches.

3.3.1 Layout-guarded abstract transitions mitigating non-deterministic AbstractTransitions.
State abstraction may lead to non-deterministic AbstractTransitions when the effect of an Action

depends on a previously performed Action. Recall that CALM keeps track of the current concrete
state of the App, which is modeled as a GUITree in the GSTG (see Figure 1, Page 4). Also, each
concrete state is mapped to an AbstractState in the DSTG, and the DSTG is used to determine a
sequence of Actions that should trigger the AbstractTransitions leading to a target AbstractState or

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 11

win1: MainActivity win2: NoteDialog

a3: click on "fab_photo" a6: click on "tab_pictures"

s1: AbstractState

a10: click on "Cancel"
[layout-of-s6]

s2: AbstractState
s5: AbstractState

 :AttributeValuationMap
"activity_background", RelativeLayout,

"Officework", ONE

 :AttributeValuationMap
"fab_edit_note", ImageButton, ONE

 :AttributeValuationMap
"action_add_activity", TextView, ONE

 :AttributeValuationMap
activity_background", RelativeLayout,

"Officework", ONE

 :AttributeValuationMap
"fab_edit_note", ImageButton, ONE

 :AttributeValuationMap
"action_add_activity", TextView, ONE

 :AttributeValuationMap
"picture", ImageView, ONE

a2: click on "OK"
[layout-of-s1]

a1: click on "fab_edit_note"

a8: click on "fab_edit_note"

a9: click on "OK"
[layout-of-s5]

g1: GUITree g2: GUITreeg3: GUITree
g4: GUITree g7: GUITree

s4: AbstractState

g3: GUITree

s3: AbstractState

win3: CameraActivity

 :AttributeValuationMap
"fab_photo", ImageButton, ONE

 :AttributeValuationMap
"fab_photo", ImageButton, ONE

a4: click on "capture"

a5: click on "done"

g8: GUITree

a11: click on "fab_photo"

s6: AbstractState

 :AttributeValuationMap
"activity_background", RelativeLayout,

"Sleeping", ONE

 :AttributeValuationMap
"fab_edit_note", ImageButton, ONE

 :AttributeValuationMap
"action_add_activity", TextView, ONE

 :AttributeValuationMap
"fab_photo", ImageButton, ONE

Note: The dialog window’s background is not captured by our L∗; therefore, the dialogs shown after 𝑔1 and 𝑔3 belong to
the same AbstractState (i.e., 𝑠2)

Fig. 6. Closing a dialog brings the App back to the same screen where the dialog was opened.

Window. We observe non-deterministic AbstractTransitions when two (or more) AbstractTransitions
departing from a same AbstractState are triggered by a same input (e.g., click on the same Button)
but lead to two (or more) distinct AbstractStates. Although such non-determinism may be due to
the App design (e.g., you click on a button and the App always open a different randomWindow), it
is expected for Actions to be reasonably deterministic (e.g., the same Window is opened, although
the content may slightly change, as in a news App). Therefore, we assume that non-determinism
mainly depends on the state abstraction approach inherited from ATUA. Ideally, we would like to
rely on a state abstraction mechanism that minimizes non-determinism to effectively drive testing.
We empirically observed that such non-determinism usually occurs when AbstractTransitions

bring the App into an AbstractState recently visited or into an AbstractState derived from a recently
visited one. The latter often consists of an AbstractState having the same layout but a different
number of Widgets than the previous AbstractState. In both those scenarios, the previous state
may be different at every execution of the AbstractTransition. An example based on Activity Diary
is shown in Figure 6: the action of clicking on the Close dialog button in state 𝑠2 brings the App to
the same screen (and same AbstractState) visualized before opening the dialog (i.e., either 𝑠1 or 𝑠5).
Note that non-deterministic abstract transitions are more frequent in reused models because

these models are incrementally built during multiple test sessions (one per App version) and,
consequently, they contain several transitions, including non-deterministic ones. Models built
from scratch contain no AbstractTransitions when testing starts, CALM incrementally creates
AbstractTransitions during testing and, when there are no AbstractTransitions, the test algorithm
simply follows WindowTransitions, which do not lead to any expected AbstractState. As a result,
the probability of selecting an input sequence that traverses a non-deterministic AbstractTransition
is much lower when not reusing models. Further, non-deterministic AbstractTransitions are more
likely to lead to infeasible Action sequences when models are reused because, in this case, testing
starts with a populated DSTG although the App was just started. What may happen is that, at the

, Vol. 1, No. 1, Article . Publication date: April 2024.

12 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

beginning of testing, CALM selects an Action sequence because it is shorter than another one, but
the selected sequence is invalid because derived from a non-deterministic transition. ATUA, instead,
starting from an App model without a DSTG, is likely to select a longer but feasible sequence
of Actions (e.g., because relying the EWTG). For example, in the case of Figure 6, the App starts
in screen 𝑔7 of state 𝑠6 and CALM may try to perform the infeasible sequence ⟨𝑎8, 𝑎9⟩ since it is
shorter than the feasible sequence 𝑎11, 𝑎4, 𝑎5, 𝑎6, which first adds a photo for the current activity
and then opens the "Pictures" tab.

To handle non-determinism due to AbstractTransitions bringing the App into a recently visited
AbstractState or a state derived from a recently visited one, CALM augments App models with
guard conditions specifying if the state reached by the transition is expected to be derived from a
previously visited AbstractState. We call such transitions layout-guarded abstract transitions. During
testing, before adding a state transition to the App model, CALM verifies if the destination state
has a layout similar to the layout of any previously visited AbstractState; for that, it processes
the GSTG backward till it reaches the initial state or a GUITree with an AbstractState having a
layout similar to the destination state. To determine if two AbstractStates have a similar layout,
CALM focuses on the AttributeValuations derived using the reducers belonging to the abstraction
function L1, which does not include text and Widget children; indeed, text and Widget children are
likely to vary when AbstractStates are derived from previously visited ones. Two AbstractStates
have a similar layout if they share 80% of such AttributeValuations; we propose a threshold of 80%
because it led to the best results (highest coverage of modified methods and instructions belonging
to modified methods) in a preliminary experiment conducted with the latest version of all the
subject Apps included in our empirical evaluation.
When generating Action sequences, CALM traverses layout-guarded AbstractTransition only

if the referenced layout is similar to the layout of an AbstractState previously visited. In Figure
6, the transition from 𝑠2 to 𝑠5, triggered by the Action 𝑎9, is guarded by layout_of (𝑠5). Thanks to
such guard, at runtime, CALM will not suggest the infeasible sequence ⟨𝑎8, 𝑎9⟩ when being in 𝑠6 .
Indeed, the AVMs of 𝑠5 and 𝑠6 derived with L1 differ because 𝑠5 includes a picture Widget that is
not present in 𝑠6.

3.3.2 Probabilistic Action sequences to handle state explosion. In CALM and ATUA, an AbstractState
is modelled as a set of tuples (called AbstractValuationMaps), with each tuple being populated with
the values returned by a reducer applied to a Widget visualized on the screen. For that reason, a
change in the set of Widgets being visualized (e.g., a button visualized only under certain conditions)
affects the set of tuples being generated, and leads to a different state. Consequently, in the presence
of several Widgets, that may be hidden or visualized, the number of reachable states may explode.

ATUA and CALM already include strategies to prevent state explosion due to multiple instances
of a same Widget, all fitting a same purpose (e.g., multiple activity buttons in Activity Diary, one
for each activity tracked by the App that, when clicked, open the activity details). Indeed, when
multiple Widgets lead to a same tuple, CALM simply indicates that the AbstractValuationMaps has
a cardinality above 1. However, such a solution does not prevent observing different AbstractStates
when (A) different sets of Widgets are visualized by a same Window (e.g., a button appearing or
disappearing) or when (B) a fine-grained abstraction function (e.g., L2, which captures the text
label of Widgets) is adopted; please note that, in general, deriving different AbstractStates in such
cases is correct because (A) the presence of a different set of Widget types indicates that an App is
providing a different set of features to the end-user and (B) capturing text labels often prevents
non-deterministic transitions. For example, in the Activity Diary main window (e.g., 𝑔1 and 𝑔3 in
Figure 6), clicking on the “Pictures” tab makes a picture Widget appear and a text Widget disappear,
thus separating 𝑔3 and 𝑔7 into two different AbstractStates, which is desirable because the two

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 13

states present different testing opportunities (i.e., visualizing text in one case versus a picture in
the other).

An example of how the ATUA/CALM abstraction function may lead to state explosion is shown
in Figure 7, where L2, which takes into account the text of a widget to distinguish abstract states,
creates different AbstractStates for each App screen with a different subset of activities (e.g.,
“Sleeping” and “Woodworking” versus “Sleeping”, “Woodworking”, and “Officework”); indeed, the
GUITrees 𝑔7, 𝑔9, 𝑔12, and 𝑔14 differ only with respect to the text being displayed in the top part
of the App screen but lead to four different AbstractStates (i.e., 𝑠6, 𝑠8, 𝑠11, and 𝑠12). With L2, if the
App is in the GUITree 𝑔7 (AbstractState 𝑠6, shown in Figure 6), ATUA and CALM derive the DSTG
in Figure 7 by executing the following actions: (1) adding a new activity (i.e., clicking on the “+”
button, 𝑎10), which brings the App to the “Edit Activity Window” in 𝑔8 and AbstractState 𝑠7, (2)
validating the activity without giving it a name (i.e., clicking on the “V” button, 𝑎11, which brings
the App to 𝑔9 and AbstractState 𝑠8), (3) adding another new activity (𝑎12), which leads to a new
AbstractState (𝑠9) where the button to fix the activity name (i.e., “quickFixButton1”) appears, (4)
entering some text in the activity name (i.e., “Running”, 𝑎13), which leads to 𝑠10 because the text
area is not empty anymore, (5) validating the activity (𝑎14), which leads to 𝑔12 and AbstractState
𝑠11, (6) long clicking on the “activity_background” labeled “Running” (𝑎15), which leads to 𝑔12 (state
𝑠10), (7) deleting the activity (𝑎16), which leads to a new AbstractState (𝑠12) where we observe the
same labels as state 𝑠8 but there is no activity selected, and finally (8) clicking on the activity with
the empty label (𝑎17), which leads to 𝑠8.
Such state explosion has a detrimental effect on test effectiveness because, although all the

AbstractStates of the Main Activity Window may bring the App into a target AbstractState with a
same number of actions, ATUA and CALM can determine that an AbstractState 𝑠𝑡 reaches a target
AbstractState 𝑠𝑧 only if there is an AbstractTransition connecting 𝑠𝑡 and 𝑠𝑧 , which happens only if
CALM has already exercised the Input bringing 𝑠𝑡 into 𝑠𝑧 in the past, an unlikely condition with
state explosion. For example, in Figure 7, although the AbstractState 𝑠9 can be reached by clicking
the “plus” button in the AbstractStates 𝑠8, 𝑠11, and 𝑠12, ATUA cannot know that state 𝑠12 can reach
state 𝑠9, and thus, if the current state is 𝑠12, ATUA, instead of clicking on the “plus” button, will
first try to reach an AbstractState with an AbstractTransition going into 𝑠9 (e.g., 𝑠8).

win1: MainActivity

a12: click on "action_add_activity"

s8: AbstractState

 :AttributeValuationMap
"activity_background",

RelativeLayout, "",
ONE

 :AttributeValuationMap
"fab_edit_note",

ImageButton, ONE

 :AttributeValuationMap
"action_add_activity",

TextView, ONE

g9: GUITreeg7: GUITree

 :AttributeValuationMap
"fab_photo",

ImageButton, ONE

a10: click on "action_add_activity"

s6: AbstractState

 :AttributeValuationMap
"activity_background",

RelativeLayout, "Sleeping",
ONE

 :AttributeValuationMap
"fab_edit_note",

ImageButton, ONE

 :AttributeValuationMap
"action_add_activity",

TextView, ONE

 :AttributeValuationMap
"fab_photo",

ImageButton, ONE

g8: GUITree
g10: GUITree

g11: GUITreeg12: GUITree g13: GUITree

a13: enter text "Running"

a11: click on "action_edit_done"

s7: AbstractState

 :AttributeValuationMap
"edit_activity_name",

EditText, "",
ONE

 :AttributeValuationMap
"edit_activity_color",

ImageView, ONE

 :AttributeValuationMap
"action_edit_delete",

TextView, ONE

 :AttributeValuationMap
"action_edit_done",
ImageButton, ONE

s9: AbstractState

 :AttributeValuationMap
"edit_activity_name",

EditText, "", ONE

 :AttributeValuationMap
"edit_activity_color",

ImageView, ONE

 :AttributeValuationMap
"action_edit_delete",

TextView, ONE

 :AttributeValuationMap
"action_edit_done",
ImageButton, ONE

a15: long click on "activity_background"

s11: AbstractState

 :AttributeValuationMap
"activity_background",

RelativeLayout, "Running",
ONE

 :AttributeValuationMap
"fab_edit_note",

ImageButton, ONE

 :AttributeValuationMap
"action_add_activity",

TextView, ONE

 :AttributeValuationMap
"fab_photo",

ImageButton, ONE

a17: click on the activity with empty label.

s12: AbstractState

 :AttributeValuationMap
"activity_background",

RelativeLayout, "<No Activity>",
ONE

 :AttributeValuationMap
"fab_edit_note",

ImageButton, ONE

 :AttributeValuationMap
"action_add_activity",

TextView, ONE

 :AttributeValuationMap
"fab_photo",

ImageButton, ONE

a16: click on "action_edit_delete"

win2: EditActivity

 :AttributeValuationMap
"quickFixButton1",
ImageButton, ONE

a14: click on "action_edit_done"

s10: AbstractState

 :AttributeValuationMap
"edit_activity_name",

EditText, "",
ONE

 :AttributeValuationMap
"edit_activity_color",

ImageView, ONE

 :AttributeValuationMap
"action_edit_delete",

TextView, ONE

 :AttributeValuationMap
"action_edit_done",
ImageButton, ONE

g14: GUITree

Fig. 7. DSTG showing the effect of state explosion.

, Vol. 1, No. 1, Article . Publication date: April 2024.

14 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

The consequences of state explosion are exacerbated in the case of model reuse. Specifically, to
reach target AbstractStates that in previous testing sessions have been observed at a late stage
(e.g., after testing other features), ATUA would suggest an Action sequence that traverses all the
AbstractStates observed, even if a shorter Action sequence would be feasible. For example, let us
assume that, when testing previous versions of Activity Diary, ATUA has derived the DSTG in
Figure 7. Also, assume that the current state is 𝑠11 and ATUA needs to test the method that suggests
a new name when the provided name for a new activity already exists, which means that ATUA
should reach the AbstractState 𝑠9 (Figure 7) and then click on “quickFixButton1”. Since there is no
transition from 𝑠11 to 𝑠9, ATUA would suggest to perform the following four-action sequence: long
click on “activity_background” (𝑎15), click on “action_edit_delete” (𝑎16), click on the activity with
empty label (𝑎17), click on “action_add_activity” (𝑎12). However, such suggestion is sub-optimal
because clicking on “action_add_activity” (𝑎12) brings the App into 𝑠9 directly from 𝑠11.
In practice, in the presence of state explosion due to dynamically appearing widgets, a sufficient

condition to execute a whole Action sequence is often the presence of all the Widgets targeted by
the Actions in the sequence. Therefore, an Action sequence should be selected by identifying the
Actions leading to App screens that likely contain the Widgets targeted by the next Action in the
sequence, till a Window with the targeted Input is reached. In Figure 8, we provide an abstract
example resembling what reported in Figure 7, with a current state (𝑠9) where the shortest Action
sequence reaching the target input (i.e., the sequence ⟨click on𝑤1, click on𝑤2, click on𝑤3⟩ derived
from the AbstractState 𝑆6) cannot be derived from the DSTG although it might be feasible even if
𝑆9 is observed.

Because of the observation above, CALM derives probabilistic Action sequences in addition to
deterministic Action sequences (i.e., what is derived by ATUA). For every Action, they capture the
probability that the App visualizes the Widget required to perform the action; in other words, they
capture the probability for each action to be performed. Thanks to such probabilistic approach, they
enable constructing Action sequences with Actions that exercise AbstractTransitions that have not
been exercised in the past, but are likely feasible (i.e., CALM never exercised the input triggering
a specific AbstractTransition, but it can estimate what Widgets will be visualized next, based on
previous executions). A DSTG like the one in Figure 8 enables the derivation of the sequence ⟨𝑎9,
𝑎10, 𝑎11⟩ although there is no AbstractTransition departing1 from the AVM7 of widget𝑤1 in 𝑆9.

Since CALM traverses the DSTG to derive Action sequences, in order to obtain such probabilistic

1Please recall that AbstractTransitions depart from the AVM of a specific Widget in a given AbstractState.

AVM7 (w1) AVM8 (w2) AVM9 (w3)

Target Input
in MetaState

AVM2 (w1) AVM3 (w2)

p=2/3

AVM4 (w1) AVM5 (w2) AVM6 (w3)
Target Input

S9

S3 S4

a9 (i1) a10 (i2)

a2 (i1)

a5 (i2)
S6 S7 S8

AVM1 (w1)S1 S2
a1 (i1)

a4 (i1)

a3 (i2)
S5

Current state a11 (i3)

p=1/2

States of Window win1

p=1
S10

a7

a8 a6 (i3)

States of Window win2 States of Window win3

AbstractState

MetaState

AbstractTransition

MetaTransition

AttributeValuationMap

Fig. 8. Part of a DSTG with a Probabilistic Action sequence; MetaStates and MetaTransitions are dashed.

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 15

Action sequences, it is necessary to generate a DSTG that includes also AbstractTransitions that
have never been triggered previously, but are likely to be feasible. We call such additional transitions
MetaTransitions. CALM incrementally adds MetaTransitions to the App model while traversing the
DSTG to derive an Action sequence. Specifically, CALM adds aMetaTransitions for every Input 𝑖 that
has never been exercised in the current AbstractState. After selecting an Action sequence, to avoid
looking for outdated MetaTransitions and updating them, CALM discards all the MetaTransitions
added to the App model.
The destination of a MetaTransition is a MetaState; a MetaState tracks all the Widgets ever

visualized in any App screen after exercising the Input 𝑖 . To derive MetaStates, CALM considers
the AbstractStates reached after exercising 𝑖 and identifies all the Widgets belonging to them. If an
Input 𝑖 may lead to distinct Windows (i.e., it is exercised by non-deterministic AbstractTransitions
leading to different Windows), CALM will generate one MetaState for each Window reached
through Input 𝑖 and, therefore, will add multiple MetaTransitions departing from the same AVM
(one for each MetaState to be reached). Each MetaTransition leaving a MetaState is associated
with a probability (MetaTransition probability) of being available; the MetaTransition probability
captures the likelihood that the Widget targeted by the MetaTransition is interactable in any of the
observed AbstractStates and is computed as follows:

𝑝𝑖 =
number of AbstractStates of win𝑖 including𝑤𝑖

number of AbstractStates of win𝑖
with win𝑖 being the Window to which Input 𝑖 belongs, and𝑤𝑖 being the Widget that is exercised
by Input 𝑖 .
In Figure 8, Input 𝑖1, which targets Widget𝑤1 in Window win1, may bring the App into three

distinct AbstractStates, two of which including widget𝑤2; the probability of exercising𝑤1 is 1.0 (𝑤1
is present in the current state 𝑆9), the probability of reaching𝑤2 after exercising 𝑖1 is 0.67 (i.e., 2/3)
and therefore the MetaTransition probability for 𝑎10 is 0.67. Similarly, the probability of exercising
the target input on𝑤3 is 0.5.
During testing, CALM should select the Action sequence that brings the App into the target

Window/AbstractState with a minimal cost. However, MetaTransitions may not bring the App
into a desired MetaState, and thus it may not be feasible to fully exercise a probabilistic Action
sequence. To maximize efficiency, we should estimate an Action sequence cost by accounting for
the risk of not reaching a desired MetaState.
We assume that deterministic Action sequences are likely to be fully executed because they do

not include MetaTransitions; therefore, their cost depends on the time required to execute all their
Actions. Given a probabilistic Action sequence and a deterministic Action sequence with the same
length, CALM should exercise the deterministic one because it does not present feasibility risks;
consequently, the cost computed for the probabilistic action sequence should be higher. To satisfy
such property, we define a cost function that sums the cost of executing the whole sequence 𝜙 with
the cost of executing a sequence 𝜙 that is infeasible:

𝑐𝑜𝑠𝑡 (𝜙) = 𝑐𝑜𝑠𝑡_𝑓 𝑢𝑙𝑙 (𝜙) + 𝑖𝑛𝑓 𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑐𝑜𝑠𝑡 (𝜙)
The cost of executing a whole Action sequence 𝜙 (either partial or deterministic) is the sum of

the cost of executing all its 𝑛 Actions:

𝑐𝑜𝑠𝑡_𝑓 𝑢𝑙𝑙 (𝜙) =
𝑛∑︁
𝑗=1

𝑐𝑜𝑠𝑡 (action𝑗)

Since we empirically observed that all the Actions, except App reset, take almost the same time
to execute, and App reset takes around ten times the other Actions, we assign to reset Actions a

, Vol. 1, No. 1, Article . Publication date: April 2024.

16 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

cost of 10, and 1 to all other Actions.
The infeasibility cost, instead, depends on the likelihood of executing a sequence only partially

(given two probabilistic Action sequences with the same length, CALM should exercise the one
that is more likely to be feasible) and on the cost of executing only a subset of Actions. The latter
is due to CALM having to recompute, when an Action sequence is partially executed, another
Action sequence to reach the target AbstractState/Window; in practice, partially executed Action
sequences lead to a waste of time (e.g., CALM may need to go back to the previous AbstractState).

Because of the above, we heuristically compute such infeasibility cost as the cost of executing a
partial subsequence of 𝜙 without getting closer to the target AbstractState/Window, multiplied by
the likelihood of not executing the whole sequence 𝜙 :

𝑖𝑛𝑓 𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑐𝑜𝑠𝑡 (𝜙) = 𝑐𝑜𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝜙) ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝜙)

The cost of executing only part of an Action sequence depends on the number of Actions being
triggered and on the likelihood that such Actions bring the App into an AbstractState that is not
closer to the target AbstractState/Window (otherwise the cost is mitigated because the next Action
sequence will be shorter). Since we cannot predict how many executed Actions help reach the target
AbstractState/Window, we conservatively assume that, on average, half of the Actions belonging
to a probabilistic Action sequence lead to the desired state.

𝑐𝑜𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝜙) =
∑𝑛

𝑗=1 𝑐𝑜𝑠𝑡 (𝑎𝑐𝑡𝑖𝑜𝑛 𝑗)
2

Finally, the likelihood of executing an input sequence depends on the likelihood of observing
all the Widgets targeted by the Actions in the sequence. Therefore, the probability of partially
executing an input sequence 𝜙 is:

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝜙) = 1 −
𝑛∏
𝑗=1

𝑝 (action𝑗 |𝑠 𝑗−1)

with 𝑝 (action𝑗 |𝑠 𝑗−1) being the probability of observing the Widget required to trigger the Action
action𝑗 in the state reached by action𝑗−1. If 𝑠 𝑗−1 is not a MetaState, we expect the widget to be
available; therefore, 𝑝 (action𝑗 |𝑠 𝑗−1) = 1.0. If 𝑠 is a MetaState, 𝑝 (action𝑗 |𝑠 𝑗−1) matches theMetaTran-
sition probability described above. For a deterministic input sequence 𝜙𝑑 , since input widgets are
available in the reached AbstractStates (i.e., 𝑝 (𝑖 𝑗 |𝑠 𝑗−1) = 1), we have:

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝜙𝑑) = 0

During testing, when executing a partial input sequence 𝜙 , for each MetaState 𝑠𝑒 expected after
an Action 𝑖 𝑗 , CALM verifies that the Widget to be triggered next is available; otherwise a new input
sequence needs to be selected.
Based on the above, in the example in Figure 8, the probabilistic Action sequence ⟨𝑎9, 𝑎10, 𝑎11⟩

will be selected instead of the deterministic Action sequence ⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩, thus reducing the
number of Actions required to reach the test target. Indeed, since the current state is 𝑆9 and the
objective is to reach 𝑤3 and trigger 𝑖3, the cost of the probabilistic action sequence ⟨𝑎9, 𝑎10, 𝑎11⟩
would be computed according to the following equations:

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 17

𝑐𝑜𝑠𝑡 (⟨𝑎9, 𝑎10, 𝑎11⟩) = 𝑐𝑜𝑠𝑡_𝑓 𝑢𝑙𝑙 (⟨𝑎9, 𝑎10, 𝑎11⟩)
+ 𝑐𝑜𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎9, 𝑎10, 𝑎11⟩) ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎9, 𝑎10, 𝑎11⟩)

𝑐𝑜𝑠𝑡_𝑓 𝑢𝑙𝑙 (⟨𝑎9, 𝑎10, 𝑎11⟩) = 𝑐𝑜𝑠𝑡 (𝑎9) + 𝑐𝑜𝑠𝑡 (𝑎10) + 𝑐𝑜𝑠𝑡 (𝑎11) = 1 + 1 + 1 = 3

𝑐𝑜𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎9, 𝑎10, 𝑎11⟩) =
𝑐𝑜𝑠𝑡 (𝑎9) + 𝑐𝑜𝑠𝑡 (𝑎10) + 𝑐𝑜𝑠𝑡 (𝑎11)

2
= 1.5

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎9, 𝑎10, 𝑎11⟩) = 1 −
(
𝑝 (𝑎9) ∗ 𝑝 (𝑎10) ∗ 𝑝 (𝑎11)

)
= 1 − (1 ∗ 2/3 ∗ 1/2) = 0.66

(1)
They lead to:

𝑐𝑜𝑠𝑡 (⟨𝑎9, 𝑎10, 𝑎11⟩) = 3 + (1.5 ∗ 0.66) = 3.99 (2)
The Action sequence ⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩, instead, leads to:

𝑐𝑜𝑠𝑡 (⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩) = 𝑐𝑜𝑠𝑡_𝑓 𝑢𝑙𝑙 (⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩)
+ 𝑐𝑜𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩) ∗ 𝑙𝑖𝑘𝑒𝑙𝑦ℎ𝑜𝑜𝑑_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩)
=
(
(𝑐𝑜𝑠𝑡 (𝑎7) + 𝑐𝑜𝑠𝑡 (𝑎8) + 𝑐𝑜𝑠𝑡 (𝑎4) + 𝑐𝑜𝑠𝑡 (𝑎5) + 𝑐𝑜𝑠𝑡 (𝑎6)

)
+ 𝑐𝑜𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩) ∗ 𝑙𝑖𝑘𝑒𝑙𝑦ℎ𝑜𝑜𝑑_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩)
= 5 + 𝑐𝑜𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (⟨𝑎7, 𝑎8, 𝑎4, 𝑎5, 𝑎6⟩) ∗ 0
= 5

(3)

3.3.3 Backward-equivalent abstract states detection. In the presence of modified Windows, Ab-
stractStates may not match across versions although they are the source of AbstractTransitions that
behave the same across versions. We call such AbstractStates backward-equivalent AbstractStates;
they are observed in the presence of minimal changes in App Windows (e.g., few Widgets being
added or removed). For example, if the updated App introduces a reset button for a Window with
a form, an Action sequence exercising the submit button, which has not been modified, should
remain executable in the updated version; however, the AbstractState of the two Window versions
does not match because of their different number of Widgets.

A backward-equivalent AbstractState differs from an AbstractState expected by the input sequence
and inherited from the base App’s DSTG, but enables performing the same actions. Precisely, an
AbstractState 𝑠𝑜 observed in the updated App is backward-equivalent to a state 𝑠𝑒 derived from the
base DSTG when:
• 𝑠𝑒 and 𝑠𝑜 are associated to the same Window; otherwise, they cannot be equivalent because
different Windows implement different features.

• Every AVM in 𝑠𝑒 matches an AVM in 𝑠𝑜 . Otherwise, it would not be possible to trigger, in 𝑠𝑜 , the
same Actions triggerable in 𝑠𝑒 .

• Every AVM in 𝑠𝑜 , except the ones for the EWTG Widgets added or replaced in the updated App,
matches an AVM in 𝑠𝑒 . If this condition does not hold, a Widget may have different AVMs in the
two App versions (e.g., a checkbox is no longer checked). In such case the updated App changed
its behaviour and, consequently, a same Action may not exercise the same methods in the base
and updated version.
For example, taking the AbstractState 𝑠2 in Figure 5, which is inherited from the base App

Mode, as an expected AbstractState, CALM observes a new AbstractState 𝑠3 similar to 𝑠2 but

, Vol. 1, No. 1, Article . Publication date: April 2024.

18 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

including additionally an Attribute ValuationMap representing the added EWTG Widget𝑤9 in the
"EditActivity" Window. Since there is only a mismatch between 𝑠3 and 𝑠2, which is related to the
added EWTG Widget, 𝑠3 is backward-equivalent to 𝑠2. This implies that any required action that
needs to be performed on 𝑠2 could be done on 𝑠3 too.
During testing, when CALM encounters an AbstractState that does not match the expected

one, it verifies if it is backward equivalent. If such state is backward equivalent, CALM proceeds
with executing the rest of the current Action sequence and otherwise discards the current Action
sequence and generates a new one.

3.3.4 Online App model refinement to deal with obsolete abstract states. We may observe obsolete
AbstractStates. AbstractStates often depend on a remote component (e.g., a news server) that
provides data that change over time. Consequently, such AbstractStates become obsolete at run-
time (e.g., after a few minutes) or in the time span between two App versions. Other AbstractStates
become obsolete because the behaviour of the updated App changed (i.e., it is not possible to reach
a certain AbstractState with the same input sequence observed in a previous App version).
Online model refinement aims at determining if expected states that are not observed when

exercising an Action sequence are obsolete. It is necessary because, otherwise, CALM may keep
selecting Action sequences that include an unreachable state, which leads to a waste of resources.

When exercising an Action sequence, if the state expected after the 𝑖𝑡ℎ action (𝑠𝑒𝑖) does not match
(or is backward-equivalent to) the observed state (𝑠𝑜𝑖), CALM determines if 𝑠𝑒𝑖 is obsolete. If 𝑠𝑒𝑖 has
already been observed when testing the updated App, then it is not obsolete; therefore, 𝑠𝑜𝑖 is the
result of nondeterminism and CALM applies ATUA’s procedure to minimize nondeterminism (i.e.,
it refines 𝑠𝑒𝑖−1 using L). Otherwise (i.e., if 𝑠𝑒𝑖 had not been observed with the updated App), CALM
removes from the DSTG the AbstractTransition connecting 𝑠𝑒𝑖−1 with 𝑠𝑒𝑖 .
Note that, at a high level, all the limitations above depend on the specific state abstraction

strategy adopted in CALM. If CALM relied on a coarse-grained state abstraction strategy not taking
into consideration the Widgets in a Window to derive an AbstractState (e.g., each Window can
have only one AbstractState), we would not have observed any of those limitations, except for
non-deterministic AbstractTransitions. Indeed, such coarse-grained strategy would not capture
any difference in the Widgets present in the Windows visualized by two App versions, thus not
leading to obsolete states or states not matching but rather backward-equivalent states; similarly, it
would not lead to state explosion. However, such state abstraction strategy would likely lead to
several non-deterministic transitions (e.g., not distinguishing between submitting an empty and a
filled form) thus leading to ineffective testing. A finer-grained strategy (e.g., relying on the GSTG),
instead, would prevent non-deterministic transitions, but would favor state explosion.

3.4 Step 4: Refine the App model offline.
After testing an App version 𝑉𝑥 , to further clean up the App model from unreachable AbstractStates,
CALM removes from the App model all those AbstractStates that were not visualized although
belonging to exercised Windows.
Further, to remove AbstractStates that become quickly obsolete, after testing an App version 𝑉𝑥 ,

CALM re-executes, offline, the sequences of test inputs captured by the GSTG. During such re-
execution, if a test input does not bring the App into the expected AbstractState 𝑠𝑒 , then CALM
annotates 𝑠𝑒 as obsolete. When testing version 𝑉𝑥+1, to avoid wasting the test budget, CALM does
not generate input sequences that traverse obsolete states.
Finally, since we empirically observed that Windows with obsolete states often present newer

states that quickly become obsolete (e.g., Apps that display updated news every few minutes),
CALM considers obsolete any AbstractState identified when testing 𝑉𝑥+1 but not reachable with

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 19

Table 2. Selected subject systems.

App V0 V1 V2 V3 V4 V5 V6 V7 V8 V9
AD 105 111 115 118 122 125 130 131 134
BM 5.1.0 5.10.0 5.11.0 5.12.0 5.13.0 5.4.0 5.5.0 5.6.0 5.8.1 5.9.0
CM 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
FM 44 53 77 79 82
WI 198 10239 10263 10264 10269
VP 3.1.4 3.1.5 3.1.7 3.2.12 3.2.2 3.2.3 3.2.6 3.2.7 3.2.9
YM 1.16.0 1.16.1 1.16.2 1.17.3 1.18.1 1.19.1 1.20.1 1.20.3 1.20.5 1.20.7

Apps: AD: Activity Diary, BBC: BBC Mobile, CM: Citymapper, FM: Amaze File Manager, WI: Wikipedia, VP: VLC Player,
YM: Yahooweather Mobile

Action sequences traversing their incoming transitions, while still testing 𝑉𝑥+1. Our approach
enables CALM to rely on obsolescent AbstractStates till they become obsolete.

4 EMPIRICAL EVALUATION
We performed an empirical evaluation that aims to address the following research questions (RQs):

• RQ1. Does CALM preserve the capability of ATUA to reduce test oracle costs? Since in App
testing, each input leads to one App screen to be visually inspected, minimizing the number of
inputs reduces testing cost, as discussed in previous work [30]. We aim to study if model reuse
preserves the main advantage of ATUA, which was demonstrated to be the best approach to
minimize the number of exercised inputs [30].

• RQ2. Is CALM more effective than competing approaches in testing App updates, for a same test
budget? We aim to determine if CALM performs significantly better (code coverage) than
ATUA and SOTA approaches that complement ATUA [30].

• RQ3. How do CALM and competing approaches fare, for different testing time budgets, with
updates of different magnitude? Updated Apps may need to be tested quickly (e.g., after
each code commit, with a limited test budget). However, both the magnitude of the update
(e.g., number of updated methods) and the testing time budget may affect the performance
of CALM. Therefore, we study how the effectiveness of CALM compares with competing
approaches over time and for updates of different magnitude.

• RQ4. To what extent does CALM enable engineers to detect functional faults? We aim to evaluate
the effectiveness of CALM in generating input sequences that exercise faults and report
output screens showing failures.

Our replication package is available online [31].

4.1 Subjects of the study
Since CALM extends ATUA, we reuse all the subjects used for evaluating ATUA, except those that
cannot be tested anymore because relying on dismissed server-side APIs.

Table 2 shows the selected versions (52 subjects, in total); Table 3 provides the number of updated
methods for each version; they range from one (version V7 of Activity Diary) to 603 (BBC’s V5),
thus being representative of diverse release scenarios (i.e., from bug fixes to major releases). The
number of bytecode instructions shows that our subjects vary in complexity (from 3667 to 163303).

4.2 Experiment setup
We compare CALM with ATUA and five SOTA tools: APE[17], TimeMachine [14], Monkey[4],
Fastbot2 [27], and Humanoid [24]. APE is the SOTA tool that is more likely to achieve the highest
coverage for a one-hour test-budget [47]. Monkey, which employs a pure random testing strategy, is
the de-facto standard baseline used in the literature [47, 48]. TimeMachine improves over Monkey

, Vol. 1, No. 1, Article . Publication date: April 2024.

20 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Table 3. Number of updated methods for each App version. For V0 (assumed as the initial version), we report
all the methods of the App.

App V0 V1 V2 V3 V4 V5 V6 V7 V8 V9
AD 260 18 3 12 117 39 28 1 49
BM 10706 649 27 44 25 603 242 553 77 95
CM 9629 51 37 55 73 119 76 73 12 69
FM 2042 306 415 11 644
WI 7477 1430 535 13 94
VP 6796 672 26 3 149 13 51 33 42
YM 2932 5 4 243 10 16 118 101 12 9

Apps: AD: Activity Diary, BBC: BBC Mobile, CM: Citymapper, FM: Amaze File Manager, WI: Wikipedia, VP: VLC Player,
YM: Yahooweather Mobile

by leveraging emulators’ snapshots to keep a pool of interesting App states (i.e., reached after
improving coverage) to resume testing from, when coverage improvement gets stuck. Fastbot2
is a recent approach reusing App models across versions. Humanoid relies on deep learning to
effectively exercise Apps like humans [24]. In the case of Fastbot2, we configured it to reuse models
built when testing previous App versions. Further, to perform an ablation study, we implemented
a version of ATUA (ATUA-R) that reuses models across versions (i.e., implements CALM’s Steps
1 and 2 but not the heuristics of Step 3); also, we implemented a version of TimeMachine (i.e.,
TimeMachine+) that focuses on target instruction coverage to determine interesting states.

We tested our subjects with CALM and competing approaches using a test budget of one hour,
which is a common choice in several App testing papers [6, 17, 20, 32].

We executed each tool with each updated version ten times. For CALM, for each of these ten
experiments, we simulated a realistic usage scenario by first testing the initial version of the App
considering the entire code as updated, thus deriving an initial App model for V0. We then tested
the upgraded versions by reusing the App model generated for the previous App version considered
in the same experiment. In total, the experiment took 6940 hours of computing time.
In our experiments, we determine the statistical significance of the difference using a non-

parametric Mann-Whitney U-test (with 𝛼= 0.05). Further, we discuss effect size by relying on the
Vargha and Delaney’s 𝐴12 statistics [45], a non-parametric effect size measure.

4.3 RQ1 - Test oracle cost
4.3.1 Experimental Design. To address RQ1, as in previous work [30], we count the number of
inputs generated by each testing tool, for each test execution run. For CALM and ATUA, we
rely on the CSV file generated by the ActionTrace component of ATUA, which reports all the
inputs triggered during testing. For Monkey, we process the log to determine the number of inputs
generated. For all the other tools, we record the number of test inputs reported by the tool at the
end of their execution.
For each subject App, we compare distributions of the number of inputs generated across tools.

However, since in CALM the number of selected outputs does not simplymatch the number of inputs
but is further reduced by reporting only the UTAs, we report both the number of inputs generated by
CALM and the final number of UTAs selected by CALM. To answer positively this research question,
CALM should not generate significantly more inputs than ATUA, and generate fewer test inputs
than other tools. Further, the number of UTAs selected by CALM should be significantly lower
than the number of inputs generated by other approaches. This is the most important evaluation
criterion since, with CALM, engineers only inspect the output screens produced after UTAs.

4.3.2 Results.

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 21

Fig. 9. Distribution of inputs generated by the different approaches considered in our experiments.

Fig. 10. Distribution of UTAs (Useful Target Actions) generated by CALM

, Vol. 1, No. 1, Article . Publication date: April 2024.

22 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Table 4. Statistical significance and effect size for number of inputs generated by the different approaches.

MannWhitney U-test’s P-value
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CALM-U (1) - <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
CALM (2) <0.05 - <0.05 0.352 <0.05 <0.05 0.169 <0.05 <0.05 <0.05
ATUA (3) <0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

ATUA-Reuse (4) <0.05 0.352 <0.05 - <0.05 <0.05 0.752 <0.05 <0.05 <0.05
APE (5) <0.05 <0.05 <0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 <0.05

Fastbot2 (6) <0.05 <0.05 <0.05 <0.05 <0.05 - <0.05 <0.05 <0.05 <0.05
Humanoid (7) <0.05 0.169 <0.05 0.752 <0.05 <0.05 - <0.05 <0.05 <0.05

TimeMachine (8) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 - <0.05 <0.05
TimeMachine+ (9) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 - <0.05

Monkey (10) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 -
𝐴12 effect size

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CALM-U (1) - ≈0 ≈0 ≈0 0 0.002 0 ≈0 0 0
CALM (2) 1 - 0.6 0.517 0.02 0.037 0.525 0.019 0.01 0.007
ATUA (3) 1 0.4 - 0.421 0.02 0.035 0.413 0.018 0.009 0.006

ATUA-Reuse (4) 1 0.483 0.579 - 0.021 0.037 0.506 0.02 0.011 0.007
APE (5) 1 0.98 0.98 0.979 - 0.116 0.953 0.223 0.27 0.028

Fastbot2 (6) 0.998 0.963 0.965 0.963 0.884 - 0.959 0.624 0.715 0.062
Humanoid (7) 1 0.475 0.587 0.494 0.047 0.041 - 0.033 0.027 0.008

TimeMachine (8) 1 0.981 0.982 0.98 0.777 0.376 0.967 - 0.573 0.054
TimeMachine+ (9) 1 0.99 0.991 0.989 0.73 0.285 0.973 0.427 - 0.045

Monkey (10) 1 0.993 0.994 0.993 0.972 0.938 0.992 0.946 0.955 -

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 23

Figure 9 shows boxplots of the distribution of the number of inputs generated by each approach
across runs. With an average of 878.04 inputs exercised for each App version under test, ATUA is
being confirmed as the approach that minimizes the number of inputs generated during testing.
However, CALM is slightly worse, with 974.81 inputs on average. Further, CALM performs slightly
better than ATUA-R, which generates 986.10 inputs on average. The only other approach that
performs similarly to CALM and ATUA is Humanoid, with 1061.38 inputs. Further, in Figure 9,
CALM-U captures the number of UTAs selected by CALM for inspection, with an average of 42.01,
and clearly shows that focusing on UTAs helps significantly reduce the number of outputs to be
inspected.

Table 4 provides information about the significance of differences and VDA score for each pair of
approaches. Note that, regarding VDA, the approach on the first column performs better than the
approaches on the other columns if the VDA score is below 0.5; indeed, we compare approaches in
terms of number of generated inputs since it is desirable to minimize such inputs.
Table 4 shows that the differences between CALM and ATUA are significant but effect size

is small (i.e., 0.6); therefore, although ATUA remains the approach minimizing the number of
inputs being generated, CALM fares similarly well. Further, Table 4, confirms that CALM performs
similarly to ATUA-R and Humanoid.

However, recall that CALM does not report all the App output screens for visual inspection, but
only the ones observed after useful target actions (UTAs), which greatly reduces test oracle cost.
Figure 10 shows the distribution of UTAs across our subject Apps; they range between 1 and 308
but most App versions can be tested with less than 40 UTAs (i.e., it is sufficient to verify up to 40
output screens). CALM-U in Table 4 shows that the number of outputs to be inspected with CALM
is significantly lower than the number of outputs required by the other approaches in our study,
including ATUA.
In conclusion, our results show that CALM is one of the approaches generating the lowest

number of inputs, which, combined with the UTA selection strategy, enables CALM to select a
much smaller number of outputs for manual inspection.

4.4 RQ2 - Effectiveness for a given test budget
4.4.1 Experimental Design. Since we are interested in exercising code that is likely affected by
changes (updated methods), we compare CALM with the other approaches in terms of percentage
of covered updated methods (hereafter, target method coverage) and instructions belonging to
updated methods (hereafter, target instruction coverage).
Since the identification of functional faults can only be based on the visual inspection of App

screens rendered after every input action, it is necessary to compare the coverage results obtained
when a similar number of App screens is inspected, so that we can assume the effort required to
detect faults is similar across competing approaches.

We assume that engineers apply the strategy presented in Section 3: they inspect only the App
screens generated by useful target actions (UTAs), which are defined as actions contributing to
increasing the coverage of instructions belonging to updated methods. In our analysis, we therefore
compare the coverage obtained for a same number of UTAs, which enables comparing effectiveness
for a same fault detection cost.

During testing, we identify UTAs and the target instructions they cover. Then, for each subject
version, we compute the average number 𝑁 of UTAs generated by CALM, and we select, for each
execution of the other testing tools on the same subject, the first 𝑁 UTAs being triggered. We then
compute the target method and instruction coverage achieved with the selected UTAs. We extended
ATUA, APE, and TimeMachine to collect the instructions covered by each UTA. For Monkey and
Fastbot2, it was not possible to implement the same extension; therefore, we report the coverage

, Vol. 1, No. 1, Article . Publication date: April 2024.

24 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Table 5. Number of versions in which CALM performs significantly better than competing approaches and
vice-versa.

Tool Target method coverage Target instr. coverage
CALM better CALM worse CALM better CALM worse

ATUA-U 41 (78.85%) 0 (0%) 46 (88.46%) 0 (0%)
ATUA-R-U 37 (71.15%) 2 (3.85%) 37 (71.15%) 2 (3.85%)

APE-U 44 (84.62%) 2 (3.85%) 50 (96.15%) 0 (0%)
Monkey 35 (67.31%) 4 (7.69%) 35 (67.31%) 4 (7.69%)
Fastbot2 38 (73.08%) 1 (1.92%) 37 (71.15%) 2 (3.85%)

TimeMachine 48 (92.31%) 0 (0%) 46 (88.46%) 0 (0%)
TimeMachine+ 44 (84.62%) 1 (1.92%) 42 (80.77%) 1 (1.92%)

Humanoid 40 (76.92%) 1 (1.92%) 38 (73.08%) 1 (1.92%)

achieved by these tools with all the inputs triggered in one hour. Additionally, for completeness,
we report the target coverage achieved by APE and ATUA with all the inputs triggered in one
hour. Please note that, in practice, it would be infeasible for engineers to visually inspect all the
App screens rendered with Monkey, APE, and Fastbot2 because of the large number of inputs they
trigger [30]; however, Monkey enables us to gain insights about the input space (i.e., how simple it
is to exercise target methods without guidance).
To positively answer RQ2, CALM should achieve a significantly higher target method and

instruction coverage than competing approaches, for a same number of UTAs. Further, since
performance fluctuations across App versions might be expected, we report on the number of
versions in which CALM performs better. To this end, we rely on the Vargha and Delaney’s
𝐴12 statistics [45] applied to the ten execution results obtained for a given version. Following
standard practice, CALM is deemed to perform better than other approaches when the difference is
statistically significant and 𝐴12 > 0.56.

4.4.2 Results. Figures 11a and 11b show the distributions of the target method and instruction
coverage for CALM, for each subject App. The two Figures show similar distributions; a data point
is the coverage achieved with one test execution on one App version. CALM is the approach
yielding the best results, on average, with 70.08% and 60.67% target method and instruction
coverage, respectively; differences between CALM and other tools are statistically significant. The
second-best result is obtained by APE (66.18% and 57.64%), if we consider all the inputs generated.
However, to be realistic, we should rely exclusively on UTAs, which make the performance of
APE (i.e., APE-U) drop to 59.93% and 51.17%, approximately a 10% and 9% decrease from CALM,
respectively. APE performs better than Fastbot2 (57.89% and 50.90%), which differs from previous
results [27], likely because Fastbot2 overfits the specific industrial scenarios for which it was
developed.
ATUA-U performs better than APE-U (63.84% and 54.33%), while ATUA-R-U performs slightly

better than ATUA-U (64.25% and 55.26%) but differences are not significant, which indicates that
model reuse alone provides limited benefits without all the heuristics integrated into CALM (CALM
performs significantly better than ATUA-R-U).
CALM performs significantly better than APE-U, ATUA-U, and ATUA-R-U thus showing that

model reuse improves the testing of updated Apps but CALM’s heuristics are necessary to effectively
reuse models (indeed, CALM performs significantly better than ATUA-R-U). Further, the better
performance of CALM over Fastbot2 shows that model reuse alone, without appropriate
strategies to drive testing, is not sufficient to effectively test updated methods.
The need for appropriate testing strategies is also highlighted by the poor performance of

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 25

(a) Target method coverage.

(b) Target instruction coverage.

Fig. 11. Distribution of target method coverage and target instruction coverage.

Monkey, TimeMachine, and Humanoid. The performance of Humanoid and TimeMachine does
not change when either considering all the inputs or UTAs only; for such reason we do not report
Humanoid-U and TimeMachine-U in Figure 11. TimeMachine is likely negatively affected by the
cost of taking execution snapshots. TimeMachine+ is the second-worst approach, thus showing
that focusing on target instructions is not sufficient to test modified functionalities but

, Vol. 1, No. 1, Article . Publication date: April 2024.

26 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

a dedicated approach (i.e., CALM) is needed. Humanoid poorly performs likely because it tends
to focus on the main App features, which might not be the modified ones, in addition to being
affected by other limitations [35]. Please note that both Fastbot2 and Monkey also lead to a much
higher number of output screens to be manually verified (i.e., 4645, for Fastbot2, and 51,500, for
Monkey, on average for each version versus a range between 1 and 186 for CALM, 35 on average).

Table 5 provides the number of App versions in which ATUA performs significantly better than
competing approaches and vice-versa. Table 5 shows that CALM performs significantly better
than competing approaches for a significantly larger number of versions, thus showing it
is the best choice to incrementally test App versions.

4.5 RQ3 - Effectiveness over time
4.5.1 Metrics. We study the effectiveness of CALM, for increasing testing time budgets and updates
of different magnitude. To measure such magnitude we rely on the proportion of updated methods
because it enables us to compare results achieved with Apps of different sizes.
Based on the distribution of the number of App versions per percentage of updated methods

in our subjects, we identified three distinct patterns in App development (e.g., from bug fixes to
major releases). Tiny updates with [0%,1%) updated App methods are very frequent (52.85% of our
versions); small updates with [1%,10%) updated methods are relatively frequent (34.62% of versions);
medium updates with [10%,30%) updated methods are much less frequent (11.54% of versions).

Like in RQ1, we rely on code coverage as a proxy for effectiveness. We focus on target instruction
coverage because method coverage is likely to show high variations between test executions when
updates have limited magnitude.
During RQ2 experiments, we traced timestamps and the target instruction coverage for every

input action. To address RQ3, we focus on the coverage achieved by each technique, after every
minute, considering UTAs only, as in RQ2.

In our analysis, we exclude Monkey and Fastbot2 since they are not practically applicable in our
context given that that they do not enable the selection of UTAs.
For each update size range, we compute the average target instruction coverage for all the ten

experiment runs of all the App versions having a number of updated methods in that range; we
discuss the significance of their difference across ranges based on the Mann Whitney U-test (with
𝛼 = 0.05).

4.5.2 Results. Figure 12 depicts the average target instruction coverage over time. Our results
show that CALM always achieves higher average target instruction coverage than ATUA,
for any test budget, which indicates that model reuse, including all the CALM’s optimizations, is
always the best choice; this would not have been the case if the reused models were driving CALM
towards exercising obsolete input sequences leading to unexpected App states. CALM always
performs significantly better than Humanoid, TimeMachine, and TimeMachine+. APE-U, however,
performs slightly better than CALM in the first minutes of execution (e.g., model loading cost
may negatively affect CALM), but then CALM overcomes APE-U. Interestingly, the difference in
performance between the two approaches and the moment in which CALM takes over depends on
the magnitude of the change.

With up to 1% updated methods, which is the most frequent case (more than half of our subject
versions), APE-U performs significantly better only in the first minute of execution but with a
limited improvement of 1.4 percentage points (pp). CALM starts faring significantly better than APE-
U after 2 minutes of execution with the average difference between CALM and APE-U increasing
from 5 (at 2 minutes of testing) to 13 pp (after 60 minutes).
With 1% to 10% updated App methods, APE-U performs significantly better only in the first

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 27

(a) Up to 1%

(b) Between 1% and 10%

(c) More than 10%

Fig. 12. Average % of covered target instructions across subjects, grouped by magnitude of changes (updated
App methods).

minute (1.6 pp higher). Between 15 and 32 minutes the difference between the two is not significant
but CALM’s coverage increases linearly from 1.2 pp to 4.75 pp. After 32 minutes the difference
is significant (5 pp higher) and then reaches 7.5 pp at 60 minutes. CALM reaches a max average
coverage of 62.1% versus 54.3% for APE-U; further, APE-U reaches a plateau at 30 minutes (in the
last 30 minutes of APE execution, its mean coverage increases only by 0.9 pp), while CALM keeps
improving its coverage.
When the proportion of updated methods is large (more than 10%), APE-U performs slightly

better than CALM in the first 26 minutes but differences are not significant and the improvement
is moderate (up to 2.4 pp); however, APE-U reaches a plateau at 23 minutes while CALM keeps
improving. After 38 minutes the difference between the two approaches is significant, with CALM
performing better by 5.6 pp after 60 minutes. When the magnitude of changes is large, a larger
test budget is required to observe a significant difference between CALM and APE-U. Such result
is expected since, with a larger proportion of updated methods, it is easier to exercise updated
methods regardless of the guidance effectiveness. However, the difference between CALM and

, Vol. 1, No. 1, Article . Publication date: April 2024.

28 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Fig. 13. Average % of covered target instructions across subjects up to 2 hours, grouped by magnitude of
changes (updated App methods).

APE-U keeps increasing for a larger test budget.
We performed an additional experiment with CALM and APE-U executed for two hours. Results

are shown in Figure 132; when more than 10% of App methods are updated, after two hours, CALM
and APE-U achieve a target instruction coverage of 56.19% and 51.92%, respectively. The difference
between the two approaches is significant and increases from 2.56 pp (1-hour budget) to 4.26 pp
(2-hour budget).

To summarize, CALM always performs significantly better than Humanoid, TimeMachine,
and TimeMachine+. Also, for tiny updates (the majority) CALM performs better than
APE-U after 2 minutes of test budget, which is reasonable. For larger updates, the larger
budget required by CALM is justified by its coverage not reaching a plateau but steadily
improving until becoming significantly higher than that of APE-U.

4.6 RQ4 - Functional Faults Detection Capability
4.6.1 Experimental Design. To study CALM’s fault detection capabilities, we consider real func-
tional faults affecting our subjects Apps. To perform our study, we need to determine if the fault had
been exercised by a testing tool (e.g., by determining if the source code location of the fault is cov-
ered) and if an App output shows a failure. Therefore, we focus on open-source Apps, which come
with source code and an issue tracker system not available for proprietary Apps. Among our subject
Apps, the open-source Apps with faults in their issue tracking systems include ActivityDiary [1]
and AmazeFileManager [2].

For ActivityDiary and AmazeFileManager, consistent with the objectives of CALM, we identified
all the bug reports concerning functional faults leading to failures by inspecting the App screen.
Among these reports, we selected the ones concerning faults that had been fixed because the
availability of a bug fix simplifies fault understanding (e.g., we can look at the patches to determine
the faulty lines of code). Finally, we selected the faults that we could reproduce by manually
executing the faulty App version, thus ending up with 11 faults. Although 11 faults might not be
sufficient to report on the significance of the differences between CALM and APE-U, we expect the
analysis to provide qualitative insights.
2Please note that the experiment for a 2-hour budget corresponds to new executions of CALM and APE on all the subject
Apps; therefore, since the datapoints are not the same as the ones collected for the 1-hour budget, the curves in Figures 12
and 13 do not exactly match but show similar trends.

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 29

Since not all these 11 faults had been introduced in the App versions selected for our study, we
created additional faulty versions for the selected Apps by introducing faulty updates, as follows:

• If the faulty method is among the target methods for an App version previously tested with
CALM, we select such version as the target for our experiment.

• If an App version tested with CALM includes the faulty method but such method is not
among the target methods for that App version (i.e., the fault was introduced previously), we
force CALM to test such faulty method by introducing a change in it (i.e., we introduce a
new logging instruction).

• If the faulty method does not belong to any App version tested with CALM, we create a
target App version by reintroducing the fault into one of the selected App versions.

Table 6 shows the details of the 11 faults selected for our study; we also indicate if the fault was
already present in the selected App version or if it has been reintroduced. At a high level, five faults
lead to a failure that consists of a UI display issue (e.g., displaying incorrect information), and six
faults lead to a UI interaction problem (e.g., the App does not produce any output after a user input).
To summarize, for our study, we considered a copy of v3.4.1 of Amaze File Manager with 7 faults, a
copy of v134 of Activity Diary with 3 faults, and a copy of Activity Diary v111 with one fault.
Since APE-U is the second-best approach based on the target instruction coverage studied in

RQ2 and RQ3, we also compare CALM with APE-U.
We tested the subject Apps with CALM and APE-U and visually inspected the screenshots taken

after exercising a UTA to determine the presence of failures. For each execution, as per RQ2, we
allocate a test budget of one hour. To deal with randomness, we tested each faulty version 10 times.
With CALM, for each App version, we start CALM using the App model derived when testing the
previous version of the App under test, derived for RQ2.

For each fault, we compute the Fault Detection Probability (FDP) as the proportion of test execu-
tions leading to at least one failure (i.e., the screenshot recorded after a UTA includes an erroneous
output caused by one of the faults). Furthermore, to better investigate why failures are not observed
in some cases, we report the proportion of executions in which the faulty methods have been
exercised (hereafter, Faulty Method Coverage — FMC).

4.6.2 Results. Table 7 shows the FMC and FDP achieved by CALM and APE-U. CALM outperforms
APE-U in terms of FMC as it achieves an average FMC of 95.5%, compared to 75.5% for APE-U. In
two cases (i.e., AC03 and AM04) CALM exercises faulty methods that are never reached by APE-U,
thus highlighting the effectiveness of CALM in reaching faulty methods. CALM performs slightly
better than APE-U also in terms of FDP, with 33.64% vs. 32.73%.

Among the selected faults, five (i.e., AC02, AC04, AM02, AM03, and AM05) are detected by both
approaches in at least one of the ten executions. Instead, two faults are detected only by CALM and
one only by APE-U. Overall, with ten test runs, CALM detects 7 faults, while APE-U detects only 6.
Our results suggest that no single approach detects a large proportion of faults if it is executed

only once, for one hour. App testing tools should be executed multiple times; however, in practice,
engineers do not have time to inspect all the App screens resulting from a large set of executions
(recall from RQ1 that CALM reports 40 App screens, on average, for each test execution). If
we compare CALM and APE-U based on the number of faults identified in two test runs, thus
entailing a reasonable effort, we can notice that CALM is likely to detect 5 faults (i.e., the ones with
𝐹𝐷𝑃 >= 50%) while APE-U would detect 3, on average. Concluding, CALM appears to be more
effective than APE-U regarding fault detection, from a practical standpoint, though these results
need to be confirmed by larger studies with more functional faults. Nevertheless, these results are
consistent with those obtained based on coverage.

, Vol. 1, No. 1, Article . Publication date: April 2024.

30 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Table 6. Functional bugs considered in the preliminary evaluation

FaultId App Fault description Github
issue
ID

Test
ver-
sion

Is rein-
tro-

duced

Number
of

target
meth-
ods

Failure
type

AC01 AD When the activity edit page is filled, if the
screen is rotated then the filled content is
lost.

#53 v134 ✓ 49 Display

AC02 AD After clicking on the "Delete" button on an ac-
tivity’s edit page, the activity is still present
in other pages.

#59 v111 ✓ 18 Interaction

AC03 AD When clicking on a picture of an activity,
nothing happens while it is supposed to open
the picture with an image viewer.

#162 v134 ✓ 49 Interaction

AC04 AD When undoing the recent activation of an
activity, the state of the activated activity
is incorrect if there is no activated activity
before the undone one.

#286 v134 49 Interaction

AM01 AM After manually selecting all file items, if the
options menu is opened, the "Deselect All"
menu item is not present.

#996 v3.4.1 ✓ 651 Display

AM02 AM Triggering the "Select All" menu item when
all file items are selected causes all items to
be deselected.

#953 v3.4.1 ✓ 651 Interaction

AM03 AM When entering a file/folder name starting
with a dot, the dialogue does not warn the
user that the file/folder will be hidden.

#1235 v3.4.1 ✓ 651 Display

AM04 AM The preselected configuration dialogue for
the App’s color allow multiple choices with
radio buttons instead of single-choice.

#1044 v3.4.1 ✓ 651 Interaction

AM05 AM When creating a new file, a file name ending
with ".txt" is not allowed.

#1231 v3.4.1 ✓ 651 Display

AM06 AM When searching files, hidden files with
matching patterns are shown too.

#1467 v3.4.1 651 Display

AM07 AM When closing the "Hidden Files" dialogue,
the file list is not refreshed and, therefore,
the updates from the dialogue do not appear.

#1712 v3.4.1 651 Interaction

Legends. AD: Activity Diary(https://github.com/ramack/ActivityDiary), AM: Amaze File manager
(https://github.com/TeamAmaze/AmazeFileManager)

4.7 Discussion
Our results show that CALM is the most effective approach to test App updates. However, our
results also show that testing Apps remains an open problem; indeed, across all the tested versions,
2616 methods (25%) are not exercised by any approach; further, only 33 % of the faults can be
detected by the two best approaches identified in our study (i.e., CALM and APE-U). Below, we
discuss the reasons that limit code coverage and fault detection capabilities of CALM and competing
approaches.

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 31

Table 7. Fault coverage by CALM and APE-U: we report Fault method coverage (FMC) and Fault Detection
Probability (FDP)

Fault Id CALM APE-U
FMC (%) FDP (%) FMC (%) FDP (%)

AC01 60 0 100 0
AC02 100 70 100 90
AC03 90 60 0 0
AC04 100 50 100 40
AM01 100 0 100 10
AM02 100 40 100 20
AM03 100 90 100 100
AM04 100 0 0 0
AM05 100 50 100 100
AM06 100 10 30 0
AM07 100 0 100 0

Average 95.45 33.64 75.45 32.73

4.7.1 Limited code coverage. We discuss the reasons why certain methods are not covered by any
approach, and the degree of complementarity between CALM and other approaches.

Three are the reasons why 25% of the methods are not covered by any approach:
• Specific environment setup needed. Some methods require the Android environment to be set
up with specific data or services. For example, in AmazeFileManager, it is necessary to have
an SMB stream server to exercise the methods of class utils.SmbStreamer. Further, again in
AmazeFileManager, to exercise the methods of class GzipExtractor, it is necessary to have
files compressed in GZIP format on the filesystem.

• Specific hardware or emulator needed. Some methods require installing the App on specific
Android hardware or emulators. This is also the case for VLC, where the methods of classes
belonging to package org.videolan.vlc.gui.tv, can be exercised when the App executes on an
Android TV. Further, the methods of class TvChannelsKt can be executed only if a TV tuner
(i.e., an hardware device to communicate with a TV provider) is connected to the Android
device.

• Specific App settings needed. Certain methods can be executed only with specific App settings,
but enabling such settings requires a long sequence of actions that neither CALM nor
competing approaches can identify. This is the case for VLC, where the methods of classes
belonging to package org.videolan.vlc.gui.tv can be exercised without an Android TV, but
only after enabling the TV interface option in one of the many VLC settings pages.

To discuss complementarity, we further present the differences in target methods covered
uniquely by each approach (hereafter, uniquely-covered target methods). The target methods
covered only by one testing approach account for 3.4% (i.e., 351 of 10336) of the target methods in
our subjects. Their distribution is shown in Figure 14a. CALM and APE-U are the two approaches
yielding the highest number of uniquely-covered target methods, with 29% (i.e., 101) and 34% (i.e.,
121) of the total, respectively; thus showing some complementarity. However, the target methods
uniquely covered by APE-U are mainly from two versions of VLC, which account for 71% and 17%
(i.e., 86 and 26) of the 121 target methods uniquely covered by APE-U, respectively. Further, CALM
yields a number of uniquely-covered target methods higher than APE-U (i.e., 17 out of 52 subjects
for CALM and only 7 out of 52 for APE-U). The effectiveness of CALM is likely due to the fact that,
thanks to App model reuse, CALM is capable of reaching target Windows and target Widgets that
require complex input sequences to be reached (e.g., interacting with widgets in the middle of a

, Vol. 1, No. 1, Article . Publication date: April 2024.

32 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

(a) Number of target methods covered only by
one approach.

(b) Number of targetmethods not covered by each
approach.

(c) Number of target methods not covered by
CALM but covered by a competing approach and
vice versa.

Fig. 14. Differences in target methods covered by CALM and other competing tools.

list). Indeed, once CALM discovers how to reach a target Widget in an App version, it remembers
how to do so in future versions. For example, for Amaze File Manager, CALM is the only approach
reaching the AboutActivity Window and Color Preference Window, and then exercising the target
methods in these Windows. Similarly, CALM is the only approach to exercise target methods in
PreferencesCasting and PreferencesSubtitles Windows, in VLC.
Furthermore, CALM is the approach covering the largest proportion of target methods across

subjects, 70.16% (i.e., 7252 out of 10336). The other approaches covered a proportion of target
methods between 45% and 66%. Figure 14b shows the number of target methods not covered by
each approach. Figure 14c, instead, depicts the complementarity between CALM and each other
approach. Among the target methods missed by CALM, only 15.5% of them are covered by other
approaches; indeed, orange bars in Figure 14c are small, which suggests that no approach effectively
complements CALM. Such proportion is much higher for other approaches (i.e., from 25% to 54%),
which means that CALM is effective in covering target methods missed by other techniques; indeed,
blue bars in Figure 14c are much taller than orange ones.
Finally, we report that the 468 target methods not covered by CALM but covered by other

approaches are triggered by input types currently not supported by CALM. First, CALM does not
interact with tiny widgets since CALM assumes these widgets are inactive. This is the case of target

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 33

Faulty method is covered

Click Click Click Click

public void showHiddenDialog(...) {...}

Fault is triggered

!g1 g2 g3 g4 g5

a1 a2 a3 a4

Fig. 15. An example of scenario where fault AM07 is detected.

methods related to FastScroller in Amaze File Manager, which is a thin stick at the rightmost part
of the screen. Second, CALM does not interact with the popup video player, which is typically the
case in VLC, so it could not exercise methods of PopupManager and PopupLayout. Third, CALM is
ineffective when a widget supports rich interactions. For example, in the VLC App, swiping on
the left side of the playing video will increase or decrease the screen’s brightness, depending on
the swipe direction, while executing these actions on the right side will change the volume. Some
approaches generate (i.e., Monkey) or partially generate (e.g., APE, Fastbot2) pure random events,
thus having a chance of triggering these features. CALM, instead, always swipe widgets in the
middle and is thus not able to exercise certain features (e.g., change brightness). Finally, CALM does
not generate certain system events. For example, it does not turn wi-fi on or off, thus preventing the
execution of the methods onGoOffline() and onGoOnline() in Wikipedia. Concluding, the limitations
above show that technical improvements could further increase CALM’s effectiveness.

4.7.2 Limited fault detection capabilities. We identified two reasons preventing fault detection with
CALM and APE-U. First, certain faults can be detected only by inspecting additional output screens
besides the one of the action exercising the faulty method. This happens when the faulty method
generates data that affects the behaviour of a Window that is different from the one visualized after
the execution of the faulty method. Such limitation was observed in the case of AM04, AM06, and
AM07. For example, fault AM07 originates from the missing implementation of an event handler
for the “Close” button of the “Hidden Files” dialog, in the method that creates the dialog (i.e.,
showHiddentDialog()). Figure 15 illustrates a failing execution. The faulty method (i.e., the method
showHiddenDialog()) is always exercised when the “Hidden Files” dialog is opened (i.e., action 𝑎2).
However, to trigger fault AM07, it is necessary to remove at least one hidden file from the list in the
“Hidden Files” dialog (i.e., action 𝑎3), and then close the dialog (i.e., action 𝑎4). A failure can then be
observed in 𝑔5 because the removed hidden file is not present in the file list. However, the unique
target action is 𝑎2, which covers the faulty method but inspecting the screenshots taken before
and after 𝑎2 (i.e., 𝑔2 and 𝑔3) is insufficient to detect the fault. Instead, engineers should inspect the
screenshot taken before and after 𝑎4 (i.e., 𝑔4 and 𝑔5). To address such limitation, it might be useful
to report to the end-user not only the output of a unique target action, but also related outputs,
which would significantly increase testing cost. However, based on our results for RQ4, we noted
that such limitation is observed with actions that change what is displayed in their parent Window.
Therefore, to increase fault detection capabilities, we may extend CALM to display not only the

, Vol. 1, No. 1, Article . Publication date: April 2024.

34 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

screenshot taken after the target action but also the screenshot with the next visualized Window.
Note that even if we double the number of outputs to be inspected with CALM (i.e., it always
reports the screenshot produced after the target action and the screenshot with the next Window
visualized after the target action, for every target action), it remains the least expensive approach,
with an average of 88 output screens to be inspected versus 878 of the cheapest competitor, ATUA.

The second reason why faults are not detected by CALM and APE-U is that exercising the faulty
code is not sufficient to trigger the failure when it requires specific inputs or the App to be in
a specific state. Specific inputs are needed when the fault consists of missing instructions (e.g.,
AM02 is due to a missing function invocation) or when the fault consists of wrong parameters
passed to a delegate method returning the wrong result (e.g., AM05 happens because the string
".txt" is passed to a filter function). A specific App state is required when the fault consists of a
violation of the preconditions for the execution of a specific portion of code; this is what happens
for AM02, where the “Deselect All” menu item correctly exercises the code that deselects all the
items in a list, while the “Select All” menu item erroneously executes the same code if all the items
are already selected. Please note that, in all these cases, CALM triggers the failure but the output
screenshot with the failure is not selected for inspection, which indicates that, to detect faults, it is
not sufficient to report only the screenshot captured the first time a target action is exercised (i.e.,
what we call UTA). Instead, some contextual information should be considered to determine if a
target action should be considered for inspection; based on the cases above, the nature of the inputs
and the current abstract state should be taken into account. For example, we could detect AM05 by
distinguishing between cases in which the target action is triggered with inputs containing a string
appearing in the source code (i.e., ".txt") from other cases. We could detect AM02 by reporting all
the output screens obtained by executing the target action from distinct AbstractStates.

The investigation of all the strategies suggested above goes beyond the scope of this paper, which
is about model reuse effectiveness, not output selection. Further, despite these limitations, CALM
could detect half of the faults with a test budget of two hours (i.e., when CALM is executed twice,
see 4.6.2).

4.8 Threats to validity
Internal validity. To minimize implementation errors, we have carefully tested CALM before running
our experiments. For the selected competing state-of-the-art tools, we relied on the versions released
by their authors, which had been extensively used in related work.
Conclusion validity. To avoid violating the assumptions of parametric statistical tests, we rely

on a non-parametric test and effect size measure (i.e., Mann Whitney U-test and the Vargha and
Delaney’s 𝐴12 statistics, respectively). To ensure reliability, our measurements (i.e., code coverage)
have been collected through widely used, open-source tools.
Construct validity. The constructs considered in our work are effectiveness and cost. Effective-

ness is measured through two reflective indicators, which are target method coverage and target
instruction coverage. We rely on code coverage because it is a common measure of effectiveness
for functional testing [11, 12]. Cost is measured in terms of the number of target actions whose
effects (i.e., resulting App screens) should be inspected to determine test outcome, as discussed in
Section 4.4.1.
External validity.We have considered seven popular Apps, used in related work and in the em-

pirical assessment of ATUA, which enabled fair comparison to discuss the coverage improvements
enabled by CALM. For each App, we considered up to ten App versions, based on their availability,
for a total of 52 App versions tested. The considered Apps are diverse in terms of features, the
overall number of instructions, and updated instructions between versions.
To account for randomness, we tested each App version ten times with every testing tool

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 35

(a) APK disk occupation (b) Activities

Fig. 16. Distribution of APK disk occupation (Mb) and activities for our subject Apps.

(a) 2020 (b) 2023

Fig. 17. Distribution of APK disk occupation (Mb) for Android Apps in 2020 and 2023.

considered. Despite the high computational cost (6940 test execution hours, in total), this enabled
us to derive solid statistical results for the comparison of different tools.
In our experiments we considered only Apps for the Android operating system, which is the

platform most targeted by research work. The choice of relying on Android Apps enabled the
comparison of CALMwith six competing tools, all of which work only with Android Apps. However,
our approach does not rely on any assumption restricting its applicability to Android. To drive
testing, it requires code coverage, which is measurable on any platform, and GUI Trees. CALM
extracts GUI Trees by relying on the Android UIAutomator API. Similar features are provided
by Appium [5], which works with both iOS and Windows OS. Also, Harmony OS may provide a
UIAutomator-like API.

The size of the tested Apps may affect the outcome of our approach, e.g., large Apps may not be
successfully processed by Gator. Since assessing the scalability of Gator is out of the scope of this
paper, to address treats to generalizability, we aim to demonstrate that the selected Apps have a
typical size for Apps published on Android markets. Given that App size can be captured in terms

, Vol. 1, No. 1, Article . Publication date: April 2024.

36 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

Fig. 18. Distribution of activities across Apps tested in related work [17]

of APK disk occupation and number of activities, we aim to demonstrate that the distribution of
these two metrics’ values for our subject Apps match the distribution observed with all the Apps
on Android markets. Please note that our subject Apps belong to the set of Apps selected for the
empirical assessment of ATUA and was released in 2020. Figures 16 (a) and 16 (b) provide plots
with the distribution of APK disk occupation (Mb) and number of activities for our subject Apps.
Disk occupation ranges from 2.4 Mb (Activity Diary version 105) to 32.3 Mb (Yahooweather version
1.20.7), the number of activities ranges from 7 to 64. Figure 17 shows the distribution of APK disk
occupation of all the Apps released on the main Android markets in 2020 and 2023; we derived the
boxplots in Figure 17 from the data reported by AndroZoo [3], which is the largest repository of
Android Apps.

Based on our analysis, in 2020, 107,000 Apps (71%) had an APK disk occupation between 2 Mb
and 32 Mb, thus showing that the Apps selected for ATUA were representative of most Apps in the
Android markets in 2020. In 2023, AndroZoo collected 10,600 Apps, with 4,400 (41.5%) Apps being
between 2 Mb and 32 Mb in size. Though the median App size increased from 18 Mb in 2020 to 38
Mb in 2023, this data shows that our subject Apps are still representative of the size of almost half
of the Apps on the Android markets, thus supporting the generalizability of our empirical results.

Since AndroZoo does not collect information about Apps’ activities, we report in Figure 18 the
distribution of the number of activities for the Apps considered in the empirical evaluation of
APE [17], which is the only paper among the ones selected as our comparison baseline reporting
such data for each subject App. Figure 18 shows that the number of activities for our subject Apps
is similar to that of APE, except for three Apps in the APE set that have more than 64 activities.
Such result, again, demonstrates that our findings likely generalize to a broad set of Apps.

5 RELATEDWORK
App testing tools differ with respect to their input selection strategy [26, 43]; most rely on random[4],
model-based [6, 17, 39, 47], search-based [28], deep [25, 35, 52] and reinforcement learning [21, 27,
32, 37] strategies.
Model-based approaches dynamically construct a model for the App under test, which is used

to drive testing. DM2 [6] and APE [17], similar to ATUA, construct the model while verifying the
App. Stoat [39] and ComboDroid [47], instead, first construct an App model, which is then used to
perform testing. Although the models derived by such approaches may be reusable across versions,
different from CALM, none of the approaches above rely on model reuse. We demonstrated that

, Vol. 1, No. 1, Article . Publication date: April 2024.

Testing Updated Apps by Adapting Learned Models 37

CALM’s heuristics enable effective reuse of ATUA’s App models; future work includes assessing
CALM’s heuristics when integrated into other SOTA tools.
Although other heuristics to improve App testing exist, ours are the first being tailored for

update testing. For example, ProMal (published in 2022) improves the precision of WTGs by
relying on dynamic analysis, which is a strategy integrated into ATUA (2021). Similar to CALM’s
layout-guarded AbstractTransitions, some approaches extend WTGs with backward transitions
capturing when an input brings the App to a previous Window [51, 54]; however, they model
Window transitions, not AbstractTransitions, which are instead used by CALM to maximize testing
effectiveness.
The main output of random and search-based approaches are test cases, which, unlike App

models, cannot be reused to test new features (e.g., to reach required Window states). That is why
we extended a model-based approach (i.e., ATUA).

As for reinforcement learning approaches, only Fastbot2 [27] reuses models across versions. It
leverages a probabilistic model capturing the likelihood that each Action triggerable in a Window
reaches another Window. Our results show that it is inappropriate for update testing; further, its
source code is not available. Similarly, deep learning (DL) approaches do not target updated code
and, in our experiments, CALM outperformed the most cited and available DL-based tool (i.e.,
Humanoid).
Other techniques, different from CALM, update GUI test scripts but do not automatically test

Apps. ATOM [23] and CHATEM [9] rely on a base App model and a Difference model constructed
either manually (ATOM) or semi-automatically (CHATEM). GUIDER [50], instead, does not require
a difference model but, while executing test scripts, compares the App screens of the base and
updated App version to identify actions leading to the expected states.
Xiong et al. have recently conducted an empirical study of 399 functional faults in Android

Apps [49]. Their results highlight that most of the functional faults require visual inspection to be
detected. Indeed, they report that only 30% of the faults lead to crashes. Of the remaining, only 3%
are related to energy consumption, the rest is probably detectable only through visual inspection;
indeed, content related issues account for 21%, structure related issues 40%, incorrect interaction
19%, functionality not taking effect 12%, and unresponsive UI element 5%. Further, Xiong et al.
also report that feature agnostic oracles (e.g., looking for overlapping UI elements, data loss, and
App freezing) discover 30% of non-crashing functional failures; however, in their experiments,
existing tools implementing feature agnostic oracles (i.e., Genie [40], Odin [46], IFixDataLoss [18],
ITDroid [19], and SetDroid [41]) could, overall, detect only 6% of such faults. In other words, 84%
of non-crashing failures can be detected only through visual inspection, which further motivates
our work. Finally, Xiong et al. propose RegDroid, which implements a form of differential testing
to detect regression faults (i.e., it executes a random sequence of actions on two App versions and
verifies if the output screens include a same randomly selected interactable widget); unfortunately,
their results show a false positive rate above 60%. Since regression faults are a subset of all the
possible functional faults in an App, engineers still need to inspect App outputs for non-regression
faults; therefore, for engineers, it would likely be more effective to simply inspect all the outputs
generated by an App. Consequently, an approach like CALM, which targets modified functionalities,
thus leading to a limited number of outputs to inspect, may be practically useful. Studying how the
inputs generated by CALM might be used for differential testing is part of our future work.

6 CONCLUSION
We presented CALM, a technique to efficiently test App updates by relying on models learned
with previous App versions. It relies on static analysis to identify GUI components modified across
versions and adapt App models accordingly (e.g., reuse abstract states for renamed Windows);

, Vol. 1, No. 1, Article . Publication date: April 2024.

38 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

further, it integrates four heuristics addressing the limitations of model inference that are exacer-
bated in the presence of model reuse: It infers layout-guarded abstract transitions, which deal with
non-deterministic transitions; it derives probabilistic Action sequences to deal with state explosion;
it detects model states that are new but compatible with previously executed Action sequences
(i.e., backward-equivalent); it relies on online and offline model refinement to identify and remove
obsolete states.

Our empirical evaluation shows that CALM leads to a coverage of updated methods and instruc-
tions that is higher than the second best SOTA approach by 6 percentage points (pp) for a one-hour
test budget. That difference keeps steadily widening as the test budget increases and is larger for
smallest updates (13 pp), which are the most frequent.

ACKNOWLEDGMENTS
This project has received funding from Huawei Technologies Co., Ltd, China, and by the NSERC
Discovery and Canada Research Chair programs. Experiments presented in this paper were
carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by In-
ria and including CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES
[1] [n. d.]. Activity Diary - Github. https://github.com/ramack/ActivityDiary. Last visited: 12/10/2023.
[2] [n. d.]. Amaze File Manager - Github. https://github.com/TeamAmaze/AmazeFileManager. Last visited: 12/10/2023.
[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: Collecting Millions of

Android Apps for the Research Community. In Proceedings of the 13th International Conference on Mining Software
Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/10.1145/2901739.2903508

[4] Android.com. 2022. Monkey - Android UI/application exerciser. https://developer.android.com/studio/test/other-
testing-tools/monkey. Last visited: 01/31/2023.

[5] Appium.io. 2023. Appium Documentation. http://appium.io. Last visited: 07/31/2023.
[6] Nataniel P. Borges Jr., Jenny Hotzkow, and Andreas Zeller. 2018. DroidMate-2: A Platform for Android Test Generation.

In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France)
(ASE 2018). ACM, New York, NY, USA, 916–919. https://doi.org/10.1145/3238147.3240479

[7] M.G.J. Brand, van den, Z. Protic, and T. Verhoeff. 2011. RCVDiff - a stand-alone tool for representation, calculation and
visualization of model differences. Technical Report. United States.

[8] Paolo Calciati, Konstantin Kuznetsov, Xue Bai, and Alessandra Gorla. 2018. What Did Really Change with the New
Release of the App?. In Proceedings of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA, 142–152. https://doi.org/10.1145/
3196398.3196449

[9] Nana Chang, LinzhangWang, Yu Pei, Subrota K.Mondal, and Xuandong Li. 2018. Change-Based Test ScriptMaintenance
for Android Apps. 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS). https:
//doi.org/10.1109/QRS.2018.00035

[10] Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang. 2018. DetReduce: Minimizing Android GUI Test
Suites for Regression Testing. In Proceedings of the 40th International Conference on Software Engineering (Gothenburg,
Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA, 445–455. https://doi.org/10.1145/
3180155.3180173

[11] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Automated Test Input Generation for Android:
Are We There Yet? (E). In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (ASE ’15). IEEE Computer Society, Washington, DC, USA, 429–440. https://doi.org/10.1109/ASE.
2015.89

[12] Sergio Di Martino, Anna Rita Fasolino, Luigi Libero Lucio Starace, and Porfirio Tramontana. 2020. Comparing the
effectiveness of capture and replay against automatic input generation for Android graphical user interface testing.
Software Testing Verification and Reliability (2020), 1–27. https://doi.org/10.1002/stvr.1754

[13] Daniel Domínguez-Álvarez and Alessandra Gorla. 2019. Release Practices for IOS and Android Apps. In Proceedings of
the 3rd ACM SIGSOFT International Workshop on App Market Analytics (Tallinn, Estonia) (WAMA 2019). Association for
Computing Machinery, New York, NY, USA, 15–18. https://doi.org/10.1145/3340496.3342762

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://github.com/ramack/ActivityDiary
https://github.com/TeamAmaze/AmazeFileManager
https://doi.org/10.1145/2901739.2903508
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
http://appium.io
https://doi.org/10.1145/3238147.3240479
https://doi.org/10.1145/3196398.3196449
https://doi.org/10.1145/3196398.3196449
https://doi.org/10.1109/QRS.2018.00035
https://doi.org/10.1109/QRS.2018.00035
https://doi.org/10.1145/3180155.3180173
https://doi.org/10.1145/3180155.3180173
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1002/stvr.1754
https://doi.org/10.1145/3340496.3342762

Testing Updated Apps by Adapting Learned Models 39

[14] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Time-Travel Testing of Android Apps. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 481–492. https://doi.org/10.1145/3377811.3380402

[15] Zebao Gao, Zhenyu Chen, Yunxiao Zou, and Atif M. Memon. 2016. SITAR: GUI Test Script Repair. IEEE Transactions
on Software Engineering 42, 2 (2016), 170–186. https://doi.org/10.1109/TSE.2015.2454510

[16] Zebao Gao, Chunrong Fang, and Atif M. Memon. 2015. Pushing the limits on automation in GUI regression testing. In
2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE). 565–575. https://doi.org/10.1109/
ISSRE.2015.7381848

[17] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong
Su. 2019. Practical GUI Testing of Android Applications via Model Abstraction and Refinement. In Proceedings of the
41st International Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 269–280.
https://doi.org/10.1109/ICSE.2019.00042

[18] Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng. 2022. Detecting and Fixing Data Loss
Issues in Android Apps. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 605–616.
https://doi.org/10.1145/3533767.3534402

[19] Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng. 2022. Detecting and Fixing Data Loss
Issues in Android Apps. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 605–616.
https://doi.org/10.1145/3533767.3534402

[20] Wunan Guo, Liwei Shen, Ting Su, Xin Peng, and Weiyang Xie. 2020. Improving Automated GUI Exploration of Android
Apps via Static Dependency Analysis. Proceedings - 2020 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2020, 557–568. https://doi.org/10.1109/ICSME46990.2020.00059

[21] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tanriverdi, and Yunus Donmez. 2018. QBE:
QLearning-Based Exploration of Android Applications. 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). https://doi.org/10.1109/ICST.2018.00020

[22] Cong Li, Yanyan Jiang, and Chang Xu. 2022. Cross-Device Record and Replay for Android Apps. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
395–407. https://doi.org/10.1145/3540250.3549083

[23] Xiao Li, Nana Chang, Yan Wang, Haohua Huang, Yu Pei, Linzhang Wang, and Xuandong Li. 2017. ATOM: Automatic
Maintenance of GUI Test Scripts for Evolving Mobile Applications. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). 161–171. https://doi.org/10.1109/ICST.2017.22

[24] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A Deep Learning-Based Approach to
Automated Black-box Android App Testing. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1070–1073. https://doi.org/10.1109/ASE.2019.00104

[25] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A Deep Learning-Based Approach to
Automated Black-box Android App Testing. 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). https://doi.org/10.1109/ASE.2019.00104

[26] M. Linares-Vasquez, K. Moran, and D. Poshyvanyk. 2017. Continuous, Evolutionary and Large-Scale: A New Perspective
for Automated Mobile App Testing. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 399–410. https://doi.org/10.1109/ICSME.2017.27

[27] Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang. 2023. Fastbot2: Reusable Automated Model-
Based GUI Testing for Android Enhanced by Reinforcement Learning. In 37th IEEE/ACM International Conference on
Automated Software Engineering (Rochester, MI, USA) (ASE22). Association for Computing Machinery, New York, NY,
USA, Article 135, 5 pages. https://doi.org/10.1145/3551349.3559505

[28] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated Testing for Android Applications. In
Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA
2016). ACM, New York, NY, USA, 94–105. https://doi.org/10.1145/2931037.2931054

[29] Stuart Mcilroy, Nasir Ali, and Ahmed E. Hassan. 2016. Fresh Apps: An Empirical Study of Frequently-Updated Mobile
Apps in the Google Play Store. Empirical Softw. Engg. 21, 3 (June 2016), 1346–1370. https://doi.org/10.1007/s10664-
015-9388-2

[30] Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand. 2022. Automated, Cost-Effective, and Update-Driven App Testing.
ACM Trans. Softw. Eng. Methodol. 31, 4, Article 61 (jul 2022), 51 pages. https://doi.org/10.1145/3502297

[31] Chanh-Duc Ngo, Fabrizio Pastore, and Lionel Briand. 2024. Testing Updated Apps by Adapting Learned Models. (4
2024). https://doi.org/10.6084/m9.figshare.21983318.v1

[32] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020. Reinforcement learning based curiosity-

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1109/TSE.2015.2454510
https://doi.org/10.1109/ISSRE.2015.7381848
https://doi.org/10.1109/ISSRE.2015.7381848
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1109/ICSME46990.2020.00059
https://doi.org/10.1109/ICST.2018.00020
https://doi.org/10.1145/3540250.3549083
https://doi.org/10.1109/ICST.2017.22
https://doi.org/10.1109/ASE.2019.00104
https://doi.org/10.1109/ASE.2019.00104
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1145/3551349.3559505
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1007/s10664-015-9388-2
https://doi.org/10.1007/s10664-015-9388-2
https://doi.org/10.1145/3502297
https://doi.org/10.6084/m9.figshare.21983318.v1

40 Chanh Duc Ngo, Fabrizio Pastore, and Lionel Briand

driven testing of Android applications. Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. https://doi.org/10.1145/3395363.3397354

[33] Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong Li. 2020. GUI-Guided Test Script Repair for
Mobile Apps. IEEE Transactions on Software Engineering 5589, c (2020), 1–1. https://doi.org/10.1109/tse.2020.3007664

[34] F. Pastore, L. Mariani, and G. Fraser. 2013. CrowdOracles: Can the Crowd Solve the Oracle Problem?. In 2013 IEEE
Sixth International Conference on Software Testing, Verification and Validation. 342–351.

[35] Chao Peng, Zhao Zhang, Zhengwei Lv, and Ping Yang. 2022. MUBot: Learning to Test Large-Scale Commercial Android
Apps like a Human. In 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME). 543–552.
https://doi.org/10.1109/ICSME55016.2022.00074

[36] Oliviero Riganelli, Simone Paolo Mottadelli, Claudio Rota, Daniela Micucci, and Leonardo Mariani. 2020. Data loss
detector: automatically revealing data loss bugs in Android apps. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020, Sarfraz Khurshid and Corina S.
Pasareanu (Eds.). ACM, 141–152. https://doi.org/10.1145/3395363.3397379

[37] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2022. Deep Reinforcement Learning for
Black-box Testing of Android Apps. ACM Transactions on Software Engineering and Methodology 31 (7 2022). Issue 4.
https://doi.org/10.1145/3502868

[38] Aman Sharma and Rupesh Nasre. 2019. QADroid: Regression Event Selection for Android Applications. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA 2019).
Association for Computing Machinery, New York, NY, USA, 66–77. https://doi.org/10.1145/3293882.3330550

[39] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su.
2017. Guided, Stochastic Model-based GUI Testing of Android Apps. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY, USA, 245–256.
https://doi.org/10.1145/3106237.3106298

[40] Ting Su, Yichen Yan, Jue Wang, Jingling Sun, Yiheng Xiong, Geguang Pu, Ke Wang, and Zhendong Su. 2021. Fully
Automated Functional Fuzzing of Android Apps for Detecting Non-Crashing Logic Bugs. Proc. ACM Program. Lang. 5,
OOPSLA, Article 156 (oct 2021), 31 pages. https://doi.org/10.1145/3485533

[41] Jingling Sun, Ting Su, Junxin Li, Zhen Dong, Geguang Pu, Tao Xie, and Zhendong Su. 2021. Understanding and Finding
System Setting-Related Defects in Android Apps. In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery, New York, NY,
USA, 204–215. https://doi.org/10.1145/3460319.3464806

[42] Saghar Talebipour, Yixue Zhao, Luka Dojcilović, Chenggang Li, and Nenad Medvidović. 2021. UI Test Migration Across
Mobile Platforms. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). 756–767.
https://doi.org/10.1109/ASE51524.2021.9678643

[43] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and Anna Rita Fasolino. 2019. Automated functional
testing of mobile applications: a systematic mapping study. Software Quality Journal 27, 1 (2019), 149–201. https:
//doi.org/10.1007/s11219-018-9418-6

[44] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. 2010. Fine-grained metamodel-assisted model comparison. In
Proceedings of the 1st International Workshop on Model Comparison in Practice - IWMCP ’10. ACM Press, New York,
New York, USA. https://doi.org/10.1145/1826147.1826152

[45] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the CL Common Language Effect
Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. https:
//doi.org/10.3102/10769986025002101 arXiv:https://doi.org/10.3102/10769986025002101

[46] Jue Wang, Yanyan Jiang, Ting Su, Shaohua Li, Chang Xu, Jian Lu, and Zhendong Su. 2022. Detecting Non-Crashing
Functional Bugs in Android Apps via Deep-State Differential Analysis. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA, 434–446. https://doi.org/10.1145/3540250.
3549170

[47] Jue Wang, Yanyan Jiang, Chang Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. 2020. ComboDroid: Generating High-Quality
Test Inputs for Android Apps via Use Case Combinations. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
469–480. https://doi.org/10.1145/3377811.3380382

[48] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng, and Tao Xie. 2018. An Empirical
Study of Android Test Generation Tools in Industrial Cases. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 738–748. https:
//doi.org/10.1145/3238147.3240465

[49] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su.
2023. An Empirical Study of Functional Bugs in Android Apps. In Proceedings of the 32nd ACM SIGSOFT International

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1145/3395363.3397354
https://doi.org/10.1109/tse.2020.3007664
https://doi.org/10.1109/ICSME55016.2022.00074
https://doi.org/10.1145/3395363.3397379
https://doi.org/10.1145/3502868
https://doi.org/10.1145/3293882.3330550
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3485533
https://doi.org/10.1145/3460319.3464806
https://doi.org/10.1109/ASE51524.2021.9678643
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1145/1826147.1826152
https://doi.org/10.3102/10769986025002101
https://doi.org/10.3102/10769986025002101
https://arxiv.org/abs/https://doi.org/10.3102/10769986025002101
https://doi.org/10.1145/3540250.3549170
https://doi.org/10.1145/3540250.3549170
https://doi.org/10.1145/3377811.3380382
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3238147.3240465

Testing Updated Apps by Adapting Learned Models 41

Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery,
New York, NY, USA, 1319–1331. https://doi.org/10.1145/3597926.3598138

[50] Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Tian Zhang, Yuetang Deng, and Xuandong Li. 2021. GUIDER:
GUI structure and vision co-guided test script repair for Android apps. ISSTA 2021 - Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 191–203. https://doi.org/10.1145/3460319.3464830

[51] Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swaminathan, Dacong Yan, and Atanas
Rountev. 2018. Static Window Transition Graphs for Android. International Journal of Automated Software Engineering
25, 4 (Dec. 2018), 833–873.

[52] Faraz Yazdani Banafshe Daragh and Sam Malek. 2021. Deep GUI: Black-box GUI Input Generation with Deep
Learning. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). 905–916. https:
//doi.org/10.1109/ASE51524.2021.9678778

[53] Minghe Yu, Guoliang Li, Dong Deng, and Jianhua Feng. 2016. String similarity search and join: a survey. Frontiers of
Computer Science 10, 3 (2016), 399–417. https://doi.org/10.1007/s11704-015-5900-5

[54] Yifei Zhang, Yulei Sui, and Jingling Xue. 2018. Launch-Mode-Aware Context-Sensitive Activity Transition Analysis. In
Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 598–608. https://doi.org/10.1145/3180155.3180188

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1109/ASE51524.2021.9678778
https://doi.org/10.1109/ASE51524.2021.9678778
https://doi.org/10.1007/s11704-015-5900-5
https://doi.org/10.1145/3180155.3180188

	Abstract
	1 Introduction
	2 Background
	2.1 Model-based App Testing with ATUA
	2.2 RCVDiff

	3 Proposed Approach: CALM
	3.1 Step 1: Detect EWTG differences
	3.2 Step 2: Generate an Updated App model
	3.3 Step 3: Automated testing with runtime DSTG adaptation
	3.4 Step 4: Refine the App model offline.

	4 Empirical Evaluation
	4.1 Subjects of the study
	4.2 Experiment setup
	4.3 RQ1 - Test oracle cost
	4.4 RQ2 - Effectiveness for a given test budget
	4.5 RQ3 - Effectiveness over time
	4.6 RQ4 - Functional Faults Detection Capability
	4.7 Discussion
	4.8 Threats to validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

