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Abstract

Our goal is to produce a predictive model linking apparent shear rate with polymer die
swell for a single extrusion system. We propose the use of a Kennedy O’Hagan-type
approach for calibrating this model, where the die swell is modelled as a sum of a
deterministic simulator, a Gaussian process and an additive white noise term. For the
deterministic simulator we use a model that links the shear rate and two parameters
related to the shear–thinning and relaxation time of a polymer to the die swell. The
role of the Gaussian process is to capture the inherent structural uncertainty induced
by the missing physical processes such as wall slip and non-isothermal conditions in
the derivation of the simulator. The parameter calibration of the full model is per-
formed using a subjective Bayesian methodology where the solution is characterised
by the posterior distribution of the parameters given the observed data. We condi-
tion our model on experimental data produced from a capillary rheometer fitted with
a laser-based die swell measurement system. We implement the models using a high–
level probabilistic programming language and explore the resulting posterior using the
No–U–Turn Sampler (NUTS). Our results show that the experimental swell data leads
to a contraction in the posterior distribution with respect to the prior on the param-
eter related to the relaxation time of the polymer. In addition we demonstrate that
the Kennedy O’Hagan-type model structure leads to improved fit of the model within
the range of experimental data without sacrificing the simulator’s extrapolative power
outside.

1. Introduction

Extrusion is the process of forcing materials through a die to create products of
desired cross sectional shape, e.g. pipes, tyre treads, synthetic fibres, polymer sheets
or even pasta [45]. Because of the phenomenon of die swell [50] it is almost always
the case that the dimensions of the final extrudate does not correspond with the shape
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of the die. In the context of the design of extrusion processes, a model directly linking
process parameters (e.g. die geometry, chemical and physical properties of materials,
temperature, pressure) with final extrudate shape would be an important tool for en-
gineers involved in optimisation, uncertainty quantification and sensitivity analysis of
production processes based on extrusion.

The predictive simulation of complex fluid problems, of which polymer die swell
is an important example [50], remains an ongoing challenge both in terms of model
specification (e.g. constitutive model development [42, 61] and calibration [43]) and
numerical solution techniques (e.g. the development of robust and stable discretisation
methods [26, 15, 9]). In particular for viscoelastic systems, the unsolved difficulties in
the numerical resolution of viscoelastic flows at high Weissenberg (Wi) numbers (the
ratio of intrinsic to experimental time scales) still place limits on their practical range
of applicability [30]. In addition to these numerical issues, the inherent complexities
of the physical processes present in a typical extrusion system, such as non-isothermal
conditions [40, 16], slip boundary conditions [36, 27], multiple time-scales [61] and
multi-phase flow [33] make even appropriate model specification challenging. Given
these considerable complexities, it is nearly inevitable that even a state-of-the-art cali-
brated numerical model of die swell will show some level of model discrepancy (struc-
tural uncertainty, model inadequacy, model bias), that is, the inability of the model to
reproduce reality [38, 31].

The central idea of this paper is to tackle the problem of producing a predictive
model of die swell using a data–informed Bayesian calibration approach. Our direction
is orthogonal to tackling the important underlying numerical and modelling challenges
in viscoelastic flow outlined in the previous paragraph. We simply assume that both a
set of experimental data and a reasonable predictive model of die swell exists, and that
we would like to incorporate the data into the model such that it provides a reasonable
prediction within the range of acquired data, and reasonable extrapolative power out-
side of that range. It is well-known that purely data-driven approaches often struggle
with extrapolation, even with large datasets [1, 6], and that physics-based approaches
often do not adequately capture the behaviour of the real system due to incorrect and/or
incomplete modelling assumptions.

A concise summary of the key ingredients of our study is as follows:

1. A set of experimental data acquired from a capillary rheometer fitted with a
laser-based system for measuring die swell. Our model polymer is an uncured
Styrene-Butadiene Rubber (SBR) compound [45]. SBR is the main constituent
of tires and is therefore of interest as a model system for our industrial partner,
the Goodyear Tire and Rubber Company. The experimental setup is essentially
a lab-scale extrusion system and it shares many of the aforementioned complex-
ities of the industrial scale extruders present in Goodyear’s production facilities.

2. A simple and cheap semi-empirical model, attributable to Tanner [52], linking
shear rate and two (a priori unknown) constitutive parameters to die swell in
an axisymmetric geometry. Its role in our study is to act as a sufficiently good
model capturing the main experimental trend in the die swell data.

3. A Kennedy O’Hagan (KOH) type Bayesian calibration scheme [29], that ac-
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counts uncertainty when calibrating Tanner’s model (2.) using the experimental
data from the lab-scale extrusion system (1.). A key feature of the KOH-type
approaches is an additive model structure that combines a physically-motivated
simulation with a data-centric Gaussian Process to close the discrepancy between
simulation and reality. The full Bayesian posterior is specified using a differ-
entiable probabilistic programming language, TensorFlow Probability [13, 14]
(TFP), and explored using the highly efficient No-U-Turn-Sampler (NUTS) [25].

We remark that the semi-empirical Tanner’s model could also be replaced with
a set of more expensive numerical simulator runs that could more accurately predict
die swell with fewer underlying modelling assumptions, e.g. Rheotool [39] or Ansys
Polyflow [51]. With this ‘expensive simulator’ case in mind, we also implement a
methodology attributable to Higdon et al. (HIG) [23] for simultaneously calibrating
the model and constructing a surrogate model from a limited budget of runs of the
Tanner model and compare its performance with the standard KOH approach.

Before outlining the content of the paper, we briefly make a few points about our
methodology in the broader context of Bayesian calibration of engineering and indus-
trial systems. Bayesian calibration is a principled way in which measured data and
prior information can be combined with model predictions in order to improve model
output. The KOH methodology is considered the ‘gold standard’ [59] for Bayesian
calibration methodologies in terms of its simultaneous ability to close model discrep-
ancy, calibrate the parameters of the simulator and provide interpretable output with
quantified uncertainty. The KOH methodology has been used to calibrate many types
of models e.g. building systems [59, 8, 7], electric motors [28], thermal problems [24],
nuclear weapons [22] and spot welding [2]. It is worth noting that model calibration
remains an active topic in theoretical research. For example, significant efforts have
been made to understand and alleviate identifiability issues with the KOH approach.
For example [41] presented an approach to improve identifiability by defining a Gaus-
sian Process that is orthogonal to the gradient of the simulation model, although at
considerable extra computational cost. The recent papers [57, 56] develop a frequen-
tist L2–calibration technique that is consistent and controls issues related to parameter
identifiability.

An outline of this paper is as follows. In section 2, we present the experimental
setup and procedure to produce the data used in the predictive modelling. We start with
introducing the (simple) physics based simulator and its calibration within the Bayesian
inference framework in section 3.1. We then present its counterpart, the purely data-
driven model based on Gaussian Processes and the calibration of its hyper-parameters
in section 3.2. Then, in section 3.3, we present the KOH model, which couples the
two previous approaches. Finally, the Higdon approach, as presented in section 3.4,
extends the KOH model by introducing a surrogate model for the simulator. The HIG
approach enables a numerically cost-efficient implementation of the KOH model even
for expensive numerical simulators.
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2. Experimental setup

2.1. Samples
A non–oil extended styrene-butadiene rubber (SBR) containing 27% of styrene has

been used as a model system for the present study. The SBR has a molecular weight
of 310 000gmol−1 (measured with gel permeation chromatography). The rubber is
unfilled.

2.2. Measurement of die swell
In order to calibrate the proposed models linking applied shear rate with die swell

we require a data set from an extrusion process. Figure 1 shows a schematic drawing
of the experimental setup used.

Figure 1: Schematic drawing of experimental setup

We use a commercial capillary rheometer (Rheograph 25 from Göttfert) in com-
bination with a laser based die swell tester (also from Göttfert). Capillary rheometers
are based on the same physical principle (see e.g. [32]) as extrusion machines used
in production processes: pressure driven flow through dies. In the experimental setup
used for this study, the sample is pressed by a piston through a die with the shape of a
cylindrical capillary. First, the sample under investigation is placed into the barrel of
the capillary rheometer with radius rb = 15mm and heated to T = 120◦C. The piston,
moving at a controlled velocity vpist, pushes the sample through the capillary of radius
rc = 1mm. As the radius of the capillary is significantly smaller than the radius of the
barrel the velocity of the extrudate vext will be higher than the velocity of the piston
vpist. The volumetric flow rate inside the barrel is given by

Qbarrel = πr2bv
pist. (1)

Similarly, the volumetric flow rate inside the capillary is given by

Qcap = πr2cv
ext. (2)

4



Assuming incompressibility, we can define Q := Qcap = Qbarrel allowing us to define
the apparent shear rate in the capillary as

γ̇w =
4Q

πr3c
. (3)

By controlling the piston’s velocity, the apparent shear rate γ̇w is controlled during
the experiments. Classical flow curves, i.e. measurement of pressure as a function of
increasing shear rates have been recorded. Data is only recorded when steady flow con-
ditions have been reached. For more details about the experimental procedure please
refer to [17]. For this study, the pressure data is not used but only data of the extru-
date’s swell together with the related shear rates. To capture the swell of the extrudate
at the die’s exit, a commercial system from Göttfert (”Die Swell Tester”) is used [3].
This device is capable of directly measuring the die swell at a single given distance
(60mm) from the die exit during the extrusion process. The laser emits an almost two-
dimensional fan-shaped laser beam that illuminates the extrudate. At the opposite side,
there is a line detector which records the extrudate’s thickness in a plane perpendicular
to the die’s exit. Extrudate thicknesses can be measured with this system in a range
from 0.15mm to 28mm with a standard deviation of ±3µm.

The acquired data used for the modelling in this study is presented in Figure 2.

1/s

Figure 2: Die swell vs. apparent shear rate data obtained from the capillary extrusion experiment, divided in
training and test data, as used for the calibration and validation of the models presented below

3. Mathematical models

For the presentation of the general mathematical models, which are not restricted
to die swell, we will use an independent and condensed notation for the experimental
data of section 2, consisting of Nobs scalar inputs from some input set U ⊂ R, and
outputs from some output set V ⊂ R,

{(xobs
j , yobsj ) | xobs

j ∈ U , yobsj ∈ V, j = 1, . . . , Nobs},
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and define

xobs = (xobs
j )j=1,...,Nobs

, yobs = (yobsj )j=1,...,Nobs
.

We further assume that the only source of randomness in the data is the measurement
noise on the experimental output, and that this noise is Gaussian white noise with a
known variance,

ϵobsj ∼iid N (0, σ2
obs). (4)

We will present in this section four different modelling approaches applied on the
experimentally obtained die swell data. Our main focus lies in the comparison of the
models’ performance in predicting die swell inside as well as outside the training range.
We will also regard the calibration of model parameters, where we differentiate be-
tween the physics model (material) parameters, and the hyper–parameters of the prob-
abilistic models, which are in our case the parameters defining the Gaussian Processes.
We thus conduct a fully Bayesian inference for each of the model problems.

3.1. Deterministic model: Tanner’s formula

A simple analytical model for the prediction of die swell for single–mode Oldroyd–
B viscoelastic fluids is given by Tanner’s formula [52, 53, 58, 46], which relates the
recoverable stress at the die wall, σw, which is the first normal stress difference divided
by the wall shear stress, to extrudate swell S = rextrudate

rdie
. For axisymmetric dies the

model can be written

S =
(
1 +

σ2
w

2

) 1
6

+ 0.13, (5)

where the last, constant summand is such as to fit measurements for Newtonian fluids,
for which the the first normal stress difference is zero. Assuming a fully developed
Poiseuille flow in the capillary, σw can be expressed as a function of relaxation time λ,
solvent viscosity ratio β = ηs

η , and wall shear rate x = γ̇w,

σw = (1− β)λx, (6)

by exploiting the analytical solution (cf. e.g. [34]).
For what follows, we introduce the notations for the material parameters, θ :=

(β, λ), and for the simple predictive die swell simulator, obtained by substituting (6)
into (5),

ηsim(x,θ) :=
(
1 +

(1− β)2λ2x2

2

) 1
6

+ 0.13. (7)

The key advantage of Tanner’s formula is that it is an algebraic expression, so no
numerical flow simulation has to be carried out. In our experience numerical simu-
lations of die swell typically take on the order of hours to run. On the other hand,
Tanner’s formula relies on gross oversimplifications, such as neglecting die exit effects
and the multiple relaxation times of most complex viscoelastic fluids, which means that
it is only strictly valid in suitable regimes [50] (simple fluids e.g. polyvinyl chloride
(PVC) and polyethylene (PE) and at low Weissenberg numbers, respectively).
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In order to justify this simple model choice as the one proposed by Tanner [52],
we make reference to a study [10] that presents in Fig. 7(a) a comparison of nu-
merical planar swell predictions between a state-of-the-art Eulerian free–surface flow
solver [10], the Rheotool solver [39], Tanner’s model [52, 53], and three other numeri-
cal studies [55, 11, 19]. Firstly, starting at even at relatively low Weissenberg numbers
(Wi > 1.5) the numerical solvers are prone to small ripples and self-sustained sur-
face oscillations at the free surface of the extrudate, which is attributed by the authors
of [10] to numerical, rather than physical instabilities. Secondly, the discrepancy be-
tween predicted swell ratios at the largest Weissenberg number Wi = 2.5 is not small
(Rheotool [39]: S ∼ 1.63, Habla et al. [19]: S ∼ 1.52), suggesting that there is sig-
nificant differences between numerical simulations of the same phenomenon. Finally,
Tanner’s model, despite being based on many simplifying assumptions, does seem to
provide a reasonable prediction of die swell (S ∼ 1.48 at Wi = 2.5), suggesting that
it could be a parsimonious and computationally inexpensive choice for our Bayesian
calibration study. We also remark that after calibration our final Weissenberg numbers
are on the order of 10 which constitutes a challenge even for state-of-the-art numerical
solvers [10].

3.1.1. Inference on model parameters (calibration)
The parameters θ ∈ RNpar , Npar = 2, occurring in Tanner’s formula are not

known, in general, and have to be calibrated by means of the training data.
Let us assume that Tanner’s formula can principally reproduce reality, i.e.

yobsj = ηsim(xobs
j ,θ) + ϵobsj , (8)

where ηsim : U × RNpar → V is the simulator as defined in (7).
Let us now use the experimental data for inference on θ in the Bayesian statistics

framework, where we want to quantitatively analyse the posterior PDF for this model
problem,

p(θ | yobs) ∝ p(yobs | θ)p0(θ). (9)

From equations (8) and (4), we have

yobsj − ηsim(xobs
j ,θ) ∼iid N (0, σ2

obs), ∀j = 1, . . . , Nobs,

and hence,
yobs

∣∣ θ ∼ N (ηsim(xobs,θ), σ2
obsI),

which defines the likelihood function p(yobs | θ).
The prior PDF p0(θ) used here is reported in table 5.
Next to a successful regression, we will want to exploit the model for making pre-

dictions. Therefore, let us define xpred = (xpred
j )j=1,...,Npred

, the set of inputs, and
ypred = (ypredj )j=1,...,Npred

, the set of outputs for the predictions. We assume that the
model (8) also holds for the predictions, s.t. we have

ypred
∣∣ θ ∼ N (ηsim(xpred,θ), σ2

obsI).
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θ

yobs

ypred

ηsim(xobs,θ)

ηsim(xpred,θ)

Figure 3: Bayesian graphical model for the calibration of the simulator. The nodes with a full line contour
indicate random variables. The filled node represents an observed quantity, and the unfilled nodes represent
unobserved quantities. The nodes with a dashed line contour indicate deterministic transformations of the
upstream nodes

Concretely, predictions are obtained by sampling from the posterior predictive (PP)
distribution,

pPP(y
pred | yobs) =

∫
p(ypred

∣∣ θ)p(θ ∣∣ yobs)dθ.

For the PP expectation, we have

E[ypred | yobs] =

∫
E[ypred | θ]p(θ

∣∣ yobs)dθ = E[ηsim(xpred,θ) | yobs].

Note that the PP distribution can be used for posterior predictive checking (PPC) by
setting xpred = xobs. For the numerical tests, we define xpred as a homogeneous
discretisation of the input space U , and include ypred in the MCMC sampling from
the (enriched) posterior PDF, which is just the integrand of the PP distribution. This
method of making predictions differs from classical statistics, where predictions would
be drawn from the calibrated model, as

ypred⋆
∣∣ yobs ∼ N (ηsim(xpred,θ⋆), σ2

obsI),

where θ⋆ is the calibrated parameter set, which would usually be the Maximum Like-
lihood Estimate (MLE), and could be generalised to be, e.g. the posterior mean or the
Maximum A Posteriori estimate (MAP), in a BI setting.

3.1.2. Numerical results
We implement the Bayesian models in the TensorFlow Probability (TFP) frame-

work [14], a Python library that allows the straightforward expression of probabilistic
models as code. Because TFP builds on top of TensorFlow (TF) [13] the models can
automatically be compiled using the XLA (Accelerated Linear Algebra) compiler into
optimal machine code targeting a variety of hardware backends. Perhaps most im-
portantly, TF provides forward (tangent-linear) and reverse (adjoint) mode automatic
differentiation to efficiently calculate first and higher-order derivatives of the Bayesian
posterior with respect to the underlying parameters. These derivatives are necessary
in order to use modern high-acceptance rate MCMC algorithms such as Hamiltonian
Monte Carlo (HMC) [12, 4] or the No-U-Turn-Sampler (NUTS) [25] that we use to

8



explore the Bayesian posterior. TFP is not unique; similar software methodologies are
can be found in packages such as Stan [54] and PyMC3 [48]. For our purposes we
found TFP to be attractive as it is provides high-level building blocks for probabilis-
tic programming while still allowing non-standard operations to be performed using
low-level TF functions.

The probabilistic inference problems were executed on a server fitted with two
AMD EPYC 7742 CPUs with 64 cores per socket, 2TB of system memory and three
NVIDIA Tesla V100 Graphics Processing Units (GPUs) with 32GB of memory each.
We used the official TensorFlow 2.6.1 GPU-enabled Docker image with support for the
CUDA backend. We used the Podman container engine to run the images [20]. Overall
runtime was dominated by the expensive Cholesky decomposition of the covariance
matrix in the Gaussian Process model. To ensure numerical stability TensorFlow was
set to use double precision for all arithmetic operations.

For each inference problem three MCMC chains were executed in parallel, one per
GPU. The chains were started at random points in parameter space and were then ad-
vanced using the NUTS sampler [25] in conjunction with a transformed transition ker-
nel [18, 37] which enables the chain to operate in unconstrained space (Rn) rather than
the natural but constrained space imposed by the original definition of the probabilis-
tic problem. The step-size was tuned automatically using a dual averaging policy [35]
for an acceptance rate of around 0.6. We found this combination of algorithms to be
robust, reasonably performant and largely free of problem-specific parameter tuning.
Standard MCMC chain diagnostics were performed including auto-correlation plots
and trace plots.

Table 1: SIM. Summary statistics on the parameters. Number of training points Nobs = 6, Number of
predictions Npred = 100, Number of MCMC samples = 104, MCMC acceptance ratio = 0.69.

Posterior Prior
mean stddev mean stddev

λ 0.58 0.05 1.0 0.45
β 0.1 0.04 0.1 0.04

.

3.2. Purely data–driven ML approach

An alternative to deterministic models like Tanner’s formula are purely data driven
models, which rely on the experimental data exclusively. In a first step, we postulate

yobsj = ηGP(xobs
j ) + ϵobsj , ∀j = 1, . . . , Nobs, (10)

assuming that the experimental observations can be reproduced, up to measurement
noise, by evaluating the objective function for our regression, ηGP, at the training data
abscissas. Common surrogate models for ηGP are, e.g. Polynomial Chaos Expansions
(Pres) [60] or Gaussian Processes [44].

9



2 4 6 8 10 20
Shear Rate

1.2

1.4

1.6

1.8

2.0

2.2

Di
e 

Sw
el

l

training data
test data
pred. model (post. mean)
PP 95%
PP 75%
PPC 95%

1/s

Figure 4: Swell vs. shear rate. Results from the SIM approach. Number of training samples is 6 from phys-
ical experiments. Posterior mean for the simulation (dashed line) and the full predictive model (simulation
+ GP model discrepancy; full line) with its 95% credibility interval. Statistics from the posterior predictive
distribution are visualised in blue
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Figure 5: SIM. Approximation of the prior and posterior PDFs for the material parameters. The prior and
posterior PDFs are both symmetric in all parameters (horizontal and vertical directions, which means that
there is no correlation). The calibration yields a clear shift and tightening of the posterior for the relaxation
time λ, whereas the posterior for the solvent viscosity ratio β does barely change. This is due to the exclusive
use of die swell data for the calibration, as discussed below in section 4

Gaussian processes (GP).. In the present study, we use a Gaussian Process prior
model,

ηGP ∼ GP(µGP,ΣGP), (11)
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where µGP : U → R is the GP mean function, and ΣGP : U × U → R is the symmetric
positive-definite GP covariance kernel function. The statement (11) implies that for all
finite subsets U ⊂ U and for all x ∈ U ,

ηGP(x) ∼ N (µGP(x), (ΣGP(x, x
′))x′∈U ), (12)

which can be used for a discretisation of the GP model.
A Gaussian Process is well defined by its mean and covariance kernel functions.

In practice, one often uses parametric functions to represent the GP mean and covari-
ance functions (hierarchical models, see e.g. [29]) and thus reduces the inference on
infinite dimensional function spaces to an inference on some finite set of so-called
hyper–parameters, which we denote by νGP. When needed, we denote this dependence
explicitly with square brackets, as µGP[νGP], ΣGP[νGP]. An in-depth review on GP can
be found, e.g. in the textbook [44].

We now want to conduct a Bayesian regression on the data numerically. To this
aim, let us define the discrete set of input abscissas as xobs = (xobs

j )j=1,...,Nobs
. Let

us furthermore convene an abuse of notation, analogously to operator overloading in
programming languages,

ηGP(x) = (ηGP(x))x∈x, µGP(x) = (µGP(x))x∈x, ΣGP(x,x
′) = (ΣGP(x, x

′))x∈x,x′∈x′ ,

for any x,x′ ⊂ U .
The Bayesian model then writes

p
(
ηGP(xobs),νGP

∣∣ yobs
)
∝ p

(
yobs

∣∣ ηGP(xobs),νGP

)
p0(η

GP(xobs),νGP).

From equation (10), the likelihood function has a structure inherited from the noise
PDF, and does not depend on the hyper–parameters directly, i.e.

yobs | ηGP(xobs),νGP = yobs | ηGP(xobs) ∼ N
(
ηGP(xobs), σ2

obsI
)
. (13)

The prior in the Bayesian model is hierarchically defined. From (12), the prior on the
GP is a multivariate Gaussian,

p0(η
GP(xobs) | νGP) = N (µGP[νGP](x

obs),ΣGP[νGP](x
obs,xobs)),

The prior on the hyper–parameters, p0(νGP), has to be set as discussed below. By the
chain rule of probability, we have for the full joint prior,

p0(η
GP(xobs),νGP) = p0(η

GP(xobs) | νGP)p0(νGP).

The posterior predictive distribution for this model is

pPP(y
pred | yobs) =

∫
p
(
ypred

∣∣ ηGP(xpred)
)
p
(
ηGP(xpred)

∣∣ ηGP(xobs),νGP

)
× p

(
ηGP(xobs),νGP

∣∣ yobs
)
dηGP(xpred)dηGP(xobs)dνGP.
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ηGP(xobs) yobs

ypredηGP(xpred)

νGP

Figure 6: Bayesian graphical model for the GP regression. The nodes with a full line contour indicate random
variables. The filled node represents an observed quantity, and the un–filled nodes represent un–observed
quantities

We assume the validity of relation (10) for the predictions, s.t. we have

ypred | ηGP(xpred) ∼ N
(
ηGP(xpred), σ2

obsI
)
.

Consequently, it holds for the PP expectation,

E[ypred | yobs] = E[ηGP(xpred) | yobs].

Furthermore, from [44, Eq. (A.6)] the conditioned GP obeys the relation

ηGP(xpred)
∣∣ ηGP(xobs),νGP

∼ N
(
µGP[νGP](x

pred)− Σ−1
GP [νGP](x

pred,xpred)ΣGP[νGP](x
pred,xobs)

×
(
ηGP(xobs)− µGP[νGP](x

obs)
)
,Σ−1

GP [νGP](x
pred,xpred)

)
.

(14)

3.2.1. Numerical Results
The TensorFlow Probability framework (TFP) offers an intuitive way of imple-

menting Bayesian models, in the sense that TFP code typcally resembles the mathe-
matical formlae from above. It contains many PDFs, and as an open source code, it is
highly customizable, s.t. we can easily define our priors hierarchically. As covariance
kernel function, we choose the so–called “squared exponential”, “Gaussian” or “radial
basis function”

k(x,y) = σ2
GPe

−∥x−y∥2

2LGP
2 , (15)

which contains as hyper–parameters the standard deviation at any given input x, σGP =√
k(x,x), and the correlation length LGP. It is a standard GP kernel and provided by

TFP. Following the literature [29, 47, 44], we parametrize the GP mean function to be
constant,

µGP(x) = cGP, (16)

the posterior mean function being implicitly approximated from discretised Gaussian
Process realisations, conditioned on the observations. Hence,

νGP = (cGP, σGP, LGP). (17)
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For the actual choice of the priors (cf. table 5), we rely on the following consid-
erations. The length scale parameter should not be too small, because we believe that
extrudate swell is a continuous and rather smooth process, nor should it be too big
in order that the model can capture small-scale local effects. We choose a truncated
normal prior with a maximum at 1/5 of the domain of consideration. The amplitude
parameter reflects the accuracy of the model output, i.e. the absolute deviation of the
model output from its parameterised mean, |ηGP − cGP|. Its prior should take this into
account, and might not promote values smaller than the experimental noise. We choose
an inverse–gamma distribution with a maximum at 1/10 and a mean at 1/6. The prior
for the constant mean function was set at a value of 1.5 based on the assumption that
swell should not drop below 1.0 and will probably not grow too large over the range of
applied shear rate.

The number of considered samples and burn–in steps are reported in the corre-
sponding figures.

Table 2: ML. Summary statistics on the parameters. Number of training points Nobs = 6, Number of
predictions Npred = 100, Number of MCMC samples = 104, MCMC acceptance ratio = 0.63.

Posterior Prior
mean stddev mean stddev

cGP 1.49 0.04 1.48 0.06
σGP 0.07 0.03 0.08 0.04
LGP 0.65 0.18 0.61 0.19
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Figure 7: Swell vs. shear rate. Results from the ML approach. Number of training samples is 6 from physical
experiments. Posterior mean for the full predictive model with its 95% credibility interval. Statistics from
the posterior predictive distribution are visualised in blue
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Figure 8: ML. Approximation of the prior (orange) and posterior (blue) PDFs for the GP hyper-parameters.
The prior PDF is symmetric in all parameters, meaning that there is no correlation. The posterior PDF does
not differ much form the prior specification, which is expected, as the amount of observed data is too low
too have a strong impact on a plausible prior

3.3. Kennedy & O’Hagan approach: model discrepancy
In this section, we outline how to take into account the inherent uncertainty of deter-

ministic modelling and simulation in a statistical regression framework. Following the
seminal paper [29], we can combine the previous two approaches, in that we conduct
a calibration of the physics model parameters θ and introduce a GP model discrepancy
term for simultaneous regression.

The model writes

yobsj = ηsim(xobs
j ,θ) + ηGP(xobs

j ) + ϵobsj , ∀j = 1, . . . , Nobs, (18)

ηGP ∼ GP(µGP,ΣGP), (19)

where ηsim : U × RNpar → V represents the simulator, and ηGP : U → V is the model
discrepancy function described as a GP.

The associated Bayesian model then writes

p
(
ηGP(xobs),νGP,θ

∣∣ yobs
)
∝ p

(
yobs

∣∣ ηGP(xobs),νGP,θ
)
p0

(
ηGP(xobs),νGP,θ

)
.

From equation (18), we deduce for the likelihood function,

yobs | ηGP(xobs),θ ∼ N
(
ηsim(xobs,θ) + ηGP(xobs), σ2

obsI
)
. (20)

The prior in the Bayesian model is, again, hierarchically defined, due to the GP. From
(12), the prior on ηGP(xobs) is a multivariate Gaussian,

p0(η
GP(xobs) | νGP) = N (µGP(x

obs),ΣGP[νGP](x
obs,xobs)),
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The priors for the physical parameters θ and the hyper–parameters νGP can reasonably
be assumed independent, i.e.

p0(νGP,θ) = p0(νGP)p0(θ),

and are set according to table 5. By the chain rule of probability (and the just stated
independence), we have for the full joint prior,

p0(η
GP(xobs),νGP,θ) = p0(η

GP(xobs) | νGP)p0(νGP)p0(θ).

ηsim(xpred,θ)

θ

yobs

ypredηGP(xpred)

νGP

ηsim(xobs,θ)ηGP(xobs)

Figure 9: Bayesian graphical model for the KOH approach. The nodes with a full line contour indicate ran-
dom variables. The filled node represents an observed quantity, and the unfilled nodes represent unobserved
quantities. The nodes with a dashed line contour indicate deterministic transformations of the upstream
nodes

The posterior predictive distribution is,

pPP

(
ypred

∣∣ yobs
)

=

∫
p
(
ypred

∣∣ ηGP(xpred),θ
)
p
(
ηGP(xpred)

∣∣ ηGP(xobs),νGP

)
× p

(
ηGP(xobs),νGP,θ

∣∣ yobs
)
dηGP(xpred)dηGP(xobs)dνGPdθ.

Assuming the validity of relation (18) for the predictions, we have

ypred | ηGP(xpred),θ ∼ N
(
ηsim(xpred,θ) + ηGP(xpred), σ2

obsI
)
,

and hence

E[ypred | yobs] = E[ηsim(xpred,θ) + ηGP(xpred) | yobs].

For the conditioned GP, ηGP(xpred)
∣∣ ηGP(xobs),νGP, equation (14) holds true.

3.3.1. Numerical results
We again use the squared exponential GP covariance function (15), and a constant

mean function, s.t. we have νGP = (cGP, σGP, LGP). The prior for cGP is set around
zero, as we assume the model discrepancy term to be small, and do not have any prior
evidence of its sign.
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In TFP, we build up the joint PDF for the full model, step by step. Let us first define
the priors for the GP hyper–parameters.

def prior_mean():
return tfd.Normal(loc=0., name="mean")

def prior_amplitude():
return tfd.InverseGamma(concentration, scale, name="amplitude")

def prior_length_scale():
return tfd.TruncatedNormal(loc, scale, low, high, name="length_scale" )

As already mentioned, we define xpred as a homogeneous discretisation of the input
space U , and include ypred in the MCMC sampling from the (enriched) posterior PDF.
We hence define the discretised GP over the input abscissas {xobs,xpred}, containing
both, inputs for observations and predictions. The GP prior depends now on the hyper–
parameters νGP and can be defined as follows.

def prior_GP(length_scale, amplitude, mean):
kernel = tensorflow_probability.math.psd_kernels.ExponentiatedQuadratic(

amplitude, length_scale)
kernel_matrix = kernel.matrix(

tnp.concatenate((x_obs, x_pred)), tnp.concatenate((x_obs, x_pred)))
kernel_matrix = tf.linalg.set_diag(

kernel_matrix, tf.linalg.diag_part(kernel_matrix) + 1E-5) # Add jitter
scale = tf.linalg.LinearOperatorLowerTriangular(

tf.linalg.cholesky(kernel_matrix))
return tfd.MultivariateNormalLinearOperator(

loc=mean, scale=scale, name="GP")

The prior for the physical parameters is defined separately,

def prior_theta():
return tfd.Sample(tfd.Beta(concentration1, concentration0),

sample_shape=2, name="theta")

The likelihood function can be defined as

def likelihood(theta, GP):
loc = GP[0:len(x_obs)] + f_sim(x_obs,theta)
return tfd.MultivariateNormalDiag(

loc, scale_identity_multiplier=noise_stddev, name="observations")

Now, a full joint PDF for the model problem can be constructed by means of the chain
rule of probability,
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model = tfd.JointDistributionSequentialAutoBatched( [
prior_mean,
prior_amplitude,
prior_length_scale,
prior_GP,
prior_theta,
likelihood])

and subsequently be conditioned by the observed data,

model_conditioned = model.experimental_pin(observations=y_obs)

Table 3: KOH. Summary statistics on the parameters. Number of training points Nobs = 6, Number of
predictions Npred = 100, Number of MCMC samples = 104, MCMC acceptance ratio = 0.64.

Posterior Prior
mean stddev mean stddev

λ 0.4 0.15 1.0 0.45
β 0.1 0.04 0.1 0.04
cGP 0.07 0.08 0.0 0.08
σGP 0.1 0.04 0.08 0.04
LGP 0.66 0.18 0.61 0.18
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Figure 10: Swell vs. shear rate. Results from the KOH approach. Number of training samples is 6 from
physical experiments. Posterior mean for the simulation (dashed line) and the full predictive model (sim-
ulation + GP model discrepancy; full line) with its 95% credibility interval. Statistics from the posterior
predictive distribution are visualized in blue
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Figure 11: KOH. Posterior mean and uncertainty intervals for the simulation output compared to the exact
simulations at the calibrated (posterior mean) model parameters θ⋆. The discrepancy between the predicted
vs. calibrated simulation output is due to the non linearity in θ of Tanner’s formula. Also note that, conse-
quently, the predicted simulation output need not obey Tanner’s formula any longer
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Figure 12: KOH. Approximation of the prior and posterior PDFs for the material parameters. The prior
and posterior PDFs are both showing no correlation. The calibration yields a clear shift and tightening of
the posterior for the relaxation time λ. The tightening is however less pronounced than in Fig. 5, which is
because of the presence of the MD term, which smooths the calibration procedure, as discussed below in
section 4

3.4. Higdon approach: model discrepancy and GP surrogate model

In the case of Tanner’s formula for die swell “simulation”, we can run the “simula-
tor” as often as we want, since it is a simple scalar algebraic formula. For computation-
ally more expensive simulators, e.g. a full fluid dynamics simulation, and for use cases
beyond die swell prediction, the number of simulation runs is typically bounded. In this
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Figure 13: KOH. Approximation of the prior (orange) and posterior (blue) PDFs for the GP hyper-parameters
The prior PDF is symmetric in all parameters, meaning that there is no correlation. The posterior PDF differs
more form the prior specification than it does for the ML model. This is due to the presence of the physical
simulator, which imposes a bias on the ML module, which is the MD term within the KOH model.

case, most of the literature is concerned model order reduction (MOR), i.e. with estab-
lishing a cheap surrogate model, which approximates the original simulator (e.g. [47]).
In this context, parametric approaches, such as PCEs, and non parametric approaches,
such as GPs, are both widely used. Only a few literature exist for combining MOR
with the KOH approach. In [23], a method is developed, which represents the model
discrepancy term as well as the surrogate model for the simulator as GPs, and imple-
ments a simultaneous regression on these stochastic processes, their hyper–parameters,
and the physics model parameters. We will also apply and study this method on our
example.

In order to define a surrogate η̃sim for ηsim as a GP, the original domain U ⊂ R
of a scalar x–observable has to be extended to the whole space U × RNpar of inputs
to the simulator. This extension is straightforward, and we refer to the literature for a
detailed presentation on multi–dimensional input space GPs [44]. The data from the
limited number of simulation runs consists of Nsim inputs

(xsim, tsim) = (xsim
j ,θsim

j )j=1,...,Nsim ⊂ U × RNpar ,

and scalar outputs
ysim = (ysimj )j=1,...,Nsim ⊂ V.

We further allow for some Gaussian white noise in the data and assume the variance to
be known,

ϵsimj ∼iid N (0, σ̃2
sim). (21)

Concerning the model discrepancy term, we will model ηGP as a GP, as before in the
KOH approach.
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The full model then writes,

yobsj = η̃sim(xobs
j ,θ) + ηGP(xobs

j ) + ϵobsj + ϵsimj , ∀j = 1, . . . , Nobs,

(22)

η̃sim(xsim
j ,θsim

j ) = ηsim(xsim
j ,θsim

j ) + ϵsimj , ∀j = 1, . . . , Nsim, (23)

η̃sim ∼ GP(µ̃sim, Σ̃sim), (24)
ηGP ∼ GP(µGP,ΣGP). (25)

The associated Bayesian model is

p
(
ηGP(xobs),νGP, η̃

sim(xobs,θ), ν̃sim,θ
∣∣ yobs, ysim

)
∝ p

(
yobs, ysim

∣∣ ηGP(xobs),νGP, η̃
sim(xobs,θ), η̃sim(xsim, tsim), ν̃sim,θ

)
p0

(
ηGP(xobs),νGP, η̃

sim(xobs,θ), η̃sim(xsim, tsim), ν̃sim,θ
)
.

From equations (22), (23), we deduce for the likelihood function,[
yobs

ysim

] ∣∣∣ ηGP(xobs), η̃sim(xobs,θ), η̃sim(xsim, tsim),θ (26)

∼ N
([

η̃sim(xobs,θ) + ηGP(xobs)

η̃sim(xsim, tsim)

]
,

[
(σ2

obs + σ̃2
sim)I 0

0 σ̃2
simI

])
. (27)

The priors can be set up independently, for each of the GPs, using again a hierarchical
definition. For the model discrepancy prior, we have

p0

(
ηGP(xobs),νGP

)
= p0

(
ηGP(xobs)

∣∣ νGP

)
p0(νGP),

with (from the GP definition (12)),

p0

(
ηGP(xobs)

∣∣ νGP

)
= N

(
µGP(x

obs),ΣGP[νGP](x
obs,xobs)

)
,

and a prior on νGP as reported in table 5.
For the surrogate simulator, we have

p0

(
η̃sim(xobs,θ), η̃sim(xsim, tsim), ν̃sim,θ

)
= p0

(
η̃sim(xobs,θ), η̃sim(xsim, tsim) | ν̃sim,θ

)
p0(ν̃sim)p0(θ),

with (cf. equation (12)),

p0

(
η̃sim(xobs,θ), η̃sim(xsim, tsim) | ν̃sim,θ

)
= N

([
µ̃sim(x

obs,θ)

µ̃sim(xsim, tsim)

]
,

[
Σ̃sim[ν̃sim]

(
(xobs,θ), (xobs,θ)

)
Σ̃sim[ν̃sim]

(
(xobs,θ), (xsim, tsim)

)
Σ̃sim[ν̃sim]

(
(xsim, tsim), (xobs,θ)

)
Σ̃sim[ν̃sim]

(
(xsim, tsim), (xsim, tsim)

)])
.
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The priors for the physical parameters θ and the hyper–parameters νGP can reasonably
be assumed independent, i.e.

p0(νGP,θ) = p0(νGP)p0(θ),

and are set according to table 5.
By the chain rule of probability (and the just stated independence), we have for the

full joint prior,

p0

(
ηGP(xobs),νGP, η̃

sim(xobs,θ), η̃sim(xsim, tsim), ν̃sim,θ
)

= p0

(
ηGP(xobs)

∣∣ νGP

)
p0(νGP)p0

(
η̃sim(xobs,θ), η̃sim(xsim, tsim) | ν̃sim,θ

)
p0(ν̃sim)p0(θ).

θ

yobs

ypredηGP(xpred)

νGP

η̃sim(xobs,θ)

η̃sim(xpred,θ)

ysim η̃sim(xsim, tsim)

ν̃GP

ηGP(xobs)

Figure 14: Bayesian graphical model for Higdon’s approach. The nodes with a full line contour indicate
random variables. The filled nodes represent observed quantities, and the un–filled nodes represent un–
observed quantities

The posterior predictive distribution is,

pPP

(
ypred

∣∣ yobs, ysim
)

=

∫
p
(
ypred

∣∣ ηGP(xpred), η̃sim(xpred,θ)
)
p
(
ηGP(xpred)

∣∣ ηGP(xobs),νGP

)
× p

(
η̃sim(xpred,θ)

∣∣ η̃sim(xobs,θ), η̃sim(xsim, tsim), ν̃sim,θ
)

× p
(
ηGP(xobs),νGP, η̃

sim(xobs,θ), η̃sim(xsim, tsim), ν̃sim,θ
∣∣ yobs, ysim

)
× dηGP(xpred)dηGP(xobs)dνGPdη̃

sim(xpred,θ)dη̃sim(xobs,θ)dη̃sim(xsim, tsim)dν̃simdθ.

Applying (23) on the predictive data, we obtain

ypred
∣∣ ηGP(xpred), η̃sim(xpred,θ),θ ∼ N

(
η̃sim(xpred,θ) + ηGP(xpred), (σ2

obs + σ̃2
sim)I

)
,

E[ypred | yobs] = E[η̃sim(xpred,θ) + ηGP(xpred) | yobs].
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For the conditioned GP, ηGP(xpred)
∣∣ ηGP(xobs),νGP, equation (14) holds true. For

η̃sim(xpred,θ)
∣∣ η̃sim(xobs,θ), η̃sim(xsim, tsim), ν̃sim,θ, an analogous formula can be

derived.

3.4.1. Numerical results
We use the squared exponential GP covariance function (15), for both GPs, s.t. we

have νGP = (σGP, LGP) and ν̃sim = (σ̃sim, L̃sim).
The Nsim abscissas used for the acquisition of training data from the simulator are

obtained taking a tensor product of 10 samples in one-dimensional the x-space (shear
rates) with 20 Latin Hypercube samples in the two-dimensional θ-space (material pa-
rameters), giving 200 data points in total.

Table 4: Higdon. Summary statistics on the parameters. Number of training points Nobs = 6, Nsim = 200,
Number of predictions Npred = 50, Number of MCMC samples = 5 × 104, MCMC acceptance ratio
= 0.6475.

Posterior Prior
mean stddev mean stddev

λ 0.4 0.15 1.0 0.45
β 0.1 0.04 0.1 0.04
cGP 0.06 0.07 0.0 0.08
σGP 0.11 0.04 0.08 0.04
LGP 0.66 0.18 0.61 0.18
c̃sim 1.77 0.2 1.8 0.38
σ̃sim 0.45 0.07 0.46 0.46
L̃sim (1.2, 0.74, 0.93) (0.1, 0.05, 0.21) (0.61, 0.37, 0.79) (0.18, 0.11, 0.23)

4. Discussion

The main two outputs from our modelling and analysis are

• The predictive function linking shear rate (etc.) with extrudate shape (die swell),
including uncertainty intervals.

• The calibration of the physics and statistics based parameters, including sum-
mary statistics.

We compared different modelling approaches, namely a pure physics–based model
(Tanner’s formula for die swell; SIM), a purely data–driven model (ML) using Gaus-
sian processes (GPs), and a additive blend of both (KOH and HIG approaches). All of
these models yield predictive functions and uncertainty intervals for die swell, but the
ML model can not be used for the calibration of material parameters, since of course
they do not appear in its mathematical formulation. We used Bayesian statistics to cal-
ibrate the model (hyper–)parameters on the data. The priors on the hyper–parameters
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Figure 15: Swell vs. shear rate. Results from the Higdon approach. Number of training samples is 6
from physical experiments and 63 from simulation runs. GP posterior mean for the simulation (dashed line)
and the full predictive model (simulation + model discrepancy; full line) with its 95% credibility interval.
Statistics from the posterior predictive distribution are visualized in blue
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Figure 16: Posterior mean and uncertainty intervals for the simulation GP compared to the exact simulations
at the calibrated (posterior mean) model parameters θ⋆. The discrepancy between the predicted vs. calibrated
simulation output is due to the non linearity in θ of Tanner’s formula

(i.e. the parameters defining the GPs), rely on common–sense arguments, such as as-
suming a smooth relation between shear rate and swell encoded by the exponential
Gaussian function and a relatively long correlation length.

The SIM predictive model exhibits a clear model discrepancy. The best–fit resem-
bles a least–squares fit, meaning that the model error, expressed within the likelihood
PDF, overrules the prior specifications on the material parameters. The uncertainty
bounds are unrealistically small.

The ML model provides a better fit in the interpolation range of observed data. Out-
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Figure 17: Higdon. Approximation of the prior and posterior PDFs for the material parameters. The setup
and results are coinciding with the results from the KOH approach, cf. Fig. 12

side the interpolation range, its predictions converge towards its mean function, which
is parameterised as a constant in the present study, being a hyper–parameter in the full
BI framework. This is one of the major differences to the coupled physics–based and
data–driven KOH approach, which makes use of both the physics model and the Gaus-
sian Process-based MD within and outside the interpolation range. Thus, better results
can be expected with the KOH approach, when the physics–based simulator is assumed
to represent reality better than the mean of the available data. Tanner’s formula being
an asymptotic model for die swell at low shear rates, this cannot be affirmed here. Such
a study would require numerical simulations at high shear rates, which as we have dis-
cussed, suffer from instabilities due to the high Weissenberg number problem, and are
a current research challenge.

In the interpolation and close extrapolation range, the KOH predictive model gives
better results than the ML model. It is also more robust with respect to the prior spec-
ification of the GP hyper–parameters, since the GPs are only used to model the MD,
in the KOH approach. Importantly, it provides the calibrated material parameters. The
bias observed with the SIM model is due to the prior specification and to the MD term.
In our example, the SIM model conducts a calibration very close to least squares fitting
restricted to the range of available data. The MD term in the KOH model provides a
buffer biasing the fitting of the simulator, which we hope improves the accuracy out-
side the observation range. It might be argued that this also improves the quality of the
calibration, but a general assertion can not be made. An excellent discussion of these
issues can be found in [5].

The results from the HIG model were almost identical to those from the KOH
model, despite the fact we used a relatively coarse set of points on the parameter space
for the evaluation of Tanner’s formula. The integration of a surrogate model directly
within the Bayesian calibration framework seems to be straightforward.
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Figure 18: Higdon. Prior and posterior approximations
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Figure 19: Higdon. Prior and posterior approximations

25



0 10000 20000 30000 40000 50000
nb samples

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0 10000 20000 30000 40000 50000
nb samples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10000 20000 30000 40000 50000
nb samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SI
M

0 10000 20000 30000 40000 50000
nb samples

0.8

0.9

1.0

1.1

1.2

1.3

L x
,S

IM

0 10000 20000 30000 40000 50000
nb samples

0.4

0.6

0.8

1.0

1.2

L M
D

0 10000 20000 30000 40000 50000
nb samples

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
D

Figure 20: Higdon. MCMC. The sample chains mix well. The reconstructed posterior seems to be converged.
The posterior for the amplitude hyper–parameter is clearly not Gaussian, and is skewed towards the low side

We now discuss the parameter calibrations for Tanner’s model within the KOH
and HIG approaches, which as just discussed are practically identical. The relaxation
parameter λ within Tanner’s model appears to be reasonably well-informed by the data
with a significant shift from prior to posterior. This is not the case for the parameter β
related to the solvent viscosity ratio where the data is apparently not informative. This
is expected given the relative insensitivity of the swell with respect to the relaxation
time in Tanner’s model. If it is necessary to better identify β it would be prudent to
additionally use the pressure drop data from the capillary rheometer, i.e. to perform a
classical capillary rheometry test, in conjunction with a second equation linking β with
the pressure drop. We discuss this possibility further in the conclusions.

With regards to the hyper-parameter calibrations in the Gaussian Process models
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Table 5: Prior PDF specification and SI units (in square brackets) of the parameters. The SI unit of the shear
rate γ̇w is seconds [s]. Ticks / crosses indicate if the parameter appears in the formulation of the model (yes
/ no)

Parameters Distribution Hyper-parameters SIM ML KOH HIG

λ [s−1] Beta
scale α β

✓ X ✓ ✓
2.0 2.0 2.0

β [−] Beta
scale α β

✓ X ✓ ✓
0.2 2.0 2.0

cGP [−] TruncatedNormal
µ σ

X ✓ ✓ ✓
0.0 (1.5 ML) 0.08 (0.06 ML)

σGP [−] InverseGamma
α β

X ✓ ✓ ✓
5.5 0.35

LGP [s] TruncatedNormal
µ σ

X ✓ ✓ ✓
0.61 0.18

c̃sim [−] TruncatedNormal
µ σ

X X X ✓
1.8 0.4

σ̃sim [−] InverseGamma
α β

X X X ✓
3.0 0.9

L̃sim [s,−, s−1] TruncatedNormal
µ σ

X X X ✓
(0.6, 0.4, 0.8) (0.2, 0.1, 0.2)

in the KOH and HIG approaches we note that there is some information content in
the data that causes a posterior shift. Nevertheless, as always, in a low-data regime
such as this one and using data-centric models such as Gaussian Processes, care should
always be taken that the prior assumptions are appropriate, again see [5] for an excellent
discussion.

5. Conclusions

We have presented a Bayesian framework following the seminal works of Kennedy
and O’Hagan [29] and Higdon et al. [23] for calibrating a simple model of die–swell
using calibrated against data acquired from a laser measurement system connected to
a capillary rheometer. By comparing the calibrated KOH and HIG models with more
classical ML and SIM approaches we have shown that this approach could be a prag-
matic tool for creating a predictive model linking process parameters such as shear rate
and die swell. We wish to emphasise once more that our approach is not meant to
supplant advances in either experimental mechanics, constitutive model development
or computational mechanics, but can be seen as being complimentary in the sense that
it combines data from simulations and experiments sources in a principled way with
quantified uncertainty.

Before finishing, we briefly mention a few directions that we think are promising
for future investigations. With respect to obtaining data to identify the parameter β, it
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Table 6: Summary statistics from the posterior. Crosses indicate that the parameter does not appear in the
formulation of the model

SIM ML KOH HIG
mean stddev mean stddev mean stddev mean stddev

λ 0.58 0.05 X X 0.4 0.15 0.4 0.15
β 0.1 0.04 X X 0.1 0.04 0.1 0.04
cGP X X 1.49 0.04 0.07 0.08 0.06 0.07
σGP X X 0.07 0.03 0.1 0.04 0.11 0.04
LGP X X 0.65 0.18 0.66 0.18 0.66 0.18
c̃sim X X X X X X 1.77 0.2
σ̃sim X X X X X X 0.45 0.07
L̃sim X X X X X X (1.2, 0.74, 0.93) (0.1, 0.05, 0.21)

would be interesting to look models using a HIG-type approach with multiple outputs
(e.g. pressure drop and swell). This would be a relatively straightforward extension
of our work, the only missing piece being a simple model linking apparent shear rate
and pressure drop. This is where a numerical simulation of the full flow field would be
valuable, as pressure drop can be extracted relatively easily from a numerical simulator.

In this study we used classical Gaussian Process models for the discrepancy term in
both the KOH and HIG models. This means that samples of the swell ratio from these
models are not monotonically increasing in apparent shear rate, an assumption that
computer simulations of die swell, including the Tanner model, do tend to satisfy. With
the basic principle of incorporating the best possible prior assumptions into a model
(e.g. monotonically increasing die swell), it may be interesting to look at performing
KOH-type calibration with GP models that can incorporate such constraints, see e.g.
for a recent survey [49].

More broadly in terms of expanding the practical applications of our work, it would
be to look at the KOH calibration approach in the context of the ‘digital twin’ concept,
where a model of a physical system is continuously updated as new data is acquired.
This would more closely meet the requirements of performing calibration on the fac-
tory floor. Aside from the usual practical issues, from a computational point of view
he KOH methodology is known to scale at O(N3) in the number of data and predic-
tion points N due to the repeated Cholesky decomposition of a large dense covariance
matrix. Furthermore, it is well-known that even efficient Markov Chain methods such
as NUTS often still require thousands to tens of thousands of posterior evaluations
for converged statistics. For example, A recent paper proposes a KOH approach us-
ing particle filters [59], instead of Markov Chain methods, that seems to offer model
calibration times compatible with the real-time restrictions of digital twins.

6. Backmatter

Abbreviations.
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BI - Bayesian Inference.

GP - Gaussian Process.

GPU - Graphics Processing Unit.

HIG - Higdon.

KOH - Kennedy O’Hagan.

NUTS - No-U-Turn sampler.

MD - Model Discrepancy.

ML - Machine Learning.

PCE - Polynomial Chaos Expansion.

PDF - Probability Density Function.

PVC - Polyvinyl Chloride.

SBR - Styrene-Butadiene Rubber.

SIM - Simulation.

TF - TensorFlow.

TFP - TensorFlow Probability.

Wi - Weissenberg number.

XLA - Accelerated Linear Algebra.
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[61] Řehoř, M., Gansen, A., Sill, C., Polińska, P., Westermann, S., Dheur, J., Baller,
J., Hale, J.S., 2020. A comparison of constitutive models for describing the flow
of uncured styrene-butadiene rubber. Journal of Non-Newtonian Fluid Mechan-
ics 286, 104398. URL: http://www.sciencedirect.com/science/
article/pii/S0377025720301555, doi:10.1016/j.jnnfm.2020.
104398.

36

https://epubs.siam.org/doi/10.1137/151005841
http://dx.doi.org/10.1137/151005841
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-6/Efficient-calibration-for-imperfect-computer-models/10.1214/15-AOS1314.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-6/Efficient-calibration-for-imperfect-computer-models/10.1214/15-AOS1314.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-6/Efficient-calibration-for-imperfect-computer-models/10.1214/15-AOS1314.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-6/Efficient-calibration-for-imperfect-computer-models/10.1214/15-AOS1314.full
http://dx.doi.org/10.1214/15-AOS1314
http://dx.doi.org/10.1122/1.549269
https://www.cambridge.org/core/journals/data-centric-engineering/article/continuous-calibration-of-a-digital-twin-comparison-of-particle-filter-and-bayesian-calibration-approaches/BE7304EFCB5006059184852E39EED19A#article
https://www.cambridge.org/core/journals/data-centric-engineering/article/continuous-calibration-of-a-digital-twin-comparison-of-particle-filter-and-bayesian-calibration-approaches/BE7304EFCB5006059184852E39EED19A#article
https://www.cambridge.org/core/journals/data-centric-engineering/article/continuous-calibration-of-a-digital-twin-comparison-of-particle-filter-and-bayesian-calibration-approaches/BE7304EFCB5006059184852E39EED19A#article
https://www.cambridge.org/core/journals/data-centric-engineering/article/continuous-calibration-of-a-digital-twin-comparison-of-particle-filter-and-bayesian-calibration-approaches/BE7304EFCB5006059184852E39EED19A#article
http://dx.doi.org/10.1017/dce.2021.12
http://dx.doi.org/10.1017/dce.2021.12
https://epubs.siam.org/doi/10.1137/S1064827501387826
https://epubs.siam.org/doi/10.1137/S1064827501387826
http://dx.doi.org/10.1137/S1064827501387826
http://www.sciencedirect.com/science/article/pii/S0377025720301555
http://www.sciencedirect.com/science/article/pii/S0377025720301555
http://dx.doi.org/10.1016/j.jnnfm.2020.104398
http://dx.doi.org/10.1016/j.jnnfm.2020.104398

	Introduction
	Experimental setup
	Samples
	Measurement of die swell

	Mathematical models
	Deterministic model: Tanner's formula
	Inference on model parameters (calibration)
	Numerical results

	Purely data–driven ML approach
	Numerical Results

	Kennedy & O'Hagan approach: model discrepancy
	Numerical results

	Higdon approach: model discrepancy and GP surrogate model
	Numerical results


	Discussion
	Conclusions
	Backmatter

